pci.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/bitops.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/blk-mq.h>
  17. #include <linux/cpu.h>
  18. #include <linux/delay.h>
  19. #include <linux/errno.h>
  20. #include <linux/fs.h>
  21. #include <linux/genhd.h>
  22. #include <linux/hdreg.h>
  23. #include <linux/idr.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/kdev_t.h>
  28. #include <linux/kthread.h>
  29. #include <linux/kernel.h>
  30. #include <linux/list_sort.h>
  31. #include <linux/mm.h>
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <linux/pci.h>
  35. #include <linux/poison.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/sched.h>
  38. #include <linux/slab.h>
  39. #include <linux/t10-pi.h>
  40. #include <linux/types.h>
  41. #include <linux/pr.h>
  42. #include <scsi/sg.h>
  43. #include <linux/io-64-nonatomic-lo-hi.h>
  44. #include <asm/unaligned.h>
  45. #include <uapi/linux/nvme_ioctl.h>
  46. #include "nvme.h"
  47. #define NVME_MINORS (1U << MINORBITS)
  48. #define NVME_Q_DEPTH 1024
  49. #define NVME_AQ_DEPTH 256
  50. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  51. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  52. unsigned char admin_timeout = 60;
  53. module_param(admin_timeout, byte, 0644);
  54. MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
  55. unsigned char nvme_io_timeout = 30;
  56. module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
  57. MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
  58. unsigned char shutdown_timeout = 5;
  59. module_param(shutdown_timeout, byte, 0644);
  60. MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
  61. static int nvme_major;
  62. module_param(nvme_major, int, 0);
  63. static int nvme_char_major;
  64. module_param(nvme_char_major, int, 0);
  65. static int use_threaded_interrupts;
  66. module_param(use_threaded_interrupts, int, 0);
  67. static bool use_cmb_sqes = true;
  68. module_param(use_cmb_sqes, bool, 0644);
  69. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  70. static LIST_HEAD(dev_list);
  71. static struct task_struct *nvme_thread;
  72. static struct workqueue_struct *nvme_workq;
  73. static wait_queue_head_t nvme_kthread_wait;
  74. static struct class *nvme_class;
  75. struct nvme_dev;
  76. struct nvme_queue;
  77. struct nvme_iod;
  78. static int __nvme_reset(struct nvme_dev *dev);
  79. static int nvme_reset(struct nvme_dev *dev);
  80. static void nvme_process_cq(struct nvme_queue *nvmeq);
  81. static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
  82. static void nvme_dead_ctrl(struct nvme_dev *dev);
  83. struct async_cmd_info {
  84. struct kthread_work work;
  85. struct kthread_worker *worker;
  86. struct request *req;
  87. u32 result;
  88. int status;
  89. void *ctx;
  90. };
  91. /*
  92. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  93. */
  94. struct nvme_dev {
  95. struct list_head node;
  96. struct nvme_queue **queues;
  97. struct blk_mq_tag_set tagset;
  98. struct blk_mq_tag_set admin_tagset;
  99. u32 __iomem *dbs;
  100. struct device *dev;
  101. struct dma_pool *prp_page_pool;
  102. struct dma_pool *prp_small_pool;
  103. unsigned queue_count;
  104. unsigned online_queues;
  105. unsigned max_qid;
  106. int q_depth;
  107. u32 db_stride;
  108. struct msix_entry *entry;
  109. void __iomem *bar;
  110. struct list_head namespaces;
  111. struct device *device;
  112. struct work_struct reset_work;
  113. struct work_struct probe_work;
  114. struct work_struct scan_work;
  115. bool subsystem;
  116. void __iomem *cmb;
  117. dma_addr_t cmb_dma_addr;
  118. u64 cmb_size;
  119. u32 cmbsz;
  120. struct nvme_ctrl ctrl;
  121. };
  122. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  123. {
  124. return container_of(ctrl, struct nvme_dev, ctrl);
  125. }
  126. /*
  127. * An NVM Express queue. Each device has at least two (one for admin
  128. * commands and one for I/O commands).
  129. */
  130. struct nvme_queue {
  131. struct device *q_dmadev;
  132. struct nvme_dev *dev;
  133. char irqname[24]; /* nvme4294967295-65535\0 */
  134. spinlock_t q_lock;
  135. struct nvme_command *sq_cmds;
  136. struct nvme_command __iomem *sq_cmds_io;
  137. volatile struct nvme_completion *cqes;
  138. struct blk_mq_tags **tags;
  139. dma_addr_t sq_dma_addr;
  140. dma_addr_t cq_dma_addr;
  141. u32 __iomem *q_db;
  142. u16 q_depth;
  143. s16 cq_vector;
  144. u16 sq_head;
  145. u16 sq_tail;
  146. u16 cq_head;
  147. u16 qid;
  148. u8 cq_phase;
  149. u8 cqe_seen;
  150. struct async_cmd_info cmdinfo;
  151. };
  152. /*
  153. * The nvme_iod describes the data in an I/O, including the list of PRP
  154. * entries. You can't see it in this data structure because C doesn't let
  155. * me express that. Use nvme_alloc_iod to ensure there's enough space
  156. * allocated to store the PRP list.
  157. */
  158. struct nvme_iod {
  159. unsigned long private; /* For the use of the submitter of the I/O */
  160. int npages; /* In the PRP list. 0 means small pool in use */
  161. int offset; /* Of PRP list */
  162. int nents; /* Used in scatterlist */
  163. int length; /* Of data, in bytes */
  164. dma_addr_t first_dma;
  165. struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
  166. struct scatterlist sg[0];
  167. };
  168. /*
  169. * Check we didin't inadvertently grow the command struct
  170. */
  171. static inline void _nvme_check_size(void)
  172. {
  173. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  174. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  175. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  176. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  177. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  178. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  179. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  180. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  181. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  182. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
  183. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  184. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  185. }
  186. typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
  187. struct nvme_completion *);
  188. struct nvme_cmd_info {
  189. nvme_completion_fn fn;
  190. void *ctx;
  191. int aborted;
  192. struct nvme_queue *nvmeq;
  193. struct nvme_iod iod[0];
  194. };
  195. /*
  196. * Max size of iod being embedded in the request payload
  197. */
  198. #define NVME_INT_PAGES 2
  199. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  200. #define NVME_INT_MASK 0x01
  201. /*
  202. * Will slightly overestimate the number of pages needed. This is OK
  203. * as it only leads to a small amount of wasted memory for the lifetime of
  204. * the I/O.
  205. */
  206. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  207. {
  208. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  209. dev->ctrl.page_size);
  210. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  211. }
  212. static unsigned int nvme_cmd_size(struct nvme_dev *dev)
  213. {
  214. unsigned int ret = sizeof(struct nvme_cmd_info);
  215. ret += sizeof(struct nvme_iod);
  216. ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
  217. ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
  218. return ret;
  219. }
  220. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  221. unsigned int hctx_idx)
  222. {
  223. struct nvme_dev *dev = data;
  224. struct nvme_queue *nvmeq = dev->queues[0];
  225. WARN_ON(hctx_idx != 0);
  226. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  227. WARN_ON(nvmeq->tags);
  228. hctx->driver_data = nvmeq;
  229. nvmeq->tags = &dev->admin_tagset.tags[0];
  230. return 0;
  231. }
  232. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  233. {
  234. struct nvme_queue *nvmeq = hctx->driver_data;
  235. nvmeq->tags = NULL;
  236. }
  237. static int nvme_admin_init_request(void *data, struct request *req,
  238. unsigned int hctx_idx, unsigned int rq_idx,
  239. unsigned int numa_node)
  240. {
  241. struct nvme_dev *dev = data;
  242. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  243. struct nvme_queue *nvmeq = dev->queues[0];
  244. BUG_ON(!nvmeq);
  245. cmd->nvmeq = nvmeq;
  246. return 0;
  247. }
  248. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  249. unsigned int hctx_idx)
  250. {
  251. struct nvme_dev *dev = data;
  252. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  253. if (!nvmeq->tags)
  254. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  255. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  256. hctx->driver_data = nvmeq;
  257. return 0;
  258. }
  259. static int nvme_init_request(void *data, struct request *req,
  260. unsigned int hctx_idx, unsigned int rq_idx,
  261. unsigned int numa_node)
  262. {
  263. struct nvme_dev *dev = data;
  264. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  265. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  266. BUG_ON(!nvmeq);
  267. cmd->nvmeq = nvmeq;
  268. return 0;
  269. }
  270. static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
  271. nvme_completion_fn handler)
  272. {
  273. cmd->fn = handler;
  274. cmd->ctx = ctx;
  275. cmd->aborted = 0;
  276. blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
  277. }
  278. static void *iod_get_private(struct nvme_iod *iod)
  279. {
  280. return (void *) (iod->private & ~0x1UL);
  281. }
  282. /*
  283. * If bit 0 is set, the iod is embedded in the request payload.
  284. */
  285. static bool iod_should_kfree(struct nvme_iod *iod)
  286. {
  287. return (iod->private & NVME_INT_MASK) == 0;
  288. }
  289. /* Special values must be less than 0x1000 */
  290. #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
  291. #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
  292. #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
  293. #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
  294. static void special_completion(struct nvme_queue *nvmeq, void *ctx,
  295. struct nvme_completion *cqe)
  296. {
  297. if (ctx == CMD_CTX_CANCELLED)
  298. return;
  299. if (ctx == CMD_CTX_COMPLETED) {
  300. dev_warn(nvmeq->q_dmadev,
  301. "completed id %d twice on queue %d\n",
  302. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  303. return;
  304. }
  305. if (ctx == CMD_CTX_INVALID) {
  306. dev_warn(nvmeq->q_dmadev,
  307. "invalid id %d completed on queue %d\n",
  308. cqe->command_id, le16_to_cpup(&cqe->sq_id));
  309. return;
  310. }
  311. dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
  312. }
  313. static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
  314. {
  315. void *ctx;
  316. if (fn)
  317. *fn = cmd->fn;
  318. ctx = cmd->ctx;
  319. cmd->fn = special_completion;
  320. cmd->ctx = CMD_CTX_CANCELLED;
  321. return ctx;
  322. }
  323. static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
  324. struct nvme_completion *cqe)
  325. {
  326. u32 result = le32_to_cpup(&cqe->result);
  327. u16 status = le16_to_cpup(&cqe->status) >> 1;
  328. if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
  329. ++nvmeq->dev->ctrl.event_limit;
  330. if (status != NVME_SC_SUCCESS)
  331. return;
  332. switch (result & 0xff07) {
  333. case NVME_AER_NOTICE_NS_CHANGED:
  334. dev_info(nvmeq->q_dmadev, "rescanning\n");
  335. schedule_work(&nvmeq->dev->scan_work);
  336. default:
  337. dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
  338. }
  339. }
  340. static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
  341. struct nvme_completion *cqe)
  342. {
  343. struct request *req = ctx;
  344. u16 status = le16_to_cpup(&cqe->status) >> 1;
  345. u32 result = le32_to_cpup(&cqe->result);
  346. blk_mq_free_request(req);
  347. dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
  348. ++nvmeq->dev->ctrl.abort_limit;
  349. }
  350. static void async_completion(struct nvme_queue *nvmeq, void *ctx,
  351. struct nvme_completion *cqe)
  352. {
  353. struct async_cmd_info *cmdinfo = ctx;
  354. cmdinfo->result = le32_to_cpup(&cqe->result);
  355. cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
  356. queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
  357. blk_mq_free_request(cmdinfo->req);
  358. }
  359. static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
  360. unsigned int tag)
  361. {
  362. struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
  363. return blk_mq_rq_to_pdu(req);
  364. }
  365. /*
  366. * Called with local interrupts disabled and the q_lock held. May not sleep.
  367. */
  368. static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
  369. nvme_completion_fn *fn)
  370. {
  371. struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
  372. void *ctx;
  373. if (tag >= nvmeq->q_depth) {
  374. *fn = special_completion;
  375. return CMD_CTX_INVALID;
  376. }
  377. if (fn)
  378. *fn = cmd->fn;
  379. ctx = cmd->ctx;
  380. cmd->fn = special_completion;
  381. cmd->ctx = CMD_CTX_COMPLETED;
  382. return ctx;
  383. }
  384. /**
  385. * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  386. * @nvmeq: The queue to use
  387. * @cmd: The command to send
  388. *
  389. * Safe to use from interrupt context
  390. */
  391. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  392. struct nvme_command *cmd)
  393. {
  394. u16 tail = nvmeq->sq_tail;
  395. if (nvmeq->sq_cmds_io)
  396. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  397. else
  398. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  399. if (++tail == nvmeq->q_depth)
  400. tail = 0;
  401. writel(tail, nvmeq->q_db);
  402. nvmeq->sq_tail = tail;
  403. }
  404. static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
  405. {
  406. unsigned long flags;
  407. spin_lock_irqsave(&nvmeq->q_lock, flags);
  408. __nvme_submit_cmd(nvmeq, cmd);
  409. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  410. }
  411. static __le64 **iod_list(struct nvme_iod *iod)
  412. {
  413. return ((void *)iod) + iod->offset;
  414. }
  415. static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
  416. unsigned nseg, unsigned long private)
  417. {
  418. iod->private = private;
  419. iod->offset = offsetof(struct nvme_iod, sg[nseg]);
  420. iod->npages = -1;
  421. iod->length = nbytes;
  422. iod->nents = 0;
  423. }
  424. static struct nvme_iod *
  425. __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
  426. unsigned long priv, gfp_t gfp)
  427. {
  428. struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
  429. sizeof(__le64 *) * nvme_npages(bytes, dev) +
  430. sizeof(struct scatterlist) * nseg, gfp);
  431. if (iod)
  432. iod_init(iod, bytes, nseg, priv);
  433. return iod;
  434. }
  435. static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
  436. gfp_t gfp)
  437. {
  438. unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
  439. sizeof(struct nvme_dsm_range);
  440. struct nvme_iod *iod;
  441. if (rq->nr_phys_segments <= NVME_INT_PAGES &&
  442. size <= NVME_INT_BYTES(dev)) {
  443. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
  444. iod = cmd->iod;
  445. iod_init(iod, size, rq->nr_phys_segments,
  446. (unsigned long) rq | NVME_INT_MASK);
  447. return iod;
  448. }
  449. return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
  450. (unsigned long) rq, gfp);
  451. }
  452. static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
  453. {
  454. const int last_prp = dev->ctrl.page_size / 8 - 1;
  455. int i;
  456. __le64 **list = iod_list(iod);
  457. dma_addr_t prp_dma = iod->first_dma;
  458. if (iod->npages == 0)
  459. dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
  460. for (i = 0; i < iod->npages; i++) {
  461. __le64 *prp_list = list[i];
  462. dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
  463. dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
  464. prp_dma = next_prp_dma;
  465. }
  466. if (iod_should_kfree(iod))
  467. kfree(iod);
  468. }
  469. #ifdef CONFIG_BLK_DEV_INTEGRITY
  470. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  471. {
  472. if (be32_to_cpu(pi->ref_tag) == v)
  473. pi->ref_tag = cpu_to_be32(p);
  474. }
  475. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  476. {
  477. if (be32_to_cpu(pi->ref_tag) == p)
  478. pi->ref_tag = cpu_to_be32(v);
  479. }
  480. /**
  481. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  482. *
  483. * The virtual start sector is the one that was originally submitted by the
  484. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  485. * start sector may be different. Remap protection information to match the
  486. * physical LBA on writes, and back to the original seed on reads.
  487. *
  488. * Type 0 and 3 do not have a ref tag, so no remapping required.
  489. */
  490. static void nvme_dif_remap(struct request *req,
  491. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  492. {
  493. struct nvme_ns *ns = req->rq_disk->private_data;
  494. struct bio_integrity_payload *bip;
  495. struct t10_pi_tuple *pi;
  496. void *p, *pmap;
  497. u32 i, nlb, ts, phys, virt;
  498. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  499. return;
  500. bip = bio_integrity(req->bio);
  501. if (!bip)
  502. return;
  503. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  504. p = pmap;
  505. virt = bip_get_seed(bip);
  506. phys = nvme_block_nr(ns, blk_rq_pos(req));
  507. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  508. ts = ns->disk->queue->integrity.tuple_size;
  509. for (i = 0; i < nlb; i++, virt++, phys++) {
  510. pi = (struct t10_pi_tuple *)p;
  511. dif_swap(phys, virt, pi);
  512. p += ts;
  513. }
  514. kunmap_atomic(pmap);
  515. }
  516. #else /* CONFIG_BLK_DEV_INTEGRITY */
  517. static void nvme_dif_remap(struct request *req,
  518. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  519. {
  520. }
  521. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  522. {
  523. }
  524. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  525. {
  526. }
  527. #endif
  528. static void req_completion(struct nvme_queue *nvmeq, void *ctx,
  529. struct nvme_completion *cqe)
  530. {
  531. struct nvme_iod *iod = ctx;
  532. struct request *req = iod_get_private(iod);
  533. struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
  534. u16 status = le16_to_cpup(&cqe->status) >> 1;
  535. int error = 0;
  536. if (unlikely(status)) {
  537. if (!(status & NVME_SC_DNR || blk_noretry_request(req))
  538. && (jiffies - req->start_time) < req->timeout) {
  539. unsigned long flags;
  540. nvme_unmap_data(nvmeq->dev, iod);
  541. blk_mq_requeue_request(req);
  542. spin_lock_irqsave(req->q->queue_lock, flags);
  543. if (!blk_queue_stopped(req->q))
  544. blk_mq_kick_requeue_list(req->q);
  545. spin_unlock_irqrestore(req->q->queue_lock, flags);
  546. return;
  547. }
  548. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  549. if (cmd_rq->ctx == CMD_CTX_CANCELLED)
  550. error = -EINTR;
  551. else
  552. error = status;
  553. } else {
  554. error = nvme_error_status(status);
  555. }
  556. }
  557. if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
  558. u32 result = le32_to_cpup(&cqe->result);
  559. req->special = (void *)(uintptr_t)result;
  560. }
  561. if (cmd_rq->aborted)
  562. dev_warn(nvmeq->dev->dev,
  563. "completing aborted command with status:%04x\n",
  564. error);
  565. nvme_unmap_data(nvmeq->dev, iod);
  566. blk_mq_complete_request(req, error);
  567. }
  568. static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
  569. int total_len)
  570. {
  571. struct dma_pool *pool;
  572. int length = total_len;
  573. struct scatterlist *sg = iod->sg;
  574. int dma_len = sg_dma_len(sg);
  575. u64 dma_addr = sg_dma_address(sg);
  576. u32 page_size = dev->ctrl.page_size;
  577. int offset = dma_addr & (page_size - 1);
  578. __le64 *prp_list;
  579. __le64 **list = iod_list(iod);
  580. dma_addr_t prp_dma;
  581. int nprps, i;
  582. length -= (page_size - offset);
  583. if (length <= 0)
  584. return true;
  585. dma_len -= (page_size - offset);
  586. if (dma_len) {
  587. dma_addr += (page_size - offset);
  588. } else {
  589. sg = sg_next(sg);
  590. dma_addr = sg_dma_address(sg);
  591. dma_len = sg_dma_len(sg);
  592. }
  593. if (length <= page_size) {
  594. iod->first_dma = dma_addr;
  595. return true;
  596. }
  597. nprps = DIV_ROUND_UP(length, page_size);
  598. if (nprps <= (256 / 8)) {
  599. pool = dev->prp_small_pool;
  600. iod->npages = 0;
  601. } else {
  602. pool = dev->prp_page_pool;
  603. iod->npages = 1;
  604. }
  605. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  606. if (!prp_list) {
  607. iod->first_dma = dma_addr;
  608. iod->npages = -1;
  609. return false;
  610. }
  611. list[0] = prp_list;
  612. iod->first_dma = prp_dma;
  613. i = 0;
  614. for (;;) {
  615. if (i == page_size >> 3) {
  616. __le64 *old_prp_list = prp_list;
  617. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  618. if (!prp_list)
  619. return false;
  620. list[iod->npages++] = prp_list;
  621. prp_list[0] = old_prp_list[i - 1];
  622. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  623. i = 1;
  624. }
  625. prp_list[i++] = cpu_to_le64(dma_addr);
  626. dma_len -= page_size;
  627. dma_addr += page_size;
  628. length -= page_size;
  629. if (length <= 0)
  630. break;
  631. if (dma_len > 0)
  632. continue;
  633. BUG_ON(dma_len < 0);
  634. sg = sg_next(sg);
  635. dma_addr = sg_dma_address(sg);
  636. dma_len = sg_dma_len(sg);
  637. }
  638. return true;
  639. }
  640. static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
  641. struct nvme_command *cmnd)
  642. {
  643. struct request *req = iod_get_private(iod);
  644. struct request_queue *q = req->q;
  645. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  646. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  647. int ret = BLK_MQ_RQ_QUEUE_ERROR;
  648. sg_init_table(iod->sg, req->nr_phys_segments);
  649. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  650. if (!iod->nents)
  651. goto out;
  652. ret = BLK_MQ_RQ_QUEUE_BUSY;
  653. if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
  654. goto out;
  655. if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
  656. goto out_unmap;
  657. ret = BLK_MQ_RQ_QUEUE_ERROR;
  658. if (blk_integrity_rq(req)) {
  659. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  660. goto out_unmap;
  661. sg_init_table(iod->meta_sg, 1);
  662. if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
  663. goto out_unmap;
  664. if (rq_data_dir(req))
  665. nvme_dif_remap(req, nvme_dif_prep);
  666. if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
  667. goto out_unmap;
  668. }
  669. cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  670. cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
  671. if (blk_integrity_rq(req))
  672. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
  673. return BLK_MQ_RQ_QUEUE_OK;
  674. out_unmap:
  675. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  676. out:
  677. return ret;
  678. }
  679. static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
  680. {
  681. struct request *req = iod_get_private(iod);
  682. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  683. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  684. if (iod->nents) {
  685. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  686. if (blk_integrity_rq(req)) {
  687. if (!rq_data_dir(req))
  688. nvme_dif_remap(req, nvme_dif_complete);
  689. dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
  690. }
  691. }
  692. nvme_free_iod(dev, iod);
  693. }
  694. /*
  695. * We reuse the small pool to allocate the 16-byte range here as it is not
  696. * worth having a special pool for these or additional cases to handle freeing
  697. * the iod.
  698. */
  699. static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
  700. struct nvme_iod *iod, struct nvme_command *cmnd)
  701. {
  702. struct request *req = iod_get_private(iod);
  703. struct nvme_dsm_range *range;
  704. range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
  705. &iod->first_dma);
  706. if (!range)
  707. return BLK_MQ_RQ_QUEUE_BUSY;
  708. iod_list(iod)[0] = (__le64 *)range;
  709. iod->npages = 0;
  710. range->cattr = cpu_to_le32(0);
  711. range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
  712. range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
  713. memset(cmnd, 0, sizeof(*cmnd));
  714. cmnd->dsm.opcode = nvme_cmd_dsm;
  715. cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
  716. cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
  717. cmnd->dsm.nr = 0;
  718. cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
  719. return BLK_MQ_RQ_QUEUE_OK;
  720. }
  721. /*
  722. * NOTE: ns is NULL when called on the admin queue.
  723. */
  724. static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  725. const struct blk_mq_queue_data *bd)
  726. {
  727. struct nvme_ns *ns = hctx->queue->queuedata;
  728. struct nvme_queue *nvmeq = hctx->driver_data;
  729. struct nvme_dev *dev = nvmeq->dev;
  730. struct request *req = bd->rq;
  731. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  732. struct nvme_iod *iod;
  733. struct nvme_command cmnd;
  734. int ret = BLK_MQ_RQ_QUEUE_OK;
  735. /*
  736. * If formated with metadata, require the block layer provide a buffer
  737. * unless this namespace is formated such that the metadata can be
  738. * stripped/generated by the controller with PRACT=1.
  739. */
  740. if (ns && ns->ms && !blk_integrity_rq(req)) {
  741. if (!(ns->pi_type && ns->ms == 8) &&
  742. req->cmd_type != REQ_TYPE_DRV_PRIV) {
  743. blk_mq_complete_request(req, -EFAULT);
  744. return BLK_MQ_RQ_QUEUE_OK;
  745. }
  746. }
  747. iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
  748. if (!iod)
  749. return BLK_MQ_RQ_QUEUE_BUSY;
  750. if (req->cmd_flags & REQ_DISCARD) {
  751. ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
  752. } else {
  753. if (req->cmd_type == REQ_TYPE_DRV_PRIV)
  754. memcpy(&cmnd, req->cmd, sizeof(cmnd));
  755. else if (req->cmd_flags & REQ_FLUSH)
  756. nvme_setup_flush(ns, &cmnd);
  757. else
  758. nvme_setup_rw(ns, req, &cmnd);
  759. if (req->nr_phys_segments)
  760. ret = nvme_map_data(dev, iod, &cmnd);
  761. }
  762. if (ret)
  763. goto out;
  764. cmnd.common.command_id = req->tag;
  765. nvme_set_info(cmd, iod, req_completion);
  766. spin_lock_irq(&nvmeq->q_lock);
  767. __nvme_submit_cmd(nvmeq, &cmnd);
  768. nvme_process_cq(nvmeq);
  769. spin_unlock_irq(&nvmeq->q_lock);
  770. return BLK_MQ_RQ_QUEUE_OK;
  771. out:
  772. nvme_free_iod(dev, iod);
  773. return ret;
  774. }
  775. static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
  776. {
  777. u16 head, phase;
  778. head = nvmeq->cq_head;
  779. phase = nvmeq->cq_phase;
  780. for (;;) {
  781. void *ctx;
  782. nvme_completion_fn fn;
  783. struct nvme_completion cqe = nvmeq->cqes[head];
  784. if ((le16_to_cpu(cqe.status) & 1) != phase)
  785. break;
  786. nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
  787. if (++head == nvmeq->q_depth) {
  788. head = 0;
  789. phase = !phase;
  790. }
  791. if (tag && *tag == cqe.command_id)
  792. *tag = -1;
  793. ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
  794. fn(nvmeq, ctx, &cqe);
  795. }
  796. /* If the controller ignores the cq head doorbell and continuously
  797. * writes to the queue, it is theoretically possible to wrap around
  798. * the queue twice and mistakenly return IRQ_NONE. Linux only
  799. * requires that 0.1% of your interrupts are handled, so this isn't
  800. * a big problem.
  801. */
  802. if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
  803. return;
  804. if (likely(nvmeq->cq_vector >= 0))
  805. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  806. nvmeq->cq_head = head;
  807. nvmeq->cq_phase = phase;
  808. nvmeq->cqe_seen = 1;
  809. }
  810. static void nvme_process_cq(struct nvme_queue *nvmeq)
  811. {
  812. __nvme_process_cq(nvmeq, NULL);
  813. }
  814. static irqreturn_t nvme_irq(int irq, void *data)
  815. {
  816. irqreturn_t result;
  817. struct nvme_queue *nvmeq = data;
  818. spin_lock(&nvmeq->q_lock);
  819. nvme_process_cq(nvmeq);
  820. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  821. nvmeq->cqe_seen = 0;
  822. spin_unlock(&nvmeq->q_lock);
  823. return result;
  824. }
  825. static irqreturn_t nvme_irq_check(int irq, void *data)
  826. {
  827. struct nvme_queue *nvmeq = data;
  828. struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
  829. if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
  830. return IRQ_NONE;
  831. return IRQ_WAKE_THREAD;
  832. }
  833. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  834. {
  835. struct nvme_queue *nvmeq = hctx->driver_data;
  836. if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
  837. nvmeq->cq_phase) {
  838. spin_lock_irq(&nvmeq->q_lock);
  839. __nvme_process_cq(nvmeq, &tag);
  840. spin_unlock_irq(&nvmeq->q_lock);
  841. if (tag == -1)
  842. return 1;
  843. }
  844. return 0;
  845. }
  846. static int nvme_submit_async_admin_req(struct nvme_dev *dev)
  847. {
  848. struct nvme_queue *nvmeq = dev->queues[0];
  849. struct nvme_command c;
  850. struct nvme_cmd_info *cmd_info;
  851. struct request *req;
  852. req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
  853. BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
  854. if (IS_ERR(req))
  855. return PTR_ERR(req);
  856. req->cmd_flags |= REQ_NO_TIMEOUT;
  857. cmd_info = blk_mq_rq_to_pdu(req);
  858. nvme_set_info(cmd_info, NULL, async_req_completion);
  859. memset(&c, 0, sizeof(c));
  860. c.common.opcode = nvme_admin_async_event;
  861. c.common.command_id = req->tag;
  862. blk_mq_free_request(req);
  863. __nvme_submit_cmd(nvmeq, &c);
  864. return 0;
  865. }
  866. static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
  867. struct nvme_command *cmd,
  868. struct async_cmd_info *cmdinfo, unsigned timeout)
  869. {
  870. struct nvme_queue *nvmeq = dev->queues[0];
  871. struct request *req;
  872. struct nvme_cmd_info *cmd_rq;
  873. req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
  874. if (IS_ERR(req))
  875. return PTR_ERR(req);
  876. req->timeout = timeout;
  877. cmd_rq = blk_mq_rq_to_pdu(req);
  878. cmdinfo->req = req;
  879. nvme_set_info(cmd_rq, cmdinfo, async_completion);
  880. cmdinfo->status = -EINTR;
  881. cmd->common.command_id = req->tag;
  882. nvme_submit_cmd(nvmeq, cmd);
  883. return 0;
  884. }
  885. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  886. {
  887. struct nvme_command c;
  888. memset(&c, 0, sizeof(c));
  889. c.delete_queue.opcode = opcode;
  890. c.delete_queue.qid = cpu_to_le16(id);
  891. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  892. }
  893. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  894. struct nvme_queue *nvmeq)
  895. {
  896. struct nvme_command c;
  897. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  898. /*
  899. * Note: we (ab)use the fact the the prp fields survive if no data
  900. * is attached to the request.
  901. */
  902. memset(&c, 0, sizeof(c));
  903. c.create_cq.opcode = nvme_admin_create_cq;
  904. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  905. c.create_cq.cqid = cpu_to_le16(qid);
  906. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  907. c.create_cq.cq_flags = cpu_to_le16(flags);
  908. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  909. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  910. }
  911. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  912. struct nvme_queue *nvmeq)
  913. {
  914. struct nvme_command c;
  915. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
  916. /*
  917. * Note: we (ab)use the fact the the prp fields survive if no data
  918. * is attached to the request.
  919. */
  920. memset(&c, 0, sizeof(c));
  921. c.create_sq.opcode = nvme_admin_create_sq;
  922. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  923. c.create_sq.sqid = cpu_to_le16(qid);
  924. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  925. c.create_sq.sq_flags = cpu_to_le16(flags);
  926. c.create_sq.cqid = cpu_to_le16(qid);
  927. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  928. }
  929. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  930. {
  931. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  932. }
  933. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  934. {
  935. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  936. }
  937. /**
  938. * nvme_abort_req - Attempt aborting a request
  939. *
  940. * Schedule controller reset if the command was already aborted once before and
  941. * still hasn't been returned to the driver, or if this is the admin queue.
  942. */
  943. static void nvme_abort_req(struct request *req)
  944. {
  945. struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
  946. struct nvme_queue *nvmeq = cmd_rq->nvmeq;
  947. struct nvme_dev *dev = nvmeq->dev;
  948. struct request *abort_req;
  949. struct nvme_cmd_info *abort_cmd;
  950. struct nvme_command cmd;
  951. if (!nvmeq->qid || cmd_rq->aborted) {
  952. spin_lock(&dev_list_lock);
  953. if (!__nvme_reset(dev)) {
  954. dev_warn(dev->dev,
  955. "I/O %d QID %d timeout, reset controller\n",
  956. req->tag, nvmeq->qid);
  957. }
  958. spin_unlock(&dev_list_lock);
  959. return;
  960. }
  961. if (!dev->ctrl.abort_limit)
  962. return;
  963. abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
  964. BLK_MQ_REQ_NOWAIT);
  965. if (IS_ERR(abort_req))
  966. return;
  967. abort_cmd = blk_mq_rq_to_pdu(abort_req);
  968. nvme_set_info(abort_cmd, abort_req, abort_completion);
  969. memset(&cmd, 0, sizeof(cmd));
  970. cmd.abort.opcode = nvme_admin_abort_cmd;
  971. cmd.abort.cid = req->tag;
  972. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  973. cmd.abort.command_id = abort_req->tag;
  974. --dev->ctrl.abort_limit;
  975. cmd_rq->aborted = 1;
  976. dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
  977. nvmeq->qid);
  978. nvme_submit_cmd(dev->queues[0], &cmd);
  979. }
  980. static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
  981. {
  982. struct nvme_queue *nvmeq = data;
  983. void *ctx;
  984. nvme_completion_fn fn;
  985. struct nvme_cmd_info *cmd;
  986. struct nvme_completion cqe;
  987. if (!blk_mq_request_started(req))
  988. return;
  989. cmd = blk_mq_rq_to_pdu(req);
  990. if (cmd->ctx == CMD_CTX_CANCELLED)
  991. return;
  992. if (blk_queue_dying(req->q))
  993. cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
  994. else
  995. cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
  996. dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
  997. req->tag, nvmeq->qid);
  998. ctx = cancel_cmd_info(cmd, &fn);
  999. fn(nvmeq, ctx, &cqe);
  1000. }
  1001. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  1002. {
  1003. struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
  1004. struct nvme_queue *nvmeq = cmd->nvmeq;
  1005. dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
  1006. nvmeq->qid);
  1007. spin_lock_irq(&nvmeq->q_lock);
  1008. nvme_abort_req(req);
  1009. spin_unlock_irq(&nvmeq->q_lock);
  1010. /*
  1011. * The aborted req will be completed on receiving the abort req.
  1012. * We enable the timer again. If hit twice, it'll cause a device reset,
  1013. * as the device then is in a faulty state.
  1014. */
  1015. return BLK_EH_RESET_TIMER;
  1016. }
  1017. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1018. {
  1019. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1020. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1021. if (nvmeq->sq_cmds)
  1022. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1023. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1024. kfree(nvmeq);
  1025. }
  1026. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1027. {
  1028. int i;
  1029. for (i = dev->queue_count - 1; i >= lowest; i--) {
  1030. struct nvme_queue *nvmeq = dev->queues[i];
  1031. dev->queue_count--;
  1032. dev->queues[i] = NULL;
  1033. nvme_free_queue(nvmeq);
  1034. }
  1035. }
  1036. /**
  1037. * nvme_suspend_queue - put queue into suspended state
  1038. * @nvmeq - queue to suspend
  1039. */
  1040. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1041. {
  1042. int vector;
  1043. spin_lock_irq(&nvmeq->q_lock);
  1044. if (nvmeq->cq_vector == -1) {
  1045. spin_unlock_irq(&nvmeq->q_lock);
  1046. return 1;
  1047. }
  1048. vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
  1049. nvmeq->dev->online_queues--;
  1050. nvmeq->cq_vector = -1;
  1051. spin_unlock_irq(&nvmeq->q_lock);
  1052. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  1053. blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
  1054. irq_set_affinity_hint(vector, NULL);
  1055. free_irq(vector, nvmeq);
  1056. return 0;
  1057. }
  1058. static void nvme_clear_queue(struct nvme_queue *nvmeq)
  1059. {
  1060. spin_lock_irq(&nvmeq->q_lock);
  1061. if (nvmeq->tags && *nvmeq->tags)
  1062. blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
  1063. spin_unlock_irq(&nvmeq->q_lock);
  1064. }
  1065. static void nvme_disable_queue(struct nvme_dev *dev, int qid)
  1066. {
  1067. struct nvme_queue *nvmeq = dev->queues[qid];
  1068. if (!nvmeq)
  1069. return;
  1070. if (nvme_suspend_queue(nvmeq))
  1071. return;
  1072. /* Don't tell the adapter to delete the admin queue.
  1073. * Don't tell a removed adapter to delete IO queues. */
  1074. if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
  1075. adapter_delete_sq(dev, qid);
  1076. adapter_delete_cq(dev, qid);
  1077. }
  1078. spin_lock_irq(&nvmeq->q_lock);
  1079. nvme_process_cq(nvmeq);
  1080. spin_unlock_irq(&nvmeq->q_lock);
  1081. }
  1082. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1083. int entry_size)
  1084. {
  1085. int q_depth = dev->q_depth;
  1086. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1087. dev->ctrl.page_size);
  1088. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1089. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1090. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1091. q_depth = div_u64(mem_per_q, entry_size);
  1092. /*
  1093. * Ensure the reduced q_depth is above some threshold where it
  1094. * would be better to map queues in system memory with the
  1095. * original depth
  1096. */
  1097. if (q_depth < 64)
  1098. return -ENOMEM;
  1099. }
  1100. return q_depth;
  1101. }
  1102. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1103. int qid, int depth)
  1104. {
  1105. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  1106. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  1107. dev->ctrl.page_size);
  1108. nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
  1109. nvmeq->sq_cmds_io = dev->cmb + offset;
  1110. } else {
  1111. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1112. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1113. if (!nvmeq->sq_cmds)
  1114. return -ENOMEM;
  1115. }
  1116. return 0;
  1117. }
  1118. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1119. int depth)
  1120. {
  1121. struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
  1122. if (!nvmeq)
  1123. return NULL;
  1124. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1125. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1126. if (!nvmeq->cqes)
  1127. goto free_nvmeq;
  1128. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1129. goto free_cqdma;
  1130. nvmeq->q_dmadev = dev->dev;
  1131. nvmeq->dev = dev;
  1132. snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
  1133. dev->ctrl.instance, qid);
  1134. spin_lock_init(&nvmeq->q_lock);
  1135. nvmeq->cq_head = 0;
  1136. nvmeq->cq_phase = 1;
  1137. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1138. nvmeq->q_depth = depth;
  1139. nvmeq->qid = qid;
  1140. nvmeq->cq_vector = -1;
  1141. dev->queues[qid] = nvmeq;
  1142. /* make sure queue descriptor is set before queue count, for kthread */
  1143. mb();
  1144. dev->queue_count++;
  1145. return nvmeq;
  1146. free_cqdma:
  1147. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1148. nvmeq->cq_dma_addr);
  1149. free_nvmeq:
  1150. kfree(nvmeq);
  1151. return NULL;
  1152. }
  1153. static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1154. const char *name)
  1155. {
  1156. if (use_threaded_interrupts)
  1157. return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
  1158. nvme_irq_check, nvme_irq, IRQF_SHARED,
  1159. name, nvmeq);
  1160. return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
  1161. IRQF_SHARED, name, nvmeq);
  1162. }
  1163. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1164. {
  1165. struct nvme_dev *dev = nvmeq->dev;
  1166. spin_lock_irq(&nvmeq->q_lock);
  1167. nvmeq->sq_tail = 0;
  1168. nvmeq->cq_head = 0;
  1169. nvmeq->cq_phase = 1;
  1170. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1171. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1172. dev->online_queues++;
  1173. spin_unlock_irq(&nvmeq->q_lock);
  1174. }
  1175. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1176. {
  1177. struct nvme_dev *dev = nvmeq->dev;
  1178. int result;
  1179. nvmeq->cq_vector = qid - 1;
  1180. result = adapter_alloc_cq(dev, qid, nvmeq);
  1181. if (result < 0)
  1182. return result;
  1183. result = adapter_alloc_sq(dev, qid, nvmeq);
  1184. if (result < 0)
  1185. goto release_cq;
  1186. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1187. if (result < 0)
  1188. goto release_sq;
  1189. nvme_init_queue(nvmeq, qid);
  1190. return result;
  1191. release_sq:
  1192. adapter_delete_sq(dev, qid);
  1193. release_cq:
  1194. adapter_delete_cq(dev, qid);
  1195. return result;
  1196. }
  1197. static struct blk_mq_ops nvme_mq_admin_ops = {
  1198. .queue_rq = nvme_queue_rq,
  1199. .map_queue = blk_mq_map_queue,
  1200. .init_hctx = nvme_admin_init_hctx,
  1201. .exit_hctx = nvme_admin_exit_hctx,
  1202. .init_request = nvme_admin_init_request,
  1203. .timeout = nvme_timeout,
  1204. };
  1205. static struct blk_mq_ops nvme_mq_ops = {
  1206. .queue_rq = nvme_queue_rq,
  1207. .map_queue = blk_mq_map_queue,
  1208. .init_hctx = nvme_init_hctx,
  1209. .init_request = nvme_init_request,
  1210. .timeout = nvme_timeout,
  1211. .poll = nvme_poll,
  1212. };
  1213. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1214. {
  1215. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1216. blk_cleanup_queue(dev->ctrl.admin_q);
  1217. blk_mq_free_tag_set(&dev->admin_tagset);
  1218. }
  1219. }
  1220. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1221. {
  1222. if (!dev->ctrl.admin_q) {
  1223. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1224. dev->admin_tagset.nr_hw_queues = 1;
  1225. dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
  1226. dev->admin_tagset.reserved_tags = 1;
  1227. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1228. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1229. dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
  1230. dev->admin_tagset.driver_data = dev;
  1231. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1232. return -ENOMEM;
  1233. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1234. if (IS_ERR(dev->ctrl.admin_q)) {
  1235. blk_mq_free_tag_set(&dev->admin_tagset);
  1236. return -ENOMEM;
  1237. }
  1238. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1239. nvme_dev_remove_admin(dev);
  1240. dev->ctrl.admin_q = NULL;
  1241. return -ENODEV;
  1242. }
  1243. } else
  1244. blk_mq_unfreeze_queue(dev->ctrl.admin_q);
  1245. return 0;
  1246. }
  1247. static int nvme_configure_admin_queue(struct nvme_dev *dev)
  1248. {
  1249. int result;
  1250. u32 aqa;
  1251. u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1252. struct nvme_queue *nvmeq;
  1253. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
  1254. NVME_CAP_NSSRC(cap) : 0;
  1255. if (dev->subsystem &&
  1256. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1257. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1258. result = nvme_disable_ctrl(&dev->ctrl, cap);
  1259. if (result < 0)
  1260. return result;
  1261. nvmeq = dev->queues[0];
  1262. if (!nvmeq) {
  1263. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
  1264. if (!nvmeq)
  1265. return -ENOMEM;
  1266. }
  1267. aqa = nvmeq->q_depth - 1;
  1268. aqa |= aqa << 16;
  1269. writel(aqa, dev->bar + NVME_REG_AQA);
  1270. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1271. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1272. result = nvme_enable_ctrl(&dev->ctrl, cap);
  1273. if (result)
  1274. goto free_nvmeq;
  1275. nvmeq->cq_vector = 0;
  1276. result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
  1277. if (result) {
  1278. nvmeq->cq_vector = -1;
  1279. goto free_nvmeq;
  1280. }
  1281. return result;
  1282. free_nvmeq:
  1283. nvme_free_queues(dev, 0);
  1284. return result;
  1285. }
  1286. static int nvme_subsys_reset(struct nvme_dev *dev)
  1287. {
  1288. if (!dev->subsystem)
  1289. return -ENOTTY;
  1290. writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
  1291. return 0;
  1292. }
  1293. static int nvme_kthread(void *data)
  1294. {
  1295. struct nvme_dev *dev, *next;
  1296. while (!kthread_should_stop()) {
  1297. set_current_state(TASK_INTERRUPTIBLE);
  1298. spin_lock(&dev_list_lock);
  1299. list_for_each_entry_safe(dev, next, &dev_list, node) {
  1300. int i;
  1301. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1302. if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
  1303. csts & NVME_CSTS_CFS) {
  1304. if (!__nvme_reset(dev)) {
  1305. dev_warn(dev->dev,
  1306. "Failed status: %x, reset controller\n",
  1307. readl(dev->bar + NVME_REG_CSTS));
  1308. }
  1309. continue;
  1310. }
  1311. for (i = 0; i < dev->queue_count; i++) {
  1312. struct nvme_queue *nvmeq = dev->queues[i];
  1313. if (!nvmeq)
  1314. continue;
  1315. spin_lock_irq(&nvmeq->q_lock);
  1316. nvme_process_cq(nvmeq);
  1317. while (i == 0 && dev->ctrl.event_limit > 0) {
  1318. if (nvme_submit_async_admin_req(dev))
  1319. break;
  1320. dev->ctrl.event_limit--;
  1321. }
  1322. spin_unlock_irq(&nvmeq->q_lock);
  1323. }
  1324. }
  1325. spin_unlock(&dev_list_lock);
  1326. schedule_timeout(round_jiffies_relative(HZ));
  1327. }
  1328. return 0;
  1329. }
  1330. static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
  1331. {
  1332. struct nvme_ns *ns;
  1333. struct gendisk *disk;
  1334. int node = dev_to_node(dev->dev);
  1335. ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
  1336. if (!ns)
  1337. return;
  1338. ns->queue = blk_mq_init_queue(&dev->tagset);
  1339. if (IS_ERR(ns->queue))
  1340. goto out_free_ns;
  1341. queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
  1342. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
  1343. ns->ctrl = &dev->ctrl;
  1344. ns->queue->queuedata = ns;
  1345. disk = alloc_disk_node(0, node);
  1346. if (!disk)
  1347. goto out_free_queue;
  1348. kref_init(&ns->kref);
  1349. ns->ns_id = nsid;
  1350. ns->disk = disk;
  1351. ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
  1352. list_add_tail(&ns->list, &dev->namespaces);
  1353. blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
  1354. if (dev->ctrl.max_hw_sectors) {
  1355. blk_queue_max_hw_sectors(ns->queue, dev->ctrl.max_hw_sectors);
  1356. blk_queue_max_segments(ns->queue,
  1357. (dev->ctrl.max_hw_sectors / (dev->ctrl.page_size >> 9)) + 1);
  1358. }
  1359. if (dev->ctrl.stripe_size)
  1360. blk_queue_chunk_sectors(ns->queue, dev->ctrl.stripe_size >> 9);
  1361. if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT)
  1362. blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
  1363. blk_queue_virt_boundary(ns->queue, dev->ctrl.page_size - 1);
  1364. disk->major = nvme_major;
  1365. disk->first_minor = 0;
  1366. disk->fops = &nvme_fops;
  1367. disk->private_data = ns;
  1368. disk->queue = ns->queue;
  1369. disk->driverfs_dev = dev->device;
  1370. disk->flags = GENHD_FL_EXT_DEVT;
  1371. sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid);
  1372. /*
  1373. * Initialize capacity to 0 until we establish the namespace format and
  1374. * setup integrity extentions if necessary. The revalidate_disk after
  1375. * add_disk allows the driver to register with integrity if the format
  1376. * requires it.
  1377. */
  1378. set_capacity(disk, 0);
  1379. if (nvme_revalidate_disk(ns->disk))
  1380. goto out_free_disk;
  1381. kref_get(&dev->ctrl.kref);
  1382. if (ns->type != NVME_NS_LIGHTNVM) {
  1383. add_disk(ns->disk);
  1384. if (ns->ms) {
  1385. struct block_device *bd = bdget_disk(ns->disk, 0);
  1386. if (!bd)
  1387. return;
  1388. if (blkdev_get(bd, FMODE_READ, NULL)) {
  1389. bdput(bd);
  1390. return;
  1391. }
  1392. blkdev_reread_part(bd);
  1393. blkdev_put(bd, FMODE_READ);
  1394. }
  1395. }
  1396. return;
  1397. out_free_disk:
  1398. kfree(disk);
  1399. list_del(&ns->list);
  1400. out_free_queue:
  1401. blk_cleanup_queue(ns->queue);
  1402. out_free_ns:
  1403. kfree(ns);
  1404. }
  1405. /*
  1406. * Create I/O queues. Failing to create an I/O queue is not an issue,
  1407. * we can continue with less than the desired amount of queues, and
  1408. * even a controller without I/O queues an still be used to issue
  1409. * admin commands. This might be useful to upgrade a buggy firmware
  1410. * for example.
  1411. */
  1412. static void nvme_create_io_queues(struct nvme_dev *dev)
  1413. {
  1414. unsigned i;
  1415. for (i = dev->queue_count; i <= dev->max_qid; i++)
  1416. if (!nvme_alloc_queue(dev, i, dev->q_depth))
  1417. break;
  1418. for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
  1419. if (nvme_create_queue(dev->queues[i], i)) {
  1420. nvme_free_queues(dev, i);
  1421. break;
  1422. }
  1423. }
  1424. static int set_queue_count(struct nvme_dev *dev, int count)
  1425. {
  1426. int status;
  1427. u32 result;
  1428. u32 q_count = (count - 1) | ((count - 1) << 16);
  1429. status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
  1430. &result);
  1431. if (status < 0)
  1432. return status;
  1433. if (status > 0) {
  1434. dev_err(dev->dev, "Could not set queue count (%d)\n", status);
  1435. return 0;
  1436. }
  1437. return min(result & 0xffff, result >> 16) + 1;
  1438. }
  1439. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1440. {
  1441. u64 szu, size, offset;
  1442. u32 cmbloc;
  1443. resource_size_t bar_size;
  1444. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1445. void __iomem *cmb;
  1446. dma_addr_t dma_addr;
  1447. if (!use_cmb_sqes)
  1448. return NULL;
  1449. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1450. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1451. return NULL;
  1452. cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1453. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1454. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1455. offset = szu * NVME_CMB_OFST(cmbloc);
  1456. bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
  1457. if (offset > bar_size)
  1458. return NULL;
  1459. /*
  1460. * Controllers may support a CMB size larger than their BAR,
  1461. * for example, due to being behind a bridge. Reduce the CMB to
  1462. * the reported size of the BAR
  1463. */
  1464. if (size > bar_size - offset)
  1465. size = bar_size - offset;
  1466. dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
  1467. cmb = ioremap_wc(dma_addr, size);
  1468. if (!cmb)
  1469. return NULL;
  1470. dev->cmb_dma_addr = dma_addr;
  1471. dev->cmb_size = size;
  1472. return cmb;
  1473. }
  1474. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1475. {
  1476. if (dev->cmb) {
  1477. iounmap(dev->cmb);
  1478. dev->cmb = NULL;
  1479. }
  1480. }
  1481. static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1482. {
  1483. return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1484. }
  1485. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1486. {
  1487. struct nvme_queue *adminq = dev->queues[0];
  1488. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1489. int result, i, vecs, nr_io_queues, size;
  1490. nr_io_queues = num_possible_cpus();
  1491. result = set_queue_count(dev, nr_io_queues);
  1492. if (result <= 0)
  1493. return result;
  1494. if (result < nr_io_queues)
  1495. nr_io_queues = result;
  1496. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1497. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1498. sizeof(struct nvme_command));
  1499. if (result > 0)
  1500. dev->q_depth = result;
  1501. else
  1502. nvme_release_cmb(dev);
  1503. }
  1504. size = db_bar_size(dev, nr_io_queues);
  1505. if (size > 8192) {
  1506. iounmap(dev->bar);
  1507. do {
  1508. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1509. if (dev->bar)
  1510. break;
  1511. if (!--nr_io_queues)
  1512. return -ENOMEM;
  1513. size = db_bar_size(dev, nr_io_queues);
  1514. } while (1);
  1515. dev->dbs = dev->bar + 4096;
  1516. adminq->q_db = dev->dbs;
  1517. }
  1518. /* Deregister the admin queue's interrupt */
  1519. free_irq(dev->entry[0].vector, adminq);
  1520. /*
  1521. * If we enable msix early due to not intx, disable it again before
  1522. * setting up the full range we need.
  1523. */
  1524. if (!pdev->irq)
  1525. pci_disable_msix(pdev);
  1526. for (i = 0; i < nr_io_queues; i++)
  1527. dev->entry[i].entry = i;
  1528. vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
  1529. if (vecs < 0) {
  1530. vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
  1531. if (vecs < 0) {
  1532. vecs = 1;
  1533. } else {
  1534. for (i = 0; i < vecs; i++)
  1535. dev->entry[i].vector = i + pdev->irq;
  1536. }
  1537. }
  1538. /*
  1539. * Should investigate if there's a performance win from allocating
  1540. * more queues than interrupt vectors; it might allow the submission
  1541. * path to scale better, even if the receive path is limited by the
  1542. * number of interrupts.
  1543. */
  1544. nr_io_queues = vecs;
  1545. dev->max_qid = nr_io_queues;
  1546. result = queue_request_irq(dev, adminq, adminq->irqname);
  1547. if (result) {
  1548. adminq->cq_vector = -1;
  1549. goto free_queues;
  1550. }
  1551. /* Free previously allocated queues that are no longer usable */
  1552. nvme_free_queues(dev, nr_io_queues + 1);
  1553. nvme_create_io_queues(dev);
  1554. return 0;
  1555. free_queues:
  1556. nvme_free_queues(dev, 1);
  1557. return result;
  1558. }
  1559. static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
  1560. {
  1561. struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
  1562. struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
  1563. return nsa->ns_id - nsb->ns_id;
  1564. }
  1565. static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
  1566. {
  1567. struct nvme_ns *ns;
  1568. list_for_each_entry(ns, &dev->namespaces, list) {
  1569. if (ns->ns_id == nsid)
  1570. return ns;
  1571. if (ns->ns_id > nsid)
  1572. break;
  1573. }
  1574. return NULL;
  1575. }
  1576. static inline bool nvme_io_incapable(struct nvme_dev *dev)
  1577. {
  1578. return (!dev->bar ||
  1579. readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS ||
  1580. dev->online_queues < 2);
  1581. }
  1582. static void nvme_ns_remove(struct nvme_ns *ns)
  1583. {
  1584. bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) &&
  1585. !blk_queue_dying(ns->queue);
  1586. if (kill)
  1587. blk_set_queue_dying(ns->queue);
  1588. if (ns->disk->flags & GENHD_FL_UP)
  1589. del_gendisk(ns->disk);
  1590. if (kill || !blk_queue_dying(ns->queue)) {
  1591. blk_mq_abort_requeue_list(ns->queue);
  1592. blk_cleanup_queue(ns->queue);
  1593. }
  1594. list_del_init(&ns->list);
  1595. nvme_put_ns(ns);
  1596. }
  1597. static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
  1598. {
  1599. struct nvme_ns *ns, *next;
  1600. unsigned i;
  1601. for (i = 1; i <= nn; i++) {
  1602. ns = nvme_find_ns(dev, i);
  1603. if (ns) {
  1604. if (revalidate_disk(ns->disk))
  1605. nvme_ns_remove(ns);
  1606. } else
  1607. nvme_alloc_ns(dev, i);
  1608. }
  1609. list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
  1610. if (ns->ns_id > nn)
  1611. nvme_ns_remove(ns);
  1612. }
  1613. list_sort(NULL, &dev->namespaces, ns_cmp);
  1614. }
  1615. static void nvme_set_irq_hints(struct nvme_dev *dev)
  1616. {
  1617. struct nvme_queue *nvmeq;
  1618. int i;
  1619. for (i = 0; i < dev->online_queues; i++) {
  1620. nvmeq = dev->queues[i];
  1621. if (!nvmeq->tags || !(*nvmeq->tags))
  1622. continue;
  1623. irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
  1624. blk_mq_tags_cpumask(*nvmeq->tags));
  1625. }
  1626. }
  1627. static void nvme_dev_scan(struct work_struct *work)
  1628. {
  1629. struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
  1630. struct nvme_id_ctrl *ctrl;
  1631. if (!dev->tagset.tags)
  1632. return;
  1633. if (nvme_identify_ctrl(&dev->ctrl, &ctrl))
  1634. return;
  1635. nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
  1636. kfree(ctrl);
  1637. nvme_set_irq_hints(dev);
  1638. }
  1639. /*
  1640. * Return: error value if an error occurred setting up the queues or calling
  1641. * Identify Device. 0 if these succeeded, even if adding some of the
  1642. * namespaces failed. At the moment, these failures are silent. TBD which
  1643. * failures should be reported.
  1644. */
  1645. static int nvme_dev_add(struct nvme_dev *dev)
  1646. {
  1647. if (!dev->tagset.tags) {
  1648. dev->tagset.ops = &nvme_mq_ops;
  1649. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1650. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1651. dev->tagset.numa_node = dev_to_node(dev->dev);
  1652. dev->tagset.queue_depth =
  1653. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1654. dev->tagset.cmd_size = nvme_cmd_size(dev);
  1655. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1656. dev->tagset.driver_data = dev;
  1657. if (blk_mq_alloc_tag_set(&dev->tagset))
  1658. return 0;
  1659. }
  1660. schedule_work(&dev->scan_work);
  1661. return 0;
  1662. }
  1663. static int nvme_dev_map(struct nvme_dev *dev)
  1664. {
  1665. u64 cap;
  1666. int bars, result = -ENOMEM;
  1667. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1668. if (pci_enable_device_mem(pdev))
  1669. return result;
  1670. dev->entry[0].vector = pdev->irq;
  1671. pci_set_master(pdev);
  1672. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1673. if (!bars)
  1674. goto disable_pci;
  1675. if (pci_request_selected_regions(pdev, bars, "nvme"))
  1676. goto disable_pci;
  1677. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1678. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1679. goto disable;
  1680. dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
  1681. if (!dev->bar)
  1682. goto disable;
  1683. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1684. result = -ENODEV;
  1685. goto unmap;
  1686. }
  1687. /*
  1688. * Some devices don't advertse INTx interrupts, pre-enable a single
  1689. * MSIX vec for setup. We'll adjust this later.
  1690. */
  1691. if (!pdev->irq) {
  1692. result = pci_enable_msix(pdev, dev->entry, 1);
  1693. if (result < 0)
  1694. goto unmap;
  1695. }
  1696. cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1697. dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
  1698. dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
  1699. dev->dbs = dev->bar + 4096;
  1700. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
  1701. dev->cmb = nvme_map_cmb(dev);
  1702. return 0;
  1703. unmap:
  1704. iounmap(dev->bar);
  1705. dev->bar = NULL;
  1706. disable:
  1707. pci_release_regions(pdev);
  1708. disable_pci:
  1709. pci_disable_device(pdev);
  1710. return result;
  1711. }
  1712. static void nvme_dev_unmap(struct nvme_dev *dev)
  1713. {
  1714. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1715. if (pdev->msi_enabled)
  1716. pci_disable_msi(pdev);
  1717. else if (pdev->msix_enabled)
  1718. pci_disable_msix(pdev);
  1719. if (dev->bar) {
  1720. iounmap(dev->bar);
  1721. dev->bar = NULL;
  1722. pci_release_regions(pdev);
  1723. }
  1724. if (pci_is_enabled(pdev))
  1725. pci_disable_device(pdev);
  1726. }
  1727. struct nvme_delq_ctx {
  1728. struct task_struct *waiter;
  1729. struct kthread_worker *worker;
  1730. atomic_t refcount;
  1731. };
  1732. static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
  1733. {
  1734. dq->waiter = current;
  1735. mb();
  1736. for (;;) {
  1737. set_current_state(TASK_KILLABLE);
  1738. if (!atomic_read(&dq->refcount))
  1739. break;
  1740. if (!schedule_timeout(ADMIN_TIMEOUT) ||
  1741. fatal_signal_pending(current)) {
  1742. /*
  1743. * Disable the controller first since we can't trust it
  1744. * at this point, but leave the admin queue enabled
  1745. * until all queue deletion requests are flushed.
  1746. * FIXME: This may take a while if there are more h/w
  1747. * queues than admin tags.
  1748. */
  1749. set_current_state(TASK_RUNNING);
  1750. nvme_disable_ctrl(&dev->ctrl,
  1751. lo_hi_readq(dev->bar + NVME_REG_CAP));
  1752. nvme_clear_queue(dev->queues[0]);
  1753. flush_kthread_worker(dq->worker);
  1754. nvme_disable_queue(dev, 0);
  1755. return;
  1756. }
  1757. }
  1758. set_current_state(TASK_RUNNING);
  1759. }
  1760. static void nvme_put_dq(struct nvme_delq_ctx *dq)
  1761. {
  1762. atomic_dec(&dq->refcount);
  1763. if (dq->waiter)
  1764. wake_up_process(dq->waiter);
  1765. }
  1766. static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
  1767. {
  1768. atomic_inc(&dq->refcount);
  1769. return dq;
  1770. }
  1771. static void nvme_del_queue_end(struct nvme_queue *nvmeq)
  1772. {
  1773. struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
  1774. nvme_put_dq(dq);
  1775. spin_lock_irq(&nvmeq->q_lock);
  1776. nvme_process_cq(nvmeq);
  1777. spin_unlock_irq(&nvmeq->q_lock);
  1778. }
  1779. static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
  1780. kthread_work_func_t fn)
  1781. {
  1782. struct nvme_command c;
  1783. memset(&c, 0, sizeof(c));
  1784. c.delete_queue.opcode = opcode;
  1785. c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1786. init_kthread_work(&nvmeq->cmdinfo.work, fn);
  1787. return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
  1788. ADMIN_TIMEOUT);
  1789. }
  1790. static void nvme_del_cq_work_handler(struct kthread_work *work)
  1791. {
  1792. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  1793. cmdinfo.work);
  1794. nvme_del_queue_end(nvmeq);
  1795. }
  1796. static int nvme_delete_cq(struct nvme_queue *nvmeq)
  1797. {
  1798. return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
  1799. nvme_del_cq_work_handler);
  1800. }
  1801. static void nvme_del_sq_work_handler(struct kthread_work *work)
  1802. {
  1803. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  1804. cmdinfo.work);
  1805. int status = nvmeq->cmdinfo.status;
  1806. if (!status)
  1807. status = nvme_delete_cq(nvmeq);
  1808. if (status)
  1809. nvme_del_queue_end(nvmeq);
  1810. }
  1811. static int nvme_delete_sq(struct nvme_queue *nvmeq)
  1812. {
  1813. return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
  1814. nvme_del_sq_work_handler);
  1815. }
  1816. static void nvme_del_queue_start(struct kthread_work *work)
  1817. {
  1818. struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
  1819. cmdinfo.work);
  1820. if (nvme_delete_sq(nvmeq))
  1821. nvme_del_queue_end(nvmeq);
  1822. }
  1823. static void nvme_disable_io_queues(struct nvme_dev *dev)
  1824. {
  1825. int i;
  1826. DEFINE_KTHREAD_WORKER_ONSTACK(worker);
  1827. struct nvme_delq_ctx dq;
  1828. struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
  1829. &worker, "nvme%d", dev->ctrl.instance);
  1830. if (IS_ERR(kworker_task)) {
  1831. dev_err(dev->dev,
  1832. "Failed to create queue del task\n");
  1833. for (i = dev->queue_count - 1; i > 0; i--)
  1834. nvme_disable_queue(dev, i);
  1835. return;
  1836. }
  1837. dq.waiter = NULL;
  1838. atomic_set(&dq.refcount, 0);
  1839. dq.worker = &worker;
  1840. for (i = dev->queue_count - 1; i > 0; i--) {
  1841. struct nvme_queue *nvmeq = dev->queues[i];
  1842. if (nvme_suspend_queue(nvmeq))
  1843. continue;
  1844. nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
  1845. nvmeq->cmdinfo.worker = dq.worker;
  1846. init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
  1847. queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
  1848. }
  1849. nvme_wait_dq(&dq, dev);
  1850. kthread_stop(kworker_task);
  1851. }
  1852. /*
  1853. * Remove the node from the device list and check
  1854. * for whether or not we need to stop the nvme_thread.
  1855. */
  1856. static void nvme_dev_list_remove(struct nvme_dev *dev)
  1857. {
  1858. struct task_struct *tmp = NULL;
  1859. spin_lock(&dev_list_lock);
  1860. list_del_init(&dev->node);
  1861. if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
  1862. tmp = nvme_thread;
  1863. nvme_thread = NULL;
  1864. }
  1865. spin_unlock(&dev_list_lock);
  1866. if (tmp)
  1867. kthread_stop(tmp);
  1868. }
  1869. static void nvme_freeze_queues(struct nvme_dev *dev)
  1870. {
  1871. struct nvme_ns *ns;
  1872. list_for_each_entry(ns, &dev->namespaces, list) {
  1873. blk_mq_freeze_queue_start(ns->queue);
  1874. spin_lock_irq(ns->queue->queue_lock);
  1875. queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
  1876. spin_unlock_irq(ns->queue->queue_lock);
  1877. blk_mq_cancel_requeue_work(ns->queue);
  1878. blk_mq_stop_hw_queues(ns->queue);
  1879. }
  1880. }
  1881. static void nvme_unfreeze_queues(struct nvme_dev *dev)
  1882. {
  1883. struct nvme_ns *ns;
  1884. list_for_each_entry(ns, &dev->namespaces, list) {
  1885. queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
  1886. blk_mq_unfreeze_queue(ns->queue);
  1887. blk_mq_start_stopped_hw_queues(ns->queue, true);
  1888. blk_mq_kick_requeue_list(ns->queue);
  1889. }
  1890. }
  1891. static void nvme_dev_shutdown(struct nvme_dev *dev)
  1892. {
  1893. int i;
  1894. u32 csts = -1;
  1895. nvme_dev_list_remove(dev);
  1896. if (dev->bar) {
  1897. nvme_freeze_queues(dev);
  1898. csts = readl(dev->bar + NVME_REG_CSTS);
  1899. }
  1900. if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
  1901. for (i = dev->queue_count - 1; i >= 0; i--) {
  1902. struct nvme_queue *nvmeq = dev->queues[i];
  1903. nvme_suspend_queue(nvmeq);
  1904. }
  1905. } else {
  1906. nvme_disable_io_queues(dev);
  1907. nvme_shutdown_ctrl(&dev->ctrl);
  1908. nvme_disable_queue(dev, 0);
  1909. }
  1910. nvme_dev_unmap(dev);
  1911. for (i = dev->queue_count - 1; i >= 0; i--)
  1912. nvme_clear_queue(dev->queues[i]);
  1913. }
  1914. static void nvme_dev_remove(struct nvme_dev *dev)
  1915. {
  1916. struct nvme_ns *ns, *next;
  1917. list_for_each_entry_safe(ns, next, &dev->namespaces, list)
  1918. nvme_ns_remove(ns);
  1919. }
  1920. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1921. {
  1922. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1923. PAGE_SIZE, PAGE_SIZE, 0);
  1924. if (!dev->prp_page_pool)
  1925. return -ENOMEM;
  1926. /* Optimisation for I/Os between 4k and 128k */
  1927. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1928. 256, 256, 0);
  1929. if (!dev->prp_small_pool) {
  1930. dma_pool_destroy(dev->prp_page_pool);
  1931. return -ENOMEM;
  1932. }
  1933. return 0;
  1934. }
  1935. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1936. {
  1937. dma_pool_destroy(dev->prp_page_pool);
  1938. dma_pool_destroy(dev->prp_small_pool);
  1939. }
  1940. static DEFINE_IDA(nvme_instance_ida);
  1941. static int nvme_set_instance(struct nvme_dev *dev)
  1942. {
  1943. int instance, error;
  1944. do {
  1945. if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
  1946. return -ENODEV;
  1947. spin_lock(&dev_list_lock);
  1948. error = ida_get_new(&nvme_instance_ida, &instance);
  1949. spin_unlock(&dev_list_lock);
  1950. } while (error == -EAGAIN);
  1951. if (error)
  1952. return -ENODEV;
  1953. dev->ctrl.instance = instance;
  1954. return 0;
  1955. }
  1956. static void nvme_release_instance(struct nvme_dev *dev)
  1957. {
  1958. spin_lock(&dev_list_lock);
  1959. ida_remove(&nvme_instance_ida, dev->ctrl.instance);
  1960. spin_unlock(&dev_list_lock);
  1961. }
  1962. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1963. {
  1964. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1965. put_device(dev->dev);
  1966. put_device(dev->device);
  1967. nvme_release_instance(dev);
  1968. if (dev->tagset.tags)
  1969. blk_mq_free_tag_set(&dev->tagset);
  1970. if (dev->ctrl.admin_q)
  1971. blk_put_queue(dev->ctrl.admin_q);
  1972. kfree(dev->queues);
  1973. kfree(dev->entry);
  1974. kfree(dev);
  1975. }
  1976. static int nvme_dev_open(struct inode *inode, struct file *f)
  1977. {
  1978. struct nvme_dev *dev;
  1979. int instance = iminor(inode);
  1980. int ret = -ENODEV;
  1981. spin_lock(&dev_list_lock);
  1982. list_for_each_entry(dev, &dev_list, node) {
  1983. if (dev->ctrl.instance == instance) {
  1984. if (!dev->ctrl.admin_q) {
  1985. ret = -EWOULDBLOCK;
  1986. break;
  1987. }
  1988. if (!kref_get_unless_zero(&dev->ctrl.kref))
  1989. break;
  1990. f->private_data = dev;
  1991. ret = 0;
  1992. break;
  1993. }
  1994. }
  1995. spin_unlock(&dev_list_lock);
  1996. return ret;
  1997. }
  1998. static int nvme_dev_release(struct inode *inode, struct file *f)
  1999. {
  2000. struct nvme_dev *dev = f->private_data;
  2001. nvme_put_ctrl(&dev->ctrl);
  2002. return 0;
  2003. }
  2004. static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  2005. {
  2006. struct nvme_dev *dev = f->private_data;
  2007. struct nvme_ns *ns;
  2008. switch (cmd) {
  2009. case NVME_IOCTL_ADMIN_CMD:
  2010. return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
  2011. case NVME_IOCTL_IO_CMD:
  2012. if (list_empty(&dev->namespaces))
  2013. return -ENOTTY;
  2014. ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
  2015. return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
  2016. case NVME_IOCTL_RESET:
  2017. dev_warn(dev->dev, "resetting controller\n");
  2018. return nvme_reset(dev);
  2019. case NVME_IOCTL_SUBSYS_RESET:
  2020. return nvme_subsys_reset(dev);
  2021. default:
  2022. return -ENOTTY;
  2023. }
  2024. }
  2025. static const struct file_operations nvme_dev_fops = {
  2026. .owner = THIS_MODULE,
  2027. .open = nvme_dev_open,
  2028. .release = nvme_dev_release,
  2029. .unlocked_ioctl = nvme_dev_ioctl,
  2030. .compat_ioctl = nvme_dev_ioctl,
  2031. };
  2032. static void nvme_probe_work(struct work_struct *work)
  2033. {
  2034. struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
  2035. bool start_thread = false;
  2036. int result;
  2037. result = nvme_dev_map(dev);
  2038. if (result)
  2039. goto out;
  2040. result = nvme_configure_admin_queue(dev);
  2041. if (result)
  2042. goto unmap;
  2043. spin_lock(&dev_list_lock);
  2044. if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
  2045. start_thread = true;
  2046. nvme_thread = NULL;
  2047. }
  2048. list_add(&dev->node, &dev_list);
  2049. spin_unlock(&dev_list_lock);
  2050. if (start_thread) {
  2051. nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
  2052. wake_up_all(&nvme_kthread_wait);
  2053. } else
  2054. wait_event_killable(nvme_kthread_wait, nvme_thread);
  2055. if (IS_ERR_OR_NULL(nvme_thread)) {
  2056. result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
  2057. goto disable;
  2058. }
  2059. nvme_init_queue(dev->queues[0], 0);
  2060. result = nvme_alloc_admin_tags(dev);
  2061. if (result)
  2062. goto disable;
  2063. result = nvme_init_identify(&dev->ctrl);
  2064. if (result)
  2065. goto free_tags;
  2066. result = nvme_setup_io_queues(dev);
  2067. if (result)
  2068. goto free_tags;
  2069. dev->ctrl.event_limit = 1;
  2070. /*
  2071. * Keep the controller around but remove all namespaces if we don't have
  2072. * any working I/O queue.
  2073. */
  2074. if (dev->online_queues < 2) {
  2075. dev_warn(dev->dev, "IO queues not created\n");
  2076. nvme_dev_remove(dev);
  2077. } else {
  2078. nvme_unfreeze_queues(dev);
  2079. nvme_dev_add(dev);
  2080. }
  2081. return;
  2082. free_tags:
  2083. nvme_dev_remove_admin(dev);
  2084. blk_put_queue(dev->ctrl.admin_q);
  2085. dev->ctrl.admin_q = NULL;
  2086. dev->queues[0]->tags = NULL;
  2087. disable:
  2088. nvme_disable_queue(dev, 0);
  2089. nvme_dev_list_remove(dev);
  2090. unmap:
  2091. nvme_dev_unmap(dev);
  2092. out:
  2093. if (!work_busy(&dev->reset_work))
  2094. nvme_dead_ctrl(dev);
  2095. }
  2096. static int nvme_remove_dead_ctrl(void *arg)
  2097. {
  2098. struct nvme_dev *dev = (struct nvme_dev *)arg;
  2099. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2100. if (pci_get_drvdata(pdev))
  2101. pci_stop_and_remove_bus_device_locked(pdev);
  2102. nvme_put_ctrl(&dev->ctrl);
  2103. return 0;
  2104. }
  2105. static void nvme_dead_ctrl(struct nvme_dev *dev)
  2106. {
  2107. dev_warn(dev->dev, "Device failed to resume\n");
  2108. kref_get(&dev->ctrl.kref);
  2109. if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
  2110. dev->ctrl.instance))) {
  2111. dev_err(dev->dev,
  2112. "Failed to start controller remove task\n");
  2113. nvme_put_ctrl(&dev->ctrl);
  2114. }
  2115. }
  2116. static void nvme_reset_work(struct work_struct *ws)
  2117. {
  2118. struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
  2119. bool in_probe = work_busy(&dev->probe_work);
  2120. nvme_dev_shutdown(dev);
  2121. /* Synchronize with device probe so that work will see failure status
  2122. * and exit gracefully without trying to schedule another reset */
  2123. flush_work(&dev->probe_work);
  2124. /* Fail this device if reset occured during probe to avoid
  2125. * infinite initialization loops. */
  2126. if (in_probe) {
  2127. nvme_dead_ctrl(dev);
  2128. return;
  2129. }
  2130. /* Schedule device resume asynchronously so the reset work is available
  2131. * to cleanup errors that may occur during reinitialization */
  2132. schedule_work(&dev->probe_work);
  2133. }
  2134. static int __nvme_reset(struct nvme_dev *dev)
  2135. {
  2136. if (work_pending(&dev->reset_work))
  2137. return -EBUSY;
  2138. list_del_init(&dev->node);
  2139. queue_work(nvme_workq, &dev->reset_work);
  2140. return 0;
  2141. }
  2142. static int nvme_reset(struct nvme_dev *dev)
  2143. {
  2144. int ret;
  2145. if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
  2146. return -ENODEV;
  2147. spin_lock(&dev_list_lock);
  2148. ret = __nvme_reset(dev);
  2149. spin_unlock(&dev_list_lock);
  2150. if (!ret) {
  2151. flush_work(&dev->reset_work);
  2152. flush_work(&dev->probe_work);
  2153. return 0;
  2154. }
  2155. return ret;
  2156. }
  2157. static ssize_t nvme_sysfs_reset(struct device *dev,
  2158. struct device_attribute *attr, const char *buf,
  2159. size_t count)
  2160. {
  2161. struct nvme_dev *ndev = dev_get_drvdata(dev);
  2162. int ret;
  2163. ret = nvme_reset(ndev);
  2164. if (ret < 0)
  2165. return ret;
  2166. return count;
  2167. }
  2168. static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
  2169. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  2170. {
  2171. *val = readl(to_nvme_dev(ctrl)->bar + off);
  2172. return 0;
  2173. }
  2174. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  2175. {
  2176. writel(val, to_nvme_dev(ctrl)->bar + off);
  2177. return 0;
  2178. }
  2179. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  2180. {
  2181. *val = readq(to_nvme_dev(ctrl)->bar + off);
  2182. return 0;
  2183. }
  2184. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  2185. .reg_read32 = nvme_pci_reg_read32,
  2186. .reg_write32 = nvme_pci_reg_write32,
  2187. .reg_read64 = nvme_pci_reg_read64,
  2188. .free_ctrl = nvme_pci_free_ctrl,
  2189. };
  2190. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  2191. {
  2192. int node, result = -ENOMEM;
  2193. struct nvme_dev *dev;
  2194. node = dev_to_node(&pdev->dev);
  2195. if (node == NUMA_NO_NODE)
  2196. set_dev_node(&pdev->dev, 0);
  2197. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  2198. if (!dev)
  2199. return -ENOMEM;
  2200. dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
  2201. GFP_KERNEL, node);
  2202. if (!dev->entry)
  2203. goto free;
  2204. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  2205. GFP_KERNEL, node);
  2206. if (!dev->queues)
  2207. goto free;
  2208. INIT_LIST_HEAD(&dev->namespaces);
  2209. INIT_WORK(&dev->reset_work, nvme_reset_work);
  2210. dev->dev = get_device(&pdev->dev);
  2211. pci_set_drvdata(pdev, dev);
  2212. dev->ctrl.ops = &nvme_pci_ctrl_ops;
  2213. dev->ctrl.dev = dev->dev;
  2214. dev->ctrl.quirks = id->driver_data;
  2215. result = nvme_set_instance(dev);
  2216. if (result)
  2217. goto put_pci;
  2218. result = nvme_setup_prp_pools(dev);
  2219. if (result)
  2220. goto release;
  2221. kref_init(&dev->ctrl.kref);
  2222. dev->device = device_create(nvme_class, &pdev->dev,
  2223. MKDEV(nvme_char_major, dev->ctrl.instance),
  2224. dev, "nvme%d", dev->ctrl.instance);
  2225. if (IS_ERR(dev->device)) {
  2226. result = PTR_ERR(dev->device);
  2227. goto release_pools;
  2228. }
  2229. get_device(dev->device);
  2230. dev_set_drvdata(dev->device, dev);
  2231. result = device_create_file(dev->device, &dev_attr_reset_controller);
  2232. if (result)
  2233. goto put_dev;
  2234. INIT_LIST_HEAD(&dev->node);
  2235. INIT_WORK(&dev->scan_work, nvme_dev_scan);
  2236. INIT_WORK(&dev->probe_work, nvme_probe_work);
  2237. schedule_work(&dev->probe_work);
  2238. return 0;
  2239. put_dev:
  2240. device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
  2241. put_device(dev->device);
  2242. release_pools:
  2243. nvme_release_prp_pools(dev);
  2244. release:
  2245. nvme_release_instance(dev);
  2246. put_pci:
  2247. put_device(dev->dev);
  2248. free:
  2249. kfree(dev->queues);
  2250. kfree(dev->entry);
  2251. kfree(dev);
  2252. return result;
  2253. }
  2254. static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
  2255. {
  2256. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2257. if (prepare)
  2258. nvme_dev_shutdown(dev);
  2259. else
  2260. schedule_work(&dev->probe_work);
  2261. }
  2262. static void nvme_shutdown(struct pci_dev *pdev)
  2263. {
  2264. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2265. nvme_dev_shutdown(dev);
  2266. }
  2267. static void nvme_remove(struct pci_dev *pdev)
  2268. {
  2269. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2270. spin_lock(&dev_list_lock);
  2271. list_del_init(&dev->node);
  2272. spin_unlock(&dev_list_lock);
  2273. pci_set_drvdata(pdev, NULL);
  2274. flush_work(&dev->probe_work);
  2275. flush_work(&dev->reset_work);
  2276. flush_work(&dev->scan_work);
  2277. device_remove_file(dev->device, &dev_attr_reset_controller);
  2278. nvme_dev_remove(dev);
  2279. nvme_dev_shutdown(dev);
  2280. nvme_dev_remove_admin(dev);
  2281. device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
  2282. nvme_free_queues(dev, 0);
  2283. nvme_release_cmb(dev);
  2284. nvme_release_prp_pools(dev);
  2285. nvme_put_ctrl(&dev->ctrl);
  2286. }
  2287. /* These functions are yet to be implemented */
  2288. #define nvme_error_detected NULL
  2289. #define nvme_dump_registers NULL
  2290. #define nvme_link_reset NULL
  2291. #define nvme_slot_reset NULL
  2292. #define nvme_error_resume NULL
  2293. #ifdef CONFIG_PM_SLEEP
  2294. static int nvme_suspend(struct device *dev)
  2295. {
  2296. struct pci_dev *pdev = to_pci_dev(dev);
  2297. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2298. nvme_dev_shutdown(ndev);
  2299. return 0;
  2300. }
  2301. static int nvme_resume(struct device *dev)
  2302. {
  2303. struct pci_dev *pdev = to_pci_dev(dev);
  2304. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2305. schedule_work(&ndev->probe_work);
  2306. return 0;
  2307. }
  2308. #endif
  2309. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2310. static const struct pci_error_handlers nvme_err_handler = {
  2311. .error_detected = nvme_error_detected,
  2312. .mmio_enabled = nvme_dump_registers,
  2313. .link_reset = nvme_link_reset,
  2314. .slot_reset = nvme_slot_reset,
  2315. .resume = nvme_error_resume,
  2316. .reset_notify = nvme_reset_notify,
  2317. };
  2318. /* Move to pci_ids.h later */
  2319. #define PCI_CLASS_STORAGE_EXPRESS 0x010802
  2320. static const struct pci_device_id nvme_id_table[] = {
  2321. { PCI_VDEVICE(INTEL, 0x0953),
  2322. .driver_data = NVME_QUIRK_STRIPE_SIZE, },
  2323. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2324. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2325. { 0, }
  2326. };
  2327. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2328. static struct pci_driver nvme_driver = {
  2329. .name = "nvme",
  2330. .id_table = nvme_id_table,
  2331. .probe = nvme_probe,
  2332. .remove = nvme_remove,
  2333. .shutdown = nvme_shutdown,
  2334. .driver = {
  2335. .pm = &nvme_dev_pm_ops,
  2336. },
  2337. .err_handler = &nvme_err_handler,
  2338. };
  2339. static int __init nvme_init(void)
  2340. {
  2341. int result;
  2342. init_waitqueue_head(&nvme_kthread_wait);
  2343. nvme_workq = create_singlethread_workqueue("nvme");
  2344. if (!nvme_workq)
  2345. return -ENOMEM;
  2346. result = register_blkdev(nvme_major, "nvme");
  2347. if (result < 0)
  2348. goto kill_workq;
  2349. else if (result > 0)
  2350. nvme_major = result;
  2351. result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
  2352. &nvme_dev_fops);
  2353. if (result < 0)
  2354. goto unregister_blkdev;
  2355. else if (result > 0)
  2356. nvme_char_major = result;
  2357. nvme_class = class_create(THIS_MODULE, "nvme");
  2358. if (IS_ERR(nvme_class)) {
  2359. result = PTR_ERR(nvme_class);
  2360. goto unregister_chrdev;
  2361. }
  2362. result = pci_register_driver(&nvme_driver);
  2363. if (result)
  2364. goto destroy_class;
  2365. return 0;
  2366. destroy_class:
  2367. class_destroy(nvme_class);
  2368. unregister_chrdev:
  2369. __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
  2370. unregister_blkdev:
  2371. unregister_blkdev(nvme_major, "nvme");
  2372. kill_workq:
  2373. destroy_workqueue(nvme_workq);
  2374. return result;
  2375. }
  2376. static void __exit nvme_exit(void)
  2377. {
  2378. pci_unregister_driver(&nvme_driver);
  2379. unregister_blkdev(nvme_major, "nvme");
  2380. destroy_workqueue(nvme_workq);
  2381. class_destroy(nvme_class);
  2382. __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
  2383. BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
  2384. _nvme_check_size();
  2385. }
  2386. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2387. MODULE_LICENSE("GPL");
  2388. MODULE_VERSION("1.0");
  2389. module_init(nvme_init);
  2390. module_exit(nvme_exit);