safexcel_cipher.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. /*
  2. * Copyright (C) 2017 Marvell
  3. *
  4. * Antoine Tenart <antoine.tenart@free-electrons.com>
  5. *
  6. * This file is licensed under the terms of the GNU General Public
  7. * License version 2. This program is licensed "as is" without any
  8. * warranty of any kind, whether express or implied.
  9. */
  10. #include <linux/device.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmapool.h>
  13. #include <crypto/aead.h>
  14. #include <crypto/aes.h>
  15. #include <crypto/authenc.h>
  16. #include <crypto/sha.h>
  17. #include <crypto/skcipher.h>
  18. #include <crypto/internal/aead.h>
  19. #include <crypto/internal/skcipher.h>
  20. #include "safexcel.h"
  21. enum safexcel_cipher_direction {
  22. SAFEXCEL_ENCRYPT,
  23. SAFEXCEL_DECRYPT,
  24. };
  25. struct safexcel_cipher_ctx {
  26. struct safexcel_context base;
  27. struct safexcel_crypto_priv *priv;
  28. u32 mode;
  29. bool aead;
  30. __le32 key[8];
  31. unsigned int key_len;
  32. /* All the below is AEAD specific */
  33. u32 alg;
  34. u32 state_sz;
  35. u32 ipad[SHA256_DIGEST_SIZE / sizeof(u32)];
  36. u32 opad[SHA256_DIGEST_SIZE / sizeof(u32)];
  37. };
  38. struct safexcel_cipher_req {
  39. enum safexcel_cipher_direction direction;
  40. bool needs_inv;
  41. };
  42. static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  43. struct safexcel_command_desc *cdesc,
  44. u32 length)
  45. {
  46. struct safexcel_token *token;
  47. unsigned offset = 0;
  48. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  49. offset = AES_BLOCK_SIZE / sizeof(u32);
  50. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  51. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  52. }
  53. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  54. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  55. token[0].packet_length = length;
  56. token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
  57. EIP197_TOKEN_STAT_LAST_HASH;
  58. token[0].instructions = EIP197_TOKEN_INS_LAST |
  59. EIP197_TOKEN_INS_TYPE_CRYTO |
  60. EIP197_TOKEN_INS_TYPE_OUTPUT;
  61. }
  62. static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
  63. struct safexcel_command_desc *cdesc,
  64. enum safexcel_cipher_direction direction,
  65. u32 cryptlen, u32 assoclen, u32 digestsize)
  66. {
  67. struct safexcel_token *token;
  68. unsigned offset = 0;
  69. if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) {
  70. offset = AES_BLOCK_SIZE / sizeof(u32);
  71. memcpy(cdesc->control_data.token, iv, AES_BLOCK_SIZE);
  72. cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
  73. }
  74. token = (struct safexcel_token *)(cdesc->control_data.token + offset);
  75. if (direction == SAFEXCEL_DECRYPT)
  76. cryptlen -= digestsize;
  77. token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  78. token[0].packet_length = assoclen;
  79. token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH |
  80. EIP197_TOKEN_INS_TYPE_OUTPUT;
  81. token[1].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
  82. token[1].packet_length = cryptlen;
  83. token[1].stat = EIP197_TOKEN_STAT_LAST_HASH;
  84. token[1].instructions = EIP197_TOKEN_INS_LAST |
  85. EIP197_TOKEN_INS_TYPE_CRYTO |
  86. EIP197_TOKEN_INS_TYPE_HASH |
  87. EIP197_TOKEN_INS_TYPE_OUTPUT;
  88. if (direction == SAFEXCEL_ENCRYPT) {
  89. token[2].opcode = EIP197_TOKEN_OPCODE_INSERT;
  90. token[2].packet_length = digestsize;
  91. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  92. EIP197_TOKEN_STAT_LAST_PACKET;
  93. token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
  94. EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  95. } else {
  96. token[2].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
  97. token[2].packet_length = digestsize;
  98. token[2].stat = EIP197_TOKEN_STAT_LAST_HASH |
  99. EIP197_TOKEN_STAT_LAST_PACKET;
  100. token[2].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
  101. token[3].opcode = EIP197_TOKEN_OPCODE_VERIFY;
  102. token[3].packet_length = digestsize |
  103. EIP197_TOKEN_HASH_RESULT_VERIFY;
  104. token[3].stat = EIP197_TOKEN_STAT_LAST_HASH |
  105. EIP197_TOKEN_STAT_LAST_PACKET;
  106. token[3].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
  107. }
  108. }
  109. static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
  110. const u8 *key, unsigned int len)
  111. {
  112. struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
  113. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  114. struct safexcel_crypto_priv *priv = ctx->priv;
  115. struct crypto_aes_ctx aes;
  116. int ret, i;
  117. ret = crypto_aes_expand_key(&aes, key, len);
  118. if (ret) {
  119. crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  120. return ret;
  121. }
  122. if (priv->version == EIP197 && ctx->base.ctxr_dma) {
  123. for (i = 0; i < len / sizeof(u32); i++) {
  124. if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
  125. ctx->base.needs_inv = true;
  126. break;
  127. }
  128. }
  129. }
  130. for (i = 0; i < len / sizeof(u32); i++)
  131. ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
  132. ctx->key_len = len;
  133. memzero_explicit(&aes, sizeof(aes));
  134. return 0;
  135. }
  136. static int safexcel_aead_aes_setkey(struct crypto_aead *ctfm, const u8 *key,
  137. unsigned int len)
  138. {
  139. struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
  140. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  141. struct safexcel_ahash_export_state istate, ostate;
  142. struct safexcel_crypto_priv *priv = ctx->priv;
  143. struct crypto_authenc_keys keys;
  144. if (crypto_authenc_extractkeys(&keys, key, len) != 0)
  145. goto badkey;
  146. if (keys.enckeylen > sizeof(ctx->key))
  147. goto badkey;
  148. /* Encryption key */
  149. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  150. memcmp(ctx->key, keys.enckey, keys.enckeylen))
  151. ctx->base.needs_inv = true;
  152. /* Auth key */
  153. switch (ctx->alg) {
  154. case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
  155. if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
  156. keys.authkeylen, &istate, &ostate))
  157. goto badkey;
  158. break;
  159. case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
  160. if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
  161. keys.authkeylen, &istate, &ostate))
  162. goto badkey;
  163. break;
  164. case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
  165. if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
  166. keys.authkeylen, &istate, &ostate))
  167. goto badkey;
  168. break;
  169. default:
  170. dev_err(priv->dev, "aead: unsupported hash algorithm\n");
  171. goto badkey;
  172. }
  173. crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
  174. CRYPTO_TFM_RES_MASK);
  175. if (priv->version == EIP197 && ctx->base.ctxr_dma &&
  176. (memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
  177. memcmp(ctx->opad, ostate.state, ctx->state_sz)))
  178. ctx->base.needs_inv = true;
  179. /* Now copy the keys into the context */
  180. memcpy(ctx->key, keys.enckey, keys.enckeylen);
  181. ctx->key_len = keys.enckeylen;
  182. memcpy(ctx->ipad, &istate.state, ctx->state_sz);
  183. memcpy(ctx->opad, &ostate.state, ctx->state_sz);
  184. memzero_explicit(&keys, sizeof(keys));
  185. return 0;
  186. badkey:
  187. crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  188. memzero_explicit(&keys, sizeof(keys));
  189. return -EINVAL;
  190. }
  191. static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
  192. struct crypto_async_request *async,
  193. struct safexcel_cipher_req *sreq,
  194. struct safexcel_command_desc *cdesc)
  195. {
  196. struct safexcel_crypto_priv *priv = ctx->priv;
  197. int ctrl_size;
  198. if (ctx->aead) {
  199. if (sreq->direction == SAFEXCEL_ENCRYPT)
  200. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
  201. else
  202. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
  203. } else {
  204. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_CRYPTO_OUT;
  205. /* The decryption control type is a combination of the
  206. * encryption type and CONTEXT_CONTROL_TYPE_NULL_IN, for all
  207. * types.
  208. */
  209. if (sreq->direction == SAFEXCEL_DECRYPT)
  210. cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_NULL_IN;
  211. }
  212. cdesc->control_data.control0 |= CONTEXT_CONTROL_KEY_EN;
  213. cdesc->control_data.control1 |= ctx->mode;
  214. if (ctx->aead)
  215. cdesc->control_data.control0 |= CONTEXT_CONTROL_DIGEST_HMAC |
  216. ctx->alg;
  217. switch (ctx->key_len) {
  218. case AES_KEYSIZE_128:
  219. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128;
  220. break;
  221. case AES_KEYSIZE_192:
  222. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192;
  223. break;
  224. case AES_KEYSIZE_256:
  225. cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256;
  226. break;
  227. default:
  228. dev_err(priv->dev, "aes keysize not supported: %u\n",
  229. ctx->key_len);
  230. return -EINVAL;
  231. }
  232. ctrl_size = ctx->key_len / sizeof(u32);
  233. if (ctx->aead)
  234. /* Take in account the ipad+opad digests */
  235. ctrl_size += ctx->state_sz / sizeof(u32) * 2;
  236. cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(ctrl_size);
  237. return 0;
  238. }
  239. static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
  240. struct crypto_async_request *async,
  241. struct scatterlist *src,
  242. struct scatterlist *dst,
  243. unsigned int cryptlen,
  244. struct safexcel_cipher_req *sreq,
  245. bool *should_complete, int *ret)
  246. {
  247. struct safexcel_result_desc *rdesc;
  248. int ndesc = 0;
  249. *ret = 0;
  250. spin_lock_bh(&priv->ring[ring].egress_lock);
  251. do {
  252. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  253. if (IS_ERR(rdesc)) {
  254. dev_err(priv->dev,
  255. "cipher: result: could not retrieve the result descriptor\n");
  256. *ret = PTR_ERR(rdesc);
  257. break;
  258. }
  259. if (likely(!*ret))
  260. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  261. ndesc++;
  262. } while (!rdesc->last_seg);
  263. safexcel_complete(priv, ring);
  264. spin_unlock_bh(&priv->ring[ring].egress_lock);
  265. if (src == dst) {
  266. dma_unmap_sg(priv->dev, src,
  267. sg_nents_for_len(src, cryptlen),
  268. DMA_BIDIRECTIONAL);
  269. } else {
  270. dma_unmap_sg(priv->dev, src,
  271. sg_nents_for_len(src, cryptlen),
  272. DMA_TO_DEVICE);
  273. dma_unmap_sg(priv->dev, dst,
  274. sg_nents_for_len(dst, cryptlen),
  275. DMA_FROM_DEVICE);
  276. }
  277. *should_complete = true;
  278. return ndesc;
  279. }
  280. static int safexcel_aes_send(struct crypto_async_request *base, int ring,
  281. struct safexcel_request *request,
  282. struct safexcel_cipher_req *sreq,
  283. struct scatterlist *src, struct scatterlist *dst,
  284. unsigned int cryptlen, unsigned int assoclen,
  285. unsigned int digestsize, u8 *iv, int *commands,
  286. int *results)
  287. {
  288. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  289. struct safexcel_crypto_priv *priv = ctx->priv;
  290. struct safexcel_command_desc *cdesc;
  291. struct safexcel_result_desc *rdesc;
  292. struct scatterlist *sg;
  293. unsigned int totlen = cryptlen + assoclen;
  294. int nr_src, nr_dst, n_cdesc = 0, n_rdesc = 0, queued = totlen;
  295. int i, ret = 0;
  296. if (src == dst) {
  297. nr_src = dma_map_sg(priv->dev, src,
  298. sg_nents_for_len(src, totlen),
  299. DMA_BIDIRECTIONAL);
  300. nr_dst = nr_src;
  301. if (!nr_src)
  302. return -EINVAL;
  303. } else {
  304. nr_src = dma_map_sg(priv->dev, src,
  305. sg_nents_for_len(src, totlen),
  306. DMA_TO_DEVICE);
  307. if (!nr_src)
  308. return -EINVAL;
  309. nr_dst = dma_map_sg(priv->dev, dst,
  310. sg_nents_for_len(dst, totlen),
  311. DMA_FROM_DEVICE);
  312. if (!nr_dst) {
  313. dma_unmap_sg(priv->dev, src,
  314. sg_nents_for_len(src, totlen),
  315. DMA_TO_DEVICE);
  316. return -EINVAL;
  317. }
  318. }
  319. memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
  320. if (ctx->aead) {
  321. memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
  322. ctx->ipad, ctx->state_sz);
  323. memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32),
  324. ctx->opad, ctx->state_sz);
  325. }
  326. spin_lock_bh(&priv->ring[ring].egress_lock);
  327. /* command descriptors */
  328. for_each_sg(src, sg, nr_src, i) {
  329. int len = sg_dma_len(sg);
  330. /* Do not overflow the request */
  331. if (queued - len < 0)
  332. len = queued;
  333. cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len),
  334. sg_dma_address(sg), len, totlen,
  335. ctx->base.ctxr_dma);
  336. if (IS_ERR(cdesc)) {
  337. /* No space left in the command descriptor ring */
  338. ret = PTR_ERR(cdesc);
  339. goto cdesc_rollback;
  340. }
  341. n_cdesc++;
  342. if (n_cdesc == 1) {
  343. safexcel_context_control(ctx, base, sreq, cdesc);
  344. if (ctx->aead)
  345. safexcel_aead_token(ctx, iv, cdesc,
  346. sreq->direction, cryptlen,
  347. assoclen, digestsize);
  348. else
  349. safexcel_skcipher_token(ctx, iv, cdesc,
  350. cryptlen);
  351. }
  352. queued -= len;
  353. if (!queued)
  354. break;
  355. }
  356. /* result descriptors */
  357. for_each_sg(dst, sg, nr_dst, i) {
  358. bool first = !i, last = (i == nr_dst - 1);
  359. u32 len = sg_dma_len(sg);
  360. rdesc = safexcel_add_rdesc(priv, ring, first, last,
  361. sg_dma_address(sg), len);
  362. if (IS_ERR(rdesc)) {
  363. /* No space left in the result descriptor ring */
  364. ret = PTR_ERR(rdesc);
  365. goto rdesc_rollback;
  366. }
  367. n_rdesc++;
  368. }
  369. spin_unlock_bh(&priv->ring[ring].egress_lock);
  370. request->req = base;
  371. *commands = n_cdesc;
  372. *results = n_rdesc;
  373. return 0;
  374. rdesc_rollback:
  375. for (i = 0; i < n_rdesc; i++)
  376. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
  377. cdesc_rollback:
  378. for (i = 0; i < n_cdesc; i++)
  379. safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
  380. spin_unlock_bh(&priv->ring[ring].egress_lock);
  381. if (src == dst) {
  382. dma_unmap_sg(priv->dev, src,
  383. sg_nents_for_len(src, totlen),
  384. DMA_BIDIRECTIONAL);
  385. } else {
  386. dma_unmap_sg(priv->dev, src,
  387. sg_nents_for_len(src, totlen),
  388. DMA_TO_DEVICE);
  389. dma_unmap_sg(priv->dev, dst,
  390. sg_nents_for_len(dst, totlen),
  391. DMA_FROM_DEVICE);
  392. }
  393. return ret;
  394. }
  395. static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
  396. int ring,
  397. struct crypto_async_request *base,
  398. bool *should_complete, int *ret)
  399. {
  400. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  401. struct safexcel_result_desc *rdesc;
  402. int ndesc = 0, enq_ret;
  403. *ret = 0;
  404. spin_lock_bh(&priv->ring[ring].egress_lock);
  405. do {
  406. rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
  407. if (IS_ERR(rdesc)) {
  408. dev_err(priv->dev,
  409. "cipher: invalidate: could not retrieve the result descriptor\n");
  410. *ret = PTR_ERR(rdesc);
  411. break;
  412. }
  413. if (likely(!*ret))
  414. *ret = safexcel_rdesc_check_errors(priv, rdesc);
  415. ndesc++;
  416. } while (!rdesc->last_seg);
  417. safexcel_complete(priv, ring);
  418. spin_unlock_bh(&priv->ring[ring].egress_lock);
  419. if (ctx->base.exit_inv) {
  420. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  421. ctx->base.ctxr_dma);
  422. *should_complete = true;
  423. return ndesc;
  424. }
  425. ring = safexcel_select_ring(priv);
  426. ctx->base.ring = ring;
  427. spin_lock_bh(&priv->ring[ring].queue_lock);
  428. enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  429. spin_unlock_bh(&priv->ring[ring].queue_lock);
  430. if (enq_ret != -EINPROGRESS)
  431. *ret = enq_ret;
  432. queue_work(priv->ring[ring].workqueue,
  433. &priv->ring[ring].work_data.work);
  434. *should_complete = false;
  435. return ndesc;
  436. }
  437. static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
  438. int ring,
  439. struct crypto_async_request *async,
  440. bool *should_complete, int *ret)
  441. {
  442. struct skcipher_request *req = skcipher_request_cast(async);
  443. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  444. int err;
  445. if (sreq->needs_inv) {
  446. sreq->needs_inv = false;
  447. err = safexcel_handle_inv_result(priv, ring, async,
  448. should_complete, ret);
  449. } else {
  450. err = safexcel_handle_req_result(priv, ring, async, req->src,
  451. req->dst, req->cryptlen, sreq,
  452. should_complete, ret);
  453. }
  454. return err;
  455. }
  456. static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
  457. int ring,
  458. struct crypto_async_request *async,
  459. bool *should_complete, int *ret)
  460. {
  461. struct aead_request *req = aead_request_cast(async);
  462. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  463. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  464. int err;
  465. if (sreq->needs_inv) {
  466. sreq->needs_inv = false;
  467. err = safexcel_handle_inv_result(priv, ring, async,
  468. should_complete, ret);
  469. } else {
  470. err = safexcel_handle_req_result(priv, ring, async, req->src,
  471. req->dst,
  472. req->cryptlen + crypto_aead_authsize(tfm),
  473. sreq, should_complete, ret);
  474. }
  475. return err;
  476. }
  477. static int safexcel_cipher_send_inv(struct crypto_async_request *base,
  478. int ring, struct safexcel_request *request,
  479. int *commands, int *results)
  480. {
  481. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  482. struct safexcel_crypto_priv *priv = ctx->priv;
  483. int ret;
  484. ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring,
  485. request);
  486. if (unlikely(ret))
  487. return ret;
  488. *commands = 1;
  489. *results = 1;
  490. return 0;
  491. }
  492. static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
  493. struct safexcel_request *request,
  494. int *commands, int *results)
  495. {
  496. struct skcipher_request *req = skcipher_request_cast(async);
  497. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  498. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  499. struct safexcel_crypto_priv *priv = ctx->priv;
  500. int ret;
  501. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  502. if (sreq->needs_inv)
  503. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  504. results);
  505. else
  506. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  507. req->dst, req->cryptlen, 0, 0, req->iv,
  508. commands, results);
  509. return ret;
  510. }
  511. static int safexcel_aead_send(struct crypto_async_request *async, int ring,
  512. struct safexcel_request *request, int *commands,
  513. int *results)
  514. {
  515. struct aead_request *req = aead_request_cast(async);
  516. struct crypto_aead *tfm = crypto_aead_reqtfm(req);
  517. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  518. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  519. struct safexcel_crypto_priv *priv = ctx->priv;
  520. int ret;
  521. BUG_ON(priv->version == EIP97 && sreq->needs_inv);
  522. if (sreq->needs_inv)
  523. ret = safexcel_cipher_send_inv(async, ring, request, commands,
  524. results);
  525. else
  526. ret = safexcel_aes_send(async, ring, request, sreq, req->src,
  527. req->dst, req->cryptlen, req->assoclen,
  528. crypto_aead_authsize(tfm), req->iv,
  529. commands, results);
  530. return ret;
  531. }
  532. static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
  533. struct crypto_async_request *base,
  534. struct safexcel_cipher_req *sreq,
  535. struct safexcel_inv_result *result)
  536. {
  537. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  538. struct safexcel_crypto_priv *priv = ctx->priv;
  539. int ring = ctx->base.ring;
  540. init_completion(&result->completion);
  541. ctx = crypto_tfm_ctx(base->tfm);
  542. ctx->base.exit_inv = true;
  543. sreq->needs_inv = true;
  544. spin_lock_bh(&priv->ring[ring].queue_lock);
  545. crypto_enqueue_request(&priv->ring[ring].queue, base);
  546. spin_unlock_bh(&priv->ring[ring].queue_lock);
  547. queue_work(priv->ring[ring].workqueue,
  548. &priv->ring[ring].work_data.work);
  549. wait_for_completion(&result->completion);
  550. if (result->error) {
  551. dev_warn(priv->dev,
  552. "cipher: sync: invalidate: completion error %d\n",
  553. result->error);
  554. return result->error;
  555. }
  556. return 0;
  557. }
  558. static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
  559. {
  560. EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
  561. struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
  562. struct safexcel_inv_result result = {};
  563. memset(req, 0, sizeof(struct skcipher_request));
  564. skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  565. safexcel_inv_complete, &result);
  566. skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
  567. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  568. }
  569. static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
  570. {
  571. EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
  572. struct safexcel_cipher_req *sreq = aead_request_ctx(req);
  573. struct safexcel_inv_result result = {};
  574. memset(req, 0, sizeof(struct aead_request));
  575. aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  576. safexcel_inv_complete, &result);
  577. aead_request_set_tfm(req, __crypto_aead_cast(tfm));
  578. return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
  579. }
  580. static int safexcel_aes(struct crypto_async_request *base,
  581. struct safexcel_cipher_req *sreq,
  582. enum safexcel_cipher_direction dir, u32 mode)
  583. {
  584. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
  585. struct safexcel_crypto_priv *priv = ctx->priv;
  586. int ret, ring;
  587. sreq->needs_inv = false;
  588. sreq->direction = dir;
  589. ctx->mode = mode;
  590. if (ctx->base.ctxr) {
  591. if (priv->version == EIP197 && ctx->base.needs_inv) {
  592. sreq->needs_inv = true;
  593. ctx->base.needs_inv = false;
  594. }
  595. } else {
  596. ctx->base.ring = safexcel_select_ring(priv);
  597. ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
  598. EIP197_GFP_FLAGS(*base),
  599. &ctx->base.ctxr_dma);
  600. if (!ctx->base.ctxr)
  601. return -ENOMEM;
  602. }
  603. ring = ctx->base.ring;
  604. spin_lock_bh(&priv->ring[ring].queue_lock);
  605. ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
  606. spin_unlock_bh(&priv->ring[ring].queue_lock);
  607. queue_work(priv->ring[ring].workqueue,
  608. &priv->ring[ring].work_data.work);
  609. return ret;
  610. }
  611. static int safexcel_ecb_aes_encrypt(struct skcipher_request *req)
  612. {
  613. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  614. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  615. }
  616. static int safexcel_ecb_aes_decrypt(struct skcipher_request *req)
  617. {
  618. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  619. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_ECB);
  620. }
  621. static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
  622. {
  623. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  624. struct safexcel_alg_template *tmpl =
  625. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  626. alg.skcipher.base);
  627. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  628. sizeof(struct safexcel_cipher_req));
  629. ctx->priv = tmpl->priv;
  630. ctx->base.send = safexcel_skcipher_send;
  631. ctx->base.handle_result = safexcel_skcipher_handle_result;
  632. return 0;
  633. }
  634. static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
  635. {
  636. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  637. memzero_explicit(ctx->key, sizeof(ctx->key));
  638. /* context not allocated, skip invalidation */
  639. if (!ctx->base.ctxr)
  640. return -ENOMEM;
  641. memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
  642. return 0;
  643. }
  644. static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
  645. {
  646. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  647. struct safexcel_crypto_priv *priv = ctx->priv;
  648. int ret;
  649. if (safexcel_cipher_cra_exit(tfm))
  650. return;
  651. if (priv->version == EIP197) {
  652. ret = safexcel_skcipher_exit_inv(tfm);
  653. if (ret)
  654. dev_warn(priv->dev, "skcipher: invalidation error %d\n",
  655. ret);
  656. } else {
  657. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  658. ctx->base.ctxr_dma);
  659. }
  660. }
  661. static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
  662. {
  663. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  664. struct safexcel_crypto_priv *priv = ctx->priv;
  665. int ret;
  666. if (safexcel_cipher_cra_exit(tfm))
  667. return;
  668. if (priv->version == EIP197) {
  669. ret = safexcel_aead_exit_inv(tfm);
  670. if (ret)
  671. dev_warn(priv->dev, "aead: invalidation error %d\n",
  672. ret);
  673. } else {
  674. dma_pool_free(priv->context_pool, ctx->base.ctxr,
  675. ctx->base.ctxr_dma);
  676. }
  677. }
  678. struct safexcel_alg_template safexcel_alg_ecb_aes = {
  679. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  680. .alg.skcipher = {
  681. .setkey = safexcel_skcipher_aes_setkey,
  682. .encrypt = safexcel_ecb_aes_encrypt,
  683. .decrypt = safexcel_ecb_aes_decrypt,
  684. .min_keysize = AES_MIN_KEY_SIZE,
  685. .max_keysize = AES_MAX_KEY_SIZE,
  686. .base = {
  687. .cra_name = "ecb(aes)",
  688. .cra_driver_name = "safexcel-ecb-aes",
  689. .cra_priority = 300,
  690. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  691. CRYPTO_ALG_KERN_DRIVER_ONLY,
  692. .cra_blocksize = AES_BLOCK_SIZE,
  693. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  694. .cra_alignmask = 0,
  695. .cra_init = safexcel_skcipher_cra_init,
  696. .cra_exit = safexcel_skcipher_cra_exit,
  697. .cra_module = THIS_MODULE,
  698. },
  699. },
  700. };
  701. static int safexcel_cbc_aes_encrypt(struct skcipher_request *req)
  702. {
  703. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  704. SAFEXCEL_ENCRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  705. }
  706. static int safexcel_cbc_aes_decrypt(struct skcipher_request *req)
  707. {
  708. return safexcel_aes(&req->base, skcipher_request_ctx(req),
  709. SAFEXCEL_DECRYPT, CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  710. }
  711. struct safexcel_alg_template safexcel_alg_cbc_aes = {
  712. .type = SAFEXCEL_ALG_TYPE_SKCIPHER,
  713. .alg.skcipher = {
  714. .setkey = safexcel_skcipher_aes_setkey,
  715. .encrypt = safexcel_cbc_aes_encrypt,
  716. .decrypt = safexcel_cbc_aes_decrypt,
  717. .min_keysize = AES_MIN_KEY_SIZE,
  718. .max_keysize = AES_MAX_KEY_SIZE,
  719. .ivsize = AES_BLOCK_SIZE,
  720. .base = {
  721. .cra_name = "cbc(aes)",
  722. .cra_driver_name = "safexcel-cbc-aes",
  723. .cra_priority = 300,
  724. .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC |
  725. CRYPTO_ALG_KERN_DRIVER_ONLY,
  726. .cra_blocksize = AES_BLOCK_SIZE,
  727. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  728. .cra_alignmask = 0,
  729. .cra_init = safexcel_skcipher_cra_init,
  730. .cra_exit = safexcel_skcipher_cra_exit,
  731. .cra_module = THIS_MODULE,
  732. },
  733. },
  734. };
  735. static int safexcel_aead_encrypt(struct aead_request *req)
  736. {
  737. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  738. return safexcel_aes(&req->base, creq, SAFEXCEL_ENCRYPT,
  739. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  740. }
  741. static int safexcel_aead_decrypt(struct aead_request *req)
  742. {
  743. struct safexcel_cipher_req *creq = aead_request_ctx(req);
  744. return safexcel_aes(&req->base, creq, SAFEXCEL_DECRYPT,
  745. CONTEXT_CONTROL_CRYPTO_MODE_CBC);
  746. }
  747. static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
  748. {
  749. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  750. struct safexcel_alg_template *tmpl =
  751. container_of(tfm->__crt_alg, struct safexcel_alg_template,
  752. alg.aead.base);
  753. crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
  754. sizeof(struct safexcel_cipher_req));
  755. ctx->priv = tmpl->priv;
  756. ctx->aead = true;
  757. ctx->base.send = safexcel_aead_send;
  758. ctx->base.handle_result = safexcel_aead_handle_result;
  759. return 0;
  760. }
  761. static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
  762. {
  763. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  764. safexcel_aead_cra_init(tfm);
  765. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
  766. ctx->state_sz = SHA1_DIGEST_SIZE;
  767. return 0;
  768. }
  769. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
  770. .type = SAFEXCEL_ALG_TYPE_AEAD,
  771. .alg.aead = {
  772. .setkey = safexcel_aead_aes_setkey,
  773. .encrypt = safexcel_aead_encrypt,
  774. .decrypt = safexcel_aead_decrypt,
  775. .ivsize = AES_BLOCK_SIZE,
  776. .maxauthsize = SHA1_DIGEST_SIZE,
  777. .base = {
  778. .cra_name = "authenc(hmac(sha1),cbc(aes))",
  779. .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
  780. .cra_priority = 300,
  781. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  782. CRYPTO_ALG_KERN_DRIVER_ONLY,
  783. .cra_blocksize = AES_BLOCK_SIZE,
  784. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  785. .cra_alignmask = 0,
  786. .cra_init = safexcel_aead_sha1_cra_init,
  787. .cra_exit = safexcel_aead_cra_exit,
  788. .cra_module = THIS_MODULE,
  789. },
  790. },
  791. };
  792. static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
  793. {
  794. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  795. safexcel_aead_cra_init(tfm);
  796. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
  797. ctx->state_sz = SHA256_DIGEST_SIZE;
  798. return 0;
  799. }
  800. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
  801. .type = SAFEXCEL_ALG_TYPE_AEAD,
  802. .alg.aead = {
  803. .setkey = safexcel_aead_aes_setkey,
  804. .encrypt = safexcel_aead_encrypt,
  805. .decrypt = safexcel_aead_decrypt,
  806. .ivsize = AES_BLOCK_SIZE,
  807. .maxauthsize = SHA256_DIGEST_SIZE,
  808. .base = {
  809. .cra_name = "authenc(hmac(sha256),cbc(aes))",
  810. .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
  811. .cra_priority = 300,
  812. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  813. CRYPTO_ALG_KERN_DRIVER_ONLY,
  814. .cra_blocksize = AES_BLOCK_SIZE,
  815. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  816. .cra_alignmask = 0,
  817. .cra_init = safexcel_aead_sha256_cra_init,
  818. .cra_exit = safexcel_aead_cra_exit,
  819. .cra_module = THIS_MODULE,
  820. },
  821. },
  822. };
  823. static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
  824. {
  825. struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
  826. safexcel_aead_cra_init(tfm);
  827. ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
  828. ctx->state_sz = SHA256_DIGEST_SIZE;
  829. return 0;
  830. }
  831. struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
  832. .type = SAFEXCEL_ALG_TYPE_AEAD,
  833. .alg.aead = {
  834. .setkey = safexcel_aead_aes_setkey,
  835. .encrypt = safexcel_aead_encrypt,
  836. .decrypt = safexcel_aead_decrypt,
  837. .ivsize = AES_BLOCK_SIZE,
  838. .maxauthsize = SHA224_DIGEST_SIZE,
  839. .base = {
  840. .cra_name = "authenc(hmac(sha224),cbc(aes))",
  841. .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
  842. .cra_priority = 300,
  843. .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC |
  844. CRYPTO_ALG_KERN_DRIVER_ONLY,
  845. .cra_blocksize = AES_BLOCK_SIZE,
  846. .cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
  847. .cra_alignmask = 0,
  848. .cra_init = safexcel_aead_sha224_cra_init,
  849. .cra_exit = safexcel_aead_cra_exit,
  850. .cra_module = THIS_MODULE,
  851. },
  852. },
  853. };