x86.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <linux/slab.h>
  41. #include <linux/perf_event.h>
  42. #include <trace/events/kvm.h>
  43. #define CREATE_TRACE_POINTS
  44. #include "trace.h"
  45. #include <asm/debugreg.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/msr.h>
  48. #include <asm/desc.h>
  49. #include <asm/mtrr.h>
  50. #include <asm/mce.h>
  51. #define MAX_IO_MSRS 256
  52. #define CR0_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  54. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  55. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  56. #define CR4_RESERVED_BITS \
  57. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  58. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  59. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  60. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  61. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  62. #define KVM_MAX_MCE_BANKS 32
  63. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  64. /* EFER defaults:
  65. * - enable syscall per default because its emulated by KVM
  66. * - enable LME and LMA per default on 64 bit KVM
  67. */
  68. #ifdef CONFIG_X86_64
  69. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  70. #else
  71. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  72. #endif
  73. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  74. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  75. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  76. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  77. struct kvm_cpuid_entry2 __user *entries);
  78. struct kvm_x86_ops *kvm_x86_ops;
  79. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  80. int ignore_msrs = 0;
  81. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  82. #define KVM_NR_SHARED_MSRS 16
  83. struct kvm_shared_msrs_global {
  84. int nr;
  85. u32 msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. struct kvm_shared_msr_values {
  91. u64 host;
  92. u64 curr;
  93. } values[KVM_NR_SHARED_MSRS];
  94. };
  95. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  96. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  97. struct kvm_stats_debugfs_item debugfs_entries[] = {
  98. { "pf_fixed", VCPU_STAT(pf_fixed) },
  99. { "pf_guest", VCPU_STAT(pf_guest) },
  100. { "tlb_flush", VCPU_STAT(tlb_flush) },
  101. { "invlpg", VCPU_STAT(invlpg) },
  102. { "exits", VCPU_STAT(exits) },
  103. { "io_exits", VCPU_STAT(io_exits) },
  104. { "mmio_exits", VCPU_STAT(mmio_exits) },
  105. { "signal_exits", VCPU_STAT(signal_exits) },
  106. { "irq_window", VCPU_STAT(irq_window_exits) },
  107. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  108. { "halt_exits", VCPU_STAT(halt_exits) },
  109. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  110. { "hypercalls", VCPU_STAT(hypercalls) },
  111. { "request_irq", VCPU_STAT(request_irq_exits) },
  112. { "irq_exits", VCPU_STAT(irq_exits) },
  113. { "host_state_reload", VCPU_STAT(host_state_reload) },
  114. { "efer_reload", VCPU_STAT(efer_reload) },
  115. { "fpu_reload", VCPU_STAT(fpu_reload) },
  116. { "insn_emulation", VCPU_STAT(insn_emulation) },
  117. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  118. { "irq_injections", VCPU_STAT(irq_injections) },
  119. { "nmi_injections", VCPU_STAT(nmi_injections) },
  120. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  121. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  122. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  123. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  124. { "mmu_flooded", VM_STAT(mmu_flooded) },
  125. { "mmu_recycled", VM_STAT(mmu_recycled) },
  126. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  127. { "mmu_unsync", VM_STAT(mmu_unsync) },
  128. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  129. { "largepages", VM_STAT(lpages) },
  130. { NULL }
  131. };
  132. static void kvm_on_user_return(struct user_return_notifier *urn)
  133. {
  134. unsigned slot;
  135. struct kvm_shared_msrs *locals
  136. = container_of(urn, struct kvm_shared_msrs, urn);
  137. struct kvm_shared_msr_values *values;
  138. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  139. values = &locals->values[slot];
  140. if (values->host != values->curr) {
  141. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  142. values->curr = values->host;
  143. }
  144. }
  145. locals->registered = false;
  146. user_return_notifier_unregister(urn);
  147. }
  148. static void shared_msr_update(unsigned slot, u32 msr)
  149. {
  150. struct kvm_shared_msrs *smsr;
  151. u64 value;
  152. smsr = &__get_cpu_var(shared_msrs);
  153. /* only read, and nobody should modify it at this time,
  154. * so don't need lock */
  155. if (slot >= shared_msrs_global.nr) {
  156. printk(KERN_ERR "kvm: invalid MSR slot!");
  157. return;
  158. }
  159. rdmsrl_safe(msr, &value);
  160. smsr->values[slot].host = value;
  161. smsr->values[slot].curr = value;
  162. }
  163. void kvm_define_shared_msr(unsigned slot, u32 msr)
  164. {
  165. if (slot >= shared_msrs_global.nr)
  166. shared_msrs_global.nr = slot + 1;
  167. shared_msrs_global.msrs[slot] = msr;
  168. /* we need ensured the shared_msr_global have been updated */
  169. smp_wmb();
  170. }
  171. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  172. static void kvm_shared_msr_cpu_online(void)
  173. {
  174. unsigned i;
  175. for (i = 0; i < shared_msrs_global.nr; ++i)
  176. shared_msr_update(i, shared_msrs_global.msrs[i]);
  177. }
  178. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  179. {
  180. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  181. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  182. return;
  183. smsr->values[slot].curr = value;
  184. wrmsrl(shared_msrs_global.msrs[slot], value);
  185. if (!smsr->registered) {
  186. smsr->urn.on_user_return = kvm_on_user_return;
  187. user_return_notifier_register(&smsr->urn);
  188. smsr->registered = true;
  189. }
  190. }
  191. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  192. static void drop_user_return_notifiers(void *ignore)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (smsr->registered)
  196. kvm_on_user_return(&smsr->urn);
  197. }
  198. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  199. {
  200. if (irqchip_in_kernel(vcpu->kvm))
  201. return vcpu->arch.apic_base;
  202. else
  203. return vcpu->arch.apic_base;
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  206. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  207. {
  208. /* TODO: reserve bits check */
  209. if (irqchip_in_kernel(vcpu->kvm))
  210. kvm_lapic_set_base(vcpu, data);
  211. else
  212. vcpu->arch.apic_base = data;
  213. }
  214. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  215. #define EXCPT_BENIGN 0
  216. #define EXCPT_CONTRIBUTORY 1
  217. #define EXCPT_PF 2
  218. static int exception_class(int vector)
  219. {
  220. switch (vector) {
  221. case PF_VECTOR:
  222. return EXCPT_PF;
  223. case DE_VECTOR:
  224. case TS_VECTOR:
  225. case NP_VECTOR:
  226. case SS_VECTOR:
  227. case GP_VECTOR:
  228. return EXCPT_CONTRIBUTORY;
  229. default:
  230. break;
  231. }
  232. return EXCPT_BENIGN;
  233. }
  234. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  235. unsigned nr, bool has_error, u32 error_code,
  236. bool reinject)
  237. {
  238. u32 prev_nr;
  239. int class1, class2;
  240. if (!vcpu->arch.exception.pending) {
  241. queue:
  242. vcpu->arch.exception.pending = true;
  243. vcpu->arch.exception.has_error_code = has_error;
  244. vcpu->arch.exception.nr = nr;
  245. vcpu->arch.exception.error_code = error_code;
  246. vcpu->arch.exception.reinject = true;
  247. return;
  248. }
  249. /* to check exception */
  250. prev_nr = vcpu->arch.exception.nr;
  251. if (prev_nr == DF_VECTOR) {
  252. /* triple fault -> shutdown */
  253. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  254. return;
  255. }
  256. class1 = exception_class(prev_nr);
  257. class2 = exception_class(nr);
  258. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  259. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  260. /* generate double fault per SDM Table 5-5 */
  261. vcpu->arch.exception.pending = true;
  262. vcpu->arch.exception.has_error_code = true;
  263. vcpu->arch.exception.nr = DF_VECTOR;
  264. vcpu->arch.exception.error_code = 0;
  265. } else
  266. /* replace previous exception with a new one in a hope
  267. that instruction re-execution will regenerate lost
  268. exception */
  269. goto queue;
  270. }
  271. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  272. {
  273. kvm_multiple_exception(vcpu, nr, false, 0, false);
  274. }
  275. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  276. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  277. {
  278. kvm_multiple_exception(vcpu, nr, false, 0, true);
  279. }
  280. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  281. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  282. u32 error_code)
  283. {
  284. ++vcpu->stat.pf_guest;
  285. vcpu->arch.cr2 = addr;
  286. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  287. }
  288. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  289. {
  290. vcpu->arch.nmi_pending = 1;
  291. }
  292. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  293. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  294. {
  295. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  296. }
  297. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  298. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  299. {
  300. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  301. }
  302. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  303. /*
  304. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  305. * a #GP and return false.
  306. */
  307. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  308. {
  309. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  310. return true;
  311. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  312. return false;
  313. }
  314. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  315. /*
  316. * Load the pae pdptrs. Return true is they are all valid.
  317. */
  318. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  319. {
  320. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  321. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  322. int i;
  323. int ret;
  324. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  325. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  326. offset * sizeof(u64), sizeof(pdpte));
  327. if (ret < 0) {
  328. ret = 0;
  329. goto out;
  330. }
  331. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  332. if (is_present_gpte(pdpte[i]) &&
  333. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  334. ret = 0;
  335. goto out;
  336. }
  337. }
  338. ret = 1;
  339. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  340. __set_bit(VCPU_EXREG_PDPTR,
  341. (unsigned long *)&vcpu->arch.regs_avail);
  342. __set_bit(VCPU_EXREG_PDPTR,
  343. (unsigned long *)&vcpu->arch.regs_dirty);
  344. out:
  345. return ret;
  346. }
  347. EXPORT_SYMBOL_GPL(load_pdptrs);
  348. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  349. {
  350. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  351. bool changed = true;
  352. int r;
  353. if (is_long_mode(vcpu) || !is_pae(vcpu))
  354. return false;
  355. if (!test_bit(VCPU_EXREG_PDPTR,
  356. (unsigned long *)&vcpu->arch.regs_avail))
  357. return true;
  358. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  359. if (r < 0)
  360. goto out;
  361. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  362. out:
  363. return changed;
  364. }
  365. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  366. {
  367. cr0 |= X86_CR0_ET;
  368. #ifdef CONFIG_X86_64
  369. if (cr0 & 0xffffffff00000000UL) {
  370. kvm_inject_gp(vcpu, 0);
  371. return;
  372. }
  373. #endif
  374. cr0 &= ~CR0_RESERVED_BITS;
  375. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  380. kvm_inject_gp(vcpu, 0);
  381. return;
  382. }
  383. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  384. #ifdef CONFIG_X86_64
  385. if ((vcpu->arch.efer & EFER_LME)) {
  386. int cs_db, cs_l;
  387. if (!is_pae(vcpu)) {
  388. kvm_inject_gp(vcpu, 0);
  389. return;
  390. }
  391. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  392. if (cs_l) {
  393. kvm_inject_gp(vcpu, 0);
  394. return;
  395. }
  396. } else
  397. #endif
  398. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  399. kvm_inject_gp(vcpu, 0);
  400. return;
  401. }
  402. }
  403. kvm_x86_ops->set_cr0(vcpu, cr0);
  404. kvm_mmu_reset_context(vcpu);
  405. return;
  406. }
  407. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  408. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  409. {
  410. kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0ful) | (msw & 0x0f));
  411. }
  412. EXPORT_SYMBOL_GPL(kvm_lmsw);
  413. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  414. {
  415. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  416. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  417. if (cr4 & CR4_RESERVED_BITS) {
  418. kvm_inject_gp(vcpu, 0);
  419. return;
  420. }
  421. if (is_long_mode(vcpu)) {
  422. if (!(cr4 & X86_CR4_PAE)) {
  423. kvm_inject_gp(vcpu, 0);
  424. return;
  425. }
  426. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  427. && ((cr4 ^ old_cr4) & pdptr_bits)
  428. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  429. kvm_inject_gp(vcpu, 0);
  430. return;
  431. }
  432. if (cr4 & X86_CR4_VMXE) {
  433. kvm_inject_gp(vcpu, 0);
  434. return;
  435. }
  436. kvm_x86_ops->set_cr4(vcpu, cr4);
  437. vcpu->arch.cr4 = cr4;
  438. kvm_mmu_reset_context(vcpu);
  439. }
  440. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  441. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  442. {
  443. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  444. kvm_mmu_sync_roots(vcpu);
  445. kvm_mmu_flush_tlb(vcpu);
  446. return;
  447. }
  448. if (is_long_mode(vcpu)) {
  449. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  450. kvm_inject_gp(vcpu, 0);
  451. return;
  452. }
  453. } else {
  454. if (is_pae(vcpu)) {
  455. if (cr3 & CR3_PAE_RESERVED_BITS) {
  456. kvm_inject_gp(vcpu, 0);
  457. return;
  458. }
  459. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  460. kvm_inject_gp(vcpu, 0);
  461. return;
  462. }
  463. }
  464. /*
  465. * We don't check reserved bits in nonpae mode, because
  466. * this isn't enforced, and VMware depends on this.
  467. */
  468. }
  469. /*
  470. * Does the new cr3 value map to physical memory? (Note, we
  471. * catch an invalid cr3 even in real-mode, because it would
  472. * cause trouble later on when we turn on paging anyway.)
  473. *
  474. * A real CPU would silently accept an invalid cr3 and would
  475. * attempt to use it - with largely undefined (and often hard
  476. * to debug) behavior on the guest side.
  477. */
  478. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  479. kvm_inject_gp(vcpu, 0);
  480. else {
  481. vcpu->arch.cr3 = cr3;
  482. vcpu->arch.mmu.new_cr3(vcpu);
  483. }
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  486. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  487. {
  488. if (cr8 & CR8_RESERVED_BITS) {
  489. kvm_inject_gp(vcpu, 0);
  490. return;
  491. }
  492. if (irqchip_in_kernel(vcpu->kvm))
  493. kvm_lapic_set_tpr(vcpu, cr8);
  494. else
  495. vcpu->arch.cr8 = cr8;
  496. }
  497. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  498. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  499. {
  500. if (irqchip_in_kernel(vcpu->kvm))
  501. return kvm_lapic_get_cr8(vcpu);
  502. else
  503. return vcpu->arch.cr8;
  504. }
  505. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  506. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  507. {
  508. switch (dr) {
  509. case 0 ... 3:
  510. vcpu->arch.db[dr] = val;
  511. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  512. vcpu->arch.eff_db[dr] = val;
  513. break;
  514. case 4:
  515. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  516. kvm_queue_exception(vcpu, UD_VECTOR);
  517. return 1;
  518. }
  519. /* fall through */
  520. case 6:
  521. if (val & 0xffffffff00000000ULL) {
  522. kvm_inject_gp(vcpu, 0);
  523. return 1;
  524. }
  525. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  526. break;
  527. case 5:
  528. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  529. kvm_queue_exception(vcpu, UD_VECTOR);
  530. return 1;
  531. }
  532. /* fall through */
  533. default: /* 7 */
  534. if (val & 0xffffffff00000000ULL) {
  535. kvm_inject_gp(vcpu, 0);
  536. return 1;
  537. }
  538. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  539. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  540. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  541. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  542. }
  543. break;
  544. }
  545. return 0;
  546. }
  547. EXPORT_SYMBOL_GPL(kvm_set_dr);
  548. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  549. {
  550. switch (dr) {
  551. case 0 ... 3:
  552. *val = vcpu->arch.db[dr];
  553. break;
  554. case 4:
  555. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  556. kvm_queue_exception(vcpu, UD_VECTOR);
  557. return 1;
  558. }
  559. /* fall through */
  560. case 6:
  561. *val = vcpu->arch.dr6;
  562. break;
  563. case 5:
  564. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  565. kvm_queue_exception(vcpu, UD_VECTOR);
  566. return 1;
  567. }
  568. /* fall through */
  569. default: /* 7 */
  570. *val = vcpu->arch.dr7;
  571. break;
  572. }
  573. return 0;
  574. }
  575. EXPORT_SYMBOL_GPL(kvm_get_dr);
  576. static inline u32 bit(int bitno)
  577. {
  578. return 1 << (bitno & 31);
  579. }
  580. /*
  581. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  582. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  583. *
  584. * This list is modified at module load time to reflect the
  585. * capabilities of the host cpu. This capabilities test skips MSRs that are
  586. * kvm-specific. Those are put in the beginning of the list.
  587. */
  588. #define KVM_SAVE_MSRS_BEGIN 5
  589. static u32 msrs_to_save[] = {
  590. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  591. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  592. HV_X64_MSR_APIC_ASSIST_PAGE,
  593. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  594. MSR_K6_STAR,
  595. #ifdef CONFIG_X86_64
  596. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  597. #endif
  598. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  599. };
  600. static unsigned num_msrs_to_save;
  601. static u32 emulated_msrs[] = {
  602. MSR_IA32_MISC_ENABLE,
  603. };
  604. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  605. {
  606. if (efer & efer_reserved_bits) {
  607. kvm_inject_gp(vcpu, 0);
  608. return;
  609. }
  610. if (is_paging(vcpu)
  611. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) {
  612. kvm_inject_gp(vcpu, 0);
  613. return;
  614. }
  615. if (efer & EFER_FFXSR) {
  616. struct kvm_cpuid_entry2 *feat;
  617. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  618. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  619. kvm_inject_gp(vcpu, 0);
  620. return;
  621. }
  622. }
  623. if (efer & EFER_SVME) {
  624. struct kvm_cpuid_entry2 *feat;
  625. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  626. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  627. kvm_inject_gp(vcpu, 0);
  628. return;
  629. }
  630. }
  631. kvm_x86_ops->set_efer(vcpu, efer);
  632. efer &= ~EFER_LMA;
  633. efer |= vcpu->arch.efer & EFER_LMA;
  634. vcpu->arch.efer = efer;
  635. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  636. kvm_mmu_reset_context(vcpu);
  637. }
  638. void kvm_enable_efer_bits(u64 mask)
  639. {
  640. efer_reserved_bits &= ~mask;
  641. }
  642. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  643. /*
  644. * Writes msr value into into the appropriate "register".
  645. * Returns 0 on success, non-0 otherwise.
  646. * Assumes vcpu_load() was already called.
  647. */
  648. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  649. {
  650. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  651. }
  652. /*
  653. * Adapt set_msr() to msr_io()'s calling convention
  654. */
  655. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  656. {
  657. return kvm_set_msr(vcpu, index, *data);
  658. }
  659. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  660. {
  661. static int version;
  662. struct pvclock_wall_clock wc;
  663. struct timespec boot;
  664. if (!wall_clock)
  665. return;
  666. version++;
  667. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  668. /*
  669. * The guest calculates current wall clock time by adding
  670. * system time (updated by kvm_write_guest_time below) to the
  671. * wall clock specified here. guest system time equals host
  672. * system time for us, thus we must fill in host boot time here.
  673. */
  674. getboottime(&boot);
  675. wc.sec = boot.tv_sec;
  676. wc.nsec = boot.tv_nsec;
  677. wc.version = version;
  678. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  679. version++;
  680. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  681. }
  682. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  683. {
  684. uint32_t quotient, remainder;
  685. /* Don't try to replace with do_div(), this one calculates
  686. * "(dividend << 32) / divisor" */
  687. __asm__ ( "divl %4"
  688. : "=a" (quotient), "=d" (remainder)
  689. : "0" (0), "1" (dividend), "r" (divisor) );
  690. return quotient;
  691. }
  692. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  693. {
  694. uint64_t nsecs = 1000000000LL;
  695. int32_t shift = 0;
  696. uint64_t tps64;
  697. uint32_t tps32;
  698. tps64 = tsc_khz * 1000LL;
  699. while (tps64 > nsecs*2) {
  700. tps64 >>= 1;
  701. shift--;
  702. }
  703. tps32 = (uint32_t)tps64;
  704. while (tps32 <= (uint32_t)nsecs) {
  705. tps32 <<= 1;
  706. shift++;
  707. }
  708. hv_clock->tsc_shift = shift;
  709. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  710. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  711. __func__, tsc_khz, hv_clock->tsc_shift,
  712. hv_clock->tsc_to_system_mul);
  713. }
  714. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  715. static void kvm_write_guest_time(struct kvm_vcpu *v)
  716. {
  717. struct timespec ts;
  718. unsigned long flags;
  719. struct kvm_vcpu_arch *vcpu = &v->arch;
  720. void *shared_kaddr;
  721. unsigned long this_tsc_khz;
  722. if ((!vcpu->time_page))
  723. return;
  724. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  725. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  726. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  727. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  728. }
  729. put_cpu_var(cpu_tsc_khz);
  730. /* Keep irq disabled to prevent changes to the clock */
  731. local_irq_save(flags);
  732. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  733. ktime_get_ts(&ts);
  734. monotonic_to_bootbased(&ts);
  735. local_irq_restore(flags);
  736. /* With all the info we got, fill in the values */
  737. vcpu->hv_clock.system_time = ts.tv_nsec +
  738. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  739. /*
  740. * The interface expects us to write an even number signaling that the
  741. * update is finished. Since the guest won't see the intermediate
  742. * state, we just increase by 2 at the end.
  743. */
  744. vcpu->hv_clock.version += 2;
  745. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  746. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  747. sizeof(vcpu->hv_clock));
  748. kunmap_atomic(shared_kaddr, KM_USER0);
  749. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  750. }
  751. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  752. {
  753. struct kvm_vcpu_arch *vcpu = &v->arch;
  754. if (!vcpu->time_page)
  755. return 0;
  756. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  757. return 1;
  758. }
  759. static bool msr_mtrr_valid(unsigned msr)
  760. {
  761. switch (msr) {
  762. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  763. case MSR_MTRRfix64K_00000:
  764. case MSR_MTRRfix16K_80000:
  765. case MSR_MTRRfix16K_A0000:
  766. case MSR_MTRRfix4K_C0000:
  767. case MSR_MTRRfix4K_C8000:
  768. case MSR_MTRRfix4K_D0000:
  769. case MSR_MTRRfix4K_D8000:
  770. case MSR_MTRRfix4K_E0000:
  771. case MSR_MTRRfix4K_E8000:
  772. case MSR_MTRRfix4K_F0000:
  773. case MSR_MTRRfix4K_F8000:
  774. case MSR_MTRRdefType:
  775. case MSR_IA32_CR_PAT:
  776. return true;
  777. case 0x2f8:
  778. return true;
  779. }
  780. return false;
  781. }
  782. static bool valid_pat_type(unsigned t)
  783. {
  784. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  785. }
  786. static bool valid_mtrr_type(unsigned t)
  787. {
  788. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  789. }
  790. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  791. {
  792. int i;
  793. if (!msr_mtrr_valid(msr))
  794. return false;
  795. if (msr == MSR_IA32_CR_PAT) {
  796. for (i = 0; i < 8; i++)
  797. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  798. return false;
  799. return true;
  800. } else if (msr == MSR_MTRRdefType) {
  801. if (data & ~0xcff)
  802. return false;
  803. return valid_mtrr_type(data & 0xff);
  804. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  805. for (i = 0; i < 8 ; i++)
  806. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  807. return false;
  808. return true;
  809. }
  810. /* variable MTRRs */
  811. return valid_mtrr_type(data & 0xff);
  812. }
  813. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  814. {
  815. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  816. if (!mtrr_valid(vcpu, msr, data))
  817. return 1;
  818. if (msr == MSR_MTRRdefType) {
  819. vcpu->arch.mtrr_state.def_type = data;
  820. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  821. } else if (msr == MSR_MTRRfix64K_00000)
  822. p[0] = data;
  823. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  824. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  825. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  826. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  827. else if (msr == MSR_IA32_CR_PAT)
  828. vcpu->arch.pat = data;
  829. else { /* Variable MTRRs */
  830. int idx, is_mtrr_mask;
  831. u64 *pt;
  832. idx = (msr - 0x200) / 2;
  833. is_mtrr_mask = msr - 0x200 - 2 * idx;
  834. if (!is_mtrr_mask)
  835. pt =
  836. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  837. else
  838. pt =
  839. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  840. *pt = data;
  841. }
  842. kvm_mmu_reset_context(vcpu);
  843. return 0;
  844. }
  845. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  846. {
  847. u64 mcg_cap = vcpu->arch.mcg_cap;
  848. unsigned bank_num = mcg_cap & 0xff;
  849. switch (msr) {
  850. case MSR_IA32_MCG_STATUS:
  851. vcpu->arch.mcg_status = data;
  852. break;
  853. case MSR_IA32_MCG_CTL:
  854. if (!(mcg_cap & MCG_CTL_P))
  855. return 1;
  856. if (data != 0 && data != ~(u64)0)
  857. return -1;
  858. vcpu->arch.mcg_ctl = data;
  859. break;
  860. default:
  861. if (msr >= MSR_IA32_MC0_CTL &&
  862. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  863. u32 offset = msr - MSR_IA32_MC0_CTL;
  864. /* only 0 or all 1s can be written to IA32_MCi_CTL
  865. * some Linux kernels though clear bit 10 in bank 4 to
  866. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  867. * this to avoid an uncatched #GP in the guest
  868. */
  869. if ((offset & 0x3) == 0 &&
  870. data != 0 && (data | (1 << 10)) != ~(u64)0)
  871. return -1;
  872. vcpu->arch.mce_banks[offset] = data;
  873. break;
  874. }
  875. return 1;
  876. }
  877. return 0;
  878. }
  879. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  880. {
  881. struct kvm *kvm = vcpu->kvm;
  882. int lm = is_long_mode(vcpu);
  883. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  884. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  885. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  886. : kvm->arch.xen_hvm_config.blob_size_32;
  887. u32 page_num = data & ~PAGE_MASK;
  888. u64 page_addr = data & PAGE_MASK;
  889. u8 *page;
  890. int r;
  891. r = -E2BIG;
  892. if (page_num >= blob_size)
  893. goto out;
  894. r = -ENOMEM;
  895. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  896. if (!page)
  897. goto out;
  898. r = -EFAULT;
  899. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  900. goto out_free;
  901. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  902. goto out_free;
  903. r = 0;
  904. out_free:
  905. kfree(page);
  906. out:
  907. return r;
  908. }
  909. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  910. {
  911. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  912. }
  913. static bool kvm_hv_msr_partition_wide(u32 msr)
  914. {
  915. bool r = false;
  916. switch (msr) {
  917. case HV_X64_MSR_GUEST_OS_ID:
  918. case HV_X64_MSR_HYPERCALL:
  919. r = true;
  920. break;
  921. }
  922. return r;
  923. }
  924. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  925. {
  926. struct kvm *kvm = vcpu->kvm;
  927. switch (msr) {
  928. case HV_X64_MSR_GUEST_OS_ID:
  929. kvm->arch.hv_guest_os_id = data;
  930. /* setting guest os id to zero disables hypercall page */
  931. if (!kvm->arch.hv_guest_os_id)
  932. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  933. break;
  934. case HV_X64_MSR_HYPERCALL: {
  935. u64 gfn;
  936. unsigned long addr;
  937. u8 instructions[4];
  938. /* if guest os id is not set hypercall should remain disabled */
  939. if (!kvm->arch.hv_guest_os_id)
  940. break;
  941. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  942. kvm->arch.hv_hypercall = data;
  943. break;
  944. }
  945. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  946. addr = gfn_to_hva(kvm, gfn);
  947. if (kvm_is_error_hva(addr))
  948. return 1;
  949. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  950. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  951. if (copy_to_user((void __user *)addr, instructions, 4))
  952. return 1;
  953. kvm->arch.hv_hypercall = data;
  954. break;
  955. }
  956. default:
  957. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  958. "data 0x%llx\n", msr, data);
  959. return 1;
  960. }
  961. return 0;
  962. }
  963. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  964. {
  965. switch (msr) {
  966. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  967. unsigned long addr;
  968. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  969. vcpu->arch.hv_vapic = data;
  970. break;
  971. }
  972. addr = gfn_to_hva(vcpu->kvm, data >>
  973. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  974. if (kvm_is_error_hva(addr))
  975. return 1;
  976. if (clear_user((void __user *)addr, PAGE_SIZE))
  977. return 1;
  978. vcpu->arch.hv_vapic = data;
  979. break;
  980. }
  981. case HV_X64_MSR_EOI:
  982. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  983. case HV_X64_MSR_ICR:
  984. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  985. case HV_X64_MSR_TPR:
  986. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  987. default:
  988. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  989. "data 0x%llx\n", msr, data);
  990. return 1;
  991. }
  992. return 0;
  993. }
  994. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  995. {
  996. switch (msr) {
  997. case MSR_EFER:
  998. set_efer(vcpu, data);
  999. break;
  1000. case MSR_K7_HWCR:
  1001. data &= ~(u64)0x40; /* ignore flush filter disable */
  1002. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1003. if (data != 0) {
  1004. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1005. data);
  1006. return 1;
  1007. }
  1008. break;
  1009. case MSR_FAM10H_MMIO_CONF_BASE:
  1010. if (data != 0) {
  1011. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1012. "0x%llx\n", data);
  1013. return 1;
  1014. }
  1015. break;
  1016. case MSR_AMD64_NB_CFG:
  1017. break;
  1018. case MSR_IA32_DEBUGCTLMSR:
  1019. if (!data) {
  1020. /* We support the non-activated case already */
  1021. break;
  1022. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1023. /* Values other than LBR and BTF are vendor-specific,
  1024. thus reserved and should throw a #GP */
  1025. return 1;
  1026. }
  1027. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1028. __func__, data);
  1029. break;
  1030. case MSR_IA32_UCODE_REV:
  1031. case MSR_IA32_UCODE_WRITE:
  1032. case MSR_VM_HSAVE_PA:
  1033. case MSR_AMD64_PATCH_LOADER:
  1034. break;
  1035. case 0x200 ... 0x2ff:
  1036. return set_msr_mtrr(vcpu, msr, data);
  1037. case MSR_IA32_APICBASE:
  1038. kvm_set_apic_base(vcpu, data);
  1039. break;
  1040. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1041. return kvm_x2apic_msr_write(vcpu, msr, data);
  1042. case MSR_IA32_MISC_ENABLE:
  1043. vcpu->arch.ia32_misc_enable_msr = data;
  1044. break;
  1045. case MSR_KVM_WALL_CLOCK:
  1046. vcpu->kvm->arch.wall_clock = data;
  1047. kvm_write_wall_clock(vcpu->kvm, data);
  1048. break;
  1049. case MSR_KVM_SYSTEM_TIME: {
  1050. if (vcpu->arch.time_page) {
  1051. kvm_release_page_dirty(vcpu->arch.time_page);
  1052. vcpu->arch.time_page = NULL;
  1053. }
  1054. vcpu->arch.time = data;
  1055. /* we verify if the enable bit is set... */
  1056. if (!(data & 1))
  1057. break;
  1058. /* ...but clean it before doing the actual write */
  1059. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1060. vcpu->arch.time_page =
  1061. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1062. if (is_error_page(vcpu->arch.time_page)) {
  1063. kvm_release_page_clean(vcpu->arch.time_page);
  1064. vcpu->arch.time_page = NULL;
  1065. }
  1066. kvm_request_guest_time_update(vcpu);
  1067. break;
  1068. }
  1069. case MSR_IA32_MCG_CTL:
  1070. case MSR_IA32_MCG_STATUS:
  1071. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1072. return set_msr_mce(vcpu, msr, data);
  1073. /* Performance counters are not protected by a CPUID bit,
  1074. * so we should check all of them in the generic path for the sake of
  1075. * cross vendor migration.
  1076. * Writing a zero into the event select MSRs disables them,
  1077. * which we perfectly emulate ;-). Any other value should be at least
  1078. * reported, some guests depend on them.
  1079. */
  1080. case MSR_P6_EVNTSEL0:
  1081. case MSR_P6_EVNTSEL1:
  1082. case MSR_K7_EVNTSEL0:
  1083. case MSR_K7_EVNTSEL1:
  1084. case MSR_K7_EVNTSEL2:
  1085. case MSR_K7_EVNTSEL3:
  1086. if (data != 0)
  1087. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1088. "0x%x data 0x%llx\n", msr, data);
  1089. break;
  1090. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1091. * so we ignore writes to make it happy.
  1092. */
  1093. case MSR_P6_PERFCTR0:
  1094. case MSR_P6_PERFCTR1:
  1095. case MSR_K7_PERFCTR0:
  1096. case MSR_K7_PERFCTR1:
  1097. case MSR_K7_PERFCTR2:
  1098. case MSR_K7_PERFCTR3:
  1099. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1100. "0x%x data 0x%llx\n", msr, data);
  1101. break;
  1102. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1103. if (kvm_hv_msr_partition_wide(msr)) {
  1104. int r;
  1105. mutex_lock(&vcpu->kvm->lock);
  1106. r = set_msr_hyperv_pw(vcpu, msr, data);
  1107. mutex_unlock(&vcpu->kvm->lock);
  1108. return r;
  1109. } else
  1110. return set_msr_hyperv(vcpu, msr, data);
  1111. break;
  1112. default:
  1113. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1114. return xen_hvm_config(vcpu, data);
  1115. if (!ignore_msrs) {
  1116. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1117. msr, data);
  1118. return 1;
  1119. } else {
  1120. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1121. msr, data);
  1122. break;
  1123. }
  1124. }
  1125. return 0;
  1126. }
  1127. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1128. /*
  1129. * Reads an msr value (of 'msr_index') into 'pdata'.
  1130. * Returns 0 on success, non-0 otherwise.
  1131. * Assumes vcpu_load() was already called.
  1132. */
  1133. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1134. {
  1135. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1136. }
  1137. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1138. {
  1139. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1140. if (!msr_mtrr_valid(msr))
  1141. return 1;
  1142. if (msr == MSR_MTRRdefType)
  1143. *pdata = vcpu->arch.mtrr_state.def_type +
  1144. (vcpu->arch.mtrr_state.enabled << 10);
  1145. else if (msr == MSR_MTRRfix64K_00000)
  1146. *pdata = p[0];
  1147. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1148. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1149. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1150. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1151. else if (msr == MSR_IA32_CR_PAT)
  1152. *pdata = vcpu->arch.pat;
  1153. else { /* Variable MTRRs */
  1154. int idx, is_mtrr_mask;
  1155. u64 *pt;
  1156. idx = (msr - 0x200) / 2;
  1157. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1158. if (!is_mtrr_mask)
  1159. pt =
  1160. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1161. else
  1162. pt =
  1163. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1164. *pdata = *pt;
  1165. }
  1166. return 0;
  1167. }
  1168. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1169. {
  1170. u64 data;
  1171. u64 mcg_cap = vcpu->arch.mcg_cap;
  1172. unsigned bank_num = mcg_cap & 0xff;
  1173. switch (msr) {
  1174. case MSR_IA32_P5_MC_ADDR:
  1175. case MSR_IA32_P5_MC_TYPE:
  1176. data = 0;
  1177. break;
  1178. case MSR_IA32_MCG_CAP:
  1179. data = vcpu->arch.mcg_cap;
  1180. break;
  1181. case MSR_IA32_MCG_CTL:
  1182. if (!(mcg_cap & MCG_CTL_P))
  1183. return 1;
  1184. data = vcpu->arch.mcg_ctl;
  1185. break;
  1186. case MSR_IA32_MCG_STATUS:
  1187. data = vcpu->arch.mcg_status;
  1188. break;
  1189. default:
  1190. if (msr >= MSR_IA32_MC0_CTL &&
  1191. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1192. u32 offset = msr - MSR_IA32_MC0_CTL;
  1193. data = vcpu->arch.mce_banks[offset];
  1194. break;
  1195. }
  1196. return 1;
  1197. }
  1198. *pdata = data;
  1199. return 0;
  1200. }
  1201. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1202. {
  1203. u64 data = 0;
  1204. struct kvm *kvm = vcpu->kvm;
  1205. switch (msr) {
  1206. case HV_X64_MSR_GUEST_OS_ID:
  1207. data = kvm->arch.hv_guest_os_id;
  1208. break;
  1209. case HV_X64_MSR_HYPERCALL:
  1210. data = kvm->arch.hv_hypercall;
  1211. break;
  1212. default:
  1213. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1214. return 1;
  1215. }
  1216. *pdata = data;
  1217. return 0;
  1218. }
  1219. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1220. {
  1221. u64 data = 0;
  1222. switch (msr) {
  1223. case HV_X64_MSR_VP_INDEX: {
  1224. int r;
  1225. struct kvm_vcpu *v;
  1226. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1227. if (v == vcpu)
  1228. data = r;
  1229. break;
  1230. }
  1231. case HV_X64_MSR_EOI:
  1232. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1233. case HV_X64_MSR_ICR:
  1234. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1235. case HV_X64_MSR_TPR:
  1236. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1237. default:
  1238. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1239. return 1;
  1240. }
  1241. *pdata = data;
  1242. return 0;
  1243. }
  1244. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1245. {
  1246. u64 data;
  1247. switch (msr) {
  1248. case MSR_IA32_PLATFORM_ID:
  1249. case MSR_IA32_UCODE_REV:
  1250. case MSR_IA32_EBL_CR_POWERON:
  1251. case MSR_IA32_DEBUGCTLMSR:
  1252. case MSR_IA32_LASTBRANCHFROMIP:
  1253. case MSR_IA32_LASTBRANCHTOIP:
  1254. case MSR_IA32_LASTINTFROMIP:
  1255. case MSR_IA32_LASTINTTOIP:
  1256. case MSR_K8_SYSCFG:
  1257. case MSR_K7_HWCR:
  1258. case MSR_VM_HSAVE_PA:
  1259. case MSR_P6_PERFCTR0:
  1260. case MSR_P6_PERFCTR1:
  1261. case MSR_P6_EVNTSEL0:
  1262. case MSR_P6_EVNTSEL1:
  1263. case MSR_K7_EVNTSEL0:
  1264. case MSR_K7_PERFCTR0:
  1265. case MSR_K8_INT_PENDING_MSG:
  1266. case MSR_AMD64_NB_CFG:
  1267. case MSR_FAM10H_MMIO_CONF_BASE:
  1268. data = 0;
  1269. break;
  1270. case MSR_MTRRcap:
  1271. data = 0x500 | KVM_NR_VAR_MTRR;
  1272. break;
  1273. case 0x200 ... 0x2ff:
  1274. return get_msr_mtrr(vcpu, msr, pdata);
  1275. case 0xcd: /* fsb frequency */
  1276. data = 3;
  1277. break;
  1278. case MSR_IA32_APICBASE:
  1279. data = kvm_get_apic_base(vcpu);
  1280. break;
  1281. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1282. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1283. break;
  1284. case MSR_IA32_MISC_ENABLE:
  1285. data = vcpu->arch.ia32_misc_enable_msr;
  1286. break;
  1287. case MSR_IA32_PERF_STATUS:
  1288. /* TSC increment by tick */
  1289. data = 1000ULL;
  1290. /* CPU multiplier */
  1291. data |= (((uint64_t)4ULL) << 40);
  1292. break;
  1293. case MSR_EFER:
  1294. data = vcpu->arch.efer;
  1295. break;
  1296. case MSR_KVM_WALL_CLOCK:
  1297. data = vcpu->kvm->arch.wall_clock;
  1298. break;
  1299. case MSR_KVM_SYSTEM_TIME:
  1300. data = vcpu->arch.time;
  1301. break;
  1302. case MSR_IA32_P5_MC_ADDR:
  1303. case MSR_IA32_P5_MC_TYPE:
  1304. case MSR_IA32_MCG_CAP:
  1305. case MSR_IA32_MCG_CTL:
  1306. case MSR_IA32_MCG_STATUS:
  1307. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1308. return get_msr_mce(vcpu, msr, pdata);
  1309. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1310. if (kvm_hv_msr_partition_wide(msr)) {
  1311. int r;
  1312. mutex_lock(&vcpu->kvm->lock);
  1313. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1314. mutex_unlock(&vcpu->kvm->lock);
  1315. return r;
  1316. } else
  1317. return get_msr_hyperv(vcpu, msr, pdata);
  1318. break;
  1319. default:
  1320. if (!ignore_msrs) {
  1321. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1322. return 1;
  1323. } else {
  1324. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1325. data = 0;
  1326. }
  1327. break;
  1328. }
  1329. *pdata = data;
  1330. return 0;
  1331. }
  1332. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1333. /*
  1334. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1335. *
  1336. * @return number of msrs set successfully.
  1337. */
  1338. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1339. struct kvm_msr_entry *entries,
  1340. int (*do_msr)(struct kvm_vcpu *vcpu,
  1341. unsigned index, u64 *data))
  1342. {
  1343. int i, idx;
  1344. vcpu_load(vcpu);
  1345. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1346. for (i = 0; i < msrs->nmsrs; ++i)
  1347. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1348. break;
  1349. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1350. vcpu_put(vcpu);
  1351. return i;
  1352. }
  1353. /*
  1354. * Read or write a bunch of msrs. Parameters are user addresses.
  1355. *
  1356. * @return number of msrs set successfully.
  1357. */
  1358. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1359. int (*do_msr)(struct kvm_vcpu *vcpu,
  1360. unsigned index, u64 *data),
  1361. int writeback)
  1362. {
  1363. struct kvm_msrs msrs;
  1364. struct kvm_msr_entry *entries;
  1365. int r, n;
  1366. unsigned size;
  1367. r = -EFAULT;
  1368. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1369. goto out;
  1370. r = -E2BIG;
  1371. if (msrs.nmsrs >= MAX_IO_MSRS)
  1372. goto out;
  1373. r = -ENOMEM;
  1374. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1375. entries = vmalloc(size);
  1376. if (!entries)
  1377. goto out;
  1378. r = -EFAULT;
  1379. if (copy_from_user(entries, user_msrs->entries, size))
  1380. goto out_free;
  1381. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1382. if (r < 0)
  1383. goto out_free;
  1384. r = -EFAULT;
  1385. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1386. goto out_free;
  1387. r = n;
  1388. out_free:
  1389. vfree(entries);
  1390. out:
  1391. return r;
  1392. }
  1393. int kvm_dev_ioctl_check_extension(long ext)
  1394. {
  1395. int r;
  1396. switch (ext) {
  1397. case KVM_CAP_IRQCHIP:
  1398. case KVM_CAP_HLT:
  1399. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1400. case KVM_CAP_SET_TSS_ADDR:
  1401. case KVM_CAP_EXT_CPUID:
  1402. case KVM_CAP_CLOCKSOURCE:
  1403. case KVM_CAP_PIT:
  1404. case KVM_CAP_NOP_IO_DELAY:
  1405. case KVM_CAP_MP_STATE:
  1406. case KVM_CAP_SYNC_MMU:
  1407. case KVM_CAP_REINJECT_CONTROL:
  1408. case KVM_CAP_IRQ_INJECT_STATUS:
  1409. case KVM_CAP_ASSIGN_DEV_IRQ:
  1410. case KVM_CAP_IRQFD:
  1411. case KVM_CAP_IOEVENTFD:
  1412. case KVM_CAP_PIT2:
  1413. case KVM_CAP_PIT_STATE2:
  1414. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1415. case KVM_CAP_XEN_HVM:
  1416. case KVM_CAP_ADJUST_CLOCK:
  1417. case KVM_CAP_VCPU_EVENTS:
  1418. case KVM_CAP_HYPERV:
  1419. case KVM_CAP_HYPERV_VAPIC:
  1420. case KVM_CAP_HYPERV_SPIN:
  1421. case KVM_CAP_PCI_SEGMENT:
  1422. case KVM_CAP_DEBUGREGS:
  1423. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1424. r = 1;
  1425. break;
  1426. case KVM_CAP_COALESCED_MMIO:
  1427. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1428. break;
  1429. case KVM_CAP_VAPIC:
  1430. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1431. break;
  1432. case KVM_CAP_NR_VCPUS:
  1433. r = KVM_MAX_VCPUS;
  1434. break;
  1435. case KVM_CAP_NR_MEMSLOTS:
  1436. r = KVM_MEMORY_SLOTS;
  1437. break;
  1438. case KVM_CAP_PV_MMU: /* obsolete */
  1439. r = 0;
  1440. break;
  1441. case KVM_CAP_IOMMU:
  1442. r = iommu_found();
  1443. break;
  1444. case KVM_CAP_MCE:
  1445. r = KVM_MAX_MCE_BANKS;
  1446. break;
  1447. default:
  1448. r = 0;
  1449. break;
  1450. }
  1451. return r;
  1452. }
  1453. long kvm_arch_dev_ioctl(struct file *filp,
  1454. unsigned int ioctl, unsigned long arg)
  1455. {
  1456. void __user *argp = (void __user *)arg;
  1457. long r;
  1458. switch (ioctl) {
  1459. case KVM_GET_MSR_INDEX_LIST: {
  1460. struct kvm_msr_list __user *user_msr_list = argp;
  1461. struct kvm_msr_list msr_list;
  1462. unsigned n;
  1463. r = -EFAULT;
  1464. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1465. goto out;
  1466. n = msr_list.nmsrs;
  1467. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1468. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1469. goto out;
  1470. r = -E2BIG;
  1471. if (n < msr_list.nmsrs)
  1472. goto out;
  1473. r = -EFAULT;
  1474. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1475. num_msrs_to_save * sizeof(u32)))
  1476. goto out;
  1477. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1478. &emulated_msrs,
  1479. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1480. goto out;
  1481. r = 0;
  1482. break;
  1483. }
  1484. case KVM_GET_SUPPORTED_CPUID: {
  1485. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1486. struct kvm_cpuid2 cpuid;
  1487. r = -EFAULT;
  1488. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1489. goto out;
  1490. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1491. cpuid_arg->entries);
  1492. if (r)
  1493. goto out;
  1494. r = -EFAULT;
  1495. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1496. goto out;
  1497. r = 0;
  1498. break;
  1499. }
  1500. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1501. u64 mce_cap;
  1502. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1503. r = -EFAULT;
  1504. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1505. goto out;
  1506. r = 0;
  1507. break;
  1508. }
  1509. default:
  1510. r = -EINVAL;
  1511. }
  1512. out:
  1513. return r;
  1514. }
  1515. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1516. {
  1517. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1518. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1519. unsigned long khz = cpufreq_quick_get(cpu);
  1520. if (!khz)
  1521. khz = tsc_khz;
  1522. per_cpu(cpu_tsc_khz, cpu) = khz;
  1523. }
  1524. kvm_request_guest_time_update(vcpu);
  1525. }
  1526. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1527. {
  1528. kvm_put_guest_fpu(vcpu);
  1529. kvm_x86_ops->vcpu_put(vcpu);
  1530. }
  1531. static int is_efer_nx(void)
  1532. {
  1533. unsigned long long efer = 0;
  1534. rdmsrl_safe(MSR_EFER, &efer);
  1535. return efer & EFER_NX;
  1536. }
  1537. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1538. {
  1539. int i;
  1540. struct kvm_cpuid_entry2 *e, *entry;
  1541. entry = NULL;
  1542. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1543. e = &vcpu->arch.cpuid_entries[i];
  1544. if (e->function == 0x80000001) {
  1545. entry = e;
  1546. break;
  1547. }
  1548. }
  1549. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1550. entry->edx &= ~(1 << 20);
  1551. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1552. }
  1553. }
  1554. /* when an old userspace process fills a new kernel module */
  1555. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1556. struct kvm_cpuid *cpuid,
  1557. struct kvm_cpuid_entry __user *entries)
  1558. {
  1559. int r, i;
  1560. struct kvm_cpuid_entry *cpuid_entries;
  1561. r = -E2BIG;
  1562. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1563. goto out;
  1564. r = -ENOMEM;
  1565. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1566. if (!cpuid_entries)
  1567. goto out;
  1568. r = -EFAULT;
  1569. if (copy_from_user(cpuid_entries, entries,
  1570. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1571. goto out_free;
  1572. for (i = 0; i < cpuid->nent; i++) {
  1573. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1574. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1575. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1576. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1577. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1578. vcpu->arch.cpuid_entries[i].index = 0;
  1579. vcpu->arch.cpuid_entries[i].flags = 0;
  1580. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1581. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1582. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1583. }
  1584. vcpu->arch.cpuid_nent = cpuid->nent;
  1585. cpuid_fix_nx_cap(vcpu);
  1586. r = 0;
  1587. kvm_apic_set_version(vcpu);
  1588. kvm_x86_ops->cpuid_update(vcpu);
  1589. out_free:
  1590. vfree(cpuid_entries);
  1591. out:
  1592. return r;
  1593. }
  1594. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1595. struct kvm_cpuid2 *cpuid,
  1596. struct kvm_cpuid_entry2 __user *entries)
  1597. {
  1598. int r;
  1599. r = -E2BIG;
  1600. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1601. goto out;
  1602. r = -EFAULT;
  1603. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1604. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1605. goto out;
  1606. vcpu->arch.cpuid_nent = cpuid->nent;
  1607. kvm_apic_set_version(vcpu);
  1608. kvm_x86_ops->cpuid_update(vcpu);
  1609. return 0;
  1610. out:
  1611. return r;
  1612. }
  1613. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1614. struct kvm_cpuid2 *cpuid,
  1615. struct kvm_cpuid_entry2 __user *entries)
  1616. {
  1617. int r;
  1618. r = -E2BIG;
  1619. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1620. goto out;
  1621. r = -EFAULT;
  1622. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1623. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1624. goto out;
  1625. return 0;
  1626. out:
  1627. cpuid->nent = vcpu->arch.cpuid_nent;
  1628. return r;
  1629. }
  1630. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1631. u32 index)
  1632. {
  1633. entry->function = function;
  1634. entry->index = index;
  1635. cpuid_count(entry->function, entry->index,
  1636. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1637. entry->flags = 0;
  1638. }
  1639. #define F(x) bit(X86_FEATURE_##x)
  1640. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1641. u32 index, int *nent, int maxnent)
  1642. {
  1643. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1644. #ifdef CONFIG_X86_64
  1645. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1646. ? F(GBPAGES) : 0;
  1647. unsigned f_lm = F(LM);
  1648. #else
  1649. unsigned f_gbpages = 0;
  1650. unsigned f_lm = 0;
  1651. #endif
  1652. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1653. /* cpuid 1.edx */
  1654. const u32 kvm_supported_word0_x86_features =
  1655. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1656. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1657. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1658. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1659. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1660. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1661. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1662. 0 /* HTT, TM, Reserved, PBE */;
  1663. /* cpuid 0x80000001.edx */
  1664. const u32 kvm_supported_word1_x86_features =
  1665. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1666. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1667. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1668. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1669. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1670. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1671. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1672. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1673. /* cpuid 1.ecx */
  1674. const u32 kvm_supported_word4_x86_features =
  1675. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1676. 0 /* DS-CPL, VMX, SMX, EST */ |
  1677. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1678. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1679. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1680. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1681. 0 /* Reserved, XSAVE, OSXSAVE */;
  1682. /* cpuid 0x80000001.ecx */
  1683. const u32 kvm_supported_word6_x86_features =
  1684. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1685. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1686. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1687. 0 /* SKINIT */ | 0 /* WDT */;
  1688. /* all calls to cpuid_count() should be made on the same cpu */
  1689. get_cpu();
  1690. do_cpuid_1_ent(entry, function, index);
  1691. ++*nent;
  1692. switch (function) {
  1693. case 0:
  1694. entry->eax = min(entry->eax, (u32)0xb);
  1695. break;
  1696. case 1:
  1697. entry->edx &= kvm_supported_word0_x86_features;
  1698. entry->ecx &= kvm_supported_word4_x86_features;
  1699. /* we support x2apic emulation even if host does not support
  1700. * it since we emulate x2apic in software */
  1701. entry->ecx |= F(X2APIC);
  1702. break;
  1703. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1704. * may return different values. This forces us to get_cpu() before
  1705. * issuing the first command, and also to emulate this annoying behavior
  1706. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1707. case 2: {
  1708. int t, times = entry->eax & 0xff;
  1709. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1710. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1711. for (t = 1; t < times && *nent < maxnent; ++t) {
  1712. do_cpuid_1_ent(&entry[t], function, 0);
  1713. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1714. ++*nent;
  1715. }
  1716. break;
  1717. }
  1718. /* function 4 and 0xb have additional index. */
  1719. case 4: {
  1720. int i, cache_type;
  1721. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1722. /* read more entries until cache_type is zero */
  1723. for (i = 1; *nent < maxnent; ++i) {
  1724. cache_type = entry[i - 1].eax & 0x1f;
  1725. if (!cache_type)
  1726. break;
  1727. do_cpuid_1_ent(&entry[i], function, i);
  1728. entry[i].flags |=
  1729. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1730. ++*nent;
  1731. }
  1732. break;
  1733. }
  1734. case 0xb: {
  1735. int i, level_type;
  1736. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1737. /* read more entries until level_type is zero */
  1738. for (i = 1; *nent < maxnent; ++i) {
  1739. level_type = entry[i - 1].ecx & 0xff00;
  1740. if (!level_type)
  1741. break;
  1742. do_cpuid_1_ent(&entry[i], function, i);
  1743. entry[i].flags |=
  1744. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1745. ++*nent;
  1746. }
  1747. break;
  1748. }
  1749. case 0x80000000:
  1750. entry->eax = min(entry->eax, 0x8000001a);
  1751. break;
  1752. case 0x80000001:
  1753. entry->edx &= kvm_supported_word1_x86_features;
  1754. entry->ecx &= kvm_supported_word6_x86_features;
  1755. break;
  1756. }
  1757. kvm_x86_ops->set_supported_cpuid(function, entry);
  1758. put_cpu();
  1759. }
  1760. #undef F
  1761. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1762. struct kvm_cpuid_entry2 __user *entries)
  1763. {
  1764. struct kvm_cpuid_entry2 *cpuid_entries;
  1765. int limit, nent = 0, r = -E2BIG;
  1766. u32 func;
  1767. if (cpuid->nent < 1)
  1768. goto out;
  1769. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1770. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1771. r = -ENOMEM;
  1772. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1773. if (!cpuid_entries)
  1774. goto out;
  1775. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1776. limit = cpuid_entries[0].eax;
  1777. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1778. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1779. &nent, cpuid->nent);
  1780. r = -E2BIG;
  1781. if (nent >= cpuid->nent)
  1782. goto out_free;
  1783. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1784. limit = cpuid_entries[nent - 1].eax;
  1785. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1786. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1787. &nent, cpuid->nent);
  1788. r = -E2BIG;
  1789. if (nent >= cpuid->nent)
  1790. goto out_free;
  1791. r = -EFAULT;
  1792. if (copy_to_user(entries, cpuid_entries,
  1793. nent * sizeof(struct kvm_cpuid_entry2)))
  1794. goto out_free;
  1795. cpuid->nent = nent;
  1796. r = 0;
  1797. out_free:
  1798. vfree(cpuid_entries);
  1799. out:
  1800. return r;
  1801. }
  1802. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1803. struct kvm_lapic_state *s)
  1804. {
  1805. vcpu_load(vcpu);
  1806. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1807. vcpu_put(vcpu);
  1808. return 0;
  1809. }
  1810. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1811. struct kvm_lapic_state *s)
  1812. {
  1813. vcpu_load(vcpu);
  1814. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1815. kvm_apic_post_state_restore(vcpu);
  1816. update_cr8_intercept(vcpu);
  1817. vcpu_put(vcpu);
  1818. return 0;
  1819. }
  1820. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1821. struct kvm_interrupt *irq)
  1822. {
  1823. if (irq->irq < 0 || irq->irq >= 256)
  1824. return -EINVAL;
  1825. if (irqchip_in_kernel(vcpu->kvm))
  1826. return -ENXIO;
  1827. vcpu_load(vcpu);
  1828. kvm_queue_interrupt(vcpu, irq->irq, false);
  1829. vcpu_put(vcpu);
  1830. return 0;
  1831. }
  1832. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1833. {
  1834. vcpu_load(vcpu);
  1835. kvm_inject_nmi(vcpu);
  1836. vcpu_put(vcpu);
  1837. return 0;
  1838. }
  1839. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1840. struct kvm_tpr_access_ctl *tac)
  1841. {
  1842. if (tac->flags)
  1843. return -EINVAL;
  1844. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1845. return 0;
  1846. }
  1847. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1848. u64 mcg_cap)
  1849. {
  1850. int r;
  1851. unsigned bank_num = mcg_cap & 0xff, bank;
  1852. r = -EINVAL;
  1853. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1854. goto out;
  1855. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1856. goto out;
  1857. r = 0;
  1858. vcpu->arch.mcg_cap = mcg_cap;
  1859. /* Init IA32_MCG_CTL to all 1s */
  1860. if (mcg_cap & MCG_CTL_P)
  1861. vcpu->arch.mcg_ctl = ~(u64)0;
  1862. /* Init IA32_MCi_CTL to all 1s */
  1863. for (bank = 0; bank < bank_num; bank++)
  1864. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1865. out:
  1866. return r;
  1867. }
  1868. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1869. struct kvm_x86_mce *mce)
  1870. {
  1871. u64 mcg_cap = vcpu->arch.mcg_cap;
  1872. unsigned bank_num = mcg_cap & 0xff;
  1873. u64 *banks = vcpu->arch.mce_banks;
  1874. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1875. return -EINVAL;
  1876. /*
  1877. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1878. * reporting is disabled
  1879. */
  1880. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1881. vcpu->arch.mcg_ctl != ~(u64)0)
  1882. return 0;
  1883. banks += 4 * mce->bank;
  1884. /*
  1885. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1886. * reporting is disabled for the bank
  1887. */
  1888. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1889. return 0;
  1890. if (mce->status & MCI_STATUS_UC) {
  1891. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1892. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1893. printk(KERN_DEBUG "kvm: set_mce: "
  1894. "injects mce exception while "
  1895. "previous one is in progress!\n");
  1896. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1897. return 0;
  1898. }
  1899. if (banks[1] & MCI_STATUS_VAL)
  1900. mce->status |= MCI_STATUS_OVER;
  1901. banks[2] = mce->addr;
  1902. banks[3] = mce->misc;
  1903. vcpu->arch.mcg_status = mce->mcg_status;
  1904. banks[1] = mce->status;
  1905. kvm_queue_exception(vcpu, MC_VECTOR);
  1906. } else if (!(banks[1] & MCI_STATUS_VAL)
  1907. || !(banks[1] & MCI_STATUS_UC)) {
  1908. if (banks[1] & MCI_STATUS_VAL)
  1909. mce->status |= MCI_STATUS_OVER;
  1910. banks[2] = mce->addr;
  1911. banks[3] = mce->misc;
  1912. banks[1] = mce->status;
  1913. } else
  1914. banks[1] |= MCI_STATUS_OVER;
  1915. return 0;
  1916. }
  1917. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1918. struct kvm_vcpu_events *events)
  1919. {
  1920. vcpu_load(vcpu);
  1921. events->exception.injected =
  1922. vcpu->arch.exception.pending &&
  1923. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  1924. events->exception.nr = vcpu->arch.exception.nr;
  1925. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1926. events->exception.error_code = vcpu->arch.exception.error_code;
  1927. events->interrupt.injected =
  1928. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  1929. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1930. events->interrupt.soft = 0;
  1931. events->interrupt.shadow =
  1932. kvm_x86_ops->get_interrupt_shadow(vcpu,
  1933. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  1934. events->nmi.injected = vcpu->arch.nmi_injected;
  1935. events->nmi.pending = vcpu->arch.nmi_pending;
  1936. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1937. events->sipi_vector = vcpu->arch.sipi_vector;
  1938. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1939. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1940. | KVM_VCPUEVENT_VALID_SHADOW);
  1941. vcpu_put(vcpu);
  1942. }
  1943. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1944. struct kvm_vcpu_events *events)
  1945. {
  1946. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1947. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  1948. | KVM_VCPUEVENT_VALID_SHADOW))
  1949. return -EINVAL;
  1950. vcpu_load(vcpu);
  1951. vcpu->arch.exception.pending = events->exception.injected;
  1952. vcpu->arch.exception.nr = events->exception.nr;
  1953. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1954. vcpu->arch.exception.error_code = events->exception.error_code;
  1955. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1956. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1957. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1958. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1959. kvm_pic_clear_isr_ack(vcpu->kvm);
  1960. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  1961. kvm_x86_ops->set_interrupt_shadow(vcpu,
  1962. events->interrupt.shadow);
  1963. vcpu->arch.nmi_injected = events->nmi.injected;
  1964. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1965. vcpu->arch.nmi_pending = events->nmi.pending;
  1966. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1967. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1968. vcpu->arch.sipi_vector = events->sipi_vector;
  1969. vcpu_put(vcpu);
  1970. return 0;
  1971. }
  1972. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  1973. struct kvm_debugregs *dbgregs)
  1974. {
  1975. vcpu_load(vcpu);
  1976. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  1977. dbgregs->dr6 = vcpu->arch.dr6;
  1978. dbgregs->dr7 = vcpu->arch.dr7;
  1979. dbgregs->flags = 0;
  1980. vcpu_put(vcpu);
  1981. }
  1982. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  1983. struct kvm_debugregs *dbgregs)
  1984. {
  1985. if (dbgregs->flags)
  1986. return -EINVAL;
  1987. vcpu_load(vcpu);
  1988. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  1989. vcpu->arch.dr6 = dbgregs->dr6;
  1990. vcpu->arch.dr7 = dbgregs->dr7;
  1991. vcpu_put(vcpu);
  1992. return 0;
  1993. }
  1994. long kvm_arch_vcpu_ioctl(struct file *filp,
  1995. unsigned int ioctl, unsigned long arg)
  1996. {
  1997. struct kvm_vcpu *vcpu = filp->private_data;
  1998. void __user *argp = (void __user *)arg;
  1999. int r;
  2000. struct kvm_lapic_state *lapic = NULL;
  2001. switch (ioctl) {
  2002. case KVM_GET_LAPIC: {
  2003. r = -EINVAL;
  2004. if (!vcpu->arch.apic)
  2005. goto out;
  2006. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2007. r = -ENOMEM;
  2008. if (!lapic)
  2009. goto out;
  2010. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  2011. if (r)
  2012. goto out;
  2013. r = -EFAULT;
  2014. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  2015. goto out;
  2016. r = 0;
  2017. break;
  2018. }
  2019. case KVM_SET_LAPIC: {
  2020. r = -EINVAL;
  2021. if (!vcpu->arch.apic)
  2022. goto out;
  2023. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2024. r = -ENOMEM;
  2025. if (!lapic)
  2026. goto out;
  2027. r = -EFAULT;
  2028. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  2029. goto out;
  2030. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  2031. if (r)
  2032. goto out;
  2033. r = 0;
  2034. break;
  2035. }
  2036. case KVM_INTERRUPT: {
  2037. struct kvm_interrupt irq;
  2038. r = -EFAULT;
  2039. if (copy_from_user(&irq, argp, sizeof irq))
  2040. goto out;
  2041. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2042. if (r)
  2043. goto out;
  2044. r = 0;
  2045. break;
  2046. }
  2047. case KVM_NMI: {
  2048. r = kvm_vcpu_ioctl_nmi(vcpu);
  2049. if (r)
  2050. goto out;
  2051. r = 0;
  2052. break;
  2053. }
  2054. case KVM_SET_CPUID: {
  2055. struct kvm_cpuid __user *cpuid_arg = argp;
  2056. struct kvm_cpuid cpuid;
  2057. r = -EFAULT;
  2058. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2059. goto out;
  2060. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2061. if (r)
  2062. goto out;
  2063. break;
  2064. }
  2065. case KVM_SET_CPUID2: {
  2066. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2067. struct kvm_cpuid2 cpuid;
  2068. r = -EFAULT;
  2069. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2070. goto out;
  2071. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2072. cpuid_arg->entries);
  2073. if (r)
  2074. goto out;
  2075. break;
  2076. }
  2077. case KVM_GET_CPUID2: {
  2078. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2079. struct kvm_cpuid2 cpuid;
  2080. r = -EFAULT;
  2081. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2082. goto out;
  2083. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2084. cpuid_arg->entries);
  2085. if (r)
  2086. goto out;
  2087. r = -EFAULT;
  2088. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2089. goto out;
  2090. r = 0;
  2091. break;
  2092. }
  2093. case KVM_GET_MSRS:
  2094. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2095. break;
  2096. case KVM_SET_MSRS:
  2097. r = msr_io(vcpu, argp, do_set_msr, 0);
  2098. break;
  2099. case KVM_TPR_ACCESS_REPORTING: {
  2100. struct kvm_tpr_access_ctl tac;
  2101. r = -EFAULT;
  2102. if (copy_from_user(&tac, argp, sizeof tac))
  2103. goto out;
  2104. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2105. if (r)
  2106. goto out;
  2107. r = -EFAULT;
  2108. if (copy_to_user(argp, &tac, sizeof tac))
  2109. goto out;
  2110. r = 0;
  2111. break;
  2112. };
  2113. case KVM_SET_VAPIC_ADDR: {
  2114. struct kvm_vapic_addr va;
  2115. r = -EINVAL;
  2116. if (!irqchip_in_kernel(vcpu->kvm))
  2117. goto out;
  2118. r = -EFAULT;
  2119. if (copy_from_user(&va, argp, sizeof va))
  2120. goto out;
  2121. r = 0;
  2122. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2123. break;
  2124. }
  2125. case KVM_X86_SETUP_MCE: {
  2126. u64 mcg_cap;
  2127. r = -EFAULT;
  2128. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2129. goto out;
  2130. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2131. break;
  2132. }
  2133. case KVM_X86_SET_MCE: {
  2134. struct kvm_x86_mce mce;
  2135. r = -EFAULT;
  2136. if (copy_from_user(&mce, argp, sizeof mce))
  2137. goto out;
  2138. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2139. break;
  2140. }
  2141. case KVM_GET_VCPU_EVENTS: {
  2142. struct kvm_vcpu_events events;
  2143. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2144. r = -EFAULT;
  2145. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2146. break;
  2147. r = 0;
  2148. break;
  2149. }
  2150. case KVM_SET_VCPU_EVENTS: {
  2151. struct kvm_vcpu_events events;
  2152. r = -EFAULT;
  2153. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2154. break;
  2155. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2156. break;
  2157. }
  2158. case KVM_GET_DEBUGREGS: {
  2159. struct kvm_debugregs dbgregs;
  2160. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2161. r = -EFAULT;
  2162. if (copy_to_user(argp, &dbgregs,
  2163. sizeof(struct kvm_debugregs)))
  2164. break;
  2165. r = 0;
  2166. break;
  2167. }
  2168. case KVM_SET_DEBUGREGS: {
  2169. struct kvm_debugregs dbgregs;
  2170. r = -EFAULT;
  2171. if (copy_from_user(&dbgregs, argp,
  2172. sizeof(struct kvm_debugregs)))
  2173. break;
  2174. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2175. break;
  2176. }
  2177. default:
  2178. r = -EINVAL;
  2179. }
  2180. out:
  2181. kfree(lapic);
  2182. return r;
  2183. }
  2184. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2185. {
  2186. int ret;
  2187. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2188. return -1;
  2189. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2190. return ret;
  2191. }
  2192. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2193. u64 ident_addr)
  2194. {
  2195. kvm->arch.ept_identity_map_addr = ident_addr;
  2196. return 0;
  2197. }
  2198. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2199. u32 kvm_nr_mmu_pages)
  2200. {
  2201. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2202. return -EINVAL;
  2203. mutex_lock(&kvm->slots_lock);
  2204. spin_lock(&kvm->mmu_lock);
  2205. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2206. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2207. spin_unlock(&kvm->mmu_lock);
  2208. mutex_unlock(&kvm->slots_lock);
  2209. return 0;
  2210. }
  2211. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2212. {
  2213. return kvm->arch.n_alloc_mmu_pages;
  2214. }
  2215. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  2216. {
  2217. int i;
  2218. struct kvm_mem_alias *alias;
  2219. struct kvm_mem_aliases *aliases;
  2220. aliases = kvm_aliases(kvm);
  2221. for (i = 0; i < aliases->naliases; ++i) {
  2222. alias = &aliases->aliases[i];
  2223. if (alias->flags & KVM_ALIAS_INVALID)
  2224. continue;
  2225. if (gfn >= alias->base_gfn
  2226. && gfn < alias->base_gfn + alias->npages)
  2227. return alias->target_gfn + gfn - alias->base_gfn;
  2228. }
  2229. return gfn;
  2230. }
  2231. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  2232. {
  2233. int i;
  2234. struct kvm_mem_alias *alias;
  2235. struct kvm_mem_aliases *aliases;
  2236. aliases = kvm_aliases(kvm);
  2237. for (i = 0; i < aliases->naliases; ++i) {
  2238. alias = &aliases->aliases[i];
  2239. if (gfn >= alias->base_gfn
  2240. && gfn < alias->base_gfn + alias->npages)
  2241. return alias->target_gfn + gfn - alias->base_gfn;
  2242. }
  2243. return gfn;
  2244. }
  2245. /*
  2246. * Set a new alias region. Aliases map a portion of physical memory into
  2247. * another portion. This is useful for memory windows, for example the PC
  2248. * VGA region.
  2249. */
  2250. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2251. struct kvm_memory_alias *alias)
  2252. {
  2253. int r, n;
  2254. struct kvm_mem_alias *p;
  2255. struct kvm_mem_aliases *aliases, *old_aliases;
  2256. r = -EINVAL;
  2257. /* General sanity checks */
  2258. if (alias->memory_size & (PAGE_SIZE - 1))
  2259. goto out;
  2260. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2261. goto out;
  2262. if (alias->slot >= KVM_ALIAS_SLOTS)
  2263. goto out;
  2264. if (alias->guest_phys_addr + alias->memory_size
  2265. < alias->guest_phys_addr)
  2266. goto out;
  2267. if (alias->target_phys_addr + alias->memory_size
  2268. < alias->target_phys_addr)
  2269. goto out;
  2270. r = -ENOMEM;
  2271. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2272. if (!aliases)
  2273. goto out;
  2274. mutex_lock(&kvm->slots_lock);
  2275. /* invalidate any gfn reference in case of deletion/shrinking */
  2276. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2277. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2278. old_aliases = kvm->arch.aliases;
  2279. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2280. synchronize_srcu_expedited(&kvm->srcu);
  2281. kvm_mmu_zap_all(kvm);
  2282. kfree(old_aliases);
  2283. r = -ENOMEM;
  2284. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2285. if (!aliases)
  2286. goto out_unlock;
  2287. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2288. p = &aliases->aliases[alias->slot];
  2289. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2290. p->npages = alias->memory_size >> PAGE_SHIFT;
  2291. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2292. p->flags &= ~(KVM_ALIAS_INVALID);
  2293. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2294. if (aliases->aliases[n - 1].npages)
  2295. break;
  2296. aliases->naliases = n;
  2297. old_aliases = kvm->arch.aliases;
  2298. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2299. synchronize_srcu_expedited(&kvm->srcu);
  2300. kfree(old_aliases);
  2301. r = 0;
  2302. out_unlock:
  2303. mutex_unlock(&kvm->slots_lock);
  2304. out:
  2305. return r;
  2306. }
  2307. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2308. {
  2309. int r;
  2310. r = 0;
  2311. switch (chip->chip_id) {
  2312. case KVM_IRQCHIP_PIC_MASTER:
  2313. memcpy(&chip->chip.pic,
  2314. &pic_irqchip(kvm)->pics[0],
  2315. sizeof(struct kvm_pic_state));
  2316. break;
  2317. case KVM_IRQCHIP_PIC_SLAVE:
  2318. memcpy(&chip->chip.pic,
  2319. &pic_irqchip(kvm)->pics[1],
  2320. sizeof(struct kvm_pic_state));
  2321. break;
  2322. case KVM_IRQCHIP_IOAPIC:
  2323. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2324. break;
  2325. default:
  2326. r = -EINVAL;
  2327. break;
  2328. }
  2329. return r;
  2330. }
  2331. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2332. {
  2333. int r;
  2334. r = 0;
  2335. switch (chip->chip_id) {
  2336. case KVM_IRQCHIP_PIC_MASTER:
  2337. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2338. memcpy(&pic_irqchip(kvm)->pics[0],
  2339. &chip->chip.pic,
  2340. sizeof(struct kvm_pic_state));
  2341. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2342. break;
  2343. case KVM_IRQCHIP_PIC_SLAVE:
  2344. raw_spin_lock(&pic_irqchip(kvm)->lock);
  2345. memcpy(&pic_irqchip(kvm)->pics[1],
  2346. &chip->chip.pic,
  2347. sizeof(struct kvm_pic_state));
  2348. raw_spin_unlock(&pic_irqchip(kvm)->lock);
  2349. break;
  2350. case KVM_IRQCHIP_IOAPIC:
  2351. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2352. break;
  2353. default:
  2354. r = -EINVAL;
  2355. break;
  2356. }
  2357. kvm_pic_update_irq(pic_irqchip(kvm));
  2358. return r;
  2359. }
  2360. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2361. {
  2362. int r = 0;
  2363. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2364. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2365. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2366. return r;
  2367. }
  2368. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2369. {
  2370. int r = 0;
  2371. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2372. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2373. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2374. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2375. return r;
  2376. }
  2377. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2378. {
  2379. int r = 0;
  2380. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2381. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2382. sizeof(ps->channels));
  2383. ps->flags = kvm->arch.vpit->pit_state.flags;
  2384. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2385. return r;
  2386. }
  2387. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2388. {
  2389. int r = 0, start = 0;
  2390. u32 prev_legacy, cur_legacy;
  2391. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2392. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2393. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2394. if (!prev_legacy && cur_legacy)
  2395. start = 1;
  2396. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2397. sizeof(kvm->arch.vpit->pit_state.channels));
  2398. kvm->arch.vpit->pit_state.flags = ps->flags;
  2399. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2400. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2401. return r;
  2402. }
  2403. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2404. struct kvm_reinject_control *control)
  2405. {
  2406. if (!kvm->arch.vpit)
  2407. return -ENXIO;
  2408. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2409. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2410. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2411. return 0;
  2412. }
  2413. /*
  2414. * Get (and clear) the dirty memory log for a memory slot.
  2415. */
  2416. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2417. struct kvm_dirty_log *log)
  2418. {
  2419. int r, i;
  2420. struct kvm_memory_slot *memslot;
  2421. unsigned long n;
  2422. unsigned long is_dirty = 0;
  2423. unsigned long *dirty_bitmap = NULL;
  2424. mutex_lock(&kvm->slots_lock);
  2425. r = -EINVAL;
  2426. if (log->slot >= KVM_MEMORY_SLOTS)
  2427. goto out;
  2428. memslot = &kvm->memslots->memslots[log->slot];
  2429. r = -ENOENT;
  2430. if (!memslot->dirty_bitmap)
  2431. goto out;
  2432. n = kvm_dirty_bitmap_bytes(memslot);
  2433. r = -ENOMEM;
  2434. dirty_bitmap = vmalloc(n);
  2435. if (!dirty_bitmap)
  2436. goto out;
  2437. memset(dirty_bitmap, 0, n);
  2438. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2439. is_dirty = memslot->dirty_bitmap[i];
  2440. /* If nothing is dirty, don't bother messing with page tables. */
  2441. if (is_dirty) {
  2442. struct kvm_memslots *slots, *old_slots;
  2443. spin_lock(&kvm->mmu_lock);
  2444. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2445. spin_unlock(&kvm->mmu_lock);
  2446. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2447. if (!slots)
  2448. goto out_free;
  2449. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2450. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2451. old_slots = kvm->memslots;
  2452. rcu_assign_pointer(kvm->memslots, slots);
  2453. synchronize_srcu_expedited(&kvm->srcu);
  2454. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2455. kfree(old_slots);
  2456. }
  2457. r = 0;
  2458. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2459. r = -EFAULT;
  2460. out_free:
  2461. vfree(dirty_bitmap);
  2462. out:
  2463. mutex_unlock(&kvm->slots_lock);
  2464. return r;
  2465. }
  2466. long kvm_arch_vm_ioctl(struct file *filp,
  2467. unsigned int ioctl, unsigned long arg)
  2468. {
  2469. struct kvm *kvm = filp->private_data;
  2470. void __user *argp = (void __user *)arg;
  2471. int r = -ENOTTY;
  2472. /*
  2473. * This union makes it completely explicit to gcc-3.x
  2474. * that these two variables' stack usage should be
  2475. * combined, not added together.
  2476. */
  2477. union {
  2478. struct kvm_pit_state ps;
  2479. struct kvm_pit_state2 ps2;
  2480. struct kvm_memory_alias alias;
  2481. struct kvm_pit_config pit_config;
  2482. } u;
  2483. switch (ioctl) {
  2484. case KVM_SET_TSS_ADDR:
  2485. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2486. if (r < 0)
  2487. goto out;
  2488. break;
  2489. case KVM_SET_IDENTITY_MAP_ADDR: {
  2490. u64 ident_addr;
  2491. r = -EFAULT;
  2492. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2493. goto out;
  2494. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2495. if (r < 0)
  2496. goto out;
  2497. break;
  2498. }
  2499. case KVM_SET_MEMORY_REGION: {
  2500. struct kvm_memory_region kvm_mem;
  2501. struct kvm_userspace_memory_region kvm_userspace_mem;
  2502. r = -EFAULT;
  2503. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2504. goto out;
  2505. kvm_userspace_mem.slot = kvm_mem.slot;
  2506. kvm_userspace_mem.flags = kvm_mem.flags;
  2507. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2508. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2509. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2510. if (r)
  2511. goto out;
  2512. break;
  2513. }
  2514. case KVM_SET_NR_MMU_PAGES:
  2515. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2516. if (r)
  2517. goto out;
  2518. break;
  2519. case KVM_GET_NR_MMU_PAGES:
  2520. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2521. break;
  2522. case KVM_SET_MEMORY_ALIAS:
  2523. r = -EFAULT;
  2524. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2525. goto out;
  2526. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2527. if (r)
  2528. goto out;
  2529. break;
  2530. case KVM_CREATE_IRQCHIP: {
  2531. struct kvm_pic *vpic;
  2532. mutex_lock(&kvm->lock);
  2533. r = -EEXIST;
  2534. if (kvm->arch.vpic)
  2535. goto create_irqchip_unlock;
  2536. r = -ENOMEM;
  2537. vpic = kvm_create_pic(kvm);
  2538. if (vpic) {
  2539. r = kvm_ioapic_init(kvm);
  2540. if (r) {
  2541. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2542. &vpic->dev);
  2543. kfree(vpic);
  2544. goto create_irqchip_unlock;
  2545. }
  2546. } else
  2547. goto create_irqchip_unlock;
  2548. smp_wmb();
  2549. kvm->arch.vpic = vpic;
  2550. smp_wmb();
  2551. r = kvm_setup_default_irq_routing(kvm);
  2552. if (r) {
  2553. mutex_lock(&kvm->irq_lock);
  2554. kvm_ioapic_destroy(kvm);
  2555. kvm_destroy_pic(kvm);
  2556. mutex_unlock(&kvm->irq_lock);
  2557. }
  2558. create_irqchip_unlock:
  2559. mutex_unlock(&kvm->lock);
  2560. break;
  2561. }
  2562. case KVM_CREATE_PIT:
  2563. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2564. goto create_pit;
  2565. case KVM_CREATE_PIT2:
  2566. r = -EFAULT;
  2567. if (copy_from_user(&u.pit_config, argp,
  2568. sizeof(struct kvm_pit_config)))
  2569. goto out;
  2570. create_pit:
  2571. mutex_lock(&kvm->slots_lock);
  2572. r = -EEXIST;
  2573. if (kvm->arch.vpit)
  2574. goto create_pit_unlock;
  2575. r = -ENOMEM;
  2576. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2577. if (kvm->arch.vpit)
  2578. r = 0;
  2579. create_pit_unlock:
  2580. mutex_unlock(&kvm->slots_lock);
  2581. break;
  2582. case KVM_IRQ_LINE_STATUS:
  2583. case KVM_IRQ_LINE: {
  2584. struct kvm_irq_level irq_event;
  2585. r = -EFAULT;
  2586. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2587. goto out;
  2588. r = -ENXIO;
  2589. if (irqchip_in_kernel(kvm)) {
  2590. __s32 status;
  2591. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2592. irq_event.irq, irq_event.level);
  2593. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2594. r = -EFAULT;
  2595. irq_event.status = status;
  2596. if (copy_to_user(argp, &irq_event,
  2597. sizeof irq_event))
  2598. goto out;
  2599. }
  2600. r = 0;
  2601. }
  2602. break;
  2603. }
  2604. case KVM_GET_IRQCHIP: {
  2605. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2606. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2607. r = -ENOMEM;
  2608. if (!chip)
  2609. goto out;
  2610. r = -EFAULT;
  2611. if (copy_from_user(chip, argp, sizeof *chip))
  2612. goto get_irqchip_out;
  2613. r = -ENXIO;
  2614. if (!irqchip_in_kernel(kvm))
  2615. goto get_irqchip_out;
  2616. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2617. if (r)
  2618. goto get_irqchip_out;
  2619. r = -EFAULT;
  2620. if (copy_to_user(argp, chip, sizeof *chip))
  2621. goto get_irqchip_out;
  2622. r = 0;
  2623. get_irqchip_out:
  2624. kfree(chip);
  2625. if (r)
  2626. goto out;
  2627. break;
  2628. }
  2629. case KVM_SET_IRQCHIP: {
  2630. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2631. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2632. r = -ENOMEM;
  2633. if (!chip)
  2634. goto out;
  2635. r = -EFAULT;
  2636. if (copy_from_user(chip, argp, sizeof *chip))
  2637. goto set_irqchip_out;
  2638. r = -ENXIO;
  2639. if (!irqchip_in_kernel(kvm))
  2640. goto set_irqchip_out;
  2641. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2642. if (r)
  2643. goto set_irqchip_out;
  2644. r = 0;
  2645. set_irqchip_out:
  2646. kfree(chip);
  2647. if (r)
  2648. goto out;
  2649. break;
  2650. }
  2651. case KVM_GET_PIT: {
  2652. r = -EFAULT;
  2653. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2654. goto out;
  2655. r = -ENXIO;
  2656. if (!kvm->arch.vpit)
  2657. goto out;
  2658. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2659. if (r)
  2660. goto out;
  2661. r = -EFAULT;
  2662. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2663. goto out;
  2664. r = 0;
  2665. break;
  2666. }
  2667. case KVM_SET_PIT: {
  2668. r = -EFAULT;
  2669. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2670. goto out;
  2671. r = -ENXIO;
  2672. if (!kvm->arch.vpit)
  2673. goto out;
  2674. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2675. if (r)
  2676. goto out;
  2677. r = 0;
  2678. break;
  2679. }
  2680. case KVM_GET_PIT2: {
  2681. r = -ENXIO;
  2682. if (!kvm->arch.vpit)
  2683. goto out;
  2684. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2685. if (r)
  2686. goto out;
  2687. r = -EFAULT;
  2688. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2689. goto out;
  2690. r = 0;
  2691. break;
  2692. }
  2693. case KVM_SET_PIT2: {
  2694. r = -EFAULT;
  2695. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2696. goto out;
  2697. r = -ENXIO;
  2698. if (!kvm->arch.vpit)
  2699. goto out;
  2700. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2701. if (r)
  2702. goto out;
  2703. r = 0;
  2704. break;
  2705. }
  2706. case KVM_REINJECT_CONTROL: {
  2707. struct kvm_reinject_control control;
  2708. r = -EFAULT;
  2709. if (copy_from_user(&control, argp, sizeof(control)))
  2710. goto out;
  2711. r = kvm_vm_ioctl_reinject(kvm, &control);
  2712. if (r)
  2713. goto out;
  2714. r = 0;
  2715. break;
  2716. }
  2717. case KVM_XEN_HVM_CONFIG: {
  2718. r = -EFAULT;
  2719. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2720. sizeof(struct kvm_xen_hvm_config)))
  2721. goto out;
  2722. r = -EINVAL;
  2723. if (kvm->arch.xen_hvm_config.flags)
  2724. goto out;
  2725. r = 0;
  2726. break;
  2727. }
  2728. case KVM_SET_CLOCK: {
  2729. struct timespec now;
  2730. struct kvm_clock_data user_ns;
  2731. u64 now_ns;
  2732. s64 delta;
  2733. r = -EFAULT;
  2734. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2735. goto out;
  2736. r = -EINVAL;
  2737. if (user_ns.flags)
  2738. goto out;
  2739. r = 0;
  2740. ktime_get_ts(&now);
  2741. now_ns = timespec_to_ns(&now);
  2742. delta = user_ns.clock - now_ns;
  2743. kvm->arch.kvmclock_offset = delta;
  2744. break;
  2745. }
  2746. case KVM_GET_CLOCK: {
  2747. struct timespec now;
  2748. struct kvm_clock_data user_ns;
  2749. u64 now_ns;
  2750. ktime_get_ts(&now);
  2751. now_ns = timespec_to_ns(&now);
  2752. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2753. user_ns.flags = 0;
  2754. r = -EFAULT;
  2755. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2756. goto out;
  2757. r = 0;
  2758. break;
  2759. }
  2760. default:
  2761. ;
  2762. }
  2763. out:
  2764. return r;
  2765. }
  2766. static void kvm_init_msr_list(void)
  2767. {
  2768. u32 dummy[2];
  2769. unsigned i, j;
  2770. /* skip the first msrs in the list. KVM-specific */
  2771. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2772. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2773. continue;
  2774. if (j < i)
  2775. msrs_to_save[j] = msrs_to_save[i];
  2776. j++;
  2777. }
  2778. num_msrs_to_save = j;
  2779. }
  2780. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2781. const void *v)
  2782. {
  2783. if (vcpu->arch.apic &&
  2784. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2785. return 0;
  2786. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2787. }
  2788. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2789. {
  2790. if (vcpu->arch.apic &&
  2791. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2792. return 0;
  2793. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2794. }
  2795. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2796. struct kvm_segment *var, int seg)
  2797. {
  2798. kvm_x86_ops->set_segment(vcpu, var, seg);
  2799. }
  2800. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2801. struct kvm_segment *var, int seg)
  2802. {
  2803. kvm_x86_ops->get_segment(vcpu, var, seg);
  2804. }
  2805. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2806. {
  2807. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2808. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2809. }
  2810. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2811. {
  2812. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2813. access |= PFERR_FETCH_MASK;
  2814. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2815. }
  2816. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2817. {
  2818. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2819. access |= PFERR_WRITE_MASK;
  2820. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
  2821. }
  2822. /* uses this to access any guest's mapped memory without checking CPL */
  2823. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  2824. {
  2825. return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
  2826. }
  2827. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  2828. struct kvm_vcpu *vcpu, u32 access,
  2829. u32 *error)
  2830. {
  2831. void *data = val;
  2832. int r = X86EMUL_CONTINUE;
  2833. while (bytes) {
  2834. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
  2835. unsigned offset = addr & (PAGE_SIZE-1);
  2836. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2837. int ret;
  2838. if (gpa == UNMAPPED_GVA) {
  2839. r = X86EMUL_PROPAGATE_FAULT;
  2840. goto out;
  2841. }
  2842. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2843. if (ret < 0) {
  2844. r = X86EMUL_UNHANDLEABLE;
  2845. goto out;
  2846. }
  2847. bytes -= toread;
  2848. data += toread;
  2849. addr += toread;
  2850. }
  2851. out:
  2852. return r;
  2853. }
  2854. /* used for instruction fetching */
  2855. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2856. struct kvm_vcpu *vcpu, u32 *error)
  2857. {
  2858. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2859. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  2860. access | PFERR_FETCH_MASK, error);
  2861. }
  2862. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2863. struct kvm_vcpu *vcpu, u32 *error)
  2864. {
  2865. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  2866. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  2867. error);
  2868. }
  2869. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  2870. struct kvm_vcpu *vcpu, u32 *error)
  2871. {
  2872. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  2873. }
  2874. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  2875. unsigned int bytes,
  2876. struct kvm_vcpu *vcpu,
  2877. u32 *error)
  2878. {
  2879. void *data = val;
  2880. int r = X86EMUL_CONTINUE;
  2881. while (bytes) {
  2882. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
  2883. PFERR_WRITE_MASK, error);
  2884. unsigned offset = addr & (PAGE_SIZE-1);
  2885. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2886. int ret;
  2887. if (gpa == UNMAPPED_GVA) {
  2888. r = X86EMUL_PROPAGATE_FAULT;
  2889. goto out;
  2890. }
  2891. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2892. if (ret < 0) {
  2893. r = X86EMUL_UNHANDLEABLE;
  2894. goto out;
  2895. }
  2896. bytes -= towrite;
  2897. data += towrite;
  2898. addr += towrite;
  2899. }
  2900. out:
  2901. return r;
  2902. }
  2903. static int emulator_read_emulated(unsigned long addr,
  2904. void *val,
  2905. unsigned int bytes,
  2906. struct kvm_vcpu *vcpu)
  2907. {
  2908. gpa_t gpa;
  2909. u32 error_code;
  2910. if (vcpu->mmio_read_completed) {
  2911. memcpy(val, vcpu->mmio_data, bytes);
  2912. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2913. vcpu->mmio_phys_addr, *(u64 *)val);
  2914. vcpu->mmio_read_completed = 0;
  2915. return X86EMUL_CONTINUE;
  2916. }
  2917. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, &error_code);
  2918. if (gpa == UNMAPPED_GVA) {
  2919. kvm_inject_page_fault(vcpu, addr, error_code);
  2920. return X86EMUL_PROPAGATE_FAULT;
  2921. }
  2922. /* For APIC access vmexit */
  2923. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2924. goto mmio;
  2925. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  2926. == X86EMUL_CONTINUE)
  2927. return X86EMUL_CONTINUE;
  2928. mmio:
  2929. /*
  2930. * Is this MMIO handled locally?
  2931. */
  2932. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2933. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2934. return X86EMUL_CONTINUE;
  2935. }
  2936. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2937. vcpu->mmio_needed = 1;
  2938. vcpu->mmio_phys_addr = gpa;
  2939. vcpu->mmio_size = bytes;
  2940. vcpu->mmio_is_write = 0;
  2941. return X86EMUL_UNHANDLEABLE;
  2942. }
  2943. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2944. const void *val, int bytes)
  2945. {
  2946. int ret;
  2947. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2948. if (ret < 0)
  2949. return 0;
  2950. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2951. return 1;
  2952. }
  2953. static int emulator_write_emulated_onepage(unsigned long addr,
  2954. const void *val,
  2955. unsigned int bytes,
  2956. struct kvm_vcpu *vcpu)
  2957. {
  2958. gpa_t gpa;
  2959. u32 error_code;
  2960. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, &error_code);
  2961. if (gpa == UNMAPPED_GVA) {
  2962. kvm_inject_page_fault(vcpu, addr, error_code);
  2963. return X86EMUL_PROPAGATE_FAULT;
  2964. }
  2965. /* For APIC access vmexit */
  2966. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2967. goto mmio;
  2968. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2969. return X86EMUL_CONTINUE;
  2970. mmio:
  2971. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2972. /*
  2973. * Is this MMIO handled locally?
  2974. */
  2975. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2976. return X86EMUL_CONTINUE;
  2977. vcpu->mmio_needed = 1;
  2978. vcpu->mmio_phys_addr = gpa;
  2979. vcpu->mmio_size = bytes;
  2980. vcpu->mmio_is_write = 1;
  2981. memcpy(vcpu->mmio_data, val, bytes);
  2982. return X86EMUL_CONTINUE;
  2983. }
  2984. int emulator_write_emulated(unsigned long addr,
  2985. const void *val,
  2986. unsigned int bytes,
  2987. struct kvm_vcpu *vcpu)
  2988. {
  2989. /* Crossing a page boundary? */
  2990. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2991. int rc, now;
  2992. now = -addr & ~PAGE_MASK;
  2993. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2994. if (rc != X86EMUL_CONTINUE)
  2995. return rc;
  2996. addr += now;
  2997. val += now;
  2998. bytes -= now;
  2999. }
  3000. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  3001. }
  3002. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  3003. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3004. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3005. #ifdef CONFIG_X86_64
  3006. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3007. #else
  3008. # define CMPXCHG64(ptr, old, new) \
  3009. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3010. #endif
  3011. static int emulator_cmpxchg_emulated(unsigned long addr,
  3012. const void *old,
  3013. const void *new,
  3014. unsigned int bytes,
  3015. struct kvm_vcpu *vcpu)
  3016. {
  3017. gpa_t gpa;
  3018. struct page *page;
  3019. char *kaddr;
  3020. bool exchanged;
  3021. /* guests cmpxchg8b have to be emulated atomically */
  3022. if (bytes > 8 || (bytes & (bytes - 1)))
  3023. goto emul_write;
  3024. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3025. if (gpa == UNMAPPED_GVA ||
  3026. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3027. goto emul_write;
  3028. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3029. goto emul_write;
  3030. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3031. kaddr = kmap_atomic(page, KM_USER0);
  3032. kaddr += offset_in_page(gpa);
  3033. switch (bytes) {
  3034. case 1:
  3035. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3036. break;
  3037. case 2:
  3038. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3039. break;
  3040. case 4:
  3041. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3042. break;
  3043. case 8:
  3044. exchanged = CMPXCHG64(kaddr, old, new);
  3045. break;
  3046. default:
  3047. BUG();
  3048. }
  3049. kunmap_atomic(kaddr, KM_USER0);
  3050. kvm_release_page_dirty(page);
  3051. if (!exchanged)
  3052. return X86EMUL_CMPXCHG_FAILED;
  3053. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3054. return X86EMUL_CONTINUE;
  3055. emul_write:
  3056. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3057. return emulator_write_emulated(addr, new, bytes, vcpu);
  3058. }
  3059. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3060. {
  3061. /* TODO: String I/O for in kernel device */
  3062. int r;
  3063. if (vcpu->arch.pio.in)
  3064. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3065. vcpu->arch.pio.size, pd);
  3066. else
  3067. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3068. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3069. pd);
  3070. return r;
  3071. }
  3072. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3073. unsigned int count, struct kvm_vcpu *vcpu)
  3074. {
  3075. if (vcpu->arch.pio.count)
  3076. goto data_avail;
  3077. trace_kvm_pio(1, port, size, 1);
  3078. vcpu->arch.pio.port = port;
  3079. vcpu->arch.pio.in = 1;
  3080. vcpu->arch.pio.count = count;
  3081. vcpu->arch.pio.size = size;
  3082. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3083. data_avail:
  3084. memcpy(val, vcpu->arch.pio_data, size * count);
  3085. vcpu->arch.pio.count = 0;
  3086. return 1;
  3087. }
  3088. vcpu->run->exit_reason = KVM_EXIT_IO;
  3089. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3090. vcpu->run->io.size = size;
  3091. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3092. vcpu->run->io.count = count;
  3093. vcpu->run->io.port = port;
  3094. return 0;
  3095. }
  3096. static int emulator_pio_out_emulated(int size, unsigned short port,
  3097. const void *val, unsigned int count,
  3098. struct kvm_vcpu *vcpu)
  3099. {
  3100. trace_kvm_pio(0, port, size, 1);
  3101. vcpu->arch.pio.port = port;
  3102. vcpu->arch.pio.in = 0;
  3103. vcpu->arch.pio.count = count;
  3104. vcpu->arch.pio.size = size;
  3105. memcpy(vcpu->arch.pio_data, val, size * count);
  3106. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3107. vcpu->arch.pio.count = 0;
  3108. return 1;
  3109. }
  3110. vcpu->run->exit_reason = KVM_EXIT_IO;
  3111. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3112. vcpu->run->io.size = size;
  3113. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3114. vcpu->run->io.count = count;
  3115. vcpu->run->io.port = port;
  3116. return 0;
  3117. }
  3118. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3119. {
  3120. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3121. }
  3122. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3123. {
  3124. kvm_mmu_invlpg(vcpu, address);
  3125. return X86EMUL_CONTINUE;
  3126. }
  3127. int emulate_clts(struct kvm_vcpu *vcpu)
  3128. {
  3129. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3130. kvm_x86_ops->fpu_activate(vcpu);
  3131. return X86EMUL_CONTINUE;
  3132. }
  3133. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3134. {
  3135. return kvm_get_dr(ctxt->vcpu, dr, dest);
  3136. }
  3137. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3138. {
  3139. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  3140. return kvm_set_dr(ctxt->vcpu, dr, value & mask);
  3141. }
  3142. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  3143. {
  3144. u8 opcodes[4];
  3145. unsigned long rip = kvm_rip_read(vcpu);
  3146. unsigned long rip_linear;
  3147. if (!printk_ratelimit())
  3148. return;
  3149. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  3150. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu, NULL);
  3151. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  3152. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  3153. }
  3154. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  3155. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3156. {
  3157. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3158. }
  3159. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3160. {
  3161. unsigned long value;
  3162. switch (cr) {
  3163. case 0:
  3164. value = kvm_read_cr0(vcpu);
  3165. break;
  3166. case 2:
  3167. value = vcpu->arch.cr2;
  3168. break;
  3169. case 3:
  3170. value = vcpu->arch.cr3;
  3171. break;
  3172. case 4:
  3173. value = kvm_read_cr4(vcpu);
  3174. break;
  3175. case 8:
  3176. value = kvm_get_cr8(vcpu);
  3177. break;
  3178. default:
  3179. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3180. return 0;
  3181. }
  3182. return value;
  3183. }
  3184. static void emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3185. {
  3186. switch (cr) {
  3187. case 0:
  3188. kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3189. break;
  3190. case 2:
  3191. vcpu->arch.cr2 = val;
  3192. break;
  3193. case 3:
  3194. kvm_set_cr3(vcpu, val);
  3195. break;
  3196. case 4:
  3197. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3198. break;
  3199. case 8:
  3200. kvm_set_cr8(vcpu, val & 0xfUL);
  3201. break;
  3202. default:
  3203. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3204. }
  3205. }
  3206. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3207. {
  3208. return kvm_x86_ops->get_cpl(vcpu);
  3209. }
  3210. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3211. {
  3212. kvm_x86_ops->get_gdt(vcpu, dt);
  3213. }
  3214. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3215. struct kvm_vcpu *vcpu)
  3216. {
  3217. struct kvm_segment var;
  3218. kvm_get_segment(vcpu, &var, seg);
  3219. if (var.unusable)
  3220. return false;
  3221. if (var.g)
  3222. var.limit >>= 12;
  3223. set_desc_limit(desc, var.limit);
  3224. set_desc_base(desc, (unsigned long)var.base);
  3225. desc->type = var.type;
  3226. desc->s = var.s;
  3227. desc->dpl = var.dpl;
  3228. desc->p = var.present;
  3229. desc->avl = var.avl;
  3230. desc->l = var.l;
  3231. desc->d = var.db;
  3232. desc->g = var.g;
  3233. return true;
  3234. }
  3235. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3236. struct kvm_vcpu *vcpu)
  3237. {
  3238. struct kvm_segment var;
  3239. /* needed to preserve selector */
  3240. kvm_get_segment(vcpu, &var, seg);
  3241. var.base = get_desc_base(desc);
  3242. var.limit = get_desc_limit(desc);
  3243. if (desc->g)
  3244. var.limit = (var.limit << 12) | 0xfff;
  3245. var.type = desc->type;
  3246. var.present = desc->p;
  3247. var.dpl = desc->dpl;
  3248. var.db = desc->d;
  3249. var.s = desc->s;
  3250. var.l = desc->l;
  3251. var.g = desc->g;
  3252. var.avl = desc->avl;
  3253. var.present = desc->p;
  3254. var.unusable = !var.present;
  3255. var.padding = 0;
  3256. kvm_set_segment(vcpu, &var, seg);
  3257. return;
  3258. }
  3259. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3260. {
  3261. struct kvm_segment kvm_seg;
  3262. kvm_get_segment(vcpu, &kvm_seg, seg);
  3263. return kvm_seg.selector;
  3264. }
  3265. static void emulator_set_segment_selector(u16 sel, int seg,
  3266. struct kvm_vcpu *vcpu)
  3267. {
  3268. struct kvm_segment kvm_seg;
  3269. kvm_get_segment(vcpu, &kvm_seg, seg);
  3270. kvm_seg.selector = sel;
  3271. kvm_set_segment(vcpu, &kvm_seg, seg);
  3272. }
  3273. static void emulator_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  3274. {
  3275. kvm_x86_ops->set_rflags(vcpu, rflags);
  3276. }
  3277. static struct x86_emulate_ops emulate_ops = {
  3278. .read_std = kvm_read_guest_virt_system,
  3279. .write_std = kvm_write_guest_virt_system,
  3280. .fetch = kvm_fetch_guest_virt,
  3281. .read_emulated = emulator_read_emulated,
  3282. .write_emulated = emulator_write_emulated,
  3283. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3284. .pio_in_emulated = emulator_pio_in_emulated,
  3285. .pio_out_emulated = emulator_pio_out_emulated,
  3286. .get_cached_descriptor = emulator_get_cached_descriptor,
  3287. .set_cached_descriptor = emulator_set_cached_descriptor,
  3288. .get_segment_selector = emulator_get_segment_selector,
  3289. .set_segment_selector = emulator_set_segment_selector,
  3290. .get_gdt = emulator_get_gdt,
  3291. .get_cr = emulator_get_cr,
  3292. .set_cr = emulator_set_cr,
  3293. .cpl = emulator_get_cpl,
  3294. .set_rflags = emulator_set_rflags,
  3295. };
  3296. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3297. {
  3298. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3299. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3300. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3301. vcpu->arch.regs_dirty = ~0;
  3302. }
  3303. int emulate_instruction(struct kvm_vcpu *vcpu,
  3304. unsigned long cr2,
  3305. u16 error_code,
  3306. int emulation_type)
  3307. {
  3308. int r, shadow_mask;
  3309. struct decode_cache *c;
  3310. struct kvm_run *run = vcpu->run;
  3311. kvm_clear_exception_queue(vcpu);
  3312. vcpu->arch.mmio_fault_cr2 = cr2;
  3313. /*
  3314. * TODO: fix emulate.c to use guest_read/write_register
  3315. * instead of direct ->regs accesses, can save hundred cycles
  3316. * on Intel for instructions that don't read/change RSP, for
  3317. * for example.
  3318. */
  3319. cache_all_regs(vcpu);
  3320. vcpu->mmio_is_write = 0;
  3321. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3322. int cs_db, cs_l;
  3323. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3324. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3325. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3326. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3327. vcpu->arch.emulate_ctxt.mode =
  3328. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3329. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3330. ? X86EMUL_MODE_VM86 : cs_l
  3331. ? X86EMUL_MODE_PROT64 : cs_db
  3332. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3333. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3334. trace_kvm_emulate_insn_start(vcpu);
  3335. /* Only allow emulation of specific instructions on #UD
  3336. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3337. c = &vcpu->arch.emulate_ctxt.decode;
  3338. if (emulation_type & EMULTYPE_TRAP_UD) {
  3339. if (!c->twobyte)
  3340. return EMULATE_FAIL;
  3341. switch (c->b) {
  3342. case 0x01: /* VMMCALL */
  3343. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3344. return EMULATE_FAIL;
  3345. break;
  3346. case 0x34: /* sysenter */
  3347. case 0x35: /* sysexit */
  3348. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3349. return EMULATE_FAIL;
  3350. break;
  3351. case 0x05: /* syscall */
  3352. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3353. return EMULATE_FAIL;
  3354. break;
  3355. default:
  3356. return EMULATE_FAIL;
  3357. }
  3358. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3359. return EMULATE_FAIL;
  3360. }
  3361. ++vcpu->stat.insn_emulation;
  3362. if (r) {
  3363. ++vcpu->stat.insn_emulation_fail;
  3364. trace_kvm_emulate_insn_failed(vcpu);
  3365. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3366. return EMULATE_DONE;
  3367. return EMULATE_FAIL;
  3368. }
  3369. }
  3370. if (emulation_type & EMULTYPE_SKIP) {
  3371. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3372. return EMULATE_DONE;
  3373. }
  3374. restart:
  3375. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  3376. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  3377. if (r == 0)
  3378. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  3379. if (vcpu->arch.pio.count) {
  3380. if (!vcpu->arch.pio.in)
  3381. vcpu->arch.pio.count = 0;
  3382. return EMULATE_DO_MMIO;
  3383. }
  3384. if (r || vcpu->mmio_is_write) {
  3385. run->exit_reason = KVM_EXIT_MMIO;
  3386. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  3387. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  3388. run->mmio.len = vcpu->mmio_size;
  3389. run->mmio.is_write = vcpu->mmio_is_write;
  3390. }
  3391. if (r) {
  3392. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  3393. goto done;
  3394. if (!vcpu->mmio_needed) {
  3395. ++vcpu->stat.insn_emulation_fail;
  3396. trace_kvm_emulate_insn_failed(vcpu);
  3397. kvm_report_emulation_failure(vcpu, "mmio");
  3398. return EMULATE_FAIL;
  3399. }
  3400. return EMULATE_DO_MMIO;
  3401. }
  3402. if (vcpu->mmio_is_write) {
  3403. vcpu->mmio_needed = 0;
  3404. return EMULATE_DO_MMIO;
  3405. }
  3406. done:
  3407. if (vcpu->arch.exception.pending)
  3408. vcpu->arch.emulate_ctxt.restart = false;
  3409. if (vcpu->arch.emulate_ctxt.restart)
  3410. goto restart;
  3411. return EMULATE_DONE;
  3412. }
  3413. EXPORT_SYMBOL_GPL(emulate_instruction);
  3414. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3415. {
  3416. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3417. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3418. /* do not return to emulator after return from userspace */
  3419. vcpu->arch.pio.count = 0;
  3420. return ret;
  3421. }
  3422. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3423. static void bounce_off(void *info)
  3424. {
  3425. /* nothing */
  3426. }
  3427. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3428. void *data)
  3429. {
  3430. struct cpufreq_freqs *freq = data;
  3431. struct kvm *kvm;
  3432. struct kvm_vcpu *vcpu;
  3433. int i, send_ipi = 0;
  3434. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3435. return 0;
  3436. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3437. return 0;
  3438. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3439. spin_lock(&kvm_lock);
  3440. list_for_each_entry(kvm, &vm_list, vm_list) {
  3441. kvm_for_each_vcpu(i, vcpu, kvm) {
  3442. if (vcpu->cpu != freq->cpu)
  3443. continue;
  3444. if (!kvm_request_guest_time_update(vcpu))
  3445. continue;
  3446. if (vcpu->cpu != smp_processor_id())
  3447. send_ipi++;
  3448. }
  3449. }
  3450. spin_unlock(&kvm_lock);
  3451. if (freq->old < freq->new && send_ipi) {
  3452. /*
  3453. * We upscale the frequency. Must make the guest
  3454. * doesn't see old kvmclock values while running with
  3455. * the new frequency, otherwise we risk the guest sees
  3456. * time go backwards.
  3457. *
  3458. * In case we update the frequency for another cpu
  3459. * (which might be in guest context) send an interrupt
  3460. * to kick the cpu out of guest context. Next time
  3461. * guest context is entered kvmclock will be updated,
  3462. * so the guest will not see stale values.
  3463. */
  3464. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3465. }
  3466. return 0;
  3467. }
  3468. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3469. .notifier_call = kvmclock_cpufreq_notifier
  3470. };
  3471. static void kvm_timer_init(void)
  3472. {
  3473. int cpu;
  3474. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3475. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3476. CPUFREQ_TRANSITION_NOTIFIER);
  3477. for_each_online_cpu(cpu) {
  3478. unsigned long khz = cpufreq_get(cpu);
  3479. if (!khz)
  3480. khz = tsc_khz;
  3481. per_cpu(cpu_tsc_khz, cpu) = khz;
  3482. }
  3483. } else {
  3484. for_each_possible_cpu(cpu)
  3485. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3486. }
  3487. }
  3488. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  3489. static int kvm_is_in_guest(void)
  3490. {
  3491. return percpu_read(current_vcpu) != NULL;
  3492. }
  3493. static int kvm_is_user_mode(void)
  3494. {
  3495. int user_mode = 3;
  3496. if (percpu_read(current_vcpu))
  3497. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  3498. return user_mode != 0;
  3499. }
  3500. static unsigned long kvm_get_guest_ip(void)
  3501. {
  3502. unsigned long ip = 0;
  3503. if (percpu_read(current_vcpu))
  3504. ip = kvm_rip_read(percpu_read(current_vcpu));
  3505. return ip;
  3506. }
  3507. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  3508. .is_in_guest = kvm_is_in_guest,
  3509. .is_user_mode = kvm_is_user_mode,
  3510. .get_guest_ip = kvm_get_guest_ip,
  3511. };
  3512. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  3513. {
  3514. percpu_write(current_vcpu, vcpu);
  3515. }
  3516. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  3517. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  3518. {
  3519. percpu_write(current_vcpu, NULL);
  3520. }
  3521. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  3522. int kvm_arch_init(void *opaque)
  3523. {
  3524. int r;
  3525. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3526. if (kvm_x86_ops) {
  3527. printk(KERN_ERR "kvm: already loaded the other module\n");
  3528. r = -EEXIST;
  3529. goto out;
  3530. }
  3531. if (!ops->cpu_has_kvm_support()) {
  3532. printk(KERN_ERR "kvm: no hardware support\n");
  3533. r = -EOPNOTSUPP;
  3534. goto out;
  3535. }
  3536. if (ops->disabled_by_bios()) {
  3537. printk(KERN_ERR "kvm: disabled by bios\n");
  3538. r = -EOPNOTSUPP;
  3539. goto out;
  3540. }
  3541. r = kvm_mmu_module_init();
  3542. if (r)
  3543. goto out;
  3544. kvm_init_msr_list();
  3545. kvm_x86_ops = ops;
  3546. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3547. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3548. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3549. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3550. kvm_timer_init();
  3551. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  3552. return 0;
  3553. out:
  3554. return r;
  3555. }
  3556. void kvm_arch_exit(void)
  3557. {
  3558. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  3559. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3560. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3561. CPUFREQ_TRANSITION_NOTIFIER);
  3562. kvm_x86_ops = NULL;
  3563. kvm_mmu_module_exit();
  3564. }
  3565. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3566. {
  3567. ++vcpu->stat.halt_exits;
  3568. if (irqchip_in_kernel(vcpu->kvm)) {
  3569. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3570. return 1;
  3571. } else {
  3572. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3573. return 0;
  3574. }
  3575. }
  3576. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3577. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3578. unsigned long a1)
  3579. {
  3580. if (is_long_mode(vcpu))
  3581. return a0;
  3582. else
  3583. return a0 | ((gpa_t)a1 << 32);
  3584. }
  3585. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  3586. {
  3587. u64 param, ingpa, outgpa, ret;
  3588. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  3589. bool fast, longmode;
  3590. int cs_db, cs_l;
  3591. /*
  3592. * hypercall generates UD from non zero cpl and real mode
  3593. * per HYPER-V spec
  3594. */
  3595. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  3596. kvm_queue_exception(vcpu, UD_VECTOR);
  3597. return 0;
  3598. }
  3599. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3600. longmode = is_long_mode(vcpu) && cs_l == 1;
  3601. if (!longmode) {
  3602. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  3603. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  3604. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  3605. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  3606. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  3607. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  3608. }
  3609. #ifdef CONFIG_X86_64
  3610. else {
  3611. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3612. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3613. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  3614. }
  3615. #endif
  3616. code = param & 0xffff;
  3617. fast = (param >> 16) & 0x1;
  3618. rep_cnt = (param >> 32) & 0xfff;
  3619. rep_idx = (param >> 48) & 0xfff;
  3620. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  3621. switch (code) {
  3622. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  3623. kvm_vcpu_on_spin(vcpu);
  3624. break;
  3625. default:
  3626. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  3627. break;
  3628. }
  3629. ret = res | (((u64)rep_done & 0xfff) << 32);
  3630. if (longmode) {
  3631. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3632. } else {
  3633. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  3634. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  3635. }
  3636. return 1;
  3637. }
  3638. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3639. {
  3640. unsigned long nr, a0, a1, a2, a3, ret;
  3641. int r = 1;
  3642. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  3643. return kvm_hv_hypercall(vcpu);
  3644. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3645. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3646. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3647. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3648. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3649. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3650. if (!is_long_mode(vcpu)) {
  3651. nr &= 0xFFFFFFFF;
  3652. a0 &= 0xFFFFFFFF;
  3653. a1 &= 0xFFFFFFFF;
  3654. a2 &= 0xFFFFFFFF;
  3655. a3 &= 0xFFFFFFFF;
  3656. }
  3657. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3658. ret = -KVM_EPERM;
  3659. goto out;
  3660. }
  3661. switch (nr) {
  3662. case KVM_HC_VAPIC_POLL_IRQ:
  3663. ret = 0;
  3664. break;
  3665. case KVM_HC_MMU_OP:
  3666. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3667. break;
  3668. default:
  3669. ret = -KVM_ENOSYS;
  3670. break;
  3671. }
  3672. out:
  3673. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3674. ++vcpu->stat.hypercalls;
  3675. return r;
  3676. }
  3677. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3678. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3679. {
  3680. char instruction[3];
  3681. unsigned long rip = kvm_rip_read(vcpu);
  3682. /*
  3683. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3684. * to ensure that the updated hypercall appears atomically across all
  3685. * VCPUs.
  3686. */
  3687. kvm_mmu_zap_all(vcpu->kvm);
  3688. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3689. return emulator_write_emulated(rip, instruction, 3, vcpu);
  3690. }
  3691. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3692. {
  3693. struct desc_ptr dt = { limit, base };
  3694. kvm_x86_ops->set_gdt(vcpu, &dt);
  3695. }
  3696. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3697. {
  3698. struct desc_ptr dt = { limit, base };
  3699. kvm_x86_ops->set_idt(vcpu, &dt);
  3700. }
  3701. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3702. {
  3703. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3704. int j, nent = vcpu->arch.cpuid_nent;
  3705. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3706. /* when no next entry is found, the current entry[i] is reselected */
  3707. for (j = i + 1; ; j = (j + 1) % nent) {
  3708. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3709. if (ej->function == e->function) {
  3710. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3711. return j;
  3712. }
  3713. }
  3714. return 0; /* silence gcc, even though control never reaches here */
  3715. }
  3716. /* find an entry with matching function, matching index (if needed), and that
  3717. * should be read next (if it's stateful) */
  3718. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3719. u32 function, u32 index)
  3720. {
  3721. if (e->function != function)
  3722. return 0;
  3723. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3724. return 0;
  3725. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3726. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3727. return 0;
  3728. return 1;
  3729. }
  3730. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3731. u32 function, u32 index)
  3732. {
  3733. int i;
  3734. struct kvm_cpuid_entry2 *best = NULL;
  3735. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3736. struct kvm_cpuid_entry2 *e;
  3737. e = &vcpu->arch.cpuid_entries[i];
  3738. if (is_matching_cpuid_entry(e, function, index)) {
  3739. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3740. move_to_next_stateful_cpuid_entry(vcpu, i);
  3741. best = e;
  3742. break;
  3743. }
  3744. /*
  3745. * Both basic or both extended?
  3746. */
  3747. if (((e->function ^ function) & 0x80000000) == 0)
  3748. if (!best || e->function > best->function)
  3749. best = e;
  3750. }
  3751. return best;
  3752. }
  3753. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3754. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3755. {
  3756. struct kvm_cpuid_entry2 *best;
  3757. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  3758. if (!best || best->eax < 0x80000008)
  3759. goto not_found;
  3760. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3761. if (best)
  3762. return best->eax & 0xff;
  3763. not_found:
  3764. return 36;
  3765. }
  3766. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3767. {
  3768. u32 function, index;
  3769. struct kvm_cpuid_entry2 *best;
  3770. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3771. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3772. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3773. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3774. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3775. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3776. best = kvm_find_cpuid_entry(vcpu, function, index);
  3777. if (best) {
  3778. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3779. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3780. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3781. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3782. }
  3783. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3784. trace_kvm_cpuid(function,
  3785. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3786. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3787. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3788. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3789. }
  3790. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3791. /*
  3792. * Check if userspace requested an interrupt window, and that the
  3793. * interrupt window is open.
  3794. *
  3795. * No need to exit to userspace if we already have an interrupt queued.
  3796. */
  3797. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3798. {
  3799. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3800. vcpu->run->request_interrupt_window &&
  3801. kvm_arch_interrupt_allowed(vcpu));
  3802. }
  3803. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3804. {
  3805. struct kvm_run *kvm_run = vcpu->run;
  3806. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3807. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3808. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3809. if (irqchip_in_kernel(vcpu->kvm))
  3810. kvm_run->ready_for_interrupt_injection = 1;
  3811. else
  3812. kvm_run->ready_for_interrupt_injection =
  3813. kvm_arch_interrupt_allowed(vcpu) &&
  3814. !kvm_cpu_has_interrupt(vcpu) &&
  3815. !kvm_event_needs_reinjection(vcpu);
  3816. }
  3817. static void vapic_enter(struct kvm_vcpu *vcpu)
  3818. {
  3819. struct kvm_lapic *apic = vcpu->arch.apic;
  3820. struct page *page;
  3821. if (!apic || !apic->vapic_addr)
  3822. return;
  3823. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3824. vcpu->arch.apic->vapic_page = page;
  3825. }
  3826. static void vapic_exit(struct kvm_vcpu *vcpu)
  3827. {
  3828. struct kvm_lapic *apic = vcpu->arch.apic;
  3829. int idx;
  3830. if (!apic || !apic->vapic_addr)
  3831. return;
  3832. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3833. kvm_release_page_dirty(apic->vapic_page);
  3834. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3835. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3836. }
  3837. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3838. {
  3839. int max_irr, tpr;
  3840. if (!kvm_x86_ops->update_cr8_intercept)
  3841. return;
  3842. if (!vcpu->arch.apic)
  3843. return;
  3844. if (!vcpu->arch.apic->vapic_addr)
  3845. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3846. else
  3847. max_irr = -1;
  3848. if (max_irr != -1)
  3849. max_irr >>= 4;
  3850. tpr = kvm_lapic_get_cr8(vcpu);
  3851. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3852. }
  3853. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3854. {
  3855. /* try to reinject previous events if any */
  3856. if (vcpu->arch.exception.pending) {
  3857. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  3858. vcpu->arch.exception.has_error_code,
  3859. vcpu->arch.exception.error_code);
  3860. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3861. vcpu->arch.exception.has_error_code,
  3862. vcpu->arch.exception.error_code,
  3863. vcpu->arch.exception.reinject);
  3864. return;
  3865. }
  3866. if (vcpu->arch.nmi_injected) {
  3867. kvm_x86_ops->set_nmi(vcpu);
  3868. return;
  3869. }
  3870. if (vcpu->arch.interrupt.pending) {
  3871. kvm_x86_ops->set_irq(vcpu);
  3872. return;
  3873. }
  3874. /* try to inject new event if pending */
  3875. if (vcpu->arch.nmi_pending) {
  3876. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3877. vcpu->arch.nmi_pending = false;
  3878. vcpu->arch.nmi_injected = true;
  3879. kvm_x86_ops->set_nmi(vcpu);
  3880. }
  3881. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3882. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3883. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3884. false);
  3885. kvm_x86_ops->set_irq(vcpu);
  3886. }
  3887. }
  3888. }
  3889. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3890. {
  3891. int r;
  3892. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3893. vcpu->run->request_interrupt_window;
  3894. if (vcpu->requests)
  3895. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3896. kvm_mmu_unload(vcpu);
  3897. r = kvm_mmu_reload(vcpu);
  3898. if (unlikely(r))
  3899. goto out;
  3900. if (vcpu->requests) {
  3901. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3902. __kvm_migrate_timers(vcpu);
  3903. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3904. kvm_write_guest_time(vcpu);
  3905. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3906. kvm_mmu_sync_roots(vcpu);
  3907. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3908. kvm_x86_ops->tlb_flush(vcpu);
  3909. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3910. &vcpu->requests)) {
  3911. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3912. r = 0;
  3913. goto out;
  3914. }
  3915. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3916. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3917. r = 0;
  3918. goto out;
  3919. }
  3920. if (test_and_clear_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests)) {
  3921. vcpu->fpu_active = 0;
  3922. kvm_x86_ops->fpu_deactivate(vcpu);
  3923. }
  3924. }
  3925. preempt_disable();
  3926. kvm_x86_ops->prepare_guest_switch(vcpu);
  3927. if (vcpu->fpu_active)
  3928. kvm_load_guest_fpu(vcpu);
  3929. local_irq_disable();
  3930. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3931. smp_mb__after_clear_bit();
  3932. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3933. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3934. local_irq_enable();
  3935. preempt_enable();
  3936. r = 1;
  3937. goto out;
  3938. }
  3939. inject_pending_event(vcpu);
  3940. /* enable NMI/IRQ window open exits if needed */
  3941. if (vcpu->arch.nmi_pending)
  3942. kvm_x86_ops->enable_nmi_window(vcpu);
  3943. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3944. kvm_x86_ops->enable_irq_window(vcpu);
  3945. if (kvm_lapic_enabled(vcpu)) {
  3946. update_cr8_intercept(vcpu);
  3947. kvm_lapic_sync_to_vapic(vcpu);
  3948. }
  3949. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3950. kvm_guest_enter();
  3951. if (unlikely(vcpu->arch.switch_db_regs)) {
  3952. set_debugreg(0, 7);
  3953. set_debugreg(vcpu->arch.eff_db[0], 0);
  3954. set_debugreg(vcpu->arch.eff_db[1], 1);
  3955. set_debugreg(vcpu->arch.eff_db[2], 2);
  3956. set_debugreg(vcpu->arch.eff_db[3], 3);
  3957. }
  3958. trace_kvm_entry(vcpu->vcpu_id);
  3959. kvm_x86_ops->run(vcpu);
  3960. /*
  3961. * If the guest has used debug registers, at least dr7
  3962. * will be disabled while returning to the host.
  3963. * If we don't have active breakpoints in the host, we don't
  3964. * care about the messed up debug address registers. But if
  3965. * we have some of them active, restore the old state.
  3966. */
  3967. if (hw_breakpoint_active())
  3968. hw_breakpoint_restore();
  3969. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3970. local_irq_enable();
  3971. ++vcpu->stat.exits;
  3972. /*
  3973. * We must have an instruction between local_irq_enable() and
  3974. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3975. * the interrupt shadow. The stat.exits increment will do nicely.
  3976. * But we need to prevent reordering, hence this barrier():
  3977. */
  3978. barrier();
  3979. kvm_guest_exit();
  3980. preempt_enable();
  3981. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3982. /*
  3983. * Profile KVM exit RIPs:
  3984. */
  3985. if (unlikely(prof_on == KVM_PROFILING)) {
  3986. unsigned long rip = kvm_rip_read(vcpu);
  3987. profile_hit(KVM_PROFILING, (void *)rip);
  3988. }
  3989. kvm_lapic_sync_from_vapic(vcpu);
  3990. r = kvm_x86_ops->handle_exit(vcpu);
  3991. out:
  3992. return r;
  3993. }
  3994. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3995. {
  3996. int r;
  3997. struct kvm *kvm = vcpu->kvm;
  3998. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3999. pr_debug("vcpu %d received sipi with vector # %x\n",
  4000. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4001. kvm_lapic_reset(vcpu);
  4002. r = kvm_arch_vcpu_reset(vcpu);
  4003. if (r)
  4004. return r;
  4005. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4006. }
  4007. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4008. vapic_enter(vcpu);
  4009. r = 1;
  4010. while (r > 0) {
  4011. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4012. r = vcpu_enter_guest(vcpu);
  4013. else {
  4014. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4015. kvm_vcpu_block(vcpu);
  4016. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4017. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  4018. {
  4019. switch(vcpu->arch.mp_state) {
  4020. case KVM_MP_STATE_HALTED:
  4021. vcpu->arch.mp_state =
  4022. KVM_MP_STATE_RUNNABLE;
  4023. case KVM_MP_STATE_RUNNABLE:
  4024. break;
  4025. case KVM_MP_STATE_SIPI_RECEIVED:
  4026. default:
  4027. r = -EINTR;
  4028. break;
  4029. }
  4030. }
  4031. }
  4032. if (r <= 0)
  4033. break;
  4034. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4035. if (kvm_cpu_has_pending_timer(vcpu))
  4036. kvm_inject_pending_timer_irqs(vcpu);
  4037. if (dm_request_for_irq_injection(vcpu)) {
  4038. r = -EINTR;
  4039. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4040. ++vcpu->stat.request_irq_exits;
  4041. }
  4042. if (signal_pending(current)) {
  4043. r = -EINTR;
  4044. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4045. ++vcpu->stat.signal_exits;
  4046. }
  4047. if (need_resched()) {
  4048. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4049. kvm_resched(vcpu);
  4050. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4051. }
  4052. }
  4053. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4054. post_kvm_run_save(vcpu);
  4055. vapic_exit(vcpu);
  4056. return r;
  4057. }
  4058. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4059. {
  4060. int r;
  4061. sigset_t sigsaved;
  4062. vcpu_load(vcpu);
  4063. if (vcpu->sigset_active)
  4064. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4065. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4066. kvm_vcpu_block(vcpu);
  4067. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4068. r = -EAGAIN;
  4069. goto out;
  4070. }
  4071. /* re-sync apic's tpr */
  4072. if (!irqchip_in_kernel(vcpu->kvm))
  4073. kvm_set_cr8(vcpu, kvm_run->cr8);
  4074. if (vcpu->arch.pio.count || vcpu->mmio_needed ||
  4075. vcpu->arch.emulate_ctxt.restart) {
  4076. if (vcpu->mmio_needed) {
  4077. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4078. vcpu->mmio_read_completed = 1;
  4079. vcpu->mmio_needed = 0;
  4080. }
  4081. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4082. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4083. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4084. if (r == EMULATE_DO_MMIO) {
  4085. r = 0;
  4086. goto out;
  4087. }
  4088. }
  4089. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4090. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4091. kvm_run->hypercall.ret);
  4092. r = __vcpu_run(vcpu);
  4093. out:
  4094. if (vcpu->sigset_active)
  4095. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4096. vcpu_put(vcpu);
  4097. return r;
  4098. }
  4099. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4100. {
  4101. vcpu_load(vcpu);
  4102. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4103. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4104. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4105. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4106. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4107. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4108. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4109. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4110. #ifdef CONFIG_X86_64
  4111. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4112. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4113. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4114. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4115. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4116. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4117. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4118. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4119. #endif
  4120. regs->rip = kvm_rip_read(vcpu);
  4121. regs->rflags = kvm_get_rflags(vcpu);
  4122. vcpu_put(vcpu);
  4123. return 0;
  4124. }
  4125. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4126. {
  4127. vcpu_load(vcpu);
  4128. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4129. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4130. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4131. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4132. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4133. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4134. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4135. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4136. #ifdef CONFIG_X86_64
  4137. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4138. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4139. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4140. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4141. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4142. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4143. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4144. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4145. #endif
  4146. kvm_rip_write(vcpu, regs->rip);
  4147. kvm_set_rflags(vcpu, regs->rflags);
  4148. vcpu->arch.exception.pending = false;
  4149. vcpu_put(vcpu);
  4150. return 0;
  4151. }
  4152. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4153. {
  4154. struct kvm_segment cs;
  4155. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4156. *db = cs.db;
  4157. *l = cs.l;
  4158. }
  4159. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4160. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4161. struct kvm_sregs *sregs)
  4162. {
  4163. struct desc_ptr dt;
  4164. vcpu_load(vcpu);
  4165. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4166. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4167. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4168. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4169. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4170. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4171. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4172. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4173. kvm_x86_ops->get_idt(vcpu, &dt);
  4174. sregs->idt.limit = dt.size;
  4175. sregs->idt.base = dt.address;
  4176. kvm_x86_ops->get_gdt(vcpu, &dt);
  4177. sregs->gdt.limit = dt.size;
  4178. sregs->gdt.base = dt.address;
  4179. sregs->cr0 = kvm_read_cr0(vcpu);
  4180. sregs->cr2 = vcpu->arch.cr2;
  4181. sregs->cr3 = vcpu->arch.cr3;
  4182. sregs->cr4 = kvm_read_cr4(vcpu);
  4183. sregs->cr8 = kvm_get_cr8(vcpu);
  4184. sregs->efer = vcpu->arch.efer;
  4185. sregs->apic_base = kvm_get_apic_base(vcpu);
  4186. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4187. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4188. set_bit(vcpu->arch.interrupt.nr,
  4189. (unsigned long *)sregs->interrupt_bitmap);
  4190. vcpu_put(vcpu);
  4191. return 0;
  4192. }
  4193. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4194. struct kvm_mp_state *mp_state)
  4195. {
  4196. vcpu_load(vcpu);
  4197. mp_state->mp_state = vcpu->arch.mp_state;
  4198. vcpu_put(vcpu);
  4199. return 0;
  4200. }
  4201. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4202. struct kvm_mp_state *mp_state)
  4203. {
  4204. vcpu_load(vcpu);
  4205. vcpu->arch.mp_state = mp_state->mp_state;
  4206. vcpu_put(vcpu);
  4207. return 0;
  4208. }
  4209. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4210. bool has_error_code, u32 error_code)
  4211. {
  4212. int cs_db, cs_l, ret;
  4213. cache_all_regs(vcpu);
  4214. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4215. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  4216. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  4217. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  4218. vcpu->arch.emulate_ctxt.mode =
  4219. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  4220. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  4221. ? X86EMUL_MODE_VM86 : cs_l
  4222. ? X86EMUL_MODE_PROT64 : cs_db
  4223. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  4224. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops,
  4225. tss_selector, reason, has_error_code,
  4226. error_code);
  4227. if (ret)
  4228. return EMULATE_FAIL;
  4229. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4230. return EMULATE_DONE;
  4231. }
  4232. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4233. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4234. struct kvm_sregs *sregs)
  4235. {
  4236. int mmu_reset_needed = 0;
  4237. int pending_vec, max_bits;
  4238. struct desc_ptr dt;
  4239. vcpu_load(vcpu);
  4240. dt.size = sregs->idt.limit;
  4241. dt.address = sregs->idt.base;
  4242. kvm_x86_ops->set_idt(vcpu, &dt);
  4243. dt.size = sregs->gdt.limit;
  4244. dt.address = sregs->gdt.base;
  4245. kvm_x86_ops->set_gdt(vcpu, &dt);
  4246. vcpu->arch.cr2 = sregs->cr2;
  4247. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4248. vcpu->arch.cr3 = sregs->cr3;
  4249. kvm_set_cr8(vcpu, sregs->cr8);
  4250. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4251. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4252. kvm_set_apic_base(vcpu, sregs->apic_base);
  4253. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4254. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4255. vcpu->arch.cr0 = sregs->cr0;
  4256. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4257. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4258. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4259. load_pdptrs(vcpu, vcpu->arch.cr3);
  4260. mmu_reset_needed = 1;
  4261. }
  4262. if (mmu_reset_needed)
  4263. kvm_mmu_reset_context(vcpu);
  4264. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4265. pending_vec = find_first_bit(
  4266. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4267. if (pending_vec < max_bits) {
  4268. kvm_queue_interrupt(vcpu, pending_vec, false);
  4269. pr_debug("Set back pending irq %d\n", pending_vec);
  4270. if (irqchip_in_kernel(vcpu->kvm))
  4271. kvm_pic_clear_isr_ack(vcpu->kvm);
  4272. }
  4273. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4274. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4275. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4276. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4277. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4278. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4279. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4280. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4281. update_cr8_intercept(vcpu);
  4282. /* Older userspace won't unhalt the vcpu on reset. */
  4283. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4284. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4285. !is_protmode(vcpu))
  4286. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4287. vcpu_put(vcpu);
  4288. return 0;
  4289. }
  4290. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4291. struct kvm_guest_debug *dbg)
  4292. {
  4293. unsigned long rflags;
  4294. int i, r;
  4295. vcpu_load(vcpu);
  4296. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4297. r = -EBUSY;
  4298. if (vcpu->arch.exception.pending)
  4299. goto unlock_out;
  4300. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4301. kvm_queue_exception(vcpu, DB_VECTOR);
  4302. else
  4303. kvm_queue_exception(vcpu, BP_VECTOR);
  4304. }
  4305. /*
  4306. * Read rflags as long as potentially injected trace flags are still
  4307. * filtered out.
  4308. */
  4309. rflags = kvm_get_rflags(vcpu);
  4310. vcpu->guest_debug = dbg->control;
  4311. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4312. vcpu->guest_debug = 0;
  4313. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4314. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4315. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4316. vcpu->arch.switch_db_regs =
  4317. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4318. } else {
  4319. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4320. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4321. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4322. }
  4323. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4324. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4325. get_segment_base(vcpu, VCPU_SREG_CS);
  4326. /*
  4327. * Trigger an rflags update that will inject or remove the trace
  4328. * flags.
  4329. */
  4330. kvm_set_rflags(vcpu, rflags);
  4331. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4332. r = 0;
  4333. unlock_out:
  4334. vcpu_put(vcpu);
  4335. return r;
  4336. }
  4337. /*
  4338. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4339. * we have asm/x86/processor.h
  4340. */
  4341. struct fxsave {
  4342. u16 cwd;
  4343. u16 swd;
  4344. u16 twd;
  4345. u16 fop;
  4346. u64 rip;
  4347. u64 rdp;
  4348. u32 mxcsr;
  4349. u32 mxcsr_mask;
  4350. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4351. #ifdef CONFIG_X86_64
  4352. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4353. #else
  4354. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4355. #endif
  4356. };
  4357. /*
  4358. * Translate a guest virtual address to a guest physical address.
  4359. */
  4360. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4361. struct kvm_translation *tr)
  4362. {
  4363. unsigned long vaddr = tr->linear_address;
  4364. gpa_t gpa;
  4365. int idx;
  4366. vcpu_load(vcpu);
  4367. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4368. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4369. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4370. tr->physical_address = gpa;
  4371. tr->valid = gpa != UNMAPPED_GVA;
  4372. tr->writeable = 1;
  4373. tr->usermode = 0;
  4374. vcpu_put(vcpu);
  4375. return 0;
  4376. }
  4377. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4378. {
  4379. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4380. vcpu_load(vcpu);
  4381. memcpy(fpu->fpr, fxsave->st_space, 128);
  4382. fpu->fcw = fxsave->cwd;
  4383. fpu->fsw = fxsave->swd;
  4384. fpu->ftwx = fxsave->twd;
  4385. fpu->last_opcode = fxsave->fop;
  4386. fpu->last_ip = fxsave->rip;
  4387. fpu->last_dp = fxsave->rdp;
  4388. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4389. vcpu_put(vcpu);
  4390. return 0;
  4391. }
  4392. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4393. {
  4394. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4395. vcpu_load(vcpu);
  4396. memcpy(fxsave->st_space, fpu->fpr, 128);
  4397. fxsave->cwd = fpu->fcw;
  4398. fxsave->swd = fpu->fsw;
  4399. fxsave->twd = fpu->ftwx;
  4400. fxsave->fop = fpu->last_opcode;
  4401. fxsave->rip = fpu->last_ip;
  4402. fxsave->rdp = fpu->last_dp;
  4403. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4404. vcpu_put(vcpu);
  4405. return 0;
  4406. }
  4407. void fx_init(struct kvm_vcpu *vcpu)
  4408. {
  4409. unsigned after_mxcsr_mask;
  4410. /*
  4411. * Touch the fpu the first time in non atomic context as if
  4412. * this is the first fpu instruction the exception handler
  4413. * will fire before the instruction returns and it'll have to
  4414. * allocate ram with GFP_KERNEL.
  4415. */
  4416. if (!used_math())
  4417. kvm_fx_save(&vcpu->arch.host_fx_image);
  4418. /* Initialize guest FPU by resetting ours and saving into guest's */
  4419. preempt_disable();
  4420. kvm_fx_save(&vcpu->arch.host_fx_image);
  4421. kvm_fx_finit();
  4422. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4423. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4424. preempt_enable();
  4425. vcpu->arch.cr0 |= X86_CR0_ET;
  4426. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4427. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4428. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4429. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4430. }
  4431. EXPORT_SYMBOL_GPL(fx_init);
  4432. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4433. {
  4434. if (vcpu->guest_fpu_loaded)
  4435. return;
  4436. vcpu->guest_fpu_loaded = 1;
  4437. kvm_fx_save(&vcpu->arch.host_fx_image);
  4438. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4439. trace_kvm_fpu(1);
  4440. }
  4441. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4442. {
  4443. if (!vcpu->guest_fpu_loaded)
  4444. return;
  4445. vcpu->guest_fpu_loaded = 0;
  4446. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4447. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4448. ++vcpu->stat.fpu_reload;
  4449. set_bit(KVM_REQ_DEACTIVATE_FPU, &vcpu->requests);
  4450. trace_kvm_fpu(0);
  4451. }
  4452. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4453. {
  4454. if (vcpu->arch.time_page) {
  4455. kvm_release_page_dirty(vcpu->arch.time_page);
  4456. vcpu->arch.time_page = NULL;
  4457. }
  4458. kvm_x86_ops->vcpu_free(vcpu);
  4459. }
  4460. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4461. unsigned int id)
  4462. {
  4463. return kvm_x86_ops->vcpu_create(kvm, id);
  4464. }
  4465. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4466. {
  4467. int r;
  4468. /* We do fxsave: this must be aligned. */
  4469. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4470. vcpu->arch.mtrr_state.have_fixed = 1;
  4471. vcpu_load(vcpu);
  4472. r = kvm_arch_vcpu_reset(vcpu);
  4473. if (r == 0)
  4474. r = kvm_mmu_setup(vcpu);
  4475. vcpu_put(vcpu);
  4476. if (r < 0)
  4477. goto free_vcpu;
  4478. return 0;
  4479. free_vcpu:
  4480. kvm_x86_ops->vcpu_free(vcpu);
  4481. return r;
  4482. }
  4483. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4484. {
  4485. vcpu_load(vcpu);
  4486. kvm_mmu_unload(vcpu);
  4487. vcpu_put(vcpu);
  4488. kvm_x86_ops->vcpu_free(vcpu);
  4489. }
  4490. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4491. {
  4492. vcpu->arch.nmi_pending = false;
  4493. vcpu->arch.nmi_injected = false;
  4494. vcpu->arch.switch_db_regs = 0;
  4495. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4496. vcpu->arch.dr6 = DR6_FIXED_1;
  4497. vcpu->arch.dr7 = DR7_FIXED_1;
  4498. return kvm_x86_ops->vcpu_reset(vcpu);
  4499. }
  4500. int kvm_arch_hardware_enable(void *garbage)
  4501. {
  4502. /*
  4503. * Since this may be called from a hotplug notifcation,
  4504. * we can't get the CPU frequency directly.
  4505. */
  4506. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4507. int cpu = raw_smp_processor_id();
  4508. per_cpu(cpu_tsc_khz, cpu) = 0;
  4509. }
  4510. kvm_shared_msr_cpu_online();
  4511. return kvm_x86_ops->hardware_enable(garbage);
  4512. }
  4513. void kvm_arch_hardware_disable(void *garbage)
  4514. {
  4515. kvm_x86_ops->hardware_disable(garbage);
  4516. drop_user_return_notifiers(garbage);
  4517. }
  4518. int kvm_arch_hardware_setup(void)
  4519. {
  4520. return kvm_x86_ops->hardware_setup();
  4521. }
  4522. void kvm_arch_hardware_unsetup(void)
  4523. {
  4524. kvm_x86_ops->hardware_unsetup();
  4525. }
  4526. void kvm_arch_check_processor_compat(void *rtn)
  4527. {
  4528. kvm_x86_ops->check_processor_compatibility(rtn);
  4529. }
  4530. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4531. {
  4532. struct page *page;
  4533. struct kvm *kvm;
  4534. int r;
  4535. BUG_ON(vcpu->kvm == NULL);
  4536. kvm = vcpu->kvm;
  4537. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4538. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4539. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4540. else
  4541. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4542. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4543. if (!page) {
  4544. r = -ENOMEM;
  4545. goto fail;
  4546. }
  4547. vcpu->arch.pio_data = page_address(page);
  4548. r = kvm_mmu_create(vcpu);
  4549. if (r < 0)
  4550. goto fail_free_pio_data;
  4551. if (irqchip_in_kernel(kvm)) {
  4552. r = kvm_create_lapic(vcpu);
  4553. if (r < 0)
  4554. goto fail_mmu_destroy;
  4555. }
  4556. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4557. GFP_KERNEL);
  4558. if (!vcpu->arch.mce_banks) {
  4559. r = -ENOMEM;
  4560. goto fail_free_lapic;
  4561. }
  4562. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4563. return 0;
  4564. fail_free_lapic:
  4565. kvm_free_lapic(vcpu);
  4566. fail_mmu_destroy:
  4567. kvm_mmu_destroy(vcpu);
  4568. fail_free_pio_data:
  4569. free_page((unsigned long)vcpu->arch.pio_data);
  4570. fail:
  4571. return r;
  4572. }
  4573. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4574. {
  4575. int idx;
  4576. kfree(vcpu->arch.mce_banks);
  4577. kvm_free_lapic(vcpu);
  4578. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4579. kvm_mmu_destroy(vcpu);
  4580. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4581. free_page((unsigned long)vcpu->arch.pio_data);
  4582. }
  4583. struct kvm *kvm_arch_create_vm(void)
  4584. {
  4585. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4586. if (!kvm)
  4587. return ERR_PTR(-ENOMEM);
  4588. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4589. if (!kvm->arch.aliases) {
  4590. kfree(kvm);
  4591. return ERR_PTR(-ENOMEM);
  4592. }
  4593. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4594. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4595. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4596. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4597. rdtscll(kvm->arch.vm_init_tsc);
  4598. return kvm;
  4599. }
  4600. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4601. {
  4602. vcpu_load(vcpu);
  4603. kvm_mmu_unload(vcpu);
  4604. vcpu_put(vcpu);
  4605. }
  4606. static void kvm_free_vcpus(struct kvm *kvm)
  4607. {
  4608. unsigned int i;
  4609. struct kvm_vcpu *vcpu;
  4610. /*
  4611. * Unpin any mmu pages first.
  4612. */
  4613. kvm_for_each_vcpu(i, vcpu, kvm)
  4614. kvm_unload_vcpu_mmu(vcpu);
  4615. kvm_for_each_vcpu(i, vcpu, kvm)
  4616. kvm_arch_vcpu_free(vcpu);
  4617. mutex_lock(&kvm->lock);
  4618. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4619. kvm->vcpus[i] = NULL;
  4620. atomic_set(&kvm->online_vcpus, 0);
  4621. mutex_unlock(&kvm->lock);
  4622. }
  4623. void kvm_arch_sync_events(struct kvm *kvm)
  4624. {
  4625. kvm_free_all_assigned_devices(kvm);
  4626. }
  4627. void kvm_arch_destroy_vm(struct kvm *kvm)
  4628. {
  4629. kvm_iommu_unmap_guest(kvm);
  4630. kvm_free_pit(kvm);
  4631. kfree(kvm->arch.vpic);
  4632. kfree(kvm->arch.vioapic);
  4633. kvm_free_vcpus(kvm);
  4634. kvm_free_physmem(kvm);
  4635. if (kvm->arch.apic_access_page)
  4636. put_page(kvm->arch.apic_access_page);
  4637. if (kvm->arch.ept_identity_pagetable)
  4638. put_page(kvm->arch.ept_identity_pagetable);
  4639. cleanup_srcu_struct(&kvm->srcu);
  4640. kfree(kvm->arch.aliases);
  4641. kfree(kvm);
  4642. }
  4643. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4644. struct kvm_memory_slot *memslot,
  4645. struct kvm_memory_slot old,
  4646. struct kvm_userspace_memory_region *mem,
  4647. int user_alloc)
  4648. {
  4649. int npages = memslot->npages;
  4650. /*To keep backward compatibility with older userspace,
  4651. *x86 needs to hanlde !user_alloc case.
  4652. */
  4653. if (!user_alloc) {
  4654. if (npages && !old.rmap) {
  4655. unsigned long userspace_addr;
  4656. down_write(&current->mm->mmap_sem);
  4657. userspace_addr = do_mmap(NULL, 0,
  4658. npages * PAGE_SIZE,
  4659. PROT_READ | PROT_WRITE,
  4660. MAP_PRIVATE | MAP_ANONYMOUS,
  4661. 0);
  4662. up_write(&current->mm->mmap_sem);
  4663. if (IS_ERR((void *)userspace_addr))
  4664. return PTR_ERR((void *)userspace_addr);
  4665. memslot->userspace_addr = userspace_addr;
  4666. }
  4667. }
  4668. return 0;
  4669. }
  4670. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4671. struct kvm_userspace_memory_region *mem,
  4672. struct kvm_memory_slot old,
  4673. int user_alloc)
  4674. {
  4675. int npages = mem->memory_size >> PAGE_SHIFT;
  4676. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4677. int ret;
  4678. down_write(&current->mm->mmap_sem);
  4679. ret = do_munmap(current->mm, old.userspace_addr,
  4680. old.npages * PAGE_SIZE);
  4681. up_write(&current->mm->mmap_sem);
  4682. if (ret < 0)
  4683. printk(KERN_WARNING
  4684. "kvm_vm_ioctl_set_memory_region: "
  4685. "failed to munmap memory\n");
  4686. }
  4687. spin_lock(&kvm->mmu_lock);
  4688. if (!kvm->arch.n_requested_mmu_pages) {
  4689. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4690. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4691. }
  4692. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4693. spin_unlock(&kvm->mmu_lock);
  4694. }
  4695. void kvm_arch_flush_shadow(struct kvm *kvm)
  4696. {
  4697. kvm_mmu_zap_all(kvm);
  4698. kvm_reload_remote_mmus(kvm);
  4699. }
  4700. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4701. {
  4702. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4703. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4704. || vcpu->arch.nmi_pending ||
  4705. (kvm_arch_interrupt_allowed(vcpu) &&
  4706. kvm_cpu_has_interrupt(vcpu));
  4707. }
  4708. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4709. {
  4710. int me;
  4711. int cpu = vcpu->cpu;
  4712. if (waitqueue_active(&vcpu->wq)) {
  4713. wake_up_interruptible(&vcpu->wq);
  4714. ++vcpu->stat.halt_wakeup;
  4715. }
  4716. me = get_cpu();
  4717. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4718. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4719. smp_send_reschedule(cpu);
  4720. put_cpu();
  4721. }
  4722. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4723. {
  4724. return kvm_x86_ops->interrupt_allowed(vcpu);
  4725. }
  4726. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  4727. {
  4728. unsigned long current_rip = kvm_rip_read(vcpu) +
  4729. get_segment_base(vcpu, VCPU_SREG_CS);
  4730. return current_rip == linear_rip;
  4731. }
  4732. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  4733. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4734. {
  4735. unsigned long rflags;
  4736. rflags = kvm_x86_ops->get_rflags(vcpu);
  4737. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4738. rflags &= ~X86_EFLAGS_TF;
  4739. return rflags;
  4740. }
  4741. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4742. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4743. {
  4744. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4745. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  4746. rflags |= X86_EFLAGS_TF;
  4747. kvm_x86_ops->set_rflags(vcpu, rflags);
  4748. }
  4749. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4750. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4751. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4752. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4753. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4754. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4755. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4756. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4757. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4758. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4759. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4760. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  4761. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);