igb_main.c 217 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/bitops.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/slab.h>
  33. #include <net/checksum.h>
  34. #include <net/ip6_checksum.h>
  35. #include <linux/net_tstamp.h>
  36. #include <linux/mii.h>
  37. #include <linux/ethtool.h>
  38. #include <linux/if.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/pci.h>
  41. #include <linux/pci-aspm.h>
  42. #include <linux/delay.h>
  43. #include <linux/interrupt.h>
  44. #include <linux/ip.h>
  45. #include <linux/tcp.h>
  46. #include <linux/sctp.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/aer.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/pm_runtime.h>
  51. #ifdef CONFIG_IGB_DCA
  52. #include <linux/dca.h>
  53. #endif
  54. #include <linux/i2c.h>
  55. #include "igb.h"
  56. #define MAJ 5
  57. #define MIN 0
  58. #define BUILD 5
  59. #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  60. __stringify(BUILD) "-k"
  61. char igb_driver_name[] = "igb";
  62. char igb_driver_version[] = DRV_VERSION;
  63. static const char igb_driver_string[] =
  64. "Intel(R) Gigabit Ethernet Network Driver";
  65. static const char igb_copyright[] =
  66. "Copyright (c) 2007-2014 Intel Corporation.";
  67. static const struct e1000_info *igb_info_tbl[] = {
  68. [board_82575] = &e1000_82575_info,
  69. };
  70. static const struct pci_device_id igb_pci_tbl[] = {
  71. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  72. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  73. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  74. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  75. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  76. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  77. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  78. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  79. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  80. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  81. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  82. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  83. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  84. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  85. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  86. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  87. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  88. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  89. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  90. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  91. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  92. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  93. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  94. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  95. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  96. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  97. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  98. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  99. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  100. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  101. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  102. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  103. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  104. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  105. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  106. /* required last entry */
  107. {0, }
  108. };
  109. MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  110. void igb_reset(struct igb_adapter *);
  111. static int igb_setup_all_tx_resources(struct igb_adapter *);
  112. static int igb_setup_all_rx_resources(struct igb_adapter *);
  113. static void igb_free_all_tx_resources(struct igb_adapter *);
  114. static void igb_free_all_rx_resources(struct igb_adapter *);
  115. static void igb_setup_mrqc(struct igb_adapter *);
  116. static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  117. static void igb_remove(struct pci_dev *pdev);
  118. static int igb_sw_init(struct igb_adapter *);
  119. static int igb_open(struct net_device *);
  120. static int igb_close(struct net_device *);
  121. static void igb_configure(struct igb_adapter *);
  122. static void igb_configure_tx(struct igb_adapter *);
  123. static void igb_configure_rx(struct igb_adapter *);
  124. static void igb_clean_all_tx_rings(struct igb_adapter *);
  125. static void igb_clean_all_rx_rings(struct igb_adapter *);
  126. static void igb_clean_tx_ring(struct igb_ring *);
  127. static void igb_clean_rx_ring(struct igb_ring *);
  128. static void igb_set_rx_mode(struct net_device *);
  129. static void igb_update_phy_info(unsigned long);
  130. static void igb_watchdog(unsigned long);
  131. static void igb_watchdog_task(struct work_struct *);
  132. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  133. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
  134. struct rtnl_link_stats64 *stats);
  135. static int igb_change_mtu(struct net_device *, int);
  136. static int igb_set_mac(struct net_device *, void *);
  137. static void igb_set_uta(struct igb_adapter *adapter);
  138. static irqreturn_t igb_intr(int irq, void *);
  139. static irqreturn_t igb_intr_msi(int irq, void *);
  140. static irqreturn_t igb_msix_other(int irq, void *);
  141. static irqreturn_t igb_msix_ring(int irq, void *);
  142. #ifdef CONFIG_IGB_DCA
  143. static void igb_update_dca(struct igb_q_vector *);
  144. static void igb_setup_dca(struct igb_adapter *);
  145. #endif /* CONFIG_IGB_DCA */
  146. static int igb_poll(struct napi_struct *, int);
  147. static bool igb_clean_tx_irq(struct igb_q_vector *);
  148. static bool igb_clean_rx_irq(struct igb_q_vector *, int);
  149. static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  150. static void igb_tx_timeout(struct net_device *);
  151. static void igb_reset_task(struct work_struct *);
  152. static void igb_vlan_mode(struct net_device *netdev,
  153. netdev_features_t features);
  154. static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  155. static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  156. static void igb_restore_vlan(struct igb_adapter *);
  157. static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
  158. static void igb_ping_all_vfs(struct igb_adapter *);
  159. static void igb_msg_task(struct igb_adapter *);
  160. static void igb_vmm_control(struct igb_adapter *);
  161. static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  162. static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  163. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  164. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  165. int vf, u16 vlan, u8 qos);
  166. static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
  167. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  168. bool setting);
  169. static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  170. struct ifla_vf_info *ivi);
  171. static void igb_check_vf_rate_limit(struct igb_adapter *);
  172. #ifdef CONFIG_PCI_IOV
  173. static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  174. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
  175. #endif
  176. #ifdef CONFIG_PM
  177. #ifdef CONFIG_PM_SLEEP
  178. static int igb_suspend(struct device *);
  179. #endif
  180. static int igb_resume(struct device *);
  181. #ifdef CONFIG_PM_RUNTIME
  182. static int igb_runtime_suspend(struct device *dev);
  183. static int igb_runtime_resume(struct device *dev);
  184. static int igb_runtime_idle(struct device *dev);
  185. #endif
  186. static const struct dev_pm_ops igb_pm_ops = {
  187. SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  188. SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  189. igb_runtime_idle)
  190. };
  191. #endif
  192. static void igb_shutdown(struct pci_dev *);
  193. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  194. #ifdef CONFIG_IGB_DCA
  195. static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  196. static struct notifier_block dca_notifier = {
  197. .notifier_call = igb_notify_dca,
  198. .next = NULL,
  199. .priority = 0
  200. };
  201. #endif
  202. #ifdef CONFIG_NET_POLL_CONTROLLER
  203. /* for netdump / net console */
  204. static void igb_netpoll(struct net_device *);
  205. #endif
  206. #ifdef CONFIG_PCI_IOV
  207. static unsigned int max_vfs;
  208. module_param(max_vfs, uint, 0);
  209. MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  210. #endif /* CONFIG_PCI_IOV */
  211. static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  212. pci_channel_state_t);
  213. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  214. static void igb_io_resume(struct pci_dev *);
  215. static const struct pci_error_handlers igb_err_handler = {
  216. .error_detected = igb_io_error_detected,
  217. .slot_reset = igb_io_slot_reset,
  218. .resume = igb_io_resume,
  219. };
  220. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  221. static struct pci_driver igb_driver = {
  222. .name = igb_driver_name,
  223. .id_table = igb_pci_tbl,
  224. .probe = igb_probe,
  225. .remove = igb_remove,
  226. #ifdef CONFIG_PM
  227. .driver.pm = &igb_pm_ops,
  228. #endif
  229. .shutdown = igb_shutdown,
  230. .sriov_configure = igb_pci_sriov_configure,
  231. .err_handler = &igb_err_handler
  232. };
  233. MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  234. MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  235. MODULE_LICENSE("GPL");
  236. MODULE_VERSION(DRV_VERSION);
  237. #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  238. static int debug = -1;
  239. module_param(debug, int, 0);
  240. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  241. struct igb_reg_info {
  242. u32 ofs;
  243. char *name;
  244. };
  245. static const struct igb_reg_info igb_reg_info_tbl[] = {
  246. /* General Registers */
  247. {E1000_CTRL, "CTRL"},
  248. {E1000_STATUS, "STATUS"},
  249. {E1000_CTRL_EXT, "CTRL_EXT"},
  250. /* Interrupt Registers */
  251. {E1000_ICR, "ICR"},
  252. /* RX Registers */
  253. {E1000_RCTL, "RCTL"},
  254. {E1000_RDLEN(0), "RDLEN"},
  255. {E1000_RDH(0), "RDH"},
  256. {E1000_RDT(0), "RDT"},
  257. {E1000_RXDCTL(0), "RXDCTL"},
  258. {E1000_RDBAL(0), "RDBAL"},
  259. {E1000_RDBAH(0), "RDBAH"},
  260. /* TX Registers */
  261. {E1000_TCTL, "TCTL"},
  262. {E1000_TDBAL(0), "TDBAL"},
  263. {E1000_TDBAH(0), "TDBAH"},
  264. {E1000_TDLEN(0), "TDLEN"},
  265. {E1000_TDH(0), "TDH"},
  266. {E1000_TDT(0), "TDT"},
  267. {E1000_TXDCTL(0), "TXDCTL"},
  268. {E1000_TDFH, "TDFH"},
  269. {E1000_TDFT, "TDFT"},
  270. {E1000_TDFHS, "TDFHS"},
  271. {E1000_TDFPC, "TDFPC"},
  272. /* List Terminator */
  273. {}
  274. };
  275. /* igb_regdump - register printout routine */
  276. static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  277. {
  278. int n = 0;
  279. char rname[16];
  280. u32 regs[8];
  281. switch (reginfo->ofs) {
  282. case E1000_RDLEN(0):
  283. for (n = 0; n < 4; n++)
  284. regs[n] = rd32(E1000_RDLEN(n));
  285. break;
  286. case E1000_RDH(0):
  287. for (n = 0; n < 4; n++)
  288. regs[n] = rd32(E1000_RDH(n));
  289. break;
  290. case E1000_RDT(0):
  291. for (n = 0; n < 4; n++)
  292. regs[n] = rd32(E1000_RDT(n));
  293. break;
  294. case E1000_RXDCTL(0):
  295. for (n = 0; n < 4; n++)
  296. regs[n] = rd32(E1000_RXDCTL(n));
  297. break;
  298. case E1000_RDBAL(0):
  299. for (n = 0; n < 4; n++)
  300. regs[n] = rd32(E1000_RDBAL(n));
  301. break;
  302. case E1000_RDBAH(0):
  303. for (n = 0; n < 4; n++)
  304. regs[n] = rd32(E1000_RDBAH(n));
  305. break;
  306. case E1000_TDBAL(0):
  307. for (n = 0; n < 4; n++)
  308. regs[n] = rd32(E1000_RDBAL(n));
  309. break;
  310. case E1000_TDBAH(0):
  311. for (n = 0; n < 4; n++)
  312. regs[n] = rd32(E1000_TDBAH(n));
  313. break;
  314. case E1000_TDLEN(0):
  315. for (n = 0; n < 4; n++)
  316. regs[n] = rd32(E1000_TDLEN(n));
  317. break;
  318. case E1000_TDH(0):
  319. for (n = 0; n < 4; n++)
  320. regs[n] = rd32(E1000_TDH(n));
  321. break;
  322. case E1000_TDT(0):
  323. for (n = 0; n < 4; n++)
  324. regs[n] = rd32(E1000_TDT(n));
  325. break;
  326. case E1000_TXDCTL(0):
  327. for (n = 0; n < 4; n++)
  328. regs[n] = rd32(E1000_TXDCTL(n));
  329. break;
  330. default:
  331. pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  332. return;
  333. }
  334. snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  335. pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  336. regs[2], regs[3]);
  337. }
  338. /* igb_dump - Print registers, Tx-rings and Rx-rings */
  339. static void igb_dump(struct igb_adapter *adapter)
  340. {
  341. struct net_device *netdev = adapter->netdev;
  342. struct e1000_hw *hw = &adapter->hw;
  343. struct igb_reg_info *reginfo;
  344. struct igb_ring *tx_ring;
  345. union e1000_adv_tx_desc *tx_desc;
  346. struct my_u0 { u64 a; u64 b; } *u0;
  347. struct igb_ring *rx_ring;
  348. union e1000_adv_rx_desc *rx_desc;
  349. u32 staterr;
  350. u16 i, n;
  351. if (!netif_msg_hw(adapter))
  352. return;
  353. /* Print netdevice Info */
  354. if (netdev) {
  355. dev_info(&adapter->pdev->dev, "Net device Info\n");
  356. pr_info("Device Name state trans_start last_rx\n");
  357. pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
  358. netdev->state, netdev->trans_start, netdev->last_rx);
  359. }
  360. /* Print Registers */
  361. dev_info(&adapter->pdev->dev, "Register Dump\n");
  362. pr_info(" Register Name Value\n");
  363. for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  364. reginfo->name; reginfo++) {
  365. igb_regdump(hw, reginfo);
  366. }
  367. /* Print TX Ring Summary */
  368. if (!netdev || !netif_running(netdev))
  369. goto exit;
  370. dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  371. pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
  372. for (n = 0; n < adapter->num_tx_queues; n++) {
  373. struct igb_tx_buffer *buffer_info;
  374. tx_ring = adapter->tx_ring[n];
  375. buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  376. pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  377. n, tx_ring->next_to_use, tx_ring->next_to_clean,
  378. (u64)dma_unmap_addr(buffer_info, dma),
  379. dma_unmap_len(buffer_info, len),
  380. buffer_info->next_to_watch,
  381. (u64)buffer_info->time_stamp);
  382. }
  383. /* Print TX Rings */
  384. if (!netif_msg_tx_done(adapter))
  385. goto rx_ring_summary;
  386. dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  387. /* Transmit Descriptor Formats
  388. *
  389. * Advanced Transmit Descriptor
  390. * +--------------------------------------------------------------+
  391. * 0 | Buffer Address [63:0] |
  392. * +--------------------------------------------------------------+
  393. * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
  394. * +--------------------------------------------------------------+
  395. * 63 46 45 40 39 38 36 35 32 31 24 15 0
  396. */
  397. for (n = 0; n < adapter->num_tx_queues; n++) {
  398. tx_ring = adapter->tx_ring[n];
  399. pr_info("------------------------------------\n");
  400. pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  401. pr_info("------------------------------------\n");
  402. pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
  403. for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  404. const char *next_desc;
  405. struct igb_tx_buffer *buffer_info;
  406. tx_desc = IGB_TX_DESC(tx_ring, i);
  407. buffer_info = &tx_ring->tx_buffer_info[i];
  408. u0 = (struct my_u0 *)tx_desc;
  409. if (i == tx_ring->next_to_use &&
  410. i == tx_ring->next_to_clean)
  411. next_desc = " NTC/U";
  412. else if (i == tx_ring->next_to_use)
  413. next_desc = " NTU";
  414. else if (i == tx_ring->next_to_clean)
  415. next_desc = " NTC";
  416. else
  417. next_desc = "";
  418. pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
  419. i, le64_to_cpu(u0->a),
  420. le64_to_cpu(u0->b),
  421. (u64)dma_unmap_addr(buffer_info, dma),
  422. dma_unmap_len(buffer_info, len),
  423. buffer_info->next_to_watch,
  424. (u64)buffer_info->time_stamp,
  425. buffer_info->skb, next_desc);
  426. if (netif_msg_pktdata(adapter) && buffer_info->skb)
  427. print_hex_dump(KERN_INFO, "",
  428. DUMP_PREFIX_ADDRESS,
  429. 16, 1, buffer_info->skb->data,
  430. dma_unmap_len(buffer_info, len),
  431. true);
  432. }
  433. }
  434. /* Print RX Rings Summary */
  435. rx_ring_summary:
  436. dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  437. pr_info("Queue [NTU] [NTC]\n");
  438. for (n = 0; n < adapter->num_rx_queues; n++) {
  439. rx_ring = adapter->rx_ring[n];
  440. pr_info(" %5d %5X %5X\n",
  441. n, rx_ring->next_to_use, rx_ring->next_to_clean);
  442. }
  443. /* Print RX Rings */
  444. if (!netif_msg_rx_status(adapter))
  445. goto exit;
  446. dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  447. /* Advanced Receive Descriptor (Read) Format
  448. * 63 1 0
  449. * +-----------------------------------------------------+
  450. * 0 | Packet Buffer Address [63:1] |A0/NSE|
  451. * +----------------------------------------------+------+
  452. * 8 | Header Buffer Address [63:1] | DD |
  453. * +-----------------------------------------------------+
  454. *
  455. *
  456. * Advanced Receive Descriptor (Write-Back) Format
  457. *
  458. * 63 48 47 32 31 30 21 20 17 16 4 3 0
  459. * +------------------------------------------------------+
  460. * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
  461. * | Checksum Ident | | | | Type | Type |
  462. * +------------------------------------------------------+
  463. * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  464. * +------------------------------------------------------+
  465. * 63 48 47 32 31 20 19 0
  466. */
  467. for (n = 0; n < adapter->num_rx_queues; n++) {
  468. rx_ring = adapter->rx_ring[n];
  469. pr_info("------------------------------------\n");
  470. pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  471. pr_info("------------------------------------\n");
  472. pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
  473. pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  474. for (i = 0; i < rx_ring->count; i++) {
  475. const char *next_desc;
  476. struct igb_rx_buffer *buffer_info;
  477. buffer_info = &rx_ring->rx_buffer_info[i];
  478. rx_desc = IGB_RX_DESC(rx_ring, i);
  479. u0 = (struct my_u0 *)rx_desc;
  480. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  481. if (i == rx_ring->next_to_use)
  482. next_desc = " NTU";
  483. else if (i == rx_ring->next_to_clean)
  484. next_desc = " NTC";
  485. else
  486. next_desc = "";
  487. if (staterr & E1000_RXD_STAT_DD) {
  488. /* Descriptor Done */
  489. pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
  490. "RWB", i,
  491. le64_to_cpu(u0->a),
  492. le64_to_cpu(u0->b),
  493. next_desc);
  494. } else {
  495. pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
  496. "R ", i,
  497. le64_to_cpu(u0->a),
  498. le64_to_cpu(u0->b),
  499. (u64)buffer_info->dma,
  500. next_desc);
  501. if (netif_msg_pktdata(adapter) &&
  502. buffer_info->dma && buffer_info->page) {
  503. print_hex_dump(KERN_INFO, "",
  504. DUMP_PREFIX_ADDRESS,
  505. 16, 1,
  506. page_address(buffer_info->page) +
  507. buffer_info->page_offset,
  508. IGB_RX_BUFSZ, true);
  509. }
  510. }
  511. }
  512. }
  513. exit:
  514. return;
  515. }
  516. /**
  517. * igb_get_i2c_data - Reads the I2C SDA data bit
  518. * @hw: pointer to hardware structure
  519. * @i2cctl: Current value of I2CCTL register
  520. *
  521. * Returns the I2C data bit value
  522. **/
  523. static int igb_get_i2c_data(void *data)
  524. {
  525. struct igb_adapter *adapter = (struct igb_adapter *)data;
  526. struct e1000_hw *hw = &adapter->hw;
  527. s32 i2cctl = rd32(E1000_I2CPARAMS);
  528. return !!(i2cctl & E1000_I2C_DATA_IN);
  529. }
  530. /**
  531. * igb_set_i2c_data - Sets the I2C data bit
  532. * @data: pointer to hardware structure
  533. * @state: I2C data value (0 or 1) to set
  534. *
  535. * Sets the I2C data bit
  536. **/
  537. static void igb_set_i2c_data(void *data, int state)
  538. {
  539. struct igb_adapter *adapter = (struct igb_adapter *)data;
  540. struct e1000_hw *hw = &adapter->hw;
  541. s32 i2cctl = rd32(E1000_I2CPARAMS);
  542. if (state)
  543. i2cctl |= E1000_I2C_DATA_OUT;
  544. else
  545. i2cctl &= ~E1000_I2C_DATA_OUT;
  546. i2cctl &= ~E1000_I2C_DATA_OE_N;
  547. i2cctl |= E1000_I2C_CLK_OE_N;
  548. wr32(E1000_I2CPARAMS, i2cctl);
  549. wrfl();
  550. }
  551. /**
  552. * igb_set_i2c_clk - Sets the I2C SCL clock
  553. * @data: pointer to hardware structure
  554. * @state: state to set clock
  555. *
  556. * Sets the I2C clock line to state
  557. **/
  558. static void igb_set_i2c_clk(void *data, int state)
  559. {
  560. struct igb_adapter *adapter = (struct igb_adapter *)data;
  561. struct e1000_hw *hw = &adapter->hw;
  562. s32 i2cctl = rd32(E1000_I2CPARAMS);
  563. if (state) {
  564. i2cctl |= E1000_I2C_CLK_OUT;
  565. i2cctl &= ~E1000_I2C_CLK_OE_N;
  566. } else {
  567. i2cctl &= ~E1000_I2C_CLK_OUT;
  568. i2cctl &= ~E1000_I2C_CLK_OE_N;
  569. }
  570. wr32(E1000_I2CPARAMS, i2cctl);
  571. wrfl();
  572. }
  573. /**
  574. * igb_get_i2c_clk - Gets the I2C SCL clock state
  575. * @data: pointer to hardware structure
  576. *
  577. * Gets the I2C clock state
  578. **/
  579. static int igb_get_i2c_clk(void *data)
  580. {
  581. struct igb_adapter *adapter = (struct igb_adapter *)data;
  582. struct e1000_hw *hw = &adapter->hw;
  583. s32 i2cctl = rd32(E1000_I2CPARAMS);
  584. return !!(i2cctl & E1000_I2C_CLK_IN);
  585. }
  586. static const struct i2c_algo_bit_data igb_i2c_algo = {
  587. .setsda = igb_set_i2c_data,
  588. .setscl = igb_set_i2c_clk,
  589. .getsda = igb_get_i2c_data,
  590. .getscl = igb_get_i2c_clk,
  591. .udelay = 5,
  592. .timeout = 20,
  593. };
  594. /**
  595. * igb_get_hw_dev - return device
  596. * @hw: pointer to hardware structure
  597. *
  598. * used by hardware layer to print debugging information
  599. **/
  600. struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  601. {
  602. struct igb_adapter *adapter = hw->back;
  603. return adapter->netdev;
  604. }
  605. /**
  606. * igb_init_module - Driver Registration Routine
  607. *
  608. * igb_init_module is the first routine called when the driver is
  609. * loaded. All it does is register with the PCI subsystem.
  610. **/
  611. static int __init igb_init_module(void)
  612. {
  613. int ret;
  614. pr_info("%s - version %s\n",
  615. igb_driver_string, igb_driver_version);
  616. pr_info("%s\n", igb_copyright);
  617. #ifdef CONFIG_IGB_DCA
  618. dca_register_notify(&dca_notifier);
  619. #endif
  620. ret = pci_register_driver(&igb_driver);
  621. return ret;
  622. }
  623. module_init(igb_init_module);
  624. /**
  625. * igb_exit_module - Driver Exit Cleanup Routine
  626. *
  627. * igb_exit_module is called just before the driver is removed
  628. * from memory.
  629. **/
  630. static void __exit igb_exit_module(void)
  631. {
  632. #ifdef CONFIG_IGB_DCA
  633. dca_unregister_notify(&dca_notifier);
  634. #endif
  635. pci_unregister_driver(&igb_driver);
  636. }
  637. module_exit(igb_exit_module);
  638. #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  639. /**
  640. * igb_cache_ring_register - Descriptor ring to register mapping
  641. * @adapter: board private structure to initialize
  642. *
  643. * Once we know the feature-set enabled for the device, we'll cache
  644. * the register offset the descriptor ring is assigned to.
  645. **/
  646. static void igb_cache_ring_register(struct igb_adapter *adapter)
  647. {
  648. int i = 0, j = 0;
  649. u32 rbase_offset = adapter->vfs_allocated_count;
  650. switch (adapter->hw.mac.type) {
  651. case e1000_82576:
  652. /* The queues are allocated for virtualization such that VF 0
  653. * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  654. * In order to avoid collision we start at the first free queue
  655. * and continue consuming queues in the same sequence
  656. */
  657. if (adapter->vfs_allocated_count) {
  658. for (; i < adapter->rss_queues; i++)
  659. adapter->rx_ring[i]->reg_idx = rbase_offset +
  660. Q_IDX_82576(i);
  661. }
  662. /* Fall through */
  663. case e1000_82575:
  664. case e1000_82580:
  665. case e1000_i350:
  666. case e1000_i354:
  667. case e1000_i210:
  668. case e1000_i211:
  669. /* Fall through */
  670. default:
  671. for (; i < adapter->num_rx_queues; i++)
  672. adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  673. for (; j < adapter->num_tx_queues; j++)
  674. adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  675. break;
  676. }
  677. }
  678. u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  679. {
  680. struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  681. u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
  682. u32 value = 0;
  683. if (E1000_REMOVED(hw_addr))
  684. return ~value;
  685. value = readl(&hw_addr[reg]);
  686. /* reads should not return all F's */
  687. if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  688. struct net_device *netdev = igb->netdev;
  689. hw->hw_addr = NULL;
  690. netif_device_detach(netdev);
  691. netdev_err(netdev, "PCIe link lost, device now detached\n");
  692. }
  693. return value;
  694. }
  695. /**
  696. * igb_write_ivar - configure ivar for given MSI-X vector
  697. * @hw: pointer to the HW structure
  698. * @msix_vector: vector number we are allocating to a given ring
  699. * @index: row index of IVAR register to write within IVAR table
  700. * @offset: column offset of in IVAR, should be multiple of 8
  701. *
  702. * This function is intended to handle the writing of the IVAR register
  703. * for adapters 82576 and newer. The IVAR table consists of 2 columns,
  704. * each containing an cause allocation for an Rx and Tx ring, and a
  705. * variable number of rows depending on the number of queues supported.
  706. **/
  707. static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  708. int index, int offset)
  709. {
  710. u32 ivar = array_rd32(E1000_IVAR0, index);
  711. /* clear any bits that are currently set */
  712. ivar &= ~((u32)0xFF << offset);
  713. /* write vector and valid bit */
  714. ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  715. array_wr32(E1000_IVAR0, index, ivar);
  716. }
  717. #define IGB_N0_QUEUE -1
  718. static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  719. {
  720. struct igb_adapter *adapter = q_vector->adapter;
  721. struct e1000_hw *hw = &adapter->hw;
  722. int rx_queue = IGB_N0_QUEUE;
  723. int tx_queue = IGB_N0_QUEUE;
  724. u32 msixbm = 0;
  725. if (q_vector->rx.ring)
  726. rx_queue = q_vector->rx.ring->reg_idx;
  727. if (q_vector->tx.ring)
  728. tx_queue = q_vector->tx.ring->reg_idx;
  729. switch (hw->mac.type) {
  730. case e1000_82575:
  731. /* The 82575 assigns vectors using a bitmask, which matches the
  732. * bitmask for the EICR/EIMS/EIMC registers. To assign one
  733. * or more queues to a vector, we write the appropriate bits
  734. * into the MSIXBM register for that vector.
  735. */
  736. if (rx_queue > IGB_N0_QUEUE)
  737. msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  738. if (tx_queue > IGB_N0_QUEUE)
  739. msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  740. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  741. msixbm |= E1000_EIMS_OTHER;
  742. array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  743. q_vector->eims_value = msixbm;
  744. break;
  745. case e1000_82576:
  746. /* 82576 uses a table that essentially consists of 2 columns
  747. * with 8 rows. The ordering is column-major so we use the
  748. * lower 3 bits as the row index, and the 4th bit as the
  749. * column offset.
  750. */
  751. if (rx_queue > IGB_N0_QUEUE)
  752. igb_write_ivar(hw, msix_vector,
  753. rx_queue & 0x7,
  754. (rx_queue & 0x8) << 1);
  755. if (tx_queue > IGB_N0_QUEUE)
  756. igb_write_ivar(hw, msix_vector,
  757. tx_queue & 0x7,
  758. ((tx_queue & 0x8) << 1) + 8);
  759. q_vector->eims_value = 1 << msix_vector;
  760. break;
  761. case e1000_82580:
  762. case e1000_i350:
  763. case e1000_i354:
  764. case e1000_i210:
  765. case e1000_i211:
  766. /* On 82580 and newer adapters the scheme is similar to 82576
  767. * however instead of ordering column-major we have things
  768. * ordered row-major. So we traverse the table by using
  769. * bit 0 as the column offset, and the remaining bits as the
  770. * row index.
  771. */
  772. if (rx_queue > IGB_N0_QUEUE)
  773. igb_write_ivar(hw, msix_vector,
  774. rx_queue >> 1,
  775. (rx_queue & 0x1) << 4);
  776. if (tx_queue > IGB_N0_QUEUE)
  777. igb_write_ivar(hw, msix_vector,
  778. tx_queue >> 1,
  779. ((tx_queue & 0x1) << 4) + 8);
  780. q_vector->eims_value = 1 << msix_vector;
  781. break;
  782. default:
  783. BUG();
  784. break;
  785. }
  786. /* add q_vector eims value to global eims_enable_mask */
  787. adapter->eims_enable_mask |= q_vector->eims_value;
  788. /* configure q_vector to set itr on first interrupt */
  789. q_vector->set_itr = 1;
  790. }
  791. /**
  792. * igb_configure_msix - Configure MSI-X hardware
  793. * @adapter: board private structure to initialize
  794. *
  795. * igb_configure_msix sets up the hardware to properly
  796. * generate MSI-X interrupts.
  797. **/
  798. static void igb_configure_msix(struct igb_adapter *adapter)
  799. {
  800. u32 tmp;
  801. int i, vector = 0;
  802. struct e1000_hw *hw = &adapter->hw;
  803. adapter->eims_enable_mask = 0;
  804. /* set vector for other causes, i.e. link changes */
  805. switch (hw->mac.type) {
  806. case e1000_82575:
  807. tmp = rd32(E1000_CTRL_EXT);
  808. /* enable MSI-X PBA support*/
  809. tmp |= E1000_CTRL_EXT_PBA_CLR;
  810. /* Auto-Mask interrupts upon ICR read. */
  811. tmp |= E1000_CTRL_EXT_EIAME;
  812. tmp |= E1000_CTRL_EXT_IRCA;
  813. wr32(E1000_CTRL_EXT, tmp);
  814. /* enable msix_other interrupt */
  815. array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  816. adapter->eims_other = E1000_EIMS_OTHER;
  817. break;
  818. case e1000_82576:
  819. case e1000_82580:
  820. case e1000_i350:
  821. case e1000_i354:
  822. case e1000_i210:
  823. case e1000_i211:
  824. /* Turn on MSI-X capability first, or our settings
  825. * won't stick. And it will take days to debug.
  826. */
  827. wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  828. E1000_GPIE_PBA | E1000_GPIE_EIAME |
  829. E1000_GPIE_NSICR);
  830. /* enable msix_other interrupt */
  831. adapter->eims_other = 1 << vector;
  832. tmp = (vector++ | E1000_IVAR_VALID) << 8;
  833. wr32(E1000_IVAR_MISC, tmp);
  834. break;
  835. default:
  836. /* do nothing, since nothing else supports MSI-X */
  837. break;
  838. } /* switch (hw->mac.type) */
  839. adapter->eims_enable_mask |= adapter->eims_other;
  840. for (i = 0; i < adapter->num_q_vectors; i++)
  841. igb_assign_vector(adapter->q_vector[i], vector++);
  842. wrfl();
  843. }
  844. /**
  845. * igb_request_msix - Initialize MSI-X interrupts
  846. * @adapter: board private structure to initialize
  847. *
  848. * igb_request_msix allocates MSI-X vectors and requests interrupts from the
  849. * kernel.
  850. **/
  851. static int igb_request_msix(struct igb_adapter *adapter)
  852. {
  853. struct net_device *netdev = adapter->netdev;
  854. struct e1000_hw *hw = &adapter->hw;
  855. int i, err = 0, vector = 0, free_vector = 0;
  856. err = request_irq(adapter->msix_entries[vector].vector,
  857. igb_msix_other, 0, netdev->name, adapter);
  858. if (err)
  859. goto err_out;
  860. for (i = 0; i < adapter->num_q_vectors; i++) {
  861. struct igb_q_vector *q_vector = adapter->q_vector[i];
  862. vector++;
  863. q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
  864. if (q_vector->rx.ring && q_vector->tx.ring)
  865. sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  866. q_vector->rx.ring->queue_index);
  867. else if (q_vector->tx.ring)
  868. sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  869. q_vector->tx.ring->queue_index);
  870. else if (q_vector->rx.ring)
  871. sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  872. q_vector->rx.ring->queue_index);
  873. else
  874. sprintf(q_vector->name, "%s-unused", netdev->name);
  875. err = request_irq(adapter->msix_entries[vector].vector,
  876. igb_msix_ring, 0, q_vector->name,
  877. q_vector);
  878. if (err)
  879. goto err_free;
  880. }
  881. igb_configure_msix(adapter);
  882. return 0;
  883. err_free:
  884. /* free already assigned IRQs */
  885. free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  886. vector--;
  887. for (i = 0; i < vector; i++) {
  888. free_irq(adapter->msix_entries[free_vector++].vector,
  889. adapter->q_vector[i]);
  890. }
  891. err_out:
  892. return err;
  893. }
  894. /**
  895. * igb_free_q_vector - Free memory allocated for specific interrupt vector
  896. * @adapter: board private structure to initialize
  897. * @v_idx: Index of vector to be freed
  898. *
  899. * This function frees the memory allocated to the q_vector.
  900. **/
  901. static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  902. {
  903. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  904. adapter->q_vector[v_idx] = NULL;
  905. /* igb_get_stats64() might access the rings on this vector,
  906. * we must wait a grace period before freeing it.
  907. */
  908. kfree_rcu(q_vector, rcu);
  909. }
  910. /**
  911. * igb_reset_q_vector - Reset config for interrupt vector
  912. * @adapter: board private structure to initialize
  913. * @v_idx: Index of vector to be reset
  914. *
  915. * If NAPI is enabled it will delete any references to the
  916. * NAPI struct. This is preparation for igb_free_q_vector.
  917. **/
  918. static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
  919. {
  920. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  921. /* Coming from igb_set_interrupt_capability, the vectors are not yet
  922. * allocated. So, q_vector is NULL so we should stop here.
  923. */
  924. if (!q_vector)
  925. return;
  926. if (q_vector->tx.ring)
  927. adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
  928. if (q_vector->rx.ring)
  929. adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
  930. netif_napi_del(&q_vector->napi);
  931. }
  932. static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
  933. {
  934. int v_idx = adapter->num_q_vectors;
  935. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  936. pci_disable_msix(adapter->pdev);
  937. else if (adapter->flags & IGB_FLAG_HAS_MSI)
  938. pci_disable_msi(adapter->pdev);
  939. while (v_idx--)
  940. igb_reset_q_vector(adapter, v_idx);
  941. }
  942. /**
  943. * igb_free_q_vectors - Free memory allocated for interrupt vectors
  944. * @adapter: board private structure to initialize
  945. *
  946. * This function frees the memory allocated to the q_vectors. In addition if
  947. * NAPI is enabled it will delete any references to the NAPI struct prior
  948. * to freeing the q_vector.
  949. **/
  950. static void igb_free_q_vectors(struct igb_adapter *adapter)
  951. {
  952. int v_idx = adapter->num_q_vectors;
  953. adapter->num_tx_queues = 0;
  954. adapter->num_rx_queues = 0;
  955. adapter->num_q_vectors = 0;
  956. while (v_idx--) {
  957. igb_reset_q_vector(adapter, v_idx);
  958. igb_free_q_vector(adapter, v_idx);
  959. }
  960. }
  961. /**
  962. * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
  963. * @adapter: board private structure to initialize
  964. *
  965. * This function resets the device so that it has 0 Rx queues, Tx queues, and
  966. * MSI-X interrupts allocated.
  967. */
  968. static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
  969. {
  970. igb_free_q_vectors(adapter);
  971. igb_reset_interrupt_capability(adapter);
  972. }
  973. /**
  974. * igb_set_interrupt_capability - set MSI or MSI-X if supported
  975. * @adapter: board private structure to initialize
  976. * @msix: boolean value of MSIX capability
  977. *
  978. * Attempt to configure interrupts using the best available
  979. * capabilities of the hardware and kernel.
  980. **/
  981. static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
  982. {
  983. int err;
  984. int numvecs, i;
  985. if (!msix)
  986. goto msi_only;
  987. adapter->flags |= IGB_FLAG_HAS_MSIX;
  988. /* Number of supported queues. */
  989. adapter->num_rx_queues = adapter->rss_queues;
  990. if (adapter->vfs_allocated_count)
  991. adapter->num_tx_queues = 1;
  992. else
  993. adapter->num_tx_queues = adapter->rss_queues;
  994. /* start with one vector for every Rx queue */
  995. numvecs = adapter->num_rx_queues;
  996. /* if Tx handler is separate add 1 for every Tx queue */
  997. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
  998. numvecs += adapter->num_tx_queues;
  999. /* store the number of vectors reserved for queues */
  1000. adapter->num_q_vectors = numvecs;
  1001. /* add 1 vector for link status interrupts */
  1002. numvecs++;
  1003. for (i = 0; i < numvecs; i++)
  1004. adapter->msix_entries[i].entry = i;
  1005. err = pci_enable_msix_range(adapter->pdev,
  1006. adapter->msix_entries,
  1007. numvecs,
  1008. numvecs);
  1009. if (err > 0)
  1010. return;
  1011. igb_reset_interrupt_capability(adapter);
  1012. /* If we can't do MSI-X, try MSI */
  1013. msi_only:
  1014. adapter->flags &= ~IGB_FLAG_HAS_MSIX;
  1015. #ifdef CONFIG_PCI_IOV
  1016. /* disable SR-IOV for non MSI-X configurations */
  1017. if (adapter->vf_data) {
  1018. struct e1000_hw *hw = &adapter->hw;
  1019. /* disable iov and allow time for transactions to clear */
  1020. pci_disable_sriov(adapter->pdev);
  1021. msleep(500);
  1022. kfree(adapter->vf_data);
  1023. adapter->vf_data = NULL;
  1024. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  1025. wrfl();
  1026. msleep(100);
  1027. dev_info(&adapter->pdev->dev, "IOV Disabled\n");
  1028. }
  1029. #endif
  1030. adapter->vfs_allocated_count = 0;
  1031. adapter->rss_queues = 1;
  1032. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  1033. adapter->num_rx_queues = 1;
  1034. adapter->num_tx_queues = 1;
  1035. adapter->num_q_vectors = 1;
  1036. if (!pci_enable_msi(adapter->pdev))
  1037. adapter->flags |= IGB_FLAG_HAS_MSI;
  1038. }
  1039. static void igb_add_ring(struct igb_ring *ring,
  1040. struct igb_ring_container *head)
  1041. {
  1042. head->ring = ring;
  1043. head->count++;
  1044. }
  1045. /**
  1046. * igb_alloc_q_vector - Allocate memory for a single interrupt vector
  1047. * @adapter: board private structure to initialize
  1048. * @v_count: q_vectors allocated on adapter, used for ring interleaving
  1049. * @v_idx: index of vector in adapter struct
  1050. * @txr_count: total number of Tx rings to allocate
  1051. * @txr_idx: index of first Tx ring to allocate
  1052. * @rxr_count: total number of Rx rings to allocate
  1053. * @rxr_idx: index of first Rx ring to allocate
  1054. *
  1055. * We allocate one q_vector. If allocation fails we return -ENOMEM.
  1056. **/
  1057. static int igb_alloc_q_vector(struct igb_adapter *adapter,
  1058. int v_count, int v_idx,
  1059. int txr_count, int txr_idx,
  1060. int rxr_count, int rxr_idx)
  1061. {
  1062. struct igb_q_vector *q_vector;
  1063. struct igb_ring *ring;
  1064. int ring_count, size;
  1065. /* igb only supports 1 Tx and/or 1 Rx queue per vector */
  1066. if (txr_count > 1 || rxr_count > 1)
  1067. return -ENOMEM;
  1068. ring_count = txr_count + rxr_count;
  1069. size = sizeof(struct igb_q_vector) +
  1070. (sizeof(struct igb_ring) * ring_count);
  1071. /* allocate q_vector and rings */
  1072. q_vector = adapter->q_vector[v_idx];
  1073. if (!q_vector)
  1074. q_vector = kzalloc(size, GFP_KERNEL);
  1075. if (!q_vector)
  1076. return -ENOMEM;
  1077. /* initialize NAPI */
  1078. netif_napi_add(adapter->netdev, &q_vector->napi,
  1079. igb_poll, 64);
  1080. /* tie q_vector and adapter together */
  1081. adapter->q_vector[v_idx] = q_vector;
  1082. q_vector->adapter = adapter;
  1083. /* initialize work limits */
  1084. q_vector->tx.work_limit = adapter->tx_work_limit;
  1085. /* initialize ITR configuration */
  1086. q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
  1087. q_vector->itr_val = IGB_START_ITR;
  1088. /* initialize pointer to rings */
  1089. ring = q_vector->ring;
  1090. /* intialize ITR */
  1091. if (rxr_count) {
  1092. /* rx or rx/tx vector */
  1093. if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
  1094. q_vector->itr_val = adapter->rx_itr_setting;
  1095. } else {
  1096. /* tx only vector */
  1097. if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
  1098. q_vector->itr_val = adapter->tx_itr_setting;
  1099. }
  1100. if (txr_count) {
  1101. /* assign generic ring traits */
  1102. ring->dev = &adapter->pdev->dev;
  1103. ring->netdev = adapter->netdev;
  1104. /* configure backlink on ring */
  1105. ring->q_vector = q_vector;
  1106. /* update q_vector Tx values */
  1107. igb_add_ring(ring, &q_vector->tx);
  1108. /* For 82575, context index must be unique per ring. */
  1109. if (adapter->hw.mac.type == e1000_82575)
  1110. set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
  1111. /* apply Tx specific ring traits */
  1112. ring->count = adapter->tx_ring_count;
  1113. ring->queue_index = txr_idx;
  1114. u64_stats_init(&ring->tx_syncp);
  1115. u64_stats_init(&ring->tx_syncp2);
  1116. /* assign ring to adapter */
  1117. adapter->tx_ring[txr_idx] = ring;
  1118. /* push pointer to next ring */
  1119. ring++;
  1120. }
  1121. if (rxr_count) {
  1122. /* assign generic ring traits */
  1123. ring->dev = &adapter->pdev->dev;
  1124. ring->netdev = adapter->netdev;
  1125. /* configure backlink on ring */
  1126. ring->q_vector = q_vector;
  1127. /* update q_vector Rx values */
  1128. igb_add_ring(ring, &q_vector->rx);
  1129. /* set flag indicating ring supports SCTP checksum offload */
  1130. if (adapter->hw.mac.type >= e1000_82576)
  1131. set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
  1132. /* On i350, i354, i210, and i211, loopback VLAN packets
  1133. * have the tag byte-swapped.
  1134. */
  1135. if (adapter->hw.mac.type >= e1000_i350)
  1136. set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
  1137. /* apply Rx specific ring traits */
  1138. ring->count = adapter->rx_ring_count;
  1139. ring->queue_index = rxr_idx;
  1140. u64_stats_init(&ring->rx_syncp);
  1141. /* assign ring to adapter */
  1142. adapter->rx_ring[rxr_idx] = ring;
  1143. }
  1144. return 0;
  1145. }
  1146. /**
  1147. * igb_alloc_q_vectors - Allocate memory for interrupt vectors
  1148. * @adapter: board private structure to initialize
  1149. *
  1150. * We allocate one q_vector per queue interrupt. If allocation fails we
  1151. * return -ENOMEM.
  1152. **/
  1153. static int igb_alloc_q_vectors(struct igb_adapter *adapter)
  1154. {
  1155. int q_vectors = adapter->num_q_vectors;
  1156. int rxr_remaining = adapter->num_rx_queues;
  1157. int txr_remaining = adapter->num_tx_queues;
  1158. int rxr_idx = 0, txr_idx = 0, v_idx = 0;
  1159. int err;
  1160. if (q_vectors >= (rxr_remaining + txr_remaining)) {
  1161. for (; rxr_remaining; v_idx++) {
  1162. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1163. 0, 0, 1, rxr_idx);
  1164. if (err)
  1165. goto err_out;
  1166. /* update counts and index */
  1167. rxr_remaining--;
  1168. rxr_idx++;
  1169. }
  1170. }
  1171. for (; v_idx < q_vectors; v_idx++) {
  1172. int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
  1173. int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
  1174. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1175. tqpv, txr_idx, rqpv, rxr_idx);
  1176. if (err)
  1177. goto err_out;
  1178. /* update counts and index */
  1179. rxr_remaining -= rqpv;
  1180. txr_remaining -= tqpv;
  1181. rxr_idx++;
  1182. txr_idx++;
  1183. }
  1184. return 0;
  1185. err_out:
  1186. adapter->num_tx_queues = 0;
  1187. adapter->num_rx_queues = 0;
  1188. adapter->num_q_vectors = 0;
  1189. while (v_idx--)
  1190. igb_free_q_vector(adapter, v_idx);
  1191. return -ENOMEM;
  1192. }
  1193. /**
  1194. * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
  1195. * @adapter: board private structure to initialize
  1196. * @msix: boolean value of MSIX capability
  1197. *
  1198. * This function initializes the interrupts and allocates all of the queues.
  1199. **/
  1200. static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
  1201. {
  1202. struct pci_dev *pdev = adapter->pdev;
  1203. int err;
  1204. igb_set_interrupt_capability(adapter, msix);
  1205. err = igb_alloc_q_vectors(adapter);
  1206. if (err) {
  1207. dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
  1208. goto err_alloc_q_vectors;
  1209. }
  1210. igb_cache_ring_register(adapter);
  1211. return 0;
  1212. err_alloc_q_vectors:
  1213. igb_reset_interrupt_capability(adapter);
  1214. return err;
  1215. }
  1216. /**
  1217. * igb_request_irq - initialize interrupts
  1218. * @adapter: board private structure to initialize
  1219. *
  1220. * Attempts to configure interrupts using the best available
  1221. * capabilities of the hardware and kernel.
  1222. **/
  1223. static int igb_request_irq(struct igb_adapter *adapter)
  1224. {
  1225. struct net_device *netdev = adapter->netdev;
  1226. struct pci_dev *pdev = adapter->pdev;
  1227. int err = 0;
  1228. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1229. err = igb_request_msix(adapter);
  1230. if (!err)
  1231. goto request_done;
  1232. /* fall back to MSI */
  1233. igb_free_all_tx_resources(adapter);
  1234. igb_free_all_rx_resources(adapter);
  1235. igb_clear_interrupt_scheme(adapter);
  1236. err = igb_init_interrupt_scheme(adapter, false);
  1237. if (err)
  1238. goto request_done;
  1239. igb_setup_all_tx_resources(adapter);
  1240. igb_setup_all_rx_resources(adapter);
  1241. igb_configure(adapter);
  1242. }
  1243. igb_assign_vector(adapter->q_vector[0], 0);
  1244. if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1245. err = request_irq(pdev->irq, igb_intr_msi, 0,
  1246. netdev->name, adapter);
  1247. if (!err)
  1248. goto request_done;
  1249. /* fall back to legacy interrupts */
  1250. igb_reset_interrupt_capability(adapter);
  1251. adapter->flags &= ~IGB_FLAG_HAS_MSI;
  1252. }
  1253. err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
  1254. netdev->name, adapter);
  1255. if (err)
  1256. dev_err(&pdev->dev, "Error %d getting interrupt\n",
  1257. err);
  1258. request_done:
  1259. return err;
  1260. }
  1261. static void igb_free_irq(struct igb_adapter *adapter)
  1262. {
  1263. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1264. int vector = 0, i;
  1265. free_irq(adapter->msix_entries[vector++].vector, adapter);
  1266. for (i = 0; i < adapter->num_q_vectors; i++)
  1267. free_irq(adapter->msix_entries[vector++].vector,
  1268. adapter->q_vector[i]);
  1269. } else {
  1270. free_irq(adapter->pdev->irq, adapter);
  1271. }
  1272. }
  1273. /**
  1274. * igb_irq_disable - Mask off interrupt generation on the NIC
  1275. * @adapter: board private structure
  1276. **/
  1277. static void igb_irq_disable(struct igb_adapter *adapter)
  1278. {
  1279. struct e1000_hw *hw = &adapter->hw;
  1280. /* we need to be careful when disabling interrupts. The VFs are also
  1281. * mapped into these registers and so clearing the bits can cause
  1282. * issues on the VF drivers so we only need to clear what we set
  1283. */
  1284. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1285. u32 regval = rd32(E1000_EIAM);
  1286. wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
  1287. wr32(E1000_EIMC, adapter->eims_enable_mask);
  1288. regval = rd32(E1000_EIAC);
  1289. wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
  1290. }
  1291. wr32(E1000_IAM, 0);
  1292. wr32(E1000_IMC, ~0);
  1293. wrfl();
  1294. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1295. int i;
  1296. for (i = 0; i < adapter->num_q_vectors; i++)
  1297. synchronize_irq(adapter->msix_entries[i].vector);
  1298. } else {
  1299. synchronize_irq(adapter->pdev->irq);
  1300. }
  1301. }
  1302. /**
  1303. * igb_irq_enable - Enable default interrupt generation settings
  1304. * @adapter: board private structure
  1305. **/
  1306. static void igb_irq_enable(struct igb_adapter *adapter)
  1307. {
  1308. struct e1000_hw *hw = &adapter->hw;
  1309. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1310. u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
  1311. u32 regval = rd32(E1000_EIAC);
  1312. wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
  1313. regval = rd32(E1000_EIAM);
  1314. wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
  1315. wr32(E1000_EIMS, adapter->eims_enable_mask);
  1316. if (adapter->vfs_allocated_count) {
  1317. wr32(E1000_MBVFIMR, 0xFF);
  1318. ims |= E1000_IMS_VMMB;
  1319. }
  1320. wr32(E1000_IMS, ims);
  1321. } else {
  1322. wr32(E1000_IMS, IMS_ENABLE_MASK |
  1323. E1000_IMS_DRSTA);
  1324. wr32(E1000_IAM, IMS_ENABLE_MASK |
  1325. E1000_IMS_DRSTA);
  1326. }
  1327. }
  1328. static void igb_update_mng_vlan(struct igb_adapter *adapter)
  1329. {
  1330. struct e1000_hw *hw = &adapter->hw;
  1331. u16 vid = adapter->hw.mng_cookie.vlan_id;
  1332. u16 old_vid = adapter->mng_vlan_id;
  1333. if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
  1334. /* add VID to filter table */
  1335. igb_vfta_set(hw, vid, true);
  1336. adapter->mng_vlan_id = vid;
  1337. } else {
  1338. adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
  1339. }
  1340. if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
  1341. (vid != old_vid) &&
  1342. !test_bit(old_vid, adapter->active_vlans)) {
  1343. /* remove VID from filter table */
  1344. igb_vfta_set(hw, old_vid, false);
  1345. }
  1346. }
  1347. /**
  1348. * igb_release_hw_control - release control of the h/w to f/w
  1349. * @adapter: address of board private structure
  1350. *
  1351. * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
  1352. * For ASF and Pass Through versions of f/w this means that the
  1353. * driver is no longer loaded.
  1354. **/
  1355. static void igb_release_hw_control(struct igb_adapter *adapter)
  1356. {
  1357. struct e1000_hw *hw = &adapter->hw;
  1358. u32 ctrl_ext;
  1359. /* Let firmware take over control of h/w */
  1360. ctrl_ext = rd32(E1000_CTRL_EXT);
  1361. wr32(E1000_CTRL_EXT,
  1362. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  1363. }
  1364. /**
  1365. * igb_get_hw_control - get control of the h/w from f/w
  1366. * @adapter: address of board private structure
  1367. *
  1368. * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
  1369. * For ASF and Pass Through versions of f/w this means that
  1370. * the driver is loaded.
  1371. **/
  1372. static void igb_get_hw_control(struct igb_adapter *adapter)
  1373. {
  1374. struct e1000_hw *hw = &adapter->hw;
  1375. u32 ctrl_ext;
  1376. /* Let firmware know the driver has taken over */
  1377. ctrl_ext = rd32(E1000_CTRL_EXT);
  1378. wr32(E1000_CTRL_EXT,
  1379. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  1380. }
  1381. /**
  1382. * igb_configure - configure the hardware for RX and TX
  1383. * @adapter: private board structure
  1384. **/
  1385. static void igb_configure(struct igb_adapter *adapter)
  1386. {
  1387. struct net_device *netdev = adapter->netdev;
  1388. int i;
  1389. igb_get_hw_control(adapter);
  1390. igb_set_rx_mode(netdev);
  1391. igb_restore_vlan(adapter);
  1392. igb_setup_tctl(adapter);
  1393. igb_setup_mrqc(adapter);
  1394. igb_setup_rctl(adapter);
  1395. igb_configure_tx(adapter);
  1396. igb_configure_rx(adapter);
  1397. igb_rx_fifo_flush_82575(&adapter->hw);
  1398. /* call igb_desc_unused which always leaves
  1399. * at least 1 descriptor unused to make sure
  1400. * next_to_use != next_to_clean
  1401. */
  1402. for (i = 0; i < adapter->num_rx_queues; i++) {
  1403. struct igb_ring *ring = adapter->rx_ring[i];
  1404. igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
  1405. }
  1406. }
  1407. /**
  1408. * igb_power_up_link - Power up the phy/serdes link
  1409. * @adapter: address of board private structure
  1410. **/
  1411. void igb_power_up_link(struct igb_adapter *adapter)
  1412. {
  1413. igb_reset_phy(&adapter->hw);
  1414. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1415. igb_power_up_phy_copper(&adapter->hw);
  1416. else
  1417. igb_power_up_serdes_link_82575(&adapter->hw);
  1418. }
  1419. /**
  1420. * igb_power_down_link - Power down the phy/serdes link
  1421. * @adapter: address of board private structure
  1422. */
  1423. static void igb_power_down_link(struct igb_adapter *adapter)
  1424. {
  1425. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1426. igb_power_down_phy_copper_82575(&adapter->hw);
  1427. else
  1428. igb_shutdown_serdes_link_82575(&adapter->hw);
  1429. }
  1430. /**
  1431. * Detect and switch function for Media Auto Sense
  1432. * @adapter: address of the board private structure
  1433. **/
  1434. static void igb_check_swap_media(struct igb_adapter *adapter)
  1435. {
  1436. struct e1000_hw *hw = &adapter->hw;
  1437. u32 ctrl_ext, connsw;
  1438. bool swap_now = false;
  1439. ctrl_ext = rd32(E1000_CTRL_EXT);
  1440. connsw = rd32(E1000_CONNSW);
  1441. /* need to live swap if current media is copper and we have fiber/serdes
  1442. * to go to.
  1443. */
  1444. if ((hw->phy.media_type == e1000_media_type_copper) &&
  1445. (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
  1446. swap_now = true;
  1447. } else if (!(connsw & E1000_CONNSW_SERDESD)) {
  1448. /* copper signal takes time to appear */
  1449. if (adapter->copper_tries < 4) {
  1450. adapter->copper_tries++;
  1451. connsw |= E1000_CONNSW_AUTOSENSE_CONF;
  1452. wr32(E1000_CONNSW, connsw);
  1453. return;
  1454. } else {
  1455. adapter->copper_tries = 0;
  1456. if ((connsw & E1000_CONNSW_PHYSD) &&
  1457. (!(connsw & E1000_CONNSW_PHY_PDN))) {
  1458. swap_now = true;
  1459. connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
  1460. wr32(E1000_CONNSW, connsw);
  1461. }
  1462. }
  1463. }
  1464. if (!swap_now)
  1465. return;
  1466. switch (hw->phy.media_type) {
  1467. case e1000_media_type_copper:
  1468. netdev_info(adapter->netdev,
  1469. "MAS: changing media to fiber/serdes\n");
  1470. ctrl_ext |=
  1471. E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1472. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1473. adapter->copper_tries = 0;
  1474. break;
  1475. case e1000_media_type_internal_serdes:
  1476. case e1000_media_type_fiber:
  1477. netdev_info(adapter->netdev,
  1478. "MAS: changing media to copper\n");
  1479. ctrl_ext &=
  1480. ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1481. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1482. break;
  1483. default:
  1484. /* shouldn't get here during regular operation */
  1485. netdev_err(adapter->netdev,
  1486. "AMS: Invalid media type found, returning\n");
  1487. break;
  1488. }
  1489. wr32(E1000_CTRL_EXT, ctrl_ext);
  1490. }
  1491. /**
  1492. * igb_up - Open the interface and prepare it to handle traffic
  1493. * @adapter: board private structure
  1494. **/
  1495. int igb_up(struct igb_adapter *adapter)
  1496. {
  1497. struct e1000_hw *hw = &adapter->hw;
  1498. int i;
  1499. /* hardware has been reset, we need to reload some things */
  1500. igb_configure(adapter);
  1501. clear_bit(__IGB_DOWN, &adapter->state);
  1502. for (i = 0; i < adapter->num_q_vectors; i++)
  1503. napi_enable(&(adapter->q_vector[i]->napi));
  1504. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1505. igb_configure_msix(adapter);
  1506. else
  1507. igb_assign_vector(adapter->q_vector[0], 0);
  1508. /* Clear any pending interrupts. */
  1509. rd32(E1000_ICR);
  1510. igb_irq_enable(adapter);
  1511. /* notify VFs that reset has been completed */
  1512. if (adapter->vfs_allocated_count) {
  1513. u32 reg_data = rd32(E1000_CTRL_EXT);
  1514. reg_data |= E1000_CTRL_EXT_PFRSTD;
  1515. wr32(E1000_CTRL_EXT, reg_data);
  1516. }
  1517. netif_tx_start_all_queues(adapter->netdev);
  1518. /* start the watchdog. */
  1519. hw->mac.get_link_status = 1;
  1520. schedule_work(&adapter->watchdog_task);
  1521. if ((adapter->flags & IGB_FLAG_EEE) &&
  1522. (!hw->dev_spec._82575.eee_disable))
  1523. adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
  1524. return 0;
  1525. }
  1526. void igb_down(struct igb_adapter *adapter)
  1527. {
  1528. struct net_device *netdev = adapter->netdev;
  1529. struct e1000_hw *hw = &adapter->hw;
  1530. u32 tctl, rctl;
  1531. int i;
  1532. /* signal that we're down so the interrupt handler does not
  1533. * reschedule our watchdog timer
  1534. */
  1535. set_bit(__IGB_DOWN, &adapter->state);
  1536. /* disable receives in the hardware */
  1537. rctl = rd32(E1000_RCTL);
  1538. wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
  1539. /* flush and sleep below */
  1540. netif_tx_stop_all_queues(netdev);
  1541. /* disable transmits in the hardware */
  1542. tctl = rd32(E1000_TCTL);
  1543. tctl &= ~E1000_TCTL_EN;
  1544. wr32(E1000_TCTL, tctl);
  1545. /* flush both disables and wait for them to finish */
  1546. wrfl();
  1547. usleep_range(10000, 11000);
  1548. igb_irq_disable(adapter);
  1549. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  1550. for (i = 0; i < adapter->num_q_vectors; i++) {
  1551. napi_synchronize(&(adapter->q_vector[i]->napi));
  1552. napi_disable(&(adapter->q_vector[i]->napi));
  1553. }
  1554. del_timer_sync(&adapter->watchdog_timer);
  1555. del_timer_sync(&adapter->phy_info_timer);
  1556. netif_carrier_off(netdev);
  1557. /* record the stats before reset*/
  1558. spin_lock(&adapter->stats64_lock);
  1559. igb_update_stats(adapter, &adapter->stats64);
  1560. spin_unlock(&adapter->stats64_lock);
  1561. adapter->link_speed = 0;
  1562. adapter->link_duplex = 0;
  1563. if (!pci_channel_offline(adapter->pdev))
  1564. igb_reset(adapter);
  1565. igb_clean_all_tx_rings(adapter);
  1566. igb_clean_all_rx_rings(adapter);
  1567. #ifdef CONFIG_IGB_DCA
  1568. /* since we reset the hardware DCA settings were cleared */
  1569. igb_setup_dca(adapter);
  1570. #endif
  1571. }
  1572. void igb_reinit_locked(struct igb_adapter *adapter)
  1573. {
  1574. WARN_ON(in_interrupt());
  1575. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  1576. usleep_range(1000, 2000);
  1577. igb_down(adapter);
  1578. igb_up(adapter);
  1579. clear_bit(__IGB_RESETTING, &adapter->state);
  1580. }
  1581. /** igb_enable_mas - Media Autosense re-enable after swap
  1582. *
  1583. * @adapter: adapter struct
  1584. **/
  1585. static s32 igb_enable_mas(struct igb_adapter *adapter)
  1586. {
  1587. struct e1000_hw *hw = &adapter->hw;
  1588. u32 connsw;
  1589. s32 ret_val = 0;
  1590. connsw = rd32(E1000_CONNSW);
  1591. if (!(hw->phy.media_type == e1000_media_type_copper))
  1592. return ret_val;
  1593. /* configure for SerDes media detect */
  1594. if (!(connsw & E1000_CONNSW_SERDESD)) {
  1595. connsw |= E1000_CONNSW_ENRGSRC;
  1596. connsw |= E1000_CONNSW_AUTOSENSE_EN;
  1597. wr32(E1000_CONNSW, connsw);
  1598. wrfl();
  1599. } else if (connsw & E1000_CONNSW_SERDESD) {
  1600. /* already SerDes, no need to enable anything */
  1601. return ret_val;
  1602. } else {
  1603. netdev_info(adapter->netdev,
  1604. "MAS: Unable to configure feature, disabling..\n");
  1605. adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
  1606. }
  1607. return ret_val;
  1608. }
  1609. void igb_reset(struct igb_adapter *adapter)
  1610. {
  1611. struct pci_dev *pdev = adapter->pdev;
  1612. struct e1000_hw *hw = &adapter->hw;
  1613. struct e1000_mac_info *mac = &hw->mac;
  1614. struct e1000_fc_info *fc = &hw->fc;
  1615. u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
  1616. /* Repartition Pba for greater than 9k mtu
  1617. * To take effect CTRL.RST is required.
  1618. */
  1619. switch (mac->type) {
  1620. case e1000_i350:
  1621. case e1000_i354:
  1622. case e1000_82580:
  1623. pba = rd32(E1000_RXPBS);
  1624. pba = igb_rxpbs_adjust_82580(pba);
  1625. break;
  1626. case e1000_82576:
  1627. pba = rd32(E1000_RXPBS);
  1628. pba &= E1000_RXPBS_SIZE_MASK_82576;
  1629. break;
  1630. case e1000_82575:
  1631. case e1000_i210:
  1632. case e1000_i211:
  1633. default:
  1634. pba = E1000_PBA_34K;
  1635. break;
  1636. }
  1637. if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
  1638. (mac->type < e1000_82576)) {
  1639. /* adjust PBA for jumbo frames */
  1640. wr32(E1000_PBA, pba);
  1641. /* To maintain wire speed transmits, the Tx FIFO should be
  1642. * large enough to accommodate two full transmit packets,
  1643. * rounded up to the next 1KB and expressed in KB. Likewise,
  1644. * the Rx FIFO should be large enough to accommodate at least
  1645. * one full receive packet and is similarly rounded up and
  1646. * expressed in KB.
  1647. */
  1648. pba = rd32(E1000_PBA);
  1649. /* upper 16 bits has Tx packet buffer allocation size in KB */
  1650. tx_space = pba >> 16;
  1651. /* lower 16 bits has Rx packet buffer allocation size in KB */
  1652. pba &= 0xffff;
  1653. /* the Tx fifo also stores 16 bytes of information about the Tx
  1654. * but don't include ethernet FCS because hardware appends it
  1655. */
  1656. min_tx_space = (adapter->max_frame_size +
  1657. sizeof(union e1000_adv_tx_desc) -
  1658. ETH_FCS_LEN) * 2;
  1659. min_tx_space = ALIGN(min_tx_space, 1024);
  1660. min_tx_space >>= 10;
  1661. /* software strips receive CRC, so leave room for it */
  1662. min_rx_space = adapter->max_frame_size;
  1663. min_rx_space = ALIGN(min_rx_space, 1024);
  1664. min_rx_space >>= 10;
  1665. /* If current Tx allocation is less than the min Tx FIFO size,
  1666. * and the min Tx FIFO size is less than the current Rx FIFO
  1667. * allocation, take space away from current Rx allocation
  1668. */
  1669. if (tx_space < min_tx_space &&
  1670. ((min_tx_space - tx_space) < pba)) {
  1671. pba = pba - (min_tx_space - tx_space);
  1672. /* if short on Rx space, Rx wins and must trump Tx
  1673. * adjustment
  1674. */
  1675. if (pba < min_rx_space)
  1676. pba = min_rx_space;
  1677. }
  1678. wr32(E1000_PBA, pba);
  1679. }
  1680. /* flow control settings */
  1681. /* The high water mark must be low enough to fit one full frame
  1682. * (or the size used for early receive) above it in the Rx FIFO.
  1683. * Set it to the lower of:
  1684. * - 90% of the Rx FIFO size, or
  1685. * - the full Rx FIFO size minus one full frame
  1686. */
  1687. hwm = min(((pba << 10) * 9 / 10),
  1688. ((pba << 10) - 2 * adapter->max_frame_size));
  1689. fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
  1690. fc->low_water = fc->high_water - 16;
  1691. fc->pause_time = 0xFFFF;
  1692. fc->send_xon = 1;
  1693. fc->current_mode = fc->requested_mode;
  1694. /* disable receive for all VFs and wait one second */
  1695. if (adapter->vfs_allocated_count) {
  1696. int i;
  1697. for (i = 0 ; i < adapter->vfs_allocated_count; i++)
  1698. adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
  1699. /* ping all the active vfs to let them know we are going down */
  1700. igb_ping_all_vfs(adapter);
  1701. /* disable transmits and receives */
  1702. wr32(E1000_VFRE, 0);
  1703. wr32(E1000_VFTE, 0);
  1704. }
  1705. /* Allow time for pending master requests to run */
  1706. hw->mac.ops.reset_hw(hw);
  1707. wr32(E1000_WUC, 0);
  1708. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  1709. /* need to resetup here after media swap */
  1710. adapter->ei.get_invariants(hw);
  1711. adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
  1712. }
  1713. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  1714. if (igb_enable_mas(adapter))
  1715. dev_err(&pdev->dev,
  1716. "Error enabling Media Auto Sense\n");
  1717. }
  1718. if (hw->mac.ops.init_hw(hw))
  1719. dev_err(&pdev->dev, "Hardware Error\n");
  1720. /* Flow control settings reset on hardware reset, so guarantee flow
  1721. * control is off when forcing speed.
  1722. */
  1723. if (!hw->mac.autoneg)
  1724. igb_force_mac_fc(hw);
  1725. igb_init_dmac(adapter, pba);
  1726. #ifdef CONFIG_IGB_HWMON
  1727. /* Re-initialize the thermal sensor on i350 devices. */
  1728. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  1729. if (mac->type == e1000_i350 && hw->bus.func == 0) {
  1730. /* If present, re-initialize the external thermal sensor
  1731. * interface.
  1732. */
  1733. if (adapter->ets)
  1734. mac->ops.init_thermal_sensor_thresh(hw);
  1735. }
  1736. }
  1737. #endif
  1738. /* Re-establish EEE setting */
  1739. if (hw->phy.media_type == e1000_media_type_copper) {
  1740. switch (mac->type) {
  1741. case e1000_i350:
  1742. case e1000_i210:
  1743. case e1000_i211:
  1744. igb_set_eee_i350(hw);
  1745. break;
  1746. case e1000_i354:
  1747. igb_set_eee_i354(hw);
  1748. break;
  1749. default:
  1750. break;
  1751. }
  1752. }
  1753. if (!netif_running(adapter->netdev))
  1754. igb_power_down_link(adapter);
  1755. igb_update_mng_vlan(adapter);
  1756. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  1757. wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
  1758. /* Re-enable PTP, where applicable. */
  1759. igb_ptp_reset(adapter);
  1760. igb_get_phy_info(hw);
  1761. }
  1762. static netdev_features_t igb_fix_features(struct net_device *netdev,
  1763. netdev_features_t features)
  1764. {
  1765. /* Since there is no support for separate Rx/Tx vlan accel
  1766. * enable/disable make sure Tx flag is always in same state as Rx.
  1767. */
  1768. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  1769. features |= NETIF_F_HW_VLAN_CTAG_TX;
  1770. else
  1771. features &= ~NETIF_F_HW_VLAN_CTAG_TX;
  1772. return features;
  1773. }
  1774. static int igb_set_features(struct net_device *netdev,
  1775. netdev_features_t features)
  1776. {
  1777. netdev_features_t changed = netdev->features ^ features;
  1778. struct igb_adapter *adapter = netdev_priv(netdev);
  1779. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  1780. igb_vlan_mode(netdev, features);
  1781. if (!(changed & NETIF_F_RXALL))
  1782. return 0;
  1783. netdev->features = features;
  1784. if (netif_running(netdev))
  1785. igb_reinit_locked(adapter);
  1786. else
  1787. igb_reset(adapter);
  1788. return 0;
  1789. }
  1790. static const struct net_device_ops igb_netdev_ops = {
  1791. .ndo_open = igb_open,
  1792. .ndo_stop = igb_close,
  1793. .ndo_start_xmit = igb_xmit_frame,
  1794. .ndo_get_stats64 = igb_get_stats64,
  1795. .ndo_set_rx_mode = igb_set_rx_mode,
  1796. .ndo_set_mac_address = igb_set_mac,
  1797. .ndo_change_mtu = igb_change_mtu,
  1798. .ndo_do_ioctl = igb_ioctl,
  1799. .ndo_tx_timeout = igb_tx_timeout,
  1800. .ndo_validate_addr = eth_validate_addr,
  1801. .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
  1802. .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
  1803. .ndo_set_vf_mac = igb_ndo_set_vf_mac,
  1804. .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
  1805. .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
  1806. .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
  1807. .ndo_get_vf_config = igb_ndo_get_vf_config,
  1808. #ifdef CONFIG_NET_POLL_CONTROLLER
  1809. .ndo_poll_controller = igb_netpoll,
  1810. #endif
  1811. .ndo_fix_features = igb_fix_features,
  1812. .ndo_set_features = igb_set_features,
  1813. };
  1814. /**
  1815. * igb_set_fw_version - Configure version string for ethtool
  1816. * @adapter: adapter struct
  1817. **/
  1818. void igb_set_fw_version(struct igb_adapter *adapter)
  1819. {
  1820. struct e1000_hw *hw = &adapter->hw;
  1821. struct e1000_fw_version fw;
  1822. igb_get_fw_version(hw, &fw);
  1823. switch (hw->mac.type) {
  1824. case e1000_i210:
  1825. case e1000_i211:
  1826. if (!(igb_get_flash_presence_i210(hw))) {
  1827. snprintf(adapter->fw_version,
  1828. sizeof(adapter->fw_version),
  1829. "%2d.%2d-%d",
  1830. fw.invm_major, fw.invm_minor,
  1831. fw.invm_img_type);
  1832. break;
  1833. }
  1834. /* fall through */
  1835. default:
  1836. /* if option is rom valid, display its version too */
  1837. if (fw.or_valid) {
  1838. snprintf(adapter->fw_version,
  1839. sizeof(adapter->fw_version),
  1840. "%d.%d, 0x%08x, %d.%d.%d",
  1841. fw.eep_major, fw.eep_minor, fw.etrack_id,
  1842. fw.or_major, fw.or_build, fw.or_patch);
  1843. /* no option rom */
  1844. } else if (fw.etrack_id != 0X0000) {
  1845. snprintf(adapter->fw_version,
  1846. sizeof(adapter->fw_version),
  1847. "%d.%d, 0x%08x",
  1848. fw.eep_major, fw.eep_minor, fw.etrack_id);
  1849. } else {
  1850. snprintf(adapter->fw_version,
  1851. sizeof(adapter->fw_version),
  1852. "%d.%d.%d",
  1853. fw.eep_major, fw.eep_minor, fw.eep_build);
  1854. }
  1855. break;
  1856. }
  1857. return;
  1858. }
  1859. /**
  1860. * igb_init_mas - init Media Autosense feature if enabled in the NVM
  1861. *
  1862. * @adapter: adapter struct
  1863. **/
  1864. static void igb_init_mas(struct igb_adapter *adapter)
  1865. {
  1866. struct e1000_hw *hw = &adapter->hw;
  1867. u16 eeprom_data;
  1868. hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
  1869. switch (hw->bus.func) {
  1870. case E1000_FUNC_0:
  1871. if (eeprom_data & IGB_MAS_ENABLE_0) {
  1872. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1873. netdev_info(adapter->netdev,
  1874. "MAS: Enabling Media Autosense for port %d\n",
  1875. hw->bus.func);
  1876. }
  1877. break;
  1878. case E1000_FUNC_1:
  1879. if (eeprom_data & IGB_MAS_ENABLE_1) {
  1880. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1881. netdev_info(adapter->netdev,
  1882. "MAS: Enabling Media Autosense for port %d\n",
  1883. hw->bus.func);
  1884. }
  1885. break;
  1886. case E1000_FUNC_2:
  1887. if (eeprom_data & IGB_MAS_ENABLE_2) {
  1888. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1889. netdev_info(adapter->netdev,
  1890. "MAS: Enabling Media Autosense for port %d\n",
  1891. hw->bus.func);
  1892. }
  1893. break;
  1894. case E1000_FUNC_3:
  1895. if (eeprom_data & IGB_MAS_ENABLE_3) {
  1896. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1897. netdev_info(adapter->netdev,
  1898. "MAS: Enabling Media Autosense for port %d\n",
  1899. hw->bus.func);
  1900. }
  1901. break;
  1902. default:
  1903. /* Shouldn't get here */
  1904. netdev_err(adapter->netdev,
  1905. "MAS: Invalid port configuration, returning\n");
  1906. break;
  1907. }
  1908. }
  1909. /**
  1910. * igb_init_i2c - Init I2C interface
  1911. * @adapter: pointer to adapter structure
  1912. **/
  1913. static s32 igb_init_i2c(struct igb_adapter *adapter)
  1914. {
  1915. s32 status = E1000_SUCCESS;
  1916. /* I2C interface supported on i350 devices */
  1917. if (adapter->hw.mac.type != e1000_i350)
  1918. return E1000_SUCCESS;
  1919. /* Initialize the i2c bus which is controlled by the registers.
  1920. * This bus will use the i2c_algo_bit structue that implements
  1921. * the protocol through toggling of the 4 bits in the register.
  1922. */
  1923. adapter->i2c_adap.owner = THIS_MODULE;
  1924. adapter->i2c_algo = igb_i2c_algo;
  1925. adapter->i2c_algo.data = adapter;
  1926. adapter->i2c_adap.algo_data = &adapter->i2c_algo;
  1927. adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
  1928. strlcpy(adapter->i2c_adap.name, "igb BB",
  1929. sizeof(adapter->i2c_adap.name));
  1930. status = i2c_bit_add_bus(&adapter->i2c_adap);
  1931. return status;
  1932. }
  1933. /**
  1934. * igb_probe - Device Initialization Routine
  1935. * @pdev: PCI device information struct
  1936. * @ent: entry in igb_pci_tbl
  1937. *
  1938. * Returns 0 on success, negative on failure
  1939. *
  1940. * igb_probe initializes an adapter identified by a pci_dev structure.
  1941. * The OS initialization, configuring of the adapter private structure,
  1942. * and a hardware reset occur.
  1943. **/
  1944. static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1945. {
  1946. struct net_device *netdev;
  1947. struct igb_adapter *adapter;
  1948. struct e1000_hw *hw;
  1949. u16 eeprom_data = 0;
  1950. s32 ret_val;
  1951. static int global_quad_port_a; /* global quad port a indication */
  1952. const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
  1953. int err, pci_using_dac;
  1954. u8 part_str[E1000_PBANUM_LENGTH];
  1955. /* Catch broken hardware that put the wrong VF device ID in
  1956. * the PCIe SR-IOV capability.
  1957. */
  1958. if (pdev->is_virtfn) {
  1959. WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
  1960. pci_name(pdev), pdev->vendor, pdev->device);
  1961. return -EINVAL;
  1962. }
  1963. err = pci_enable_device_mem(pdev);
  1964. if (err)
  1965. return err;
  1966. pci_using_dac = 0;
  1967. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  1968. if (!err) {
  1969. pci_using_dac = 1;
  1970. } else {
  1971. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1972. if (err) {
  1973. dev_err(&pdev->dev,
  1974. "No usable DMA configuration, aborting\n");
  1975. goto err_dma;
  1976. }
  1977. }
  1978. err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
  1979. IORESOURCE_MEM),
  1980. igb_driver_name);
  1981. if (err)
  1982. goto err_pci_reg;
  1983. pci_enable_pcie_error_reporting(pdev);
  1984. pci_set_master(pdev);
  1985. pci_save_state(pdev);
  1986. err = -ENOMEM;
  1987. netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
  1988. IGB_MAX_TX_QUEUES);
  1989. if (!netdev)
  1990. goto err_alloc_etherdev;
  1991. SET_NETDEV_DEV(netdev, &pdev->dev);
  1992. pci_set_drvdata(pdev, netdev);
  1993. adapter = netdev_priv(netdev);
  1994. adapter->netdev = netdev;
  1995. adapter->pdev = pdev;
  1996. hw = &adapter->hw;
  1997. hw->back = adapter;
  1998. adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
  1999. err = -EIO;
  2000. hw->hw_addr = pci_iomap(pdev, 0, 0);
  2001. if (!hw->hw_addr)
  2002. goto err_ioremap;
  2003. netdev->netdev_ops = &igb_netdev_ops;
  2004. igb_set_ethtool_ops(netdev);
  2005. netdev->watchdog_timeo = 5 * HZ;
  2006. strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
  2007. netdev->mem_start = pci_resource_start(pdev, 0);
  2008. netdev->mem_end = pci_resource_end(pdev, 0);
  2009. /* PCI config space info */
  2010. hw->vendor_id = pdev->vendor;
  2011. hw->device_id = pdev->device;
  2012. hw->revision_id = pdev->revision;
  2013. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  2014. hw->subsystem_device_id = pdev->subsystem_device;
  2015. /* Copy the default MAC, PHY and NVM function pointers */
  2016. memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
  2017. memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
  2018. memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
  2019. /* Initialize skew-specific constants */
  2020. err = ei->get_invariants(hw);
  2021. if (err)
  2022. goto err_sw_init;
  2023. /* setup the private structure */
  2024. err = igb_sw_init(adapter);
  2025. if (err)
  2026. goto err_sw_init;
  2027. igb_get_bus_info_pcie(hw);
  2028. hw->phy.autoneg_wait_to_complete = false;
  2029. /* Copper options */
  2030. if (hw->phy.media_type == e1000_media_type_copper) {
  2031. hw->phy.mdix = AUTO_ALL_MODES;
  2032. hw->phy.disable_polarity_correction = false;
  2033. hw->phy.ms_type = e1000_ms_hw_default;
  2034. }
  2035. if (igb_check_reset_block(hw))
  2036. dev_info(&pdev->dev,
  2037. "PHY reset is blocked due to SOL/IDER session.\n");
  2038. /* features is initialized to 0 in allocation, it might have bits
  2039. * set by igb_sw_init so we should use an or instead of an
  2040. * assignment.
  2041. */
  2042. netdev->features |= NETIF_F_SG |
  2043. NETIF_F_IP_CSUM |
  2044. NETIF_F_IPV6_CSUM |
  2045. NETIF_F_TSO |
  2046. NETIF_F_TSO6 |
  2047. NETIF_F_RXHASH |
  2048. NETIF_F_RXCSUM |
  2049. NETIF_F_HW_VLAN_CTAG_RX |
  2050. NETIF_F_HW_VLAN_CTAG_TX;
  2051. /* copy netdev features into list of user selectable features */
  2052. netdev->hw_features |= netdev->features;
  2053. netdev->hw_features |= NETIF_F_RXALL;
  2054. /* set this bit last since it cannot be part of hw_features */
  2055. netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
  2056. netdev->vlan_features |= NETIF_F_TSO |
  2057. NETIF_F_TSO6 |
  2058. NETIF_F_IP_CSUM |
  2059. NETIF_F_IPV6_CSUM |
  2060. NETIF_F_SG;
  2061. netdev->priv_flags |= IFF_SUPP_NOFCS;
  2062. if (pci_using_dac) {
  2063. netdev->features |= NETIF_F_HIGHDMA;
  2064. netdev->vlan_features |= NETIF_F_HIGHDMA;
  2065. }
  2066. if (hw->mac.type >= e1000_82576) {
  2067. netdev->hw_features |= NETIF_F_SCTP_CSUM;
  2068. netdev->features |= NETIF_F_SCTP_CSUM;
  2069. }
  2070. netdev->priv_flags |= IFF_UNICAST_FLT;
  2071. adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
  2072. /* before reading the NVM, reset the controller to put the device in a
  2073. * known good starting state
  2074. */
  2075. hw->mac.ops.reset_hw(hw);
  2076. /* make sure the NVM is good , i211/i210 parts can have special NVM
  2077. * that doesn't contain a checksum
  2078. */
  2079. switch (hw->mac.type) {
  2080. case e1000_i210:
  2081. case e1000_i211:
  2082. if (igb_get_flash_presence_i210(hw)) {
  2083. if (hw->nvm.ops.validate(hw) < 0) {
  2084. dev_err(&pdev->dev,
  2085. "The NVM Checksum Is Not Valid\n");
  2086. err = -EIO;
  2087. goto err_eeprom;
  2088. }
  2089. }
  2090. break;
  2091. default:
  2092. if (hw->nvm.ops.validate(hw) < 0) {
  2093. dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
  2094. err = -EIO;
  2095. goto err_eeprom;
  2096. }
  2097. break;
  2098. }
  2099. /* copy the MAC address out of the NVM */
  2100. if (hw->mac.ops.read_mac_addr(hw))
  2101. dev_err(&pdev->dev, "NVM Read Error\n");
  2102. memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
  2103. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2104. dev_err(&pdev->dev, "Invalid MAC Address\n");
  2105. err = -EIO;
  2106. goto err_eeprom;
  2107. }
  2108. /* get firmware version for ethtool -i */
  2109. igb_set_fw_version(adapter);
  2110. setup_timer(&adapter->watchdog_timer, igb_watchdog,
  2111. (unsigned long) adapter);
  2112. setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
  2113. (unsigned long) adapter);
  2114. INIT_WORK(&adapter->reset_task, igb_reset_task);
  2115. INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
  2116. /* Initialize link properties that are user-changeable */
  2117. adapter->fc_autoneg = true;
  2118. hw->mac.autoneg = true;
  2119. hw->phy.autoneg_advertised = 0x2f;
  2120. hw->fc.requested_mode = e1000_fc_default;
  2121. hw->fc.current_mode = e1000_fc_default;
  2122. igb_validate_mdi_setting(hw);
  2123. /* By default, support wake on port A */
  2124. if (hw->bus.func == 0)
  2125. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2126. /* Check the NVM for wake support on non-port A ports */
  2127. if (hw->mac.type >= e1000_82580)
  2128. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
  2129. NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
  2130. &eeprom_data);
  2131. else if (hw->bus.func == 1)
  2132. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  2133. if (eeprom_data & IGB_EEPROM_APME)
  2134. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2135. /* now that we have the eeprom settings, apply the special cases where
  2136. * the eeprom may be wrong or the board simply won't support wake on
  2137. * lan on a particular port
  2138. */
  2139. switch (pdev->device) {
  2140. case E1000_DEV_ID_82575GB_QUAD_COPPER:
  2141. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2142. break;
  2143. case E1000_DEV_ID_82575EB_FIBER_SERDES:
  2144. case E1000_DEV_ID_82576_FIBER:
  2145. case E1000_DEV_ID_82576_SERDES:
  2146. /* Wake events only supported on port A for dual fiber
  2147. * regardless of eeprom setting
  2148. */
  2149. if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
  2150. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2151. break;
  2152. case E1000_DEV_ID_82576_QUAD_COPPER:
  2153. case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  2154. /* if quad port adapter, disable WoL on all but port A */
  2155. if (global_quad_port_a != 0)
  2156. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2157. else
  2158. adapter->flags |= IGB_FLAG_QUAD_PORT_A;
  2159. /* Reset for multiple quad port adapters */
  2160. if (++global_quad_port_a == 4)
  2161. global_quad_port_a = 0;
  2162. break;
  2163. default:
  2164. /* If the device can't wake, don't set software support */
  2165. if (!device_can_wakeup(&adapter->pdev->dev))
  2166. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2167. }
  2168. /* initialize the wol settings based on the eeprom settings */
  2169. if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
  2170. adapter->wol |= E1000_WUFC_MAG;
  2171. /* Some vendors want WoL disabled by default, but still supported */
  2172. if ((hw->mac.type == e1000_i350) &&
  2173. (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
  2174. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2175. adapter->wol = 0;
  2176. }
  2177. device_set_wakeup_enable(&adapter->pdev->dev,
  2178. adapter->flags & IGB_FLAG_WOL_SUPPORTED);
  2179. /* reset the hardware with the new settings */
  2180. igb_reset(adapter);
  2181. /* Init the I2C interface */
  2182. err = igb_init_i2c(adapter);
  2183. if (err) {
  2184. dev_err(&pdev->dev, "failed to init i2c interface\n");
  2185. goto err_eeprom;
  2186. }
  2187. /* let the f/w know that the h/w is now under the control of the
  2188. * driver.
  2189. */
  2190. igb_get_hw_control(adapter);
  2191. strcpy(netdev->name, "eth%d");
  2192. err = register_netdev(netdev);
  2193. if (err)
  2194. goto err_register;
  2195. /* carrier off reporting is important to ethtool even BEFORE open */
  2196. netif_carrier_off(netdev);
  2197. #ifdef CONFIG_IGB_DCA
  2198. if (dca_add_requester(&pdev->dev) == 0) {
  2199. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  2200. dev_info(&pdev->dev, "DCA enabled\n");
  2201. igb_setup_dca(adapter);
  2202. }
  2203. #endif
  2204. #ifdef CONFIG_IGB_HWMON
  2205. /* Initialize the thermal sensor on i350 devices. */
  2206. if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
  2207. u16 ets_word;
  2208. /* Read the NVM to determine if this i350 device supports an
  2209. * external thermal sensor.
  2210. */
  2211. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
  2212. if (ets_word != 0x0000 && ets_word != 0xFFFF)
  2213. adapter->ets = true;
  2214. else
  2215. adapter->ets = false;
  2216. if (igb_sysfs_init(adapter))
  2217. dev_err(&pdev->dev,
  2218. "failed to allocate sysfs resources\n");
  2219. } else {
  2220. adapter->ets = false;
  2221. }
  2222. #endif
  2223. /* Check if Media Autosense is enabled */
  2224. adapter->ei = *ei;
  2225. if (hw->dev_spec._82575.mas_capable)
  2226. igb_init_mas(adapter);
  2227. /* do hw tstamp init after resetting */
  2228. igb_ptp_init(adapter);
  2229. dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
  2230. /* print bus type/speed/width info, not applicable to i354 */
  2231. if (hw->mac.type != e1000_i354) {
  2232. dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
  2233. netdev->name,
  2234. ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  2235. (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
  2236. "unknown"),
  2237. ((hw->bus.width == e1000_bus_width_pcie_x4) ?
  2238. "Width x4" :
  2239. (hw->bus.width == e1000_bus_width_pcie_x2) ?
  2240. "Width x2" :
  2241. (hw->bus.width == e1000_bus_width_pcie_x1) ?
  2242. "Width x1" : "unknown"), netdev->dev_addr);
  2243. }
  2244. if ((hw->mac.type >= e1000_i210 ||
  2245. igb_get_flash_presence_i210(hw))) {
  2246. ret_val = igb_read_part_string(hw, part_str,
  2247. E1000_PBANUM_LENGTH);
  2248. } else {
  2249. ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
  2250. }
  2251. if (ret_val)
  2252. strcpy(part_str, "Unknown");
  2253. dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
  2254. dev_info(&pdev->dev,
  2255. "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
  2256. (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
  2257. (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
  2258. adapter->num_rx_queues, adapter->num_tx_queues);
  2259. if (hw->phy.media_type == e1000_media_type_copper) {
  2260. switch (hw->mac.type) {
  2261. case e1000_i350:
  2262. case e1000_i210:
  2263. case e1000_i211:
  2264. /* Enable EEE for internal copper PHY devices */
  2265. err = igb_set_eee_i350(hw);
  2266. if ((!err) &&
  2267. (!hw->dev_spec._82575.eee_disable)) {
  2268. adapter->eee_advert =
  2269. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2270. adapter->flags |= IGB_FLAG_EEE;
  2271. }
  2272. break;
  2273. case e1000_i354:
  2274. if ((rd32(E1000_CTRL_EXT) &
  2275. E1000_CTRL_EXT_LINK_MODE_SGMII)) {
  2276. err = igb_set_eee_i354(hw);
  2277. if ((!err) &&
  2278. (!hw->dev_spec._82575.eee_disable)) {
  2279. adapter->eee_advert =
  2280. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2281. adapter->flags |= IGB_FLAG_EEE;
  2282. }
  2283. }
  2284. break;
  2285. default:
  2286. break;
  2287. }
  2288. }
  2289. pm_runtime_put_noidle(&pdev->dev);
  2290. return 0;
  2291. err_register:
  2292. igb_release_hw_control(adapter);
  2293. memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
  2294. err_eeprom:
  2295. if (!igb_check_reset_block(hw))
  2296. igb_reset_phy(hw);
  2297. if (hw->flash_address)
  2298. iounmap(hw->flash_address);
  2299. err_sw_init:
  2300. igb_clear_interrupt_scheme(adapter);
  2301. pci_iounmap(pdev, hw->hw_addr);
  2302. err_ioremap:
  2303. free_netdev(netdev);
  2304. err_alloc_etherdev:
  2305. pci_release_selected_regions(pdev,
  2306. pci_select_bars(pdev, IORESOURCE_MEM));
  2307. err_pci_reg:
  2308. err_dma:
  2309. pci_disable_device(pdev);
  2310. return err;
  2311. }
  2312. #ifdef CONFIG_PCI_IOV
  2313. static int igb_disable_sriov(struct pci_dev *pdev)
  2314. {
  2315. struct net_device *netdev = pci_get_drvdata(pdev);
  2316. struct igb_adapter *adapter = netdev_priv(netdev);
  2317. struct e1000_hw *hw = &adapter->hw;
  2318. /* reclaim resources allocated to VFs */
  2319. if (adapter->vf_data) {
  2320. /* disable iov and allow time for transactions to clear */
  2321. if (pci_vfs_assigned(pdev)) {
  2322. dev_warn(&pdev->dev,
  2323. "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
  2324. return -EPERM;
  2325. } else {
  2326. pci_disable_sriov(pdev);
  2327. msleep(500);
  2328. }
  2329. kfree(adapter->vf_data);
  2330. adapter->vf_data = NULL;
  2331. adapter->vfs_allocated_count = 0;
  2332. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  2333. wrfl();
  2334. msleep(100);
  2335. dev_info(&pdev->dev, "IOV Disabled\n");
  2336. /* Re-enable DMA Coalescing flag since IOV is turned off */
  2337. adapter->flags |= IGB_FLAG_DMAC;
  2338. }
  2339. return 0;
  2340. }
  2341. static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
  2342. {
  2343. struct net_device *netdev = pci_get_drvdata(pdev);
  2344. struct igb_adapter *adapter = netdev_priv(netdev);
  2345. int old_vfs = pci_num_vf(pdev);
  2346. int err = 0;
  2347. int i;
  2348. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
  2349. err = -EPERM;
  2350. goto out;
  2351. }
  2352. if (!num_vfs)
  2353. goto out;
  2354. if (old_vfs) {
  2355. dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
  2356. old_vfs, max_vfs);
  2357. adapter->vfs_allocated_count = old_vfs;
  2358. } else
  2359. adapter->vfs_allocated_count = num_vfs;
  2360. adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
  2361. sizeof(struct vf_data_storage), GFP_KERNEL);
  2362. /* if allocation failed then we do not support SR-IOV */
  2363. if (!adapter->vf_data) {
  2364. adapter->vfs_allocated_count = 0;
  2365. dev_err(&pdev->dev,
  2366. "Unable to allocate memory for VF Data Storage\n");
  2367. err = -ENOMEM;
  2368. goto out;
  2369. }
  2370. /* only call pci_enable_sriov() if no VFs are allocated already */
  2371. if (!old_vfs) {
  2372. err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
  2373. if (err)
  2374. goto err_out;
  2375. }
  2376. dev_info(&pdev->dev, "%d VFs allocated\n",
  2377. adapter->vfs_allocated_count);
  2378. for (i = 0; i < adapter->vfs_allocated_count; i++)
  2379. igb_vf_configure(adapter, i);
  2380. /* DMA Coalescing is not supported in IOV mode. */
  2381. adapter->flags &= ~IGB_FLAG_DMAC;
  2382. goto out;
  2383. err_out:
  2384. kfree(adapter->vf_data);
  2385. adapter->vf_data = NULL;
  2386. adapter->vfs_allocated_count = 0;
  2387. out:
  2388. return err;
  2389. }
  2390. #endif
  2391. /**
  2392. * igb_remove_i2c - Cleanup I2C interface
  2393. * @adapter: pointer to adapter structure
  2394. **/
  2395. static void igb_remove_i2c(struct igb_adapter *adapter)
  2396. {
  2397. /* free the adapter bus structure */
  2398. i2c_del_adapter(&adapter->i2c_adap);
  2399. }
  2400. /**
  2401. * igb_remove - Device Removal Routine
  2402. * @pdev: PCI device information struct
  2403. *
  2404. * igb_remove is called by the PCI subsystem to alert the driver
  2405. * that it should release a PCI device. The could be caused by a
  2406. * Hot-Plug event, or because the driver is going to be removed from
  2407. * memory.
  2408. **/
  2409. static void igb_remove(struct pci_dev *pdev)
  2410. {
  2411. struct net_device *netdev = pci_get_drvdata(pdev);
  2412. struct igb_adapter *adapter = netdev_priv(netdev);
  2413. struct e1000_hw *hw = &adapter->hw;
  2414. pm_runtime_get_noresume(&pdev->dev);
  2415. #ifdef CONFIG_IGB_HWMON
  2416. igb_sysfs_exit(adapter);
  2417. #endif
  2418. igb_remove_i2c(adapter);
  2419. igb_ptp_stop(adapter);
  2420. /* The watchdog timer may be rescheduled, so explicitly
  2421. * disable watchdog from being rescheduled.
  2422. */
  2423. set_bit(__IGB_DOWN, &adapter->state);
  2424. del_timer_sync(&adapter->watchdog_timer);
  2425. del_timer_sync(&adapter->phy_info_timer);
  2426. cancel_work_sync(&adapter->reset_task);
  2427. cancel_work_sync(&adapter->watchdog_task);
  2428. #ifdef CONFIG_IGB_DCA
  2429. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  2430. dev_info(&pdev->dev, "DCA disabled\n");
  2431. dca_remove_requester(&pdev->dev);
  2432. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  2433. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  2434. }
  2435. #endif
  2436. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  2437. * would have already happened in close and is redundant.
  2438. */
  2439. igb_release_hw_control(adapter);
  2440. unregister_netdev(netdev);
  2441. igb_clear_interrupt_scheme(adapter);
  2442. #ifdef CONFIG_PCI_IOV
  2443. igb_disable_sriov(pdev);
  2444. #endif
  2445. pci_iounmap(pdev, hw->hw_addr);
  2446. if (hw->flash_address)
  2447. iounmap(hw->flash_address);
  2448. pci_release_selected_regions(pdev,
  2449. pci_select_bars(pdev, IORESOURCE_MEM));
  2450. kfree(adapter->shadow_vfta);
  2451. free_netdev(netdev);
  2452. pci_disable_pcie_error_reporting(pdev);
  2453. pci_disable_device(pdev);
  2454. }
  2455. /**
  2456. * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
  2457. * @adapter: board private structure to initialize
  2458. *
  2459. * This function initializes the vf specific data storage and then attempts to
  2460. * allocate the VFs. The reason for ordering it this way is because it is much
  2461. * mor expensive time wise to disable SR-IOV than it is to allocate and free
  2462. * the memory for the VFs.
  2463. **/
  2464. static void igb_probe_vfs(struct igb_adapter *adapter)
  2465. {
  2466. #ifdef CONFIG_PCI_IOV
  2467. struct pci_dev *pdev = adapter->pdev;
  2468. struct e1000_hw *hw = &adapter->hw;
  2469. /* Virtualization features not supported on i210 family. */
  2470. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
  2471. return;
  2472. pci_sriov_set_totalvfs(pdev, 7);
  2473. igb_pci_enable_sriov(pdev, max_vfs);
  2474. #endif /* CONFIG_PCI_IOV */
  2475. }
  2476. static void igb_init_queue_configuration(struct igb_adapter *adapter)
  2477. {
  2478. struct e1000_hw *hw = &adapter->hw;
  2479. u32 max_rss_queues;
  2480. /* Determine the maximum number of RSS queues supported. */
  2481. switch (hw->mac.type) {
  2482. case e1000_i211:
  2483. max_rss_queues = IGB_MAX_RX_QUEUES_I211;
  2484. break;
  2485. case e1000_82575:
  2486. case e1000_i210:
  2487. max_rss_queues = IGB_MAX_RX_QUEUES_82575;
  2488. break;
  2489. case e1000_i350:
  2490. /* I350 cannot do RSS and SR-IOV at the same time */
  2491. if (!!adapter->vfs_allocated_count) {
  2492. max_rss_queues = 1;
  2493. break;
  2494. }
  2495. /* fall through */
  2496. case e1000_82576:
  2497. if (!!adapter->vfs_allocated_count) {
  2498. max_rss_queues = 2;
  2499. break;
  2500. }
  2501. /* fall through */
  2502. case e1000_82580:
  2503. case e1000_i354:
  2504. default:
  2505. max_rss_queues = IGB_MAX_RX_QUEUES;
  2506. break;
  2507. }
  2508. adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
  2509. /* Determine if we need to pair queues. */
  2510. switch (hw->mac.type) {
  2511. case e1000_82575:
  2512. case e1000_i211:
  2513. /* Device supports enough interrupts without queue pairing. */
  2514. break;
  2515. case e1000_82576:
  2516. /* If VFs are going to be allocated with RSS queues then we
  2517. * should pair the queues in order to conserve interrupts due
  2518. * to limited supply.
  2519. */
  2520. if ((adapter->rss_queues > 1) &&
  2521. (adapter->vfs_allocated_count > 6))
  2522. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  2523. /* fall through */
  2524. case e1000_82580:
  2525. case e1000_i350:
  2526. case e1000_i354:
  2527. case e1000_i210:
  2528. default:
  2529. /* If rss_queues > half of max_rss_queues, pair the queues in
  2530. * order to conserve interrupts due to limited supply.
  2531. */
  2532. if (adapter->rss_queues > (max_rss_queues / 2))
  2533. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  2534. break;
  2535. }
  2536. }
  2537. /**
  2538. * igb_sw_init - Initialize general software structures (struct igb_adapter)
  2539. * @adapter: board private structure to initialize
  2540. *
  2541. * igb_sw_init initializes the Adapter private data structure.
  2542. * Fields are initialized based on PCI device information and
  2543. * OS network device settings (MTU size).
  2544. **/
  2545. static int igb_sw_init(struct igb_adapter *adapter)
  2546. {
  2547. struct e1000_hw *hw = &adapter->hw;
  2548. struct net_device *netdev = adapter->netdev;
  2549. struct pci_dev *pdev = adapter->pdev;
  2550. pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
  2551. /* set default ring sizes */
  2552. adapter->tx_ring_count = IGB_DEFAULT_TXD;
  2553. adapter->rx_ring_count = IGB_DEFAULT_RXD;
  2554. /* set default ITR values */
  2555. adapter->rx_itr_setting = IGB_DEFAULT_ITR;
  2556. adapter->tx_itr_setting = IGB_DEFAULT_ITR;
  2557. /* set default work limits */
  2558. adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
  2559. adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
  2560. VLAN_HLEN;
  2561. adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  2562. spin_lock_init(&adapter->stats64_lock);
  2563. #ifdef CONFIG_PCI_IOV
  2564. switch (hw->mac.type) {
  2565. case e1000_82576:
  2566. case e1000_i350:
  2567. if (max_vfs > 7) {
  2568. dev_warn(&pdev->dev,
  2569. "Maximum of 7 VFs per PF, using max\n");
  2570. max_vfs = adapter->vfs_allocated_count = 7;
  2571. } else
  2572. adapter->vfs_allocated_count = max_vfs;
  2573. if (adapter->vfs_allocated_count)
  2574. dev_warn(&pdev->dev,
  2575. "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
  2576. break;
  2577. default:
  2578. break;
  2579. }
  2580. #endif /* CONFIG_PCI_IOV */
  2581. igb_init_queue_configuration(adapter);
  2582. /* Setup and initialize a copy of the hw vlan table array */
  2583. adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
  2584. GFP_ATOMIC);
  2585. /* This call may decrease the number of queues */
  2586. if (igb_init_interrupt_scheme(adapter, true)) {
  2587. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  2588. return -ENOMEM;
  2589. }
  2590. igb_probe_vfs(adapter);
  2591. /* Explicitly disable IRQ since the NIC can be in any state. */
  2592. igb_irq_disable(adapter);
  2593. if (hw->mac.type >= e1000_i350)
  2594. adapter->flags &= ~IGB_FLAG_DMAC;
  2595. set_bit(__IGB_DOWN, &adapter->state);
  2596. return 0;
  2597. }
  2598. /**
  2599. * igb_open - Called when a network interface is made active
  2600. * @netdev: network interface device structure
  2601. *
  2602. * Returns 0 on success, negative value on failure
  2603. *
  2604. * The open entry point is called when a network interface is made
  2605. * active by the system (IFF_UP). At this point all resources needed
  2606. * for transmit and receive operations are allocated, the interrupt
  2607. * handler is registered with the OS, the watchdog timer is started,
  2608. * and the stack is notified that the interface is ready.
  2609. **/
  2610. static int __igb_open(struct net_device *netdev, bool resuming)
  2611. {
  2612. struct igb_adapter *adapter = netdev_priv(netdev);
  2613. struct e1000_hw *hw = &adapter->hw;
  2614. struct pci_dev *pdev = adapter->pdev;
  2615. int err;
  2616. int i;
  2617. /* disallow open during test */
  2618. if (test_bit(__IGB_TESTING, &adapter->state)) {
  2619. WARN_ON(resuming);
  2620. return -EBUSY;
  2621. }
  2622. if (!resuming)
  2623. pm_runtime_get_sync(&pdev->dev);
  2624. netif_carrier_off(netdev);
  2625. /* allocate transmit descriptors */
  2626. err = igb_setup_all_tx_resources(adapter);
  2627. if (err)
  2628. goto err_setup_tx;
  2629. /* allocate receive descriptors */
  2630. err = igb_setup_all_rx_resources(adapter);
  2631. if (err)
  2632. goto err_setup_rx;
  2633. igb_power_up_link(adapter);
  2634. /* before we allocate an interrupt, we must be ready to handle it.
  2635. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
  2636. * as soon as we call pci_request_irq, so we have to setup our
  2637. * clean_rx handler before we do so.
  2638. */
  2639. igb_configure(adapter);
  2640. err = igb_request_irq(adapter);
  2641. if (err)
  2642. goto err_req_irq;
  2643. /* Notify the stack of the actual queue counts. */
  2644. err = netif_set_real_num_tx_queues(adapter->netdev,
  2645. adapter->num_tx_queues);
  2646. if (err)
  2647. goto err_set_queues;
  2648. err = netif_set_real_num_rx_queues(adapter->netdev,
  2649. adapter->num_rx_queues);
  2650. if (err)
  2651. goto err_set_queues;
  2652. /* From here on the code is the same as igb_up() */
  2653. clear_bit(__IGB_DOWN, &adapter->state);
  2654. for (i = 0; i < adapter->num_q_vectors; i++)
  2655. napi_enable(&(adapter->q_vector[i]->napi));
  2656. /* Clear any pending interrupts. */
  2657. rd32(E1000_ICR);
  2658. igb_irq_enable(adapter);
  2659. /* notify VFs that reset has been completed */
  2660. if (adapter->vfs_allocated_count) {
  2661. u32 reg_data = rd32(E1000_CTRL_EXT);
  2662. reg_data |= E1000_CTRL_EXT_PFRSTD;
  2663. wr32(E1000_CTRL_EXT, reg_data);
  2664. }
  2665. netif_tx_start_all_queues(netdev);
  2666. if (!resuming)
  2667. pm_runtime_put(&pdev->dev);
  2668. /* start the watchdog. */
  2669. hw->mac.get_link_status = 1;
  2670. schedule_work(&adapter->watchdog_task);
  2671. return 0;
  2672. err_set_queues:
  2673. igb_free_irq(adapter);
  2674. err_req_irq:
  2675. igb_release_hw_control(adapter);
  2676. igb_power_down_link(adapter);
  2677. igb_free_all_rx_resources(adapter);
  2678. err_setup_rx:
  2679. igb_free_all_tx_resources(adapter);
  2680. err_setup_tx:
  2681. igb_reset(adapter);
  2682. if (!resuming)
  2683. pm_runtime_put(&pdev->dev);
  2684. return err;
  2685. }
  2686. static int igb_open(struct net_device *netdev)
  2687. {
  2688. return __igb_open(netdev, false);
  2689. }
  2690. /**
  2691. * igb_close - Disables a network interface
  2692. * @netdev: network interface device structure
  2693. *
  2694. * Returns 0, this is not allowed to fail
  2695. *
  2696. * The close entry point is called when an interface is de-activated
  2697. * by the OS. The hardware is still under the driver's control, but
  2698. * needs to be disabled. A global MAC reset is issued to stop the
  2699. * hardware, and all transmit and receive resources are freed.
  2700. **/
  2701. static int __igb_close(struct net_device *netdev, bool suspending)
  2702. {
  2703. struct igb_adapter *adapter = netdev_priv(netdev);
  2704. struct pci_dev *pdev = adapter->pdev;
  2705. WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
  2706. if (!suspending)
  2707. pm_runtime_get_sync(&pdev->dev);
  2708. igb_down(adapter);
  2709. igb_free_irq(adapter);
  2710. igb_free_all_tx_resources(adapter);
  2711. igb_free_all_rx_resources(adapter);
  2712. if (!suspending)
  2713. pm_runtime_put_sync(&pdev->dev);
  2714. return 0;
  2715. }
  2716. static int igb_close(struct net_device *netdev)
  2717. {
  2718. return __igb_close(netdev, false);
  2719. }
  2720. /**
  2721. * igb_setup_tx_resources - allocate Tx resources (Descriptors)
  2722. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2723. *
  2724. * Return 0 on success, negative on failure
  2725. **/
  2726. int igb_setup_tx_resources(struct igb_ring *tx_ring)
  2727. {
  2728. struct device *dev = tx_ring->dev;
  2729. int size;
  2730. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  2731. tx_ring->tx_buffer_info = vzalloc(size);
  2732. if (!tx_ring->tx_buffer_info)
  2733. goto err;
  2734. /* round up to nearest 4K */
  2735. tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
  2736. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2737. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  2738. &tx_ring->dma, GFP_KERNEL);
  2739. if (!tx_ring->desc)
  2740. goto err;
  2741. tx_ring->next_to_use = 0;
  2742. tx_ring->next_to_clean = 0;
  2743. return 0;
  2744. err:
  2745. vfree(tx_ring->tx_buffer_info);
  2746. tx_ring->tx_buffer_info = NULL;
  2747. dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
  2748. return -ENOMEM;
  2749. }
  2750. /**
  2751. * igb_setup_all_tx_resources - wrapper to allocate Tx resources
  2752. * (Descriptors) for all queues
  2753. * @adapter: board private structure
  2754. *
  2755. * Return 0 on success, negative on failure
  2756. **/
  2757. static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
  2758. {
  2759. struct pci_dev *pdev = adapter->pdev;
  2760. int i, err = 0;
  2761. for (i = 0; i < adapter->num_tx_queues; i++) {
  2762. err = igb_setup_tx_resources(adapter->tx_ring[i]);
  2763. if (err) {
  2764. dev_err(&pdev->dev,
  2765. "Allocation for Tx Queue %u failed\n", i);
  2766. for (i--; i >= 0; i--)
  2767. igb_free_tx_resources(adapter->tx_ring[i]);
  2768. break;
  2769. }
  2770. }
  2771. return err;
  2772. }
  2773. /**
  2774. * igb_setup_tctl - configure the transmit control registers
  2775. * @adapter: Board private structure
  2776. **/
  2777. void igb_setup_tctl(struct igb_adapter *adapter)
  2778. {
  2779. struct e1000_hw *hw = &adapter->hw;
  2780. u32 tctl;
  2781. /* disable queue 0 which is enabled by default on 82575 and 82576 */
  2782. wr32(E1000_TXDCTL(0), 0);
  2783. /* Program the Transmit Control Register */
  2784. tctl = rd32(E1000_TCTL);
  2785. tctl &= ~E1000_TCTL_CT;
  2786. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  2787. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  2788. igb_config_collision_dist(hw);
  2789. /* Enable transmits */
  2790. tctl |= E1000_TCTL_EN;
  2791. wr32(E1000_TCTL, tctl);
  2792. }
  2793. /**
  2794. * igb_configure_tx_ring - Configure transmit ring after Reset
  2795. * @adapter: board private structure
  2796. * @ring: tx ring to configure
  2797. *
  2798. * Configure a transmit ring after a reset.
  2799. **/
  2800. void igb_configure_tx_ring(struct igb_adapter *adapter,
  2801. struct igb_ring *ring)
  2802. {
  2803. struct e1000_hw *hw = &adapter->hw;
  2804. u32 txdctl = 0;
  2805. u64 tdba = ring->dma;
  2806. int reg_idx = ring->reg_idx;
  2807. /* disable the queue */
  2808. wr32(E1000_TXDCTL(reg_idx), 0);
  2809. wrfl();
  2810. mdelay(10);
  2811. wr32(E1000_TDLEN(reg_idx),
  2812. ring->count * sizeof(union e1000_adv_tx_desc));
  2813. wr32(E1000_TDBAL(reg_idx),
  2814. tdba & 0x00000000ffffffffULL);
  2815. wr32(E1000_TDBAH(reg_idx), tdba >> 32);
  2816. ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
  2817. wr32(E1000_TDH(reg_idx), 0);
  2818. writel(0, ring->tail);
  2819. txdctl |= IGB_TX_PTHRESH;
  2820. txdctl |= IGB_TX_HTHRESH << 8;
  2821. txdctl |= IGB_TX_WTHRESH << 16;
  2822. txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
  2823. wr32(E1000_TXDCTL(reg_idx), txdctl);
  2824. }
  2825. /**
  2826. * igb_configure_tx - Configure transmit Unit after Reset
  2827. * @adapter: board private structure
  2828. *
  2829. * Configure the Tx unit of the MAC after a reset.
  2830. **/
  2831. static void igb_configure_tx(struct igb_adapter *adapter)
  2832. {
  2833. int i;
  2834. for (i = 0; i < adapter->num_tx_queues; i++)
  2835. igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
  2836. }
  2837. /**
  2838. * igb_setup_rx_resources - allocate Rx resources (Descriptors)
  2839. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  2840. *
  2841. * Returns 0 on success, negative on failure
  2842. **/
  2843. int igb_setup_rx_resources(struct igb_ring *rx_ring)
  2844. {
  2845. struct device *dev = rx_ring->dev;
  2846. int size;
  2847. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  2848. rx_ring->rx_buffer_info = vzalloc(size);
  2849. if (!rx_ring->rx_buffer_info)
  2850. goto err;
  2851. /* Round up to nearest 4K */
  2852. rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
  2853. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2854. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  2855. &rx_ring->dma, GFP_KERNEL);
  2856. if (!rx_ring->desc)
  2857. goto err;
  2858. rx_ring->next_to_alloc = 0;
  2859. rx_ring->next_to_clean = 0;
  2860. rx_ring->next_to_use = 0;
  2861. return 0;
  2862. err:
  2863. vfree(rx_ring->rx_buffer_info);
  2864. rx_ring->rx_buffer_info = NULL;
  2865. dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
  2866. return -ENOMEM;
  2867. }
  2868. /**
  2869. * igb_setup_all_rx_resources - wrapper to allocate Rx resources
  2870. * (Descriptors) for all queues
  2871. * @adapter: board private structure
  2872. *
  2873. * Return 0 on success, negative on failure
  2874. **/
  2875. static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
  2876. {
  2877. struct pci_dev *pdev = adapter->pdev;
  2878. int i, err = 0;
  2879. for (i = 0; i < adapter->num_rx_queues; i++) {
  2880. err = igb_setup_rx_resources(adapter->rx_ring[i]);
  2881. if (err) {
  2882. dev_err(&pdev->dev,
  2883. "Allocation for Rx Queue %u failed\n", i);
  2884. for (i--; i >= 0; i--)
  2885. igb_free_rx_resources(adapter->rx_ring[i]);
  2886. break;
  2887. }
  2888. }
  2889. return err;
  2890. }
  2891. /**
  2892. * igb_setup_mrqc - configure the multiple receive queue control registers
  2893. * @adapter: Board private structure
  2894. **/
  2895. static void igb_setup_mrqc(struct igb_adapter *adapter)
  2896. {
  2897. struct e1000_hw *hw = &adapter->hw;
  2898. u32 mrqc, rxcsum;
  2899. u32 j, num_rx_queues;
  2900. static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
  2901. 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
  2902. 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
  2903. 0xFA01ACBE };
  2904. /* Fill out hash function seeds */
  2905. for (j = 0; j < 10; j++)
  2906. wr32(E1000_RSSRK(j), rsskey[j]);
  2907. num_rx_queues = adapter->rss_queues;
  2908. switch (hw->mac.type) {
  2909. case e1000_82576:
  2910. /* 82576 supports 2 RSS queues for SR-IOV */
  2911. if (adapter->vfs_allocated_count)
  2912. num_rx_queues = 2;
  2913. break;
  2914. default:
  2915. break;
  2916. }
  2917. if (adapter->rss_indir_tbl_init != num_rx_queues) {
  2918. for (j = 0; j < IGB_RETA_SIZE; j++)
  2919. adapter->rss_indir_tbl[j] =
  2920. (j * num_rx_queues) / IGB_RETA_SIZE;
  2921. adapter->rss_indir_tbl_init = num_rx_queues;
  2922. }
  2923. igb_write_rss_indir_tbl(adapter);
  2924. /* Disable raw packet checksumming so that RSS hash is placed in
  2925. * descriptor on writeback. No need to enable TCP/UDP/IP checksum
  2926. * offloads as they are enabled by default
  2927. */
  2928. rxcsum = rd32(E1000_RXCSUM);
  2929. rxcsum |= E1000_RXCSUM_PCSD;
  2930. if (adapter->hw.mac.type >= e1000_82576)
  2931. /* Enable Receive Checksum Offload for SCTP */
  2932. rxcsum |= E1000_RXCSUM_CRCOFL;
  2933. /* Don't need to set TUOFL or IPOFL, they default to 1 */
  2934. wr32(E1000_RXCSUM, rxcsum);
  2935. /* Generate RSS hash based on packet types, TCP/UDP
  2936. * port numbers and/or IPv4/v6 src and dst addresses
  2937. */
  2938. mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
  2939. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2940. E1000_MRQC_RSS_FIELD_IPV6 |
  2941. E1000_MRQC_RSS_FIELD_IPV6_TCP |
  2942. E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
  2943. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2944. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2945. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2946. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2947. /* If VMDq is enabled then we set the appropriate mode for that, else
  2948. * we default to RSS so that an RSS hash is calculated per packet even
  2949. * if we are only using one queue
  2950. */
  2951. if (adapter->vfs_allocated_count) {
  2952. if (hw->mac.type > e1000_82575) {
  2953. /* Set the default pool for the PF's first queue */
  2954. u32 vtctl = rd32(E1000_VT_CTL);
  2955. vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
  2956. E1000_VT_CTL_DISABLE_DEF_POOL);
  2957. vtctl |= adapter->vfs_allocated_count <<
  2958. E1000_VT_CTL_DEFAULT_POOL_SHIFT;
  2959. wr32(E1000_VT_CTL, vtctl);
  2960. }
  2961. if (adapter->rss_queues > 1)
  2962. mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
  2963. else
  2964. mrqc |= E1000_MRQC_ENABLE_VMDQ;
  2965. } else {
  2966. if (hw->mac.type != e1000_i211)
  2967. mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
  2968. }
  2969. igb_vmm_control(adapter);
  2970. wr32(E1000_MRQC, mrqc);
  2971. }
  2972. /**
  2973. * igb_setup_rctl - configure the receive control registers
  2974. * @adapter: Board private structure
  2975. **/
  2976. void igb_setup_rctl(struct igb_adapter *adapter)
  2977. {
  2978. struct e1000_hw *hw = &adapter->hw;
  2979. u32 rctl;
  2980. rctl = rd32(E1000_RCTL);
  2981. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  2982. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  2983. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
  2984. (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
  2985. /* enable stripping of CRC. It's unlikely this will break BMC
  2986. * redirection as it did with e1000. Newer features require
  2987. * that the HW strips the CRC.
  2988. */
  2989. rctl |= E1000_RCTL_SECRC;
  2990. /* disable store bad packets and clear size bits. */
  2991. rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
  2992. /* enable LPE to prevent packets larger than max_frame_size */
  2993. rctl |= E1000_RCTL_LPE;
  2994. /* disable queue 0 to prevent tail write w/o re-config */
  2995. wr32(E1000_RXDCTL(0), 0);
  2996. /* Attention!!! For SR-IOV PF driver operations you must enable
  2997. * queue drop for all VF and PF queues to prevent head of line blocking
  2998. * if an un-trusted VF does not provide descriptors to hardware.
  2999. */
  3000. if (adapter->vfs_allocated_count) {
  3001. /* set all queue drop enable bits */
  3002. wr32(E1000_QDE, ALL_QUEUES);
  3003. }
  3004. /* This is useful for sniffing bad packets. */
  3005. if (adapter->netdev->features & NETIF_F_RXALL) {
  3006. /* UPE and MPE will be handled by normal PROMISC logic
  3007. * in e1000e_set_rx_mode
  3008. */
  3009. rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
  3010. E1000_RCTL_BAM | /* RX All Bcast Pkts */
  3011. E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
  3012. rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
  3013. E1000_RCTL_DPF | /* Allow filtered pause */
  3014. E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
  3015. /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
  3016. * and that breaks VLANs.
  3017. */
  3018. }
  3019. wr32(E1000_RCTL, rctl);
  3020. }
  3021. static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
  3022. int vfn)
  3023. {
  3024. struct e1000_hw *hw = &adapter->hw;
  3025. u32 vmolr;
  3026. /* if it isn't the PF check to see if VFs are enabled and
  3027. * increase the size to support vlan tags
  3028. */
  3029. if (vfn < adapter->vfs_allocated_count &&
  3030. adapter->vf_data[vfn].vlans_enabled)
  3031. size += VLAN_TAG_SIZE;
  3032. vmolr = rd32(E1000_VMOLR(vfn));
  3033. vmolr &= ~E1000_VMOLR_RLPML_MASK;
  3034. vmolr |= size | E1000_VMOLR_LPE;
  3035. wr32(E1000_VMOLR(vfn), vmolr);
  3036. return 0;
  3037. }
  3038. /**
  3039. * igb_rlpml_set - set maximum receive packet size
  3040. * @adapter: board private structure
  3041. *
  3042. * Configure maximum receivable packet size.
  3043. **/
  3044. static void igb_rlpml_set(struct igb_adapter *adapter)
  3045. {
  3046. u32 max_frame_size = adapter->max_frame_size;
  3047. struct e1000_hw *hw = &adapter->hw;
  3048. u16 pf_id = adapter->vfs_allocated_count;
  3049. if (pf_id) {
  3050. igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
  3051. /* If we're in VMDQ or SR-IOV mode, then set global RLPML
  3052. * to our max jumbo frame size, in case we need to enable
  3053. * jumbo frames on one of the rings later.
  3054. * This will not pass over-length frames into the default
  3055. * queue because it's gated by the VMOLR.RLPML.
  3056. */
  3057. max_frame_size = MAX_JUMBO_FRAME_SIZE;
  3058. }
  3059. wr32(E1000_RLPML, max_frame_size);
  3060. }
  3061. static inline void igb_set_vmolr(struct igb_adapter *adapter,
  3062. int vfn, bool aupe)
  3063. {
  3064. struct e1000_hw *hw = &adapter->hw;
  3065. u32 vmolr;
  3066. /* This register exists only on 82576 and newer so if we are older then
  3067. * we should exit and do nothing
  3068. */
  3069. if (hw->mac.type < e1000_82576)
  3070. return;
  3071. vmolr = rd32(E1000_VMOLR(vfn));
  3072. vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
  3073. if (hw->mac.type == e1000_i350) {
  3074. u32 dvmolr;
  3075. dvmolr = rd32(E1000_DVMOLR(vfn));
  3076. dvmolr |= E1000_DVMOLR_STRVLAN;
  3077. wr32(E1000_DVMOLR(vfn), dvmolr);
  3078. }
  3079. if (aupe)
  3080. vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
  3081. else
  3082. vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
  3083. /* clear all bits that might not be set */
  3084. vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
  3085. if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
  3086. vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
  3087. /* for VMDq only allow the VFs and pool 0 to accept broadcast and
  3088. * multicast packets
  3089. */
  3090. if (vfn <= adapter->vfs_allocated_count)
  3091. vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
  3092. wr32(E1000_VMOLR(vfn), vmolr);
  3093. }
  3094. /**
  3095. * igb_configure_rx_ring - Configure a receive ring after Reset
  3096. * @adapter: board private structure
  3097. * @ring: receive ring to be configured
  3098. *
  3099. * Configure the Rx unit of the MAC after a reset.
  3100. **/
  3101. void igb_configure_rx_ring(struct igb_adapter *adapter,
  3102. struct igb_ring *ring)
  3103. {
  3104. struct e1000_hw *hw = &adapter->hw;
  3105. u64 rdba = ring->dma;
  3106. int reg_idx = ring->reg_idx;
  3107. u32 srrctl = 0, rxdctl = 0;
  3108. /* disable the queue */
  3109. wr32(E1000_RXDCTL(reg_idx), 0);
  3110. /* Set DMA base address registers */
  3111. wr32(E1000_RDBAL(reg_idx),
  3112. rdba & 0x00000000ffffffffULL);
  3113. wr32(E1000_RDBAH(reg_idx), rdba >> 32);
  3114. wr32(E1000_RDLEN(reg_idx),
  3115. ring->count * sizeof(union e1000_adv_rx_desc));
  3116. /* initialize head and tail */
  3117. ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
  3118. wr32(E1000_RDH(reg_idx), 0);
  3119. writel(0, ring->tail);
  3120. /* set descriptor configuration */
  3121. srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
  3122. srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
  3123. srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
  3124. if (hw->mac.type >= e1000_82580)
  3125. srrctl |= E1000_SRRCTL_TIMESTAMP;
  3126. /* Only set Drop Enable if we are supporting multiple queues */
  3127. if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
  3128. srrctl |= E1000_SRRCTL_DROP_EN;
  3129. wr32(E1000_SRRCTL(reg_idx), srrctl);
  3130. /* set filtering for VMDQ pools */
  3131. igb_set_vmolr(adapter, reg_idx & 0x7, true);
  3132. rxdctl |= IGB_RX_PTHRESH;
  3133. rxdctl |= IGB_RX_HTHRESH << 8;
  3134. rxdctl |= IGB_RX_WTHRESH << 16;
  3135. /* enable receive descriptor fetching */
  3136. rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
  3137. wr32(E1000_RXDCTL(reg_idx), rxdctl);
  3138. }
  3139. /**
  3140. * igb_configure_rx - Configure receive Unit after Reset
  3141. * @adapter: board private structure
  3142. *
  3143. * Configure the Rx unit of the MAC after a reset.
  3144. **/
  3145. static void igb_configure_rx(struct igb_adapter *adapter)
  3146. {
  3147. int i;
  3148. /* set UTA to appropriate mode */
  3149. igb_set_uta(adapter);
  3150. /* set the correct pool for the PF default MAC address in entry 0 */
  3151. igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
  3152. adapter->vfs_allocated_count);
  3153. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  3154. * the Base and Length of the Rx Descriptor Ring
  3155. */
  3156. for (i = 0; i < adapter->num_rx_queues; i++)
  3157. igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
  3158. }
  3159. /**
  3160. * igb_free_tx_resources - Free Tx Resources per Queue
  3161. * @tx_ring: Tx descriptor ring for a specific queue
  3162. *
  3163. * Free all transmit software resources
  3164. **/
  3165. void igb_free_tx_resources(struct igb_ring *tx_ring)
  3166. {
  3167. igb_clean_tx_ring(tx_ring);
  3168. vfree(tx_ring->tx_buffer_info);
  3169. tx_ring->tx_buffer_info = NULL;
  3170. /* if not set, then don't free */
  3171. if (!tx_ring->desc)
  3172. return;
  3173. dma_free_coherent(tx_ring->dev, tx_ring->size,
  3174. tx_ring->desc, tx_ring->dma);
  3175. tx_ring->desc = NULL;
  3176. }
  3177. /**
  3178. * igb_free_all_tx_resources - Free Tx Resources for All Queues
  3179. * @adapter: board private structure
  3180. *
  3181. * Free all transmit software resources
  3182. **/
  3183. static void igb_free_all_tx_resources(struct igb_adapter *adapter)
  3184. {
  3185. int i;
  3186. for (i = 0; i < adapter->num_tx_queues; i++)
  3187. igb_free_tx_resources(adapter->tx_ring[i]);
  3188. }
  3189. void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
  3190. struct igb_tx_buffer *tx_buffer)
  3191. {
  3192. if (tx_buffer->skb) {
  3193. dev_kfree_skb_any(tx_buffer->skb);
  3194. if (dma_unmap_len(tx_buffer, len))
  3195. dma_unmap_single(ring->dev,
  3196. dma_unmap_addr(tx_buffer, dma),
  3197. dma_unmap_len(tx_buffer, len),
  3198. DMA_TO_DEVICE);
  3199. } else if (dma_unmap_len(tx_buffer, len)) {
  3200. dma_unmap_page(ring->dev,
  3201. dma_unmap_addr(tx_buffer, dma),
  3202. dma_unmap_len(tx_buffer, len),
  3203. DMA_TO_DEVICE);
  3204. }
  3205. tx_buffer->next_to_watch = NULL;
  3206. tx_buffer->skb = NULL;
  3207. dma_unmap_len_set(tx_buffer, len, 0);
  3208. /* buffer_info must be completely set up in the transmit path */
  3209. }
  3210. /**
  3211. * igb_clean_tx_ring - Free Tx Buffers
  3212. * @tx_ring: ring to be cleaned
  3213. **/
  3214. static void igb_clean_tx_ring(struct igb_ring *tx_ring)
  3215. {
  3216. struct igb_tx_buffer *buffer_info;
  3217. unsigned long size;
  3218. u16 i;
  3219. if (!tx_ring->tx_buffer_info)
  3220. return;
  3221. /* Free all the Tx ring sk_buffs */
  3222. for (i = 0; i < tx_ring->count; i++) {
  3223. buffer_info = &tx_ring->tx_buffer_info[i];
  3224. igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
  3225. }
  3226. netdev_tx_reset_queue(txring_txq(tx_ring));
  3227. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  3228. memset(tx_ring->tx_buffer_info, 0, size);
  3229. /* Zero out the descriptor ring */
  3230. memset(tx_ring->desc, 0, tx_ring->size);
  3231. tx_ring->next_to_use = 0;
  3232. tx_ring->next_to_clean = 0;
  3233. }
  3234. /**
  3235. * igb_clean_all_tx_rings - Free Tx Buffers for all queues
  3236. * @adapter: board private structure
  3237. **/
  3238. static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
  3239. {
  3240. int i;
  3241. for (i = 0; i < adapter->num_tx_queues; i++)
  3242. igb_clean_tx_ring(adapter->tx_ring[i]);
  3243. }
  3244. /**
  3245. * igb_free_rx_resources - Free Rx Resources
  3246. * @rx_ring: ring to clean the resources from
  3247. *
  3248. * Free all receive software resources
  3249. **/
  3250. void igb_free_rx_resources(struct igb_ring *rx_ring)
  3251. {
  3252. igb_clean_rx_ring(rx_ring);
  3253. vfree(rx_ring->rx_buffer_info);
  3254. rx_ring->rx_buffer_info = NULL;
  3255. /* if not set, then don't free */
  3256. if (!rx_ring->desc)
  3257. return;
  3258. dma_free_coherent(rx_ring->dev, rx_ring->size,
  3259. rx_ring->desc, rx_ring->dma);
  3260. rx_ring->desc = NULL;
  3261. }
  3262. /**
  3263. * igb_free_all_rx_resources - Free Rx Resources for All Queues
  3264. * @adapter: board private structure
  3265. *
  3266. * Free all receive software resources
  3267. **/
  3268. static void igb_free_all_rx_resources(struct igb_adapter *adapter)
  3269. {
  3270. int i;
  3271. for (i = 0; i < adapter->num_rx_queues; i++)
  3272. igb_free_rx_resources(adapter->rx_ring[i]);
  3273. }
  3274. /**
  3275. * igb_clean_rx_ring - Free Rx Buffers per Queue
  3276. * @rx_ring: ring to free buffers from
  3277. **/
  3278. static void igb_clean_rx_ring(struct igb_ring *rx_ring)
  3279. {
  3280. unsigned long size;
  3281. u16 i;
  3282. if (rx_ring->skb)
  3283. dev_kfree_skb(rx_ring->skb);
  3284. rx_ring->skb = NULL;
  3285. if (!rx_ring->rx_buffer_info)
  3286. return;
  3287. /* Free all the Rx ring sk_buffs */
  3288. for (i = 0; i < rx_ring->count; i++) {
  3289. struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
  3290. if (!buffer_info->page)
  3291. continue;
  3292. dma_unmap_page(rx_ring->dev,
  3293. buffer_info->dma,
  3294. PAGE_SIZE,
  3295. DMA_FROM_DEVICE);
  3296. __free_page(buffer_info->page);
  3297. buffer_info->page = NULL;
  3298. }
  3299. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  3300. memset(rx_ring->rx_buffer_info, 0, size);
  3301. /* Zero out the descriptor ring */
  3302. memset(rx_ring->desc, 0, rx_ring->size);
  3303. rx_ring->next_to_alloc = 0;
  3304. rx_ring->next_to_clean = 0;
  3305. rx_ring->next_to_use = 0;
  3306. }
  3307. /**
  3308. * igb_clean_all_rx_rings - Free Rx Buffers for all queues
  3309. * @adapter: board private structure
  3310. **/
  3311. static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
  3312. {
  3313. int i;
  3314. for (i = 0; i < adapter->num_rx_queues; i++)
  3315. igb_clean_rx_ring(adapter->rx_ring[i]);
  3316. }
  3317. /**
  3318. * igb_set_mac - Change the Ethernet Address of the NIC
  3319. * @netdev: network interface device structure
  3320. * @p: pointer to an address structure
  3321. *
  3322. * Returns 0 on success, negative on failure
  3323. **/
  3324. static int igb_set_mac(struct net_device *netdev, void *p)
  3325. {
  3326. struct igb_adapter *adapter = netdev_priv(netdev);
  3327. struct e1000_hw *hw = &adapter->hw;
  3328. struct sockaddr *addr = p;
  3329. if (!is_valid_ether_addr(addr->sa_data))
  3330. return -EADDRNOTAVAIL;
  3331. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  3332. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  3333. /* set the correct pool for the new PF MAC address in entry 0 */
  3334. igb_rar_set_qsel(adapter, hw->mac.addr, 0,
  3335. adapter->vfs_allocated_count);
  3336. return 0;
  3337. }
  3338. /**
  3339. * igb_write_mc_addr_list - write multicast addresses to MTA
  3340. * @netdev: network interface device structure
  3341. *
  3342. * Writes multicast address list to the MTA hash table.
  3343. * Returns: -ENOMEM on failure
  3344. * 0 on no addresses written
  3345. * X on writing X addresses to MTA
  3346. **/
  3347. static int igb_write_mc_addr_list(struct net_device *netdev)
  3348. {
  3349. struct igb_adapter *adapter = netdev_priv(netdev);
  3350. struct e1000_hw *hw = &adapter->hw;
  3351. struct netdev_hw_addr *ha;
  3352. u8 *mta_list;
  3353. int i;
  3354. if (netdev_mc_empty(netdev)) {
  3355. /* nothing to program, so clear mc list */
  3356. igb_update_mc_addr_list(hw, NULL, 0);
  3357. igb_restore_vf_multicasts(adapter);
  3358. return 0;
  3359. }
  3360. mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
  3361. if (!mta_list)
  3362. return -ENOMEM;
  3363. /* The shared function expects a packed array of only addresses. */
  3364. i = 0;
  3365. netdev_for_each_mc_addr(ha, netdev)
  3366. memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
  3367. igb_update_mc_addr_list(hw, mta_list, i);
  3368. kfree(mta_list);
  3369. return netdev_mc_count(netdev);
  3370. }
  3371. /**
  3372. * igb_write_uc_addr_list - write unicast addresses to RAR table
  3373. * @netdev: network interface device structure
  3374. *
  3375. * Writes unicast address list to the RAR table.
  3376. * Returns: -ENOMEM on failure/insufficient address space
  3377. * 0 on no addresses written
  3378. * X on writing X addresses to the RAR table
  3379. **/
  3380. static int igb_write_uc_addr_list(struct net_device *netdev)
  3381. {
  3382. struct igb_adapter *adapter = netdev_priv(netdev);
  3383. struct e1000_hw *hw = &adapter->hw;
  3384. unsigned int vfn = adapter->vfs_allocated_count;
  3385. unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
  3386. int count = 0;
  3387. /* return ENOMEM indicating insufficient memory for addresses */
  3388. if (netdev_uc_count(netdev) > rar_entries)
  3389. return -ENOMEM;
  3390. if (!netdev_uc_empty(netdev) && rar_entries) {
  3391. struct netdev_hw_addr *ha;
  3392. netdev_for_each_uc_addr(ha, netdev) {
  3393. if (!rar_entries)
  3394. break;
  3395. igb_rar_set_qsel(adapter, ha->addr,
  3396. rar_entries--,
  3397. vfn);
  3398. count++;
  3399. }
  3400. }
  3401. /* write the addresses in reverse order to avoid write combining */
  3402. for (; rar_entries > 0 ; rar_entries--) {
  3403. wr32(E1000_RAH(rar_entries), 0);
  3404. wr32(E1000_RAL(rar_entries), 0);
  3405. }
  3406. wrfl();
  3407. return count;
  3408. }
  3409. /**
  3410. * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
  3411. * @netdev: network interface device structure
  3412. *
  3413. * The set_rx_mode entry point is called whenever the unicast or multicast
  3414. * address lists or the network interface flags are updated. This routine is
  3415. * responsible for configuring the hardware for proper unicast, multicast,
  3416. * promiscuous mode, and all-multi behavior.
  3417. **/
  3418. static void igb_set_rx_mode(struct net_device *netdev)
  3419. {
  3420. struct igb_adapter *adapter = netdev_priv(netdev);
  3421. struct e1000_hw *hw = &adapter->hw;
  3422. unsigned int vfn = adapter->vfs_allocated_count;
  3423. u32 rctl, vmolr = 0;
  3424. int count;
  3425. /* Check for Promiscuous and All Multicast modes */
  3426. rctl = rd32(E1000_RCTL);
  3427. /* clear the effected bits */
  3428. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
  3429. if (netdev->flags & IFF_PROMISC) {
  3430. /* retain VLAN HW filtering if in VT mode */
  3431. if (adapter->vfs_allocated_count)
  3432. rctl |= E1000_RCTL_VFE;
  3433. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  3434. vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
  3435. } else {
  3436. if (netdev->flags & IFF_ALLMULTI) {
  3437. rctl |= E1000_RCTL_MPE;
  3438. vmolr |= E1000_VMOLR_MPME;
  3439. } else {
  3440. /* Write addresses to the MTA, if the attempt fails
  3441. * then we should just turn on promiscuous mode so
  3442. * that we can at least receive multicast traffic
  3443. */
  3444. count = igb_write_mc_addr_list(netdev);
  3445. if (count < 0) {
  3446. rctl |= E1000_RCTL_MPE;
  3447. vmolr |= E1000_VMOLR_MPME;
  3448. } else if (count) {
  3449. vmolr |= E1000_VMOLR_ROMPE;
  3450. }
  3451. }
  3452. /* Write addresses to available RAR registers, if there is not
  3453. * sufficient space to store all the addresses then enable
  3454. * unicast promiscuous mode
  3455. */
  3456. count = igb_write_uc_addr_list(netdev);
  3457. if (count < 0) {
  3458. rctl |= E1000_RCTL_UPE;
  3459. vmolr |= E1000_VMOLR_ROPE;
  3460. }
  3461. rctl |= E1000_RCTL_VFE;
  3462. }
  3463. wr32(E1000_RCTL, rctl);
  3464. /* In order to support SR-IOV and eventually VMDq it is necessary to set
  3465. * the VMOLR to enable the appropriate modes. Without this workaround
  3466. * we will have issues with VLAN tag stripping not being done for frames
  3467. * that are only arriving because we are the default pool
  3468. */
  3469. if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
  3470. return;
  3471. vmolr |= rd32(E1000_VMOLR(vfn)) &
  3472. ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
  3473. wr32(E1000_VMOLR(vfn), vmolr);
  3474. igb_restore_vf_multicasts(adapter);
  3475. }
  3476. static void igb_check_wvbr(struct igb_adapter *adapter)
  3477. {
  3478. struct e1000_hw *hw = &adapter->hw;
  3479. u32 wvbr = 0;
  3480. switch (hw->mac.type) {
  3481. case e1000_82576:
  3482. case e1000_i350:
  3483. wvbr = rd32(E1000_WVBR);
  3484. if (!wvbr)
  3485. return;
  3486. break;
  3487. default:
  3488. break;
  3489. }
  3490. adapter->wvbr |= wvbr;
  3491. }
  3492. #define IGB_STAGGERED_QUEUE_OFFSET 8
  3493. static void igb_spoof_check(struct igb_adapter *adapter)
  3494. {
  3495. int j;
  3496. if (!adapter->wvbr)
  3497. return;
  3498. for (j = 0; j < adapter->vfs_allocated_count; j++) {
  3499. if (adapter->wvbr & (1 << j) ||
  3500. adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
  3501. dev_warn(&adapter->pdev->dev,
  3502. "Spoof event(s) detected on VF %d\n", j);
  3503. adapter->wvbr &=
  3504. ~((1 << j) |
  3505. (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
  3506. }
  3507. }
  3508. }
  3509. /* Need to wait a few seconds after link up to get diagnostic information from
  3510. * the phy
  3511. */
  3512. static void igb_update_phy_info(unsigned long data)
  3513. {
  3514. struct igb_adapter *adapter = (struct igb_adapter *) data;
  3515. igb_get_phy_info(&adapter->hw);
  3516. }
  3517. /**
  3518. * igb_has_link - check shared code for link and determine up/down
  3519. * @adapter: pointer to driver private info
  3520. **/
  3521. bool igb_has_link(struct igb_adapter *adapter)
  3522. {
  3523. struct e1000_hw *hw = &adapter->hw;
  3524. bool link_active = false;
  3525. /* get_link_status is set on LSC (link status) interrupt or
  3526. * rx sequence error interrupt. get_link_status will stay
  3527. * false until the e1000_check_for_link establishes link
  3528. * for copper adapters ONLY
  3529. */
  3530. switch (hw->phy.media_type) {
  3531. case e1000_media_type_copper:
  3532. if (!hw->mac.get_link_status)
  3533. return true;
  3534. case e1000_media_type_internal_serdes:
  3535. hw->mac.ops.check_for_link(hw);
  3536. link_active = !hw->mac.get_link_status;
  3537. break;
  3538. default:
  3539. case e1000_media_type_unknown:
  3540. break;
  3541. }
  3542. if (((hw->mac.type == e1000_i210) ||
  3543. (hw->mac.type == e1000_i211)) &&
  3544. (hw->phy.id == I210_I_PHY_ID)) {
  3545. if (!netif_carrier_ok(adapter->netdev)) {
  3546. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3547. } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
  3548. adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
  3549. adapter->link_check_timeout = jiffies;
  3550. }
  3551. }
  3552. return link_active;
  3553. }
  3554. static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
  3555. {
  3556. bool ret = false;
  3557. u32 ctrl_ext, thstat;
  3558. /* check for thermal sensor event on i350 copper only */
  3559. if (hw->mac.type == e1000_i350) {
  3560. thstat = rd32(E1000_THSTAT);
  3561. ctrl_ext = rd32(E1000_CTRL_EXT);
  3562. if ((hw->phy.media_type == e1000_media_type_copper) &&
  3563. !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
  3564. ret = !!(thstat & event);
  3565. }
  3566. return ret;
  3567. }
  3568. /**
  3569. * igb_watchdog - Timer Call-back
  3570. * @data: pointer to adapter cast into an unsigned long
  3571. **/
  3572. static void igb_watchdog(unsigned long data)
  3573. {
  3574. struct igb_adapter *adapter = (struct igb_adapter *)data;
  3575. /* Do the rest outside of interrupt context */
  3576. schedule_work(&adapter->watchdog_task);
  3577. }
  3578. static void igb_watchdog_task(struct work_struct *work)
  3579. {
  3580. struct igb_adapter *adapter = container_of(work,
  3581. struct igb_adapter,
  3582. watchdog_task);
  3583. struct e1000_hw *hw = &adapter->hw;
  3584. struct e1000_phy_info *phy = &hw->phy;
  3585. struct net_device *netdev = adapter->netdev;
  3586. u32 link;
  3587. int i;
  3588. u32 connsw;
  3589. link = igb_has_link(adapter);
  3590. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
  3591. if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
  3592. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3593. else
  3594. link = false;
  3595. }
  3596. /* Force link down if we have fiber to swap to */
  3597. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3598. if (hw->phy.media_type == e1000_media_type_copper) {
  3599. connsw = rd32(E1000_CONNSW);
  3600. if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
  3601. link = 0;
  3602. }
  3603. }
  3604. if (link) {
  3605. /* Perform a reset if the media type changed. */
  3606. if (hw->dev_spec._82575.media_changed) {
  3607. hw->dev_spec._82575.media_changed = false;
  3608. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  3609. igb_reset(adapter);
  3610. }
  3611. /* Cancel scheduled suspend requests. */
  3612. pm_runtime_resume(netdev->dev.parent);
  3613. if (!netif_carrier_ok(netdev)) {
  3614. u32 ctrl;
  3615. hw->mac.ops.get_speed_and_duplex(hw,
  3616. &adapter->link_speed,
  3617. &adapter->link_duplex);
  3618. ctrl = rd32(E1000_CTRL);
  3619. /* Links status message must follow this format */
  3620. netdev_info(netdev,
  3621. "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
  3622. netdev->name,
  3623. adapter->link_speed,
  3624. adapter->link_duplex == FULL_DUPLEX ?
  3625. "Full" : "Half",
  3626. (ctrl & E1000_CTRL_TFCE) &&
  3627. (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
  3628. (ctrl & E1000_CTRL_RFCE) ? "RX" :
  3629. (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
  3630. /* disable EEE if enabled */
  3631. if ((adapter->flags & IGB_FLAG_EEE) &&
  3632. (adapter->link_duplex == HALF_DUPLEX)) {
  3633. dev_info(&adapter->pdev->dev,
  3634. "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
  3635. adapter->hw.dev_spec._82575.eee_disable = true;
  3636. adapter->flags &= ~IGB_FLAG_EEE;
  3637. }
  3638. /* check if SmartSpeed worked */
  3639. igb_check_downshift(hw);
  3640. if (phy->speed_downgraded)
  3641. netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
  3642. /* check for thermal sensor event */
  3643. if (igb_thermal_sensor_event(hw,
  3644. E1000_THSTAT_LINK_THROTTLE))
  3645. netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
  3646. /* adjust timeout factor according to speed/duplex */
  3647. adapter->tx_timeout_factor = 1;
  3648. switch (adapter->link_speed) {
  3649. case SPEED_10:
  3650. adapter->tx_timeout_factor = 14;
  3651. break;
  3652. case SPEED_100:
  3653. /* maybe add some timeout factor ? */
  3654. break;
  3655. }
  3656. netif_carrier_on(netdev);
  3657. igb_ping_all_vfs(adapter);
  3658. igb_check_vf_rate_limit(adapter);
  3659. /* link state has changed, schedule phy info update */
  3660. if (!test_bit(__IGB_DOWN, &adapter->state))
  3661. mod_timer(&adapter->phy_info_timer,
  3662. round_jiffies(jiffies + 2 * HZ));
  3663. }
  3664. } else {
  3665. if (netif_carrier_ok(netdev)) {
  3666. adapter->link_speed = 0;
  3667. adapter->link_duplex = 0;
  3668. /* check for thermal sensor event */
  3669. if (igb_thermal_sensor_event(hw,
  3670. E1000_THSTAT_PWR_DOWN)) {
  3671. netdev_err(netdev, "The network adapter was stopped because it overheated\n");
  3672. }
  3673. /* Links status message must follow this format */
  3674. netdev_info(netdev, "igb: %s NIC Link is Down\n",
  3675. netdev->name);
  3676. netif_carrier_off(netdev);
  3677. igb_ping_all_vfs(adapter);
  3678. /* link state has changed, schedule phy info update */
  3679. if (!test_bit(__IGB_DOWN, &adapter->state))
  3680. mod_timer(&adapter->phy_info_timer,
  3681. round_jiffies(jiffies + 2 * HZ));
  3682. /* link is down, time to check for alternate media */
  3683. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3684. igb_check_swap_media(adapter);
  3685. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3686. schedule_work(&adapter->reset_task);
  3687. /* return immediately */
  3688. return;
  3689. }
  3690. }
  3691. pm_schedule_suspend(netdev->dev.parent,
  3692. MSEC_PER_SEC * 5);
  3693. /* also check for alternate media here */
  3694. } else if (!netif_carrier_ok(netdev) &&
  3695. (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
  3696. igb_check_swap_media(adapter);
  3697. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3698. schedule_work(&adapter->reset_task);
  3699. /* return immediately */
  3700. return;
  3701. }
  3702. }
  3703. }
  3704. spin_lock(&adapter->stats64_lock);
  3705. igb_update_stats(adapter, &adapter->stats64);
  3706. spin_unlock(&adapter->stats64_lock);
  3707. for (i = 0; i < adapter->num_tx_queues; i++) {
  3708. struct igb_ring *tx_ring = adapter->tx_ring[i];
  3709. if (!netif_carrier_ok(netdev)) {
  3710. /* We've lost link, so the controller stops DMA,
  3711. * but we've got queued Tx work that's never going
  3712. * to get done, so reset controller to flush Tx.
  3713. * (Do the reset outside of interrupt context).
  3714. */
  3715. if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
  3716. adapter->tx_timeout_count++;
  3717. schedule_work(&adapter->reset_task);
  3718. /* return immediately since reset is imminent */
  3719. return;
  3720. }
  3721. }
  3722. /* Force detection of hung controller every watchdog period */
  3723. set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  3724. }
  3725. /* Cause software interrupt to ensure Rx ring is cleaned */
  3726. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  3727. u32 eics = 0;
  3728. for (i = 0; i < adapter->num_q_vectors; i++)
  3729. eics |= adapter->q_vector[i]->eims_value;
  3730. wr32(E1000_EICS, eics);
  3731. } else {
  3732. wr32(E1000_ICS, E1000_ICS_RXDMT0);
  3733. }
  3734. igb_spoof_check(adapter);
  3735. igb_ptp_rx_hang(adapter);
  3736. /* Reset the timer */
  3737. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  3738. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
  3739. mod_timer(&adapter->watchdog_timer,
  3740. round_jiffies(jiffies + HZ));
  3741. else
  3742. mod_timer(&adapter->watchdog_timer,
  3743. round_jiffies(jiffies + 2 * HZ));
  3744. }
  3745. }
  3746. enum latency_range {
  3747. lowest_latency = 0,
  3748. low_latency = 1,
  3749. bulk_latency = 2,
  3750. latency_invalid = 255
  3751. };
  3752. /**
  3753. * igb_update_ring_itr - update the dynamic ITR value based on packet size
  3754. * @q_vector: pointer to q_vector
  3755. *
  3756. * Stores a new ITR value based on strictly on packet size. This
  3757. * algorithm is less sophisticated than that used in igb_update_itr,
  3758. * due to the difficulty of synchronizing statistics across multiple
  3759. * receive rings. The divisors and thresholds used by this function
  3760. * were determined based on theoretical maximum wire speed and testing
  3761. * data, in order to minimize response time while increasing bulk
  3762. * throughput.
  3763. * This functionality is controlled by ethtool's coalescing settings.
  3764. * NOTE: This function is called only when operating in a multiqueue
  3765. * receive environment.
  3766. **/
  3767. static void igb_update_ring_itr(struct igb_q_vector *q_vector)
  3768. {
  3769. int new_val = q_vector->itr_val;
  3770. int avg_wire_size = 0;
  3771. struct igb_adapter *adapter = q_vector->adapter;
  3772. unsigned int packets;
  3773. /* For non-gigabit speeds, just fix the interrupt rate at 4000
  3774. * ints/sec - ITR timer value of 120 ticks.
  3775. */
  3776. if (adapter->link_speed != SPEED_1000) {
  3777. new_val = IGB_4K_ITR;
  3778. goto set_itr_val;
  3779. }
  3780. packets = q_vector->rx.total_packets;
  3781. if (packets)
  3782. avg_wire_size = q_vector->rx.total_bytes / packets;
  3783. packets = q_vector->tx.total_packets;
  3784. if (packets)
  3785. avg_wire_size = max_t(u32, avg_wire_size,
  3786. q_vector->tx.total_bytes / packets);
  3787. /* if avg_wire_size isn't set no work was done */
  3788. if (!avg_wire_size)
  3789. goto clear_counts;
  3790. /* Add 24 bytes to size to account for CRC, preamble, and gap */
  3791. avg_wire_size += 24;
  3792. /* Don't starve jumbo frames */
  3793. avg_wire_size = min(avg_wire_size, 3000);
  3794. /* Give a little boost to mid-size frames */
  3795. if ((avg_wire_size > 300) && (avg_wire_size < 1200))
  3796. new_val = avg_wire_size / 3;
  3797. else
  3798. new_val = avg_wire_size / 2;
  3799. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  3800. if (new_val < IGB_20K_ITR &&
  3801. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  3802. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  3803. new_val = IGB_20K_ITR;
  3804. set_itr_val:
  3805. if (new_val != q_vector->itr_val) {
  3806. q_vector->itr_val = new_val;
  3807. q_vector->set_itr = 1;
  3808. }
  3809. clear_counts:
  3810. q_vector->rx.total_bytes = 0;
  3811. q_vector->rx.total_packets = 0;
  3812. q_vector->tx.total_bytes = 0;
  3813. q_vector->tx.total_packets = 0;
  3814. }
  3815. /**
  3816. * igb_update_itr - update the dynamic ITR value based on statistics
  3817. * @q_vector: pointer to q_vector
  3818. * @ring_container: ring info to update the itr for
  3819. *
  3820. * Stores a new ITR value based on packets and byte
  3821. * counts during the last interrupt. The advantage of per interrupt
  3822. * computation is faster updates and more accurate ITR for the current
  3823. * traffic pattern. Constants in this function were computed
  3824. * based on theoretical maximum wire speed and thresholds were set based
  3825. * on testing data as well as attempting to minimize response time
  3826. * while increasing bulk throughput.
  3827. * This functionality is controlled by ethtool's coalescing settings.
  3828. * NOTE: These calculations are only valid when operating in a single-
  3829. * queue environment.
  3830. **/
  3831. static void igb_update_itr(struct igb_q_vector *q_vector,
  3832. struct igb_ring_container *ring_container)
  3833. {
  3834. unsigned int packets = ring_container->total_packets;
  3835. unsigned int bytes = ring_container->total_bytes;
  3836. u8 itrval = ring_container->itr;
  3837. /* no packets, exit with status unchanged */
  3838. if (packets == 0)
  3839. return;
  3840. switch (itrval) {
  3841. case lowest_latency:
  3842. /* handle TSO and jumbo frames */
  3843. if (bytes/packets > 8000)
  3844. itrval = bulk_latency;
  3845. else if ((packets < 5) && (bytes > 512))
  3846. itrval = low_latency;
  3847. break;
  3848. case low_latency: /* 50 usec aka 20000 ints/s */
  3849. if (bytes > 10000) {
  3850. /* this if handles the TSO accounting */
  3851. if (bytes/packets > 8000)
  3852. itrval = bulk_latency;
  3853. else if ((packets < 10) || ((bytes/packets) > 1200))
  3854. itrval = bulk_latency;
  3855. else if ((packets > 35))
  3856. itrval = lowest_latency;
  3857. } else if (bytes/packets > 2000) {
  3858. itrval = bulk_latency;
  3859. } else if (packets <= 2 && bytes < 512) {
  3860. itrval = lowest_latency;
  3861. }
  3862. break;
  3863. case bulk_latency: /* 250 usec aka 4000 ints/s */
  3864. if (bytes > 25000) {
  3865. if (packets > 35)
  3866. itrval = low_latency;
  3867. } else if (bytes < 1500) {
  3868. itrval = low_latency;
  3869. }
  3870. break;
  3871. }
  3872. /* clear work counters since we have the values we need */
  3873. ring_container->total_bytes = 0;
  3874. ring_container->total_packets = 0;
  3875. /* write updated itr to ring container */
  3876. ring_container->itr = itrval;
  3877. }
  3878. static void igb_set_itr(struct igb_q_vector *q_vector)
  3879. {
  3880. struct igb_adapter *adapter = q_vector->adapter;
  3881. u32 new_itr = q_vector->itr_val;
  3882. u8 current_itr = 0;
  3883. /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
  3884. if (adapter->link_speed != SPEED_1000) {
  3885. current_itr = 0;
  3886. new_itr = IGB_4K_ITR;
  3887. goto set_itr_now;
  3888. }
  3889. igb_update_itr(q_vector, &q_vector->tx);
  3890. igb_update_itr(q_vector, &q_vector->rx);
  3891. current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
  3892. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  3893. if (current_itr == lowest_latency &&
  3894. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  3895. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  3896. current_itr = low_latency;
  3897. switch (current_itr) {
  3898. /* counts and packets in update_itr are dependent on these numbers */
  3899. case lowest_latency:
  3900. new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
  3901. break;
  3902. case low_latency:
  3903. new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
  3904. break;
  3905. case bulk_latency:
  3906. new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
  3907. break;
  3908. default:
  3909. break;
  3910. }
  3911. set_itr_now:
  3912. if (new_itr != q_vector->itr_val) {
  3913. /* this attempts to bias the interrupt rate towards Bulk
  3914. * by adding intermediate steps when interrupt rate is
  3915. * increasing
  3916. */
  3917. new_itr = new_itr > q_vector->itr_val ?
  3918. max((new_itr * q_vector->itr_val) /
  3919. (new_itr + (q_vector->itr_val >> 2)),
  3920. new_itr) : new_itr;
  3921. /* Don't write the value here; it resets the adapter's
  3922. * internal timer, and causes us to delay far longer than
  3923. * we should between interrupts. Instead, we write the ITR
  3924. * value at the beginning of the next interrupt so the timing
  3925. * ends up being correct.
  3926. */
  3927. q_vector->itr_val = new_itr;
  3928. q_vector->set_itr = 1;
  3929. }
  3930. }
  3931. static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
  3932. u32 type_tucmd, u32 mss_l4len_idx)
  3933. {
  3934. struct e1000_adv_tx_context_desc *context_desc;
  3935. u16 i = tx_ring->next_to_use;
  3936. context_desc = IGB_TX_CTXTDESC(tx_ring, i);
  3937. i++;
  3938. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  3939. /* set bits to identify this as an advanced context descriptor */
  3940. type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
  3941. /* For 82575, context index must be unique per ring. */
  3942. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  3943. mss_l4len_idx |= tx_ring->reg_idx << 4;
  3944. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  3945. context_desc->seqnum_seed = 0;
  3946. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
  3947. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  3948. }
  3949. static int igb_tso(struct igb_ring *tx_ring,
  3950. struct igb_tx_buffer *first,
  3951. u8 *hdr_len)
  3952. {
  3953. struct sk_buff *skb = first->skb;
  3954. u32 vlan_macip_lens, type_tucmd;
  3955. u32 mss_l4len_idx, l4len;
  3956. int err;
  3957. if (skb->ip_summed != CHECKSUM_PARTIAL)
  3958. return 0;
  3959. if (!skb_is_gso(skb))
  3960. return 0;
  3961. err = skb_cow_head(skb, 0);
  3962. if (err < 0)
  3963. return err;
  3964. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  3965. type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
  3966. if (first->protocol == htons(ETH_P_IP)) {
  3967. struct iphdr *iph = ip_hdr(skb);
  3968. iph->tot_len = 0;
  3969. iph->check = 0;
  3970. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  3971. iph->daddr, 0,
  3972. IPPROTO_TCP,
  3973. 0);
  3974. type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
  3975. first->tx_flags |= IGB_TX_FLAGS_TSO |
  3976. IGB_TX_FLAGS_CSUM |
  3977. IGB_TX_FLAGS_IPV4;
  3978. } else if (skb_is_gso_v6(skb)) {
  3979. ipv6_hdr(skb)->payload_len = 0;
  3980. tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  3981. &ipv6_hdr(skb)->daddr,
  3982. 0, IPPROTO_TCP, 0);
  3983. first->tx_flags |= IGB_TX_FLAGS_TSO |
  3984. IGB_TX_FLAGS_CSUM;
  3985. }
  3986. /* compute header lengths */
  3987. l4len = tcp_hdrlen(skb);
  3988. *hdr_len = skb_transport_offset(skb) + l4len;
  3989. /* update gso size and bytecount with header size */
  3990. first->gso_segs = skb_shinfo(skb)->gso_segs;
  3991. first->bytecount += (first->gso_segs - 1) * *hdr_len;
  3992. /* MSS L4LEN IDX */
  3993. mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
  3994. mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
  3995. /* VLAN MACLEN IPLEN */
  3996. vlan_macip_lens = skb_network_header_len(skb);
  3997. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  3998. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  3999. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
  4000. return 1;
  4001. }
  4002. static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
  4003. {
  4004. struct sk_buff *skb = first->skb;
  4005. u32 vlan_macip_lens = 0;
  4006. u32 mss_l4len_idx = 0;
  4007. u32 type_tucmd = 0;
  4008. if (skb->ip_summed != CHECKSUM_PARTIAL) {
  4009. if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
  4010. return;
  4011. } else {
  4012. u8 l4_hdr = 0;
  4013. switch (first->protocol) {
  4014. case htons(ETH_P_IP):
  4015. vlan_macip_lens |= skb_network_header_len(skb);
  4016. type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
  4017. l4_hdr = ip_hdr(skb)->protocol;
  4018. break;
  4019. case htons(ETH_P_IPV6):
  4020. vlan_macip_lens |= skb_network_header_len(skb);
  4021. l4_hdr = ipv6_hdr(skb)->nexthdr;
  4022. break;
  4023. default:
  4024. if (unlikely(net_ratelimit())) {
  4025. dev_warn(tx_ring->dev,
  4026. "partial checksum but proto=%x!\n",
  4027. first->protocol);
  4028. }
  4029. break;
  4030. }
  4031. switch (l4_hdr) {
  4032. case IPPROTO_TCP:
  4033. type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
  4034. mss_l4len_idx = tcp_hdrlen(skb) <<
  4035. E1000_ADVTXD_L4LEN_SHIFT;
  4036. break;
  4037. case IPPROTO_SCTP:
  4038. type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
  4039. mss_l4len_idx = sizeof(struct sctphdr) <<
  4040. E1000_ADVTXD_L4LEN_SHIFT;
  4041. break;
  4042. case IPPROTO_UDP:
  4043. mss_l4len_idx = sizeof(struct udphdr) <<
  4044. E1000_ADVTXD_L4LEN_SHIFT;
  4045. break;
  4046. default:
  4047. if (unlikely(net_ratelimit())) {
  4048. dev_warn(tx_ring->dev,
  4049. "partial checksum but l4 proto=%x!\n",
  4050. l4_hdr);
  4051. }
  4052. break;
  4053. }
  4054. /* update TX checksum flag */
  4055. first->tx_flags |= IGB_TX_FLAGS_CSUM;
  4056. }
  4057. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  4058. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4059. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
  4060. }
  4061. #define IGB_SET_FLAG(_input, _flag, _result) \
  4062. ((_flag <= _result) ? \
  4063. ((u32)(_input & _flag) * (_result / _flag)) : \
  4064. ((u32)(_input & _flag) / (_flag / _result)))
  4065. static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
  4066. {
  4067. /* set type for advanced descriptor with frame checksum insertion */
  4068. u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
  4069. E1000_ADVTXD_DCMD_DEXT |
  4070. E1000_ADVTXD_DCMD_IFCS;
  4071. /* set HW vlan bit if vlan is present */
  4072. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
  4073. (E1000_ADVTXD_DCMD_VLE));
  4074. /* set segmentation bits for TSO */
  4075. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
  4076. (E1000_ADVTXD_DCMD_TSE));
  4077. /* set timestamp bit if present */
  4078. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
  4079. (E1000_ADVTXD_MAC_TSTAMP));
  4080. /* insert frame checksum */
  4081. cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
  4082. return cmd_type;
  4083. }
  4084. static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
  4085. union e1000_adv_tx_desc *tx_desc,
  4086. u32 tx_flags, unsigned int paylen)
  4087. {
  4088. u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
  4089. /* 82575 requires a unique index per ring */
  4090. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  4091. olinfo_status |= tx_ring->reg_idx << 4;
  4092. /* insert L4 checksum */
  4093. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4094. IGB_TX_FLAGS_CSUM,
  4095. (E1000_TXD_POPTS_TXSM << 8));
  4096. /* insert IPv4 checksum */
  4097. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4098. IGB_TX_FLAGS_IPV4,
  4099. (E1000_TXD_POPTS_IXSM << 8));
  4100. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  4101. }
  4102. static void igb_tx_map(struct igb_ring *tx_ring,
  4103. struct igb_tx_buffer *first,
  4104. const u8 hdr_len)
  4105. {
  4106. struct sk_buff *skb = first->skb;
  4107. struct igb_tx_buffer *tx_buffer;
  4108. union e1000_adv_tx_desc *tx_desc;
  4109. struct skb_frag_struct *frag;
  4110. dma_addr_t dma;
  4111. unsigned int data_len, size;
  4112. u32 tx_flags = first->tx_flags;
  4113. u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
  4114. u16 i = tx_ring->next_to_use;
  4115. tx_desc = IGB_TX_DESC(tx_ring, i);
  4116. igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
  4117. size = skb_headlen(skb);
  4118. data_len = skb->data_len;
  4119. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  4120. tx_buffer = first;
  4121. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  4122. if (dma_mapping_error(tx_ring->dev, dma))
  4123. goto dma_error;
  4124. /* record length, and DMA address */
  4125. dma_unmap_len_set(tx_buffer, len, size);
  4126. dma_unmap_addr_set(tx_buffer, dma, dma);
  4127. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4128. while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
  4129. tx_desc->read.cmd_type_len =
  4130. cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
  4131. i++;
  4132. tx_desc++;
  4133. if (i == tx_ring->count) {
  4134. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4135. i = 0;
  4136. }
  4137. tx_desc->read.olinfo_status = 0;
  4138. dma += IGB_MAX_DATA_PER_TXD;
  4139. size -= IGB_MAX_DATA_PER_TXD;
  4140. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4141. }
  4142. if (likely(!data_len))
  4143. break;
  4144. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
  4145. i++;
  4146. tx_desc++;
  4147. if (i == tx_ring->count) {
  4148. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4149. i = 0;
  4150. }
  4151. tx_desc->read.olinfo_status = 0;
  4152. size = skb_frag_size(frag);
  4153. data_len -= size;
  4154. dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
  4155. size, DMA_TO_DEVICE);
  4156. tx_buffer = &tx_ring->tx_buffer_info[i];
  4157. }
  4158. /* write last descriptor with RS and EOP bits */
  4159. cmd_type |= size | IGB_TXD_DCMD;
  4160. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
  4161. netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
  4162. /* set the timestamp */
  4163. first->time_stamp = jiffies;
  4164. /* Force memory writes to complete before letting h/w know there
  4165. * are new descriptors to fetch. (Only applicable for weak-ordered
  4166. * memory model archs, such as IA-64).
  4167. *
  4168. * We also need this memory barrier to make certain all of the
  4169. * status bits have been updated before next_to_watch is written.
  4170. */
  4171. wmb();
  4172. /* set next_to_watch value indicating a packet is present */
  4173. first->next_to_watch = tx_desc;
  4174. i++;
  4175. if (i == tx_ring->count)
  4176. i = 0;
  4177. tx_ring->next_to_use = i;
  4178. writel(i, tx_ring->tail);
  4179. /* we need this if more than one processor can write to our tail
  4180. * at a time, it synchronizes IO on IA64/Altix systems
  4181. */
  4182. mmiowb();
  4183. return;
  4184. dma_error:
  4185. dev_err(tx_ring->dev, "TX DMA map failed\n");
  4186. /* clear dma mappings for failed tx_buffer_info map */
  4187. for (;;) {
  4188. tx_buffer = &tx_ring->tx_buffer_info[i];
  4189. igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
  4190. if (tx_buffer == first)
  4191. break;
  4192. if (i == 0)
  4193. i = tx_ring->count;
  4194. i--;
  4195. }
  4196. tx_ring->next_to_use = i;
  4197. }
  4198. static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4199. {
  4200. struct net_device *netdev = tx_ring->netdev;
  4201. netif_stop_subqueue(netdev, tx_ring->queue_index);
  4202. /* Herbert's original patch had:
  4203. * smp_mb__after_netif_stop_queue();
  4204. * but since that doesn't exist yet, just open code it.
  4205. */
  4206. smp_mb();
  4207. /* We need to check again in a case another CPU has just
  4208. * made room available.
  4209. */
  4210. if (igb_desc_unused(tx_ring) < size)
  4211. return -EBUSY;
  4212. /* A reprieve! */
  4213. netif_wake_subqueue(netdev, tx_ring->queue_index);
  4214. u64_stats_update_begin(&tx_ring->tx_syncp2);
  4215. tx_ring->tx_stats.restart_queue2++;
  4216. u64_stats_update_end(&tx_ring->tx_syncp2);
  4217. return 0;
  4218. }
  4219. static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4220. {
  4221. if (igb_desc_unused(tx_ring) >= size)
  4222. return 0;
  4223. return __igb_maybe_stop_tx(tx_ring, size);
  4224. }
  4225. netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
  4226. struct igb_ring *tx_ring)
  4227. {
  4228. struct igb_tx_buffer *first;
  4229. int tso;
  4230. u32 tx_flags = 0;
  4231. u16 count = TXD_USE_COUNT(skb_headlen(skb));
  4232. __be16 protocol = vlan_get_protocol(skb);
  4233. u8 hdr_len = 0;
  4234. /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
  4235. * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
  4236. * + 2 desc gap to keep tail from touching head,
  4237. * + 1 desc for context descriptor,
  4238. * otherwise try next time
  4239. */
  4240. if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
  4241. unsigned short f;
  4242. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  4243. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  4244. } else {
  4245. count += skb_shinfo(skb)->nr_frags;
  4246. }
  4247. if (igb_maybe_stop_tx(tx_ring, count + 3)) {
  4248. /* this is a hard error */
  4249. return NETDEV_TX_BUSY;
  4250. }
  4251. /* record the location of the first descriptor for this packet */
  4252. first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
  4253. first->skb = skb;
  4254. first->bytecount = skb->len;
  4255. first->gso_segs = 1;
  4256. if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
  4257. struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
  4258. if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
  4259. &adapter->state)) {
  4260. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  4261. tx_flags |= IGB_TX_FLAGS_TSTAMP;
  4262. adapter->ptp_tx_skb = skb_get(skb);
  4263. adapter->ptp_tx_start = jiffies;
  4264. if (adapter->hw.mac.type == e1000_82576)
  4265. schedule_work(&adapter->ptp_tx_work);
  4266. }
  4267. }
  4268. skb_tx_timestamp(skb);
  4269. if (vlan_tx_tag_present(skb)) {
  4270. tx_flags |= IGB_TX_FLAGS_VLAN;
  4271. tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
  4272. }
  4273. /* record initial flags and protocol */
  4274. first->tx_flags = tx_flags;
  4275. first->protocol = protocol;
  4276. tso = igb_tso(tx_ring, first, &hdr_len);
  4277. if (tso < 0)
  4278. goto out_drop;
  4279. else if (!tso)
  4280. igb_tx_csum(tx_ring, first);
  4281. igb_tx_map(tx_ring, first, hdr_len);
  4282. /* Make sure there is space in the ring for the next send. */
  4283. igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
  4284. return NETDEV_TX_OK;
  4285. out_drop:
  4286. igb_unmap_and_free_tx_resource(tx_ring, first);
  4287. return NETDEV_TX_OK;
  4288. }
  4289. static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
  4290. struct sk_buff *skb)
  4291. {
  4292. unsigned int r_idx = skb->queue_mapping;
  4293. if (r_idx >= adapter->num_tx_queues)
  4294. r_idx = r_idx % adapter->num_tx_queues;
  4295. return adapter->tx_ring[r_idx];
  4296. }
  4297. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
  4298. struct net_device *netdev)
  4299. {
  4300. struct igb_adapter *adapter = netdev_priv(netdev);
  4301. if (test_bit(__IGB_DOWN, &adapter->state)) {
  4302. dev_kfree_skb_any(skb);
  4303. return NETDEV_TX_OK;
  4304. }
  4305. if (skb->len <= 0) {
  4306. dev_kfree_skb_any(skb);
  4307. return NETDEV_TX_OK;
  4308. }
  4309. /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
  4310. * in order to meet this minimum size requirement.
  4311. */
  4312. if (unlikely(skb->len < 17)) {
  4313. if (skb_pad(skb, 17 - skb->len))
  4314. return NETDEV_TX_OK;
  4315. skb->len = 17;
  4316. skb_set_tail_pointer(skb, 17);
  4317. }
  4318. return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
  4319. }
  4320. /**
  4321. * igb_tx_timeout - Respond to a Tx Hang
  4322. * @netdev: network interface device structure
  4323. **/
  4324. static void igb_tx_timeout(struct net_device *netdev)
  4325. {
  4326. struct igb_adapter *adapter = netdev_priv(netdev);
  4327. struct e1000_hw *hw = &adapter->hw;
  4328. /* Do the reset outside of interrupt context */
  4329. adapter->tx_timeout_count++;
  4330. if (hw->mac.type >= e1000_82580)
  4331. hw->dev_spec._82575.global_device_reset = true;
  4332. schedule_work(&adapter->reset_task);
  4333. wr32(E1000_EICS,
  4334. (adapter->eims_enable_mask & ~adapter->eims_other));
  4335. }
  4336. static void igb_reset_task(struct work_struct *work)
  4337. {
  4338. struct igb_adapter *adapter;
  4339. adapter = container_of(work, struct igb_adapter, reset_task);
  4340. igb_dump(adapter);
  4341. netdev_err(adapter->netdev, "Reset adapter\n");
  4342. igb_reinit_locked(adapter);
  4343. }
  4344. /**
  4345. * igb_get_stats64 - Get System Network Statistics
  4346. * @netdev: network interface device structure
  4347. * @stats: rtnl_link_stats64 pointer
  4348. **/
  4349. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
  4350. struct rtnl_link_stats64 *stats)
  4351. {
  4352. struct igb_adapter *adapter = netdev_priv(netdev);
  4353. spin_lock(&adapter->stats64_lock);
  4354. igb_update_stats(adapter, &adapter->stats64);
  4355. memcpy(stats, &adapter->stats64, sizeof(*stats));
  4356. spin_unlock(&adapter->stats64_lock);
  4357. return stats;
  4358. }
  4359. /**
  4360. * igb_change_mtu - Change the Maximum Transfer Unit
  4361. * @netdev: network interface device structure
  4362. * @new_mtu: new value for maximum frame size
  4363. *
  4364. * Returns 0 on success, negative on failure
  4365. **/
  4366. static int igb_change_mtu(struct net_device *netdev, int new_mtu)
  4367. {
  4368. struct igb_adapter *adapter = netdev_priv(netdev);
  4369. struct pci_dev *pdev = adapter->pdev;
  4370. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  4371. if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  4372. dev_err(&pdev->dev, "Invalid MTU setting\n");
  4373. return -EINVAL;
  4374. }
  4375. #define MAX_STD_JUMBO_FRAME_SIZE 9238
  4376. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  4377. dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
  4378. return -EINVAL;
  4379. }
  4380. /* adjust max frame to be at least the size of a standard frame */
  4381. if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
  4382. max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
  4383. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  4384. usleep_range(1000, 2000);
  4385. /* igb_down has a dependency on max_frame_size */
  4386. adapter->max_frame_size = max_frame;
  4387. if (netif_running(netdev))
  4388. igb_down(adapter);
  4389. dev_info(&pdev->dev, "changing MTU from %d to %d\n",
  4390. netdev->mtu, new_mtu);
  4391. netdev->mtu = new_mtu;
  4392. if (netif_running(netdev))
  4393. igb_up(adapter);
  4394. else
  4395. igb_reset(adapter);
  4396. clear_bit(__IGB_RESETTING, &adapter->state);
  4397. return 0;
  4398. }
  4399. /**
  4400. * igb_update_stats - Update the board statistics counters
  4401. * @adapter: board private structure
  4402. **/
  4403. void igb_update_stats(struct igb_adapter *adapter,
  4404. struct rtnl_link_stats64 *net_stats)
  4405. {
  4406. struct e1000_hw *hw = &adapter->hw;
  4407. struct pci_dev *pdev = adapter->pdev;
  4408. u32 reg, mpc;
  4409. u16 phy_tmp;
  4410. int i;
  4411. u64 bytes, packets;
  4412. unsigned int start;
  4413. u64 _bytes, _packets;
  4414. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  4415. /* Prevent stats update while adapter is being reset, or if the pci
  4416. * connection is down.
  4417. */
  4418. if (adapter->link_speed == 0)
  4419. return;
  4420. if (pci_channel_offline(pdev))
  4421. return;
  4422. bytes = 0;
  4423. packets = 0;
  4424. rcu_read_lock();
  4425. for (i = 0; i < adapter->num_rx_queues; i++) {
  4426. struct igb_ring *ring = adapter->rx_ring[i];
  4427. u32 rqdpc = rd32(E1000_RQDPC(i));
  4428. if (hw->mac.type >= e1000_i210)
  4429. wr32(E1000_RQDPC(i), 0);
  4430. if (rqdpc) {
  4431. ring->rx_stats.drops += rqdpc;
  4432. net_stats->rx_fifo_errors += rqdpc;
  4433. }
  4434. do {
  4435. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  4436. _bytes = ring->rx_stats.bytes;
  4437. _packets = ring->rx_stats.packets;
  4438. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  4439. bytes += _bytes;
  4440. packets += _packets;
  4441. }
  4442. net_stats->rx_bytes = bytes;
  4443. net_stats->rx_packets = packets;
  4444. bytes = 0;
  4445. packets = 0;
  4446. for (i = 0; i < adapter->num_tx_queues; i++) {
  4447. struct igb_ring *ring = adapter->tx_ring[i];
  4448. do {
  4449. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  4450. _bytes = ring->tx_stats.bytes;
  4451. _packets = ring->tx_stats.packets;
  4452. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  4453. bytes += _bytes;
  4454. packets += _packets;
  4455. }
  4456. net_stats->tx_bytes = bytes;
  4457. net_stats->tx_packets = packets;
  4458. rcu_read_unlock();
  4459. /* read stats registers */
  4460. adapter->stats.crcerrs += rd32(E1000_CRCERRS);
  4461. adapter->stats.gprc += rd32(E1000_GPRC);
  4462. adapter->stats.gorc += rd32(E1000_GORCL);
  4463. rd32(E1000_GORCH); /* clear GORCL */
  4464. adapter->stats.bprc += rd32(E1000_BPRC);
  4465. adapter->stats.mprc += rd32(E1000_MPRC);
  4466. adapter->stats.roc += rd32(E1000_ROC);
  4467. adapter->stats.prc64 += rd32(E1000_PRC64);
  4468. adapter->stats.prc127 += rd32(E1000_PRC127);
  4469. adapter->stats.prc255 += rd32(E1000_PRC255);
  4470. adapter->stats.prc511 += rd32(E1000_PRC511);
  4471. adapter->stats.prc1023 += rd32(E1000_PRC1023);
  4472. adapter->stats.prc1522 += rd32(E1000_PRC1522);
  4473. adapter->stats.symerrs += rd32(E1000_SYMERRS);
  4474. adapter->stats.sec += rd32(E1000_SEC);
  4475. mpc = rd32(E1000_MPC);
  4476. adapter->stats.mpc += mpc;
  4477. net_stats->rx_fifo_errors += mpc;
  4478. adapter->stats.scc += rd32(E1000_SCC);
  4479. adapter->stats.ecol += rd32(E1000_ECOL);
  4480. adapter->stats.mcc += rd32(E1000_MCC);
  4481. adapter->stats.latecol += rd32(E1000_LATECOL);
  4482. adapter->stats.dc += rd32(E1000_DC);
  4483. adapter->stats.rlec += rd32(E1000_RLEC);
  4484. adapter->stats.xonrxc += rd32(E1000_XONRXC);
  4485. adapter->stats.xontxc += rd32(E1000_XONTXC);
  4486. adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
  4487. adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
  4488. adapter->stats.fcruc += rd32(E1000_FCRUC);
  4489. adapter->stats.gptc += rd32(E1000_GPTC);
  4490. adapter->stats.gotc += rd32(E1000_GOTCL);
  4491. rd32(E1000_GOTCH); /* clear GOTCL */
  4492. adapter->stats.rnbc += rd32(E1000_RNBC);
  4493. adapter->stats.ruc += rd32(E1000_RUC);
  4494. adapter->stats.rfc += rd32(E1000_RFC);
  4495. adapter->stats.rjc += rd32(E1000_RJC);
  4496. adapter->stats.tor += rd32(E1000_TORH);
  4497. adapter->stats.tot += rd32(E1000_TOTH);
  4498. adapter->stats.tpr += rd32(E1000_TPR);
  4499. adapter->stats.ptc64 += rd32(E1000_PTC64);
  4500. adapter->stats.ptc127 += rd32(E1000_PTC127);
  4501. adapter->stats.ptc255 += rd32(E1000_PTC255);
  4502. adapter->stats.ptc511 += rd32(E1000_PTC511);
  4503. adapter->stats.ptc1023 += rd32(E1000_PTC1023);
  4504. adapter->stats.ptc1522 += rd32(E1000_PTC1522);
  4505. adapter->stats.mptc += rd32(E1000_MPTC);
  4506. adapter->stats.bptc += rd32(E1000_BPTC);
  4507. adapter->stats.tpt += rd32(E1000_TPT);
  4508. adapter->stats.colc += rd32(E1000_COLC);
  4509. adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
  4510. /* read internal phy specific stats */
  4511. reg = rd32(E1000_CTRL_EXT);
  4512. if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
  4513. adapter->stats.rxerrc += rd32(E1000_RXERRC);
  4514. /* this stat has invalid values on i210/i211 */
  4515. if ((hw->mac.type != e1000_i210) &&
  4516. (hw->mac.type != e1000_i211))
  4517. adapter->stats.tncrs += rd32(E1000_TNCRS);
  4518. }
  4519. adapter->stats.tsctc += rd32(E1000_TSCTC);
  4520. adapter->stats.tsctfc += rd32(E1000_TSCTFC);
  4521. adapter->stats.iac += rd32(E1000_IAC);
  4522. adapter->stats.icrxoc += rd32(E1000_ICRXOC);
  4523. adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
  4524. adapter->stats.icrxatc += rd32(E1000_ICRXATC);
  4525. adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
  4526. adapter->stats.ictxatc += rd32(E1000_ICTXATC);
  4527. adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
  4528. adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
  4529. adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
  4530. /* Fill out the OS statistics structure */
  4531. net_stats->multicast = adapter->stats.mprc;
  4532. net_stats->collisions = adapter->stats.colc;
  4533. /* Rx Errors */
  4534. /* RLEC on some newer hardware can be incorrect so build
  4535. * our own version based on RUC and ROC
  4536. */
  4537. net_stats->rx_errors = adapter->stats.rxerrc +
  4538. adapter->stats.crcerrs + adapter->stats.algnerrc +
  4539. adapter->stats.ruc + adapter->stats.roc +
  4540. adapter->stats.cexterr;
  4541. net_stats->rx_length_errors = adapter->stats.ruc +
  4542. adapter->stats.roc;
  4543. net_stats->rx_crc_errors = adapter->stats.crcerrs;
  4544. net_stats->rx_frame_errors = adapter->stats.algnerrc;
  4545. net_stats->rx_missed_errors = adapter->stats.mpc;
  4546. /* Tx Errors */
  4547. net_stats->tx_errors = adapter->stats.ecol +
  4548. adapter->stats.latecol;
  4549. net_stats->tx_aborted_errors = adapter->stats.ecol;
  4550. net_stats->tx_window_errors = adapter->stats.latecol;
  4551. net_stats->tx_carrier_errors = adapter->stats.tncrs;
  4552. /* Tx Dropped needs to be maintained elsewhere */
  4553. /* Phy Stats */
  4554. if (hw->phy.media_type == e1000_media_type_copper) {
  4555. if ((adapter->link_speed == SPEED_1000) &&
  4556. (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  4557. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  4558. adapter->phy_stats.idle_errors += phy_tmp;
  4559. }
  4560. }
  4561. /* Management Stats */
  4562. adapter->stats.mgptc += rd32(E1000_MGTPTC);
  4563. adapter->stats.mgprc += rd32(E1000_MGTPRC);
  4564. adapter->stats.mgpdc += rd32(E1000_MGTPDC);
  4565. /* OS2BMC Stats */
  4566. reg = rd32(E1000_MANC);
  4567. if (reg & E1000_MANC_EN_BMC2OS) {
  4568. adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
  4569. adapter->stats.o2bspc += rd32(E1000_O2BSPC);
  4570. adapter->stats.b2ospc += rd32(E1000_B2OSPC);
  4571. adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
  4572. }
  4573. }
  4574. static irqreturn_t igb_msix_other(int irq, void *data)
  4575. {
  4576. struct igb_adapter *adapter = data;
  4577. struct e1000_hw *hw = &adapter->hw;
  4578. u32 icr = rd32(E1000_ICR);
  4579. /* reading ICR causes bit 31 of EICR to be cleared */
  4580. if (icr & E1000_ICR_DRSTA)
  4581. schedule_work(&adapter->reset_task);
  4582. if (icr & E1000_ICR_DOUTSYNC) {
  4583. /* HW is reporting DMA is out of sync */
  4584. adapter->stats.doosync++;
  4585. /* The DMA Out of Sync is also indication of a spoof event
  4586. * in IOV mode. Check the Wrong VM Behavior register to
  4587. * see if it is really a spoof event.
  4588. */
  4589. igb_check_wvbr(adapter);
  4590. }
  4591. /* Check for a mailbox event */
  4592. if (icr & E1000_ICR_VMMB)
  4593. igb_msg_task(adapter);
  4594. if (icr & E1000_ICR_LSC) {
  4595. hw->mac.get_link_status = 1;
  4596. /* guard against interrupt when we're going down */
  4597. if (!test_bit(__IGB_DOWN, &adapter->state))
  4598. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  4599. }
  4600. if (icr & E1000_ICR_TS) {
  4601. u32 tsicr = rd32(E1000_TSICR);
  4602. if (tsicr & E1000_TSICR_TXTS) {
  4603. /* acknowledge the interrupt */
  4604. wr32(E1000_TSICR, E1000_TSICR_TXTS);
  4605. /* retrieve hardware timestamp */
  4606. schedule_work(&adapter->ptp_tx_work);
  4607. }
  4608. }
  4609. wr32(E1000_EIMS, adapter->eims_other);
  4610. return IRQ_HANDLED;
  4611. }
  4612. static void igb_write_itr(struct igb_q_vector *q_vector)
  4613. {
  4614. struct igb_adapter *adapter = q_vector->adapter;
  4615. u32 itr_val = q_vector->itr_val & 0x7FFC;
  4616. if (!q_vector->set_itr)
  4617. return;
  4618. if (!itr_val)
  4619. itr_val = 0x4;
  4620. if (adapter->hw.mac.type == e1000_82575)
  4621. itr_val |= itr_val << 16;
  4622. else
  4623. itr_val |= E1000_EITR_CNT_IGNR;
  4624. writel(itr_val, q_vector->itr_register);
  4625. q_vector->set_itr = 0;
  4626. }
  4627. static irqreturn_t igb_msix_ring(int irq, void *data)
  4628. {
  4629. struct igb_q_vector *q_vector = data;
  4630. /* Write the ITR value calculated from the previous interrupt. */
  4631. igb_write_itr(q_vector);
  4632. napi_schedule(&q_vector->napi);
  4633. return IRQ_HANDLED;
  4634. }
  4635. #ifdef CONFIG_IGB_DCA
  4636. static void igb_update_tx_dca(struct igb_adapter *adapter,
  4637. struct igb_ring *tx_ring,
  4638. int cpu)
  4639. {
  4640. struct e1000_hw *hw = &adapter->hw;
  4641. u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
  4642. if (hw->mac.type != e1000_82575)
  4643. txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
  4644. /* We can enable relaxed ordering for reads, but not writes when
  4645. * DCA is enabled. This is due to a known issue in some chipsets
  4646. * which will cause the DCA tag to be cleared.
  4647. */
  4648. txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
  4649. E1000_DCA_TXCTRL_DATA_RRO_EN |
  4650. E1000_DCA_TXCTRL_DESC_DCA_EN;
  4651. wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
  4652. }
  4653. static void igb_update_rx_dca(struct igb_adapter *adapter,
  4654. struct igb_ring *rx_ring,
  4655. int cpu)
  4656. {
  4657. struct e1000_hw *hw = &adapter->hw;
  4658. u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
  4659. if (hw->mac.type != e1000_82575)
  4660. rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
  4661. /* We can enable relaxed ordering for reads, but not writes when
  4662. * DCA is enabled. This is due to a known issue in some chipsets
  4663. * which will cause the DCA tag to be cleared.
  4664. */
  4665. rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
  4666. E1000_DCA_RXCTRL_DESC_DCA_EN;
  4667. wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
  4668. }
  4669. static void igb_update_dca(struct igb_q_vector *q_vector)
  4670. {
  4671. struct igb_adapter *adapter = q_vector->adapter;
  4672. int cpu = get_cpu();
  4673. if (q_vector->cpu == cpu)
  4674. goto out_no_update;
  4675. if (q_vector->tx.ring)
  4676. igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
  4677. if (q_vector->rx.ring)
  4678. igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
  4679. q_vector->cpu = cpu;
  4680. out_no_update:
  4681. put_cpu();
  4682. }
  4683. static void igb_setup_dca(struct igb_adapter *adapter)
  4684. {
  4685. struct e1000_hw *hw = &adapter->hw;
  4686. int i;
  4687. if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
  4688. return;
  4689. /* Always use CB2 mode, difference is masked in the CB driver. */
  4690. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
  4691. for (i = 0; i < adapter->num_q_vectors; i++) {
  4692. adapter->q_vector[i]->cpu = -1;
  4693. igb_update_dca(adapter->q_vector[i]);
  4694. }
  4695. }
  4696. static int __igb_notify_dca(struct device *dev, void *data)
  4697. {
  4698. struct net_device *netdev = dev_get_drvdata(dev);
  4699. struct igb_adapter *adapter = netdev_priv(netdev);
  4700. struct pci_dev *pdev = adapter->pdev;
  4701. struct e1000_hw *hw = &adapter->hw;
  4702. unsigned long event = *(unsigned long *)data;
  4703. switch (event) {
  4704. case DCA_PROVIDER_ADD:
  4705. /* if already enabled, don't do it again */
  4706. if (adapter->flags & IGB_FLAG_DCA_ENABLED)
  4707. break;
  4708. if (dca_add_requester(dev) == 0) {
  4709. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  4710. dev_info(&pdev->dev, "DCA enabled\n");
  4711. igb_setup_dca(adapter);
  4712. break;
  4713. }
  4714. /* Fall Through since DCA is disabled. */
  4715. case DCA_PROVIDER_REMOVE:
  4716. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  4717. /* without this a class_device is left
  4718. * hanging around in the sysfs model
  4719. */
  4720. dca_remove_requester(dev);
  4721. dev_info(&pdev->dev, "DCA disabled\n");
  4722. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  4723. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  4724. }
  4725. break;
  4726. }
  4727. return 0;
  4728. }
  4729. static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
  4730. void *p)
  4731. {
  4732. int ret_val;
  4733. ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
  4734. __igb_notify_dca);
  4735. return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
  4736. }
  4737. #endif /* CONFIG_IGB_DCA */
  4738. #ifdef CONFIG_PCI_IOV
  4739. static int igb_vf_configure(struct igb_adapter *adapter, int vf)
  4740. {
  4741. unsigned char mac_addr[ETH_ALEN];
  4742. eth_zero_addr(mac_addr);
  4743. igb_set_vf_mac(adapter, vf, mac_addr);
  4744. /* By default spoof check is enabled for all VFs */
  4745. adapter->vf_data[vf].spoofchk_enabled = true;
  4746. return 0;
  4747. }
  4748. #endif
  4749. static void igb_ping_all_vfs(struct igb_adapter *adapter)
  4750. {
  4751. struct e1000_hw *hw = &adapter->hw;
  4752. u32 ping;
  4753. int i;
  4754. for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
  4755. ping = E1000_PF_CONTROL_MSG;
  4756. if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
  4757. ping |= E1000_VT_MSGTYPE_CTS;
  4758. igb_write_mbx(hw, &ping, 1, i);
  4759. }
  4760. }
  4761. static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  4762. {
  4763. struct e1000_hw *hw = &adapter->hw;
  4764. u32 vmolr = rd32(E1000_VMOLR(vf));
  4765. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  4766. vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
  4767. IGB_VF_FLAG_MULTI_PROMISC);
  4768. vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  4769. if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
  4770. vmolr |= E1000_VMOLR_MPME;
  4771. vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
  4772. *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
  4773. } else {
  4774. /* if we have hashes and we are clearing a multicast promisc
  4775. * flag we need to write the hashes to the MTA as this step
  4776. * was previously skipped
  4777. */
  4778. if (vf_data->num_vf_mc_hashes > 30) {
  4779. vmolr |= E1000_VMOLR_MPME;
  4780. } else if (vf_data->num_vf_mc_hashes) {
  4781. int j;
  4782. vmolr |= E1000_VMOLR_ROMPE;
  4783. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  4784. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  4785. }
  4786. }
  4787. wr32(E1000_VMOLR(vf), vmolr);
  4788. /* there are flags left unprocessed, likely not supported */
  4789. if (*msgbuf & E1000_VT_MSGINFO_MASK)
  4790. return -EINVAL;
  4791. return 0;
  4792. }
  4793. static int igb_set_vf_multicasts(struct igb_adapter *adapter,
  4794. u32 *msgbuf, u32 vf)
  4795. {
  4796. int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  4797. u16 *hash_list = (u16 *)&msgbuf[1];
  4798. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  4799. int i;
  4800. /* salt away the number of multicast addresses assigned
  4801. * to this VF for later use to restore when the PF multi cast
  4802. * list changes
  4803. */
  4804. vf_data->num_vf_mc_hashes = n;
  4805. /* only up to 30 hash values supported */
  4806. if (n > 30)
  4807. n = 30;
  4808. /* store the hashes for later use */
  4809. for (i = 0; i < n; i++)
  4810. vf_data->vf_mc_hashes[i] = hash_list[i];
  4811. /* Flush and reset the mta with the new values */
  4812. igb_set_rx_mode(adapter->netdev);
  4813. return 0;
  4814. }
  4815. static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
  4816. {
  4817. struct e1000_hw *hw = &adapter->hw;
  4818. struct vf_data_storage *vf_data;
  4819. int i, j;
  4820. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  4821. u32 vmolr = rd32(E1000_VMOLR(i));
  4822. vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  4823. vf_data = &adapter->vf_data[i];
  4824. if ((vf_data->num_vf_mc_hashes > 30) ||
  4825. (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
  4826. vmolr |= E1000_VMOLR_MPME;
  4827. } else if (vf_data->num_vf_mc_hashes) {
  4828. vmolr |= E1000_VMOLR_ROMPE;
  4829. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  4830. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  4831. }
  4832. wr32(E1000_VMOLR(i), vmolr);
  4833. }
  4834. }
  4835. static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
  4836. {
  4837. struct e1000_hw *hw = &adapter->hw;
  4838. u32 pool_mask, reg, vid;
  4839. int i;
  4840. pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
  4841. /* Find the vlan filter for this id */
  4842. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4843. reg = rd32(E1000_VLVF(i));
  4844. /* remove the vf from the pool */
  4845. reg &= ~pool_mask;
  4846. /* if pool is empty then remove entry from vfta */
  4847. if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
  4848. (reg & E1000_VLVF_VLANID_ENABLE)) {
  4849. reg = 0;
  4850. vid = reg & E1000_VLVF_VLANID_MASK;
  4851. igb_vfta_set(hw, vid, false);
  4852. }
  4853. wr32(E1000_VLVF(i), reg);
  4854. }
  4855. adapter->vf_data[vf].vlans_enabled = 0;
  4856. }
  4857. static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
  4858. {
  4859. struct e1000_hw *hw = &adapter->hw;
  4860. u32 reg, i;
  4861. /* The vlvf table only exists on 82576 hardware and newer */
  4862. if (hw->mac.type < e1000_82576)
  4863. return -1;
  4864. /* we only need to do this if VMDq is enabled */
  4865. if (!adapter->vfs_allocated_count)
  4866. return -1;
  4867. /* Find the vlan filter for this id */
  4868. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4869. reg = rd32(E1000_VLVF(i));
  4870. if ((reg & E1000_VLVF_VLANID_ENABLE) &&
  4871. vid == (reg & E1000_VLVF_VLANID_MASK))
  4872. break;
  4873. }
  4874. if (add) {
  4875. if (i == E1000_VLVF_ARRAY_SIZE) {
  4876. /* Did not find a matching VLAN ID entry that was
  4877. * enabled. Search for a free filter entry, i.e.
  4878. * one without the enable bit set
  4879. */
  4880. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4881. reg = rd32(E1000_VLVF(i));
  4882. if (!(reg & E1000_VLVF_VLANID_ENABLE))
  4883. break;
  4884. }
  4885. }
  4886. if (i < E1000_VLVF_ARRAY_SIZE) {
  4887. /* Found an enabled/available entry */
  4888. reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
  4889. /* if !enabled we need to set this up in vfta */
  4890. if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
  4891. /* add VID to filter table */
  4892. igb_vfta_set(hw, vid, true);
  4893. reg |= E1000_VLVF_VLANID_ENABLE;
  4894. }
  4895. reg &= ~E1000_VLVF_VLANID_MASK;
  4896. reg |= vid;
  4897. wr32(E1000_VLVF(i), reg);
  4898. /* do not modify RLPML for PF devices */
  4899. if (vf >= adapter->vfs_allocated_count)
  4900. return 0;
  4901. if (!adapter->vf_data[vf].vlans_enabled) {
  4902. u32 size;
  4903. reg = rd32(E1000_VMOLR(vf));
  4904. size = reg & E1000_VMOLR_RLPML_MASK;
  4905. size += 4;
  4906. reg &= ~E1000_VMOLR_RLPML_MASK;
  4907. reg |= size;
  4908. wr32(E1000_VMOLR(vf), reg);
  4909. }
  4910. adapter->vf_data[vf].vlans_enabled++;
  4911. }
  4912. } else {
  4913. if (i < E1000_VLVF_ARRAY_SIZE) {
  4914. /* remove vf from the pool */
  4915. reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
  4916. /* if pool is empty then remove entry from vfta */
  4917. if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
  4918. reg = 0;
  4919. igb_vfta_set(hw, vid, false);
  4920. }
  4921. wr32(E1000_VLVF(i), reg);
  4922. /* do not modify RLPML for PF devices */
  4923. if (vf >= adapter->vfs_allocated_count)
  4924. return 0;
  4925. adapter->vf_data[vf].vlans_enabled--;
  4926. if (!adapter->vf_data[vf].vlans_enabled) {
  4927. u32 size;
  4928. reg = rd32(E1000_VMOLR(vf));
  4929. size = reg & E1000_VMOLR_RLPML_MASK;
  4930. size -= 4;
  4931. reg &= ~E1000_VMOLR_RLPML_MASK;
  4932. reg |= size;
  4933. wr32(E1000_VMOLR(vf), reg);
  4934. }
  4935. }
  4936. }
  4937. return 0;
  4938. }
  4939. static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
  4940. {
  4941. struct e1000_hw *hw = &adapter->hw;
  4942. if (vid)
  4943. wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
  4944. else
  4945. wr32(E1000_VMVIR(vf), 0);
  4946. }
  4947. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  4948. int vf, u16 vlan, u8 qos)
  4949. {
  4950. int err = 0;
  4951. struct igb_adapter *adapter = netdev_priv(netdev);
  4952. if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
  4953. return -EINVAL;
  4954. if (vlan || qos) {
  4955. err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
  4956. if (err)
  4957. goto out;
  4958. igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
  4959. igb_set_vmolr(adapter, vf, !vlan);
  4960. adapter->vf_data[vf].pf_vlan = vlan;
  4961. adapter->vf_data[vf].pf_qos = qos;
  4962. dev_info(&adapter->pdev->dev,
  4963. "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
  4964. if (test_bit(__IGB_DOWN, &adapter->state)) {
  4965. dev_warn(&adapter->pdev->dev,
  4966. "The VF VLAN has been set, but the PF device is not up.\n");
  4967. dev_warn(&adapter->pdev->dev,
  4968. "Bring the PF device up before attempting to use the VF device.\n");
  4969. }
  4970. } else {
  4971. igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
  4972. false, vf);
  4973. igb_set_vmvir(adapter, vlan, vf);
  4974. igb_set_vmolr(adapter, vf, true);
  4975. adapter->vf_data[vf].pf_vlan = 0;
  4976. adapter->vf_data[vf].pf_qos = 0;
  4977. }
  4978. out:
  4979. return err;
  4980. }
  4981. static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
  4982. {
  4983. struct e1000_hw *hw = &adapter->hw;
  4984. int i;
  4985. u32 reg;
  4986. /* Find the vlan filter for this id */
  4987. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4988. reg = rd32(E1000_VLVF(i));
  4989. if ((reg & E1000_VLVF_VLANID_ENABLE) &&
  4990. vid == (reg & E1000_VLVF_VLANID_MASK))
  4991. break;
  4992. }
  4993. if (i >= E1000_VLVF_ARRAY_SIZE)
  4994. i = -1;
  4995. return i;
  4996. }
  4997. static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  4998. {
  4999. struct e1000_hw *hw = &adapter->hw;
  5000. int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  5001. int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
  5002. int err = 0;
  5003. /* If in promiscuous mode we need to make sure the PF also has
  5004. * the VLAN filter set.
  5005. */
  5006. if (add && (adapter->netdev->flags & IFF_PROMISC))
  5007. err = igb_vlvf_set(adapter, vid, add,
  5008. adapter->vfs_allocated_count);
  5009. if (err)
  5010. goto out;
  5011. err = igb_vlvf_set(adapter, vid, add, vf);
  5012. if (err)
  5013. goto out;
  5014. /* Go through all the checks to see if the VLAN filter should
  5015. * be wiped completely.
  5016. */
  5017. if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
  5018. u32 vlvf, bits;
  5019. int regndx = igb_find_vlvf_entry(adapter, vid);
  5020. if (regndx < 0)
  5021. goto out;
  5022. /* See if any other pools are set for this VLAN filter
  5023. * entry other than the PF.
  5024. */
  5025. vlvf = bits = rd32(E1000_VLVF(regndx));
  5026. bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
  5027. adapter->vfs_allocated_count);
  5028. /* If the filter was removed then ensure PF pool bit
  5029. * is cleared if the PF only added itself to the pool
  5030. * because the PF is in promiscuous mode.
  5031. */
  5032. if ((vlvf & VLAN_VID_MASK) == vid &&
  5033. !test_bit(vid, adapter->active_vlans) &&
  5034. !bits)
  5035. igb_vlvf_set(adapter, vid, add,
  5036. adapter->vfs_allocated_count);
  5037. }
  5038. out:
  5039. return err;
  5040. }
  5041. static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
  5042. {
  5043. /* clear flags - except flag that indicates PF has set the MAC */
  5044. adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
  5045. adapter->vf_data[vf].last_nack = jiffies;
  5046. /* reset offloads to defaults */
  5047. igb_set_vmolr(adapter, vf, true);
  5048. /* reset vlans for device */
  5049. igb_clear_vf_vfta(adapter, vf);
  5050. if (adapter->vf_data[vf].pf_vlan)
  5051. igb_ndo_set_vf_vlan(adapter->netdev, vf,
  5052. adapter->vf_data[vf].pf_vlan,
  5053. adapter->vf_data[vf].pf_qos);
  5054. else
  5055. igb_clear_vf_vfta(adapter, vf);
  5056. /* reset multicast table array for vf */
  5057. adapter->vf_data[vf].num_vf_mc_hashes = 0;
  5058. /* Flush and reset the mta with the new values */
  5059. igb_set_rx_mode(adapter->netdev);
  5060. }
  5061. static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
  5062. {
  5063. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5064. /* clear mac address as we were hotplug removed/added */
  5065. if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
  5066. eth_zero_addr(vf_mac);
  5067. /* process remaining reset events */
  5068. igb_vf_reset(adapter, vf);
  5069. }
  5070. static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
  5071. {
  5072. struct e1000_hw *hw = &adapter->hw;
  5073. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5074. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  5075. u32 reg, msgbuf[3];
  5076. u8 *addr = (u8 *)(&msgbuf[1]);
  5077. /* process all the same items cleared in a function level reset */
  5078. igb_vf_reset(adapter, vf);
  5079. /* set vf mac address */
  5080. igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
  5081. /* enable transmit and receive for vf */
  5082. reg = rd32(E1000_VFTE);
  5083. wr32(E1000_VFTE, reg | (1 << vf));
  5084. reg = rd32(E1000_VFRE);
  5085. wr32(E1000_VFRE, reg | (1 << vf));
  5086. adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
  5087. /* reply to reset with ack and vf mac address */
  5088. msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
  5089. memcpy(addr, vf_mac, ETH_ALEN);
  5090. igb_write_mbx(hw, msgbuf, 3, vf);
  5091. }
  5092. static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
  5093. {
  5094. /* The VF MAC Address is stored in a packed array of bytes
  5095. * starting at the second 32 bit word of the msg array
  5096. */
  5097. unsigned char *addr = (char *)&msg[1];
  5098. int err = -1;
  5099. if (is_valid_ether_addr(addr))
  5100. err = igb_set_vf_mac(adapter, vf, addr);
  5101. return err;
  5102. }
  5103. static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
  5104. {
  5105. struct e1000_hw *hw = &adapter->hw;
  5106. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5107. u32 msg = E1000_VT_MSGTYPE_NACK;
  5108. /* if device isn't clear to send it shouldn't be reading either */
  5109. if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
  5110. time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
  5111. igb_write_mbx(hw, &msg, 1, vf);
  5112. vf_data->last_nack = jiffies;
  5113. }
  5114. }
  5115. static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
  5116. {
  5117. struct pci_dev *pdev = adapter->pdev;
  5118. u32 msgbuf[E1000_VFMAILBOX_SIZE];
  5119. struct e1000_hw *hw = &adapter->hw;
  5120. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5121. s32 retval;
  5122. retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
  5123. if (retval) {
  5124. /* if receive failed revoke VF CTS stats and restart init */
  5125. dev_err(&pdev->dev, "Error receiving message from VF\n");
  5126. vf_data->flags &= ~IGB_VF_FLAG_CTS;
  5127. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5128. return;
  5129. goto out;
  5130. }
  5131. /* this is a message we already processed, do nothing */
  5132. if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
  5133. return;
  5134. /* until the vf completes a reset it should not be
  5135. * allowed to start any configuration.
  5136. */
  5137. if (msgbuf[0] == E1000_VF_RESET) {
  5138. igb_vf_reset_msg(adapter, vf);
  5139. return;
  5140. }
  5141. if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
  5142. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5143. return;
  5144. retval = -1;
  5145. goto out;
  5146. }
  5147. switch ((msgbuf[0] & 0xFFFF)) {
  5148. case E1000_VF_SET_MAC_ADDR:
  5149. retval = -EINVAL;
  5150. if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
  5151. retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
  5152. else
  5153. dev_warn(&pdev->dev,
  5154. "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
  5155. vf);
  5156. break;
  5157. case E1000_VF_SET_PROMISC:
  5158. retval = igb_set_vf_promisc(adapter, msgbuf, vf);
  5159. break;
  5160. case E1000_VF_SET_MULTICAST:
  5161. retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
  5162. break;
  5163. case E1000_VF_SET_LPE:
  5164. retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
  5165. break;
  5166. case E1000_VF_SET_VLAN:
  5167. retval = -1;
  5168. if (vf_data->pf_vlan)
  5169. dev_warn(&pdev->dev,
  5170. "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
  5171. vf);
  5172. else
  5173. retval = igb_set_vf_vlan(adapter, msgbuf, vf);
  5174. break;
  5175. default:
  5176. dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
  5177. retval = -1;
  5178. break;
  5179. }
  5180. msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
  5181. out:
  5182. /* notify the VF of the results of what it sent us */
  5183. if (retval)
  5184. msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
  5185. else
  5186. msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
  5187. igb_write_mbx(hw, msgbuf, 1, vf);
  5188. }
  5189. static void igb_msg_task(struct igb_adapter *adapter)
  5190. {
  5191. struct e1000_hw *hw = &adapter->hw;
  5192. u32 vf;
  5193. for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
  5194. /* process any reset requests */
  5195. if (!igb_check_for_rst(hw, vf))
  5196. igb_vf_reset_event(adapter, vf);
  5197. /* process any messages pending */
  5198. if (!igb_check_for_msg(hw, vf))
  5199. igb_rcv_msg_from_vf(adapter, vf);
  5200. /* process any acks */
  5201. if (!igb_check_for_ack(hw, vf))
  5202. igb_rcv_ack_from_vf(adapter, vf);
  5203. }
  5204. }
  5205. /**
  5206. * igb_set_uta - Set unicast filter table address
  5207. * @adapter: board private structure
  5208. *
  5209. * The unicast table address is a register array of 32-bit registers.
  5210. * The table is meant to be used in a way similar to how the MTA is used
  5211. * however due to certain limitations in the hardware it is necessary to
  5212. * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
  5213. * enable bit to allow vlan tag stripping when promiscuous mode is enabled
  5214. **/
  5215. static void igb_set_uta(struct igb_adapter *adapter)
  5216. {
  5217. struct e1000_hw *hw = &adapter->hw;
  5218. int i;
  5219. /* The UTA table only exists on 82576 hardware and newer */
  5220. if (hw->mac.type < e1000_82576)
  5221. return;
  5222. /* we only need to do this if VMDq is enabled */
  5223. if (!adapter->vfs_allocated_count)
  5224. return;
  5225. for (i = 0; i < hw->mac.uta_reg_count; i++)
  5226. array_wr32(E1000_UTA, i, ~0);
  5227. }
  5228. /**
  5229. * igb_intr_msi - Interrupt Handler
  5230. * @irq: interrupt number
  5231. * @data: pointer to a network interface device structure
  5232. **/
  5233. static irqreturn_t igb_intr_msi(int irq, void *data)
  5234. {
  5235. struct igb_adapter *adapter = data;
  5236. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5237. struct e1000_hw *hw = &adapter->hw;
  5238. /* read ICR disables interrupts using IAM */
  5239. u32 icr = rd32(E1000_ICR);
  5240. igb_write_itr(q_vector);
  5241. if (icr & E1000_ICR_DRSTA)
  5242. schedule_work(&adapter->reset_task);
  5243. if (icr & E1000_ICR_DOUTSYNC) {
  5244. /* HW is reporting DMA is out of sync */
  5245. adapter->stats.doosync++;
  5246. }
  5247. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5248. hw->mac.get_link_status = 1;
  5249. if (!test_bit(__IGB_DOWN, &adapter->state))
  5250. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5251. }
  5252. if (icr & E1000_ICR_TS) {
  5253. u32 tsicr = rd32(E1000_TSICR);
  5254. if (tsicr & E1000_TSICR_TXTS) {
  5255. /* acknowledge the interrupt */
  5256. wr32(E1000_TSICR, E1000_TSICR_TXTS);
  5257. /* retrieve hardware timestamp */
  5258. schedule_work(&adapter->ptp_tx_work);
  5259. }
  5260. }
  5261. napi_schedule(&q_vector->napi);
  5262. return IRQ_HANDLED;
  5263. }
  5264. /**
  5265. * igb_intr - Legacy Interrupt Handler
  5266. * @irq: interrupt number
  5267. * @data: pointer to a network interface device structure
  5268. **/
  5269. static irqreturn_t igb_intr(int irq, void *data)
  5270. {
  5271. struct igb_adapter *adapter = data;
  5272. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5273. struct e1000_hw *hw = &adapter->hw;
  5274. /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
  5275. * need for the IMC write
  5276. */
  5277. u32 icr = rd32(E1000_ICR);
  5278. /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
  5279. * not set, then the adapter didn't send an interrupt
  5280. */
  5281. if (!(icr & E1000_ICR_INT_ASSERTED))
  5282. return IRQ_NONE;
  5283. igb_write_itr(q_vector);
  5284. if (icr & E1000_ICR_DRSTA)
  5285. schedule_work(&adapter->reset_task);
  5286. if (icr & E1000_ICR_DOUTSYNC) {
  5287. /* HW is reporting DMA is out of sync */
  5288. adapter->stats.doosync++;
  5289. }
  5290. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5291. hw->mac.get_link_status = 1;
  5292. /* guard against interrupt when we're going down */
  5293. if (!test_bit(__IGB_DOWN, &adapter->state))
  5294. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5295. }
  5296. if (icr & E1000_ICR_TS) {
  5297. u32 tsicr = rd32(E1000_TSICR);
  5298. if (tsicr & E1000_TSICR_TXTS) {
  5299. /* acknowledge the interrupt */
  5300. wr32(E1000_TSICR, E1000_TSICR_TXTS);
  5301. /* retrieve hardware timestamp */
  5302. schedule_work(&adapter->ptp_tx_work);
  5303. }
  5304. }
  5305. napi_schedule(&q_vector->napi);
  5306. return IRQ_HANDLED;
  5307. }
  5308. static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
  5309. {
  5310. struct igb_adapter *adapter = q_vector->adapter;
  5311. struct e1000_hw *hw = &adapter->hw;
  5312. if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
  5313. (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
  5314. if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
  5315. igb_set_itr(q_vector);
  5316. else
  5317. igb_update_ring_itr(q_vector);
  5318. }
  5319. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  5320. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  5321. wr32(E1000_EIMS, q_vector->eims_value);
  5322. else
  5323. igb_irq_enable(adapter);
  5324. }
  5325. }
  5326. /**
  5327. * igb_poll - NAPI Rx polling callback
  5328. * @napi: napi polling structure
  5329. * @budget: count of how many packets we should handle
  5330. **/
  5331. static int igb_poll(struct napi_struct *napi, int budget)
  5332. {
  5333. struct igb_q_vector *q_vector = container_of(napi,
  5334. struct igb_q_vector,
  5335. napi);
  5336. bool clean_complete = true;
  5337. #ifdef CONFIG_IGB_DCA
  5338. if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
  5339. igb_update_dca(q_vector);
  5340. #endif
  5341. if (q_vector->tx.ring)
  5342. clean_complete = igb_clean_tx_irq(q_vector);
  5343. if (q_vector->rx.ring)
  5344. clean_complete &= igb_clean_rx_irq(q_vector, budget);
  5345. /* If all work not completed, return budget and keep polling */
  5346. if (!clean_complete)
  5347. return budget;
  5348. /* If not enough Rx work done, exit the polling mode */
  5349. napi_complete(napi);
  5350. igb_ring_irq_enable(q_vector);
  5351. return 0;
  5352. }
  5353. /**
  5354. * igb_clean_tx_irq - Reclaim resources after transmit completes
  5355. * @q_vector: pointer to q_vector containing needed info
  5356. *
  5357. * returns true if ring is completely cleaned
  5358. **/
  5359. static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
  5360. {
  5361. struct igb_adapter *adapter = q_vector->adapter;
  5362. struct igb_ring *tx_ring = q_vector->tx.ring;
  5363. struct igb_tx_buffer *tx_buffer;
  5364. union e1000_adv_tx_desc *tx_desc;
  5365. unsigned int total_bytes = 0, total_packets = 0;
  5366. unsigned int budget = q_vector->tx.work_limit;
  5367. unsigned int i = tx_ring->next_to_clean;
  5368. if (test_bit(__IGB_DOWN, &adapter->state))
  5369. return true;
  5370. tx_buffer = &tx_ring->tx_buffer_info[i];
  5371. tx_desc = IGB_TX_DESC(tx_ring, i);
  5372. i -= tx_ring->count;
  5373. do {
  5374. union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
  5375. /* if next_to_watch is not set then there is no work pending */
  5376. if (!eop_desc)
  5377. break;
  5378. /* prevent any other reads prior to eop_desc */
  5379. read_barrier_depends();
  5380. /* if DD is not set pending work has not been completed */
  5381. if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
  5382. break;
  5383. /* clear next_to_watch to prevent false hangs */
  5384. tx_buffer->next_to_watch = NULL;
  5385. /* update the statistics for this packet */
  5386. total_bytes += tx_buffer->bytecount;
  5387. total_packets += tx_buffer->gso_segs;
  5388. /* free the skb */
  5389. dev_kfree_skb_any(tx_buffer->skb);
  5390. /* unmap skb header data */
  5391. dma_unmap_single(tx_ring->dev,
  5392. dma_unmap_addr(tx_buffer, dma),
  5393. dma_unmap_len(tx_buffer, len),
  5394. DMA_TO_DEVICE);
  5395. /* clear tx_buffer data */
  5396. tx_buffer->skb = NULL;
  5397. dma_unmap_len_set(tx_buffer, len, 0);
  5398. /* clear last DMA location and unmap remaining buffers */
  5399. while (tx_desc != eop_desc) {
  5400. tx_buffer++;
  5401. tx_desc++;
  5402. i++;
  5403. if (unlikely(!i)) {
  5404. i -= tx_ring->count;
  5405. tx_buffer = tx_ring->tx_buffer_info;
  5406. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5407. }
  5408. /* unmap any remaining paged data */
  5409. if (dma_unmap_len(tx_buffer, len)) {
  5410. dma_unmap_page(tx_ring->dev,
  5411. dma_unmap_addr(tx_buffer, dma),
  5412. dma_unmap_len(tx_buffer, len),
  5413. DMA_TO_DEVICE);
  5414. dma_unmap_len_set(tx_buffer, len, 0);
  5415. }
  5416. }
  5417. /* move us one more past the eop_desc for start of next pkt */
  5418. tx_buffer++;
  5419. tx_desc++;
  5420. i++;
  5421. if (unlikely(!i)) {
  5422. i -= tx_ring->count;
  5423. tx_buffer = tx_ring->tx_buffer_info;
  5424. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5425. }
  5426. /* issue prefetch for next Tx descriptor */
  5427. prefetch(tx_desc);
  5428. /* update budget accounting */
  5429. budget--;
  5430. } while (likely(budget));
  5431. netdev_tx_completed_queue(txring_txq(tx_ring),
  5432. total_packets, total_bytes);
  5433. i += tx_ring->count;
  5434. tx_ring->next_to_clean = i;
  5435. u64_stats_update_begin(&tx_ring->tx_syncp);
  5436. tx_ring->tx_stats.bytes += total_bytes;
  5437. tx_ring->tx_stats.packets += total_packets;
  5438. u64_stats_update_end(&tx_ring->tx_syncp);
  5439. q_vector->tx.total_bytes += total_bytes;
  5440. q_vector->tx.total_packets += total_packets;
  5441. if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
  5442. struct e1000_hw *hw = &adapter->hw;
  5443. /* Detect a transmit hang in hardware, this serializes the
  5444. * check with the clearing of time_stamp and movement of i
  5445. */
  5446. clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  5447. if (tx_buffer->next_to_watch &&
  5448. time_after(jiffies, tx_buffer->time_stamp +
  5449. (adapter->tx_timeout_factor * HZ)) &&
  5450. !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
  5451. /* detected Tx unit hang */
  5452. dev_err(tx_ring->dev,
  5453. "Detected Tx Unit Hang\n"
  5454. " Tx Queue <%d>\n"
  5455. " TDH <%x>\n"
  5456. " TDT <%x>\n"
  5457. " next_to_use <%x>\n"
  5458. " next_to_clean <%x>\n"
  5459. "buffer_info[next_to_clean]\n"
  5460. " time_stamp <%lx>\n"
  5461. " next_to_watch <%p>\n"
  5462. " jiffies <%lx>\n"
  5463. " desc.status <%x>\n",
  5464. tx_ring->queue_index,
  5465. rd32(E1000_TDH(tx_ring->reg_idx)),
  5466. readl(tx_ring->tail),
  5467. tx_ring->next_to_use,
  5468. tx_ring->next_to_clean,
  5469. tx_buffer->time_stamp,
  5470. tx_buffer->next_to_watch,
  5471. jiffies,
  5472. tx_buffer->next_to_watch->wb.status);
  5473. netif_stop_subqueue(tx_ring->netdev,
  5474. tx_ring->queue_index);
  5475. /* we are about to reset, no point in enabling stuff */
  5476. return true;
  5477. }
  5478. }
  5479. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  5480. if (unlikely(total_packets &&
  5481. netif_carrier_ok(tx_ring->netdev) &&
  5482. igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
  5483. /* Make sure that anybody stopping the queue after this
  5484. * sees the new next_to_clean.
  5485. */
  5486. smp_mb();
  5487. if (__netif_subqueue_stopped(tx_ring->netdev,
  5488. tx_ring->queue_index) &&
  5489. !(test_bit(__IGB_DOWN, &adapter->state))) {
  5490. netif_wake_subqueue(tx_ring->netdev,
  5491. tx_ring->queue_index);
  5492. u64_stats_update_begin(&tx_ring->tx_syncp);
  5493. tx_ring->tx_stats.restart_queue++;
  5494. u64_stats_update_end(&tx_ring->tx_syncp);
  5495. }
  5496. }
  5497. return !!budget;
  5498. }
  5499. /**
  5500. * igb_reuse_rx_page - page flip buffer and store it back on the ring
  5501. * @rx_ring: rx descriptor ring to store buffers on
  5502. * @old_buff: donor buffer to have page reused
  5503. *
  5504. * Synchronizes page for reuse by the adapter
  5505. **/
  5506. static void igb_reuse_rx_page(struct igb_ring *rx_ring,
  5507. struct igb_rx_buffer *old_buff)
  5508. {
  5509. struct igb_rx_buffer *new_buff;
  5510. u16 nta = rx_ring->next_to_alloc;
  5511. new_buff = &rx_ring->rx_buffer_info[nta];
  5512. /* update, and store next to alloc */
  5513. nta++;
  5514. rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
  5515. /* transfer page from old buffer to new buffer */
  5516. memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
  5517. /* sync the buffer for use by the device */
  5518. dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
  5519. old_buff->page_offset,
  5520. IGB_RX_BUFSZ,
  5521. DMA_FROM_DEVICE);
  5522. }
  5523. static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
  5524. struct page *page,
  5525. unsigned int truesize)
  5526. {
  5527. /* avoid re-using remote pages */
  5528. if (unlikely(page_to_nid(page) != numa_node_id()))
  5529. return false;
  5530. #if (PAGE_SIZE < 8192)
  5531. /* if we are only owner of page we can reuse it */
  5532. if (unlikely(page_count(page) != 1))
  5533. return false;
  5534. /* flip page offset to other buffer */
  5535. rx_buffer->page_offset ^= IGB_RX_BUFSZ;
  5536. /* since we are the only owner of the page and we need to
  5537. * increment it, just set the value to 2 in order to avoid
  5538. * an unnecessary locked operation
  5539. */
  5540. atomic_set(&page->_count, 2);
  5541. #else
  5542. /* move offset up to the next cache line */
  5543. rx_buffer->page_offset += truesize;
  5544. if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
  5545. return false;
  5546. /* bump ref count on page before it is given to the stack */
  5547. get_page(page);
  5548. #endif
  5549. return true;
  5550. }
  5551. /**
  5552. * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
  5553. * @rx_ring: rx descriptor ring to transact packets on
  5554. * @rx_buffer: buffer containing page to add
  5555. * @rx_desc: descriptor containing length of buffer written by hardware
  5556. * @skb: sk_buff to place the data into
  5557. *
  5558. * This function will add the data contained in rx_buffer->page to the skb.
  5559. * This is done either through a direct copy if the data in the buffer is
  5560. * less than the skb header size, otherwise it will just attach the page as
  5561. * a frag to the skb.
  5562. *
  5563. * The function will then update the page offset if necessary and return
  5564. * true if the buffer can be reused by the adapter.
  5565. **/
  5566. static bool igb_add_rx_frag(struct igb_ring *rx_ring,
  5567. struct igb_rx_buffer *rx_buffer,
  5568. union e1000_adv_rx_desc *rx_desc,
  5569. struct sk_buff *skb)
  5570. {
  5571. struct page *page = rx_buffer->page;
  5572. unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
  5573. #if (PAGE_SIZE < 8192)
  5574. unsigned int truesize = IGB_RX_BUFSZ;
  5575. #else
  5576. unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
  5577. #endif
  5578. if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
  5579. unsigned char *va = page_address(page) + rx_buffer->page_offset;
  5580. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
  5581. igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
  5582. va += IGB_TS_HDR_LEN;
  5583. size -= IGB_TS_HDR_LEN;
  5584. }
  5585. memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
  5586. /* we can reuse buffer as-is, just make sure it is local */
  5587. if (likely(page_to_nid(page) == numa_node_id()))
  5588. return true;
  5589. /* this page cannot be reused so discard it */
  5590. put_page(page);
  5591. return false;
  5592. }
  5593. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  5594. rx_buffer->page_offset, size, truesize);
  5595. return igb_can_reuse_rx_page(rx_buffer, page, truesize);
  5596. }
  5597. static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
  5598. union e1000_adv_rx_desc *rx_desc,
  5599. struct sk_buff *skb)
  5600. {
  5601. struct igb_rx_buffer *rx_buffer;
  5602. struct page *page;
  5603. rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
  5604. page = rx_buffer->page;
  5605. prefetchw(page);
  5606. if (likely(!skb)) {
  5607. void *page_addr = page_address(page) +
  5608. rx_buffer->page_offset;
  5609. /* prefetch first cache line of first page */
  5610. prefetch(page_addr);
  5611. #if L1_CACHE_BYTES < 128
  5612. prefetch(page_addr + L1_CACHE_BYTES);
  5613. #endif
  5614. /* allocate a skb to store the frags */
  5615. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  5616. IGB_RX_HDR_LEN);
  5617. if (unlikely(!skb)) {
  5618. rx_ring->rx_stats.alloc_failed++;
  5619. return NULL;
  5620. }
  5621. /* we will be copying header into skb->data in
  5622. * pskb_may_pull so it is in our interest to prefetch
  5623. * it now to avoid a possible cache miss
  5624. */
  5625. prefetchw(skb->data);
  5626. }
  5627. /* we are reusing so sync this buffer for CPU use */
  5628. dma_sync_single_range_for_cpu(rx_ring->dev,
  5629. rx_buffer->dma,
  5630. rx_buffer->page_offset,
  5631. IGB_RX_BUFSZ,
  5632. DMA_FROM_DEVICE);
  5633. /* pull page into skb */
  5634. if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
  5635. /* hand second half of page back to the ring */
  5636. igb_reuse_rx_page(rx_ring, rx_buffer);
  5637. } else {
  5638. /* we are not reusing the buffer so unmap it */
  5639. dma_unmap_page(rx_ring->dev, rx_buffer->dma,
  5640. PAGE_SIZE, DMA_FROM_DEVICE);
  5641. }
  5642. /* clear contents of rx_buffer */
  5643. rx_buffer->page = NULL;
  5644. return skb;
  5645. }
  5646. static inline void igb_rx_checksum(struct igb_ring *ring,
  5647. union e1000_adv_rx_desc *rx_desc,
  5648. struct sk_buff *skb)
  5649. {
  5650. skb_checksum_none_assert(skb);
  5651. /* Ignore Checksum bit is set */
  5652. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
  5653. return;
  5654. /* Rx checksum disabled via ethtool */
  5655. if (!(ring->netdev->features & NETIF_F_RXCSUM))
  5656. return;
  5657. /* TCP/UDP checksum error bit is set */
  5658. if (igb_test_staterr(rx_desc,
  5659. E1000_RXDEXT_STATERR_TCPE |
  5660. E1000_RXDEXT_STATERR_IPE)) {
  5661. /* work around errata with sctp packets where the TCPE aka
  5662. * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
  5663. * packets, (aka let the stack check the crc32c)
  5664. */
  5665. if (!((skb->len == 60) &&
  5666. test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
  5667. u64_stats_update_begin(&ring->rx_syncp);
  5668. ring->rx_stats.csum_err++;
  5669. u64_stats_update_end(&ring->rx_syncp);
  5670. }
  5671. /* let the stack verify checksum errors */
  5672. return;
  5673. }
  5674. /* It must be a TCP or UDP packet with a valid checksum */
  5675. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
  5676. E1000_RXD_STAT_UDPCS))
  5677. skb->ip_summed = CHECKSUM_UNNECESSARY;
  5678. dev_dbg(ring->dev, "cksum success: bits %08X\n",
  5679. le32_to_cpu(rx_desc->wb.upper.status_error));
  5680. }
  5681. static inline void igb_rx_hash(struct igb_ring *ring,
  5682. union e1000_adv_rx_desc *rx_desc,
  5683. struct sk_buff *skb)
  5684. {
  5685. if (ring->netdev->features & NETIF_F_RXHASH)
  5686. skb_set_hash(skb,
  5687. le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
  5688. PKT_HASH_TYPE_L3);
  5689. }
  5690. /**
  5691. * igb_is_non_eop - process handling of non-EOP buffers
  5692. * @rx_ring: Rx ring being processed
  5693. * @rx_desc: Rx descriptor for current buffer
  5694. * @skb: current socket buffer containing buffer in progress
  5695. *
  5696. * This function updates next to clean. If the buffer is an EOP buffer
  5697. * this function exits returning false, otherwise it will place the
  5698. * sk_buff in the next buffer to be chained and return true indicating
  5699. * that this is in fact a non-EOP buffer.
  5700. **/
  5701. static bool igb_is_non_eop(struct igb_ring *rx_ring,
  5702. union e1000_adv_rx_desc *rx_desc)
  5703. {
  5704. u32 ntc = rx_ring->next_to_clean + 1;
  5705. /* fetch, update, and store next to clean */
  5706. ntc = (ntc < rx_ring->count) ? ntc : 0;
  5707. rx_ring->next_to_clean = ntc;
  5708. prefetch(IGB_RX_DESC(rx_ring, ntc));
  5709. if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
  5710. return false;
  5711. return true;
  5712. }
  5713. /**
  5714. * igb_get_headlen - determine size of header for LRO/GRO
  5715. * @data: pointer to the start of the headers
  5716. * @max_len: total length of section to find headers in
  5717. *
  5718. * This function is meant to determine the length of headers that will
  5719. * be recognized by hardware for LRO, and GRO offloads. The main
  5720. * motivation of doing this is to only perform one pull for IPv4 TCP
  5721. * packets so that we can do basic things like calculating the gso_size
  5722. * based on the average data per packet.
  5723. **/
  5724. static unsigned int igb_get_headlen(unsigned char *data,
  5725. unsigned int max_len)
  5726. {
  5727. union {
  5728. unsigned char *network;
  5729. /* l2 headers */
  5730. struct ethhdr *eth;
  5731. struct vlan_hdr *vlan;
  5732. /* l3 headers */
  5733. struct iphdr *ipv4;
  5734. struct ipv6hdr *ipv6;
  5735. } hdr;
  5736. __be16 protocol;
  5737. u8 nexthdr = 0; /* default to not TCP */
  5738. u8 hlen;
  5739. /* this should never happen, but better safe than sorry */
  5740. if (max_len < ETH_HLEN)
  5741. return max_len;
  5742. /* initialize network frame pointer */
  5743. hdr.network = data;
  5744. /* set first protocol and move network header forward */
  5745. protocol = hdr.eth->h_proto;
  5746. hdr.network += ETH_HLEN;
  5747. /* handle any vlan tag if present */
  5748. if (protocol == htons(ETH_P_8021Q)) {
  5749. if ((hdr.network - data) > (max_len - VLAN_HLEN))
  5750. return max_len;
  5751. protocol = hdr.vlan->h_vlan_encapsulated_proto;
  5752. hdr.network += VLAN_HLEN;
  5753. }
  5754. /* handle L3 protocols */
  5755. if (protocol == htons(ETH_P_IP)) {
  5756. if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
  5757. return max_len;
  5758. /* access ihl as a u8 to avoid unaligned access on ia64 */
  5759. hlen = (hdr.network[0] & 0x0F) << 2;
  5760. /* verify hlen meets minimum size requirements */
  5761. if (hlen < sizeof(struct iphdr))
  5762. return hdr.network - data;
  5763. /* record next protocol if header is present */
  5764. if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
  5765. nexthdr = hdr.ipv4->protocol;
  5766. } else if (protocol == htons(ETH_P_IPV6)) {
  5767. if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
  5768. return max_len;
  5769. /* record next protocol */
  5770. nexthdr = hdr.ipv6->nexthdr;
  5771. hlen = sizeof(struct ipv6hdr);
  5772. } else {
  5773. return hdr.network - data;
  5774. }
  5775. /* relocate pointer to start of L4 header */
  5776. hdr.network += hlen;
  5777. /* finally sort out TCP */
  5778. if (nexthdr == IPPROTO_TCP) {
  5779. if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
  5780. return max_len;
  5781. /* access doff as a u8 to avoid unaligned access on ia64 */
  5782. hlen = (hdr.network[12] & 0xF0) >> 2;
  5783. /* verify hlen meets minimum size requirements */
  5784. if (hlen < sizeof(struct tcphdr))
  5785. return hdr.network - data;
  5786. hdr.network += hlen;
  5787. } else if (nexthdr == IPPROTO_UDP) {
  5788. if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
  5789. return max_len;
  5790. hdr.network += sizeof(struct udphdr);
  5791. }
  5792. /* If everything has gone correctly hdr.network should be the
  5793. * data section of the packet and will be the end of the header.
  5794. * If not then it probably represents the end of the last recognized
  5795. * header.
  5796. */
  5797. if ((hdr.network - data) < max_len)
  5798. return hdr.network - data;
  5799. else
  5800. return max_len;
  5801. }
  5802. /**
  5803. * igb_pull_tail - igb specific version of skb_pull_tail
  5804. * @rx_ring: rx descriptor ring packet is being transacted on
  5805. * @rx_desc: pointer to the EOP Rx descriptor
  5806. * @skb: pointer to current skb being adjusted
  5807. *
  5808. * This function is an igb specific version of __pskb_pull_tail. The
  5809. * main difference between this version and the original function is that
  5810. * this function can make several assumptions about the state of things
  5811. * that allow for significant optimizations versus the standard function.
  5812. * As a result we can do things like drop a frag and maintain an accurate
  5813. * truesize for the skb.
  5814. */
  5815. static void igb_pull_tail(struct igb_ring *rx_ring,
  5816. union e1000_adv_rx_desc *rx_desc,
  5817. struct sk_buff *skb)
  5818. {
  5819. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  5820. unsigned char *va;
  5821. unsigned int pull_len;
  5822. /* it is valid to use page_address instead of kmap since we are
  5823. * working with pages allocated out of the lomem pool per
  5824. * alloc_page(GFP_ATOMIC)
  5825. */
  5826. va = skb_frag_address(frag);
  5827. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
  5828. /* retrieve timestamp from buffer */
  5829. igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
  5830. /* update pointers to remove timestamp header */
  5831. skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
  5832. frag->page_offset += IGB_TS_HDR_LEN;
  5833. skb->data_len -= IGB_TS_HDR_LEN;
  5834. skb->len -= IGB_TS_HDR_LEN;
  5835. /* move va to start of packet data */
  5836. va += IGB_TS_HDR_LEN;
  5837. }
  5838. /* we need the header to contain the greater of either ETH_HLEN or
  5839. * 60 bytes if the skb->len is less than 60 for skb_pad.
  5840. */
  5841. pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
  5842. /* align pull length to size of long to optimize memcpy performance */
  5843. skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
  5844. /* update all of the pointers */
  5845. skb_frag_size_sub(frag, pull_len);
  5846. frag->page_offset += pull_len;
  5847. skb->data_len -= pull_len;
  5848. skb->tail += pull_len;
  5849. }
  5850. /**
  5851. * igb_cleanup_headers - Correct corrupted or empty headers
  5852. * @rx_ring: rx descriptor ring packet is being transacted on
  5853. * @rx_desc: pointer to the EOP Rx descriptor
  5854. * @skb: pointer to current skb being fixed
  5855. *
  5856. * Address the case where we are pulling data in on pages only
  5857. * and as such no data is present in the skb header.
  5858. *
  5859. * In addition if skb is not at least 60 bytes we need to pad it so that
  5860. * it is large enough to qualify as a valid Ethernet frame.
  5861. *
  5862. * Returns true if an error was encountered and skb was freed.
  5863. **/
  5864. static bool igb_cleanup_headers(struct igb_ring *rx_ring,
  5865. union e1000_adv_rx_desc *rx_desc,
  5866. struct sk_buff *skb)
  5867. {
  5868. if (unlikely((igb_test_staterr(rx_desc,
  5869. E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
  5870. struct net_device *netdev = rx_ring->netdev;
  5871. if (!(netdev->features & NETIF_F_RXALL)) {
  5872. dev_kfree_skb_any(skb);
  5873. return true;
  5874. }
  5875. }
  5876. /* place header in linear portion of buffer */
  5877. if (skb_is_nonlinear(skb))
  5878. igb_pull_tail(rx_ring, rx_desc, skb);
  5879. /* if skb_pad returns an error the skb was freed */
  5880. if (unlikely(skb->len < 60)) {
  5881. int pad_len = 60 - skb->len;
  5882. if (skb_pad(skb, pad_len))
  5883. return true;
  5884. __skb_put(skb, pad_len);
  5885. }
  5886. return false;
  5887. }
  5888. /**
  5889. * igb_process_skb_fields - Populate skb header fields from Rx descriptor
  5890. * @rx_ring: rx descriptor ring packet is being transacted on
  5891. * @rx_desc: pointer to the EOP Rx descriptor
  5892. * @skb: pointer to current skb being populated
  5893. *
  5894. * This function checks the ring, descriptor, and packet information in
  5895. * order to populate the hash, checksum, VLAN, timestamp, protocol, and
  5896. * other fields within the skb.
  5897. **/
  5898. static void igb_process_skb_fields(struct igb_ring *rx_ring,
  5899. union e1000_adv_rx_desc *rx_desc,
  5900. struct sk_buff *skb)
  5901. {
  5902. struct net_device *dev = rx_ring->netdev;
  5903. igb_rx_hash(rx_ring, rx_desc, skb);
  5904. igb_rx_checksum(rx_ring, rx_desc, skb);
  5905. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
  5906. !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
  5907. igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
  5908. if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  5909. igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
  5910. u16 vid;
  5911. if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
  5912. test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
  5913. vid = be16_to_cpu(rx_desc->wb.upper.vlan);
  5914. else
  5915. vid = le16_to_cpu(rx_desc->wb.upper.vlan);
  5916. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  5917. }
  5918. skb_record_rx_queue(skb, rx_ring->queue_index);
  5919. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  5920. }
  5921. static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
  5922. {
  5923. struct igb_ring *rx_ring = q_vector->rx.ring;
  5924. struct sk_buff *skb = rx_ring->skb;
  5925. unsigned int total_bytes = 0, total_packets = 0;
  5926. u16 cleaned_count = igb_desc_unused(rx_ring);
  5927. while (likely(total_packets < budget)) {
  5928. union e1000_adv_rx_desc *rx_desc;
  5929. /* return some buffers to hardware, one at a time is too slow */
  5930. if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
  5931. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  5932. cleaned_count = 0;
  5933. }
  5934. rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
  5935. if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
  5936. break;
  5937. /* This memory barrier is needed to keep us from reading
  5938. * any other fields out of the rx_desc until we know the
  5939. * RXD_STAT_DD bit is set
  5940. */
  5941. rmb();
  5942. /* retrieve a buffer from the ring */
  5943. skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
  5944. /* exit if we failed to retrieve a buffer */
  5945. if (!skb)
  5946. break;
  5947. cleaned_count++;
  5948. /* fetch next buffer in frame if non-eop */
  5949. if (igb_is_non_eop(rx_ring, rx_desc))
  5950. continue;
  5951. /* verify the packet layout is correct */
  5952. if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
  5953. skb = NULL;
  5954. continue;
  5955. }
  5956. /* probably a little skewed due to removing CRC */
  5957. total_bytes += skb->len;
  5958. /* populate checksum, timestamp, VLAN, and protocol */
  5959. igb_process_skb_fields(rx_ring, rx_desc, skb);
  5960. napi_gro_receive(&q_vector->napi, skb);
  5961. /* reset skb pointer */
  5962. skb = NULL;
  5963. /* update budget accounting */
  5964. total_packets++;
  5965. }
  5966. /* place incomplete frames back on ring for completion */
  5967. rx_ring->skb = skb;
  5968. u64_stats_update_begin(&rx_ring->rx_syncp);
  5969. rx_ring->rx_stats.packets += total_packets;
  5970. rx_ring->rx_stats.bytes += total_bytes;
  5971. u64_stats_update_end(&rx_ring->rx_syncp);
  5972. q_vector->rx.total_packets += total_packets;
  5973. q_vector->rx.total_bytes += total_bytes;
  5974. if (cleaned_count)
  5975. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  5976. return total_packets < budget;
  5977. }
  5978. static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
  5979. struct igb_rx_buffer *bi)
  5980. {
  5981. struct page *page = bi->page;
  5982. dma_addr_t dma;
  5983. /* since we are recycling buffers we should seldom need to alloc */
  5984. if (likely(page))
  5985. return true;
  5986. /* alloc new page for storage */
  5987. page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
  5988. if (unlikely(!page)) {
  5989. rx_ring->rx_stats.alloc_failed++;
  5990. return false;
  5991. }
  5992. /* map page for use */
  5993. dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  5994. /* if mapping failed free memory back to system since
  5995. * there isn't much point in holding memory we can't use
  5996. */
  5997. if (dma_mapping_error(rx_ring->dev, dma)) {
  5998. __free_page(page);
  5999. rx_ring->rx_stats.alloc_failed++;
  6000. return false;
  6001. }
  6002. bi->dma = dma;
  6003. bi->page = page;
  6004. bi->page_offset = 0;
  6005. return true;
  6006. }
  6007. /**
  6008. * igb_alloc_rx_buffers - Replace used receive buffers; packet split
  6009. * @adapter: address of board private structure
  6010. **/
  6011. void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
  6012. {
  6013. union e1000_adv_rx_desc *rx_desc;
  6014. struct igb_rx_buffer *bi;
  6015. u16 i = rx_ring->next_to_use;
  6016. /* nothing to do */
  6017. if (!cleaned_count)
  6018. return;
  6019. rx_desc = IGB_RX_DESC(rx_ring, i);
  6020. bi = &rx_ring->rx_buffer_info[i];
  6021. i -= rx_ring->count;
  6022. do {
  6023. if (!igb_alloc_mapped_page(rx_ring, bi))
  6024. break;
  6025. /* Refresh the desc even if buffer_addrs didn't change
  6026. * because each write-back erases this info.
  6027. */
  6028. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
  6029. rx_desc++;
  6030. bi++;
  6031. i++;
  6032. if (unlikely(!i)) {
  6033. rx_desc = IGB_RX_DESC(rx_ring, 0);
  6034. bi = rx_ring->rx_buffer_info;
  6035. i -= rx_ring->count;
  6036. }
  6037. /* clear the hdr_addr for the next_to_use descriptor */
  6038. rx_desc->read.hdr_addr = 0;
  6039. cleaned_count--;
  6040. } while (cleaned_count);
  6041. i += rx_ring->count;
  6042. if (rx_ring->next_to_use != i) {
  6043. /* record the next descriptor to use */
  6044. rx_ring->next_to_use = i;
  6045. /* update next to alloc since we have filled the ring */
  6046. rx_ring->next_to_alloc = i;
  6047. /* Force memory writes to complete before letting h/w
  6048. * know there are new descriptors to fetch. (Only
  6049. * applicable for weak-ordered memory model archs,
  6050. * such as IA-64).
  6051. */
  6052. wmb();
  6053. writel(i, rx_ring->tail);
  6054. }
  6055. }
  6056. /**
  6057. * igb_mii_ioctl -
  6058. * @netdev:
  6059. * @ifreq:
  6060. * @cmd:
  6061. **/
  6062. static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6063. {
  6064. struct igb_adapter *adapter = netdev_priv(netdev);
  6065. struct mii_ioctl_data *data = if_mii(ifr);
  6066. if (adapter->hw.phy.media_type != e1000_media_type_copper)
  6067. return -EOPNOTSUPP;
  6068. switch (cmd) {
  6069. case SIOCGMIIPHY:
  6070. data->phy_id = adapter->hw.phy.addr;
  6071. break;
  6072. case SIOCGMIIREG:
  6073. if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  6074. &data->val_out))
  6075. return -EIO;
  6076. break;
  6077. case SIOCSMIIREG:
  6078. default:
  6079. return -EOPNOTSUPP;
  6080. }
  6081. return 0;
  6082. }
  6083. /**
  6084. * igb_ioctl -
  6085. * @netdev:
  6086. * @ifreq:
  6087. * @cmd:
  6088. **/
  6089. static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6090. {
  6091. switch (cmd) {
  6092. case SIOCGMIIPHY:
  6093. case SIOCGMIIREG:
  6094. case SIOCSMIIREG:
  6095. return igb_mii_ioctl(netdev, ifr, cmd);
  6096. case SIOCGHWTSTAMP:
  6097. return igb_ptp_get_ts_config(netdev, ifr);
  6098. case SIOCSHWTSTAMP:
  6099. return igb_ptp_set_ts_config(netdev, ifr);
  6100. default:
  6101. return -EOPNOTSUPP;
  6102. }
  6103. }
  6104. s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6105. {
  6106. struct igb_adapter *adapter = hw->back;
  6107. if (pcie_capability_read_word(adapter->pdev, reg, value))
  6108. return -E1000_ERR_CONFIG;
  6109. return 0;
  6110. }
  6111. s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6112. {
  6113. struct igb_adapter *adapter = hw->back;
  6114. if (pcie_capability_write_word(adapter->pdev, reg, *value))
  6115. return -E1000_ERR_CONFIG;
  6116. return 0;
  6117. }
  6118. static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
  6119. {
  6120. struct igb_adapter *adapter = netdev_priv(netdev);
  6121. struct e1000_hw *hw = &adapter->hw;
  6122. u32 ctrl, rctl;
  6123. bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
  6124. if (enable) {
  6125. /* enable VLAN tag insert/strip */
  6126. ctrl = rd32(E1000_CTRL);
  6127. ctrl |= E1000_CTRL_VME;
  6128. wr32(E1000_CTRL, ctrl);
  6129. /* Disable CFI check */
  6130. rctl = rd32(E1000_RCTL);
  6131. rctl &= ~E1000_RCTL_CFIEN;
  6132. wr32(E1000_RCTL, rctl);
  6133. } else {
  6134. /* disable VLAN tag insert/strip */
  6135. ctrl = rd32(E1000_CTRL);
  6136. ctrl &= ~E1000_CTRL_VME;
  6137. wr32(E1000_CTRL, ctrl);
  6138. }
  6139. igb_rlpml_set(adapter);
  6140. }
  6141. static int igb_vlan_rx_add_vid(struct net_device *netdev,
  6142. __be16 proto, u16 vid)
  6143. {
  6144. struct igb_adapter *adapter = netdev_priv(netdev);
  6145. struct e1000_hw *hw = &adapter->hw;
  6146. int pf_id = adapter->vfs_allocated_count;
  6147. /* attempt to add filter to vlvf array */
  6148. igb_vlvf_set(adapter, vid, true, pf_id);
  6149. /* add the filter since PF can receive vlans w/o entry in vlvf */
  6150. igb_vfta_set(hw, vid, true);
  6151. set_bit(vid, adapter->active_vlans);
  6152. return 0;
  6153. }
  6154. static int igb_vlan_rx_kill_vid(struct net_device *netdev,
  6155. __be16 proto, u16 vid)
  6156. {
  6157. struct igb_adapter *adapter = netdev_priv(netdev);
  6158. struct e1000_hw *hw = &adapter->hw;
  6159. int pf_id = adapter->vfs_allocated_count;
  6160. s32 err;
  6161. /* remove vlan from VLVF table array */
  6162. err = igb_vlvf_set(adapter, vid, false, pf_id);
  6163. /* if vid was not present in VLVF just remove it from table */
  6164. if (err)
  6165. igb_vfta_set(hw, vid, false);
  6166. clear_bit(vid, adapter->active_vlans);
  6167. return 0;
  6168. }
  6169. static void igb_restore_vlan(struct igb_adapter *adapter)
  6170. {
  6171. u16 vid;
  6172. igb_vlan_mode(adapter->netdev, adapter->netdev->features);
  6173. for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
  6174. igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
  6175. }
  6176. int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
  6177. {
  6178. struct pci_dev *pdev = adapter->pdev;
  6179. struct e1000_mac_info *mac = &adapter->hw.mac;
  6180. mac->autoneg = 0;
  6181. /* Make sure dplx is at most 1 bit and lsb of speed is not set
  6182. * for the switch() below to work
  6183. */
  6184. if ((spd & 1) || (dplx & ~1))
  6185. goto err_inval;
  6186. /* Fiber NIC's only allow 1000 gbps Full duplex
  6187. * and 100Mbps Full duplex for 100baseFx sfp
  6188. */
  6189. if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
  6190. switch (spd + dplx) {
  6191. case SPEED_10 + DUPLEX_HALF:
  6192. case SPEED_10 + DUPLEX_FULL:
  6193. case SPEED_100 + DUPLEX_HALF:
  6194. goto err_inval;
  6195. default:
  6196. break;
  6197. }
  6198. }
  6199. switch (spd + dplx) {
  6200. case SPEED_10 + DUPLEX_HALF:
  6201. mac->forced_speed_duplex = ADVERTISE_10_HALF;
  6202. break;
  6203. case SPEED_10 + DUPLEX_FULL:
  6204. mac->forced_speed_duplex = ADVERTISE_10_FULL;
  6205. break;
  6206. case SPEED_100 + DUPLEX_HALF:
  6207. mac->forced_speed_duplex = ADVERTISE_100_HALF;
  6208. break;
  6209. case SPEED_100 + DUPLEX_FULL:
  6210. mac->forced_speed_duplex = ADVERTISE_100_FULL;
  6211. break;
  6212. case SPEED_1000 + DUPLEX_FULL:
  6213. mac->autoneg = 1;
  6214. adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
  6215. break;
  6216. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  6217. default:
  6218. goto err_inval;
  6219. }
  6220. /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
  6221. adapter->hw.phy.mdix = AUTO_ALL_MODES;
  6222. return 0;
  6223. err_inval:
  6224. dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
  6225. return -EINVAL;
  6226. }
  6227. static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
  6228. bool runtime)
  6229. {
  6230. struct net_device *netdev = pci_get_drvdata(pdev);
  6231. struct igb_adapter *adapter = netdev_priv(netdev);
  6232. struct e1000_hw *hw = &adapter->hw;
  6233. u32 ctrl, rctl, status;
  6234. u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
  6235. #ifdef CONFIG_PM
  6236. int retval = 0;
  6237. #endif
  6238. netif_device_detach(netdev);
  6239. if (netif_running(netdev))
  6240. __igb_close(netdev, true);
  6241. igb_clear_interrupt_scheme(adapter);
  6242. #ifdef CONFIG_PM
  6243. retval = pci_save_state(pdev);
  6244. if (retval)
  6245. return retval;
  6246. #endif
  6247. status = rd32(E1000_STATUS);
  6248. if (status & E1000_STATUS_LU)
  6249. wufc &= ~E1000_WUFC_LNKC;
  6250. if (wufc) {
  6251. igb_setup_rctl(adapter);
  6252. igb_set_rx_mode(netdev);
  6253. /* turn on all-multi mode if wake on multicast is enabled */
  6254. if (wufc & E1000_WUFC_MC) {
  6255. rctl = rd32(E1000_RCTL);
  6256. rctl |= E1000_RCTL_MPE;
  6257. wr32(E1000_RCTL, rctl);
  6258. }
  6259. ctrl = rd32(E1000_CTRL);
  6260. /* advertise wake from D3Cold */
  6261. #define E1000_CTRL_ADVD3WUC 0x00100000
  6262. /* phy power management enable */
  6263. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  6264. ctrl |= E1000_CTRL_ADVD3WUC;
  6265. wr32(E1000_CTRL, ctrl);
  6266. /* Allow time for pending master requests to run */
  6267. igb_disable_pcie_master(hw);
  6268. wr32(E1000_WUC, E1000_WUC_PME_EN);
  6269. wr32(E1000_WUFC, wufc);
  6270. } else {
  6271. wr32(E1000_WUC, 0);
  6272. wr32(E1000_WUFC, 0);
  6273. }
  6274. *enable_wake = wufc || adapter->en_mng_pt;
  6275. if (!*enable_wake)
  6276. igb_power_down_link(adapter);
  6277. else
  6278. igb_power_up_link(adapter);
  6279. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  6280. * would have already happened in close and is redundant.
  6281. */
  6282. igb_release_hw_control(adapter);
  6283. pci_disable_device(pdev);
  6284. return 0;
  6285. }
  6286. #ifdef CONFIG_PM
  6287. #ifdef CONFIG_PM_SLEEP
  6288. static int igb_suspend(struct device *dev)
  6289. {
  6290. int retval;
  6291. bool wake;
  6292. struct pci_dev *pdev = to_pci_dev(dev);
  6293. retval = __igb_shutdown(pdev, &wake, 0);
  6294. if (retval)
  6295. return retval;
  6296. if (wake) {
  6297. pci_prepare_to_sleep(pdev);
  6298. } else {
  6299. pci_wake_from_d3(pdev, false);
  6300. pci_set_power_state(pdev, PCI_D3hot);
  6301. }
  6302. return 0;
  6303. }
  6304. #endif /* CONFIG_PM_SLEEP */
  6305. static int igb_resume(struct device *dev)
  6306. {
  6307. struct pci_dev *pdev = to_pci_dev(dev);
  6308. struct net_device *netdev = pci_get_drvdata(pdev);
  6309. struct igb_adapter *adapter = netdev_priv(netdev);
  6310. struct e1000_hw *hw = &adapter->hw;
  6311. u32 err;
  6312. pci_set_power_state(pdev, PCI_D0);
  6313. pci_restore_state(pdev);
  6314. pci_save_state(pdev);
  6315. err = pci_enable_device_mem(pdev);
  6316. if (err) {
  6317. dev_err(&pdev->dev,
  6318. "igb: Cannot enable PCI device from suspend\n");
  6319. return err;
  6320. }
  6321. pci_set_master(pdev);
  6322. pci_enable_wake(pdev, PCI_D3hot, 0);
  6323. pci_enable_wake(pdev, PCI_D3cold, 0);
  6324. if (igb_init_interrupt_scheme(adapter, true)) {
  6325. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6326. return -ENOMEM;
  6327. }
  6328. igb_reset(adapter);
  6329. /* let the f/w know that the h/w is now under the control of the
  6330. * driver.
  6331. */
  6332. igb_get_hw_control(adapter);
  6333. wr32(E1000_WUS, ~0);
  6334. if (netdev->flags & IFF_UP) {
  6335. rtnl_lock();
  6336. err = __igb_open(netdev, true);
  6337. rtnl_unlock();
  6338. if (err)
  6339. return err;
  6340. }
  6341. netif_device_attach(netdev);
  6342. return 0;
  6343. }
  6344. #ifdef CONFIG_PM_RUNTIME
  6345. static int igb_runtime_idle(struct device *dev)
  6346. {
  6347. struct pci_dev *pdev = to_pci_dev(dev);
  6348. struct net_device *netdev = pci_get_drvdata(pdev);
  6349. struct igb_adapter *adapter = netdev_priv(netdev);
  6350. if (!igb_has_link(adapter))
  6351. pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
  6352. return -EBUSY;
  6353. }
  6354. static int igb_runtime_suspend(struct device *dev)
  6355. {
  6356. struct pci_dev *pdev = to_pci_dev(dev);
  6357. int retval;
  6358. bool wake;
  6359. retval = __igb_shutdown(pdev, &wake, 1);
  6360. if (retval)
  6361. return retval;
  6362. if (wake) {
  6363. pci_prepare_to_sleep(pdev);
  6364. } else {
  6365. pci_wake_from_d3(pdev, false);
  6366. pci_set_power_state(pdev, PCI_D3hot);
  6367. }
  6368. return 0;
  6369. }
  6370. static int igb_runtime_resume(struct device *dev)
  6371. {
  6372. return igb_resume(dev);
  6373. }
  6374. #endif /* CONFIG_PM_RUNTIME */
  6375. #endif
  6376. static void igb_shutdown(struct pci_dev *pdev)
  6377. {
  6378. bool wake;
  6379. __igb_shutdown(pdev, &wake, 0);
  6380. if (system_state == SYSTEM_POWER_OFF) {
  6381. pci_wake_from_d3(pdev, wake);
  6382. pci_set_power_state(pdev, PCI_D3hot);
  6383. }
  6384. }
  6385. #ifdef CONFIG_PCI_IOV
  6386. static int igb_sriov_reinit(struct pci_dev *dev)
  6387. {
  6388. struct net_device *netdev = pci_get_drvdata(dev);
  6389. struct igb_adapter *adapter = netdev_priv(netdev);
  6390. struct pci_dev *pdev = adapter->pdev;
  6391. rtnl_lock();
  6392. if (netif_running(netdev))
  6393. igb_close(netdev);
  6394. igb_clear_interrupt_scheme(adapter);
  6395. igb_init_queue_configuration(adapter);
  6396. if (igb_init_interrupt_scheme(adapter, true)) {
  6397. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6398. return -ENOMEM;
  6399. }
  6400. if (netif_running(netdev))
  6401. igb_open(netdev);
  6402. rtnl_unlock();
  6403. return 0;
  6404. }
  6405. static int igb_pci_disable_sriov(struct pci_dev *dev)
  6406. {
  6407. int err = igb_disable_sriov(dev);
  6408. if (!err)
  6409. err = igb_sriov_reinit(dev);
  6410. return err;
  6411. }
  6412. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
  6413. {
  6414. int err = igb_enable_sriov(dev, num_vfs);
  6415. if (err)
  6416. goto out;
  6417. err = igb_sriov_reinit(dev);
  6418. if (!err)
  6419. return num_vfs;
  6420. out:
  6421. return err;
  6422. }
  6423. #endif
  6424. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
  6425. {
  6426. #ifdef CONFIG_PCI_IOV
  6427. if (num_vfs == 0)
  6428. return igb_pci_disable_sriov(dev);
  6429. else
  6430. return igb_pci_enable_sriov(dev, num_vfs);
  6431. #endif
  6432. return 0;
  6433. }
  6434. #ifdef CONFIG_NET_POLL_CONTROLLER
  6435. /* Polling 'interrupt' - used by things like netconsole to send skbs
  6436. * without having to re-enable interrupts. It's not called while
  6437. * the interrupt routine is executing.
  6438. */
  6439. static void igb_netpoll(struct net_device *netdev)
  6440. {
  6441. struct igb_adapter *adapter = netdev_priv(netdev);
  6442. struct e1000_hw *hw = &adapter->hw;
  6443. struct igb_q_vector *q_vector;
  6444. int i;
  6445. for (i = 0; i < adapter->num_q_vectors; i++) {
  6446. q_vector = adapter->q_vector[i];
  6447. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  6448. wr32(E1000_EIMC, q_vector->eims_value);
  6449. else
  6450. igb_irq_disable(adapter);
  6451. napi_schedule(&q_vector->napi);
  6452. }
  6453. }
  6454. #endif /* CONFIG_NET_POLL_CONTROLLER */
  6455. /**
  6456. * igb_io_error_detected - called when PCI error is detected
  6457. * @pdev: Pointer to PCI device
  6458. * @state: The current pci connection state
  6459. *
  6460. * This function is called after a PCI bus error affecting
  6461. * this device has been detected.
  6462. **/
  6463. static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
  6464. pci_channel_state_t state)
  6465. {
  6466. struct net_device *netdev = pci_get_drvdata(pdev);
  6467. struct igb_adapter *adapter = netdev_priv(netdev);
  6468. netif_device_detach(netdev);
  6469. if (state == pci_channel_io_perm_failure)
  6470. return PCI_ERS_RESULT_DISCONNECT;
  6471. if (netif_running(netdev))
  6472. igb_down(adapter);
  6473. pci_disable_device(pdev);
  6474. /* Request a slot slot reset. */
  6475. return PCI_ERS_RESULT_NEED_RESET;
  6476. }
  6477. /**
  6478. * igb_io_slot_reset - called after the pci bus has been reset.
  6479. * @pdev: Pointer to PCI device
  6480. *
  6481. * Restart the card from scratch, as if from a cold-boot. Implementation
  6482. * resembles the first-half of the igb_resume routine.
  6483. **/
  6484. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
  6485. {
  6486. struct net_device *netdev = pci_get_drvdata(pdev);
  6487. struct igb_adapter *adapter = netdev_priv(netdev);
  6488. struct e1000_hw *hw = &adapter->hw;
  6489. pci_ers_result_t result;
  6490. int err;
  6491. if (pci_enable_device_mem(pdev)) {
  6492. dev_err(&pdev->dev,
  6493. "Cannot re-enable PCI device after reset.\n");
  6494. result = PCI_ERS_RESULT_DISCONNECT;
  6495. } else {
  6496. pci_set_master(pdev);
  6497. pci_restore_state(pdev);
  6498. pci_save_state(pdev);
  6499. pci_enable_wake(pdev, PCI_D3hot, 0);
  6500. pci_enable_wake(pdev, PCI_D3cold, 0);
  6501. igb_reset(adapter);
  6502. wr32(E1000_WUS, ~0);
  6503. result = PCI_ERS_RESULT_RECOVERED;
  6504. }
  6505. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6506. if (err) {
  6507. dev_err(&pdev->dev,
  6508. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  6509. err);
  6510. /* non-fatal, continue */
  6511. }
  6512. return result;
  6513. }
  6514. /**
  6515. * igb_io_resume - called when traffic can start flowing again.
  6516. * @pdev: Pointer to PCI device
  6517. *
  6518. * This callback is called when the error recovery driver tells us that
  6519. * its OK to resume normal operation. Implementation resembles the
  6520. * second-half of the igb_resume routine.
  6521. */
  6522. static void igb_io_resume(struct pci_dev *pdev)
  6523. {
  6524. struct net_device *netdev = pci_get_drvdata(pdev);
  6525. struct igb_adapter *adapter = netdev_priv(netdev);
  6526. if (netif_running(netdev)) {
  6527. if (igb_up(adapter)) {
  6528. dev_err(&pdev->dev, "igb_up failed after reset\n");
  6529. return;
  6530. }
  6531. }
  6532. netif_device_attach(netdev);
  6533. /* let the f/w know that the h/w is now under the control of the
  6534. * driver.
  6535. */
  6536. igb_get_hw_control(adapter);
  6537. }
  6538. static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
  6539. u8 qsel)
  6540. {
  6541. u32 rar_low, rar_high;
  6542. struct e1000_hw *hw = &adapter->hw;
  6543. /* HW expects these in little endian so we reverse the byte order
  6544. * from network order (big endian) to little endian
  6545. */
  6546. rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
  6547. ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
  6548. rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
  6549. /* Indicate to hardware the Address is Valid. */
  6550. rar_high |= E1000_RAH_AV;
  6551. if (hw->mac.type == e1000_82575)
  6552. rar_high |= E1000_RAH_POOL_1 * qsel;
  6553. else
  6554. rar_high |= E1000_RAH_POOL_1 << qsel;
  6555. wr32(E1000_RAL(index), rar_low);
  6556. wrfl();
  6557. wr32(E1000_RAH(index), rar_high);
  6558. wrfl();
  6559. }
  6560. static int igb_set_vf_mac(struct igb_adapter *adapter,
  6561. int vf, unsigned char *mac_addr)
  6562. {
  6563. struct e1000_hw *hw = &adapter->hw;
  6564. /* VF MAC addresses start at end of receive addresses and moves
  6565. * towards the first, as a result a collision should not be possible
  6566. */
  6567. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  6568. memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
  6569. igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
  6570. return 0;
  6571. }
  6572. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
  6573. {
  6574. struct igb_adapter *adapter = netdev_priv(netdev);
  6575. if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
  6576. return -EINVAL;
  6577. adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
  6578. dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
  6579. dev_info(&adapter->pdev->dev,
  6580. "Reload the VF driver to make this change effective.");
  6581. if (test_bit(__IGB_DOWN, &adapter->state)) {
  6582. dev_warn(&adapter->pdev->dev,
  6583. "The VF MAC address has been set, but the PF device is not up.\n");
  6584. dev_warn(&adapter->pdev->dev,
  6585. "Bring the PF device up before attempting to use the VF device.\n");
  6586. }
  6587. return igb_set_vf_mac(adapter, vf, mac);
  6588. }
  6589. static int igb_link_mbps(int internal_link_speed)
  6590. {
  6591. switch (internal_link_speed) {
  6592. case SPEED_100:
  6593. return 100;
  6594. case SPEED_1000:
  6595. return 1000;
  6596. default:
  6597. return 0;
  6598. }
  6599. }
  6600. static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
  6601. int link_speed)
  6602. {
  6603. int rf_dec, rf_int;
  6604. u32 bcnrc_val;
  6605. if (tx_rate != 0) {
  6606. /* Calculate the rate factor values to set */
  6607. rf_int = link_speed / tx_rate;
  6608. rf_dec = (link_speed - (rf_int * tx_rate));
  6609. rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
  6610. tx_rate;
  6611. bcnrc_val = E1000_RTTBCNRC_RS_ENA;
  6612. bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
  6613. E1000_RTTBCNRC_RF_INT_MASK);
  6614. bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
  6615. } else {
  6616. bcnrc_val = 0;
  6617. }
  6618. wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
  6619. /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
  6620. * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
  6621. */
  6622. wr32(E1000_RTTBCNRM, 0x14);
  6623. wr32(E1000_RTTBCNRC, bcnrc_val);
  6624. }
  6625. static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
  6626. {
  6627. int actual_link_speed, i;
  6628. bool reset_rate = false;
  6629. /* VF TX rate limit was not set or not supported */
  6630. if ((adapter->vf_rate_link_speed == 0) ||
  6631. (adapter->hw.mac.type != e1000_82576))
  6632. return;
  6633. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6634. if (actual_link_speed != adapter->vf_rate_link_speed) {
  6635. reset_rate = true;
  6636. adapter->vf_rate_link_speed = 0;
  6637. dev_info(&adapter->pdev->dev,
  6638. "Link speed has been changed. VF Transmit rate is disabled\n");
  6639. }
  6640. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  6641. if (reset_rate)
  6642. adapter->vf_data[i].tx_rate = 0;
  6643. igb_set_vf_rate_limit(&adapter->hw, i,
  6644. adapter->vf_data[i].tx_rate,
  6645. actual_link_speed);
  6646. }
  6647. }
  6648. static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
  6649. {
  6650. struct igb_adapter *adapter = netdev_priv(netdev);
  6651. struct e1000_hw *hw = &adapter->hw;
  6652. int actual_link_speed;
  6653. if (hw->mac.type != e1000_82576)
  6654. return -EOPNOTSUPP;
  6655. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6656. if ((vf >= adapter->vfs_allocated_count) ||
  6657. (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
  6658. (tx_rate < 0) || (tx_rate > actual_link_speed))
  6659. return -EINVAL;
  6660. adapter->vf_rate_link_speed = actual_link_speed;
  6661. adapter->vf_data[vf].tx_rate = (u16)tx_rate;
  6662. igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
  6663. return 0;
  6664. }
  6665. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  6666. bool setting)
  6667. {
  6668. struct igb_adapter *adapter = netdev_priv(netdev);
  6669. struct e1000_hw *hw = &adapter->hw;
  6670. u32 reg_val, reg_offset;
  6671. if (!adapter->vfs_allocated_count)
  6672. return -EOPNOTSUPP;
  6673. if (vf >= adapter->vfs_allocated_count)
  6674. return -EINVAL;
  6675. reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
  6676. reg_val = rd32(reg_offset);
  6677. if (setting)
  6678. reg_val |= ((1 << vf) |
  6679. (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
  6680. else
  6681. reg_val &= ~((1 << vf) |
  6682. (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
  6683. wr32(reg_offset, reg_val);
  6684. adapter->vf_data[vf].spoofchk_enabled = setting;
  6685. return E1000_SUCCESS;
  6686. }
  6687. static int igb_ndo_get_vf_config(struct net_device *netdev,
  6688. int vf, struct ifla_vf_info *ivi)
  6689. {
  6690. struct igb_adapter *adapter = netdev_priv(netdev);
  6691. if (vf >= adapter->vfs_allocated_count)
  6692. return -EINVAL;
  6693. ivi->vf = vf;
  6694. memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
  6695. ivi->tx_rate = adapter->vf_data[vf].tx_rate;
  6696. ivi->vlan = adapter->vf_data[vf].pf_vlan;
  6697. ivi->qos = adapter->vf_data[vf].pf_qos;
  6698. ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
  6699. return 0;
  6700. }
  6701. static void igb_vmm_control(struct igb_adapter *adapter)
  6702. {
  6703. struct e1000_hw *hw = &adapter->hw;
  6704. u32 reg;
  6705. switch (hw->mac.type) {
  6706. case e1000_82575:
  6707. case e1000_i210:
  6708. case e1000_i211:
  6709. case e1000_i354:
  6710. default:
  6711. /* replication is not supported for 82575 */
  6712. return;
  6713. case e1000_82576:
  6714. /* notify HW that the MAC is adding vlan tags */
  6715. reg = rd32(E1000_DTXCTL);
  6716. reg |= E1000_DTXCTL_VLAN_ADDED;
  6717. wr32(E1000_DTXCTL, reg);
  6718. /* Fall through */
  6719. case e1000_82580:
  6720. /* enable replication vlan tag stripping */
  6721. reg = rd32(E1000_RPLOLR);
  6722. reg |= E1000_RPLOLR_STRVLAN;
  6723. wr32(E1000_RPLOLR, reg);
  6724. /* Fall through */
  6725. case e1000_i350:
  6726. /* none of the above registers are supported by i350 */
  6727. break;
  6728. }
  6729. if (adapter->vfs_allocated_count) {
  6730. igb_vmdq_set_loopback_pf(hw, true);
  6731. igb_vmdq_set_replication_pf(hw, true);
  6732. igb_vmdq_set_anti_spoofing_pf(hw, true,
  6733. adapter->vfs_allocated_count);
  6734. } else {
  6735. igb_vmdq_set_loopback_pf(hw, false);
  6736. igb_vmdq_set_replication_pf(hw, false);
  6737. }
  6738. }
  6739. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
  6740. {
  6741. struct e1000_hw *hw = &adapter->hw;
  6742. u32 dmac_thr;
  6743. u16 hwm;
  6744. if (hw->mac.type > e1000_82580) {
  6745. if (adapter->flags & IGB_FLAG_DMAC) {
  6746. u32 reg;
  6747. /* force threshold to 0. */
  6748. wr32(E1000_DMCTXTH, 0);
  6749. /* DMA Coalescing high water mark needs to be greater
  6750. * than the Rx threshold. Set hwm to PBA - max frame
  6751. * size in 16B units, capping it at PBA - 6KB.
  6752. */
  6753. hwm = 64 * pba - adapter->max_frame_size / 16;
  6754. if (hwm < 64 * (pba - 6))
  6755. hwm = 64 * (pba - 6);
  6756. reg = rd32(E1000_FCRTC);
  6757. reg &= ~E1000_FCRTC_RTH_COAL_MASK;
  6758. reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
  6759. & E1000_FCRTC_RTH_COAL_MASK);
  6760. wr32(E1000_FCRTC, reg);
  6761. /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
  6762. * frame size, capping it at PBA - 10KB.
  6763. */
  6764. dmac_thr = pba - adapter->max_frame_size / 512;
  6765. if (dmac_thr < pba - 10)
  6766. dmac_thr = pba - 10;
  6767. reg = rd32(E1000_DMACR);
  6768. reg &= ~E1000_DMACR_DMACTHR_MASK;
  6769. reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
  6770. & E1000_DMACR_DMACTHR_MASK);
  6771. /* transition to L0x or L1 if available..*/
  6772. reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
  6773. /* watchdog timer= +-1000 usec in 32usec intervals */
  6774. reg |= (1000 >> 5);
  6775. /* Disable BMC-to-OS Watchdog Enable */
  6776. if (hw->mac.type != e1000_i354)
  6777. reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
  6778. wr32(E1000_DMACR, reg);
  6779. /* no lower threshold to disable
  6780. * coalescing(smart fifb)-UTRESH=0
  6781. */
  6782. wr32(E1000_DMCRTRH, 0);
  6783. reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
  6784. wr32(E1000_DMCTLX, reg);
  6785. /* free space in tx packet buffer to wake from
  6786. * DMA coal
  6787. */
  6788. wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
  6789. (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
  6790. /* make low power state decision controlled
  6791. * by DMA coal
  6792. */
  6793. reg = rd32(E1000_PCIEMISC);
  6794. reg &= ~E1000_PCIEMISC_LX_DECISION;
  6795. wr32(E1000_PCIEMISC, reg);
  6796. } /* endif adapter->dmac is not disabled */
  6797. } else if (hw->mac.type == e1000_82580) {
  6798. u32 reg = rd32(E1000_PCIEMISC);
  6799. wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
  6800. wr32(E1000_DMACR, 0);
  6801. }
  6802. }
  6803. /**
  6804. * igb_read_i2c_byte - Reads 8 bit word over I2C
  6805. * @hw: pointer to hardware structure
  6806. * @byte_offset: byte offset to read
  6807. * @dev_addr: device address
  6808. * @data: value read
  6809. *
  6810. * Performs byte read operation over I2C interface at
  6811. * a specified device address.
  6812. **/
  6813. s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6814. u8 dev_addr, u8 *data)
  6815. {
  6816. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6817. struct i2c_client *this_client = adapter->i2c_client;
  6818. s32 status;
  6819. u16 swfw_mask = 0;
  6820. if (!this_client)
  6821. return E1000_ERR_I2C;
  6822. swfw_mask = E1000_SWFW_PHY0_SM;
  6823. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
  6824. != E1000_SUCCESS)
  6825. return E1000_ERR_SWFW_SYNC;
  6826. status = i2c_smbus_read_byte_data(this_client, byte_offset);
  6827. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6828. if (status < 0)
  6829. return E1000_ERR_I2C;
  6830. else {
  6831. *data = status;
  6832. return E1000_SUCCESS;
  6833. }
  6834. }
  6835. /**
  6836. * igb_write_i2c_byte - Writes 8 bit word over I2C
  6837. * @hw: pointer to hardware structure
  6838. * @byte_offset: byte offset to write
  6839. * @dev_addr: device address
  6840. * @data: value to write
  6841. *
  6842. * Performs byte write operation over I2C interface at
  6843. * a specified device address.
  6844. **/
  6845. s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6846. u8 dev_addr, u8 data)
  6847. {
  6848. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6849. struct i2c_client *this_client = adapter->i2c_client;
  6850. s32 status;
  6851. u16 swfw_mask = E1000_SWFW_PHY0_SM;
  6852. if (!this_client)
  6853. return E1000_ERR_I2C;
  6854. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
  6855. return E1000_ERR_SWFW_SYNC;
  6856. status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
  6857. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6858. if (status)
  6859. return E1000_ERR_I2C;
  6860. else
  6861. return E1000_SUCCESS;
  6862. }
  6863. int igb_reinit_queues(struct igb_adapter *adapter)
  6864. {
  6865. struct net_device *netdev = adapter->netdev;
  6866. struct pci_dev *pdev = adapter->pdev;
  6867. int err = 0;
  6868. if (netif_running(netdev))
  6869. igb_close(netdev);
  6870. igb_reset_interrupt_capability(adapter);
  6871. if (igb_init_interrupt_scheme(adapter, true)) {
  6872. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6873. return -ENOMEM;
  6874. }
  6875. if (netif_running(netdev))
  6876. err = igb_open(netdev);
  6877. return err;
  6878. }
  6879. /* igb_main.c */