tcp_input.c 182 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_fack __read_mostly;
  76. int sysctl_tcp_max_reordering __read_mostly = 300;
  77. int sysctl_tcp_dsack __read_mostly = 1;
  78. int sysctl_tcp_app_win __read_mostly = 31;
  79. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  80. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  81. /* rfc5961 challenge ack rate limiting */
  82. int sysctl_tcp_challenge_ack_limit = 1000;
  83. int sysctl_tcp_stdurg __read_mostly;
  84. int sysctl_tcp_rfc1337 __read_mostly;
  85. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  86. int sysctl_tcp_frto __read_mostly = 2;
  87. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  88. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  89. int sysctl_tcp_early_retrans __read_mostly = 3;
  90. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  91. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  92. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  93. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  94. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  95. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  96. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  97. #define FLAG_ECE 0x40 /* ECE in this ACK */
  98. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  99. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  100. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  101. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  102. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  103. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  107. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  108. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  109. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  110. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  111. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  112. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  113. #define REXMIT_NONE 0 /* no loss recovery to do */
  114. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  115. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  116. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  117. unsigned int len)
  118. {
  119. static bool __once __read_mostly;
  120. if (!__once) {
  121. struct net_device *dev;
  122. __once = true;
  123. rcu_read_lock();
  124. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  125. if (!dev || len >= dev->mtu)
  126. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  127. dev ? dev->name : "Unknown driver");
  128. rcu_read_unlock();
  129. }
  130. }
  131. /* Adapt the MSS value used to make delayed ack decision to the
  132. * real world.
  133. */
  134. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  135. {
  136. struct inet_connection_sock *icsk = inet_csk(sk);
  137. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  138. unsigned int len;
  139. icsk->icsk_ack.last_seg_size = 0;
  140. /* skb->len may jitter because of SACKs, even if peer
  141. * sends good full-sized frames.
  142. */
  143. len = skb_shinfo(skb)->gso_size ? : skb->len;
  144. if (len >= icsk->icsk_ack.rcv_mss) {
  145. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  146. tcp_sk(sk)->advmss);
  147. /* Account for possibly-removed options */
  148. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  149. MAX_TCP_OPTION_SPACE))
  150. tcp_gro_dev_warn(sk, skb, len);
  151. } else {
  152. /* Otherwise, we make more careful check taking into account,
  153. * that SACKs block is variable.
  154. *
  155. * "len" is invariant segment length, including TCP header.
  156. */
  157. len += skb->data - skb_transport_header(skb);
  158. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  159. /* If PSH is not set, packet should be
  160. * full sized, provided peer TCP is not badly broken.
  161. * This observation (if it is correct 8)) allows
  162. * to handle super-low mtu links fairly.
  163. */
  164. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  165. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  166. /* Subtract also invariant (if peer is RFC compliant),
  167. * tcp header plus fixed timestamp option length.
  168. * Resulting "len" is MSS free of SACK jitter.
  169. */
  170. len -= tcp_sk(sk)->tcp_header_len;
  171. icsk->icsk_ack.last_seg_size = len;
  172. if (len == lss) {
  173. icsk->icsk_ack.rcv_mss = len;
  174. return;
  175. }
  176. }
  177. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  178. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  179. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  180. }
  181. }
  182. static void tcp_incr_quickack(struct sock *sk)
  183. {
  184. struct inet_connection_sock *icsk = inet_csk(sk);
  185. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  186. if (quickacks == 0)
  187. quickacks = 2;
  188. if (quickacks > icsk->icsk_ack.quick)
  189. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  190. }
  191. static void tcp_enter_quickack_mode(struct sock *sk)
  192. {
  193. struct inet_connection_sock *icsk = inet_csk(sk);
  194. tcp_incr_quickack(sk);
  195. icsk->icsk_ack.pingpong = 0;
  196. icsk->icsk_ack.ato = TCP_ATO_MIN;
  197. }
  198. /* Send ACKs quickly, if "quick" count is not exhausted
  199. * and the session is not interactive.
  200. */
  201. static bool tcp_in_quickack_mode(struct sock *sk)
  202. {
  203. const struct inet_connection_sock *icsk = inet_csk(sk);
  204. const struct dst_entry *dst = __sk_dst_get(sk);
  205. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  206. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  207. }
  208. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  209. {
  210. if (tp->ecn_flags & TCP_ECN_OK)
  211. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  212. }
  213. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  214. {
  215. if (tcp_hdr(skb)->cwr)
  216. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  217. }
  218. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  219. {
  220. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  221. }
  222. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  223. {
  224. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  225. case INET_ECN_NOT_ECT:
  226. /* Funny extension: if ECT is not set on a segment,
  227. * and we already seen ECT on a previous segment,
  228. * it is probably a retransmit.
  229. */
  230. if (tp->ecn_flags & TCP_ECN_SEEN)
  231. tcp_enter_quickack_mode((struct sock *)tp);
  232. break;
  233. case INET_ECN_CE:
  234. if (tcp_ca_needs_ecn((struct sock *)tp))
  235. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  236. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  237. /* Better not delay acks, sender can have a very low cwnd */
  238. tcp_enter_quickack_mode((struct sock *)tp);
  239. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  240. }
  241. tp->ecn_flags |= TCP_ECN_SEEN;
  242. break;
  243. default:
  244. if (tcp_ca_needs_ecn((struct sock *)tp))
  245. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  246. tp->ecn_flags |= TCP_ECN_SEEN;
  247. break;
  248. }
  249. }
  250. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  251. {
  252. if (tp->ecn_flags & TCP_ECN_OK)
  253. __tcp_ecn_check_ce(tp, skb);
  254. }
  255. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  256. {
  257. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  258. tp->ecn_flags &= ~TCP_ECN_OK;
  259. }
  260. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  261. {
  262. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  263. tp->ecn_flags &= ~TCP_ECN_OK;
  264. }
  265. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  266. {
  267. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  268. return true;
  269. return false;
  270. }
  271. /* Buffer size and advertised window tuning.
  272. *
  273. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  274. */
  275. static void tcp_sndbuf_expand(struct sock *sk)
  276. {
  277. const struct tcp_sock *tp = tcp_sk(sk);
  278. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  279. int sndmem, per_mss;
  280. u32 nr_segs;
  281. /* Worst case is non GSO/TSO : each frame consumes one skb
  282. * and skb->head is kmalloced using power of two area of memory
  283. */
  284. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  285. MAX_TCP_HEADER +
  286. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  287. per_mss = roundup_pow_of_two(per_mss) +
  288. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  289. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  290. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  291. /* Fast Recovery (RFC 5681 3.2) :
  292. * Cubic needs 1.7 factor, rounded to 2 to include
  293. * extra cushion (application might react slowly to POLLOUT)
  294. */
  295. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  296. sndmem *= nr_segs * per_mss;
  297. if (sk->sk_sndbuf < sndmem)
  298. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  299. }
  300. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  301. *
  302. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  303. * forward and advertised in receiver window (tp->rcv_wnd) and
  304. * "application buffer", required to isolate scheduling/application
  305. * latencies from network.
  306. * window_clamp is maximal advertised window. It can be less than
  307. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  308. * is reserved for "application" buffer. The less window_clamp is
  309. * the smoother our behaviour from viewpoint of network, but the lower
  310. * throughput and the higher sensitivity of the connection to losses. 8)
  311. *
  312. * rcv_ssthresh is more strict window_clamp used at "slow start"
  313. * phase to predict further behaviour of this connection.
  314. * It is used for two goals:
  315. * - to enforce header prediction at sender, even when application
  316. * requires some significant "application buffer". It is check #1.
  317. * - to prevent pruning of receive queue because of misprediction
  318. * of receiver window. Check #2.
  319. *
  320. * The scheme does not work when sender sends good segments opening
  321. * window and then starts to feed us spaghetti. But it should work
  322. * in common situations. Otherwise, we have to rely on queue collapsing.
  323. */
  324. /* Slow part of check#2. */
  325. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  326. {
  327. struct tcp_sock *tp = tcp_sk(sk);
  328. /* Optimize this! */
  329. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  330. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  331. while (tp->rcv_ssthresh <= window) {
  332. if (truesize <= skb->len)
  333. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  334. truesize >>= 1;
  335. window >>= 1;
  336. }
  337. return 0;
  338. }
  339. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  340. {
  341. struct tcp_sock *tp = tcp_sk(sk);
  342. /* Check #1 */
  343. if (tp->rcv_ssthresh < tp->window_clamp &&
  344. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  345. !tcp_under_memory_pressure(sk)) {
  346. int incr;
  347. /* Check #2. Increase window, if skb with such overhead
  348. * will fit to rcvbuf in future.
  349. */
  350. if (tcp_win_from_space(skb->truesize) <= skb->len)
  351. incr = 2 * tp->advmss;
  352. else
  353. incr = __tcp_grow_window(sk, skb);
  354. if (incr) {
  355. incr = max_t(int, incr, 2 * skb->len);
  356. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  357. tp->window_clamp);
  358. inet_csk(sk)->icsk_ack.quick |= 1;
  359. }
  360. }
  361. }
  362. /* 3. Tuning rcvbuf, when connection enters established state. */
  363. static void tcp_fixup_rcvbuf(struct sock *sk)
  364. {
  365. u32 mss = tcp_sk(sk)->advmss;
  366. int rcvmem;
  367. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  368. tcp_default_init_rwnd(mss);
  369. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  370. * Allow enough cushion so that sender is not limited by our window
  371. */
  372. if (sysctl_tcp_moderate_rcvbuf)
  373. rcvmem <<= 2;
  374. if (sk->sk_rcvbuf < rcvmem)
  375. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  376. }
  377. /* 4. Try to fixup all. It is made immediately after connection enters
  378. * established state.
  379. */
  380. void tcp_init_buffer_space(struct sock *sk)
  381. {
  382. struct tcp_sock *tp = tcp_sk(sk);
  383. int maxwin;
  384. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  385. tcp_fixup_rcvbuf(sk);
  386. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  387. tcp_sndbuf_expand(sk);
  388. tp->rcvq_space.space = tp->rcv_wnd;
  389. tcp_mstamp_refresh(tp);
  390. tp->rcvq_space.time = tp->tcp_mstamp;
  391. tp->rcvq_space.seq = tp->copied_seq;
  392. maxwin = tcp_full_space(sk);
  393. if (tp->window_clamp >= maxwin) {
  394. tp->window_clamp = maxwin;
  395. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  396. tp->window_clamp = max(maxwin -
  397. (maxwin >> sysctl_tcp_app_win),
  398. 4 * tp->advmss);
  399. }
  400. /* Force reservation of one segment. */
  401. if (sysctl_tcp_app_win &&
  402. tp->window_clamp > 2 * tp->advmss &&
  403. tp->window_clamp + tp->advmss > maxwin)
  404. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  405. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  406. tp->snd_cwnd_stamp = tcp_jiffies32;
  407. }
  408. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  409. static void tcp_clamp_window(struct sock *sk)
  410. {
  411. struct tcp_sock *tp = tcp_sk(sk);
  412. struct inet_connection_sock *icsk = inet_csk(sk);
  413. icsk->icsk_ack.quick = 0;
  414. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  415. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  416. !tcp_under_memory_pressure(sk) &&
  417. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  418. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  419. sysctl_tcp_rmem[2]);
  420. }
  421. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  422. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  423. }
  424. /* Initialize RCV_MSS value.
  425. * RCV_MSS is an our guess about MSS used by the peer.
  426. * We haven't any direct information about the MSS.
  427. * It's better to underestimate the RCV_MSS rather than overestimate.
  428. * Overestimations make us ACKing less frequently than needed.
  429. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  430. */
  431. void tcp_initialize_rcv_mss(struct sock *sk)
  432. {
  433. const struct tcp_sock *tp = tcp_sk(sk);
  434. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  435. hint = min(hint, tp->rcv_wnd / 2);
  436. hint = min(hint, TCP_MSS_DEFAULT);
  437. hint = max(hint, TCP_MIN_MSS);
  438. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  439. }
  440. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  441. /* Receiver "autotuning" code.
  442. *
  443. * The algorithm for RTT estimation w/o timestamps is based on
  444. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  445. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  446. *
  447. * More detail on this code can be found at
  448. * <http://staff.psc.edu/jheffner/>,
  449. * though this reference is out of date. A new paper
  450. * is pending.
  451. */
  452. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  453. {
  454. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  455. long m = sample;
  456. if (m == 0)
  457. m = 1;
  458. if (new_sample != 0) {
  459. /* If we sample in larger samples in the non-timestamp
  460. * case, we could grossly overestimate the RTT especially
  461. * with chatty applications or bulk transfer apps which
  462. * are stalled on filesystem I/O.
  463. *
  464. * Also, since we are only going for a minimum in the
  465. * non-timestamp case, we do not smooth things out
  466. * else with timestamps disabled convergence takes too
  467. * long.
  468. */
  469. if (!win_dep) {
  470. m -= (new_sample >> 3);
  471. new_sample += m;
  472. } else {
  473. m <<= 3;
  474. if (m < new_sample)
  475. new_sample = m;
  476. }
  477. } else {
  478. /* No previous measure. */
  479. new_sample = m << 3;
  480. }
  481. tp->rcv_rtt_est.rtt_us = new_sample;
  482. }
  483. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  484. {
  485. u32 delta_us;
  486. if (tp->rcv_rtt_est.time == 0)
  487. goto new_measure;
  488. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  489. return;
  490. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  491. tcp_rcv_rtt_update(tp, delta_us, 1);
  492. new_measure:
  493. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  494. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  495. }
  496. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  497. const struct sk_buff *skb)
  498. {
  499. struct tcp_sock *tp = tcp_sk(sk);
  500. if (tp->rx_opt.rcv_tsecr &&
  501. (TCP_SKB_CB(skb)->end_seq -
  502. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  503. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  504. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  505. tcp_rcv_rtt_update(tp, delta_us, 0);
  506. }
  507. }
  508. /*
  509. * This function should be called every time data is copied to user space.
  510. * It calculates the appropriate TCP receive buffer space.
  511. */
  512. void tcp_rcv_space_adjust(struct sock *sk)
  513. {
  514. struct tcp_sock *tp = tcp_sk(sk);
  515. int time;
  516. int copied;
  517. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  518. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  519. return;
  520. /* Number of bytes copied to user in last RTT */
  521. copied = tp->copied_seq - tp->rcvq_space.seq;
  522. if (copied <= tp->rcvq_space.space)
  523. goto new_measure;
  524. /* A bit of theory :
  525. * copied = bytes received in previous RTT, our base window
  526. * To cope with packet losses, we need a 2x factor
  527. * To cope with slow start, and sender growing its cwin by 100 %
  528. * every RTT, we need a 4x factor, because the ACK we are sending
  529. * now is for the next RTT, not the current one :
  530. * <prev RTT . ><current RTT .. ><next RTT .... >
  531. */
  532. if (sysctl_tcp_moderate_rcvbuf &&
  533. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  534. int rcvwin, rcvmem, rcvbuf;
  535. /* minimal window to cope with packet losses, assuming
  536. * steady state. Add some cushion because of small variations.
  537. */
  538. rcvwin = (copied << 1) + 16 * tp->advmss;
  539. /* If rate increased by 25%,
  540. * assume slow start, rcvwin = 3 * copied
  541. * If rate increased by 50%,
  542. * assume sender can use 2x growth, rcvwin = 4 * copied
  543. */
  544. if (copied >=
  545. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  546. if (copied >=
  547. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  548. rcvwin <<= 1;
  549. else
  550. rcvwin += (rcvwin >> 1);
  551. }
  552. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  553. while (tcp_win_from_space(rcvmem) < tp->advmss)
  554. rcvmem += 128;
  555. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  556. if (rcvbuf > sk->sk_rcvbuf) {
  557. sk->sk_rcvbuf = rcvbuf;
  558. /* Make the window clamp follow along. */
  559. tp->window_clamp = rcvwin;
  560. }
  561. }
  562. tp->rcvq_space.space = copied;
  563. new_measure:
  564. tp->rcvq_space.seq = tp->copied_seq;
  565. tp->rcvq_space.time = tp->tcp_mstamp;
  566. }
  567. /* There is something which you must keep in mind when you analyze the
  568. * behavior of the tp->ato delayed ack timeout interval. When a
  569. * connection starts up, we want to ack as quickly as possible. The
  570. * problem is that "good" TCP's do slow start at the beginning of data
  571. * transmission. The means that until we send the first few ACK's the
  572. * sender will sit on his end and only queue most of his data, because
  573. * he can only send snd_cwnd unacked packets at any given time. For
  574. * each ACK we send, he increments snd_cwnd and transmits more of his
  575. * queue. -DaveM
  576. */
  577. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  578. {
  579. struct tcp_sock *tp = tcp_sk(sk);
  580. struct inet_connection_sock *icsk = inet_csk(sk);
  581. u32 now;
  582. inet_csk_schedule_ack(sk);
  583. tcp_measure_rcv_mss(sk, skb);
  584. tcp_rcv_rtt_measure(tp);
  585. now = tcp_jiffies32;
  586. if (!icsk->icsk_ack.ato) {
  587. /* The _first_ data packet received, initialize
  588. * delayed ACK engine.
  589. */
  590. tcp_incr_quickack(sk);
  591. icsk->icsk_ack.ato = TCP_ATO_MIN;
  592. } else {
  593. int m = now - icsk->icsk_ack.lrcvtime;
  594. if (m <= TCP_ATO_MIN / 2) {
  595. /* The fastest case is the first. */
  596. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  597. } else if (m < icsk->icsk_ack.ato) {
  598. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  599. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  600. icsk->icsk_ack.ato = icsk->icsk_rto;
  601. } else if (m > icsk->icsk_rto) {
  602. /* Too long gap. Apparently sender failed to
  603. * restart window, so that we send ACKs quickly.
  604. */
  605. tcp_incr_quickack(sk);
  606. sk_mem_reclaim(sk);
  607. }
  608. }
  609. icsk->icsk_ack.lrcvtime = now;
  610. tcp_ecn_check_ce(tp, skb);
  611. if (skb->len >= 128)
  612. tcp_grow_window(sk, skb);
  613. }
  614. /* Called to compute a smoothed rtt estimate. The data fed to this
  615. * routine either comes from timestamps, or from segments that were
  616. * known _not_ to have been retransmitted [see Karn/Partridge
  617. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  618. * piece by Van Jacobson.
  619. * NOTE: the next three routines used to be one big routine.
  620. * To save cycles in the RFC 1323 implementation it was better to break
  621. * it up into three procedures. -- erics
  622. */
  623. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  624. {
  625. struct tcp_sock *tp = tcp_sk(sk);
  626. long m = mrtt_us; /* RTT */
  627. u32 srtt = tp->srtt_us;
  628. /* The following amusing code comes from Jacobson's
  629. * article in SIGCOMM '88. Note that rtt and mdev
  630. * are scaled versions of rtt and mean deviation.
  631. * This is designed to be as fast as possible
  632. * m stands for "measurement".
  633. *
  634. * On a 1990 paper the rto value is changed to:
  635. * RTO = rtt + 4 * mdev
  636. *
  637. * Funny. This algorithm seems to be very broken.
  638. * These formulae increase RTO, when it should be decreased, increase
  639. * too slowly, when it should be increased quickly, decrease too quickly
  640. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  641. * does not matter how to _calculate_ it. Seems, it was trap
  642. * that VJ failed to avoid. 8)
  643. */
  644. if (srtt != 0) {
  645. m -= (srtt >> 3); /* m is now error in rtt est */
  646. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  647. if (m < 0) {
  648. m = -m; /* m is now abs(error) */
  649. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  650. /* This is similar to one of Eifel findings.
  651. * Eifel blocks mdev updates when rtt decreases.
  652. * This solution is a bit different: we use finer gain
  653. * for mdev in this case (alpha*beta).
  654. * Like Eifel it also prevents growth of rto,
  655. * but also it limits too fast rto decreases,
  656. * happening in pure Eifel.
  657. */
  658. if (m > 0)
  659. m >>= 3;
  660. } else {
  661. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  662. }
  663. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  664. if (tp->mdev_us > tp->mdev_max_us) {
  665. tp->mdev_max_us = tp->mdev_us;
  666. if (tp->mdev_max_us > tp->rttvar_us)
  667. tp->rttvar_us = tp->mdev_max_us;
  668. }
  669. if (after(tp->snd_una, tp->rtt_seq)) {
  670. if (tp->mdev_max_us < tp->rttvar_us)
  671. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  672. tp->rtt_seq = tp->snd_nxt;
  673. tp->mdev_max_us = tcp_rto_min_us(sk);
  674. }
  675. } else {
  676. /* no previous measure. */
  677. srtt = m << 3; /* take the measured time to be rtt */
  678. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  679. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  680. tp->mdev_max_us = tp->rttvar_us;
  681. tp->rtt_seq = tp->snd_nxt;
  682. }
  683. tp->srtt_us = max(1U, srtt);
  684. }
  685. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  686. * Note: TCP stack does not yet implement pacing.
  687. * FQ packet scheduler can be used to implement cheap but effective
  688. * TCP pacing, to smooth the burst on large writes when packets
  689. * in flight is significantly lower than cwnd (or rwin)
  690. */
  691. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  692. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  693. static void tcp_update_pacing_rate(struct sock *sk)
  694. {
  695. const struct tcp_sock *tp = tcp_sk(sk);
  696. u64 rate;
  697. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  698. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  699. /* current rate is (cwnd * mss) / srtt
  700. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  701. * In Congestion Avoidance phase, set it to 120 % the current rate.
  702. *
  703. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  704. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  705. * end of slow start and should slow down.
  706. */
  707. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  708. rate *= sysctl_tcp_pacing_ss_ratio;
  709. else
  710. rate *= sysctl_tcp_pacing_ca_ratio;
  711. rate *= max(tp->snd_cwnd, tp->packets_out);
  712. if (likely(tp->srtt_us))
  713. do_div(rate, tp->srtt_us);
  714. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  715. * without any lock. We want to make sure compiler wont store
  716. * intermediate values in this location.
  717. */
  718. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  719. sk->sk_max_pacing_rate);
  720. }
  721. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  722. * routine referred to above.
  723. */
  724. static void tcp_set_rto(struct sock *sk)
  725. {
  726. const struct tcp_sock *tp = tcp_sk(sk);
  727. /* Old crap is replaced with new one. 8)
  728. *
  729. * More seriously:
  730. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  731. * It cannot be less due to utterly erratic ACK generation made
  732. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  733. * to do with delayed acks, because at cwnd>2 true delack timeout
  734. * is invisible. Actually, Linux-2.4 also generates erratic
  735. * ACKs in some circumstances.
  736. */
  737. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  738. /* 2. Fixups made earlier cannot be right.
  739. * If we do not estimate RTO correctly without them,
  740. * all the algo is pure shit and should be replaced
  741. * with correct one. It is exactly, which we pretend to do.
  742. */
  743. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  744. * guarantees that rto is higher.
  745. */
  746. tcp_bound_rto(sk);
  747. }
  748. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  749. {
  750. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  751. if (!cwnd)
  752. cwnd = TCP_INIT_CWND;
  753. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  754. }
  755. /*
  756. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  757. * disables it when reordering is detected
  758. */
  759. void tcp_disable_fack(struct tcp_sock *tp)
  760. {
  761. /* RFC3517 uses different metric in lost marker => reset on change */
  762. if (tcp_is_fack(tp))
  763. tp->lost_skb_hint = NULL;
  764. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  765. }
  766. /* Take a notice that peer is sending D-SACKs */
  767. static void tcp_dsack_seen(struct tcp_sock *tp)
  768. {
  769. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  770. }
  771. static void tcp_update_reordering(struct sock *sk, const int metric,
  772. const int ts)
  773. {
  774. struct tcp_sock *tp = tcp_sk(sk);
  775. int mib_idx;
  776. if (WARN_ON_ONCE(metric < 0))
  777. return;
  778. if (metric > tp->reordering) {
  779. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  780. #if FASTRETRANS_DEBUG > 1
  781. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  782. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  783. tp->reordering,
  784. tp->fackets_out,
  785. tp->sacked_out,
  786. tp->undo_marker ? tp->undo_retrans : 0);
  787. #endif
  788. tcp_disable_fack(tp);
  789. }
  790. tp->rack.reord = 1;
  791. /* This exciting event is worth to be remembered. 8) */
  792. if (ts)
  793. mib_idx = LINUX_MIB_TCPTSREORDER;
  794. else if (tcp_is_reno(tp))
  795. mib_idx = LINUX_MIB_TCPRENOREORDER;
  796. else if (tcp_is_fack(tp))
  797. mib_idx = LINUX_MIB_TCPFACKREORDER;
  798. else
  799. mib_idx = LINUX_MIB_TCPSACKREORDER;
  800. NET_INC_STATS(sock_net(sk), mib_idx);
  801. }
  802. /* This must be called before lost_out is incremented */
  803. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  804. {
  805. if (!tp->retransmit_skb_hint ||
  806. before(TCP_SKB_CB(skb)->seq,
  807. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  808. tp->retransmit_skb_hint = skb;
  809. }
  810. /* Sum the number of packets on the wire we have marked as lost.
  811. * There are two cases we care about here:
  812. * a) Packet hasn't been marked lost (nor retransmitted),
  813. * and this is the first loss.
  814. * b) Packet has been marked both lost and retransmitted,
  815. * and this means we think it was lost again.
  816. */
  817. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  818. {
  819. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  820. if (!(sacked & TCPCB_LOST) ||
  821. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  822. tp->lost += tcp_skb_pcount(skb);
  823. }
  824. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  825. {
  826. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  827. tcp_verify_retransmit_hint(tp, skb);
  828. tp->lost_out += tcp_skb_pcount(skb);
  829. tcp_sum_lost(tp, skb);
  830. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  831. }
  832. }
  833. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  834. {
  835. tcp_verify_retransmit_hint(tp, skb);
  836. tcp_sum_lost(tp, skb);
  837. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  838. tp->lost_out += tcp_skb_pcount(skb);
  839. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  840. }
  841. }
  842. /* This procedure tags the retransmission queue when SACKs arrive.
  843. *
  844. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  845. * Packets in queue with these bits set are counted in variables
  846. * sacked_out, retrans_out and lost_out, correspondingly.
  847. *
  848. * Valid combinations are:
  849. * Tag InFlight Description
  850. * 0 1 - orig segment is in flight.
  851. * S 0 - nothing flies, orig reached receiver.
  852. * L 0 - nothing flies, orig lost by net.
  853. * R 2 - both orig and retransmit are in flight.
  854. * L|R 1 - orig is lost, retransmit is in flight.
  855. * S|R 1 - orig reached receiver, retrans is still in flight.
  856. * (L|S|R is logically valid, it could occur when L|R is sacked,
  857. * but it is equivalent to plain S and code short-curcuits it to S.
  858. * L|S is logically invalid, it would mean -1 packet in flight 8))
  859. *
  860. * These 6 states form finite state machine, controlled by the following events:
  861. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  862. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  863. * 3. Loss detection event of two flavors:
  864. * A. Scoreboard estimator decided the packet is lost.
  865. * A'. Reno "three dupacks" marks head of queue lost.
  866. * A''. Its FACK modification, head until snd.fack is lost.
  867. * B. SACK arrives sacking SND.NXT at the moment, when the
  868. * segment was retransmitted.
  869. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  870. *
  871. * It is pleasant to note, that state diagram turns out to be commutative,
  872. * so that we are allowed not to be bothered by order of our actions,
  873. * when multiple events arrive simultaneously. (see the function below).
  874. *
  875. * Reordering detection.
  876. * --------------------
  877. * Reordering metric is maximal distance, which a packet can be displaced
  878. * in packet stream. With SACKs we can estimate it:
  879. *
  880. * 1. SACK fills old hole and the corresponding segment was not
  881. * ever retransmitted -> reordering. Alas, we cannot use it
  882. * when segment was retransmitted.
  883. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  884. * for retransmitted and already SACKed segment -> reordering..
  885. * Both of these heuristics are not used in Loss state, when we cannot
  886. * account for retransmits accurately.
  887. *
  888. * SACK block validation.
  889. * ----------------------
  890. *
  891. * SACK block range validation checks that the received SACK block fits to
  892. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  893. * Note that SND.UNA is not included to the range though being valid because
  894. * it means that the receiver is rather inconsistent with itself reporting
  895. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  896. * perfectly valid, however, in light of RFC2018 which explicitly states
  897. * that "SACK block MUST reflect the newest segment. Even if the newest
  898. * segment is going to be discarded ...", not that it looks very clever
  899. * in case of head skb. Due to potentional receiver driven attacks, we
  900. * choose to avoid immediate execution of a walk in write queue due to
  901. * reneging and defer head skb's loss recovery to standard loss recovery
  902. * procedure that will eventually trigger (nothing forbids us doing this).
  903. *
  904. * Implements also blockage to start_seq wrap-around. Problem lies in the
  905. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  906. * there's no guarantee that it will be before snd_nxt (n). The problem
  907. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  908. * wrap (s_w):
  909. *
  910. * <- outs wnd -> <- wrapzone ->
  911. * u e n u_w e_w s n_w
  912. * | | | | | | |
  913. * |<------------+------+----- TCP seqno space --------------+---------->|
  914. * ...-- <2^31 ->| |<--------...
  915. * ...---- >2^31 ------>| |<--------...
  916. *
  917. * Current code wouldn't be vulnerable but it's better still to discard such
  918. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  919. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  920. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  921. * equal to the ideal case (infinite seqno space without wrap caused issues).
  922. *
  923. * With D-SACK the lower bound is extended to cover sequence space below
  924. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  925. * again, D-SACK block must not to go across snd_una (for the same reason as
  926. * for the normal SACK blocks, explained above). But there all simplicity
  927. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  928. * fully below undo_marker they do not affect behavior in anyway and can
  929. * therefore be safely ignored. In rare cases (which are more or less
  930. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  931. * fragmentation and packet reordering past skb's retransmission. To consider
  932. * them correctly, the acceptable range must be extended even more though
  933. * the exact amount is rather hard to quantify. However, tp->max_window can
  934. * be used as an exaggerated estimate.
  935. */
  936. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  937. u32 start_seq, u32 end_seq)
  938. {
  939. /* Too far in future, or reversed (interpretation is ambiguous) */
  940. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  941. return false;
  942. /* Nasty start_seq wrap-around check (see comments above) */
  943. if (!before(start_seq, tp->snd_nxt))
  944. return false;
  945. /* In outstanding window? ...This is valid exit for D-SACKs too.
  946. * start_seq == snd_una is non-sensical (see comments above)
  947. */
  948. if (after(start_seq, tp->snd_una))
  949. return true;
  950. if (!is_dsack || !tp->undo_marker)
  951. return false;
  952. /* ...Then it's D-SACK, and must reside below snd_una completely */
  953. if (after(end_seq, tp->snd_una))
  954. return false;
  955. if (!before(start_seq, tp->undo_marker))
  956. return true;
  957. /* Too old */
  958. if (!after(end_seq, tp->undo_marker))
  959. return false;
  960. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  961. * start_seq < undo_marker and end_seq >= undo_marker.
  962. */
  963. return !before(start_seq, end_seq - tp->max_window);
  964. }
  965. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  966. struct tcp_sack_block_wire *sp, int num_sacks,
  967. u32 prior_snd_una)
  968. {
  969. struct tcp_sock *tp = tcp_sk(sk);
  970. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  971. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  972. bool dup_sack = false;
  973. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  974. dup_sack = true;
  975. tcp_dsack_seen(tp);
  976. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  977. } else if (num_sacks > 1) {
  978. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  979. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  980. if (!after(end_seq_0, end_seq_1) &&
  981. !before(start_seq_0, start_seq_1)) {
  982. dup_sack = true;
  983. tcp_dsack_seen(tp);
  984. NET_INC_STATS(sock_net(sk),
  985. LINUX_MIB_TCPDSACKOFORECV);
  986. }
  987. }
  988. /* D-SACK for already forgotten data... Do dumb counting. */
  989. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  990. !after(end_seq_0, prior_snd_una) &&
  991. after(end_seq_0, tp->undo_marker))
  992. tp->undo_retrans--;
  993. return dup_sack;
  994. }
  995. struct tcp_sacktag_state {
  996. int reord;
  997. int fack_count;
  998. /* Timestamps for earliest and latest never-retransmitted segment
  999. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1000. * but congestion control should still get an accurate delay signal.
  1001. */
  1002. u64 first_sackt;
  1003. u64 last_sackt;
  1004. struct rate_sample *rate;
  1005. int flag;
  1006. };
  1007. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1008. * the incoming SACK may not exactly match but we can find smaller MSS
  1009. * aligned portion of it that matches. Therefore we might need to fragment
  1010. * which may fail and creates some hassle (caller must handle error case
  1011. * returns).
  1012. *
  1013. * FIXME: this could be merged to shift decision code
  1014. */
  1015. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1016. u32 start_seq, u32 end_seq)
  1017. {
  1018. int err;
  1019. bool in_sack;
  1020. unsigned int pkt_len;
  1021. unsigned int mss;
  1022. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1023. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1024. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1025. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1026. mss = tcp_skb_mss(skb);
  1027. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1028. if (!in_sack) {
  1029. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1030. if (pkt_len < mss)
  1031. pkt_len = mss;
  1032. } else {
  1033. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1034. if (pkt_len < mss)
  1035. return -EINVAL;
  1036. }
  1037. /* Round if necessary so that SACKs cover only full MSSes
  1038. * and/or the remaining small portion (if present)
  1039. */
  1040. if (pkt_len > mss) {
  1041. unsigned int new_len = (pkt_len / mss) * mss;
  1042. if (!in_sack && new_len < pkt_len)
  1043. new_len += mss;
  1044. pkt_len = new_len;
  1045. }
  1046. if (pkt_len >= skb->len && !in_sack)
  1047. return 0;
  1048. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1049. if (err < 0)
  1050. return err;
  1051. }
  1052. return in_sack;
  1053. }
  1054. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1055. static u8 tcp_sacktag_one(struct sock *sk,
  1056. struct tcp_sacktag_state *state, u8 sacked,
  1057. u32 start_seq, u32 end_seq,
  1058. int dup_sack, int pcount,
  1059. u64 xmit_time)
  1060. {
  1061. struct tcp_sock *tp = tcp_sk(sk);
  1062. int fack_count = state->fack_count;
  1063. /* Account D-SACK for retransmitted packet. */
  1064. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1065. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1066. after(end_seq, tp->undo_marker))
  1067. tp->undo_retrans--;
  1068. if (sacked & TCPCB_SACKED_ACKED)
  1069. state->reord = min(fack_count, state->reord);
  1070. }
  1071. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1072. if (!after(end_seq, tp->snd_una))
  1073. return sacked;
  1074. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1075. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1076. if (sacked & TCPCB_SACKED_RETRANS) {
  1077. /* If the segment is not tagged as lost,
  1078. * we do not clear RETRANS, believing
  1079. * that retransmission is still in flight.
  1080. */
  1081. if (sacked & TCPCB_LOST) {
  1082. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1083. tp->lost_out -= pcount;
  1084. tp->retrans_out -= pcount;
  1085. }
  1086. } else {
  1087. if (!(sacked & TCPCB_RETRANS)) {
  1088. /* New sack for not retransmitted frame,
  1089. * which was in hole. It is reordering.
  1090. */
  1091. if (before(start_seq,
  1092. tcp_highest_sack_seq(tp)))
  1093. state->reord = min(fack_count,
  1094. state->reord);
  1095. if (!after(end_seq, tp->high_seq))
  1096. state->flag |= FLAG_ORIG_SACK_ACKED;
  1097. if (state->first_sackt == 0)
  1098. state->first_sackt = xmit_time;
  1099. state->last_sackt = xmit_time;
  1100. }
  1101. if (sacked & TCPCB_LOST) {
  1102. sacked &= ~TCPCB_LOST;
  1103. tp->lost_out -= pcount;
  1104. }
  1105. }
  1106. sacked |= TCPCB_SACKED_ACKED;
  1107. state->flag |= FLAG_DATA_SACKED;
  1108. tp->sacked_out += pcount;
  1109. tp->delivered += pcount; /* Out-of-order packets delivered */
  1110. fack_count += pcount;
  1111. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1112. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1113. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1114. tp->lost_cnt_hint += pcount;
  1115. if (fack_count > tp->fackets_out)
  1116. tp->fackets_out = fack_count;
  1117. }
  1118. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1119. * frames and clear it. undo_retrans is decreased above, L|R frames
  1120. * are accounted above as well.
  1121. */
  1122. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1123. sacked &= ~TCPCB_SACKED_RETRANS;
  1124. tp->retrans_out -= pcount;
  1125. }
  1126. return sacked;
  1127. }
  1128. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1129. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1130. */
  1131. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1132. struct tcp_sacktag_state *state,
  1133. unsigned int pcount, int shifted, int mss,
  1134. bool dup_sack)
  1135. {
  1136. struct tcp_sock *tp = tcp_sk(sk);
  1137. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1138. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1139. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1140. BUG_ON(!pcount);
  1141. /* Adjust counters and hints for the newly sacked sequence
  1142. * range but discard the return value since prev is already
  1143. * marked. We must tag the range first because the seq
  1144. * advancement below implicitly advances
  1145. * tcp_highest_sack_seq() when skb is highest_sack.
  1146. */
  1147. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1148. start_seq, end_seq, dup_sack, pcount,
  1149. skb->skb_mstamp);
  1150. tcp_rate_skb_delivered(sk, skb, state->rate);
  1151. if (skb == tp->lost_skb_hint)
  1152. tp->lost_cnt_hint += pcount;
  1153. TCP_SKB_CB(prev)->end_seq += shifted;
  1154. TCP_SKB_CB(skb)->seq += shifted;
  1155. tcp_skb_pcount_add(prev, pcount);
  1156. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1157. tcp_skb_pcount_add(skb, -pcount);
  1158. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1159. * in theory this shouldn't be necessary but as long as DSACK
  1160. * code can come after this skb later on it's better to keep
  1161. * setting gso_size to something.
  1162. */
  1163. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1164. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1165. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1166. if (tcp_skb_pcount(skb) <= 1)
  1167. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1168. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1169. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1170. if (skb->len > 0) {
  1171. BUG_ON(!tcp_skb_pcount(skb));
  1172. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1173. return false;
  1174. }
  1175. /* Whole SKB was eaten :-) */
  1176. if (skb == tp->retransmit_skb_hint)
  1177. tp->retransmit_skb_hint = prev;
  1178. if (skb == tp->lost_skb_hint) {
  1179. tp->lost_skb_hint = prev;
  1180. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1181. }
  1182. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1183. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1184. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1185. TCP_SKB_CB(prev)->end_seq++;
  1186. if (skb == tcp_highest_sack(sk))
  1187. tcp_advance_highest_sack(sk, skb);
  1188. tcp_skb_collapse_tstamp(prev, skb);
  1189. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1190. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1191. tcp_unlink_write_queue(skb, sk);
  1192. sk_wmem_free_skb(sk, skb);
  1193. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1194. return true;
  1195. }
  1196. /* I wish gso_size would have a bit more sane initialization than
  1197. * something-or-zero which complicates things
  1198. */
  1199. static int tcp_skb_seglen(const struct sk_buff *skb)
  1200. {
  1201. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1202. }
  1203. /* Shifting pages past head area doesn't work */
  1204. static int skb_can_shift(const struct sk_buff *skb)
  1205. {
  1206. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1207. }
  1208. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1209. * skb.
  1210. */
  1211. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1212. struct tcp_sacktag_state *state,
  1213. u32 start_seq, u32 end_seq,
  1214. bool dup_sack)
  1215. {
  1216. struct tcp_sock *tp = tcp_sk(sk);
  1217. struct sk_buff *prev;
  1218. int mss;
  1219. int pcount = 0;
  1220. int len;
  1221. int in_sack;
  1222. if (!sk_can_gso(sk))
  1223. goto fallback;
  1224. /* Normally R but no L won't result in plain S */
  1225. if (!dup_sack &&
  1226. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1227. goto fallback;
  1228. if (!skb_can_shift(skb))
  1229. goto fallback;
  1230. /* This frame is about to be dropped (was ACKed). */
  1231. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1232. goto fallback;
  1233. /* Can only happen with delayed DSACK + discard craziness */
  1234. if (unlikely(skb == tcp_write_queue_head(sk)))
  1235. goto fallback;
  1236. prev = tcp_write_queue_prev(sk, skb);
  1237. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1238. goto fallback;
  1239. if (!tcp_skb_can_collapse_to(prev))
  1240. goto fallback;
  1241. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1242. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1243. if (in_sack) {
  1244. len = skb->len;
  1245. pcount = tcp_skb_pcount(skb);
  1246. mss = tcp_skb_seglen(skb);
  1247. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1248. * drop this restriction as unnecessary
  1249. */
  1250. if (mss != tcp_skb_seglen(prev))
  1251. goto fallback;
  1252. } else {
  1253. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1254. goto noop;
  1255. /* CHECKME: This is non-MSS split case only?, this will
  1256. * cause skipped skbs due to advancing loop btw, original
  1257. * has that feature too
  1258. */
  1259. if (tcp_skb_pcount(skb) <= 1)
  1260. goto noop;
  1261. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1262. if (!in_sack) {
  1263. /* TODO: head merge to next could be attempted here
  1264. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1265. * though it might not be worth of the additional hassle
  1266. *
  1267. * ...we can probably just fallback to what was done
  1268. * previously. We could try merging non-SACKed ones
  1269. * as well but it probably isn't going to buy off
  1270. * because later SACKs might again split them, and
  1271. * it would make skb timestamp tracking considerably
  1272. * harder problem.
  1273. */
  1274. goto fallback;
  1275. }
  1276. len = end_seq - TCP_SKB_CB(skb)->seq;
  1277. BUG_ON(len < 0);
  1278. BUG_ON(len > skb->len);
  1279. /* MSS boundaries should be honoured or else pcount will
  1280. * severely break even though it makes things bit trickier.
  1281. * Optimize common case to avoid most of the divides
  1282. */
  1283. mss = tcp_skb_mss(skb);
  1284. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1285. * drop this restriction as unnecessary
  1286. */
  1287. if (mss != tcp_skb_seglen(prev))
  1288. goto fallback;
  1289. if (len == mss) {
  1290. pcount = 1;
  1291. } else if (len < mss) {
  1292. goto noop;
  1293. } else {
  1294. pcount = len / mss;
  1295. len = pcount * mss;
  1296. }
  1297. }
  1298. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1299. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1300. goto fallback;
  1301. if (!skb_shift(prev, skb, len))
  1302. goto fallback;
  1303. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1304. goto out;
  1305. /* Hole filled allows collapsing with the next as well, this is very
  1306. * useful when hole on every nth skb pattern happens
  1307. */
  1308. if (prev == tcp_write_queue_tail(sk))
  1309. goto out;
  1310. skb = tcp_write_queue_next(sk, prev);
  1311. if (!skb_can_shift(skb) ||
  1312. (skb == tcp_send_head(sk)) ||
  1313. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1314. (mss != tcp_skb_seglen(skb)))
  1315. goto out;
  1316. len = skb->len;
  1317. if (skb_shift(prev, skb, len)) {
  1318. pcount += tcp_skb_pcount(skb);
  1319. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1320. }
  1321. out:
  1322. state->fack_count += pcount;
  1323. return prev;
  1324. noop:
  1325. return skb;
  1326. fallback:
  1327. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1328. return NULL;
  1329. }
  1330. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1331. struct tcp_sack_block *next_dup,
  1332. struct tcp_sacktag_state *state,
  1333. u32 start_seq, u32 end_seq,
  1334. bool dup_sack_in)
  1335. {
  1336. struct tcp_sock *tp = tcp_sk(sk);
  1337. struct sk_buff *tmp;
  1338. tcp_for_write_queue_from(skb, sk) {
  1339. int in_sack = 0;
  1340. bool dup_sack = dup_sack_in;
  1341. if (skb == tcp_send_head(sk))
  1342. break;
  1343. /* queue is in-order => we can short-circuit the walk early */
  1344. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1345. break;
  1346. if (next_dup &&
  1347. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1348. in_sack = tcp_match_skb_to_sack(sk, skb,
  1349. next_dup->start_seq,
  1350. next_dup->end_seq);
  1351. if (in_sack > 0)
  1352. dup_sack = true;
  1353. }
  1354. /* skb reference here is a bit tricky to get right, since
  1355. * shifting can eat and free both this skb and the next,
  1356. * so not even _safe variant of the loop is enough.
  1357. */
  1358. if (in_sack <= 0) {
  1359. tmp = tcp_shift_skb_data(sk, skb, state,
  1360. start_seq, end_seq, dup_sack);
  1361. if (tmp) {
  1362. if (tmp != skb) {
  1363. skb = tmp;
  1364. continue;
  1365. }
  1366. in_sack = 0;
  1367. } else {
  1368. in_sack = tcp_match_skb_to_sack(sk, skb,
  1369. start_seq,
  1370. end_seq);
  1371. }
  1372. }
  1373. if (unlikely(in_sack < 0))
  1374. break;
  1375. if (in_sack) {
  1376. TCP_SKB_CB(skb)->sacked =
  1377. tcp_sacktag_one(sk,
  1378. state,
  1379. TCP_SKB_CB(skb)->sacked,
  1380. TCP_SKB_CB(skb)->seq,
  1381. TCP_SKB_CB(skb)->end_seq,
  1382. dup_sack,
  1383. tcp_skb_pcount(skb),
  1384. skb->skb_mstamp);
  1385. tcp_rate_skb_delivered(sk, skb, state->rate);
  1386. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
  1387. list_del_init(&skb->tcp_tsorted_anchor);
  1388. if (!before(TCP_SKB_CB(skb)->seq,
  1389. tcp_highest_sack_seq(tp)))
  1390. tcp_advance_highest_sack(sk, skb);
  1391. }
  1392. state->fack_count += tcp_skb_pcount(skb);
  1393. }
  1394. return skb;
  1395. }
  1396. /* Avoid all extra work that is being done by sacktag while walking in
  1397. * a normal way
  1398. */
  1399. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1400. struct tcp_sacktag_state *state,
  1401. u32 skip_to_seq)
  1402. {
  1403. tcp_for_write_queue_from(skb, sk) {
  1404. if (skb == tcp_send_head(sk))
  1405. break;
  1406. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1407. break;
  1408. state->fack_count += tcp_skb_pcount(skb);
  1409. }
  1410. return skb;
  1411. }
  1412. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1413. struct sock *sk,
  1414. struct tcp_sack_block *next_dup,
  1415. struct tcp_sacktag_state *state,
  1416. u32 skip_to_seq)
  1417. {
  1418. if (!next_dup)
  1419. return skb;
  1420. if (before(next_dup->start_seq, skip_to_seq)) {
  1421. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1422. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1423. next_dup->start_seq, next_dup->end_seq,
  1424. 1);
  1425. }
  1426. return skb;
  1427. }
  1428. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1429. {
  1430. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1431. }
  1432. static int
  1433. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1434. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1435. {
  1436. struct tcp_sock *tp = tcp_sk(sk);
  1437. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1438. TCP_SKB_CB(ack_skb)->sacked);
  1439. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1440. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1441. struct tcp_sack_block *cache;
  1442. struct sk_buff *skb;
  1443. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1444. int used_sacks;
  1445. bool found_dup_sack = false;
  1446. int i, j;
  1447. int first_sack_index;
  1448. state->flag = 0;
  1449. state->reord = tp->packets_out;
  1450. if (!tp->sacked_out) {
  1451. if (WARN_ON(tp->fackets_out))
  1452. tp->fackets_out = 0;
  1453. tcp_highest_sack_reset(sk);
  1454. }
  1455. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1456. num_sacks, prior_snd_una);
  1457. if (found_dup_sack) {
  1458. state->flag |= FLAG_DSACKING_ACK;
  1459. tp->delivered++; /* A spurious retransmission is delivered */
  1460. }
  1461. /* Eliminate too old ACKs, but take into
  1462. * account more or less fresh ones, they can
  1463. * contain valid SACK info.
  1464. */
  1465. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1466. return 0;
  1467. if (!tp->packets_out)
  1468. goto out;
  1469. used_sacks = 0;
  1470. first_sack_index = 0;
  1471. for (i = 0; i < num_sacks; i++) {
  1472. bool dup_sack = !i && found_dup_sack;
  1473. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1474. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1475. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1476. sp[used_sacks].start_seq,
  1477. sp[used_sacks].end_seq)) {
  1478. int mib_idx;
  1479. if (dup_sack) {
  1480. if (!tp->undo_marker)
  1481. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1482. else
  1483. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1484. } else {
  1485. /* Don't count olds caused by ACK reordering */
  1486. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1487. !after(sp[used_sacks].end_seq, tp->snd_una))
  1488. continue;
  1489. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1490. }
  1491. NET_INC_STATS(sock_net(sk), mib_idx);
  1492. if (i == 0)
  1493. first_sack_index = -1;
  1494. continue;
  1495. }
  1496. /* Ignore very old stuff early */
  1497. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1498. continue;
  1499. used_sacks++;
  1500. }
  1501. /* order SACK blocks to allow in order walk of the retrans queue */
  1502. for (i = used_sacks - 1; i > 0; i--) {
  1503. for (j = 0; j < i; j++) {
  1504. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1505. swap(sp[j], sp[j + 1]);
  1506. /* Track where the first SACK block goes to */
  1507. if (j == first_sack_index)
  1508. first_sack_index = j + 1;
  1509. }
  1510. }
  1511. }
  1512. skb = tcp_write_queue_head(sk);
  1513. state->fack_count = 0;
  1514. i = 0;
  1515. if (!tp->sacked_out) {
  1516. /* It's already past, so skip checking against it */
  1517. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1518. } else {
  1519. cache = tp->recv_sack_cache;
  1520. /* Skip empty blocks in at head of the cache */
  1521. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1522. !cache->end_seq)
  1523. cache++;
  1524. }
  1525. while (i < used_sacks) {
  1526. u32 start_seq = sp[i].start_seq;
  1527. u32 end_seq = sp[i].end_seq;
  1528. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1529. struct tcp_sack_block *next_dup = NULL;
  1530. if (found_dup_sack && ((i + 1) == first_sack_index))
  1531. next_dup = &sp[i + 1];
  1532. /* Skip too early cached blocks */
  1533. while (tcp_sack_cache_ok(tp, cache) &&
  1534. !before(start_seq, cache->end_seq))
  1535. cache++;
  1536. /* Can skip some work by looking recv_sack_cache? */
  1537. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1538. after(end_seq, cache->start_seq)) {
  1539. /* Head todo? */
  1540. if (before(start_seq, cache->start_seq)) {
  1541. skb = tcp_sacktag_skip(skb, sk, state,
  1542. start_seq);
  1543. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1544. state,
  1545. start_seq,
  1546. cache->start_seq,
  1547. dup_sack);
  1548. }
  1549. /* Rest of the block already fully processed? */
  1550. if (!after(end_seq, cache->end_seq))
  1551. goto advance_sp;
  1552. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1553. state,
  1554. cache->end_seq);
  1555. /* ...tail remains todo... */
  1556. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1557. /* ...but better entrypoint exists! */
  1558. skb = tcp_highest_sack(sk);
  1559. if (!skb)
  1560. break;
  1561. state->fack_count = tp->fackets_out;
  1562. cache++;
  1563. goto walk;
  1564. }
  1565. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1566. /* Check overlap against next cached too (past this one already) */
  1567. cache++;
  1568. continue;
  1569. }
  1570. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1571. skb = tcp_highest_sack(sk);
  1572. if (!skb)
  1573. break;
  1574. state->fack_count = tp->fackets_out;
  1575. }
  1576. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1577. walk:
  1578. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1579. start_seq, end_seq, dup_sack);
  1580. advance_sp:
  1581. i++;
  1582. }
  1583. /* Clear the head of the cache sack blocks so we can skip it next time */
  1584. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1585. tp->recv_sack_cache[i].start_seq = 0;
  1586. tp->recv_sack_cache[i].end_seq = 0;
  1587. }
  1588. for (j = 0; j < used_sacks; j++)
  1589. tp->recv_sack_cache[i++] = sp[j];
  1590. if ((state->reord < tp->fackets_out) &&
  1591. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1592. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1593. tcp_verify_left_out(tp);
  1594. out:
  1595. #if FASTRETRANS_DEBUG > 0
  1596. WARN_ON((int)tp->sacked_out < 0);
  1597. WARN_ON((int)tp->lost_out < 0);
  1598. WARN_ON((int)tp->retrans_out < 0);
  1599. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1600. #endif
  1601. return state->flag;
  1602. }
  1603. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1604. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1605. */
  1606. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1607. {
  1608. u32 holes;
  1609. holes = max(tp->lost_out, 1U);
  1610. holes = min(holes, tp->packets_out);
  1611. if ((tp->sacked_out + holes) > tp->packets_out) {
  1612. tp->sacked_out = tp->packets_out - holes;
  1613. return true;
  1614. }
  1615. return false;
  1616. }
  1617. /* If we receive more dupacks than we expected counting segments
  1618. * in assumption of absent reordering, interpret this as reordering.
  1619. * The only another reason could be bug in receiver TCP.
  1620. */
  1621. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1622. {
  1623. struct tcp_sock *tp = tcp_sk(sk);
  1624. if (tcp_limit_reno_sacked(tp))
  1625. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1626. }
  1627. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1628. static void tcp_add_reno_sack(struct sock *sk)
  1629. {
  1630. struct tcp_sock *tp = tcp_sk(sk);
  1631. u32 prior_sacked = tp->sacked_out;
  1632. tp->sacked_out++;
  1633. tcp_check_reno_reordering(sk, 0);
  1634. if (tp->sacked_out > prior_sacked)
  1635. tp->delivered++; /* Some out-of-order packet is delivered */
  1636. tcp_verify_left_out(tp);
  1637. }
  1638. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1639. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1640. {
  1641. struct tcp_sock *tp = tcp_sk(sk);
  1642. if (acked > 0) {
  1643. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1644. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1645. if (acked - 1 >= tp->sacked_out)
  1646. tp->sacked_out = 0;
  1647. else
  1648. tp->sacked_out -= acked - 1;
  1649. }
  1650. tcp_check_reno_reordering(sk, acked);
  1651. tcp_verify_left_out(tp);
  1652. }
  1653. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1654. {
  1655. tp->sacked_out = 0;
  1656. }
  1657. void tcp_clear_retrans(struct tcp_sock *tp)
  1658. {
  1659. tp->retrans_out = 0;
  1660. tp->lost_out = 0;
  1661. tp->undo_marker = 0;
  1662. tp->undo_retrans = -1;
  1663. tp->fackets_out = 0;
  1664. tp->sacked_out = 0;
  1665. }
  1666. static inline void tcp_init_undo(struct tcp_sock *tp)
  1667. {
  1668. tp->undo_marker = tp->snd_una;
  1669. /* Retransmission still in flight may cause DSACKs later. */
  1670. tp->undo_retrans = tp->retrans_out ? : -1;
  1671. }
  1672. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1673. * and reset tags completely, otherwise preserve SACKs. If receiver
  1674. * dropped its ofo queue, we will know this due to reneging detection.
  1675. */
  1676. void tcp_enter_loss(struct sock *sk)
  1677. {
  1678. const struct inet_connection_sock *icsk = inet_csk(sk);
  1679. struct tcp_sock *tp = tcp_sk(sk);
  1680. struct net *net = sock_net(sk);
  1681. struct sk_buff *skb;
  1682. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1683. bool is_reneg; /* is receiver reneging on SACKs? */
  1684. bool mark_lost;
  1685. /* Reduce ssthresh if it has not yet been made inside this window. */
  1686. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1687. !after(tp->high_seq, tp->snd_una) ||
  1688. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1689. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1690. tp->prior_cwnd = tp->snd_cwnd;
  1691. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1692. tcp_ca_event(sk, CA_EVENT_LOSS);
  1693. tcp_init_undo(tp);
  1694. }
  1695. tp->snd_cwnd = 1;
  1696. tp->snd_cwnd_cnt = 0;
  1697. tp->snd_cwnd_stamp = tcp_jiffies32;
  1698. tp->retrans_out = 0;
  1699. tp->lost_out = 0;
  1700. if (tcp_is_reno(tp))
  1701. tcp_reset_reno_sack(tp);
  1702. skb = tcp_write_queue_head(sk);
  1703. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1704. if (is_reneg) {
  1705. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1706. tp->sacked_out = 0;
  1707. tp->fackets_out = 0;
  1708. }
  1709. tcp_clear_all_retrans_hints(tp);
  1710. tcp_for_write_queue(skb, sk) {
  1711. if (skb == tcp_send_head(sk))
  1712. break;
  1713. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1714. is_reneg);
  1715. if (mark_lost)
  1716. tcp_sum_lost(tp, skb);
  1717. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1718. if (mark_lost) {
  1719. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1720. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1721. tp->lost_out += tcp_skb_pcount(skb);
  1722. }
  1723. }
  1724. tcp_verify_left_out(tp);
  1725. /* Timeout in disordered state after receiving substantial DUPACKs
  1726. * suggests that the degree of reordering is over-estimated.
  1727. */
  1728. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1729. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1730. tp->reordering = min_t(unsigned int, tp->reordering,
  1731. net->ipv4.sysctl_tcp_reordering);
  1732. tcp_set_ca_state(sk, TCP_CA_Loss);
  1733. tp->high_seq = tp->snd_nxt;
  1734. tcp_ecn_queue_cwr(tp);
  1735. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1736. * loss recovery is underway except recurring timeout(s) on
  1737. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1738. *
  1739. * In theory F-RTO can be used repeatedly during loss recovery.
  1740. * In practice this interacts badly with broken middle-boxes that
  1741. * falsely raise the receive window, which results in repeated
  1742. * timeouts and stop-and-go behavior.
  1743. */
  1744. tp->frto = sysctl_tcp_frto &&
  1745. (new_recovery || icsk->icsk_retransmits) &&
  1746. !inet_csk(sk)->icsk_mtup.probe_size;
  1747. }
  1748. /* If ACK arrived pointing to a remembered SACK, it means that our
  1749. * remembered SACKs do not reflect real state of receiver i.e.
  1750. * receiver _host_ is heavily congested (or buggy).
  1751. *
  1752. * To avoid big spurious retransmission bursts due to transient SACK
  1753. * scoreboard oddities that look like reneging, we give the receiver a
  1754. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1755. * restore sanity to the SACK scoreboard. If the apparent reneging
  1756. * persists until this RTO then we'll clear the SACK scoreboard.
  1757. */
  1758. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1759. {
  1760. if (flag & FLAG_SACK_RENEGING) {
  1761. struct tcp_sock *tp = tcp_sk(sk);
  1762. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1763. msecs_to_jiffies(10));
  1764. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1765. delay, TCP_RTO_MAX);
  1766. return true;
  1767. }
  1768. return false;
  1769. }
  1770. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1771. {
  1772. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1773. }
  1774. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1775. * counter when SACK is enabled (without SACK, sacked_out is used for
  1776. * that purpose).
  1777. *
  1778. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1779. * segments up to the highest received SACK block so far and holes in
  1780. * between them.
  1781. *
  1782. * With reordering, holes may still be in flight, so RFC3517 recovery
  1783. * uses pure sacked_out (total number of SACKed segments) even though
  1784. * it violates the RFC that uses duplicate ACKs, often these are equal
  1785. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1786. * they differ. Since neither occurs due to loss, TCP should really
  1787. * ignore them.
  1788. */
  1789. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1790. {
  1791. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1792. }
  1793. /* Linux NewReno/SACK/FACK/ECN state machine.
  1794. * --------------------------------------
  1795. *
  1796. * "Open" Normal state, no dubious events, fast path.
  1797. * "Disorder" In all the respects it is "Open",
  1798. * but requires a bit more attention. It is entered when
  1799. * we see some SACKs or dupacks. It is split of "Open"
  1800. * mainly to move some processing from fast path to slow one.
  1801. * "CWR" CWND was reduced due to some Congestion Notification event.
  1802. * It can be ECN, ICMP source quench, local device congestion.
  1803. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1804. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1805. *
  1806. * tcp_fastretrans_alert() is entered:
  1807. * - each incoming ACK, if state is not "Open"
  1808. * - when arrived ACK is unusual, namely:
  1809. * * SACK
  1810. * * Duplicate ACK.
  1811. * * ECN ECE.
  1812. *
  1813. * Counting packets in flight is pretty simple.
  1814. *
  1815. * in_flight = packets_out - left_out + retrans_out
  1816. *
  1817. * packets_out is SND.NXT-SND.UNA counted in packets.
  1818. *
  1819. * retrans_out is number of retransmitted segments.
  1820. *
  1821. * left_out is number of segments left network, but not ACKed yet.
  1822. *
  1823. * left_out = sacked_out + lost_out
  1824. *
  1825. * sacked_out: Packets, which arrived to receiver out of order
  1826. * and hence not ACKed. With SACKs this number is simply
  1827. * amount of SACKed data. Even without SACKs
  1828. * it is easy to give pretty reliable estimate of this number,
  1829. * counting duplicate ACKs.
  1830. *
  1831. * lost_out: Packets lost by network. TCP has no explicit
  1832. * "loss notification" feedback from network (for now).
  1833. * It means that this number can be only _guessed_.
  1834. * Actually, it is the heuristics to predict lossage that
  1835. * distinguishes different algorithms.
  1836. *
  1837. * F.e. after RTO, when all the queue is considered as lost,
  1838. * lost_out = packets_out and in_flight = retrans_out.
  1839. *
  1840. * Essentially, we have now a few algorithms detecting
  1841. * lost packets.
  1842. *
  1843. * If the receiver supports SACK:
  1844. *
  1845. * RFC6675/3517: It is the conventional algorithm. A packet is
  1846. * considered lost if the number of higher sequence packets
  1847. * SACKed is greater than or equal the DUPACK thoreshold
  1848. * (reordering). This is implemented in tcp_mark_head_lost and
  1849. * tcp_update_scoreboard.
  1850. *
  1851. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1852. * (2017-) that checks timing instead of counting DUPACKs.
  1853. * Essentially a packet is considered lost if it's not S/ACKed
  1854. * after RTT + reordering_window, where both metrics are
  1855. * dynamically measured and adjusted. This is implemented in
  1856. * tcp_rack_mark_lost.
  1857. *
  1858. * FACK (Disabled by default. Subsumbed by RACK):
  1859. * It is the simplest heuristics. As soon as we decided
  1860. * that something is lost, we decide that _all_ not SACKed
  1861. * packets until the most forward SACK are lost. I.e.
  1862. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1863. * It is absolutely correct estimate, if network does not reorder
  1864. * packets. And it loses any connection to reality when reordering
  1865. * takes place. We use FACK by default until reordering
  1866. * is suspected on the path to this destination.
  1867. *
  1868. * If the receiver does not support SACK:
  1869. *
  1870. * NewReno (RFC6582): in Recovery we assume that one segment
  1871. * is lost (classic Reno). While we are in Recovery and
  1872. * a partial ACK arrives, we assume that one more packet
  1873. * is lost (NewReno). This heuristics are the same in NewReno
  1874. * and SACK.
  1875. *
  1876. * Really tricky (and requiring careful tuning) part of algorithm
  1877. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1878. * The first determines the moment _when_ we should reduce CWND and,
  1879. * hence, slow down forward transmission. In fact, it determines the moment
  1880. * when we decide that hole is caused by loss, rather than by a reorder.
  1881. *
  1882. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1883. * holes, caused by lost packets.
  1884. *
  1885. * And the most logically complicated part of algorithm is undo
  1886. * heuristics. We detect false retransmits due to both too early
  1887. * fast retransmit (reordering) and underestimated RTO, analyzing
  1888. * timestamps and D-SACKs. When we detect that some segments were
  1889. * retransmitted by mistake and CWND reduction was wrong, we undo
  1890. * window reduction and abort recovery phase. This logic is hidden
  1891. * inside several functions named tcp_try_undo_<something>.
  1892. */
  1893. /* This function decides, when we should leave Disordered state
  1894. * and enter Recovery phase, reducing congestion window.
  1895. *
  1896. * Main question: may we further continue forward transmission
  1897. * with the same cwnd?
  1898. */
  1899. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1900. {
  1901. struct tcp_sock *tp = tcp_sk(sk);
  1902. /* Trick#1: The loss is proven. */
  1903. if (tp->lost_out)
  1904. return true;
  1905. /* Not-A-Trick#2 : Classic rule... */
  1906. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1907. return true;
  1908. return false;
  1909. }
  1910. /* Detect loss in event "A" above by marking head of queue up as lost.
  1911. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1912. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1913. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1914. * the maximum SACKed segments to pass before reaching this limit.
  1915. */
  1916. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1917. {
  1918. struct tcp_sock *tp = tcp_sk(sk);
  1919. struct sk_buff *skb;
  1920. int cnt, oldcnt, lost;
  1921. unsigned int mss;
  1922. /* Use SACK to deduce losses of new sequences sent during recovery */
  1923. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1924. WARN_ON(packets > tp->packets_out);
  1925. if (tp->lost_skb_hint) {
  1926. skb = tp->lost_skb_hint;
  1927. cnt = tp->lost_cnt_hint;
  1928. /* Head already handled? */
  1929. if (mark_head && skb != tcp_write_queue_head(sk))
  1930. return;
  1931. } else {
  1932. skb = tcp_write_queue_head(sk);
  1933. cnt = 0;
  1934. }
  1935. tcp_for_write_queue_from(skb, sk) {
  1936. if (skb == tcp_send_head(sk))
  1937. break;
  1938. /* TODO: do this better */
  1939. /* this is not the most efficient way to do this... */
  1940. tp->lost_skb_hint = skb;
  1941. tp->lost_cnt_hint = cnt;
  1942. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1943. break;
  1944. oldcnt = cnt;
  1945. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1946. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1947. cnt += tcp_skb_pcount(skb);
  1948. if (cnt > packets) {
  1949. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1950. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1951. (oldcnt >= packets))
  1952. break;
  1953. mss = tcp_skb_mss(skb);
  1954. /* If needed, chop off the prefix to mark as lost. */
  1955. lost = (packets - oldcnt) * mss;
  1956. if (lost < skb->len &&
  1957. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1958. break;
  1959. cnt = packets;
  1960. }
  1961. tcp_skb_mark_lost(tp, skb);
  1962. if (mark_head)
  1963. break;
  1964. }
  1965. tcp_verify_left_out(tp);
  1966. }
  1967. /* Account newly detected lost packet(s) */
  1968. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1969. {
  1970. struct tcp_sock *tp = tcp_sk(sk);
  1971. if (tcp_is_reno(tp)) {
  1972. tcp_mark_head_lost(sk, 1, 1);
  1973. } else if (tcp_is_fack(tp)) {
  1974. int lost = tp->fackets_out - tp->reordering;
  1975. if (lost <= 0)
  1976. lost = 1;
  1977. tcp_mark_head_lost(sk, lost, 0);
  1978. } else {
  1979. int sacked_upto = tp->sacked_out - tp->reordering;
  1980. if (sacked_upto >= 0)
  1981. tcp_mark_head_lost(sk, sacked_upto, 0);
  1982. else if (fast_rexmit)
  1983. tcp_mark_head_lost(sk, 1, 1);
  1984. }
  1985. }
  1986. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1987. {
  1988. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1989. before(tp->rx_opt.rcv_tsecr, when);
  1990. }
  1991. /* skb is spurious retransmitted if the returned timestamp echo
  1992. * reply is prior to the skb transmission time
  1993. */
  1994. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1995. const struct sk_buff *skb)
  1996. {
  1997. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1998. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1999. }
  2000. /* Nothing was retransmitted or returned timestamp is less
  2001. * than timestamp of the first retransmission.
  2002. */
  2003. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2004. {
  2005. return !tp->retrans_stamp ||
  2006. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2007. }
  2008. /* Undo procedures. */
  2009. /* We can clear retrans_stamp when there are no retransmissions in the
  2010. * window. It would seem that it is trivially available for us in
  2011. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2012. * what will happen if errors occur when sending retransmission for the
  2013. * second time. ...It could the that such segment has only
  2014. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2015. * the head skb is enough except for some reneging corner cases that
  2016. * are not worth the effort.
  2017. *
  2018. * Main reason for all this complexity is the fact that connection dying
  2019. * time now depends on the validity of the retrans_stamp, in particular,
  2020. * that successive retransmissions of a segment must not advance
  2021. * retrans_stamp under any conditions.
  2022. */
  2023. static bool tcp_any_retrans_done(const struct sock *sk)
  2024. {
  2025. const struct tcp_sock *tp = tcp_sk(sk);
  2026. struct sk_buff *skb;
  2027. if (tp->retrans_out)
  2028. return true;
  2029. skb = tcp_write_queue_head(sk);
  2030. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2031. return true;
  2032. return false;
  2033. }
  2034. static void DBGUNDO(struct sock *sk, const char *msg)
  2035. {
  2036. #if FASTRETRANS_DEBUG > 1
  2037. struct tcp_sock *tp = tcp_sk(sk);
  2038. struct inet_sock *inet = inet_sk(sk);
  2039. if (sk->sk_family == AF_INET) {
  2040. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2041. msg,
  2042. &inet->inet_daddr, ntohs(inet->inet_dport),
  2043. tp->snd_cwnd, tcp_left_out(tp),
  2044. tp->snd_ssthresh, tp->prior_ssthresh,
  2045. tp->packets_out);
  2046. }
  2047. #if IS_ENABLED(CONFIG_IPV6)
  2048. else if (sk->sk_family == AF_INET6) {
  2049. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2050. msg,
  2051. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2052. tp->snd_cwnd, tcp_left_out(tp),
  2053. tp->snd_ssthresh, tp->prior_ssthresh,
  2054. tp->packets_out);
  2055. }
  2056. #endif
  2057. #endif
  2058. }
  2059. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2060. {
  2061. struct tcp_sock *tp = tcp_sk(sk);
  2062. if (unmark_loss) {
  2063. struct sk_buff *skb;
  2064. tcp_for_write_queue(skb, sk) {
  2065. if (skb == tcp_send_head(sk))
  2066. break;
  2067. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2068. }
  2069. tp->lost_out = 0;
  2070. tcp_clear_all_retrans_hints(tp);
  2071. }
  2072. if (tp->prior_ssthresh) {
  2073. const struct inet_connection_sock *icsk = inet_csk(sk);
  2074. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2075. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2076. tp->snd_ssthresh = tp->prior_ssthresh;
  2077. tcp_ecn_withdraw_cwr(tp);
  2078. }
  2079. }
  2080. tp->snd_cwnd_stamp = tcp_jiffies32;
  2081. tp->undo_marker = 0;
  2082. }
  2083. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2084. {
  2085. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2086. }
  2087. /* People celebrate: "We love our President!" */
  2088. static bool tcp_try_undo_recovery(struct sock *sk)
  2089. {
  2090. struct tcp_sock *tp = tcp_sk(sk);
  2091. if (tcp_may_undo(tp)) {
  2092. int mib_idx;
  2093. /* Happy end! We did not retransmit anything
  2094. * or our original transmission succeeded.
  2095. */
  2096. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2097. tcp_undo_cwnd_reduction(sk, false);
  2098. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2099. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2100. else
  2101. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2102. NET_INC_STATS(sock_net(sk), mib_idx);
  2103. }
  2104. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2105. /* Hold old state until something *above* high_seq
  2106. * is ACKed. For Reno it is MUST to prevent false
  2107. * fast retransmits (RFC2582). SACK TCP is safe. */
  2108. if (!tcp_any_retrans_done(sk))
  2109. tp->retrans_stamp = 0;
  2110. return true;
  2111. }
  2112. tcp_set_ca_state(sk, TCP_CA_Open);
  2113. return false;
  2114. }
  2115. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2116. static bool tcp_try_undo_dsack(struct sock *sk)
  2117. {
  2118. struct tcp_sock *tp = tcp_sk(sk);
  2119. if (tp->undo_marker && !tp->undo_retrans) {
  2120. DBGUNDO(sk, "D-SACK");
  2121. tcp_undo_cwnd_reduction(sk, false);
  2122. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2123. return true;
  2124. }
  2125. return false;
  2126. }
  2127. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2128. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2129. {
  2130. struct tcp_sock *tp = tcp_sk(sk);
  2131. if (frto_undo || tcp_may_undo(tp)) {
  2132. tcp_undo_cwnd_reduction(sk, true);
  2133. DBGUNDO(sk, "partial loss");
  2134. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2135. if (frto_undo)
  2136. NET_INC_STATS(sock_net(sk),
  2137. LINUX_MIB_TCPSPURIOUSRTOS);
  2138. inet_csk(sk)->icsk_retransmits = 0;
  2139. if (frto_undo || tcp_is_sack(tp))
  2140. tcp_set_ca_state(sk, TCP_CA_Open);
  2141. return true;
  2142. }
  2143. return false;
  2144. }
  2145. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2146. * It computes the number of packets to send (sndcnt) based on packets newly
  2147. * delivered:
  2148. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2149. * cwnd reductions across a full RTT.
  2150. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2151. * But when the retransmits are acked without further losses, PRR
  2152. * slow starts cwnd up to ssthresh to speed up the recovery.
  2153. */
  2154. static void tcp_init_cwnd_reduction(struct sock *sk)
  2155. {
  2156. struct tcp_sock *tp = tcp_sk(sk);
  2157. tp->high_seq = tp->snd_nxt;
  2158. tp->tlp_high_seq = 0;
  2159. tp->snd_cwnd_cnt = 0;
  2160. tp->prior_cwnd = tp->snd_cwnd;
  2161. tp->prr_delivered = 0;
  2162. tp->prr_out = 0;
  2163. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2164. tcp_ecn_queue_cwr(tp);
  2165. }
  2166. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2167. {
  2168. struct tcp_sock *tp = tcp_sk(sk);
  2169. int sndcnt = 0;
  2170. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2171. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2172. return;
  2173. tp->prr_delivered += newly_acked_sacked;
  2174. if (delta < 0) {
  2175. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2176. tp->prior_cwnd - 1;
  2177. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2178. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2179. !(flag & FLAG_LOST_RETRANS)) {
  2180. sndcnt = min_t(int, delta,
  2181. max_t(int, tp->prr_delivered - tp->prr_out,
  2182. newly_acked_sacked) + 1);
  2183. } else {
  2184. sndcnt = min(delta, newly_acked_sacked);
  2185. }
  2186. /* Force a fast retransmit upon entering fast recovery */
  2187. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2188. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2189. }
  2190. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2191. {
  2192. struct tcp_sock *tp = tcp_sk(sk);
  2193. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2194. return;
  2195. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2196. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2197. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2198. tp->snd_cwnd = tp->snd_ssthresh;
  2199. tp->snd_cwnd_stamp = tcp_jiffies32;
  2200. }
  2201. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2202. }
  2203. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2204. void tcp_enter_cwr(struct sock *sk)
  2205. {
  2206. struct tcp_sock *tp = tcp_sk(sk);
  2207. tp->prior_ssthresh = 0;
  2208. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2209. tp->undo_marker = 0;
  2210. tcp_init_cwnd_reduction(sk);
  2211. tcp_set_ca_state(sk, TCP_CA_CWR);
  2212. }
  2213. }
  2214. EXPORT_SYMBOL(tcp_enter_cwr);
  2215. static void tcp_try_keep_open(struct sock *sk)
  2216. {
  2217. struct tcp_sock *tp = tcp_sk(sk);
  2218. int state = TCP_CA_Open;
  2219. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2220. state = TCP_CA_Disorder;
  2221. if (inet_csk(sk)->icsk_ca_state != state) {
  2222. tcp_set_ca_state(sk, state);
  2223. tp->high_seq = tp->snd_nxt;
  2224. }
  2225. }
  2226. static void tcp_try_to_open(struct sock *sk, int flag)
  2227. {
  2228. struct tcp_sock *tp = tcp_sk(sk);
  2229. tcp_verify_left_out(tp);
  2230. if (!tcp_any_retrans_done(sk))
  2231. tp->retrans_stamp = 0;
  2232. if (flag & FLAG_ECE)
  2233. tcp_enter_cwr(sk);
  2234. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2235. tcp_try_keep_open(sk);
  2236. }
  2237. }
  2238. static void tcp_mtup_probe_failed(struct sock *sk)
  2239. {
  2240. struct inet_connection_sock *icsk = inet_csk(sk);
  2241. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2242. icsk->icsk_mtup.probe_size = 0;
  2243. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2244. }
  2245. static void tcp_mtup_probe_success(struct sock *sk)
  2246. {
  2247. struct tcp_sock *tp = tcp_sk(sk);
  2248. struct inet_connection_sock *icsk = inet_csk(sk);
  2249. /* FIXME: breaks with very large cwnd */
  2250. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2251. tp->snd_cwnd = tp->snd_cwnd *
  2252. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2253. icsk->icsk_mtup.probe_size;
  2254. tp->snd_cwnd_cnt = 0;
  2255. tp->snd_cwnd_stamp = tcp_jiffies32;
  2256. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2257. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2258. icsk->icsk_mtup.probe_size = 0;
  2259. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2260. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2261. }
  2262. /* Do a simple retransmit without using the backoff mechanisms in
  2263. * tcp_timer. This is used for path mtu discovery.
  2264. * The socket is already locked here.
  2265. */
  2266. void tcp_simple_retransmit(struct sock *sk)
  2267. {
  2268. const struct inet_connection_sock *icsk = inet_csk(sk);
  2269. struct tcp_sock *tp = tcp_sk(sk);
  2270. struct sk_buff *skb;
  2271. unsigned int mss = tcp_current_mss(sk);
  2272. u32 prior_lost = tp->lost_out;
  2273. tcp_for_write_queue(skb, sk) {
  2274. if (skb == tcp_send_head(sk))
  2275. break;
  2276. if (tcp_skb_seglen(skb) > mss &&
  2277. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2278. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2279. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2280. tp->retrans_out -= tcp_skb_pcount(skb);
  2281. }
  2282. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2283. }
  2284. }
  2285. tcp_clear_retrans_hints_partial(tp);
  2286. if (prior_lost == tp->lost_out)
  2287. return;
  2288. if (tcp_is_reno(tp))
  2289. tcp_limit_reno_sacked(tp);
  2290. tcp_verify_left_out(tp);
  2291. /* Don't muck with the congestion window here.
  2292. * Reason is that we do not increase amount of _data_
  2293. * in network, but units changed and effective
  2294. * cwnd/ssthresh really reduced now.
  2295. */
  2296. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2297. tp->high_seq = tp->snd_nxt;
  2298. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2299. tp->prior_ssthresh = 0;
  2300. tp->undo_marker = 0;
  2301. tcp_set_ca_state(sk, TCP_CA_Loss);
  2302. }
  2303. tcp_xmit_retransmit_queue(sk);
  2304. }
  2305. EXPORT_SYMBOL(tcp_simple_retransmit);
  2306. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2307. {
  2308. struct tcp_sock *tp = tcp_sk(sk);
  2309. int mib_idx;
  2310. if (tcp_is_reno(tp))
  2311. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2312. else
  2313. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2314. NET_INC_STATS(sock_net(sk), mib_idx);
  2315. tp->prior_ssthresh = 0;
  2316. tcp_init_undo(tp);
  2317. if (!tcp_in_cwnd_reduction(sk)) {
  2318. if (!ece_ack)
  2319. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2320. tcp_init_cwnd_reduction(sk);
  2321. }
  2322. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2323. }
  2324. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2325. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2326. */
  2327. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2328. int *rexmit)
  2329. {
  2330. struct tcp_sock *tp = tcp_sk(sk);
  2331. bool recovered = !before(tp->snd_una, tp->high_seq);
  2332. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2333. tcp_try_undo_loss(sk, false))
  2334. return;
  2335. /* The ACK (s)acks some never-retransmitted data meaning not all
  2336. * the data packets before the timeout were lost. Therefore we
  2337. * undo the congestion window and state. This is essentially
  2338. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2339. * a retransmitted skb is permantly marked, we can apply such an
  2340. * operation even if F-RTO was not used.
  2341. */
  2342. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2343. tcp_try_undo_loss(sk, tp->undo_marker))
  2344. return;
  2345. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2346. if (after(tp->snd_nxt, tp->high_seq)) {
  2347. if (flag & FLAG_DATA_SACKED || is_dupack)
  2348. tp->frto = 0; /* Step 3.a. loss was real */
  2349. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2350. tp->high_seq = tp->snd_nxt;
  2351. /* Step 2.b. Try send new data (but deferred until cwnd
  2352. * is updated in tcp_ack()). Otherwise fall back to
  2353. * the conventional recovery.
  2354. */
  2355. if (tcp_send_head(sk) &&
  2356. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2357. *rexmit = REXMIT_NEW;
  2358. return;
  2359. }
  2360. tp->frto = 0;
  2361. }
  2362. }
  2363. if (recovered) {
  2364. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2365. tcp_try_undo_recovery(sk);
  2366. return;
  2367. }
  2368. if (tcp_is_reno(tp)) {
  2369. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2370. * delivered. Lower inflight to clock out (re)tranmissions.
  2371. */
  2372. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2373. tcp_add_reno_sack(sk);
  2374. else if (flag & FLAG_SND_UNA_ADVANCED)
  2375. tcp_reset_reno_sack(tp);
  2376. }
  2377. *rexmit = REXMIT_LOST;
  2378. }
  2379. /* Undo during fast recovery after partial ACK. */
  2380. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2381. {
  2382. struct tcp_sock *tp = tcp_sk(sk);
  2383. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2384. /* Plain luck! Hole if filled with delayed
  2385. * packet, rather than with a retransmit.
  2386. */
  2387. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2388. /* We are getting evidence that the reordering degree is higher
  2389. * than we realized. If there are no retransmits out then we
  2390. * can undo. Otherwise we clock out new packets but do not
  2391. * mark more packets lost or retransmit more.
  2392. */
  2393. if (tp->retrans_out)
  2394. return true;
  2395. if (!tcp_any_retrans_done(sk))
  2396. tp->retrans_stamp = 0;
  2397. DBGUNDO(sk, "partial recovery");
  2398. tcp_undo_cwnd_reduction(sk, true);
  2399. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2400. tcp_try_keep_open(sk);
  2401. return true;
  2402. }
  2403. return false;
  2404. }
  2405. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2406. {
  2407. struct tcp_sock *tp = tcp_sk(sk);
  2408. /* Use RACK to detect loss */
  2409. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2410. u32 prior_retrans = tp->retrans_out;
  2411. tcp_rack_mark_lost(sk);
  2412. if (prior_retrans > tp->retrans_out)
  2413. *ack_flag |= FLAG_LOST_RETRANS;
  2414. }
  2415. }
  2416. /* Process an event, which can update packets-in-flight not trivially.
  2417. * Main goal of this function is to calculate new estimate for left_out,
  2418. * taking into account both packets sitting in receiver's buffer and
  2419. * packets lost by network.
  2420. *
  2421. * Besides that it updates the congestion state when packet loss or ECN
  2422. * is detected. But it does not reduce the cwnd, it is done by the
  2423. * congestion control later.
  2424. *
  2425. * It does _not_ decide what to send, it is made in function
  2426. * tcp_xmit_retransmit_queue().
  2427. */
  2428. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2429. bool is_dupack, int *ack_flag, int *rexmit)
  2430. {
  2431. struct inet_connection_sock *icsk = inet_csk(sk);
  2432. struct tcp_sock *tp = tcp_sk(sk);
  2433. int fast_rexmit = 0, flag = *ack_flag;
  2434. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2435. (tcp_fackets_out(tp) > tp->reordering));
  2436. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2437. tp->sacked_out = 0;
  2438. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2439. tp->fackets_out = 0;
  2440. /* Now state machine starts.
  2441. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2442. if (flag & FLAG_ECE)
  2443. tp->prior_ssthresh = 0;
  2444. /* B. In all the states check for reneging SACKs. */
  2445. if (tcp_check_sack_reneging(sk, flag))
  2446. return;
  2447. /* C. Check consistency of the current state. */
  2448. tcp_verify_left_out(tp);
  2449. /* D. Check state exit conditions. State can be terminated
  2450. * when high_seq is ACKed. */
  2451. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2452. WARN_ON(tp->retrans_out != 0);
  2453. tp->retrans_stamp = 0;
  2454. } else if (!before(tp->snd_una, tp->high_seq)) {
  2455. switch (icsk->icsk_ca_state) {
  2456. case TCP_CA_CWR:
  2457. /* CWR is to be held something *above* high_seq
  2458. * is ACKed for CWR bit to reach receiver. */
  2459. if (tp->snd_una != tp->high_seq) {
  2460. tcp_end_cwnd_reduction(sk);
  2461. tcp_set_ca_state(sk, TCP_CA_Open);
  2462. }
  2463. break;
  2464. case TCP_CA_Recovery:
  2465. if (tcp_is_reno(tp))
  2466. tcp_reset_reno_sack(tp);
  2467. if (tcp_try_undo_recovery(sk))
  2468. return;
  2469. tcp_end_cwnd_reduction(sk);
  2470. break;
  2471. }
  2472. }
  2473. /* E. Process state. */
  2474. switch (icsk->icsk_ca_state) {
  2475. case TCP_CA_Recovery:
  2476. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2477. if (tcp_is_reno(tp) && is_dupack)
  2478. tcp_add_reno_sack(sk);
  2479. } else {
  2480. if (tcp_try_undo_partial(sk, acked))
  2481. return;
  2482. /* Partial ACK arrived. Force fast retransmit. */
  2483. do_lost = tcp_is_reno(tp) ||
  2484. tcp_fackets_out(tp) > tp->reordering;
  2485. }
  2486. if (tcp_try_undo_dsack(sk)) {
  2487. tcp_try_keep_open(sk);
  2488. return;
  2489. }
  2490. tcp_rack_identify_loss(sk, ack_flag);
  2491. break;
  2492. case TCP_CA_Loss:
  2493. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2494. tcp_rack_identify_loss(sk, ack_flag);
  2495. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2496. (*ack_flag & FLAG_LOST_RETRANS)))
  2497. return;
  2498. /* Change state if cwnd is undone or retransmits are lost */
  2499. default:
  2500. if (tcp_is_reno(tp)) {
  2501. if (flag & FLAG_SND_UNA_ADVANCED)
  2502. tcp_reset_reno_sack(tp);
  2503. if (is_dupack)
  2504. tcp_add_reno_sack(sk);
  2505. }
  2506. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2507. tcp_try_undo_dsack(sk);
  2508. tcp_rack_identify_loss(sk, ack_flag);
  2509. if (!tcp_time_to_recover(sk, flag)) {
  2510. tcp_try_to_open(sk, flag);
  2511. return;
  2512. }
  2513. /* MTU probe failure: don't reduce cwnd */
  2514. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2515. icsk->icsk_mtup.probe_size &&
  2516. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2517. tcp_mtup_probe_failed(sk);
  2518. /* Restores the reduction we did in tcp_mtup_probe() */
  2519. tp->snd_cwnd++;
  2520. tcp_simple_retransmit(sk);
  2521. return;
  2522. }
  2523. /* Otherwise enter Recovery state */
  2524. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2525. fast_rexmit = 1;
  2526. }
  2527. if (do_lost)
  2528. tcp_update_scoreboard(sk, fast_rexmit);
  2529. *rexmit = REXMIT_LOST;
  2530. }
  2531. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2532. {
  2533. struct tcp_sock *tp = tcp_sk(sk);
  2534. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2535. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2536. rtt_us ? : jiffies_to_usecs(1));
  2537. }
  2538. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2539. long seq_rtt_us, long sack_rtt_us,
  2540. long ca_rtt_us, struct rate_sample *rs)
  2541. {
  2542. const struct tcp_sock *tp = tcp_sk(sk);
  2543. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2544. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2545. * Karn's algorithm forbids taking RTT if some retransmitted data
  2546. * is acked (RFC6298).
  2547. */
  2548. if (seq_rtt_us < 0)
  2549. seq_rtt_us = sack_rtt_us;
  2550. /* RTTM Rule: A TSecr value received in a segment is used to
  2551. * update the averaged RTT measurement only if the segment
  2552. * acknowledges some new data, i.e., only if it advances the
  2553. * left edge of the send window.
  2554. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2555. */
  2556. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2557. flag & FLAG_ACKED) {
  2558. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2559. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2560. seq_rtt_us = ca_rtt_us = delta_us;
  2561. }
  2562. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2563. if (seq_rtt_us < 0)
  2564. return false;
  2565. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2566. * always taken together with ACK, SACK, or TS-opts. Any negative
  2567. * values will be skipped with the seq_rtt_us < 0 check above.
  2568. */
  2569. tcp_update_rtt_min(sk, ca_rtt_us);
  2570. tcp_rtt_estimator(sk, seq_rtt_us);
  2571. tcp_set_rto(sk);
  2572. /* RFC6298: only reset backoff on valid RTT measurement. */
  2573. inet_csk(sk)->icsk_backoff = 0;
  2574. return true;
  2575. }
  2576. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2577. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2578. {
  2579. struct rate_sample rs;
  2580. long rtt_us = -1L;
  2581. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2582. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2583. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2584. }
  2585. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2586. {
  2587. const struct inet_connection_sock *icsk = inet_csk(sk);
  2588. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2589. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2590. }
  2591. /* Restart timer after forward progress on connection.
  2592. * RFC2988 recommends to restart timer to now+rto.
  2593. */
  2594. void tcp_rearm_rto(struct sock *sk)
  2595. {
  2596. const struct inet_connection_sock *icsk = inet_csk(sk);
  2597. struct tcp_sock *tp = tcp_sk(sk);
  2598. /* If the retrans timer is currently being used by Fast Open
  2599. * for SYN-ACK retrans purpose, stay put.
  2600. */
  2601. if (tp->fastopen_rsk)
  2602. return;
  2603. if (!tp->packets_out) {
  2604. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2605. } else {
  2606. u32 rto = inet_csk(sk)->icsk_rto;
  2607. /* Offset the time elapsed after installing regular RTO */
  2608. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2609. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2610. s64 delta_us = tcp_rto_delta_us(sk);
  2611. /* delta_us may not be positive if the socket is locked
  2612. * when the retrans timer fires and is rescheduled.
  2613. */
  2614. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2615. }
  2616. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2617. TCP_RTO_MAX);
  2618. }
  2619. }
  2620. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2621. static void tcp_set_xmit_timer(struct sock *sk)
  2622. {
  2623. if (!tcp_schedule_loss_probe(sk))
  2624. tcp_rearm_rto(sk);
  2625. }
  2626. /* If we get here, the whole TSO packet has not been acked. */
  2627. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2628. {
  2629. struct tcp_sock *tp = tcp_sk(sk);
  2630. u32 packets_acked;
  2631. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2632. packets_acked = tcp_skb_pcount(skb);
  2633. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2634. return 0;
  2635. packets_acked -= tcp_skb_pcount(skb);
  2636. if (packets_acked) {
  2637. BUG_ON(tcp_skb_pcount(skb) == 0);
  2638. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2639. }
  2640. return packets_acked;
  2641. }
  2642. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2643. u32 prior_snd_una)
  2644. {
  2645. const struct skb_shared_info *shinfo;
  2646. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2647. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2648. return;
  2649. shinfo = skb_shinfo(skb);
  2650. if (!before(shinfo->tskey, prior_snd_una) &&
  2651. before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
  2652. tcp_skb_tsorted_save(skb) {
  2653. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2654. } tcp_skb_tsorted_restore(skb);
  2655. }
  2656. }
  2657. /* Remove acknowledged frames from the retransmission queue. If our packet
  2658. * is before the ack sequence we can discard it as it's confirmed to have
  2659. * arrived at the other end.
  2660. */
  2661. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2662. u32 prior_snd_una, int *acked,
  2663. struct tcp_sacktag_state *sack)
  2664. {
  2665. const struct inet_connection_sock *icsk = inet_csk(sk);
  2666. u64 first_ackt, last_ackt;
  2667. struct tcp_sock *tp = tcp_sk(sk);
  2668. u32 prior_sacked = tp->sacked_out;
  2669. u32 reord = tp->packets_out;
  2670. bool fully_acked = true;
  2671. long sack_rtt_us = -1L;
  2672. long seq_rtt_us = -1L;
  2673. long ca_rtt_us = -1L;
  2674. struct sk_buff *skb;
  2675. u32 pkts_acked = 0;
  2676. u32 last_in_flight = 0;
  2677. bool rtt_update;
  2678. int flag = 0;
  2679. first_ackt = 0;
  2680. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2681. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2682. u8 sacked = scb->sacked;
  2683. u32 acked_pcount;
  2684. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2685. /* Determine how many packets and what bytes were acked, tso and else */
  2686. if (after(scb->end_seq, tp->snd_una)) {
  2687. if (tcp_skb_pcount(skb) == 1 ||
  2688. !after(tp->snd_una, scb->seq))
  2689. break;
  2690. acked_pcount = tcp_tso_acked(sk, skb);
  2691. if (!acked_pcount)
  2692. break;
  2693. fully_acked = false;
  2694. } else {
  2695. /* Speedup tcp_unlink_write_queue() and next loop */
  2696. prefetchw(skb->next);
  2697. acked_pcount = tcp_skb_pcount(skb);
  2698. }
  2699. if (unlikely(sacked & TCPCB_RETRANS)) {
  2700. if (sacked & TCPCB_SACKED_RETRANS)
  2701. tp->retrans_out -= acked_pcount;
  2702. flag |= FLAG_RETRANS_DATA_ACKED;
  2703. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2704. last_ackt = skb->skb_mstamp;
  2705. WARN_ON_ONCE(last_ackt == 0);
  2706. if (!first_ackt)
  2707. first_ackt = last_ackt;
  2708. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2709. reord = min(pkts_acked, reord);
  2710. if (!after(scb->end_seq, tp->high_seq))
  2711. flag |= FLAG_ORIG_SACK_ACKED;
  2712. }
  2713. if (sacked & TCPCB_SACKED_ACKED) {
  2714. tp->sacked_out -= acked_pcount;
  2715. } else if (tcp_is_sack(tp)) {
  2716. tp->delivered += acked_pcount;
  2717. if (!tcp_skb_spurious_retrans(tp, skb))
  2718. tcp_rack_advance(tp, sacked, scb->end_seq,
  2719. skb->skb_mstamp);
  2720. }
  2721. if (sacked & TCPCB_LOST)
  2722. tp->lost_out -= acked_pcount;
  2723. tp->packets_out -= acked_pcount;
  2724. pkts_acked += acked_pcount;
  2725. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2726. /* Initial outgoing SYN's get put onto the write_queue
  2727. * just like anything else we transmit. It is not
  2728. * true data, and if we misinform our callers that
  2729. * this ACK acks real data, we will erroneously exit
  2730. * connection startup slow start one packet too
  2731. * quickly. This is severely frowned upon behavior.
  2732. */
  2733. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2734. flag |= FLAG_DATA_ACKED;
  2735. } else {
  2736. flag |= FLAG_SYN_ACKED;
  2737. tp->retrans_stamp = 0;
  2738. }
  2739. if (!fully_acked)
  2740. break;
  2741. tcp_unlink_write_queue(skb, sk);
  2742. sk_wmem_free_skb(sk, skb);
  2743. if (unlikely(skb == tp->retransmit_skb_hint))
  2744. tp->retransmit_skb_hint = NULL;
  2745. if (unlikely(skb == tp->lost_skb_hint))
  2746. tp->lost_skb_hint = NULL;
  2747. }
  2748. if (!skb)
  2749. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2750. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2751. tp->snd_up = tp->snd_una;
  2752. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2753. flag |= FLAG_SACK_RENEGING;
  2754. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2755. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2756. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2757. }
  2758. if (sack->first_sackt) {
  2759. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2760. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2761. }
  2762. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2763. ca_rtt_us, sack->rate);
  2764. if (flag & FLAG_ACKED) {
  2765. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2766. if (unlikely(icsk->icsk_mtup.probe_size &&
  2767. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2768. tcp_mtup_probe_success(sk);
  2769. }
  2770. if (tcp_is_reno(tp)) {
  2771. tcp_remove_reno_sacks(sk, pkts_acked);
  2772. } else {
  2773. int delta;
  2774. /* Non-retransmitted hole got filled? That's reordering */
  2775. if (reord < prior_fackets && reord <= tp->fackets_out)
  2776. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2777. delta = tcp_is_fack(tp) ? pkts_acked :
  2778. prior_sacked - tp->sacked_out;
  2779. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2780. }
  2781. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2782. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2783. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2784. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2785. * after when the head was last (re)transmitted. Otherwise the
  2786. * timeout may continue to extend in loss recovery.
  2787. */
  2788. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2789. }
  2790. if (icsk->icsk_ca_ops->pkts_acked) {
  2791. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2792. .rtt_us = sack->rate->rtt_us,
  2793. .in_flight = last_in_flight };
  2794. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2795. }
  2796. #if FASTRETRANS_DEBUG > 0
  2797. WARN_ON((int)tp->sacked_out < 0);
  2798. WARN_ON((int)tp->lost_out < 0);
  2799. WARN_ON((int)tp->retrans_out < 0);
  2800. if (!tp->packets_out && tcp_is_sack(tp)) {
  2801. icsk = inet_csk(sk);
  2802. if (tp->lost_out) {
  2803. pr_debug("Leak l=%u %d\n",
  2804. tp->lost_out, icsk->icsk_ca_state);
  2805. tp->lost_out = 0;
  2806. }
  2807. if (tp->sacked_out) {
  2808. pr_debug("Leak s=%u %d\n",
  2809. tp->sacked_out, icsk->icsk_ca_state);
  2810. tp->sacked_out = 0;
  2811. }
  2812. if (tp->retrans_out) {
  2813. pr_debug("Leak r=%u %d\n",
  2814. tp->retrans_out, icsk->icsk_ca_state);
  2815. tp->retrans_out = 0;
  2816. }
  2817. }
  2818. #endif
  2819. *acked = pkts_acked;
  2820. return flag;
  2821. }
  2822. static void tcp_ack_probe(struct sock *sk)
  2823. {
  2824. const struct tcp_sock *tp = tcp_sk(sk);
  2825. struct inet_connection_sock *icsk = inet_csk(sk);
  2826. /* Was it a usable window open? */
  2827. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2828. icsk->icsk_backoff = 0;
  2829. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2830. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2831. * This function is not for random using!
  2832. */
  2833. } else {
  2834. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2835. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2836. when, TCP_RTO_MAX);
  2837. }
  2838. }
  2839. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2840. {
  2841. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2842. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2843. }
  2844. /* Decide wheather to run the increase function of congestion control. */
  2845. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2846. {
  2847. /* If reordering is high then always grow cwnd whenever data is
  2848. * delivered regardless of its ordering. Otherwise stay conservative
  2849. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2850. * new SACK or ECE mark may first advance cwnd here and later reduce
  2851. * cwnd in tcp_fastretrans_alert() based on more states.
  2852. */
  2853. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2854. return flag & FLAG_FORWARD_PROGRESS;
  2855. return flag & FLAG_DATA_ACKED;
  2856. }
  2857. /* The "ultimate" congestion control function that aims to replace the rigid
  2858. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2859. * It's called toward the end of processing an ACK with precise rate
  2860. * information. All transmission or retransmission are delayed afterwards.
  2861. */
  2862. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2863. int flag, const struct rate_sample *rs)
  2864. {
  2865. const struct inet_connection_sock *icsk = inet_csk(sk);
  2866. if (icsk->icsk_ca_ops->cong_control) {
  2867. icsk->icsk_ca_ops->cong_control(sk, rs);
  2868. return;
  2869. }
  2870. if (tcp_in_cwnd_reduction(sk)) {
  2871. /* Reduce cwnd if state mandates */
  2872. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2873. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2874. /* Advance cwnd if state allows */
  2875. tcp_cong_avoid(sk, ack, acked_sacked);
  2876. }
  2877. tcp_update_pacing_rate(sk);
  2878. }
  2879. /* Check that window update is acceptable.
  2880. * The function assumes that snd_una<=ack<=snd_next.
  2881. */
  2882. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2883. const u32 ack, const u32 ack_seq,
  2884. const u32 nwin)
  2885. {
  2886. return after(ack, tp->snd_una) ||
  2887. after(ack_seq, tp->snd_wl1) ||
  2888. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2889. }
  2890. /* If we update tp->snd_una, also update tp->bytes_acked */
  2891. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2892. {
  2893. u32 delta = ack - tp->snd_una;
  2894. sock_owned_by_me((struct sock *)tp);
  2895. tp->bytes_acked += delta;
  2896. tp->snd_una = ack;
  2897. }
  2898. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2899. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2900. {
  2901. u32 delta = seq - tp->rcv_nxt;
  2902. sock_owned_by_me((struct sock *)tp);
  2903. tp->bytes_received += delta;
  2904. tp->rcv_nxt = seq;
  2905. }
  2906. /* Update our send window.
  2907. *
  2908. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2909. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2910. */
  2911. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2912. u32 ack_seq)
  2913. {
  2914. struct tcp_sock *tp = tcp_sk(sk);
  2915. int flag = 0;
  2916. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2917. if (likely(!tcp_hdr(skb)->syn))
  2918. nwin <<= tp->rx_opt.snd_wscale;
  2919. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2920. flag |= FLAG_WIN_UPDATE;
  2921. tcp_update_wl(tp, ack_seq);
  2922. if (tp->snd_wnd != nwin) {
  2923. tp->snd_wnd = nwin;
  2924. /* Note, it is the only place, where
  2925. * fast path is recovered for sending TCP.
  2926. */
  2927. tp->pred_flags = 0;
  2928. tcp_fast_path_check(sk);
  2929. if (tcp_send_head(sk))
  2930. tcp_slow_start_after_idle_check(sk);
  2931. if (nwin > tp->max_window) {
  2932. tp->max_window = nwin;
  2933. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2934. }
  2935. }
  2936. }
  2937. tcp_snd_una_update(tp, ack);
  2938. return flag;
  2939. }
  2940. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2941. u32 *last_oow_ack_time)
  2942. {
  2943. if (*last_oow_ack_time) {
  2944. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2945. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2946. NET_INC_STATS(net, mib_idx);
  2947. return true; /* rate-limited: don't send yet! */
  2948. }
  2949. }
  2950. *last_oow_ack_time = tcp_jiffies32;
  2951. return false; /* not rate-limited: go ahead, send dupack now! */
  2952. }
  2953. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2954. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2955. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2956. * attacks that send repeated SYNs or ACKs for the same connection. To
  2957. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2958. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2959. */
  2960. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2961. int mib_idx, u32 *last_oow_ack_time)
  2962. {
  2963. /* Data packets without SYNs are not likely part of an ACK loop. */
  2964. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2965. !tcp_hdr(skb)->syn)
  2966. return false;
  2967. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2968. }
  2969. /* RFC 5961 7 [ACK Throttling] */
  2970. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2971. {
  2972. /* unprotected vars, we dont care of overwrites */
  2973. static u32 challenge_timestamp;
  2974. static unsigned int challenge_count;
  2975. struct tcp_sock *tp = tcp_sk(sk);
  2976. u32 count, now;
  2977. /* First check our per-socket dupack rate limit. */
  2978. if (__tcp_oow_rate_limited(sock_net(sk),
  2979. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2980. &tp->last_oow_ack_time))
  2981. return;
  2982. /* Then check host-wide RFC 5961 rate limit. */
  2983. now = jiffies / HZ;
  2984. if (now != challenge_timestamp) {
  2985. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2986. challenge_timestamp = now;
  2987. WRITE_ONCE(challenge_count, half +
  2988. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2989. }
  2990. count = READ_ONCE(challenge_count);
  2991. if (count > 0) {
  2992. WRITE_ONCE(challenge_count, count - 1);
  2993. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2994. tcp_send_ack(sk);
  2995. }
  2996. }
  2997. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2998. {
  2999. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3000. tp->rx_opt.ts_recent_stamp = get_seconds();
  3001. }
  3002. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3003. {
  3004. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3005. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3006. * extra check below makes sure this can only happen
  3007. * for pure ACK frames. -DaveM
  3008. *
  3009. * Not only, also it occurs for expired timestamps.
  3010. */
  3011. if (tcp_paws_check(&tp->rx_opt, 0))
  3012. tcp_store_ts_recent(tp);
  3013. }
  3014. }
  3015. /* This routine deals with acks during a TLP episode.
  3016. * We mark the end of a TLP episode on receiving TLP dupack or when
  3017. * ack is after tlp_high_seq.
  3018. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3019. */
  3020. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3021. {
  3022. struct tcp_sock *tp = tcp_sk(sk);
  3023. if (before(ack, tp->tlp_high_seq))
  3024. return;
  3025. if (flag & FLAG_DSACKING_ACK) {
  3026. /* This DSACK means original and TLP probe arrived; no loss */
  3027. tp->tlp_high_seq = 0;
  3028. } else if (after(ack, tp->tlp_high_seq)) {
  3029. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3030. * tlp_high_seq in tcp_init_cwnd_reduction()
  3031. */
  3032. tcp_init_cwnd_reduction(sk);
  3033. tcp_set_ca_state(sk, TCP_CA_CWR);
  3034. tcp_end_cwnd_reduction(sk);
  3035. tcp_try_keep_open(sk);
  3036. NET_INC_STATS(sock_net(sk),
  3037. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3038. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3039. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3040. /* Pure dupack: original and TLP probe arrived; no loss */
  3041. tp->tlp_high_seq = 0;
  3042. }
  3043. }
  3044. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3045. {
  3046. const struct inet_connection_sock *icsk = inet_csk(sk);
  3047. if (icsk->icsk_ca_ops->in_ack_event)
  3048. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3049. }
  3050. /* Congestion control has updated the cwnd already. So if we're in
  3051. * loss recovery then now we do any new sends (for FRTO) or
  3052. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3053. */
  3054. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3055. {
  3056. struct tcp_sock *tp = tcp_sk(sk);
  3057. if (rexmit == REXMIT_NONE)
  3058. return;
  3059. if (unlikely(rexmit == 2)) {
  3060. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3061. TCP_NAGLE_OFF);
  3062. if (after(tp->snd_nxt, tp->high_seq))
  3063. return;
  3064. tp->frto = 0;
  3065. }
  3066. tcp_xmit_retransmit_queue(sk);
  3067. }
  3068. /* This routine deals with incoming acks, but not outgoing ones. */
  3069. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3070. {
  3071. struct inet_connection_sock *icsk = inet_csk(sk);
  3072. struct tcp_sock *tp = tcp_sk(sk);
  3073. struct tcp_sacktag_state sack_state;
  3074. struct rate_sample rs = { .prior_delivered = 0 };
  3075. u32 prior_snd_una = tp->snd_una;
  3076. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3077. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3078. bool is_dupack = false;
  3079. u32 prior_fackets;
  3080. int prior_packets = tp->packets_out;
  3081. u32 delivered = tp->delivered;
  3082. u32 lost = tp->lost;
  3083. int acked = 0; /* Number of packets newly acked */
  3084. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3085. sack_state.first_sackt = 0;
  3086. sack_state.rate = &rs;
  3087. /* We very likely will need to access write queue head. */
  3088. prefetchw(sk->sk_write_queue.next);
  3089. /* If the ack is older than previous acks
  3090. * then we can probably ignore it.
  3091. */
  3092. if (before(ack, prior_snd_una)) {
  3093. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3094. if (before(ack, prior_snd_una - tp->max_window)) {
  3095. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3096. tcp_send_challenge_ack(sk, skb);
  3097. return -1;
  3098. }
  3099. goto old_ack;
  3100. }
  3101. /* If the ack includes data we haven't sent yet, discard
  3102. * this segment (RFC793 Section 3.9).
  3103. */
  3104. if (after(ack, tp->snd_nxt))
  3105. goto invalid_ack;
  3106. if (after(ack, prior_snd_una)) {
  3107. flag |= FLAG_SND_UNA_ADVANCED;
  3108. icsk->icsk_retransmits = 0;
  3109. }
  3110. prior_fackets = tp->fackets_out;
  3111. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3112. /* ts_recent update must be made after we are sure that the packet
  3113. * is in window.
  3114. */
  3115. if (flag & FLAG_UPDATE_TS_RECENT)
  3116. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3117. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3118. /* Window is constant, pure forward advance.
  3119. * No more checks are required.
  3120. * Note, we use the fact that SND.UNA>=SND.WL2.
  3121. */
  3122. tcp_update_wl(tp, ack_seq);
  3123. tcp_snd_una_update(tp, ack);
  3124. flag |= FLAG_WIN_UPDATE;
  3125. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3126. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3127. } else {
  3128. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3129. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3130. flag |= FLAG_DATA;
  3131. else
  3132. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3133. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3134. if (TCP_SKB_CB(skb)->sacked)
  3135. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3136. &sack_state);
  3137. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3138. flag |= FLAG_ECE;
  3139. ack_ev_flags |= CA_ACK_ECE;
  3140. }
  3141. if (flag & FLAG_WIN_UPDATE)
  3142. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3143. tcp_in_ack_event(sk, ack_ev_flags);
  3144. }
  3145. /* We passed data and got it acked, remove any soft error
  3146. * log. Something worked...
  3147. */
  3148. sk->sk_err_soft = 0;
  3149. icsk->icsk_probes_out = 0;
  3150. tp->rcv_tstamp = tcp_jiffies32;
  3151. if (!prior_packets)
  3152. goto no_queue;
  3153. /* See if we can take anything off of the retransmit queue. */
  3154. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3155. &sack_state);
  3156. if (tp->tlp_high_seq)
  3157. tcp_process_tlp_ack(sk, ack, flag);
  3158. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3159. if (flag & FLAG_SET_XMIT_TIMER)
  3160. tcp_set_xmit_timer(sk);
  3161. if (tcp_ack_is_dubious(sk, flag)) {
  3162. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3163. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3164. }
  3165. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3166. sk_dst_confirm(sk);
  3167. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3168. lost = tp->lost - lost; /* freshly marked lost */
  3169. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3170. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3171. tcp_xmit_recovery(sk, rexmit);
  3172. return 1;
  3173. no_queue:
  3174. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3175. if (flag & FLAG_DSACKING_ACK)
  3176. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3177. /* If this ack opens up a zero window, clear backoff. It was
  3178. * being used to time the probes, and is probably far higher than
  3179. * it needs to be for normal retransmission.
  3180. */
  3181. if (tcp_send_head(sk))
  3182. tcp_ack_probe(sk);
  3183. if (tp->tlp_high_seq)
  3184. tcp_process_tlp_ack(sk, ack, flag);
  3185. return 1;
  3186. invalid_ack:
  3187. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3188. return -1;
  3189. old_ack:
  3190. /* If data was SACKed, tag it and see if we should send more data.
  3191. * If data was DSACKed, see if we can undo a cwnd reduction.
  3192. */
  3193. if (TCP_SKB_CB(skb)->sacked) {
  3194. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3195. &sack_state);
  3196. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3197. tcp_xmit_recovery(sk, rexmit);
  3198. }
  3199. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3200. return 0;
  3201. }
  3202. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3203. bool syn, struct tcp_fastopen_cookie *foc,
  3204. bool exp_opt)
  3205. {
  3206. /* Valid only in SYN or SYN-ACK with an even length. */
  3207. if (!foc || !syn || len < 0 || (len & 1))
  3208. return;
  3209. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3210. len <= TCP_FASTOPEN_COOKIE_MAX)
  3211. memcpy(foc->val, cookie, len);
  3212. else if (len != 0)
  3213. len = -1;
  3214. foc->len = len;
  3215. foc->exp = exp_opt;
  3216. }
  3217. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3218. * But, this can also be called on packets in the established flow when
  3219. * the fast version below fails.
  3220. */
  3221. void tcp_parse_options(const struct net *net,
  3222. const struct sk_buff *skb,
  3223. struct tcp_options_received *opt_rx, int estab,
  3224. struct tcp_fastopen_cookie *foc)
  3225. {
  3226. const unsigned char *ptr;
  3227. const struct tcphdr *th = tcp_hdr(skb);
  3228. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3229. ptr = (const unsigned char *)(th + 1);
  3230. opt_rx->saw_tstamp = 0;
  3231. while (length > 0) {
  3232. int opcode = *ptr++;
  3233. int opsize;
  3234. switch (opcode) {
  3235. case TCPOPT_EOL:
  3236. return;
  3237. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3238. length--;
  3239. continue;
  3240. default:
  3241. opsize = *ptr++;
  3242. if (opsize < 2) /* "silly options" */
  3243. return;
  3244. if (opsize > length)
  3245. return; /* don't parse partial options */
  3246. switch (opcode) {
  3247. case TCPOPT_MSS:
  3248. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3249. u16 in_mss = get_unaligned_be16(ptr);
  3250. if (in_mss) {
  3251. if (opt_rx->user_mss &&
  3252. opt_rx->user_mss < in_mss)
  3253. in_mss = opt_rx->user_mss;
  3254. opt_rx->mss_clamp = in_mss;
  3255. }
  3256. }
  3257. break;
  3258. case TCPOPT_WINDOW:
  3259. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3260. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3261. __u8 snd_wscale = *(__u8 *)ptr;
  3262. opt_rx->wscale_ok = 1;
  3263. if (snd_wscale > TCP_MAX_WSCALE) {
  3264. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3265. __func__,
  3266. snd_wscale,
  3267. TCP_MAX_WSCALE);
  3268. snd_wscale = TCP_MAX_WSCALE;
  3269. }
  3270. opt_rx->snd_wscale = snd_wscale;
  3271. }
  3272. break;
  3273. case TCPOPT_TIMESTAMP:
  3274. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3275. ((estab && opt_rx->tstamp_ok) ||
  3276. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3277. opt_rx->saw_tstamp = 1;
  3278. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3279. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3280. }
  3281. break;
  3282. case TCPOPT_SACK_PERM:
  3283. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3284. !estab && net->ipv4.sysctl_tcp_sack) {
  3285. opt_rx->sack_ok = TCP_SACK_SEEN;
  3286. tcp_sack_reset(opt_rx);
  3287. }
  3288. break;
  3289. case TCPOPT_SACK:
  3290. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3291. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3292. opt_rx->sack_ok) {
  3293. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3294. }
  3295. break;
  3296. #ifdef CONFIG_TCP_MD5SIG
  3297. case TCPOPT_MD5SIG:
  3298. /*
  3299. * The MD5 Hash has already been
  3300. * checked (see tcp_v{4,6}_do_rcv()).
  3301. */
  3302. break;
  3303. #endif
  3304. case TCPOPT_FASTOPEN:
  3305. tcp_parse_fastopen_option(
  3306. opsize - TCPOLEN_FASTOPEN_BASE,
  3307. ptr, th->syn, foc, false);
  3308. break;
  3309. case TCPOPT_EXP:
  3310. /* Fast Open option shares code 254 using a
  3311. * 16 bits magic number.
  3312. */
  3313. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3314. get_unaligned_be16(ptr) ==
  3315. TCPOPT_FASTOPEN_MAGIC)
  3316. tcp_parse_fastopen_option(opsize -
  3317. TCPOLEN_EXP_FASTOPEN_BASE,
  3318. ptr + 2, th->syn, foc, true);
  3319. break;
  3320. }
  3321. ptr += opsize-2;
  3322. length -= opsize;
  3323. }
  3324. }
  3325. }
  3326. EXPORT_SYMBOL(tcp_parse_options);
  3327. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3328. {
  3329. const __be32 *ptr = (const __be32 *)(th + 1);
  3330. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3331. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3332. tp->rx_opt.saw_tstamp = 1;
  3333. ++ptr;
  3334. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3335. ++ptr;
  3336. if (*ptr)
  3337. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3338. else
  3339. tp->rx_opt.rcv_tsecr = 0;
  3340. return true;
  3341. }
  3342. return false;
  3343. }
  3344. /* Fast parse options. This hopes to only see timestamps.
  3345. * If it is wrong it falls back on tcp_parse_options().
  3346. */
  3347. static bool tcp_fast_parse_options(const struct net *net,
  3348. const struct sk_buff *skb,
  3349. const struct tcphdr *th, struct tcp_sock *tp)
  3350. {
  3351. /* In the spirit of fast parsing, compare doff directly to constant
  3352. * values. Because equality is used, short doff can be ignored here.
  3353. */
  3354. if (th->doff == (sizeof(*th) / 4)) {
  3355. tp->rx_opt.saw_tstamp = 0;
  3356. return false;
  3357. } else if (tp->rx_opt.tstamp_ok &&
  3358. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3359. if (tcp_parse_aligned_timestamp(tp, th))
  3360. return true;
  3361. }
  3362. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3363. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3364. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3365. return true;
  3366. }
  3367. #ifdef CONFIG_TCP_MD5SIG
  3368. /*
  3369. * Parse MD5 Signature option
  3370. */
  3371. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3372. {
  3373. int length = (th->doff << 2) - sizeof(*th);
  3374. const u8 *ptr = (const u8 *)(th + 1);
  3375. /* If the TCP option is too short, we can short cut */
  3376. if (length < TCPOLEN_MD5SIG)
  3377. return NULL;
  3378. while (length > 0) {
  3379. int opcode = *ptr++;
  3380. int opsize;
  3381. switch (opcode) {
  3382. case TCPOPT_EOL:
  3383. return NULL;
  3384. case TCPOPT_NOP:
  3385. length--;
  3386. continue;
  3387. default:
  3388. opsize = *ptr++;
  3389. if (opsize < 2 || opsize > length)
  3390. return NULL;
  3391. if (opcode == TCPOPT_MD5SIG)
  3392. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3393. }
  3394. ptr += opsize - 2;
  3395. length -= opsize;
  3396. }
  3397. return NULL;
  3398. }
  3399. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3400. #endif
  3401. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3402. *
  3403. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3404. * it can pass through stack. So, the following predicate verifies that
  3405. * this segment is not used for anything but congestion avoidance or
  3406. * fast retransmit. Moreover, we even are able to eliminate most of such
  3407. * second order effects, if we apply some small "replay" window (~RTO)
  3408. * to timestamp space.
  3409. *
  3410. * All these measures still do not guarantee that we reject wrapped ACKs
  3411. * on networks with high bandwidth, when sequence space is recycled fastly,
  3412. * but it guarantees that such events will be very rare and do not affect
  3413. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3414. * buggy extension.
  3415. *
  3416. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3417. * states that events when retransmit arrives after original data are rare.
  3418. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3419. * the biggest problem on large power networks even with minor reordering.
  3420. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3421. * up to bandwidth of 18Gigabit/sec. 8) ]
  3422. */
  3423. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3424. {
  3425. const struct tcp_sock *tp = tcp_sk(sk);
  3426. const struct tcphdr *th = tcp_hdr(skb);
  3427. u32 seq = TCP_SKB_CB(skb)->seq;
  3428. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3429. return (/* 1. Pure ACK with correct sequence number. */
  3430. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3431. /* 2. ... and duplicate ACK. */
  3432. ack == tp->snd_una &&
  3433. /* 3. ... and does not update window. */
  3434. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3435. /* 4. ... and sits in replay window. */
  3436. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3437. }
  3438. static inline bool tcp_paws_discard(const struct sock *sk,
  3439. const struct sk_buff *skb)
  3440. {
  3441. const struct tcp_sock *tp = tcp_sk(sk);
  3442. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3443. !tcp_disordered_ack(sk, skb);
  3444. }
  3445. /* Check segment sequence number for validity.
  3446. *
  3447. * Segment controls are considered valid, if the segment
  3448. * fits to the window after truncation to the window. Acceptability
  3449. * of data (and SYN, FIN, of course) is checked separately.
  3450. * See tcp_data_queue(), for example.
  3451. *
  3452. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3453. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3454. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3455. * (borrowed from freebsd)
  3456. */
  3457. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3458. {
  3459. return !before(end_seq, tp->rcv_wup) &&
  3460. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3461. }
  3462. /* When we get a reset we do this. */
  3463. void tcp_reset(struct sock *sk)
  3464. {
  3465. /* We want the right error as BSD sees it (and indeed as we do). */
  3466. switch (sk->sk_state) {
  3467. case TCP_SYN_SENT:
  3468. sk->sk_err = ECONNREFUSED;
  3469. break;
  3470. case TCP_CLOSE_WAIT:
  3471. sk->sk_err = EPIPE;
  3472. break;
  3473. case TCP_CLOSE:
  3474. return;
  3475. default:
  3476. sk->sk_err = ECONNRESET;
  3477. }
  3478. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3479. smp_wmb();
  3480. tcp_done(sk);
  3481. if (!sock_flag(sk, SOCK_DEAD))
  3482. sk->sk_error_report(sk);
  3483. }
  3484. /*
  3485. * Process the FIN bit. This now behaves as it is supposed to work
  3486. * and the FIN takes effect when it is validly part of sequence
  3487. * space. Not before when we get holes.
  3488. *
  3489. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3490. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3491. * TIME-WAIT)
  3492. *
  3493. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3494. * close and we go into CLOSING (and later onto TIME-WAIT)
  3495. *
  3496. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3497. */
  3498. void tcp_fin(struct sock *sk)
  3499. {
  3500. struct tcp_sock *tp = tcp_sk(sk);
  3501. inet_csk_schedule_ack(sk);
  3502. sk->sk_shutdown |= RCV_SHUTDOWN;
  3503. sock_set_flag(sk, SOCK_DONE);
  3504. switch (sk->sk_state) {
  3505. case TCP_SYN_RECV:
  3506. case TCP_ESTABLISHED:
  3507. /* Move to CLOSE_WAIT */
  3508. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3509. inet_csk(sk)->icsk_ack.pingpong = 1;
  3510. break;
  3511. case TCP_CLOSE_WAIT:
  3512. case TCP_CLOSING:
  3513. /* Received a retransmission of the FIN, do
  3514. * nothing.
  3515. */
  3516. break;
  3517. case TCP_LAST_ACK:
  3518. /* RFC793: Remain in the LAST-ACK state. */
  3519. break;
  3520. case TCP_FIN_WAIT1:
  3521. /* This case occurs when a simultaneous close
  3522. * happens, we must ack the received FIN and
  3523. * enter the CLOSING state.
  3524. */
  3525. tcp_send_ack(sk);
  3526. tcp_set_state(sk, TCP_CLOSING);
  3527. break;
  3528. case TCP_FIN_WAIT2:
  3529. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3530. tcp_send_ack(sk);
  3531. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3532. break;
  3533. default:
  3534. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3535. * cases we should never reach this piece of code.
  3536. */
  3537. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3538. __func__, sk->sk_state);
  3539. break;
  3540. }
  3541. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3542. * Probably, we should reset in this case. For now drop them.
  3543. */
  3544. skb_rbtree_purge(&tp->out_of_order_queue);
  3545. if (tcp_is_sack(tp))
  3546. tcp_sack_reset(&tp->rx_opt);
  3547. sk_mem_reclaim(sk);
  3548. if (!sock_flag(sk, SOCK_DEAD)) {
  3549. sk->sk_state_change(sk);
  3550. /* Do not send POLL_HUP for half duplex close. */
  3551. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3552. sk->sk_state == TCP_CLOSE)
  3553. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3554. else
  3555. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3556. }
  3557. }
  3558. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3559. u32 end_seq)
  3560. {
  3561. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3562. if (before(seq, sp->start_seq))
  3563. sp->start_seq = seq;
  3564. if (after(end_seq, sp->end_seq))
  3565. sp->end_seq = end_seq;
  3566. return true;
  3567. }
  3568. return false;
  3569. }
  3570. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3571. {
  3572. struct tcp_sock *tp = tcp_sk(sk);
  3573. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3574. int mib_idx;
  3575. if (before(seq, tp->rcv_nxt))
  3576. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3577. else
  3578. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3579. NET_INC_STATS(sock_net(sk), mib_idx);
  3580. tp->rx_opt.dsack = 1;
  3581. tp->duplicate_sack[0].start_seq = seq;
  3582. tp->duplicate_sack[0].end_seq = end_seq;
  3583. }
  3584. }
  3585. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3586. {
  3587. struct tcp_sock *tp = tcp_sk(sk);
  3588. if (!tp->rx_opt.dsack)
  3589. tcp_dsack_set(sk, seq, end_seq);
  3590. else
  3591. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3592. }
  3593. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3594. {
  3595. struct tcp_sock *tp = tcp_sk(sk);
  3596. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3597. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3598. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3599. tcp_enter_quickack_mode(sk);
  3600. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3601. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3602. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3603. end_seq = tp->rcv_nxt;
  3604. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3605. }
  3606. }
  3607. tcp_send_ack(sk);
  3608. }
  3609. /* These routines update the SACK block as out-of-order packets arrive or
  3610. * in-order packets close up the sequence space.
  3611. */
  3612. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3613. {
  3614. int this_sack;
  3615. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3616. struct tcp_sack_block *swalk = sp + 1;
  3617. /* See if the recent change to the first SACK eats into
  3618. * or hits the sequence space of other SACK blocks, if so coalesce.
  3619. */
  3620. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3621. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3622. int i;
  3623. /* Zap SWALK, by moving every further SACK up by one slot.
  3624. * Decrease num_sacks.
  3625. */
  3626. tp->rx_opt.num_sacks--;
  3627. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3628. sp[i] = sp[i + 1];
  3629. continue;
  3630. }
  3631. this_sack++, swalk++;
  3632. }
  3633. }
  3634. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3635. {
  3636. struct tcp_sock *tp = tcp_sk(sk);
  3637. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3638. int cur_sacks = tp->rx_opt.num_sacks;
  3639. int this_sack;
  3640. if (!cur_sacks)
  3641. goto new_sack;
  3642. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3643. if (tcp_sack_extend(sp, seq, end_seq)) {
  3644. /* Rotate this_sack to the first one. */
  3645. for (; this_sack > 0; this_sack--, sp--)
  3646. swap(*sp, *(sp - 1));
  3647. if (cur_sacks > 1)
  3648. tcp_sack_maybe_coalesce(tp);
  3649. return;
  3650. }
  3651. }
  3652. /* Could not find an adjacent existing SACK, build a new one,
  3653. * put it at the front, and shift everyone else down. We
  3654. * always know there is at least one SACK present already here.
  3655. *
  3656. * If the sack array is full, forget about the last one.
  3657. */
  3658. if (this_sack >= TCP_NUM_SACKS) {
  3659. this_sack--;
  3660. tp->rx_opt.num_sacks--;
  3661. sp--;
  3662. }
  3663. for (; this_sack > 0; this_sack--, sp--)
  3664. *sp = *(sp - 1);
  3665. new_sack:
  3666. /* Build the new head SACK, and we're done. */
  3667. sp->start_seq = seq;
  3668. sp->end_seq = end_seq;
  3669. tp->rx_opt.num_sacks++;
  3670. }
  3671. /* RCV.NXT advances, some SACKs should be eaten. */
  3672. static void tcp_sack_remove(struct tcp_sock *tp)
  3673. {
  3674. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3675. int num_sacks = tp->rx_opt.num_sacks;
  3676. int this_sack;
  3677. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3678. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3679. tp->rx_opt.num_sacks = 0;
  3680. return;
  3681. }
  3682. for (this_sack = 0; this_sack < num_sacks;) {
  3683. /* Check if the start of the sack is covered by RCV.NXT. */
  3684. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3685. int i;
  3686. /* RCV.NXT must cover all the block! */
  3687. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3688. /* Zap this SACK, by moving forward any other SACKS. */
  3689. for (i = this_sack+1; i < num_sacks; i++)
  3690. tp->selective_acks[i-1] = tp->selective_acks[i];
  3691. num_sacks--;
  3692. continue;
  3693. }
  3694. this_sack++;
  3695. sp++;
  3696. }
  3697. tp->rx_opt.num_sacks = num_sacks;
  3698. }
  3699. /**
  3700. * tcp_try_coalesce - try to merge skb to prior one
  3701. * @sk: socket
  3702. * @dest: destination queue
  3703. * @to: prior buffer
  3704. * @from: buffer to add in queue
  3705. * @fragstolen: pointer to boolean
  3706. *
  3707. * Before queueing skb @from after @to, try to merge them
  3708. * to reduce overall memory use and queue lengths, if cost is small.
  3709. * Packets in ofo or receive queues can stay a long time.
  3710. * Better try to coalesce them right now to avoid future collapses.
  3711. * Returns true if caller should free @from instead of queueing it
  3712. */
  3713. static bool tcp_try_coalesce(struct sock *sk,
  3714. struct sk_buff *to,
  3715. struct sk_buff *from,
  3716. bool *fragstolen)
  3717. {
  3718. int delta;
  3719. *fragstolen = false;
  3720. /* Its possible this segment overlaps with prior segment in queue */
  3721. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3722. return false;
  3723. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3724. return false;
  3725. atomic_add(delta, &sk->sk_rmem_alloc);
  3726. sk_mem_charge(sk, delta);
  3727. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3728. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3729. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3730. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3731. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3732. TCP_SKB_CB(to)->has_rxtstamp = true;
  3733. to->tstamp = from->tstamp;
  3734. }
  3735. return true;
  3736. }
  3737. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3738. {
  3739. sk_drops_add(sk, skb);
  3740. __kfree_skb(skb);
  3741. }
  3742. /* This one checks to see if we can put data from the
  3743. * out_of_order queue into the receive_queue.
  3744. */
  3745. static void tcp_ofo_queue(struct sock *sk)
  3746. {
  3747. struct tcp_sock *tp = tcp_sk(sk);
  3748. __u32 dsack_high = tp->rcv_nxt;
  3749. bool fin, fragstolen, eaten;
  3750. struct sk_buff *skb, *tail;
  3751. struct rb_node *p;
  3752. p = rb_first(&tp->out_of_order_queue);
  3753. while (p) {
  3754. skb = rb_entry(p, struct sk_buff, rbnode);
  3755. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3756. break;
  3757. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3758. __u32 dsack = dsack_high;
  3759. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3760. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3761. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3762. }
  3763. p = rb_next(p);
  3764. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3765. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3766. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3767. tcp_drop(sk, skb);
  3768. continue;
  3769. }
  3770. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3771. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3772. TCP_SKB_CB(skb)->end_seq);
  3773. tail = skb_peek_tail(&sk->sk_receive_queue);
  3774. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3775. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3776. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3777. if (!eaten)
  3778. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3779. else
  3780. kfree_skb_partial(skb, fragstolen);
  3781. if (unlikely(fin)) {
  3782. tcp_fin(sk);
  3783. /* tcp_fin() purges tp->out_of_order_queue,
  3784. * so we must end this loop right now.
  3785. */
  3786. break;
  3787. }
  3788. }
  3789. }
  3790. static bool tcp_prune_ofo_queue(struct sock *sk);
  3791. static int tcp_prune_queue(struct sock *sk);
  3792. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3793. unsigned int size)
  3794. {
  3795. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3796. !sk_rmem_schedule(sk, skb, size)) {
  3797. if (tcp_prune_queue(sk) < 0)
  3798. return -1;
  3799. while (!sk_rmem_schedule(sk, skb, size)) {
  3800. if (!tcp_prune_ofo_queue(sk))
  3801. return -1;
  3802. }
  3803. }
  3804. return 0;
  3805. }
  3806. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3807. {
  3808. struct tcp_sock *tp = tcp_sk(sk);
  3809. struct rb_node **p, *q, *parent;
  3810. struct sk_buff *skb1;
  3811. u32 seq, end_seq;
  3812. bool fragstolen;
  3813. tcp_ecn_check_ce(tp, skb);
  3814. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3815. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3816. tcp_drop(sk, skb);
  3817. return;
  3818. }
  3819. /* Disable header prediction. */
  3820. tp->pred_flags = 0;
  3821. inet_csk_schedule_ack(sk);
  3822. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3823. seq = TCP_SKB_CB(skb)->seq;
  3824. end_seq = TCP_SKB_CB(skb)->end_seq;
  3825. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3826. tp->rcv_nxt, seq, end_seq);
  3827. p = &tp->out_of_order_queue.rb_node;
  3828. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3829. /* Initial out of order segment, build 1 SACK. */
  3830. if (tcp_is_sack(tp)) {
  3831. tp->rx_opt.num_sacks = 1;
  3832. tp->selective_acks[0].start_seq = seq;
  3833. tp->selective_acks[0].end_seq = end_seq;
  3834. }
  3835. rb_link_node(&skb->rbnode, NULL, p);
  3836. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3837. tp->ooo_last_skb = skb;
  3838. goto end;
  3839. }
  3840. /* In the typical case, we are adding an skb to the end of the list.
  3841. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3842. */
  3843. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3844. skb, &fragstolen)) {
  3845. coalesce_done:
  3846. tcp_grow_window(sk, skb);
  3847. kfree_skb_partial(skb, fragstolen);
  3848. skb = NULL;
  3849. goto add_sack;
  3850. }
  3851. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3852. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3853. parent = &tp->ooo_last_skb->rbnode;
  3854. p = &parent->rb_right;
  3855. goto insert;
  3856. }
  3857. /* Find place to insert this segment. Handle overlaps on the way. */
  3858. parent = NULL;
  3859. while (*p) {
  3860. parent = *p;
  3861. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3862. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3863. p = &parent->rb_left;
  3864. continue;
  3865. }
  3866. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3867. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3868. /* All the bits are present. Drop. */
  3869. NET_INC_STATS(sock_net(sk),
  3870. LINUX_MIB_TCPOFOMERGE);
  3871. __kfree_skb(skb);
  3872. skb = NULL;
  3873. tcp_dsack_set(sk, seq, end_seq);
  3874. goto add_sack;
  3875. }
  3876. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3877. /* Partial overlap. */
  3878. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3879. } else {
  3880. /* skb's seq == skb1's seq and skb covers skb1.
  3881. * Replace skb1 with skb.
  3882. */
  3883. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3884. &tp->out_of_order_queue);
  3885. tcp_dsack_extend(sk,
  3886. TCP_SKB_CB(skb1)->seq,
  3887. TCP_SKB_CB(skb1)->end_seq);
  3888. NET_INC_STATS(sock_net(sk),
  3889. LINUX_MIB_TCPOFOMERGE);
  3890. __kfree_skb(skb1);
  3891. goto merge_right;
  3892. }
  3893. } else if (tcp_try_coalesce(sk, skb1,
  3894. skb, &fragstolen)) {
  3895. goto coalesce_done;
  3896. }
  3897. p = &parent->rb_right;
  3898. }
  3899. insert:
  3900. /* Insert segment into RB tree. */
  3901. rb_link_node(&skb->rbnode, parent, p);
  3902. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3903. merge_right:
  3904. /* Remove other segments covered by skb. */
  3905. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3906. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3907. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3908. break;
  3909. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3910. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3911. end_seq);
  3912. break;
  3913. }
  3914. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3915. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3916. TCP_SKB_CB(skb1)->end_seq);
  3917. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3918. tcp_drop(sk, skb1);
  3919. }
  3920. /* If there is no skb after us, we are the last_skb ! */
  3921. if (!q)
  3922. tp->ooo_last_skb = skb;
  3923. add_sack:
  3924. if (tcp_is_sack(tp))
  3925. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3926. end:
  3927. if (skb) {
  3928. tcp_grow_window(sk, skb);
  3929. skb_condense(skb);
  3930. skb_set_owner_r(skb, sk);
  3931. }
  3932. }
  3933. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3934. bool *fragstolen)
  3935. {
  3936. int eaten;
  3937. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3938. __skb_pull(skb, hdrlen);
  3939. eaten = (tail &&
  3940. tcp_try_coalesce(sk, tail,
  3941. skb, fragstolen)) ? 1 : 0;
  3942. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3943. if (!eaten) {
  3944. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3945. skb_set_owner_r(skb, sk);
  3946. }
  3947. return eaten;
  3948. }
  3949. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3950. {
  3951. struct sk_buff *skb;
  3952. int err = -ENOMEM;
  3953. int data_len = 0;
  3954. bool fragstolen;
  3955. if (size == 0)
  3956. return 0;
  3957. if (size > PAGE_SIZE) {
  3958. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3959. data_len = npages << PAGE_SHIFT;
  3960. size = data_len + (size & ~PAGE_MASK);
  3961. }
  3962. skb = alloc_skb_with_frags(size - data_len, data_len,
  3963. PAGE_ALLOC_COSTLY_ORDER,
  3964. &err, sk->sk_allocation);
  3965. if (!skb)
  3966. goto err;
  3967. skb_put(skb, size - data_len);
  3968. skb->data_len = data_len;
  3969. skb->len = size;
  3970. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3971. goto err_free;
  3972. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3973. if (err)
  3974. goto err_free;
  3975. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3976. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3977. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3978. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3979. WARN_ON_ONCE(fragstolen); /* should not happen */
  3980. __kfree_skb(skb);
  3981. }
  3982. return size;
  3983. err_free:
  3984. kfree_skb(skb);
  3985. err:
  3986. return err;
  3987. }
  3988. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3989. {
  3990. struct tcp_sock *tp = tcp_sk(sk);
  3991. bool fragstolen;
  3992. int eaten;
  3993. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3994. __kfree_skb(skb);
  3995. return;
  3996. }
  3997. skb_dst_drop(skb);
  3998. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3999. tcp_ecn_accept_cwr(tp, skb);
  4000. tp->rx_opt.dsack = 0;
  4001. /* Queue data for delivery to the user.
  4002. * Packets in sequence go to the receive queue.
  4003. * Out of sequence packets to the out_of_order_queue.
  4004. */
  4005. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4006. if (tcp_receive_window(tp) == 0)
  4007. goto out_of_window;
  4008. /* Ok. In sequence. In window. */
  4009. queue_and_out:
  4010. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4011. sk_forced_mem_schedule(sk, skb->truesize);
  4012. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4013. goto drop;
  4014. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4015. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4016. if (skb->len)
  4017. tcp_event_data_recv(sk, skb);
  4018. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4019. tcp_fin(sk);
  4020. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4021. tcp_ofo_queue(sk);
  4022. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4023. * gap in queue is filled.
  4024. */
  4025. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4026. inet_csk(sk)->icsk_ack.pingpong = 0;
  4027. }
  4028. if (tp->rx_opt.num_sacks)
  4029. tcp_sack_remove(tp);
  4030. tcp_fast_path_check(sk);
  4031. if (eaten > 0)
  4032. kfree_skb_partial(skb, fragstolen);
  4033. if (!sock_flag(sk, SOCK_DEAD))
  4034. sk->sk_data_ready(sk);
  4035. return;
  4036. }
  4037. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4038. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4039. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4040. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4041. out_of_window:
  4042. tcp_enter_quickack_mode(sk);
  4043. inet_csk_schedule_ack(sk);
  4044. drop:
  4045. tcp_drop(sk, skb);
  4046. return;
  4047. }
  4048. /* Out of window. F.e. zero window probe. */
  4049. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4050. goto out_of_window;
  4051. tcp_enter_quickack_mode(sk);
  4052. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4053. /* Partial packet, seq < rcv_next < end_seq */
  4054. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4055. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4056. TCP_SKB_CB(skb)->end_seq);
  4057. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4058. /* If window is closed, drop tail of packet. But after
  4059. * remembering D-SACK for its head made in previous line.
  4060. */
  4061. if (!tcp_receive_window(tp))
  4062. goto out_of_window;
  4063. goto queue_and_out;
  4064. }
  4065. tcp_data_queue_ofo(sk, skb);
  4066. }
  4067. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4068. {
  4069. if (list)
  4070. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4071. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4072. }
  4073. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4074. struct sk_buff_head *list,
  4075. struct rb_root *root)
  4076. {
  4077. struct sk_buff *next = tcp_skb_next(skb, list);
  4078. if (list)
  4079. __skb_unlink(skb, list);
  4080. else
  4081. rb_erase(&skb->rbnode, root);
  4082. __kfree_skb(skb);
  4083. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4084. return next;
  4085. }
  4086. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4087. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4088. {
  4089. struct rb_node **p = &root->rb_node;
  4090. struct rb_node *parent = NULL;
  4091. struct sk_buff *skb1;
  4092. while (*p) {
  4093. parent = *p;
  4094. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4095. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4096. p = &parent->rb_left;
  4097. else
  4098. p = &parent->rb_right;
  4099. }
  4100. rb_link_node(&skb->rbnode, parent, p);
  4101. rb_insert_color(&skb->rbnode, root);
  4102. }
  4103. /* Collapse contiguous sequence of skbs head..tail with
  4104. * sequence numbers start..end.
  4105. *
  4106. * If tail is NULL, this means until the end of the queue.
  4107. *
  4108. * Segments with FIN/SYN are not collapsed (only because this
  4109. * simplifies code)
  4110. */
  4111. static void
  4112. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4113. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4114. {
  4115. struct sk_buff *skb = head, *n;
  4116. struct sk_buff_head tmp;
  4117. bool end_of_skbs;
  4118. /* First, check that queue is collapsible and find
  4119. * the point where collapsing can be useful.
  4120. */
  4121. restart:
  4122. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4123. n = tcp_skb_next(skb, list);
  4124. /* No new bits? It is possible on ofo queue. */
  4125. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4126. skb = tcp_collapse_one(sk, skb, list, root);
  4127. if (!skb)
  4128. break;
  4129. goto restart;
  4130. }
  4131. /* The first skb to collapse is:
  4132. * - not SYN/FIN and
  4133. * - bloated or contains data before "start" or
  4134. * overlaps to the next one.
  4135. */
  4136. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4137. (tcp_win_from_space(skb->truesize) > skb->len ||
  4138. before(TCP_SKB_CB(skb)->seq, start))) {
  4139. end_of_skbs = false;
  4140. break;
  4141. }
  4142. if (n && n != tail &&
  4143. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4144. end_of_skbs = false;
  4145. break;
  4146. }
  4147. /* Decided to skip this, advance start seq. */
  4148. start = TCP_SKB_CB(skb)->end_seq;
  4149. }
  4150. if (end_of_skbs ||
  4151. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4152. return;
  4153. __skb_queue_head_init(&tmp);
  4154. while (before(start, end)) {
  4155. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4156. struct sk_buff *nskb;
  4157. nskb = alloc_skb(copy, GFP_ATOMIC);
  4158. if (!nskb)
  4159. break;
  4160. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4161. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4162. if (list)
  4163. __skb_queue_before(list, skb, nskb);
  4164. else
  4165. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4166. skb_set_owner_r(nskb, sk);
  4167. /* Copy data, releasing collapsed skbs. */
  4168. while (copy > 0) {
  4169. int offset = start - TCP_SKB_CB(skb)->seq;
  4170. int size = TCP_SKB_CB(skb)->end_seq - start;
  4171. BUG_ON(offset < 0);
  4172. if (size > 0) {
  4173. size = min(copy, size);
  4174. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4175. BUG();
  4176. TCP_SKB_CB(nskb)->end_seq += size;
  4177. copy -= size;
  4178. start += size;
  4179. }
  4180. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4181. skb = tcp_collapse_one(sk, skb, list, root);
  4182. if (!skb ||
  4183. skb == tail ||
  4184. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4185. goto end;
  4186. }
  4187. }
  4188. }
  4189. end:
  4190. skb_queue_walk_safe(&tmp, skb, n)
  4191. tcp_rbtree_insert(root, skb);
  4192. }
  4193. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4194. * and tcp_collapse() them until all the queue is collapsed.
  4195. */
  4196. static void tcp_collapse_ofo_queue(struct sock *sk)
  4197. {
  4198. struct tcp_sock *tp = tcp_sk(sk);
  4199. struct sk_buff *skb, *head;
  4200. struct rb_node *p;
  4201. u32 start, end;
  4202. p = rb_first(&tp->out_of_order_queue);
  4203. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4204. new_range:
  4205. if (!skb) {
  4206. p = rb_last(&tp->out_of_order_queue);
  4207. /* Note: This is possible p is NULL here. We do not
  4208. * use rb_entry_safe(), as ooo_last_skb is valid only
  4209. * if rbtree is not empty.
  4210. */
  4211. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4212. return;
  4213. }
  4214. start = TCP_SKB_CB(skb)->seq;
  4215. end = TCP_SKB_CB(skb)->end_seq;
  4216. for (head = skb;;) {
  4217. skb = tcp_skb_next(skb, NULL);
  4218. /* Range is terminated when we see a gap or when
  4219. * we are at the queue end.
  4220. */
  4221. if (!skb ||
  4222. after(TCP_SKB_CB(skb)->seq, end) ||
  4223. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4224. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4225. head, skb, start, end);
  4226. goto new_range;
  4227. }
  4228. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4229. start = TCP_SKB_CB(skb)->seq;
  4230. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4231. end = TCP_SKB_CB(skb)->end_seq;
  4232. }
  4233. }
  4234. /*
  4235. * Clean the out-of-order queue to make room.
  4236. * We drop high sequences packets to :
  4237. * 1) Let a chance for holes to be filled.
  4238. * 2) not add too big latencies if thousands of packets sit there.
  4239. * (But if application shrinks SO_RCVBUF, we could still end up
  4240. * freeing whole queue here)
  4241. *
  4242. * Return true if queue has shrunk.
  4243. */
  4244. static bool tcp_prune_ofo_queue(struct sock *sk)
  4245. {
  4246. struct tcp_sock *tp = tcp_sk(sk);
  4247. struct rb_node *node, *prev;
  4248. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4249. return false;
  4250. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4251. node = &tp->ooo_last_skb->rbnode;
  4252. do {
  4253. prev = rb_prev(node);
  4254. rb_erase(node, &tp->out_of_order_queue);
  4255. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4256. sk_mem_reclaim(sk);
  4257. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4258. !tcp_under_memory_pressure(sk))
  4259. break;
  4260. node = prev;
  4261. } while (node);
  4262. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4263. /* Reset SACK state. A conforming SACK implementation will
  4264. * do the same at a timeout based retransmit. When a connection
  4265. * is in a sad state like this, we care only about integrity
  4266. * of the connection not performance.
  4267. */
  4268. if (tp->rx_opt.sack_ok)
  4269. tcp_sack_reset(&tp->rx_opt);
  4270. return true;
  4271. }
  4272. /* Reduce allocated memory if we can, trying to get
  4273. * the socket within its memory limits again.
  4274. *
  4275. * Return less than zero if we should start dropping frames
  4276. * until the socket owning process reads some of the data
  4277. * to stabilize the situation.
  4278. */
  4279. static int tcp_prune_queue(struct sock *sk)
  4280. {
  4281. struct tcp_sock *tp = tcp_sk(sk);
  4282. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4283. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4284. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4285. tcp_clamp_window(sk);
  4286. else if (tcp_under_memory_pressure(sk))
  4287. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4288. tcp_collapse_ofo_queue(sk);
  4289. if (!skb_queue_empty(&sk->sk_receive_queue))
  4290. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4291. skb_peek(&sk->sk_receive_queue),
  4292. NULL,
  4293. tp->copied_seq, tp->rcv_nxt);
  4294. sk_mem_reclaim(sk);
  4295. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4296. return 0;
  4297. /* Collapsing did not help, destructive actions follow.
  4298. * This must not ever occur. */
  4299. tcp_prune_ofo_queue(sk);
  4300. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4301. return 0;
  4302. /* If we are really being abused, tell the caller to silently
  4303. * drop receive data on the floor. It will get retransmitted
  4304. * and hopefully then we'll have sufficient space.
  4305. */
  4306. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4307. /* Massive buffer overcommit. */
  4308. tp->pred_flags = 0;
  4309. return -1;
  4310. }
  4311. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4312. {
  4313. const struct tcp_sock *tp = tcp_sk(sk);
  4314. /* If the user specified a specific send buffer setting, do
  4315. * not modify it.
  4316. */
  4317. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4318. return false;
  4319. /* If we are under global TCP memory pressure, do not expand. */
  4320. if (tcp_under_memory_pressure(sk))
  4321. return false;
  4322. /* If we are under soft global TCP memory pressure, do not expand. */
  4323. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4324. return false;
  4325. /* If we filled the congestion window, do not expand. */
  4326. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4327. return false;
  4328. return true;
  4329. }
  4330. /* When incoming ACK allowed to free some skb from write_queue,
  4331. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4332. * on the exit from tcp input handler.
  4333. *
  4334. * PROBLEM: sndbuf expansion does not work well with largesend.
  4335. */
  4336. static void tcp_new_space(struct sock *sk)
  4337. {
  4338. struct tcp_sock *tp = tcp_sk(sk);
  4339. if (tcp_should_expand_sndbuf(sk)) {
  4340. tcp_sndbuf_expand(sk);
  4341. tp->snd_cwnd_stamp = tcp_jiffies32;
  4342. }
  4343. sk->sk_write_space(sk);
  4344. }
  4345. static void tcp_check_space(struct sock *sk)
  4346. {
  4347. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4348. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4349. /* pairs with tcp_poll() */
  4350. smp_mb();
  4351. if (sk->sk_socket &&
  4352. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4353. tcp_new_space(sk);
  4354. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4355. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4356. }
  4357. }
  4358. }
  4359. static inline void tcp_data_snd_check(struct sock *sk)
  4360. {
  4361. tcp_push_pending_frames(sk);
  4362. tcp_check_space(sk);
  4363. }
  4364. /*
  4365. * Check if sending an ack is needed.
  4366. */
  4367. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4368. {
  4369. struct tcp_sock *tp = tcp_sk(sk);
  4370. /* More than one full frame received... */
  4371. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4372. /* ... and right edge of window advances far enough.
  4373. * (tcp_recvmsg() will send ACK otherwise). Or...
  4374. */
  4375. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4376. /* We ACK each frame or... */
  4377. tcp_in_quickack_mode(sk) ||
  4378. /* We have out of order data. */
  4379. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4380. /* Then ack it now */
  4381. tcp_send_ack(sk);
  4382. } else {
  4383. /* Else, send delayed ack. */
  4384. tcp_send_delayed_ack(sk);
  4385. }
  4386. }
  4387. static inline void tcp_ack_snd_check(struct sock *sk)
  4388. {
  4389. if (!inet_csk_ack_scheduled(sk)) {
  4390. /* We sent a data segment already. */
  4391. return;
  4392. }
  4393. __tcp_ack_snd_check(sk, 1);
  4394. }
  4395. /*
  4396. * This routine is only called when we have urgent data
  4397. * signaled. Its the 'slow' part of tcp_urg. It could be
  4398. * moved inline now as tcp_urg is only called from one
  4399. * place. We handle URGent data wrong. We have to - as
  4400. * BSD still doesn't use the correction from RFC961.
  4401. * For 1003.1g we should support a new option TCP_STDURG to permit
  4402. * either form (or just set the sysctl tcp_stdurg).
  4403. */
  4404. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4405. {
  4406. struct tcp_sock *tp = tcp_sk(sk);
  4407. u32 ptr = ntohs(th->urg_ptr);
  4408. if (ptr && !sysctl_tcp_stdurg)
  4409. ptr--;
  4410. ptr += ntohl(th->seq);
  4411. /* Ignore urgent data that we've already seen and read. */
  4412. if (after(tp->copied_seq, ptr))
  4413. return;
  4414. /* Do not replay urg ptr.
  4415. *
  4416. * NOTE: interesting situation not covered by specs.
  4417. * Misbehaving sender may send urg ptr, pointing to segment,
  4418. * which we already have in ofo queue. We are not able to fetch
  4419. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4420. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4421. * situations. But it is worth to think about possibility of some
  4422. * DoSes using some hypothetical application level deadlock.
  4423. */
  4424. if (before(ptr, tp->rcv_nxt))
  4425. return;
  4426. /* Do we already have a newer (or duplicate) urgent pointer? */
  4427. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4428. return;
  4429. /* Tell the world about our new urgent pointer. */
  4430. sk_send_sigurg(sk);
  4431. /* We may be adding urgent data when the last byte read was
  4432. * urgent. To do this requires some care. We cannot just ignore
  4433. * tp->copied_seq since we would read the last urgent byte again
  4434. * as data, nor can we alter copied_seq until this data arrives
  4435. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4436. *
  4437. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4438. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4439. * and expect that both A and B disappear from stream. This is _wrong_.
  4440. * Though this happens in BSD with high probability, this is occasional.
  4441. * Any application relying on this is buggy. Note also, that fix "works"
  4442. * only in this artificial test. Insert some normal data between A and B and we will
  4443. * decline of BSD again. Verdict: it is better to remove to trap
  4444. * buggy users.
  4445. */
  4446. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4447. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4448. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4449. tp->copied_seq++;
  4450. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4451. __skb_unlink(skb, &sk->sk_receive_queue);
  4452. __kfree_skb(skb);
  4453. }
  4454. }
  4455. tp->urg_data = TCP_URG_NOTYET;
  4456. tp->urg_seq = ptr;
  4457. /* Disable header prediction. */
  4458. tp->pred_flags = 0;
  4459. }
  4460. /* This is the 'fast' part of urgent handling. */
  4461. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4462. {
  4463. struct tcp_sock *tp = tcp_sk(sk);
  4464. /* Check if we get a new urgent pointer - normally not. */
  4465. if (th->urg)
  4466. tcp_check_urg(sk, th);
  4467. /* Do we wait for any urgent data? - normally not... */
  4468. if (tp->urg_data == TCP_URG_NOTYET) {
  4469. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4470. th->syn;
  4471. /* Is the urgent pointer pointing into this packet? */
  4472. if (ptr < skb->len) {
  4473. u8 tmp;
  4474. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4475. BUG();
  4476. tp->urg_data = TCP_URG_VALID | tmp;
  4477. if (!sock_flag(sk, SOCK_DEAD))
  4478. sk->sk_data_ready(sk);
  4479. }
  4480. }
  4481. }
  4482. /* Accept RST for rcv_nxt - 1 after a FIN.
  4483. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4484. * FIN is sent followed by a RST packet. The RST is sent with the same
  4485. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4486. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4487. * ACKs on the closed socket. In addition middleboxes can drop either the
  4488. * challenge ACK or a subsequent RST.
  4489. */
  4490. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4491. {
  4492. struct tcp_sock *tp = tcp_sk(sk);
  4493. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4494. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4495. TCPF_CLOSING));
  4496. }
  4497. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4498. * play significant role here.
  4499. */
  4500. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4501. const struct tcphdr *th, int syn_inerr)
  4502. {
  4503. struct tcp_sock *tp = tcp_sk(sk);
  4504. bool rst_seq_match = false;
  4505. /* RFC1323: H1. Apply PAWS check first. */
  4506. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4507. tp->rx_opt.saw_tstamp &&
  4508. tcp_paws_discard(sk, skb)) {
  4509. if (!th->rst) {
  4510. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4511. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4512. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4513. &tp->last_oow_ack_time))
  4514. tcp_send_dupack(sk, skb);
  4515. goto discard;
  4516. }
  4517. /* Reset is accepted even if it did not pass PAWS. */
  4518. }
  4519. /* Step 1: check sequence number */
  4520. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4521. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4522. * (RST) segments are validated by checking their SEQ-fields."
  4523. * And page 69: "If an incoming segment is not acceptable,
  4524. * an acknowledgment should be sent in reply (unless the RST
  4525. * bit is set, if so drop the segment and return)".
  4526. */
  4527. if (!th->rst) {
  4528. if (th->syn)
  4529. goto syn_challenge;
  4530. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4531. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4532. &tp->last_oow_ack_time))
  4533. tcp_send_dupack(sk, skb);
  4534. } else if (tcp_reset_check(sk, skb)) {
  4535. tcp_reset(sk);
  4536. }
  4537. goto discard;
  4538. }
  4539. /* Step 2: check RST bit */
  4540. if (th->rst) {
  4541. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4542. * FIN and SACK too if available):
  4543. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4544. * the right-most SACK block,
  4545. * then
  4546. * RESET the connection
  4547. * else
  4548. * Send a challenge ACK
  4549. */
  4550. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4551. tcp_reset_check(sk, skb)) {
  4552. rst_seq_match = true;
  4553. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4554. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4555. int max_sack = sp[0].end_seq;
  4556. int this_sack;
  4557. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4558. ++this_sack) {
  4559. max_sack = after(sp[this_sack].end_seq,
  4560. max_sack) ?
  4561. sp[this_sack].end_seq : max_sack;
  4562. }
  4563. if (TCP_SKB_CB(skb)->seq == max_sack)
  4564. rst_seq_match = true;
  4565. }
  4566. if (rst_seq_match)
  4567. tcp_reset(sk);
  4568. else {
  4569. /* Disable TFO if RST is out-of-order
  4570. * and no data has been received
  4571. * for current active TFO socket
  4572. */
  4573. if (tp->syn_fastopen && !tp->data_segs_in &&
  4574. sk->sk_state == TCP_ESTABLISHED)
  4575. tcp_fastopen_active_disable(sk);
  4576. tcp_send_challenge_ack(sk, skb);
  4577. }
  4578. goto discard;
  4579. }
  4580. /* step 3: check security and precedence [ignored] */
  4581. /* step 4: Check for a SYN
  4582. * RFC 5961 4.2 : Send a challenge ack
  4583. */
  4584. if (th->syn) {
  4585. syn_challenge:
  4586. if (syn_inerr)
  4587. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4588. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4589. tcp_send_challenge_ack(sk, skb);
  4590. goto discard;
  4591. }
  4592. return true;
  4593. discard:
  4594. tcp_drop(sk, skb);
  4595. return false;
  4596. }
  4597. /*
  4598. * TCP receive function for the ESTABLISHED state.
  4599. *
  4600. * It is split into a fast path and a slow path. The fast path is
  4601. * disabled when:
  4602. * - A zero window was announced from us - zero window probing
  4603. * is only handled properly in the slow path.
  4604. * - Out of order segments arrived.
  4605. * - Urgent data is expected.
  4606. * - There is no buffer space left
  4607. * - Unexpected TCP flags/window values/header lengths are received
  4608. * (detected by checking the TCP header against pred_flags)
  4609. * - Data is sent in both directions. Fast path only supports pure senders
  4610. * or pure receivers (this means either the sequence number or the ack
  4611. * value must stay constant)
  4612. * - Unexpected TCP option.
  4613. *
  4614. * When these conditions are not satisfied it drops into a standard
  4615. * receive procedure patterned after RFC793 to handle all cases.
  4616. * The first three cases are guaranteed by proper pred_flags setting,
  4617. * the rest is checked inline. Fast processing is turned on in
  4618. * tcp_data_queue when everything is OK.
  4619. */
  4620. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4621. const struct tcphdr *th)
  4622. {
  4623. unsigned int len = skb->len;
  4624. struct tcp_sock *tp = tcp_sk(sk);
  4625. tcp_mstamp_refresh(tp);
  4626. if (unlikely(!sk->sk_rx_dst))
  4627. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4628. /*
  4629. * Header prediction.
  4630. * The code loosely follows the one in the famous
  4631. * "30 instruction TCP receive" Van Jacobson mail.
  4632. *
  4633. * Van's trick is to deposit buffers into socket queue
  4634. * on a device interrupt, to call tcp_recv function
  4635. * on the receive process context and checksum and copy
  4636. * the buffer to user space. smart...
  4637. *
  4638. * Our current scheme is not silly either but we take the
  4639. * extra cost of the net_bh soft interrupt processing...
  4640. * We do checksum and copy also but from device to kernel.
  4641. */
  4642. tp->rx_opt.saw_tstamp = 0;
  4643. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4644. * if header_prediction is to be made
  4645. * 'S' will always be tp->tcp_header_len >> 2
  4646. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4647. * turn it off (when there are holes in the receive
  4648. * space for instance)
  4649. * PSH flag is ignored.
  4650. */
  4651. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4652. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4653. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4654. int tcp_header_len = tp->tcp_header_len;
  4655. /* Timestamp header prediction: tcp_header_len
  4656. * is automatically equal to th->doff*4 due to pred_flags
  4657. * match.
  4658. */
  4659. /* Check timestamp */
  4660. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4661. /* No? Slow path! */
  4662. if (!tcp_parse_aligned_timestamp(tp, th))
  4663. goto slow_path;
  4664. /* If PAWS failed, check it more carefully in slow path */
  4665. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4666. goto slow_path;
  4667. /* DO NOT update ts_recent here, if checksum fails
  4668. * and timestamp was corrupted part, it will result
  4669. * in a hung connection since we will drop all
  4670. * future packets due to the PAWS test.
  4671. */
  4672. }
  4673. if (len <= tcp_header_len) {
  4674. /* Bulk data transfer: sender */
  4675. if (len == tcp_header_len) {
  4676. /* Predicted packet is in window by definition.
  4677. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4678. * Hence, check seq<=rcv_wup reduces to:
  4679. */
  4680. if (tcp_header_len ==
  4681. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4682. tp->rcv_nxt == tp->rcv_wup)
  4683. tcp_store_ts_recent(tp);
  4684. /* We know that such packets are checksummed
  4685. * on entry.
  4686. */
  4687. tcp_ack(sk, skb, 0);
  4688. __kfree_skb(skb);
  4689. tcp_data_snd_check(sk);
  4690. return;
  4691. } else { /* Header too small */
  4692. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4693. goto discard;
  4694. }
  4695. } else {
  4696. int eaten = 0;
  4697. bool fragstolen = false;
  4698. if (tcp_checksum_complete(skb))
  4699. goto csum_error;
  4700. if ((int)skb->truesize > sk->sk_forward_alloc)
  4701. goto step5;
  4702. /* Predicted packet is in window by definition.
  4703. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4704. * Hence, check seq<=rcv_wup reduces to:
  4705. */
  4706. if (tcp_header_len ==
  4707. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4708. tp->rcv_nxt == tp->rcv_wup)
  4709. tcp_store_ts_recent(tp);
  4710. tcp_rcv_rtt_measure_ts(sk, skb);
  4711. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4712. /* Bulk data transfer: receiver */
  4713. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4714. &fragstolen);
  4715. tcp_event_data_recv(sk, skb);
  4716. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4717. /* Well, only one small jumplet in fast path... */
  4718. tcp_ack(sk, skb, FLAG_DATA);
  4719. tcp_data_snd_check(sk);
  4720. if (!inet_csk_ack_scheduled(sk))
  4721. goto no_ack;
  4722. }
  4723. __tcp_ack_snd_check(sk, 0);
  4724. no_ack:
  4725. if (eaten)
  4726. kfree_skb_partial(skb, fragstolen);
  4727. sk->sk_data_ready(sk);
  4728. return;
  4729. }
  4730. }
  4731. slow_path:
  4732. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4733. goto csum_error;
  4734. if (!th->ack && !th->rst && !th->syn)
  4735. goto discard;
  4736. /*
  4737. * Standard slow path.
  4738. */
  4739. if (!tcp_validate_incoming(sk, skb, th, 1))
  4740. return;
  4741. step5:
  4742. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4743. goto discard;
  4744. tcp_rcv_rtt_measure_ts(sk, skb);
  4745. /* Process urgent data. */
  4746. tcp_urg(sk, skb, th);
  4747. /* step 7: process the segment text */
  4748. tcp_data_queue(sk, skb);
  4749. tcp_data_snd_check(sk);
  4750. tcp_ack_snd_check(sk);
  4751. return;
  4752. csum_error:
  4753. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4754. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4755. discard:
  4756. tcp_drop(sk, skb);
  4757. }
  4758. EXPORT_SYMBOL(tcp_rcv_established);
  4759. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4760. {
  4761. struct tcp_sock *tp = tcp_sk(sk);
  4762. struct inet_connection_sock *icsk = inet_csk(sk);
  4763. tcp_set_state(sk, TCP_ESTABLISHED);
  4764. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4765. if (skb) {
  4766. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4767. security_inet_conn_established(sk, skb);
  4768. }
  4769. tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4770. /* Prevent spurious tcp_cwnd_restart() on first data
  4771. * packet.
  4772. */
  4773. tp->lsndtime = tcp_jiffies32;
  4774. if (sock_flag(sk, SOCK_KEEPOPEN))
  4775. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4776. if (!tp->rx_opt.snd_wscale)
  4777. __tcp_fast_path_on(tp, tp->snd_wnd);
  4778. else
  4779. tp->pred_flags = 0;
  4780. }
  4781. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4782. struct tcp_fastopen_cookie *cookie)
  4783. {
  4784. struct tcp_sock *tp = tcp_sk(sk);
  4785. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4786. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4787. bool syn_drop = false;
  4788. if (mss == tp->rx_opt.user_mss) {
  4789. struct tcp_options_received opt;
  4790. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4791. tcp_clear_options(&opt);
  4792. opt.user_mss = opt.mss_clamp = 0;
  4793. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4794. mss = opt.mss_clamp;
  4795. }
  4796. if (!tp->syn_fastopen) {
  4797. /* Ignore an unsolicited cookie */
  4798. cookie->len = -1;
  4799. } else if (tp->total_retrans) {
  4800. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4801. * acknowledges data. Presumably the remote received only
  4802. * the retransmitted (regular) SYNs: either the original
  4803. * SYN-data or the corresponding SYN-ACK was dropped.
  4804. */
  4805. syn_drop = (cookie->len < 0 && data);
  4806. } else if (cookie->len < 0 && !tp->syn_data) {
  4807. /* We requested a cookie but didn't get it. If we did not use
  4808. * the (old) exp opt format then try so next time (try_exp=1).
  4809. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4810. */
  4811. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4812. }
  4813. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4814. if (data) { /* Retransmit unacked data in SYN */
  4815. tcp_for_write_queue_from(data, sk) {
  4816. if (data == tcp_send_head(sk) ||
  4817. __tcp_retransmit_skb(sk, data, 1))
  4818. break;
  4819. }
  4820. tcp_rearm_rto(sk);
  4821. NET_INC_STATS(sock_net(sk),
  4822. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4823. return true;
  4824. }
  4825. tp->syn_data_acked = tp->syn_data;
  4826. if (tp->syn_data_acked)
  4827. NET_INC_STATS(sock_net(sk),
  4828. LINUX_MIB_TCPFASTOPENACTIVE);
  4829. tcp_fastopen_add_skb(sk, synack);
  4830. return false;
  4831. }
  4832. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4833. const struct tcphdr *th)
  4834. {
  4835. struct inet_connection_sock *icsk = inet_csk(sk);
  4836. struct tcp_sock *tp = tcp_sk(sk);
  4837. struct tcp_fastopen_cookie foc = { .len = -1 };
  4838. int saved_clamp = tp->rx_opt.mss_clamp;
  4839. bool fastopen_fail;
  4840. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4841. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4842. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4843. if (th->ack) {
  4844. /* rfc793:
  4845. * "If the state is SYN-SENT then
  4846. * first check the ACK bit
  4847. * If the ACK bit is set
  4848. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4849. * a reset (unless the RST bit is set, if so drop
  4850. * the segment and return)"
  4851. */
  4852. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4853. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4854. goto reset_and_undo;
  4855. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4856. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4857. tcp_time_stamp(tp))) {
  4858. NET_INC_STATS(sock_net(sk),
  4859. LINUX_MIB_PAWSACTIVEREJECTED);
  4860. goto reset_and_undo;
  4861. }
  4862. /* Now ACK is acceptable.
  4863. *
  4864. * "If the RST bit is set
  4865. * If the ACK was acceptable then signal the user "error:
  4866. * connection reset", drop the segment, enter CLOSED state,
  4867. * delete TCB, and return."
  4868. */
  4869. if (th->rst) {
  4870. tcp_reset(sk);
  4871. goto discard;
  4872. }
  4873. /* rfc793:
  4874. * "fifth, if neither of the SYN or RST bits is set then
  4875. * drop the segment and return."
  4876. *
  4877. * See note below!
  4878. * --ANK(990513)
  4879. */
  4880. if (!th->syn)
  4881. goto discard_and_undo;
  4882. /* rfc793:
  4883. * "If the SYN bit is on ...
  4884. * are acceptable then ...
  4885. * (our SYN has been ACKed), change the connection
  4886. * state to ESTABLISHED..."
  4887. */
  4888. tcp_ecn_rcv_synack(tp, th);
  4889. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4890. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4891. /* Ok.. it's good. Set up sequence numbers and
  4892. * move to established.
  4893. */
  4894. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4895. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4896. /* RFC1323: The window in SYN & SYN/ACK segments is
  4897. * never scaled.
  4898. */
  4899. tp->snd_wnd = ntohs(th->window);
  4900. if (!tp->rx_opt.wscale_ok) {
  4901. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4902. tp->window_clamp = min(tp->window_clamp, 65535U);
  4903. }
  4904. if (tp->rx_opt.saw_tstamp) {
  4905. tp->rx_opt.tstamp_ok = 1;
  4906. tp->tcp_header_len =
  4907. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4908. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4909. tcp_store_ts_recent(tp);
  4910. } else {
  4911. tp->tcp_header_len = sizeof(struct tcphdr);
  4912. }
  4913. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4914. tcp_enable_fack(tp);
  4915. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4916. tcp_initialize_rcv_mss(sk);
  4917. /* Remember, tcp_poll() does not lock socket!
  4918. * Change state from SYN-SENT only after copied_seq
  4919. * is initialized. */
  4920. tp->copied_seq = tp->rcv_nxt;
  4921. smp_mb();
  4922. tcp_finish_connect(sk, skb);
  4923. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4924. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4925. if (!sock_flag(sk, SOCK_DEAD)) {
  4926. sk->sk_state_change(sk);
  4927. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4928. }
  4929. if (fastopen_fail)
  4930. return -1;
  4931. if (sk->sk_write_pending ||
  4932. icsk->icsk_accept_queue.rskq_defer_accept ||
  4933. icsk->icsk_ack.pingpong) {
  4934. /* Save one ACK. Data will be ready after
  4935. * several ticks, if write_pending is set.
  4936. *
  4937. * It may be deleted, but with this feature tcpdumps
  4938. * look so _wonderfully_ clever, that I was not able
  4939. * to stand against the temptation 8) --ANK
  4940. */
  4941. inet_csk_schedule_ack(sk);
  4942. tcp_enter_quickack_mode(sk);
  4943. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4944. TCP_DELACK_MAX, TCP_RTO_MAX);
  4945. discard:
  4946. tcp_drop(sk, skb);
  4947. return 0;
  4948. } else {
  4949. tcp_send_ack(sk);
  4950. }
  4951. return -1;
  4952. }
  4953. /* No ACK in the segment */
  4954. if (th->rst) {
  4955. /* rfc793:
  4956. * "If the RST bit is set
  4957. *
  4958. * Otherwise (no ACK) drop the segment and return."
  4959. */
  4960. goto discard_and_undo;
  4961. }
  4962. /* PAWS check. */
  4963. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4964. tcp_paws_reject(&tp->rx_opt, 0))
  4965. goto discard_and_undo;
  4966. if (th->syn) {
  4967. /* We see SYN without ACK. It is attempt of
  4968. * simultaneous connect with crossed SYNs.
  4969. * Particularly, it can be connect to self.
  4970. */
  4971. tcp_set_state(sk, TCP_SYN_RECV);
  4972. if (tp->rx_opt.saw_tstamp) {
  4973. tp->rx_opt.tstamp_ok = 1;
  4974. tcp_store_ts_recent(tp);
  4975. tp->tcp_header_len =
  4976. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4977. } else {
  4978. tp->tcp_header_len = sizeof(struct tcphdr);
  4979. }
  4980. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4981. tp->copied_seq = tp->rcv_nxt;
  4982. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4983. /* RFC1323: The window in SYN & SYN/ACK segments is
  4984. * never scaled.
  4985. */
  4986. tp->snd_wnd = ntohs(th->window);
  4987. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4988. tp->max_window = tp->snd_wnd;
  4989. tcp_ecn_rcv_syn(tp, th);
  4990. tcp_mtup_init(sk);
  4991. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4992. tcp_initialize_rcv_mss(sk);
  4993. tcp_send_synack(sk);
  4994. #if 0
  4995. /* Note, we could accept data and URG from this segment.
  4996. * There are no obstacles to make this (except that we must
  4997. * either change tcp_recvmsg() to prevent it from returning data
  4998. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4999. *
  5000. * However, if we ignore data in ACKless segments sometimes,
  5001. * we have no reasons to accept it sometimes.
  5002. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5003. * is not flawless. So, discard packet for sanity.
  5004. * Uncomment this return to process the data.
  5005. */
  5006. return -1;
  5007. #else
  5008. goto discard;
  5009. #endif
  5010. }
  5011. /* "fifth, if neither of the SYN or RST bits is set then
  5012. * drop the segment and return."
  5013. */
  5014. discard_and_undo:
  5015. tcp_clear_options(&tp->rx_opt);
  5016. tp->rx_opt.mss_clamp = saved_clamp;
  5017. goto discard;
  5018. reset_and_undo:
  5019. tcp_clear_options(&tp->rx_opt);
  5020. tp->rx_opt.mss_clamp = saved_clamp;
  5021. return 1;
  5022. }
  5023. /*
  5024. * This function implements the receiving procedure of RFC 793 for
  5025. * all states except ESTABLISHED and TIME_WAIT.
  5026. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5027. * address independent.
  5028. */
  5029. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5030. {
  5031. struct tcp_sock *tp = tcp_sk(sk);
  5032. struct inet_connection_sock *icsk = inet_csk(sk);
  5033. const struct tcphdr *th = tcp_hdr(skb);
  5034. struct request_sock *req;
  5035. int queued = 0;
  5036. bool acceptable;
  5037. switch (sk->sk_state) {
  5038. case TCP_CLOSE:
  5039. goto discard;
  5040. case TCP_LISTEN:
  5041. if (th->ack)
  5042. return 1;
  5043. if (th->rst)
  5044. goto discard;
  5045. if (th->syn) {
  5046. if (th->fin)
  5047. goto discard;
  5048. /* It is possible that we process SYN packets from backlog,
  5049. * so we need to make sure to disable BH right there.
  5050. */
  5051. local_bh_disable();
  5052. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5053. local_bh_enable();
  5054. if (!acceptable)
  5055. return 1;
  5056. consume_skb(skb);
  5057. return 0;
  5058. }
  5059. goto discard;
  5060. case TCP_SYN_SENT:
  5061. tp->rx_opt.saw_tstamp = 0;
  5062. tcp_mstamp_refresh(tp);
  5063. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5064. if (queued >= 0)
  5065. return queued;
  5066. /* Do step6 onward by hand. */
  5067. tcp_urg(sk, skb, th);
  5068. __kfree_skb(skb);
  5069. tcp_data_snd_check(sk);
  5070. return 0;
  5071. }
  5072. tcp_mstamp_refresh(tp);
  5073. tp->rx_opt.saw_tstamp = 0;
  5074. req = tp->fastopen_rsk;
  5075. if (req) {
  5076. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5077. sk->sk_state != TCP_FIN_WAIT1);
  5078. if (!tcp_check_req(sk, skb, req, true))
  5079. goto discard;
  5080. }
  5081. if (!th->ack && !th->rst && !th->syn)
  5082. goto discard;
  5083. if (!tcp_validate_incoming(sk, skb, th, 0))
  5084. return 0;
  5085. /* step 5: check the ACK field */
  5086. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5087. FLAG_UPDATE_TS_RECENT |
  5088. FLAG_NO_CHALLENGE_ACK) > 0;
  5089. if (!acceptable) {
  5090. if (sk->sk_state == TCP_SYN_RECV)
  5091. return 1; /* send one RST */
  5092. tcp_send_challenge_ack(sk, skb);
  5093. goto discard;
  5094. }
  5095. switch (sk->sk_state) {
  5096. case TCP_SYN_RECV:
  5097. if (!tp->srtt_us)
  5098. tcp_synack_rtt_meas(sk, req);
  5099. /* Once we leave TCP_SYN_RECV, we no longer need req
  5100. * so release it.
  5101. */
  5102. if (req) {
  5103. inet_csk(sk)->icsk_retransmits = 0;
  5104. reqsk_fastopen_remove(sk, req, false);
  5105. /* Re-arm the timer because data may have been sent out.
  5106. * This is similar to the regular data transmission case
  5107. * when new data has just been ack'ed.
  5108. *
  5109. * (TFO) - we could try to be more aggressive and
  5110. * retransmitting any data sooner based on when they
  5111. * are sent out.
  5112. */
  5113. tcp_rearm_rto(sk);
  5114. } else {
  5115. tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5116. tp->copied_seq = tp->rcv_nxt;
  5117. }
  5118. smp_mb();
  5119. tcp_set_state(sk, TCP_ESTABLISHED);
  5120. sk->sk_state_change(sk);
  5121. /* Note, that this wakeup is only for marginal crossed SYN case.
  5122. * Passively open sockets are not waked up, because
  5123. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5124. */
  5125. if (sk->sk_socket)
  5126. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5127. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5128. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5129. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5130. if (tp->rx_opt.tstamp_ok)
  5131. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5132. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5133. tcp_update_pacing_rate(sk);
  5134. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5135. tp->lsndtime = tcp_jiffies32;
  5136. tcp_initialize_rcv_mss(sk);
  5137. tcp_fast_path_on(tp);
  5138. break;
  5139. case TCP_FIN_WAIT1: {
  5140. int tmo;
  5141. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5142. * Fast Open socket and this is the first acceptable
  5143. * ACK we have received, this would have acknowledged
  5144. * our SYNACK so stop the SYNACK timer.
  5145. */
  5146. if (req) {
  5147. /* We no longer need the request sock. */
  5148. reqsk_fastopen_remove(sk, req, false);
  5149. tcp_rearm_rto(sk);
  5150. }
  5151. if (tp->snd_una != tp->write_seq)
  5152. break;
  5153. tcp_set_state(sk, TCP_FIN_WAIT2);
  5154. sk->sk_shutdown |= SEND_SHUTDOWN;
  5155. sk_dst_confirm(sk);
  5156. if (!sock_flag(sk, SOCK_DEAD)) {
  5157. /* Wake up lingering close() */
  5158. sk->sk_state_change(sk);
  5159. break;
  5160. }
  5161. if (tp->linger2 < 0) {
  5162. tcp_done(sk);
  5163. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5164. return 1;
  5165. }
  5166. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5167. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5168. /* Receive out of order FIN after close() */
  5169. if (tp->syn_fastopen && th->fin)
  5170. tcp_fastopen_active_disable(sk);
  5171. tcp_done(sk);
  5172. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5173. return 1;
  5174. }
  5175. tmo = tcp_fin_time(sk);
  5176. if (tmo > TCP_TIMEWAIT_LEN) {
  5177. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5178. } else if (th->fin || sock_owned_by_user(sk)) {
  5179. /* Bad case. We could lose such FIN otherwise.
  5180. * It is not a big problem, but it looks confusing
  5181. * and not so rare event. We still can lose it now,
  5182. * if it spins in bh_lock_sock(), but it is really
  5183. * marginal case.
  5184. */
  5185. inet_csk_reset_keepalive_timer(sk, tmo);
  5186. } else {
  5187. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5188. goto discard;
  5189. }
  5190. break;
  5191. }
  5192. case TCP_CLOSING:
  5193. if (tp->snd_una == tp->write_seq) {
  5194. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5195. goto discard;
  5196. }
  5197. break;
  5198. case TCP_LAST_ACK:
  5199. if (tp->snd_una == tp->write_seq) {
  5200. tcp_update_metrics(sk);
  5201. tcp_done(sk);
  5202. goto discard;
  5203. }
  5204. break;
  5205. }
  5206. /* step 6: check the URG bit */
  5207. tcp_urg(sk, skb, th);
  5208. /* step 7: process the segment text */
  5209. switch (sk->sk_state) {
  5210. case TCP_CLOSE_WAIT:
  5211. case TCP_CLOSING:
  5212. case TCP_LAST_ACK:
  5213. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5214. break;
  5215. case TCP_FIN_WAIT1:
  5216. case TCP_FIN_WAIT2:
  5217. /* RFC 793 says to queue data in these states,
  5218. * RFC 1122 says we MUST send a reset.
  5219. * BSD 4.4 also does reset.
  5220. */
  5221. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5222. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5223. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5224. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5225. tcp_reset(sk);
  5226. return 1;
  5227. }
  5228. }
  5229. /* Fall through */
  5230. case TCP_ESTABLISHED:
  5231. tcp_data_queue(sk, skb);
  5232. queued = 1;
  5233. break;
  5234. }
  5235. /* tcp_data could move socket to TIME-WAIT */
  5236. if (sk->sk_state != TCP_CLOSE) {
  5237. tcp_data_snd_check(sk);
  5238. tcp_ack_snd_check(sk);
  5239. }
  5240. if (!queued) {
  5241. discard:
  5242. tcp_drop(sk, skb);
  5243. }
  5244. return 0;
  5245. }
  5246. EXPORT_SYMBOL(tcp_rcv_state_process);
  5247. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5248. {
  5249. struct inet_request_sock *ireq = inet_rsk(req);
  5250. if (family == AF_INET)
  5251. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5252. &ireq->ir_rmt_addr, port);
  5253. #if IS_ENABLED(CONFIG_IPV6)
  5254. else if (family == AF_INET6)
  5255. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5256. &ireq->ir_v6_rmt_addr, port);
  5257. #endif
  5258. }
  5259. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5260. *
  5261. * If we receive a SYN packet with these bits set, it means a
  5262. * network is playing bad games with TOS bits. In order to
  5263. * avoid possible false congestion notifications, we disable
  5264. * TCP ECN negotiation.
  5265. *
  5266. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5267. * congestion control: Linux DCTCP asserts ECT on all packets,
  5268. * including SYN, which is most optimal solution; however,
  5269. * others, such as FreeBSD do not.
  5270. */
  5271. static void tcp_ecn_create_request(struct request_sock *req,
  5272. const struct sk_buff *skb,
  5273. const struct sock *listen_sk,
  5274. const struct dst_entry *dst)
  5275. {
  5276. const struct tcphdr *th = tcp_hdr(skb);
  5277. const struct net *net = sock_net(listen_sk);
  5278. bool th_ecn = th->ece && th->cwr;
  5279. bool ect, ecn_ok;
  5280. u32 ecn_ok_dst;
  5281. if (!th_ecn)
  5282. return;
  5283. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5284. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5285. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5286. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5287. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5288. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5289. inet_rsk(req)->ecn_ok = 1;
  5290. }
  5291. static void tcp_openreq_init(struct request_sock *req,
  5292. const struct tcp_options_received *rx_opt,
  5293. struct sk_buff *skb, const struct sock *sk)
  5294. {
  5295. struct inet_request_sock *ireq = inet_rsk(req);
  5296. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5297. req->cookie_ts = 0;
  5298. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5299. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5300. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5301. tcp_rsk(req)->last_oow_ack_time = 0;
  5302. req->mss = rx_opt->mss_clamp;
  5303. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5304. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5305. ireq->sack_ok = rx_opt->sack_ok;
  5306. ireq->snd_wscale = rx_opt->snd_wscale;
  5307. ireq->wscale_ok = rx_opt->wscale_ok;
  5308. ireq->acked = 0;
  5309. ireq->ecn_ok = 0;
  5310. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5311. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5312. ireq->ir_mark = inet_request_mark(sk, skb);
  5313. }
  5314. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5315. struct sock *sk_listener,
  5316. bool attach_listener)
  5317. {
  5318. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5319. attach_listener);
  5320. if (req) {
  5321. struct inet_request_sock *ireq = inet_rsk(req);
  5322. kmemcheck_annotate_bitfield(ireq, flags);
  5323. ireq->opt = NULL;
  5324. #if IS_ENABLED(CONFIG_IPV6)
  5325. ireq->pktopts = NULL;
  5326. #endif
  5327. atomic64_set(&ireq->ir_cookie, 0);
  5328. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5329. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5330. ireq->ireq_family = sk_listener->sk_family;
  5331. }
  5332. return req;
  5333. }
  5334. EXPORT_SYMBOL(inet_reqsk_alloc);
  5335. /*
  5336. * Return true if a syncookie should be sent
  5337. */
  5338. static bool tcp_syn_flood_action(const struct sock *sk,
  5339. const struct sk_buff *skb,
  5340. const char *proto)
  5341. {
  5342. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5343. const char *msg = "Dropping request";
  5344. bool want_cookie = false;
  5345. struct net *net = sock_net(sk);
  5346. #ifdef CONFIG_SYN_COOKIES
  5347. if (net->ipv4.sysctl_tcp_syncookies) {
  5348. msg = "Sending cookies";
  5349. want_cookie = true;
  5350. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5351. } else
  5352. #endif
  5353. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5354. if (!queue->synflood_warned &&
  5355. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5356. xchg(&queue->synflood_warned, 1) == 0)
  5357. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5358. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5359. return want_cookie;
  5360. }
  5361. static void tcp_reqsk_record_syn(const struct sock *sk,
  5362. struct request_sock *req,
  5363. const struct sk_buff *skb)
  5364. {
  5365. if (tcp_sk(sk)->save_syn) {
  5366. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5367. u32 *copy;
  5368. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5369. if (copy) {
  5370. copy[0] = len;
  5371. memcpy(&copy[1], skb_network_header(skb), len);
  5372. req->saved_syn = copy;
  5373. }
  5374. }
  5375. }
  5376. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5377. const struct tcp_request_sock_ops *af_ops,
  5378. struct sock *sk, struct sk_buff *skb)
  5379. {
  5380. struct tcp_fastopen_cookie foc = { .len = -1 };
  5381. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5382. struct tcp_options_received tmp_opt;
  5383. struct tcp_sock *tp = tcp_sk(sk);
  5384. struct net *net = sock_net(sk);
  5385. struct sock *fastopen_sk = NULL;
  5386. struct request_sock *req;
  5387. bool want_cookie = false;
  5388. struct dst_entry *dst;
  5389. struct flowi fl;
  5390. /* TW buckets are converted to open requests without
  5391. * limitations, they conserve resources and peer is
  5392. * evidently real one.
  5393. */
  5394. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5395. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5396. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5397. if (!want_cookie)
  5398. goto drop;
  5399. }
  5400. if (sk_acceptq_is_full(sk)) {
  5401. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5402. goto drop;
  5403. }
  5404. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5405. if (!req)
  5406. goto drop;
  5407. tcp_rsk(req)->af_specific = af_ops;
  5408. tcp_rsk(req)->ts_off = 0;
  5409. tcp_clear_options(&tmp_opt);
  5410. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5411. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5412. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5413. want_cookie ? NULL : &foc);
  5414. if (want_cookie && !tmp_opt.saw_tstamp)
  5415. tcp_clear_options(&tmp_opt);
  5416. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5417. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5418. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5419. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5420. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5421. af_ops->init_req(req, sk, skb);
  5422. if (security_inet_conn_request(sk, skb, req))
  5423. goto drop_and_free;
  5424. if (tmp_opt.tstamp_ok)
  5425. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5426. dst = af_ops->route_req(sk, &fl, req);
  5427. if (!dst)
  5428. goto drop_and_free;
  5429. if (!want_cookie && !isn) {
  5430. /* Kill the following clause, if you dislike this way. */
  5431. if (!net->ipv4.sysctl_tcp_syncookies &&
  5432. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5433. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5434. !tcp_peer_is_proven(req, dst)) {
  5435. /* Without syncookies last quarter of
  5436. * backlog is filled with destinations,
  5437. * proven to be alive.
  5438. * It means that we continue to communicate
  5439. * to destinations, already remembered
  5440. * to the moment of synflood.
  5441. */
  5442. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5443. rsk_ops->family);
  5444. goto drop_and_release;
  5445. }
  5446. isn = af_ops->init_seq(skb);
  5447. }
  5448. tcp_ecn_create_request(req, skb, sk, dst);
  5449. if (want_cookie) {
  5450. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5451. req->cookie_ts = tmp_opt.tstamp_ok;
  5452. if (!tmp_opt.tstamp_ok)
  5453. inet_rsk(req)->ecn_ok = 0;
  5454. }
  5455. tcp_rsk(req)->snt_isn = isn;
  5456. tcp_rsk(req)->txhash = net_tx_rndhash();
  5457. tcp_openreq_init_rwin(req, sk, dst);
  5458. if (!want_cookie) {
  5459. tcp_reqsk_record_syn(sk, req, skb);
  5460. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
  5461. }
  5462. if (fastopen_sk) {
  5463. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5464. &foc, TCP_SYNACK_FASTOPEN);
  5465. /* Add the child socket directly into the accept queue */
  5466. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5467. sk->sk_data_ready(sk);
  5468. bh_unlock_sock(fastopen_sk);
  5469. sock_put(fastopen_sk);
  5470. } else {
  5471. tcp_rsk(req)->tfo_listener = false;
  5472. if (!want_cookie)
  5473. inet_csk_reqsk_queue_hash_add(sk, req,
  5474. tcp_timeout_init((struct sock *)req));
  5475. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5476. !want_cookie ? TCP_SYNACK_NORMAL :
  5477. TCP_SYNACK_COOKIE);
  5478. if (want_cookie) {
  5479. reqsk_free(req);
  5480. return 0;
  5481. }
  5482. }
  5483. reqsk_put(req);
  5484. return 0;
  5485. drop_and_release:
  5486. dst_release(dst);
  5487. drop_and_free:
  5488. reqsk_free(req);
  5489. drop:
  5490. tcp_listendrop(sk);
  5491. return 0;
  5492. }
  5493. EXPORT_SYMBOL(tcp_conn_request);