atmel-aes.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL AES HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-aes.c driver.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <crypto/scatterwalk.h>
  34. #include <crypto/algapi.h>
  35. #include <crypto/aes.h>
  36. #include <linux/platform_data/crypto-atmel.h>
  37. #include <dt-bindings/dma/at91.h>
  38. #include "atmel-aes-regs.h"
  39. #define ATMEL_AES_PRIORITY 300
  40. #define CFB8_BLOCK_SIZE 1
  41. #define CFB16_BLOCK_SIZE 2
  42. #define CFB32_BLOCK_SIZE 4
  43. #define CFB64_BLOCK_SIZE 8
  44. /* AES flags */
  45. #define AES_FLAGS_MODE_MASK 0x03ff
  46. #define AES_FLAGS_ENCRYPT BIT(0)
  47. #define AES_FLAGS_CBC BIT(1)
  48. #define AES_FLAGS_CFB BIT(2)
  49. #define AES_FLAGS_CFB8 BIT(3)
  50. #define AES_FLAGS_CFB16 BIT(4)
  51. #define AES_FLAGS_CFB32 BIT(5)
  52. #define AES_FLAGS_CFB64 BIT(6)
  53. #define AES_FLAGS_CFB128 BIT(7)
  54. #define AES_FLAGS_OFB BIT(8)
  55. #define AES_FLAGS_CTR BIT(9)
  56. #define AES_FLAGS_INIT BIT(16)
  57. #define AES_FLAGS_DMA BIT(17)
  58. #define AES_FLAGS_BUSY BIT(18)
  59. #define AES_FLAGS_FAST BIT(19)
  60. #define ATMEL_AES_QUEUE_LENGTH 50
  61. #define ATMEL_AES_DMA_THRESHOLD 16
  62. struct atmel_aes_caps {
  63. bool has_dualbuff;
  64. bool has_cfb64;
  65. u32 max_burst_size;
  66. };
  67. struct atmel_aes_dev;
  68. typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
  69. struct atmel_aes_base_ctx {
  70. struct atmel_aes_dev *dd;
  71. atmel_aes_fn_t start;
  72. int keylen;
  73. u32 key[AES_KEYSIZE_256 / sizeof(u32)];
  74. u16 block_size;
  75. };
  76. struct atmel_aes_ctx {
  77. struct atmel_aes_base_ctx base;
  78. };
  79. struct atmel_aes_reqctx {
  80. unsigned long mode;
  81. };
  82. struct atmel_aes_dma {
  83. struct dma_chan *chan;
  84. struct dma_slave_config dma_conf;
  85. };
  86. struct atmel_aes_dev {
  87. struct list_head list;
  88. unsigned long phys_base;
  89. void __iomem *io_base;
  90. struct crypto_async_request *areq;
  91. struct atmel_aes_base_ctx *ctx;
  92. struct device *dev;
  93. struct clk *iclk;
  94. int irq;
  95. unsigned long flags;
  96. int err;
  97. spinlock_t lock;
  98. struct crypto_queue queue;
  99. struct tasklet_struct done_task;
  100. struct tasklet_struct queue_task;
  101. size_t total;
  102. struct scatterlist *in_sg;
  103. unsigned int nb_in_sg;
  104. size_t in_offset;
  105. struct scatterlist *out_sg;
  106. unsigned int nb_out_sg;
  107. size_t out_offset;
  108. size_t bufcnt;
  109. size_t buflen;
  110. size_t dma_size;
  111. void *buf_in;
  112. int dma_in;
  113. dma_addr_t dma_addr_in;
  114. struct atmel_aes_dma dma_lch_in;
  115. void *buf_out;
  116. int dma_out;
  117. dma_addr_t dma_addr_out;
  118. struct atmel_aes_dma dma_lch_out;
  119. struct atmel_aes_caps caps;
  120. u32 hw_version;
  121. };
  122. struct atmel_aes_drv {
  123. struct list_head dev_list;
  124. spinlock_t lock;
  125. };
  126. static struct atmel_aes_drv atmel_aes = {
  127. .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
  128. .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
  129. };
  130. static int atmel_aes_sg_length(struct ablkcipher_request *req,
  131. struct scatterlist *sg)
  132. {
  133. unsigned int total = req->nbytes;
  134. int sg_nb;
  135. unsigned int len;
  136. struct scatterlist *sg_list;
  137. sg_nb = 0;
  138. sg_list = sg;
  139. total = req->nbytes;
  140. while (total) {
  141. len = min(sg_list->length, total);
  142. sg_nb++;
  143. total -= len;
  144. sg_list = sg_next(sg_list);
  145. if (!sg_list)
  146. total = 0;
  147. }
  148. return sg_nb;
  149. }
  150. static int atmel_aes_sg_copy(struct scatterlist **sg, size_t *offset,
  151. void *buf, size_t buflen, size_t total, int out)
  152. {
  153. size_t count, off = 0;
  154. while (buflen && total) {
  155. count = min((*sg)->length - *offset, total);
  156. count = min(count, buflen);
  157. if (!count)
  158. return off;
  159. scatterwalk_map_and_copy(buf + off, *sg, *offset, count, out);
  160. off += count;
  161. buflen -= count;
  162. *offset += count;
  163. total -= count;
  164. if (*offset == (*sg)->length) {
  165. *sg = sg_next(*sg);
  166. if (*sg)
  167. *offset = 0;
  168. else
  169. total = 0;
  170. }
  171. }
  172. return off;
  173. }
  174. static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
  175. {
  176. return readl_relaxed(dd->io_base + offset);
  177. }
  178. static inline void atmel_aes_write(struct atmel_aes_dev *dd,
  179. u32 offset, u32 value)
  180. {
  181. writel_relaxed(value, dd->io_base + offset);
  182. }
  183. static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
  184. u32 *value, int count)
  185. {
  186. for (; count--; value++, offset += 4)
  187. *value = atmel_aes_read(dd, offset);
  188. }
  189. static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
  190. const u32 *value, int count)
  191. {
  192. for (; count--; value++, offset += 4)
  193. atmel_aes_write(dd, offset, *value);
  194. }
  195. static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
  196. {
  197. struct atmel_aes_dev *aes_dd = NULL;
  198. struct atmel_aes_dev *tmp;
  199. spin_lock_bh(&atmel_aes.lock);
  200. if (!ctx->dd) {
  201. list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
  202. aes_dd = tmp;
  203. break;
  204. }
  205. ctx->dd = aes_dd;
  206. } else {
  207. aes_dd = ctx->dd;
  208. }
  209. spin_unlock_bh(&atmel_aes.lock);
  210. return aes_dd;
  211. }
  212. static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
  213. {
  214. int err;
  215. err = clk_prepare_enable(dd->iclk);
  216. if (err)
  217. return err;
  218. if (!(dd->flags & AES_FLAGS_INIT)) {
  219. atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
  220. atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
  221. dd->flags |= AES_FLAGS_INIT;
  222. dd->err = 0;
  223. }
  224. return 0;
  225. }
  226. static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
  227. {
  228. return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
  229. }
  230. static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
  231. {
  232. int err;
  233. err = atmel_aes_hw_init(dd);
  234. if (err)
  235. return err;
  236. dd->hw_version = atmel_aes_get_version(dd);
  237. dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
  238. clk_disable_unprepare(dd->iclk);
  239. return 0;
  240. }
  241. static void atmel_aes_finish_req(struct atmel_aes_dev *dd, int err)
  242. {
  243. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  244. clk_disable_unprepare(dd->iclk);
  245. dd->flags &= ~AES_FLAGS_BUSY;
  246. req->base.complete(&req->base, err);
  247. }
  248. static void atmel_aes_dma_callback(void *data)
  249. {
  250. struct atmel_aes_dev *dd = data;
  251. /* dma_lch_out - completed */
  252. tasklet_schedule(&dd->done_task);
  253. }
  254. static int atmel_aes_crypt_dma(struct atmel_aes_dev *dd,
  255. dma_addr_t dma_addr_in, dma_addr_t dma_addr_out, int length)
  256. {
  257. struct scatterlist sg[2];
  258. struct dma_async_tx_descriptor *in_desc, *out_desc;
  259. dd->dma_size = length;
  260. dma_sync_single_for_device(dd->dev, dma_addr_in, length,
  261. DMA_TO_DEVICE);
  262. dma_sync_single_for_device(dd->dev, dma_addr_out, length,
  263. DMA_FROM_DEVICE);
  264. if (dd->flags & AES_FLAGS_CFB8) {
  265. dd->dma_lch_in.dma_conf.dst_addr_width =
  266. DMA_SLAVE_BUSWIDTH_1_BYTE;
  267. dd->dma_lch_out.dma_conf.src_addr_width =
  268. DMA_SLAVE_BUSWIDTH_1_BYTE;
  269. } else if (dd->flags & AES_FLAGS_CFB16) {
  270. dd->dma_lch_in.dma_conf.dst_addr_width =
  271. DMA_SLAVE_BUSWIDTH_2_BYTES;
  272. dd->dma_lch_out.dma_conf.src_addr_width =
  273. DMA_SLAVE_BUSWIDTH_2_BYTES;
  274. } else {
  275. dd->dma_lch_in.dma_conf.dst_addr_width =
  276. DMA_SLAVE_BUSWIDTH_4_BYTES;
  277. dd->dma_lch_out.dma_conf.src_addr_width =
  278. DMA_SLAVE_BUSWIDTH_4_BYTES;
  279. }
  280. if (dd->flags & (AES_FLAGS_CFB8 | AES_FLAGS_CFB16 |
  281. AES_FLAGS_CFB32 | AES_FLAGS_CFB64)) {
  282. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  283. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  284. dd->dma_lch_out.dma_conf.src_maxburst = 1;
  285. dd->dma_lch_out.dma_conf.dst_maxburst = 1;
  286. } else {
  287. dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size;
  288. dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  289. dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size;
  290. dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  291. }
  292. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  293. dmaengine_slave_config(dd->dma_lch_out.chan, &dd->dma_lch_out.dma_conf);
  294. dd->flags |= AES_FLAGS_DMA;
  295. sg_init_table(&sg[0], 1);
  296. sg_dma_address(&sg[0]) = dma_addr_in;
  297. sg_dma_len(&sg[0]) = length;
  298. sg_init_table(&sg[1], 1);
  299. sg_dma_address(&sg[1]) = dma_addr_out;
  300. sg_dma_len(&sg[1]) = length;
  301. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, &sg[0],
  302. 1, DMA_MEM_TO_DEV,
  303. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  304. if (!in_desc)
  305. return -EINVAL;
  306. out_desc = dmaengine_prep_slave_sg(dd->dma_lch_out.chan, &sg[1],
  307. 1, DMA_DEV_TO_MEM,
  308. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  309. if (!out_desc)
  310. return -EINVAL;
  311. out_desc->callback = atmel_aes_dma_callback;
  312. out_desc->callback_param = dd;
  313. dmaengine_submit(out_desc);
  314. dma_async_issue_pending(dd->dma_lch_out.chan);
  315. dmaengine_submit(in_desc);
  316. dma_async_issue_pending(dd->dma_lch_in.chan);
  317. return 0;
  318. }
  319. static int atmel_aes_crypt_cpu_start(struct atmel_aes_dev *dd)
  320. {
  321. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  322. dd->flags &= ~AES_FLAGS_DMA;
  323. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_in,
  324. dd->dma_size, DMA_TO_DEVICE);
  325. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
  326. dd->dma_size, DMA_FROM_DEVICE);
  327. /* use cache buffers */
  328. dd->nb_in_sg = atmel_aes_sg_length(req, dd->in_sg);
  329. if (!dd->nb_in_sg)
  330. return -EINVAL;
  331. dd->nb_out_sg = atmel_aes_sg_length(req, dd->out_sg);
  332. if (!dd->nb_out_sg)
  333. return -EINVAL;
  334. dd->bufcnt = sg_copy_to_buffer(dd->in_sg, dd->nb_in_sg,
  335. dd->buf_in, dd->total);
  336. if (!dd->bufcnt)
  337. return -EINVAL;
  338. dd->total -= dd->bufcnt;
  339. atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
  340. atmel_aes_write_n(dd, AES_IDATAR(0), (u32 *) dd->buf_in,
  341. dd->bufcnt >> 2);
  342. return 0;
  343. }
  344. static int atmel_aes_crypt_dma_start(struct atmel_aes_dev *dd)
  345. {
  346. int err, fast = 0, in, out;
  347. size_t count;
  348. dma_addr_t addr_in, addr_out;
  349. if ((!dd->in_offset) && (!dd->out_offset)) {
  350. /* check for alignment */
  351. in = IS_ALIGNED((u32)dd->in_sg->offset, sizeof(u32)) &&
  352. IS_ALIGNED(dd->in_sg->length, dd->ctx->block_size);
  353. out = IS_ALIGNED((u32)dd->out_sg->offset, sizeof(u32)) &&
  354. IS_ALIGNED(dd->out_sg->length, dd->ctx->block_size);
  355. fast = in && out;
  356. if (sg_dma_len(dd->in_sg) != sg_dma_len(dd->out_sg))
  357. fast = 0;
  358. }
  359. if (fast) {
  360. count = min_t(size_t, dd->total, sg_dma_len(dd->in_sg));
  361. count = min_t(size_t, count, sg_dma_len(dd->out_sg));
  362. err = dma_map_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  363. if (!err) {
  364. dev_err(dd->dev, "dma_map_sg() error\n");
  365. return -EINVAL;
  366. }
  367. err = dma_map_sg(dd->dev, dd->out_sg, 1,
  368. DMA_FROM_DEVICE);
  369. if (!err) {
  370. dev_err(dd->dev, "dma_map_sg() error\n");
  371. dma_unmap_sg(dd->dev, dd->in_sg, 1,
  372. DMA_TO_DEVICE);
  373. return -EINVAL;
  374. }
  375. addr_in = sg_dma_address(dd->in_sg);
  376. addr_out = sg_dma_address(dd->out_sg);
  377. dd->flags |= AES_FLAGS_FAST;
  378. } else {
  379. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_in,
  380. dd->dma_size, DMA_TO_DEVICE);
  381. /* use cache buffers */
  382. count = atmel_aes_sg_copy(&dd->in_sg, &dd->in_offset,
  383. dd->buf_in, dd->buflen, dd->total, 0);
  384. addr_in = dd->dma_addr_in;
  385. addr_out = dd->dma_addr_out;
  386. dd->flags &= ~AES_FLAGS_FAST;
  387. }
  388. dd->total -= count;
  389. err = atmel_aes_crypt_dma(dd, addr_in, addr_out, count);
  390. if (err && (dd->flags & AES_FLAGS_FAST)) {
  391. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  392. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_TO_DEVICE);
  393. }
  394. return err;
  395. }
  396. static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
  397. const u32 *iv)
  398. {
  399. u32 valcr = 0, valmr = 0;
  400. /* MR register must be set before IV registers */
  401. if (dd->ctx->keylen == AES_KEYSIZE_128)
  402. valmr |= AES_MR_KEYSIZE_128;
  403. else if (dd->ctx->keylen == AES_KEYSIZE_192)
  404. valmr |= AES_MR_KEYSIZE_192;
  405. else
  406. valmr |= AES_MR_KEYSIZE_256;
  407. if (dd->flags & AES_FLAGS_CBC) {
  408. valmr |= AES_MR_OPMOD_CBC;
  409. } else if (dd->flags & AES_FLAGS_CFB) {
  410. valmr |= AES_MR_OPMOD_CFB;
  411. if (dd->flags & AES_FLAGS_CFB8)
  412. valmr |= AES_MR_CFBS_8b;
  413. else if (dd->flags & AES_FLAGS_CFB16)
  414. valmr |= AES_MR_CFBS_16b;
  415. else if (dd->flags & AES_FLAGS_CFB32)
  416. valmr |= AES_MR_CFBS_32b;
  417. else if (dd->flags & AES_FLAGS_CFB64)
  418. valmr |= AES_MR_CFBS_64b;
  419. else if (dd->flags & AES_FLAGS_CFB128)
  420. valmr |= AES_MR_CFBS_128b;
  421. } else if (dd->flags & AES_FLAGS_OFB) {
  422. valmr |= AES_MR_OPMOD_OFB;
  423. } else if (dd->flags & AES_FLAGS_CTR) {
  424. valmr |= AES_MR_OPMOD_CTR;
  425. } else {
  426. valmr |= AES_MR_OPMOD_ECB;
  427. }
  428. if (dd->flags & AES_FLAGS_ENCRYPT)
  429. valmr |= AES_MR_CYPHER_ENC;
  430. if (use_dma) {
  431. valmr |= AES_MR_SMOD_IDATAR0;
  432. if (dd->caps.has_dualbuff)
  433. valmr |= AES_MR_DUALBUFF;
  434. } else {
  435. valmr |= AES_MR_SMOD_AUTO;
  436. }
  437. atmel_aes_write(dd, AES_CR, valcr);
  438. atmel_aes_write(dd, AES_MR, valmr);
  439. atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
  440. dd->ctx->keylen >> 2);
  441. if (((dd->flags & AES_FLAGS_CBC) || (dd->flags & AES_FLAGS_CFB) ||
  442. (dd->flags & AES_FLAGS_OFB) || (dd->flags & AES_FLAGS_CTR)) &&
  443. iv) {
  444. atmel_aes_write_n(dd, AES_IVR(0), iv, 4);
  445. }
  446. }
  447. static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
  448. struct crypto_async_request *new_areq)
  449. {
  450. struct crypto_async_request *areq, *backlog;
  451. struct atmel_aes_base_ctx *ctx;
  452. unsigned long flags;
  453. int err, ret = 0;
  454. spin_lock_irqsave(&dd->lock, flags);
  455. if (new_areq)
  456. ret = crypto_enqueue_request(&dd->queue, new_areq);
  457. if (dd->flags & AES_FLAGS_BUSY) {
  458. spin_unlock_irqrestore(&dd->lock, flags);
  459. return ret;
  460. }
  461. backlog = crypto_get_backlog(&dd->queue);
  462. areq = crypto_dequeue_request(&dd->queue);
  463. if (areq)
  464. dd->flags |= AES_FLAGS_BUSY;
  465. spin_unlock_irqrestore(&dd->lock, flags);
  466. if (!areq)
  467. return ret;
  468. if (backlog)
  469. backlog->complete(backlog, -EINPROGRESS);
  470. ctx = crypto_tfm_ctx(areq->tfm);
  471. dd->areq = areq;
  472. dd->ctx = ctx;
  473. err = ctx->start(dd);
  474. return (areq != new_areq) ? ret : err;
  475. }
  476. static int atmel_aes_start(struct atmel_aes_dev *dd)
  477. {
  478. struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
  479. struct atmel_aes_reqctx *rctx;
  480. bool use_dma;
  481. int err;
  482. /* assign new request to device */
  483. dd->total = req->nbytes;
  484. dd->in_offset = 0;
  485. dd->in_sg = req->src;
  486. dd->out_offset = 0;
  487. dd->out_sg = req->dst;
  488. rctx = ablkcipher_request_ctx(req);
  489. rctx->mode &= AES_FLAGS_MODE_MASK;
  490. dd->flags = (dd->flags & ~AES_FLAGS_MODE_MASK) | rctx->mode;
  491. err = atmel_aes_hw_init(dd);
  492. if (!err) {
  493. use_dma = (dd->total > ATMEL_AES_DMA_THRESHOLD);
  494. atmel_aes_write_ctrl(dd, use_dma, req->info);
  495. if (use_dma)
  496. err = atmel_aes_crypt_dma_start(dd);
  497. else
  498. err = atmel_aes_crypt_cpu_start(dd);
  499. }
  500. if (err) {
  501. /* aes_task will not finish it, so do it here */
  502. atmel_aes_finish_req(dd, err);
  503. tasklet_schedule(&dd->queue_task);
  504. }
  505. return -EINPROGRESS;
  506. }
  507. static int atmel_aes_crypt_dma_stop(struct atmel_aes_dev *dd)
  508. {
  509. int err = -EINVAL;
  510. size_t count;
  511. if (dd->flags & AES_FLAGS_DMA) {
  512. err = 0;
  513. if (dd->flags & AES_FLAGS_FAST) {
  514. dma_unmap_sg(dd->dev, dd->out_sg, 1, DMA_FROM_DEVICE);
  515. dma_unmap_sg(dd->dev, dd->in_sg, 1, DMA_TO_DEVICE);
  516. } else {
  517. dma_sync_single_for_cpu(dd->dev, dd->dma_addr_out,
  518. dd->dma_size, DMA_FROM_DEVICE);
  519. /* copy data */
  520. count = atmel_aes_sg_copy(&dd->out_sg, &dd->out_offset,
  521. dd->buf_out, dd->buflen, dd->dma_size, 1);
  522. if (count != dd->dma_size) {
  523. err = -EINVAL;
  524. pr_err("not all data converted: %zu\n", count);
  525. }
  526. }
  527. }
  528. return err;
  529. }
  530. static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
  531. {
  532. int err = -ENOMEM;
  533. dd->buf_in = (void *)__get_free_pages(GFP_KERNEL, 0);
  534. dd->buf_out = (void *)__get_free_pages(GFP_KERNEL, 0);
  535. dd->buflen = PAGE_SIZE;
  536. dd->buflen &= ~(AES_BLOCK_SIZE - 1);
  537. if (!dd->buf_in || !dd->buf_out) {
  538. dev_err(dd->dev, "unable to alloc pages.\n");
  539. goto err_alloc;
  540. }
  541. /* MAP here */
  542. dd->dma_addr_in = dma_map_single(dd->dev, dd->buf_in,
  543. dd->buflen, DMA_TO_DEVICE);
  544. if (dma_mapping_error(dd->dev, dd->dma_addr_in)) {
  545. dev_err(dd->dev, "dma %zd bytes error\n", dd->buflen);
  546. err = -EINVAL;
  547. goto err_map_in;
  548. }
  549. dd->dma_addr_out = dma_map_single(dd->dev, dd->buf_out,
  550. dd->buflen, DMA_FROM_DEVICE);
  551. if (dma_mapping_error(dd->dev, dd->dma_addr_out)) {
  552. dev_err(dd->dev, "dma %zd bytes error\n", dd->buflen);
  553. err = -EINVAL;
  554. goto err_map_out;
  555. }
  556. return 0;
  557. err_map_out:
  558. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
  559. DMA_TO_DEVICE);
  560. err_map_in:
  561. err_alloc:
  562. free_page((unsigned long)dd->buf_out);
  563. free_page((unsigned long)dd->buf_in);
  564. if (err)
  565. pr_err("error: %d\n", err);
  566. return err;
  567. }
  568. static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
  569. {
  570. dma_unmap_single(dd->dev, dd->dma_addr_out, dd->buflen,
  571. DMA_FROM_DEVICE);
  572. dma_unmap_single(dd->dev, dd->dma_addr_in, dd->buflen,
  573. DMA_TO_DEVICE);
  574. free_page((unsigned long)dd->buf_out);
  575. free_page((unsigned long)dd->buf_in);
  576. }
  577. static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
  578. {
  579. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(
  580. crypto_ablkcipher_reqtfm(req));
  581. struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
  582. struct atmel_aes_dev *dd;
  583. if (mode & AES_FLAGS_CFB8) {
  584. if (!IS_ALIGNED(req->nbytes, CFB8_BLOCK_SIZE)) {
  585. pr_err("request size is not exact amount of CFB8 blocks\n");
  586. return -EINVAL;
  587. }
  588. ctx->block_size = CFB8_BLOCK_SIZE;
  589. } else if (mode & AES_FLAGS_CFB16) {
  590. if (!IS_ALIGNED(req->nbytes, CFB16_BLOCK_SIZE)) {
  591. pr_err("request size is not exact amount of CFB16 blocks\n");
  592. return -EINVAL;
  593. }
  594. ctx->block_size = CFB16_BLOCK_SIZE;
  595. } else if (mode & AES_FLAGS_CFB32) {
  596. if (!IS_ALIGNED(req->nbytes, CFB32_BLOCK_SIZE)) {
  597. pr_err("request size is not exact amount of CFB32 blocks\n");
  598. return -EINVAL;
  599. }
  600. ctx->block_size = CFB32_BLOCK_SIZE;
  601. } else if (mode & AES_FLAGS_CFB64) {
  602. if (!IS_ALIGNED(req->nbytes, CFB64_BLOCK_SIZE)) {
  603. pr_err("request size is not exact amount of CFB64 blocks\n");
  604. return -EINVAL;
  605. }
  606. ctx->block_size = CFB64_BLOCK_SIZE;
  607. } else {
  608. if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
  609. pr_err("request size is not exact amount of AES blocks\n");
  610. return -EINVAL;
  611. }
  612. ctx->block_size = AES_BLOCK_SIZE;
  613. }
  614. dd = atmel_aes_find_dev(ctx);
  615. if (!dd)
  616. return -ENODEV;
  617. rctx->mode = mode;
  618. return atmel_aes_handle_queue(dd, &req->base);
  619. }
  620. static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
  621. {
  622. struct at_dma_slave *sl = slave;
  623. if (sl && sl->dma_dev == chan->device->dev) {
  624. chan->private = sl;
  625. return true;
  626. } else {
  627. return false;
  628. }
  629. }
  630. static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
  631. struct crypto_platform_data *pdata)
  632. {
  633. int err = -ENOMEM;
  634. dma_cap_mask_t mask;
  635. dma_cap_zero(mask);
  636. dma_cap_set(DMA_SLAVE, mask);
  637. /* Try to grab 2 DMA channels */
  638. dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask,
  639. atmel_aes_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
  640. if (!dd->dma_lch_in.chan)
  641. goto err_dma_in;
  642. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  643. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  644. AES_IDATAR(0);
  645. dd->dma_lch_in.dma_conf.src_maxburst = dd->caps.max_burst_size;
  646. dd->dma_lch_in.dma_conf.src_addr_width =
  647. DMA_SLAVE_BUSWIDTH_4_BYTES;
  648. dd->dma_lch_in.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  649. dd->dma_lch_in.dma_conf.dst_addr_width =
  650. DMA_SLAVE_BUSWIDTH_4_BYTES;
  651. dd->dma_lch_in.dma_conf.device_fc = false;
  652. dd->dma_lch_out.chan = dma_request_slave_channel_compat(mask,
  653. atmel_aes_filter, &pdata->dma_slave->txdata, dd->dev, "rx");
  654. if (!dd->dma_lch_out.chan)
  655. goto err_dma_out;
  656. dd->dma_lch_out.dma_conf.direction = DMA_DEV_TO_MEM;
  657. dd->dma_lch_out.dma_conf.src_addr = dd->phys_base +
  658. AES_ODATAR(0);
  659. dd->dma_lch_out.dma_conf.src_maxburst = dd->caps.max_burst_size;
  660. dd->dma_lch_out.dma_conf.src_addr_width =
  661. DMA_SLAVE_BUSWIDTH_4_BYTES;
  662. dd->dma_lch_out.dma_conf.dst_maxburst = dd->caps.max_burst_size;
  663. dd->dma_lch_out.dma_conf.dst_addr_width =
  664. DMA_SLAVE_BUSWIDTH_4_BYTES;
  665. dd->dma_lch_out.dma_conf.device_fc = false;
  666. return 0;
  667. err_dma_out:
  668. dma_release_channel(dd->dma_lch_in.chan);
  669. err_dma_in:
  670. dev_warn(dd->dev, "no DMA channel available\n");
  671. return err;
  672. }
  673. static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
  674. {
  675. dma_release_channel(dd->dma_lch_in.chan);
  676. dma_release_channel(dd->dma_lch_out.chan);
  677. }
  678. static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
  679. unsigned int keylen)
  680. {
  681. struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
  682. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  683. keylen != AES_KEYSIZE_256) {
  684. crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
  685. return -EINVAL;
  686. }
  687. memcpy(ctx->key, key, keylen);
  688. ctx->keylen = keylen;
  689. return 0;
  690. }
  691. static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
  692. {
  693. return atmel_aes_crypt(req,
  694. AES_FLAGS_ENCRYPT);
  695. }
  696. static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
  697. {
  698. return atmel_aes_crypt(req,
  699. 0);
  700. }
  701. static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
  702. {
  703. return atmel_aes_crypt(req,
  704. AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
  705. }
  706. static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
  707. {
  708. return atmel_aes_crypt(req,
  709. AES_FLAGS_CBC);
  710. }
  711. static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
  712. {
  713. return atmel_aes_crypt(req,
  714. AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
  715. }
  716. static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
  717. {
  718. return atmel_aes_crypt(req,
  719. AES_FLAGS_OFB);
  720. }
  721. static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
  722. {
  723. return atmel_aes_crypt(req,
  724. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB128);
  725. }
  726. static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
  727. {
  728. return atmel_aes_crypt(req,
  729. AES_FLAGS_CFB | AES_FLAGS_CFB128);
  730. }
  731. static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
  732. {
  733. return atmel_aes_crypt(req,
  734. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB64);
  735. }
  736. static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
  737. {
  738. return atmel_aes_crypt(req,
  739. AES_FLAGS_CFB | AES_FLAGS_CFB64);
  740. }
  741. static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
  742. {
  743. return atmel_aes_crypt(req,
  744. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB32);
  745. }
  746. static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
  747. {
  748. return atmel_aes_crypt(req,
  749. AES_FLAGS_CFB | AES_FLAGS_CFB32);
  750. }
  751. static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
  752. {
  753. return atmel_aes_crypt(req,
  754. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB16);
  755. }
  756. static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
  757. {
  758. return atmel_aes_crypt(req,
  759. AES_FLAGS_CFB | AES_FLAGS_CFB16);
  760. }
  761. static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
  762. {
  763. return atmel_aes_crypt(req,
  764. AES_FLAGS_ENCRYPT | AES_FLAGS_CFB | AES_FLAGS_CFB8);
  765. }
  766. static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
  767. {
  768. return atmel_aes_crypt(req,
  769. AES_FLAGS_CFB | AES_FLAGS_CFB8);
  770. }
  771. static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
  772. {
  773. return atmel_aes_crypt(req,
  774. AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
  775. }
  776. static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
  777. {
  778. return atmel_aes_crypt(req,
  779. AES_FLAGS_CTR);
  780. }
  781. static int atmel_aes_cra_init(struct crypto_tfm *tfm)
  782. {
  783. struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  784. tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
  785. ctx->base.start = atmel_aes_start;
  786. return 0;
  787. }
  788. static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
  789. {
  790. }
  791. static struct crypto_alg aes_algs[] = {
  792. {
  793. .cra_name = "ecb(aes)",
  794. .cra_driver_name = "atmel-ecb-aes",
  795. .cra_priority = ATMEL_AES_PRIORITY,
  796. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  797. .cra_blocksize = AES_BLOCK_SIZE,
  798. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  799. .cra_alignmask = 0xf,
  800. .cra_type = &crypto_ablkcipher_type,
  801. .cra_module = THIS_MODULE,
  802. .cra_init = atmel_aes_cra_init,
  803. .cra_exit = atmel_aes_cra_exit,
  804. .cra_u.ablkcipher = {
  805. .min_keysize = AES_MIN_KEY_SIZE,
  806. .max_keysize = AES_MAX_KEY_SIZE,
  807. .setkey = atmel_aes_setkey,
  808. .encrypt = atmel_aes_ecb_encrypt,
  809. .decrypt = atmel_aes_ecb_decrypt,
  810. }
  811. },
  812. {
  813. .cra_name = "cbc(aes)",
  814. .cra_driver_name = "atmel-cbc-aes",
  815. .cra_priority = ATMEL_AES_PRIORITY,
  816. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  817. .cra_blocksize = AES_BLOCK_SIZE,
  818. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  819. .cra_alignmask = 0xf,
  820. .cra_type = &crypto_ablkcipher_type,
  821. .cra_module = THIS_MODULE,
  822. .cra_init = atmel_aes_cra_init,
  823. .cra_exit = atmel_aes_cra_exit,
  824. .cra_u.ablkcipher = {
  825. .min_keysize = AES_MIN_KEY_SIZE,
  826. .max_keysize = AES_MAX_KEY_SIZE,
  827. .ivsize = AES_BLOCK_SIZE,
  828. .setkey = atmel_aes_setkey,
  829. .encrypt = atmel_aes_cbc_encrypt,
  830. .decrypt = atmel_aes_cbc_decrypt,
  831. }
  832. },
  833. {
  834. .cra_name = "ofb(aes)",
  835. .cra_driver_name = "atmel-ofb-aes",
  836. .cra_priority = ATMEL_AES_PRIORITY,
  837. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  838. .cra_blocksize = AES_BLOCK_SIZE,
  839. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  840. .cra_alignmask = 0xf,
  841. .cra_type = &crypto_ablkcipher_type,
  842. .cra_module = THIS_MODULE,
  843. .cra_init = atmel_aes_cra_init,
  844. .cra_exit = atmel_aes_cra_exit,
  845. .cra_u.ablkcipher = {
  846. .min_keysize = AES_MIN_KEY_SIZE,
  847. .max_keysize = AES_MAX_KEY_SIZE,
  848. .ivsize = AES_BLOCK_SIZE,
  849. .setkey = atmel_aes_setkey,
  850. .encrypt = atmel_aes_ofb_encrypt,
  851. .decrypt = atmel_aes_ofb_decrypt,
  852. }
  853. },
  854. {
  855. .cra_name = "cfb(aes)",
  856. .cra_driver_name = "atmel-cfb-aes",
  857. .cra_priority = ATMEL_AES_PRIORITY,
  858. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  859. .cra_blocksize = AES_BLOCK_SIZE,
  860. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  861. .cra_alignmask = 0xf,
  862. .cra_type = &crypto_ablkcipher_type,
  863. .cra_module = THIS_MODULE,
  864. .cra_init = atmel_aes_cra_init,
  865. .cra_exit = atmel_aes_cra_exit,
  866. .cra_u.ablkcipher = {
  867. .min_keysize = AES_MIN_KEY_SIZE,
  868. .max_keysize = AES_MAX_KEY_SIZE,
  869. .ivsize = AES_BLOCK_SIZE,
  870. .setkey = atmel_aes_setkey,
  871. .encrypt = atmel_aes_cfb_encrypt,
  872. .decrypt = atmel_aes_cfb_decrypt,
  873. }
  874. },
  875. {
  876. .cra_name = "cfb32(aes)",
  877. .cra_driver_name = "atmel-cfb32-aes",
  878. .cra_priority = ATMEL_AES_PRIORITY,
  879. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  880. .cra_blocksize = CFB32_BLOCK_SIZE,
  881. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  882. .cra_alignmask = 0x3,
  883. .cra_type = &crypto_ablkcipher_type,
  884. .cra_module = THIS_MODULE,
  885. .cra_init = atmel_aes_cra_init,
  886. .cra_exit = atmel_aes_cra_exit,
  887. .cra_u.ablkcipher = {
  888. .min_keysize = AES_MIN_KEY_SIZE,
  889. .max_keysize = AES_MAX_KEY_SIZE,
  890. .ivsize = AES_BLOCK_SIZE,
  891. .setkey = atmel_aes_setkey,
  892. .encrypt = atmel_aes_cfb32_encrypt,
  893. .decrypt = atmel_aes_cfb32_decrypt,
  894. }
  895. },
  896. {
  897. .cra_name = "cfb16(aes)",
  898. .cra_driver_name = "atmel-cfb16-aes",
  899. .cra_priority = ATMEL_AES_PRIORITY,
  900. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  901. .cra_blocksize = CFB16_BLOCK_SIZE,
  902. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  903. .cra_alignmask = 0x1,
  904. .cra_type = &crypto_ablkcipher_type,
  905. .cra_module = THIS_MODULE,
  906. .cra_init = atmel_aes_cra_init,
  907. .cra_exit = atmel_aes_cra_exit,
  908. .cra_u.ablkcipher = {
  909. .min_keysize = AES_MIN_KEY_SIZE,
  910. .max_keysize = AES_MAX_KEY_SIZE,
  911. .ivsize = AES_BLOCK_SIZE,
  912. .setkey = atmel_aes_setkey,
  913. .encrypt = atmel_aes_cfb16_encrypt,
  914. .decrypt = atmel_aes_cfb16_decrypt,
  915. }
  916. },
  917. {
  918. .cra_name = "cfb8(aes)",
  919. .cra_driver_name = "atmel-cfb8-aes",
  920. .cra_priority = ATMEL_AES_PRIORITY,
  921. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  922. .cra_blocksize = CFB8_BLOCK_SIZE,
  923. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  924. .cra_alignmask = 0x0,
  925. .cra_type = &crypto_ablkcipher_type,
  926. .cra_module = THIS_MODULE,
  927. .cra_init = atmel_aes_cra_init,
  928. .cra_exit = atmel_aes_cra_exit,
  929. .cra_u.ablkcipher = {
  930. .min_keysize = AES_MIN_KEY_SIZE,
  931. .max_keysize = AES_MAX_KEY_SIZE,
  932. .ivsize = AES_BLOCK_SIZE,
  933. .setkey = atmel_aes_setkey,
  934. .encrypt = atmel_aes_cfb8_encrypt,
  935. .decrypt = atmel_aes_cfb8_decrypt,
  936. }
  937. },
  938. {
  939. .cra_name = "ctr(aes)",
  940. .cra_driver_name = "atmel-ctr-aes",
  941. .cra_priority = ATMEL_AES_PRIORITY,
  942. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  943. .cra_blocksize = AES_BLOCK_SIZE,
  944. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  945. .cra_alignmask = 0xf,
  946. .cra_type = &crypto_ablkcipher_type,
  947. .cra_module = THIS_MODULE,
  948. .cra_init = atmel_aes_cra_init,
  949. .cra_exit = atmel_aes_cra_exit,
  950. .cra_u.ablkcipher = {
  951. .min_keysize = AES_MIN_KEY_SIZE,
  952. .max_keysize = AES_MAX_KEY_SIZE,
  953. .ivsize = AES_BLOCK_SIZE,
  954. .setkey = atmel_aes_setkey,
  955. .encrypt = atmel_aes_ctr_encrypt,
  956. .decrypt = atmel_aes_ctr_decrypt,
  957. }
  958. },
  959. };
  960. static struct crypto_alg aes_cfb64_alg = {
  961. .cra_name = "cfb64(aes)",
  962. .cra_driver_name = "atmel-cfb64-aes",
  963. .cra_priority = ATMEL_AES_PRIORITY,
  964. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
  965. .cra_blocksize = CFB64_BLOCK_SIZE,
  966. .cra_ctxsize = sizeof(struct atmel_aes_ctx),
  967. .cra_alignmask = 0x7,
  968. .cra_type = &crypto_ablkcipher_type,
  969. .cra_module = THIS_MODULE,
  970. .cra_init = atmel_aes_cra_init,
  971. .cra_exit = atmel_aes_cra_exit,
  972. .cra_u.ablkcipher = {
  973. .min_keysize = AES_MIN_KEY_SIZE,
  974. .max_keysize = AES_MAX_KEY_SIZE,
  975. .ivsize = AES_BLOCK_SIZE,
  976. .setkey = atmel_aes_setkey,
  977. .encrypt = atmel_aes_cfb64_encrypt,
  978. .decrypt = atmel_aes_cfb64_decrypt,
  979. }
  980. };
  981. static void atmel_aes_queue_task(unsigned long data)
  982. {
  983. struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
  984. atmel_aes_handle_queue(dd, NULL);
  985. }
  986. static void atmel_aes_done_task(unsigned long data)
  987. {
  988. struct atmel_aes_dev *dd = (struct atmel_aes_dev *) data;
  989. int err;
  990. if (!(dd->flags & AES_FLAGS_DMA)) {
  991. atmel_aes_read_n(dd, AES_ODATAR(0), (u32 *) dd->buf_out,
  992. dd->bufcnt >> 2);
  993. if (sg_copy_from_buffer(dd->out_sg, dd->nb_out_sg,
  994. dd->buf_out, dd->bufcnt))
  995. err = 0;
  996. else
  997. err = -EINVAL;
  998. goto cpu_end;
  999. }
  1000. err = atmel_aes_crypt_dma_stop(dd);
  1001. err = dd->err ? : err;
  1002. if (dd->total && !err) {
  1003. if (dd->flags & AES_FLAGS_FAST) {
  1004. dd->in_sg = sg_next(dd->in_sg);
  1005. dd->out_sg = sg_next(dd->out_sg);
  1006. if (!dd->in_sg || !dd->out_sg)
  1007. err = -EINVAL;
  1008. }
  1009. if (!err)
  1010. err = atmel_aes_crypt_dma_start(dd);
  1011. if (!err)
  1012. return; /* DMA started. Not fininishing. */
  1013. }
  1014. cpu_end:
  1015. atmel_aes_finish_req(dd, err);
  1016. atmel_aes_handle_queue(dd, NULL);
  1017. }
  1018. static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
  1019. {
  1020. struct atmel_aes_dev *aes_dd = dev_id;
  1021. u32 reg;
  1022. reg = atmel_aes_read(aes_dd, AES_ISR);
  1023. if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
  1024. atmel_aes_write(aes_dd, AES_IDR, reg);
  1025. if (AES_FLAGS_BUSY & aes_dd->flags)
  1026. tasklet_schedule(&aes_dd->done_task);
  1027. else
  1028. dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
  1029. return IRQ_HANDLED;
  1030. }
  1031. return IRQ_NONE;
  1032. }
  1033. static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
  1034. {
  1035. int i;
  1036. if (dd->caps.has_cfb64)
  1037. crypto_unregister_alg(&aes_cfb64_alg);
  1038. for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
  1039. crypto_unregister_alg(&aes_algs[i]);
  1040. }
  1041. static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
  1042. {
  1043. int err, i, j;
  1044. for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
  1045. err = crypto_register_alg(&aes_algs[i]);
  1046. if (err)
  1047. goto err_aes_algs;
  1048. }
  1049. if (dd->caps.has_cfb64) {
  1050. err = crypto_register_alg(&aes_cfb64_alg);
  1051. if (err)
  1052. goto err_aes_cfb64_alg;
  1053. }
  1054. return 0;
  1055. err_aes_cfb64_alg:
  1056. i = ARRAY_SIZE(aes_algs);
  1057. err_aes_algs:
  1058. for (j = 0; j < i; j++)
  1059. crypto_unregister_alg(&aes_algs[j]);
  1060. return err;
  1061. }
  1062. static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
  1063. {
  1064. dd->caps.has_dualbuff = 0;
  1065. dd->caps.has_cfb64 = 0;
  1066. dd->caps.max_burst_size = 1;
  1067. /* keep only major version number */
  1068. switch (dd->hw_version & 0xff0) {
  1069. case 0x500:
  1070. dd->caps.has_dualbuff = 1;
  1071. dd->caps.has_cfb64 = 1;
  1072. dd->caps.max_burst_size = 4;
  1073. break;
  1074. case 0x200:
  1075. dd->caps.has_dualbuff = 1;
  1076. dd->caps.has_cfb64 = 1;
  1077. dd->caps.max_burst_size = 4;
  1078. break;
  1079. case 0x130:
  1080. dd->caps.has_dualbuff = 1;
  1081. dd->caps.has_cfb64 = 1;
  1082. dd->caps.max_burst_size = 4;
  1083. break;
  1084. case 0x120:
  1085. break;
  1086. default:
  1087. dev_warn(dd->dev,
  1088. "Unmanaged aes version, set minimum capabilities\n");
  1089. break;
  1090. }
  1091. }
  1092. #if defined(CONFIG_OF)
  1093. static const struct of_device_id atmel_aes_dt_ids[] = {
  1094. { .compatible = "atmel,at91sam9g46-aes" },
  1095. { /* sentinel */ }
  1096. };
  1097. MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
  1098. static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1099. {
  1100. struct device_node *np = pdev->dev.of_node;
  1101. struct crypto_platform_data *pdata;
  1102. if (!np) {
  1103. dev_err(&pdev->dev, "device node not found\n");
  1104. return ERR_PTR(-EINVAL);
  1105. }
  1106. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1107. if (!pdata) {
  1108. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1109. return ERR_PTR(-ENOMEM);
  1110. }
  1111. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1112. sizeof(*(pdata->dma_slave)),
  1113. GFP_KERNEL);
  1114. if (!pdata->dma_slave) {
  1115. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1116. devm_kfree(&pdev->dev, pdata);
  1117. return ERR_PTR(-ENOMEM);
  1118. }
  1119. return pdata;
  1120. }
  1121. #else
  1122. static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
  1123. {
  1124. return ERR_PTR(-EINVAL);
  1125. }
  1126. #endif
  1127. static int atmel_aes_probe(struct platform_device *pdev)
  1128. {
  1129. struct atmel_aes_dev *aes_dd;
  1130. struct crypto_platform_data *pdata;
  1131. struct device *dev = &pdev->dev;
  1132. struct resource *aes_res;
  1133. int err;
  1134. pdata = pdev->dev.platform_data;
  1135. if (!pdata) {
  1136. pdata = atmel_aes_of_init(pdev);
  1137. if (IS_ERR(pdata)) {
  1138. err = PTR_ERR(pdata);
  1139. goto aes_dd_err;
  1140. }
  1141. }
  1142. if (!pdata->dma_slave) {
  1143. err = -ENXIO;
  1144. goto aes_dd_err;
  1145. }
  1146. aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
  1147. if (aes_dd == NULL) {
  1148. dev_err(dev, "unable to alloc data struct.\n");
  1149. err = -ENOMEM;
  1150. goto aes_dd_err;
  1151. }
  1152. aes_dd->dev = dev;
  1153. platform_set_drvdata(pdev, aes_dd);
  1154. INIT_LIST_HEAD(&aes_dd->list);
  1155. spin_lock_init(&aes_dd->lock);
  1156. tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
  1157. (unsigned long)aes_dd);
  1158. tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
  1159. (unsigned long)aes_dd);
  1160. crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
  1161. aes_dd->irq = -1;
  1162. /* Get the base address */
  1163. aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1164. if (!aes_res) {
  1165. dev_err(dev, "no MEM resource info\n");
  1166. err = -ENODEV;
  1167. goto res_err;
  1168. }
  1169. aes_dd->phys_base = aes_res->start;
  1170. /* Get the IRQ */
  1171. aes_dd->irq = platform_get_irq(pdev, 0);
  1172. if (aes_dd->irq < 0) {
  1173. dev_err(dev, "no IRQ resource info\n");
  1174. err = aes_dd->irq;
  1175. goto res_err;
  1176. }
  1177. err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
  1178. IRQF_SHARED, "atmel-aes", aes_dd);
  1179. if (err) {
  1180. dev_err(dev, "unable to request aes irq.\n");
  1181. goto res_err;
  1182. }
  1183. /* Initializing the clock */
  1184. aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
  1185. if (IS_ERR(aes_dd->iclk)) {
  1186. dev_err(dev, "clock initialization failed.\n");
  1187. err = PTR_ERR(aes_dd->iclk);
  1188. goto res_err;
  1189. }
  1190. aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
  1191. if (!aes_dd->io_base) {
  1192. dev_err(dev, "can't ioremap\n");
  1193. err = -ENOMEM;
  1194. goto res_err;
  1195. }
  1196. err = atmel_aes_hw_version_init(aes_dd);
  1197. if (err)
  1198. goto res_err;
  1199. atmel_aes_get_cap(aes_dd);
  1200. err = atmel_aes_buff_init(aes_dd);
  1201. if (err)
  1202. goto err_aes_buff;
  1203. err = atmel_aes_dma_init(aes_dd, pdata);
  1204. if (err)
  1205. goto err_aes_dma;
  1206. spin_lock(&atmel_aes.lock);
  1207. list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
  1208. spin_unlock(&atmel_aes.lock);
  1209. err = atmel_aes_register_algs(aes_dd);
  1210. if (err)
  1211. goto err_algs;
  1212. dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
  1213. dma_chan_name(aes_dd->dma_lch_in.chan),
  1214. dma_chan_name(aes_dd->dma_lch_out.chan));
  1215. return 0;
  1216. err_algs:
  1217. spin_lock(&atmel_aes.lock);
  1218. list_del(&aes_dd->list);
  1219. spin_unlock(&atmel_aes.lock);
  1220. atmel_aes_dma_cleanup(aes_dd);
  1221. err_aes_dma:
  1222. atmel_aes_buff_cleanup(aes_dd);
  1223. err_aes_buff:
  1224. res_err:
  1225. tasklet_kill(&aes_dd->done_task);
  1226. tasklet_kill(&aes_dd->queue_task);
  1227. aes_dd_err:
  1228. dev_err(dev, "initialization failed.\n");
  1229. return err;
  1230. }
  1231. static int atmel_aes_remove(struct platform_device *pdev)
  1232. {
  1233. static struct atmel_aes_dev *aes_dd;
  1234. aes_dd = platform_get_drvdata(pdev);
  1235. if (!aes_dd)
  1236. return -ENODEV;
  1237. spin_lock(&atmel_aes.lock);
  1238. list_del(&aes_dd->list);
  1239. spin_unlock(&atmel_aes.lock);
  1240. atmel_aes_unregister_algs(aes_dd);
  1241. tasklet_kill(&aes_dd->done_task);
  1242. tasklet_kill(&aes_dd->queue_task);
  1243. atmel_aes_dma_cleanup(aes_dd);
  1244. return 0;
  1245. }
  1246. static struct platform_driver atmel_aes_driver = {
  1247. .probe = atmel_aes_probe,
  1248. .remove = atmel_aes_remove,
  1249. .driver = {
  1250. .name = "atmel_aes",
  1251. .of_match_table = of_match_ptr(atmel_aes_dt_ids),
  1252. },
  1253. };
  1254. module_platform_driver(atmel_aes_driver);
  1255. MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
  1256. MODULE_LICENSE("GPL v2");
  1257. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");