page_alloc.c 184 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/compaction.h>
  54. #include <trace/events/kmem.h>
  55. #include <linux/ftrace_event.h>
  56. #include <linux/memcontrol.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page-debug-flags.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <asm/sections.h>
  64. #include <asm/tlbflush.h>
  65. #include <asm/div64.h>
  66. #include "internal.h"
  67. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  68. static DEFINE_MUTEX(pcp_batch_high_lock);
  69. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  70. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  71. DEFINE_PER_CPU(int, numa_node);
  72. EXPORT_PER_CPU_SYMBOL(numa_node);
  73. #endif
  74. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  75. /*
  76. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  77. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  78. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  79. * defined in <linux/topology.h>.
  80. */
  81. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  82. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  83. #endif
  84. /*
  85. * Array of node states.
  86. */
  87. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  88. [N_POSSIBLE] = NODE_MASK_ALL,
  89. [N_ONLINE] = { { [0] = 1UL } },
  90. #ifndef CONFIG_NUMA
  91. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  92. #ifdef CONFIG_HIGHMEM
  93. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  94. #endif
  95. #ifdef CONFIG_MOVABLE_NODE
  96. [N_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. [N_CPU] = { { [0] = 1UL } },
  99. #endif /* NUMA */
  100. };
  101. EXPORT_SYMBOL(node_states);
  102. /* Protect totalram_pages and zone->managed_pages */
  103. static DEFINE_SPINLOCK(managed_page_count_lock);
  104. unsigned long totalram_pages __read_mostly;
  105. unsigned long totalreserve_pages __read_mostly;
  106. /*
  107. * When calculating the number of globally allowed dirty pages, there
  108. * is a certain number of per-zone reserves that should not be
  109. * considered dirtyable memory. This is the sum of those reserves
  110. * over all existing zones that contribute dirtyable memory.
  111. */
  112. unsigned long dirty_balance_reserve __read_mostly;
  113. int percpu_pagelist_fraction;
  114. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  115. #ifdef CONFIG_PM_SLEEP
  116. /*
  117. * The following functions are used by the suspend/hibernate code to temporarily
  118. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  119. * while devices are suspended. To avoid races with the suspend/hibernate code,
  120. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  121. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  122. * guaranteed not to run in parallel with that modification).
  123. */
  124. static gfp_t saved_gfp_mask;
  125. void pm_restore_gfp_mask(void)
  126. {
  127. WARN_ON(!mutex_is_locked(&pm_mutex));
  128. if (saved_gfp_mask) {
  129. gfp_allowed_mask = saved_gfp_mask;
  130. saved_gfp_mask = 0;
  131. }
  132. }
  133. void pm_restrict_gfp_mask(void)
  134. {
  135. WARN_ON(!mutex_is_locked(&pm_mutex));
  136. WARN_ON(saved_gfp_mask);
  137. saved_gfp_mask = gfp_allowed_mask;
  138. gfp_allowed_mask &= ~GFP_IOFS;
  139. }
  140. bool pm_suspended_storage(void)
  141. {
  142. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  143. return false;
  144. return true;
  145. }
  146. #endif /* CONFIG_PM_SLEEP */
  147. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  148. int pageblock_order __read_mostly;
  149. #endif
  150. static void __free_pages_ok(struct page *page, unsigned int order);
  151. /*
  152. * results with 256, 32 in the lowmem_reserve sysctl:
  153. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  154. * 1G machine -> (16M dma, 784M normal, 224M high)
  155. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  156. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  157. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  158. *
  159. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  160. * don't need any ZONE_NORMAL reservation
  161. */
  162. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  163. #ifdef CONFIG_ZONE_DMA
  164. 256,
  165. #endif
  166. #ifdef CONFIG_ZONE_DMA32
  167. 256,
  168. #endif
  169. #ifdef CONFIG_HIGHMEM
  170. 32,
  171. #endif
  172. 32,
  173. };
  174. EXPORT_SYMBOL(totalram_pages);
  175. static char * const zone_names[MAX_NR_ZONES] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. "DMA",
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. "DMA32",
  181. #endif
  182. "Normal",
  183. #ifdef CONFIG_HIGHMEM
  184. "HighMem",
  185. #endif
  186. "Movable",
  187. };
  188. int min_free_kbytes = 1024;
  189. int user_min_free_kbytes = -1;
  190. static unsigned long __meminitdata nr_kernel_pages;
  191. static unsigned long __meminitdata nr_all_pages;
  192. static unsigned long __meminitdata dma_reserve;
  193. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  194. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  195. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  196. static unsigned long __initdata required_kernelcore;
  197. static unsigned long __initdata required_movablecore;
  198. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  199. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  200. int movable_zone;
  201. EXPORT_SYMBOL(movable_zone);
  202. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  203. #if MAX_NUMNODES > 1
  204. int nr_node_ids __read_mostly = MAX_NUMNODES;
  205. int nr_online_nodes __read_mostly = 1;
  206. EXPORT_SYMBOL(nr_node_ids);
  207. EXPORT_SYMBOL(nr_online_nodes);
  208. #endif
  209. int page_group_by_mobility_disabled __read_mostly;
  210. void set_pageblock_migratetype(struct page *page, int migratetype)
  211. {
  212. if (unlikely(page_group_by_mobility_disabled &&
  213. migratetype < MIGRATE_PCPTYPES))
  214. migratetype = MIGRATE_UNMOVABLE;
  215. set_pageblock_flags_group(page, (unsigned long)migratetype,
  216. PB_migrate, PB_migrate_end);
  217. }
  218. bool oom_killer_disabled __read_mostly;
  219. #ifdef CONFIG_DEBUG_VM
  220. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  221. {
  222. int ret = 0;
  223. unsigned seq;
  224. unsigned long pfn = page_to_pfn(page);
  225. unsigned long sp, start_pfn;
  226. do {
  227. seq = zone_span_seqbegin(zone);
  228. start_pfn = zone->zone_start_pfn;
  229. sp = zone->spanned_pages;
  230. if (!zone_spans_pfn(zone, pfn))
  231. ret = 1;
  232. } while (zone_span_seqretry(zone, seq));
  233. if (ret)
  234. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  235. pfn, zone_to_nid(zone), zone->name,
  236. start_pfn, start_pfn + sp);
  237. return ret;
  238. }
  239. static int page_is_consistent(struct zone *zone, struct page *page)
  240. {
  241. if (!pfn_valid_within(page_to_pfn(page)))
  242. return 0;
  243. if (zone != page_zone(page))
  244. return 0;
  245. return 1;
  246. }
  247. /*
  248. * Temporary debugging check for pages not lying within a given zone.
  249. */
  250. static int bad_range(struct zone *zone, struct page *page)
  251. {
  252. if (page_outside_zone_boundaries(zone, page))
  253. return 1;
  254. if (!page_is_consistent(zone, page))
  255. return 1;
  256. return 0;
  257. }
  258. #else
  259. static inline int bad_range(struct zone *zone, struct page *page)
  260. {
  261. return 0;
  262. }
  263. #endif
  264. static void bad_page(struct page *page, const char *reason,
  265. unsigned long bad_flags)
  266. {
  267. static unsigned long resume;
  268. static unsigned long nr_shown;
  269. static unsigned long nr_unshown;
  270. /* Don't complain about poisoned pages */
  271. if (PageHWPoison(page)) {
  272. page_mapcount_reset(page); /* remove PageBuddy */
  273. return;
  274. }
  275. /*
  276. * Allow a burst of 60 reports, then keep quiet for that minute;
  277. * or allow a steady drip of one report per second.
  278. */
  279. if (nr_shown == 60) {
  280. if (time_before(jiffies, resume)) {
  281. nr_unshown++;
  282. goto out;
  283. }
  284. if (nr_unshown) {
  285. printk(KERN_ALERT
  286. "BUG: Bad page state: %lu messages suppressed\n",
  287. nr_unshown);
  288. nr_unshown = 0;
  289. }
  290. nr_shown = 0;
  291. }
  292. if (nr_shown++ == 0)
  293. resume = jiffies + 60 * HZ;
  294. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  295. current->comm, page_to_pfn(page));
  296. dump_page_badflags(page, reason, bad_flags);
  297. print_modules();
  298. dump_stack();
  299. out:
  300. /* Leave bad fields for debug, except PageBuddy could make trouble */
  301. page_mapcount_reset(page); /* remove PageBuddy */
  302. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  303. }
  304. /*
  305. * Higher-order pages are called "compound pages". They are structured thusly:
  306. *
  307. * The first PAGE_SIZE page is called the "head page".
  308. *
  309. * The remaining PAGE_SIZE pages are called "tail pages".
  310. *
  311. * All pages have PG_compound set. All tail pages have their ->first_page
  312. * pointing at the head page.
  313. *
  314. * The first tail page's ->lru.next holds the address of the compound page's
  315. * put_page() function. Its ->lru.prev holds the order of allocation.
  316. * This usage means that zero-order pages may not be compound.
  317. */
  318. static void free_compound_page(struct page *page)
  319. {
  320. __free_pages_ok(page, compound_order(page));
  321. }
  322. void prep_compound_page(struct page *page, unsigned long order)
  323. {
  324. int i;
  325. int nr_pages = 1 << order;
  326. set_compound_page_dtor(page, free_compound_page);
  327. set_compound_order(page, order);
  328. __SetPageHead(page);
  329. for (i = 1; i < nr_pages; i++) {
  330. struct page *p = page + i;
  331. set_page_count(p, 0);
  332. p->first_page = page;
  333. /* Make sure p->first_page is always valid for PageTail() */
  334. smp_wmb();
  335. __SetPageTail(p);
  336. }
  337. }
  338. /* update __split_huge_page_refcount if you change this function */
  339. static int destroy_compound_page(struct page *page, unsigned long order)
  340. {
  341. int i;
  342. int nr_pages = 1 << order;
  343. int bad = 0;
  344. if (unlikely(compound_order(page) != order)) {
  345. bad_page(page, "wrong compound order", 0);
  346. bad++;
  347. }
  348. __ClearPageHead(page);
  349. for (i = 1; i < nr_pages; i++) {
  350. struct page *p = page + i;
  351. if (unlikely(!PageTail(p))) {
  352. bad_page(page, "PageTail not set", 0);
  353. bad++;
  354. } else if (unlikely(p->first_page != page)) {
  355. bad_page(page, "first_page not consistent", 0);
  356. bad++;
  357. }
  358. __ClearPageTail(p);
  359. }
  360. return bad;
  361. }
  362. static inline void prep_zero_page(struct page *page, unsigned int order,
  363. gfp_t gfp_flags)
  364. {
  365. int i;
  366. /*
  367. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  368. * and __GFP_HIGHMEM from hard or soft interrupt context.
  369. */
  370. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  371. for (i = 0; i < (1 << order); i++)
  372. clear_highpage(page + i);
  373. }
  374. #ifdef CONFIG_DEBUG_PAGEALLOC
  375. unsigned int _debug_guardpage_minorder;
  376. static int __init debug_guardpage_minorder_setup(char *buf)
  377. {
  378. unsigned long res;
  379. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  380. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  381. return 0;
  382. }
  383. _debug_guardpage_minorder = res;
  384. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  385. return 0;
  386. }
  387. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  388. static inline void set_page_guard_flag(struct page *page)
  389. {
  390. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  391. }
  392. static inline void clear_page_guard_flag(struct page *page)
  393. {
  394. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  395. }
  396. #else
  397. static inline void set_page_guard_flag(struct page *page) { }
  398. static inline void clear_page_guard_flag(struct page *page) { }
  399. #endif
  400. static inline void set_page_order(struct page *page, unsigned int order)
  401. {
  402. set_page_private(page, order);
  403. __SetPageBuddy(page);
  404. }
  405. static inline void rmv_page_order(struct page *page)
  406. {
  407. __ClearPageBuddy(page);
  408. set_page_private(page, 0);
  409. }
  410. /*
  411. * Locate the struct page for both the matching buddy in our
  412. * pair (buddy1) and the combined O(n+1) page they form (page).
  413. *
  414. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  415. * the following equation:
  416. * B2 = B1 ^ (1 << O)
  417. * For example, if the starting buddy (buddy2) is #8 its order
  418. * 1 buddy is #10:
  419. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  420. *
  421. * 2) Any buddy B will have an order O+1 parent P which
  422. * satisfies the following equation:
  423. * P = B & ~(1 << O)
  424. *
  425. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  426. */
  427. static inline unsigned long
  428. __find_buddy_index(unsigned long page_idx, unsigned int order)
  429. {
  430. return page_idx ^ (1 << order);
  431. }
  432. /*
  433. * This function checks whether a page is free && is the buddy
  434. * we can do coalesce a page and its buddy if
  435. * (a) the buddy is not in a hole &&
  436. * (b) the buddy is in the buddy system &&
  437. * (c) a page and its buddy have the same order &&
  438. * (d) a page and its buddy are in the same zone.
  439. *
  440. * For recording whether a page is in the buddy system, we set ->_mapcount
  441. * PAGE_BUDDY_MAPCOUNT_VALUE.
  442. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  443. * serialized by zone->lock.
  444. *
  445. * For recording page's order, we use page_private(page).
  446. */
  447. static inline int page_is_buddy(struct page *page, struct page *buddy,
  448. unsigned int order)
  449. {
  450. if (!pfn_valid_within(page_to_pfn(buddy)))
  451. return 0;
  452. if (page_is_guard(buddy) && page_order(buddy) == order) {
  453. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  454. if (page_zone_id(page) != page_zone_id(buddy))
  455. return 0;
  456. return 1;
  457. }
  458. if (PageBuddy(buddy) && page_order(buddy) == order) {
  459. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  460. /*
  461. * zone check is done late to avoid uselessly
  462. * calculating zone/node ids for pages that could
  463. * never merge.
  464. */
  465. if (page_zone_id(page) != page_zone_id(buddy))
  466. return 0;
  467. return 1;
  468. }
  469. return 0;
  470. }
  471. /*
  472. * Freeing function for a buddy system allocator.
  473. *
  474. * The concept of a buddy system is to maintain direct-mapped table
  475. * (containing bit values) for memory blocks of various "orders".
  476. * The bottom level table contains the map for the smallest allocatable
  477. * units of memory (here, pages), and each level above it describes
  478. * pairs of units from the levels below, hence, "buddies".
  479. * At a high level, all that happens here is marking the table entry
  480. * at the bottom level available, and propagating the changes upward
  481. * as necessary, plus some accounting needed to play nicely with other
  482. * parts of the VM system.
  483. * At each level, we keep a list of pages, which are heads of continuous
  484. * free pages of length of (1 << order) and marked with _mapcount
  485. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  486. * field.
  487. * So when we are allocating or freeing one, we can derive the state of the
  488. * other. That is, if we allocate a small block, and both were
  489. * free, the remainder of the region must be split into blocks.
  490. * If a block is freed, and its buddy is also free, then this
  491. * triggers coalescing into a block of larger size.
  492. *
  493. * -- nyc
  494. */
  495. static inline void __free_one_page(struct page *page,
  496. unsigned long pfn,
  497. struct zone *zone, unsigned int order,
  498. int migratetype)
  499. {
  500. unsigned long page_idx;
  501. unsigned long combined_idx;
  502. unsigned long uninitialized_var(buddy_idx);
  503. struct page *buddy;
  504. VM_BUG_ON(!zone_is_initialized(zone));
  505. if (unlikely(PageCompound(page)))
  506. if (unlikely(destroy_compound_page(page, order)))
  507. return;
  508. VM_BUG_ON(migratetype == -1);
  509. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  510. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  511. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  512. while (order < MAX_ORDER-1) {
  513. buddy_idx = __find_buddy_index(page_idx, order);
  514. buddy = page + (buddy_idx - page_idx);
  515. if (!page_is_buddy(page, buddy, order))
  516. break;
  517. /*
  518. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  519. * merge with it and move up one order.
  520. */
  521. if (page_is_guard(buddy)) {
  522. clear_page_guard_flag(buddy);
  523. set_page_private(page, 0);
  524. __mod_zone_freepage_state(zone, 1 << order,
  525. migratetype);
  526. } else {
  527. list_del(&buddy->lru);
  528. zone->free_area[order].nr_free--;
  529. rmv_page_order(buddy);
  530. }
  531. combined_idx = buddy_idx & page_idx;
  532. page = page + (combined_idx - page_idx);
  533. page_idx = combined_idx;
  534. order++;
  535. }
  536. set_page_order(page, order);
  537. /*
  538. * If this is not the largest possible page, check if the buddy
  539. * of the next-highest order is free. If it is, it's possible
  540. * that pages are being freed that will coalesce soon. In case,
  541. * that is happening, add the free page to the tail of the list
  542. * so it's less likely to be used soon and more likely to be merged
  543. * as a higher order page
  544. */
  545. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  546. struct page *higher_page, *higher_buddy;
  547. combined_idx = buddy_idx & page_idx;
  548. higher_page = page + (combined_idx - page_idx);
  549. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  550. higher_buddy = higher_page + (buddy_idx - combined_idx);
  551. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  552. list_add_tail(&page->lru,
  553. &zone->free_area[order].free_list[migratetype]);
  554. goto out;
  555. }
  556. }
  557. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  558. out:
  559. zone->free_area[order].nr_free++;
  560. }
  561. static inline int free_pages_check(struct page *page)
  562. {
  563. const char *bad_reason = NULL;
  564. unsigned long bad_flags = 0;
  565. if (unlikely(page_mapcount(page)))
  566. bad_reason = "nonzero mapcount";
  567. if (unlikely(page->mapping != NULL))
  568. bad_reason = "non-NULL mapping";
  569. if (unlikely(atomic_read(&page->_count) != 0))
  570. bad_reason = "nonzero _count";
  571. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  572. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  573. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  574. }
  575. if (unlikely(mem_cgroup_bad_page_check(page)))
  576. bad_reason = "cgroup check failed";
  577. if (unlikely(bad_reason)) {
  578. bad_page(page, bad_reason, bad_flags);
  579. return 1;
  580. }
  581. page_cpupid_reset_last(page);
  582. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  583. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  584. return 0;
  585. }
  586. /*
  587. * Frees a number of pages from the PCP lists
  588. * Assumes all pages on list are in same zone, and of same order.
  589. * count is the number of pages to free.
  590. *
  591. * If the zone was previously in an "all pages pinned" state then look to
  592. * see if this freeing clears that state.
  593. *
  594. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  595. * pinned" detection logic.
  596. */
  597. static void free_pcppages_bulk(struct zone *zone, int count,
  598. struct per_cpu_pages *pcp)
  599. {
  600. int migratetype = 0;
  601. int batch_free = 0;
  602. int to_free = count;
  603. spin_lock(&zone->lock);
  604. zone->pages_scanned = 0;
  605. while (to_free) {
  606. struct page *page;
  607. struct list_head *list;
  608. /*
  609. * Remove pages from lists in a round-robin fashion. A
  610. * batch_free count is maintained that is incremented when an
  611. * empty list is encountered. This is so more pages are freed
  612. * off fuller lists instead of spinning excessively around empty
  613. * lists
  614. */
  615. do {
  616. batch_free++;
  617. if (++migratetype == MIGRATE_PCPTYPES)
  618. migratetype = 0;
  619. list = &pcp->lists[migratetype];
  620. } while (list_empty(list));
  621. /* This is the only non-empty list. Free them all. */
  622. if (batch_free == MIGRATE_PCPTYPES)
  623. batch_free = to_free;
  624. do {
  625. int mt; /* migratetype of the to-be-freed page */
  626. page = list_entry(list->prev, struct page, lru);
  627. /* must delete as __free_one_page list manipulates */
  628. list_del(&page->lru);
  629. mt = get_freepage_migratetype(page);
  630. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  631. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  632. trace_mm_page_pcpu_drain(page, 0, mt);
  633. if (likely(!is_migrate_isolate_page(page))) {
  634. __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
  635. if (is_migrate_cma(mt))
  636. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
  637. }
  638. } while (--to_free && --batch_free && !list_empty(list));
  639. }
  640. spin_unlock(&zone->lock);
  641. }
  642. static void free_one_page(struct zone *zone,
  643. struct page *page, unsigned long pfn,
  644. unsigned int order,
  645. int migratetype)
  646. {
  647. spin_lock(&zone->lock);
  648. zone->pages_scanned = 0;
  649. __free_one_page(page, pfn, zone, order, migratetype);
  650. if (unlikely(!is_migrate_isolate(migratetype)))
  651. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  652. spin_unlock(&zone->lock);
  653. }
  654. static bool free_pages_prepare(struct page *page, unsigned int order)
  655. {
  656. int i;
  657. int bad = 0;
  658. trace_mm_page_free(page, order);
  659. kmemcheck_free_shadow(page, order);
  660. if (PageAnon(page))
  661. page->mapping = NULL;
  662. for (i = 0; i < (1 << order); i++)
  663. bad += free_pages_check(page + i);
  664. if (bad)
  665. return false;
  666. if (!PageHighMem(page)) {
  667. debug_check_no_locks_freed(page_address(page),
  668. PAGE_SIZE << order);
  669. debug_check_no_obj_freed(page_address(page),
  670. PAGE_SIZE << order);
  671. }
  672. arch_free_page(page, order);
  673. kernel_map_pages(page, 1 << order, 0);
  674. return true;
  675. }
  676. static void __free_pages_ok(struct page *page, unsigned int order)
  677. {
  678. unsigned long flags;
  679. int migratetype;
  680. unsigned long pfn = page_to_pfn(page);
  681. if (!free_pages_prepare(page, order))
  682. return;
  683. migratetype = get_pfnblock_migratetype(page, pfn);
  684. local_irq_save(flags);
  685. __count_vm_events(PGFREE, 1 << order);
  686. set_freepage_migratetype(page, migratetype);
  687. free_one_page(page_zone(page), page, pfn, order, migratetype);
  688. local_irq_restore(flags);
  689. }
  690. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  691. {
  692. unsigned int nr_pages = 1 << order;
  693. struct page *p = page;
  694. unsigned int loop;
  695. prefetchw(p);
  696. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  697. prefetchw(p + 1);
  698. __ClearPageReserved(p);
  699. set_page_count(p, 0);
  700. }
  701. __ClearPageReserved(p);
  702. set_page_count(p, 0);
  703. page_zone(page)->managed_pages += nr_pages;
  704. set_page_refcounted(page);
  705. __free_pages(page, order);
  706. }
  707. #ifdef CONFIG_CMA
  708. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  709. void __init init_cma_reserved_pageblock(struct page *page)
  710. {
  711. unsigned i = pageblock_nr_pages;
  712. struct page *p = page;
  713. do {
  714. __ClearPageReserved(p);
  715. set_page_count(p, 0);
  716. } while (++p, --i);
  717. set_pageblock_migratetype(page, MIGRATE_CMA);
  718. if (pageblock_order >= MAX_ORDER) {
  719. i = pageblock_nr_pages;
  720. p = page;
  721. do {
  722. set_page_refcounted(p);
  723. __free_pages(p, MAX_ORDER - 1);
  724. p += MAX_ORDER_NR_PAGES;
  725. } while (i -= MAX_ORDER_NR_PAGES);
  726. } else {
  727. set_page_refcounted(page);
  728. __free_pages(page, pageblock_order);
  729. }
  730. adjust_managed_page_count(page, pageblock_nr_pages);
  731. }
  732. #endif
  733. /*
  734. * The order of subdivision here is critical for the IO subsystem.
  735. * Please do not alter this order without good reasons and regression
  736. * testing. Specifically, as large blocks of memory are subdivided,
  737. * the order in which smaller blocks are delivered depends on the order
  738. * they're subdivided in this function. This is the primary factor
  739. * influencing the order in which pages are delivered to the IO
  740. * subsystem according to empirical testing, and this is also justified
  741. * by considering the behavior of a buddy system containing a single
  742. * large block of memory acted on by a series of small allocations.
  743. * This behavior is a critical factor in sglist merging's success.
  744. *
  745. * -- nyc
  746. */
  747. static inline void expand(struct zone *zone, struct page *page,
  748. int low, int high, struct free_area *area,
  749. int migratetype)
  750. {
  751. unsigned long size = 1 << high;
  752. while (high > low) {
  753. area--;
  754. high--;
  755. size >>= 1;
  756. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  757. #ifdef CONFIG_DEBUG_PAGEALLOC
  758. if (high < debug_guardpage_minorder()) {
  759. /*
  760. * Mark as guard pages (or page), that will allow to
  761. * merge back to allocator when buddy will be freed.
  762. * Corresponding page table entries will not be touched,
  763. * pages will stay not present in virtual address space
  764. */
  765. INIT_LIST_HEAD(&page[size].lru);
  766. set_page_guard_flag(&page[size]);
  767. set_page_private(&page[size], high);
  768. /* Guard pages are not available for any usage */
  769. __mod_zone_freepage_state(zone, -(1 << high),
  770. migratetype);
  771. continue;
  772. }
  773. #endif
  774. list_add(&page[size].lru, &area->free_list[migratetype]);
  775. area->nr_free++;
  776. set_page_order(&page[size], high);
  777. }
  778. }
  779. /*
  780. * This page is about to be returned from the page allocator
  781. */
  782. static inline int check_new_page(struct page *page)
  783. {
  784. const char *bad_reason = NULL;
  785. unsigned long bad_flags = 0;
  786. if (unlikely(page_mapcount(page)))
  787. bad_reason = "nonzero mapcount";
  788. if (unlikely(page->mapping != NULL))
  789. bad_reason = "non-NULL mapping";
  790. if (unlikely(atomic_read(&page->_count) != 0))
  791. bad_reason = "nonzero _count";
  792. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  793. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  794. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  795. }
  796. if (unlikely(mem_cgroup_bad_page_check(page)))
  797. bad_reason = "cgroup check failed";
  798. if (unlikely(bad_reason)) {
  799. bad_page(page, bad_reason, bad_flags);
  800. return 1;
  801. }
  802. return 0;
  803. }
  804. static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
  805. {
  806. int i;
  807. for (i = 0; i < (1 << order); i++) {
  808. struct page *p = page + i;
  809. if (unlikely(check_new_page(p)))
  810. return 1;
  811. }
  812. set_page_private(page, 0);
  813. set_page_refcounted(page);
  814. arch_alloc_page(page, order);
  815. kernel_map_pages(page, 1 << order, 1);
  816. if (gfp_flags & __GFP_ZERO)
  817. prep_zero_page(page, order, gfp_flags);
  818. if (order && (gfp_flags & __GFP_COMP))
  819. prep_compound_page(page, order);
  820. return 0;
  821. }
  822. /*
  823. * Go through the free lists for the given migratetype and remove
  824. * the smallest available page from the freelists
  825. */
  826. static inline
  827. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  828. int migratetype)
  829. {
  830. unsigned int current_order;
  831. struct free_area *area;
  832. struct page *page;
  833. /* Find a page of the appropriate size in the preferred list */
  834. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  835. area = &(zone->free_area[current_order]);
  836. if (list_empty(&area->free_list[migratetype]))
  837. continue;
  838. page = list_entry(area->free_list[migratetype].next,
  839. struct page, lru);
  840. list_del(&page->lru);
  841. rmv_page_order(page);
  842. area->nr_free--;
  843. expand(zone, page, order, current_order, area, migratetype);
  844. set_freepage_migratetype(page, migratetype);
  845. return page;
  846. }
  847. return NULL;
  848. }
  849. /*
  850. * This array describes the order lists are fallen back to when
  851. * the free lists for the desirable migrate type are depleted
  852. */
  853. static int fallbacks[MIGRATE_TYPES][4] = {
  854. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  855. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  856. #ifdef CONFIG_CMA
  857. [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  858. [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
  859. #else
  860. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  861. #endif
  862. [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
  863. #ifdef CONFIG_MEMORY_ISOLATION
  864. [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
  865. #endif
  866. };
  867. /*
  868. * Move the free pages in a range to the free lists of the requested type.
  869. * Note that start_page and end_pages are not aligned on a pageblock
  870. * boundary. If alignment is required, use move_freepages_block()
  871. */
  872. int move_freepages(struct zone *zone,
  873. struct page *start_page, struct page *end_page,
  874. int migratetype)
  875. {
  876. struct page *page;
  877. unsigned long order;
  878. int pages_moved = 0;
  879. #ifndef CONFIG_HOLES_IN_ZONE
  880. /*
  881. * page_zone is not safe to call in this context when
  882. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  883. * anyway as we check zone boundaries in move_freepages_block().
  884. * Remove at a later date when no bug reports exist related to
  885. * grouping pages by mobility
  886. */
  887. BUG_ON(page_zone(start_page) != page_zone(end_page));
  888. #endif
  889. for (page = start_page; page <= end_page;) {
  890. /* Make sure we are not inadvertently changing nodes */
  891. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  892. if (!pfn_valid_within(page_to_pfn(page))) {
  893. page++;
  894. continue;
  895. }
  896. if (!PageBuddy(page)) {
  897. page++;
  898. continue;
  899. }
  900. order = page_order(page);
  901. list_move(&page->lru,
  902. &zone->free_area[order].free_list[migratetype]);
  903. set_freepage_migratetype(page, migratetype);
  904. page += 1 << order;
  905. pages_moved += 1 << order;
  906. }
  907. return pages_moved;
  908. }
  909. int move_freepages_block(struct zone *zone, struct page *page,
  910. int migratetype)
  911. {
  912. unsigned long start_pfn, end_pfn;
  913. struct page *start_page, *end_page;
  914. start_pfn = page_to_pfn(page);
  915. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  916. start_page = pfn_to_page(start_pfn);
  917. end_page = start_page + pageblock_nr_pages - 1;
  918. end_pfn = start_pfn + pageblock_nr_pages - 1;
  919. /* Do not cross zone boundaries */
  920. if (!zone_spans_pfn(zone, start_pfn))
  921. start_page = page;
  922. if (!zone_spans_pfn(zone, end_pfn))
  923. return 0;
  924. return move_freepages(zone, start_page, end_page, migratetype);
  925. }
  926. static void change_pageblock_range(struct page *pageblock_page,
  927. int start_order, int migratetype)
  928. {
  929. int nr_pageblocks = 1 << (start_order - pageblock_order);
  930. while (nr_pageblocks--) {
  931. set_pageblock_migratetype(pageblock_page, migratetype);
  932. pageblock_page += pageblock_nr_pages;
  933. }
  934. }
  935. /*
  936. * If breaking a large block of pages, move all free pages to the preferred
  937. * allocation list. If falling back for a reclaimable kernel allocation, be
  938. * more aggressive about taking ownership of free pages.
  939. *
  940. * On the other hand, never change migration type of MIGRATE_CMA pageblocks
  941. * nor move CMA pages to different free lists. We don't want unmovable pages
  942. * to be allocated from MIGRATE_CMA areas.
  943. *
  944. * Returns the new migratetype of the pageblock (or the same old migratetype
  945. * if it was unchanged).
  946. */
  947. static int try_to_steal_freepages(struct zone *zone, struct page *page,
  948. int start_type, int fallback_type)
  949. {
  950. int current_order = page_order(page);
  951. /*
  952. * When borrowing from MIGRATE_CMA, we need to release the excess
  953. * buddy pages to CMA itself. We also ensure the freepage_migratetype
  954. * is set to CMA so it is returned to the correct freelist in case
  955. * the page ends up being not actually allocated from the pcp lists.
  956. */
  957. if (is_migrate_cma(fallback_type))
  958. return fallback_type;
  959. /* Take ownership for orders >= pageblock_order */
  960. if (current_order >= pageblock_order) {
  961. change_pageblock_range(page, current_order, start_type);
  962. return start_type;
  963. }
  964. if (current_order >= pageblock_order / 2 ||
  965. start_type == MIGRATE_RECLAIMABLE ||
  966. page_group_by_mobility_disabled) {
  967. int pages;
  968. pages = move_freepages_block(zone, page, start_type);
  969. /* Claim the whole block if over half of it is free */
  970. if (pages >= (1 << (pageblock_order-1)) ||
  971. page_group_by_mobility_disabled) {
  972. set_pageblock_migratetype(page, start_type);
  973. return start_type;
  974. }
  975. }
  976. return fallback_type;
  977. }
  978. /* Remove an element from the buddy allocator from the fallback list */
  979. static inline struct page *
  980. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  981. {
  982. struct free_area *area;
  983. unsigned int current_order;
  984. struct page *page;
  985. int migratetype, new_type, i;
  986. /* Find the largest possible block of pages in the other list */
  987. for (current_order = MAX_ORDER-1;
  988. current_order >= order && current_order <= MAX_ORDER-1;
  989. --current_order) {
  990. for (i = 0;; i++) {
  991. migratetype = fallbacks[start_migratetype][i];
  992. /* MIGRATE_RESERVE handled later if necessary */
  993. if (migratetype == MIGRATE_RESERVE)
  994. break;
  995. area = &(zone->free_area[current_order]);
  996. if (list_empty(&area->free_list[migratetype]))
  997. continue;
  998. page = list_entry(area->free_list[migratetype].next,
  999. struct page, lru);
  1000. area->nr_free--;
  1001. new_type = try_to_steal_freepages(zone, page,
  1002. start_migratetype,
  1003. migratetype);
  1004. /* Remove the page from the freelists */
  1005. list_del(&page->lru);
  1006. rmv_page_order(page);
  1007. expand(zone, page, order, current_order, area,
  1008. new_type);
  1009. /* The freepage_migratetype may differ from pageblock's
  1010. * migratetype depending on the decisions in
  1011. * try_to_steal_freepages. This is OK as long as it does
  1012. * not differ for MIGRATE_CMA type.
  1013. */
  1014. set_freepage_migratetype(page, new_type);
  1015. trace_mm_page_alloc_extfrag(page, order, current_order,
  1016. start_migratetype, migratetype, new_type);
  1017. return page;
  1018. }
  1019. }
  1020. return NULL;
  1021. }
  1022. /*
  1023. * Do the hard work of removing an element from the buddy allocator.
  1024. * Call me with the zone->lock already held.
  1025. */
  1026. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1027. int migratetype)
  1028. {
  1029. struct page *page;
  1030. retry_reserve:
  1031. page = __rmqueue_smallest(zone, order, migratetype);
  1032. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  1033. page = __rmqueue_fallback(zone, order, migratetype);
  1034. /*
  1035. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  1036. * is used because __rmqueue_smallest is an inline function
  1037. * and we want just one call site
  1038. */
  1039. if (!page) {
  1040. migratetype = MIGRATE_RESERVE;
  1041. goto retry_reserve;
  1042. }
  1043. }
  1044. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1045. return page;
  1046. }
  1047. /*
  1048. * Obtain a specified number of elements from the buddy allocator, all under
  1049. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1050. * Returns the number of new pages which were placed at *list.
  1051. */
  1052. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1053. unsigned long count, struct list_head *list,
  1054. int migratetype, bool cold)
  1055. {
  1056. int i;
  1057. spin_lock(&zone->lock);
  1058. for (i = 0; i < count; ++i) {
  1059. struct page *page = __rmqueue(zone, order, migratetype);
  1060. if (unlikely(page == NULL))
  1061. break;
  1062. /*
  1063. * Split buddy pages returned by expand() are received here
  1064. * in physical page order. The page is added to the callers and
  1065. * list and the list head then moves forward. From the callers
  1066. * perspective, the linked list is ordered by page number in
  1067. * some conditions. This is useful for IO devices that can
  1068. * merge IO requests if the physical pages are ordered
  1069. * properly.
  1070. */
  1071. if (likely(!cold))
  1072. list_add(&page->lru, list);
  1073. else
  1074. list_add_tail(&page->lru, list);
  1075. list = &page->lru;
  1076. if (is_migrate_cma(get_freepage_migratetype(page)))
  1077. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1078. -(1 << order));
  1079. }
  1080. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1081. spin_unlock(&zone->lock);
  1082. return i;
  1083. }
  1084. #ifdef CONFIG_NUMA
  1085. /*
  1086. * Called from the vmstat counter updater to drain pagesets of this
  1087. * currently executing processor on remote nodes after they have
  1088. * expired.
  1089. *
  1090. * Note that this function must be called with the thread pinned to
  1091. * a single processor.
  1092. */
  1093. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1094. {
  1095. unsigned long flags;
  1096. int to_drain, batch;
  1097. local_irq_save(flags);
  1098. batch = ACCESS_ONCE(pcp->batch);
  1099. to_drain = min(pcp->count, batch);
  1100. if (to_drain > 0) {
  1101. free_pcppages_bulk(zone, to_drain, pcp);
  1102. pcp->count -= to_drain;
  1103. }
  1104. local_irq_restore(flags);
  1105. }
  1106. #endif
  1107. /*
  1108. * Drain pages of the indicated processor.
  1109. *
  1110. * The processor must either be the current processor and the
  1111. * thread pinned to the current processor or a processor that
  1112. * is not online.
  1113. */
  1114. static void drain_pages(unsigned int cpu)
  1115. {
  1116. unsigned long flags;
  1117. struct zone *zone;
  1118. for_each_populated_zone(zone) {
  1119. struct per_cpu_pageset *pset;
  1120. struct per_cpu_pages *pcp;
  1121. local_irq_save(flags);
  1122. pset = per_cpu_ptr(zone->pageset, cpu);
  1123. pcp = &pset->pcp;
  1124. if (pcp->count) {
  1125. free_pcppages_bulk(zone, pcp->count, pcp);
  1126. pcp->count = 0;
  1127. }
  1128. local_irq_restore(flags);
  1129. }
  1130. }
  1131. /*
  1132. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1133. */
  1134. void drain_local_pages(void *arg)
  1135. {
  1136. drain_pages(smp_processor_id());
  1137. }
  1138. /*
  1139. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1140. *
  1141. * Note that this code is protected against sending an IPI to an offline
  1142. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1143. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1144. * nothing keeps CPUs from showing up after we populated the cpumask and
  1145. * before the call to on_each_cpu_mask().
  1146. */
  1147. void drain_all_pages(void)
  1148. {
  1149. int cpu;
  1150. struct per_cpu_pageset *pcp;
  1151. struct zone *zone;
  1152. /*
  1153. * Allocate in the BSS so we wont require allocation in
  1154. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1155. */
  1156. static cpumask_t cpus_with_pcps;
  1157. /*
  1158. * We don't care about racing with CPU hotplug event
  1159. * as offline notification will cause the notified
  1160. * cpu to drain that CPU pcps and on_each_cpu_mask
  1161. * disables preemption as part of its processing
  1162. */
  1163. for_each_online_cpu(cpu) {
  1164. bool has_pcps = false;
  1165. for_each_populated_zone(zone) {
  1166. pcp = per_cpu_ptr(zone->pageset, cpu);
  1167. if (pcp->pcp.count) {
  1168. has_pcps = true;
  1169. break;
  1170. }
  1171. }
  1172. if (has_pcps)
  1173. cpumask_set_cpu(cpu, &cpus_with_pcps);
  1174. else
  1175. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  1176. }
  1177. on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
  1178. }
  1179. #ifdef CONFIG_HIBERNATION
  1180. void mark_free_pages(struct zone *zone)
  1181. {
  1182. unsigned long pfn, max_zone_pfn;
  1183. unsigned long flags;
  1184. unsigned int order, t;
  1185. struct list_head *curr;
  1186. if (zone_is_empty(zone))
  1187. return;
  1188. spin_lock_irqsave(&zone->lock, flags);
  1189. max_zone_pfn = zone_end_pfn(zone);
  1190. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1191. if (pfn_valid(pfn)) {
  1192. struct page *page = pfn_to_page(pfn);
  1193. if (!swsusp_page_is_forbidden(page))
  1194. swsusp_unset_page_free(page);
  1195. }
  1196. for_each_migratetype_order(order, t) {
  1197. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1198. unsigned long i;
  1199. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1200. for (i = 0; i < (1UL << order); i++)
  1201. swsusp_set_page_free(pfn_to_page(pfn + i));
  1202. }
  1203. }
  1204. spin_unlock_irqrestore(&zone->lock, flags);
  1205. }
  1206. #endif /* CONFIG_PM */
  1207. /*
  1208. * Free a 0-order page
  1209. * cold == true ? free a cold page : free a hot page
  1210. */
  1211. void free_hot_cold_page(struct page *page, bool cold)
  1212. {
  1213. struct zone *zone = page_zone(page);
  1214. struct per_cpu_pages *pcp;
  1215. unsigned long flags;
  1216. unsigned long pfn = page_to_pfn(page);
  1217. int migratetype;
  1218. if (!free_pages_prepare(page, 0))
  1219. return;
  1220. migratetype = get_pfnblock_migratetype(page, pfn);
  1221. set_freepage_migratetype(page, migratetype);
  1222. local_irq_save(flags);
  1223. __count_vm_event(PGFREE);
  1224. /*
  1225. * We only track unmovable, reclaimable and movable on pcp lists.
  1226. * Free ISOLATE pages back to the allocator because they are being
  1227. * offlined but treat RESERVE as movable pages so we can get those
  1228. * areas back if necessary. Otherwise, we may have to free
  1229. * excessively into the page allocator
  1230. */
  1231. if (migratetype >= MIGRATE_PCPTYPES) {
  1232. if (unlikely(is_migrate_isolate(migratetype))) {
  1233. free_one_page(zone, page, pfn, 0, migratetype);
  1234. goto out;
  1235. }
  1236. migratetype = MIGRATE_MOVABLE;
  1237. }
  1238. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1239. if (!cold)
  1240. list_add(&page->lru, &pcp->lists[migratetype]);
  1241. else
  1242. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1243. pcp->count++;
  1244. if (pcp->count >= pcp->high) {
  1245. unsigned long batch = ACCESS_ONCE(pcp->batch);
  1246. free_pcppages_bulk(zone, batch, pcp);
  1247. pcp->count -= batch;
  1248. }
  1249. out:
  1250. local_irq_restore(flags);
  1251. }
  1252. /*
  1253. * Free a list of 0-order pages
  1254. */
  1255. void free_hot_cold_page_list(struct list_head *list, bool cold)
  1256. {
  1257. struct page *page, *next;
  1258. list_for_each_entry_safe(page, next, list, lru) {
  1259. trace_mm_page_free_batched(page, cold);
  1260. free_hot_cold_page(page, cold);
  1261. }
  1262. }
  1263. /*
  1264. * split_page takes a non-compound higher-order page, and splits it into
  1265. * n (1<<order) sub-pages: page[0..n]
  1266. * Each sub-page must be freed individually.
  1267. *
  1268. * Note: this is probably too low level an operation for use in drivers.
  1269. * Please consult with lkml before using this in your driver.
  1270. */
  1271. void split_page(struct page *page, unsigned int order)
  1272. {
  1273. int i;
  1274. VM_BUG_ON_PAGE(PageCompound(page), page);
  1275. VM_BUG_ON_PAGE(!page_count(page), page);
  1276. #ifdef CONFIG_KMEMCHECK
  1277. /*
  1278. * Split shadow pages too, because free(page[0]) would
  1279. * otherwise free the whole shadow.
  1280. */
  1281. if (kmemcheck_page_is_tracked(page))
  1282. split_page(virt_to_page(page[0].shadow), order);
  1283. #endif
  1284. for (i = 1; i < (1 << order); i++)
  1285. set_page_refcounted(page + i);
  1286. }
  1287. EXPORT_SYMBOL_GPL(split_page);
  1288. static int __isolate_free_page(struct page *page, unsigned int order)
  1289. {
  1290. unsigned long watermark;
  1291. struct zone *zone;
  1292. int mt;
  1293. BUG_ON(!PageBuddy(page));
  1294. zone = page_zone(page);
  1295. mt = get_pageblock_migratetype(page);
  1296. if (!is_migrate_isolate(mt)) {
  1297. /* Obey watermarks as if the page was being allocated */
  1298. watermark = low_wmark_pages(zone) + (1 << order);
  1299. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1300. return 0;
  1301. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  1302. }
  1303. /* Remove page from free list */
  1304. list_del(&page->lru);
  1305. zone->free_area[order].nr_free--;
  1306. rmv_page_order(page);
  1307. /* Set the pageblock if the isolated page is at least a pageblock */
  1308. if (order >= pageblock_order - 1) {
  1309. struct page *endpage = page + (1 << order) - 1;
  1310. for (; page < endpage; page += pageblock_nr_pages) {
  1311. int mt = get_pageblock_migratetype(page);
  1312. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  1313. set_pageblock_migratetype(page,
  1314. MIGRATE_MOVABLE);
  1315. }
  1316. }
  1317. return 1UL << order;
  1318. }
  1319. /*
  1320. * Similar to split_page except the page is already free. As this is only
  1321. * being used for migration, the migratetype of the block also changes.
  1322. * As this is called with interrupts disabled, the caller is responsible
  1323. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1324. * are enabled.
  1325. *
  1326. * Note: this is probably too low level an operation for use in drivers.
  1327. * Please consult with lkml before using this in your driver.
  1328. */
  1329. int split_free_page(struct page *page)
  1330. {
  1331. unsigned int order;
  1332. int nr_pages;
  1333. order = page_order(page);
  1334. nr_pages = __isolate_free_page(page, order);
  1335. if (!nr_pages)
  1336. return 0;
  1337. /* Split into individual pages */
  1338. set_page_refcounted(page);
  1339. split_page(page, order);
  1340. return nr_pages;
  1341. }
  1342. /*
  1343. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1344. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1345. * or two.
  1346. */
  1347. static inline
  1348. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1349. struct zone *zone, unsigned int order,
  1350. gfp_t gfp_flags, int migratetype)
  1351. {
  1352. unsigned long flags;
  1353. struct page *page;
  1354. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  1355. again:
  1356. if (likely(order == 0)) {
  1357. struct per_cpu_pages *pcp;
  1358. struct list_head *list;
  1359. local_irq_save(flags);
  1360. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1361. list = &pcp->lists[migratetype];
  1362. if (list_empty(list)) {
  1363. pcp->count += rmqueue_bulk(zone, 0,
  1364. pcp->batch, list,
  1365. migratetype, cold);
  1366. if (unlikely(list_empty(list)))
  1367. goto failed;
  1368. }
  1369. if (cold)
  1370. page = list_entry(list->prev, struct page, lru);
  1371. else
  1372. page = list_entry(list->next, struct page, lru);
  1373. list_del(&page->lru);
  1374. pcp->count--;
  1375. } else {
  1376. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1377. /*
  1378. * __GFP_NOFAIL is not to be used in new code.
  1379. *
  1380. * All __GFP_NOFAIL callers should be fixed so that they
  1381. * properly detect and handle allocation failures.
  1382. *
  1383. * We most definitely don't want callers attempting to
  1384. * allocate greater than order-1 page units with
  1385. * __GFP_NOFAIL.
  1386. */
  1387. WARN_ON_ONCE(order > 1);
  1388. }
  1389. spin_lock_irqsave(&zone->lock, flags);
  1390. page = __rmqueue(zone, order, migratetype);
  1391. spin_unlock(&zone->lock);
  1392. if (!page)
  1393. goto failed;
  1394. __mod_zone_freepage_state(zone, -(1 << order),
  1395. get_freepage_migratetype(page));
  1396. }
  1397. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  1398. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1399. zone_statistics(preferred_zone, zone, gfp_flags);
  1400. local_irq_restore(flags);
  1401. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  1402. if (prep_new_page(page, order, gfp_flags))
  1403. goto again;
  1404. return page;
  1405. failed:
  1406. local_irq_restore(flags);
  1407. return NULL;
  1408. }
  1409. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1410. static struct {
  1411. struct fault_attr attr;
  1412. u32 ignore_gfp_highmem;
  1413. u32 ignore_gfp_wait;
  1414. u32 min_order;
  1415. } fail_page_alloc = {
  1416. .attr = FAULT_ATTR_INITIALIZER,
  1417. .ignore_gfp_wait = 1,
  1418. .ignore_gfp_highmem = 1,
  1419. .min_order = 1,
  1420. };
  1421. static int __init setup_fail_page_alloc(char *str)
  1422. {
  1423. return setup_fault_attr(&fail_page_alloc.attr, str);
  1424. }
  1425. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1426. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1427. {
  1428. if (order < fail_page_alloc.min_order)
  1429. return false;
  1430. if (gfp_mask & __GFP_NOFAIL)
  1431. return false;
  1432. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1433. return false;
  1434. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1435. return false;
  1436. return should_fail(&fail_page_alloc.attr, 1 << order);
  1437. }
  1438. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1439. static int __init fail_page_alloc_debugfs(void)
  1440. {
  1441. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1442. struct dentry *dir;
  1443. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1444. &fail_page_alloc.attr);
  1445. if (IS_ERR(dir))
  1446. return PTR_ERR(dir);
  1447. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1448. &fail_page_alloc.ignore_gfp_wait))
  1449. goto fail;
  1450. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1451. &fail_page_alloc.ignore_gfp_highmem))
  1452. goto fail;
  1453. if (!debugfs_create_u32("min-order", mode, dir,
  1454. &fail_page_alloc.min_order))
  1455. goto fail;
  1456. return 0;
  1457. fail:
  1458. debugfs_remove_recursive(dir);
  1459. return -ENOMEM;
  1460. }
  1461. late_initcall(fail_page_alloc_debugfs);
  1462. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1463. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1464. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1465. {
  1466. return false;
  1467. }
  1468. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1469. /*
  1470. * Return true if free pages are above 'mark'. This takes into account the order
  1471. * of the allocation.
  1472. */
  1473. static bool __zone_watermark_ok(struct zone *z, unsigned int order,
  1474. unsigned long mark, int classzone_idx, int alloc_flags,
  1475. long free_pages)
  1476. {
  1477. /* free_pages my go negative - that's OK */
  1478. long min = mark;
  1479. long lowmem_reserve = z->lowmem_reserve[classzone_idx];
  1480. int o;
  1481. long free_cma = 0;
  1482. free_pages -= (1 << order) - 1;
  1483. if (alloc_flags & ALLOC_HIGH)
  1484. min -= min / 2;
  1485. if (alloc_flags & ALLOC_HARDER)
  1486. min -= min / 4;
  1487. #ifdef CONFIG_CMA
  1488. /* If allocation can't use CMA areas don't use free CMA pages */
  1489. if (!(alloc_flags & ALLOC_CMA))
  1490. free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
  1491. #endif
  1492. if (free_pages - free_cma <= min + lowmem_reserve)
  1493. return false;
  1494. for (o = 0; o < order; o++) {
  1495. /* At the next order, this order's pages become unavailable */
  1496. free_pages -= z->free_area[o].nr_free << o;
  1497. /* Require fewer higher order pages to be free */
  1498. min >>= 1;
  1499. if (free_pages <= min)
  1500. return false;
  1501. }
  1502. return true;
  1503. }
  1504. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  1505. int classzone_idx, int alloc_flags)
  1506. {
  1507. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1508. zone_page_state(z, NR_FREE_PAGES));
  1509. }
  1510. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  1511. unsigned long mark, int classzone_idx, int alloc_flags)
  1512. {
  1513. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1514. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1515. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1516. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1517. free_pages);
  1518. }
  1519. #ifdef CONFIG_NUMA
  1520. /*
  1521. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1522. * skip over zones that are not allowed by the cpuset, or that have
  1523. * been recently (in last second) found to be nearly full. See further
  1524. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1525. * that have to skip over a lot of full or unallowed zones.
  1526. *
  1527. * If the zonelist cache is present in the passed zonelist, then
  1528. * returns a pointer to the allowed node mask (either the current
  1529. * tasks mems_allowed, or node_states[N_MEMORY].)
  1530. *
  1531. * If the zonelist cache is not available for this zonelist, does
  1532. * nothing and returns NULL.
  1533. *
  1534. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1535. * a second since last zap'd) then we zap it out (clear its bits.)
  1536. *
  1537. * We hold off even calling zlc_setup, until after we've checked the
  1538. * first zone in the zonelist, on the theory that most allocations will
  1539. * be satisfied from that first zone, so best to examine that zone as
  1540. * quickly as we can.
  1541. */
  1542. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1543. {
  1544. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1545. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1546. zlc = zonelist->zlcache_ptr;
  1547. if (!zlc)
  1548. return NULL;
  1549. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1550. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1551. zlc->last_full_zap = jiffies;
  1552. }
  1553. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1554. &cpuset_current_mems_allowed :
  1555. &node_states[N_MEMORY];
  1556. return allowednodes;
  1557. }
  1558. /*
  1559. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1560. * if it is worth looking at further for free memory:
  1561. * 1) Check that the zone isn't thought to be full (doesn't have its
  1562. * bit set in the zonelist_cache fullzones BITMAP).
  1563. * 2) Check that the zones node (obtained from the zonelist_cache
  1564. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1565. * Return true (non-zero) if zone is worth looking at further, or
  1566. * else return false (zero) if it is not.
  1567. *
  1568. * This check -ignores- the distinction between various watermarks,
  1569. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1570. * found to be full for any variation of these watermarks, it will
  1571. * be considered full for up to one second by all requests, unless
  1572. * we are so low on memory on all allowed nodes that we are forced
  1573. * into the second scan of the zonelist.
  1574. *
  1575. * In the second scan we ignore this zonelist cache and exactly
  1576. * apply the watermarks to all zones, even it is slower to do so.
  1577. * We are low on memory in the second scan, and should leave no stone
  1578. * unturned looking for a free page.
  1579. */
  1580. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1581. nodemask_t *allowednodes)
  1582. {
  1583. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1584. int i; /* index of *z in zonelist zones */
  1585. int n; /* node that zone *z is on */
  1586. zlc = zonelist->zlcache_ptr;
  1587. if (!zlc)
  1588. return 1;
  1589. i = z - zonelist->_zonerefs;
  1590. n = zlc->z_to_n[i];
  1591. /* This zone is worth trying if it is allowed but not full */
  1592. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1593. }
  1594. /*
  1595. * Given 'z' scanning a zonelist, set the corresponding bit in
  1596. * zlc->fullzones, so that subsequent attempts to allocate a page
  1597. * from that zone don't waste time re-examining it.
  1598. */
  1599. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1600. {
  1601. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1602. int i; /* index of *z in zonelist zones */
  1603. zlc = zonelist->zlcache_ptr;
  1604. if (!zlc)
  1605. return;
  1606. i = z - zonelist->_zonerefs;
  1607. set_bit(i, zlc->fullzones);
  1608. }
  1609. /*
  1610. * clear all zones full, called after direct reclaim makes progress so that
  1611. * a zone that was recently full is not skipped over for up to a second
  1612. */
  1613. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1614. {
  1615. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1616. zlc = zonelist->zlcache_ptr;
  1617. if (!zlc)
  1618. return;
  1619. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1620. }
  1621. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1622. {
  1623. return local_zone->node == zone->node;
  1624. }
  1625. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1626. {
  1627. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  1628. RECLAIM_DISTANCE;
  1629. }
  1630. #else /* CONFIG_NUMA */
  1631. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1632. {
  1633. return NULL;
  1634. }
  1635. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1636. nodemask_t *allowednodes)
  1637. {
  1638. return 1;
  1639. }
  1640. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1641. {
  1642. }
  1643. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1644. {
  1645. }
  1646. static bool zone_local(struct zone *local_zone, struct zone *zone)
  1647. {
  1648. return true;
  1649. }
  1650. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  1651. {
  1652. return true;
  1653. }
  1654. #endif /* CONFIG_NUMA */
  1655. /*
  1656. * get_page_from_freelist goes through the zonelist trying to allocate
  1657. * a page.
  1658. */
  1659. static struct page *
  1660. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1661. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1662. struct zone *preferred_zone, int classzone_idx, int migratetype)
  1663. {
  1664. struct zoneref *z;
  1665. struct page *page = NULL;
  1666. struct zone *zone;
  1667. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1668. int zlc_active = 0; /* set if using zonelist_cache */
  1669. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1670. bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
  1671. (gfp_mask & __GFP_WRITE);
  1672. zonelist_scan:
  1673. /*
  1674. * Scan zonelist, looking for a zone with enough free.
  1675. * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
  1676. */
  1677. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1678. high_zoneidx, nodemask) {
  1679. unsigned long mark;
  1680. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1681. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1682. continue;
  1683. if (cpusets_enabled() &&
  1684. (alloc_flags & ALLOC_CPUSET) &&
  1685. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1686. continue;
  1687. /*
  1688. * Distribute pages in proportion to the individual
  1689. * zone size to ensure fair page aging. The zone a
  1690. * page was allocated in should have no effect on the
  1691. * time the page has in memory before being reclaimed.
  1692. */
  1693. if (alloc_flags & ALLOC_FAIR) {
  1694. if (!zone_local(preferred_zone, zone))
  1695. continue;
  1696. if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
  1697. continue;
  1698. }
  1699. /*
  1700. * When allocating a page cache page for writing, we
  1701. * want to get it from a zone that is within its dirty
  1702. * limit, such that no single zone holds more than its
  1703. * proportional share of globally allowed dirty pages.
  1704. * The dirty limits take into account the zone's
  1705. * lowmem reserves and high watermark so that kswapd
  1706. * should be able to balance it without having to
  1707. * write pages from its LRU list.
  1708. *
  1709. * This may look like it could increase pressure on
  1710. * lower zones by failing allocations in higher zones
  1711. * before they are full. But the pages that do spill
  1712. * over are limited as the lower zones are protected
  1713. * by this very same mechanism. It should not become
  1714. * a practical burden to them.
  1715. *
  1716. * XXX: For now, allow allocations to potentially
  1717. * exceed the per-zone dirty limit in the slowpath
  1718. * (ALLOC_WMARK_LOW unset) before going into reclaim,
  1719. * which is important when on a NUMA setup the allowed
  1720. * zones are together not big enough to reach the
  1721. * global limit. The proper fix for these situations
  1722. * will require awareness of zones in the
  1723. * dirty-throttling and the flusher threads.
  1724. */
  1725. if (consider_zone_dirty && !zone_dirty_ok(zone))
  1726. continue;
  1727. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1728. if (!zone_watermark_ok(zone, order, mark,
  1729. classzone_idx, alloc_flags)) {
  1730. int ret;
  1731. /* Checked here to keep the fast path fast */
  1732. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1733. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1734. goto try_this_zone;
  1735. if (IS_ENABLED(CONFIG_NUMA) &&
  1736. !did_zlc_setup && nr_online_nodes > 1) {
  1737. /*
  1738. * we do zlc_setup if there are multiple nodes
  1739. * and before considering the first zone allowed
  1740. * by the cpuset.
  1741. */
  1742. allowednodes = zlc_setup(zonelist, alloc_flags);
  1743. zlc_active = 1;
  1744. did_zlc_setup = 1;
  1745. }
  1746. if (zone_reclaim_mode == 0 ||
  1747. !zone_allows_reclaim(preferred_zone, zone))
  1748. goto this_zone_full;
  1749. /*
  1750. * As we may have just activated ZLC, check if the first
  1751. * eligible zone has failed zone_reclaim recently.
  1752. */
  1753. if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
  1754. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1755. continue;
  1756. ret = zone_reclaim(zone, gfp_mask, order);
  1757. switch (ret) {
  1758. case ZONE_RECLAIM_NOSCAN:
  1759. /* did not scan */
  1760. continue;
  1761. case ZONE_RECLAIM_FULL:
  1762. /* scanned but unreclaimable */
  1763. continue;
  1764. default:
  1765. /* did we reclaim enough */
  1766. if (zone_watermark_ok(zone, order, mark,
  1767. classzone_idx, alloc_flags))
  1768. goto try_this_zone;
  1769. /*
  1770. * Failed to reclaim enough to meet watermark.
  1771. * Only mark the zone full if checking the min
  1772. * watermark or if we failed to reclaim just
  1773. * 1<<order pages or else the page allocator
  1774. * fastpath will prematurely mark zones full
  1775. * when the watermark is between the low and
  1776. * min watermarks.
  1777. */
  1778. if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
  1779. ret == ZONE_RECLAIM_SOME)
  1780. goto this_zone_full;
  1781. continue;
  1782. }
  1783. }
  1784. try_this_zone:
  1785. page = buffered_rmqueue(preferred_zone, zone, order,
  1786. gfp_mask, migratetype);
  1787. if (page)
  1788. break;
  1789. this_zone_full:
  1790. if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
  1791. zlc_mark_zone_full(zonelist, z);
  1792. }
  1793. if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
  1794. /* Disable zlc cache for second zonelist scan */
  1795. zlc_active = 0;
  1796. goto zonelist_scan;
  1797. }
  1798. if (page)
  1799. /*
  1800. * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
  1801. * necessary to allocate the page. The expectation is
  1802. * that the caller is taking steps that will free more
  1803. * memory. The caller should avoid the page being used
  1804. * for !PFMEMALLOC purposes.
  1805. */
  1806. page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
  1807. return page;
  1808. }
  1809. /*
  1810. * Large machines with many possible nodes should not always dump per-node
  1811. * meminfo in irq context.
  1812. */
  1813. static inline bool should_suppress_show_mem(void)
  1814. {
  1815. bool ret = false;
  1816. #if NODES_SHIFT > 8
  1817. ret = in_interrupt();
  1818. #endif
  1819. return ret;
  1820. }
  1821. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1822. DEFAULT_RATELIMIT_INTERVAL,
  1823. DEFAULT_RATELIMIT_BURST);
  1824. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1825. {
  1826. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1827. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1828. debug_guardpage_minorder() > 0)
  1829. return;
  1830. /*
  1831. * This documents exceptions given to allocations in certain
  1832. * contexts that are allowed to allocate outside current's set
  1833. * of allowed nodes.
  1834. */
  1835. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1836. if (test_thread_flag(TIF_MEMDIE) ||
  1837. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1838. filter &= ~SHOW_MEM_FILTER_NODES;
  1839. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1840. filter &= ~SHOW_MEM_FILTER_NODES;
  1841. if (fmt) {
  1842. struct va_format vaf;
  1843. va_list args;
  1844. va_start(args, fmt);
  1845. vaf.fmt = fmt;
  1846. vaf.va = &args;
  1847. pr_warn("%pV", &vaf);
  1848. va_end(args);
  1849. }
  1850. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1851. current->comm, order, gfp_mask);
  1852. dump_stack();
  1853. if (!should_suppress_show_mem())
  1854. show_mem(filter);
  1855. }
  1856. static inline int
  1857. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1858. unsigned long did_some_progress,
  1859. unsigned long pages_reclaimed)
  1860. {
  1861. /* Do not loop if specifically requested */
  1862. if (gfp_mask & __GFP_NORETRY)
  1863. return 0;
  1864. /* Always retry if specifically requested */
  1865. if (gfp_mask & __GFP_NOFAIL)
  1866. return 1;
  1867. /*
  1868. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1869. * making forward progress without invoking OOM. Suspend also disables
  1870. * storage devices so kswapd will not help. Bail if we are suspending.
  1871. */
  1872. if (!did_some_progress && pm_suspended_storage())
  1873. return 0;
  1874. /*
  1875. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1876. * means __GFP_NOFAIL, but that may not be true in other
  1877. * implementations.
  1878. */
  1879. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1880. return 1;
  1881. /*
  1882. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1883. * specified, then we retry until we no longer reclaim any pages
  1884. * (above), or we've reclaimed an order of pages at least as
  1885. * large as the allocation's order. In both cases, if the
  1886. * allocation still fails, we stop retrying.
  1887. */
  1888. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1889. return 1;
  1890. return 0;
  1891. }
  1892. static inline struct page *
  1893. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1894. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1895. nodemask_t *nodemask, struct zone *preferred_zone,
  1896. int classzone_idx, int migratetype)
  1897. {
  1898. struct page *page;
  1899. /* Acquire the OOM killer lock for the zones in zonelist */
  1900. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1901. schedule_timeout_uninterruptible(1);
  1902. return NULL;
  1903. }
  1904. /*
  1905. * Go through the zonelist yet one more time, keep very high watermark
  1906. * here, this is only to catch a parallel oom killing, we must fail if
  1907. * we're still under heavy pressure.
  1908. */
  1909. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1910. order, zonelist, high_zoneidx,
  1911. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1912. preferred_zone, classzone_idx, migratetype);
  1913. if (page)
  1914. goto out;
  1915. if (!(gfp_mask & __GFP_NOFAIL)) {
  1916. /* The OOM killer will not help higher order allocs */
  1917. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1918. goto out;
  1919. /* The OOM killer does not needlessly kill tasks for lowmem */
  1920. if (high_zoneidx < ZONE_NORMAL)
  1921. goto out;
  1922. /*
  1923. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1924. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1925. * The caller should handle page allocation failure by itself if
  1926. * it specifies __GFP_THISNODE.
  1927. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1928. */
  1929. if (gfp_mask & __GFP_THISNODE)
  1930. goto out;
  1931. }
  1932. /* Exhausted what can be done so it's blamo time */
  1933. out_of_memory(zonelist, gfp_mask, order, nodemask, false);
  1934. out:
  1935. clear_zonelist_oom(zonelist, gfp_mask);
  1936. return page;
  1937. }
  1938. #ifdef CONFIG_COMPACTION
  1939. /* Try memory compaction for high-order allocations before reclaim */
  1940. static struct page *
  1941. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1942. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1943. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1944. int classzone_idx, int migratetype, enum migrate_mode mode,
  1945. bool *contended_compaction, bool *deferred_compaction,
  1946. unsigned long *did_some_progress)
  1947. {
  1948. if (!order)
  1949. return NULL;
  1950. if (compaction_deferred(preferred_zone, order)) {
  1951. *deferred_compaction = true;
  1952. return NULL;
  1953. }
  1954. current->flags |= PF_MEMALLOC;
  1955. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1956. nodemask, mode,
  1957. contended_compaction);
  1958. current->flags &= ~PF_MEMALLOC;
  1959. if (*did_some_progress != COMPACT_SKIPPED) {
  1960. struct page *page;
  1961. /* Page migration frees to the PCP lists but we want merging */
  1962. drain_pages(get_cpu());
  1963. put_cpu();
  1964. page = get_page_from_freelist(gfp_mask, nodemask,
  1965. order, zonelist, high_zoneidx,
  1966. alloc_flags & ~ALLOC_NO_WATERMARKS,
  1967. preferred_zone, classzone_idx, migratetype);
  1968. if (page) {
  1969. preferred_zone->compact_blockskip_flush = false;
  1970. compaction_defer_reset(preferred_zone, order, true);
  1971. count_vm_event(COMPACTSUCCESS);
  1972. return page;
  1973. }
  1974. /*
  1975. * It's bad if compaction run occurs and fails.
  1976. * The most likely reason is that pages exist,
  1977. * but not enough to satisfy watermarks.
  1978. */
  1979. count_vm_event(COMPACTFAIL);
  1980. /*
  1981. * As async compaction considers a subset of pageblocks, only
  1982. * defer if the failure was a sync compaction failure.
  1983. */
  1984. if (mode != MIGRATE_ASYNC)
  1985. defer_compaction(preferred_zone, order);
  1986. cond_resched();
  1987. }
  1988. return NULL;
  1989. }
  1990. #else
  1991. static inline struct page *
  1992. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1993. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1994. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1995. int classzone_idx, int migratetype,
  1996. enum migrate_mode mode, bool *contended_compaction,
  1997. bool *deferred_compaction, unsigned long *did_some_progress)
  1998. {
  1999. return NULL;
  2000. }
  2001. #endif /* CONFIG_COMPACTION */
  2002. /* Perform direct synchronous page reclaim */
  2003. static int
  2004. __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
  2005. nodemask_t *nodemask)
  2006. {
  2007. struct reclaim_state reclaim_state;
  2008. int progress;
  2009. cond_resched();
  2010. /* We now go into synchronous reclaim */
  2011. cpuset_memory_pressure_bump();
  2012. current->flags |= PF_MEMALLOC;
  2013. lockdep_set_current_reclaim_state(gfp_mask);
  2014. reclaim_state.reclaimed_slab = 0;
  2015. current->reclaim_state = &reclaim_state;
  2016. progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  2017. current->reclaim_state = NULL;
  2018. lockdep_clear_current_reclaim_state();
  2019. current->flags &= ~PF_MEMALLOC;
  2020. cond_resched();
  2021. return progress;
  2022. }
  2023. /* The really slow allocator path where we enter direct reclaim */
  2024. static inline struct page *
  2025. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2026. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2027. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  2028. int classzone_idx, int migratetype, unsigned long *did_some_progress)
  2029. {
  2030. struct page *page = NULL;
  2031. bool drained = false;
  2032. *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
  2033. nodemask);
  2034. if (unlikely(!(*did_some_progress)))
  2035. return NULL;
  2036. /* After successful reclaim, reconsider all zones for allocation */
  2037. if (IS_ENABLED(CONFIG_NUMA))
  2038. zlc_clear_zones_full(zonelist);
  2039. retry:
  2040. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2041. zonelist, high_zoneidx,
  2042. alloc_flags & ~ALLOC_NO_WATERMARKS,
  2043. preferred_zone, classzone_idx,
  2044. migratetype);
  2045. /*
  2046. * If an allocation failed after direct reclaim, it could be because
  2047. * pages are pinned on the per-cpu lists. Drain them and try again
  2048. */
  2049. if (!page && !drained) {
  2050. drain_all_pages();
  2051. drained = true;
  2052. goto retry;
  2053. }
  2054. return page;
  2055. }
  2056. /*
  2057. * This is called in the allocator slow-path if the allocation request is of
  2058. * sufficient urgency to ignore watermarks and take other desperate measures
  2059. */
  2060. static inline struct page *
  2061. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  2062. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2063. nodemask_t *nodemask, struct zone *preferred_zone,
  2064. int classzone_idx, int migratetype)
  2065. {
  2066. struct page *page;
  2067. do {
  2068. page = get_page_from_freelist(gfp_mask, nodemask, order,
  2069. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  2070. preferred_zone, classzone_idx, migratetype);
  2071. if (!page && gfp_mask & __GFP_NOFAIL)
  2072. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2073. } while (!page && (gfp_mask & __GFP_NOFAIL));
  2074. return page;
  2075. }
  2076. static void reset_alloc_batches(struct zonelist *zonelist,
  2077. enum zone_type high_zoneidx,
  2078. struct zone *preferred_zone)
  2079. {
  2080. struct zoneref *z;
  2081. struct zone *zone;
  2082. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2083. /*
  2084. * Only reset the batches of zones that were actually
  2085. * considered in the fairness pass, we don't want to
  2086. * trash fairness information for zones that are not
  2087. * actually part of this zonelist's round-robin cycle.
  2088. */
  2089. if (!zone_local(preferred_zone, zone))
  2090. continue;
  2091. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2092. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2093. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2094. }
  2095. }
  2096. static void wake_all_kswapds(unsigned int order,
  2097. struct zonelist *zonelist,
  2098. enum zone_type high_zoneidx,
  2099. struct zone *preferred_zone)
  2100. {
  2101. struct zoneref *z;
  2102. struct zone *zone;
  2103. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  2104. wakeup_kswapd(zone, order, zone_idx(preferred_zone));
  2105. }
  2106. static inline int
  2107. gfp_to_alloc_flags(gfp_t gfp_mask)
  2108. {
  2109. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2110. const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
  2111. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2112. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2113. /*
  2114. * The caller may dip into page reserves a bit more if the caller
  2115. * cannot run direct reclaim, or if the caller has realtime scheduling
  2116. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2117. * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
  2118. */
  2119. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2120. if (atomic) {
  2121. /*
  2122. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2123. * if it can't schedule.
  2124. */
  2125. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2126. alloc_flags |= ALLOC_HARDER;
  2127. /*
  2128. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2129. * comment for __cpuset_node_allowed_softwall().
  2130. */
  2131. alloc_flags &= ~ALLOC_CPUSET;
  2132. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2133. alloc_flags |= ALLOC_HARDER;
  2134. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2135. if (gfp_mask & __GFP_MEMALLOC)
  2136. alloc_flags |= ALLOC_NO_WATERMARKS;
  2137. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2138. alloc_flags |= ALLOC_NO_WATERMARKS;
  2139. else if (!in_interrupt() &&
  2140. ((current->flags & PF_MEMALLOC) ||
  2141. unlikely(test_thread_flag(TIF_MEMDIE))))
  2142. alloc_flags |= ALLOC_NO_WATERMARKS;
  2143. }
  2144. #ifdef CONFIG_CMA
  2145. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2146. alloc_flags |= ALLOC_CMA;
  2147. #endif
  2148. return alloc_flags;
  2149. }
  2150. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2151. {
  2152. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2153. }
  2154. static inline struct page *
  2155. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  2156. struct zonelist *zonelist, enum zone_type high_zoneidx,
  2157. nodemask_t *nodemask, struct zone *preferred_zone,
  2158. int classzone_idx, int migratetype)
  2159. {
  2160. const gfp_t wait = gfp_mask & __GFP_WAIT;
  2161. struct page *page = NULL;
  2162. int alloc_flags;
  2163. unsigned long pages_reclaimed = 0;
  2164. unsigned long did_some_progress;
  2165. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  2166. bool deferred_compaction = false;
  2167. bool contended_compaction = false;
  2168. /*
  2169. * In the slowpath, we sanity check order to avoid ever trying to
  2170. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  2171. * be using allocators in order of preference for an area that is
  2172. * too large.
  2173. */
  2174. if (order >= MAX_ORDER) {
  2175. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  2176. return NULL;
  2177. }
  2178. /*
  2179. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  2180. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  2181. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  2182. * using a larger set of nodes after it has established that the
  2183. * allowed per node queues are empty and that nodes are
  2184. * over allocated.
  2185. */
  2186. if (IS_ENABLED(CONFIG_NUMA) &&
  2187. (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  2188. goto nopage;
  2189. restart:
  2190. if (!(gfp_mask & __GFP_NO_KSWAPD))
  2191. wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
  2192. /*
  2193. * OK, we're below the kswapd watermark and have kicked background
  2194. * reclaim. Now things get more complex, so set up alloc_flags according
  2195. * to how we want to proceed.
  2196. */
  2197. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  2198. /*
  2199. * Find the true preferred zone if the allocation is unconstrained by
  2200. * cpusets.
  2201. */
  2202. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
  2203. struct zoneref *preferred_zoneref;
  2204. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2205. NULL, &preferred_zone);
  2206. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2207. }
  2208. rebalance:
  2209. /* This is the last chance, in general, before the goto nopage. */
  2210. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  2211. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  2212. preferred_zone, classzone_idx, migratetype);
  2213. if (page)
  2214. goto got_pg;
  2215. /* Allocate without watermarks if the context allows */
  2216. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  2217. /*
  2218. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  2219. * the allocation is high priority and these type of
  2220. * allocations are system rather than user orientated
  2221. */
  2222. zonelist = node_zonelist(numa_node_id(), gfp_mask);
  2223. page = __alloc_pages_high_priority(gfp_mask, order,
  2224. zonelist, high_zoneidx, nodemask,
  2225. preferred_zone, classzone_idx, migratetype);
  2226. if (page) {
  2227. goto got_pg;
  2228. }
  2229. }
  2230. /* Atomic allocations - we can't balance anything */
  2231. if (!wait) {
  2232. /*
  2233. * All existing users of the deprecated __GFP_NOFAIL are
  2234. * blockable, so warn of any new users that actually allow this
  2235. * type of allocation to fail.
  2236. */
  2237. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  2238. goto nopage;
  2239. }
  2240. /* Avoid recursion of direct reclaim */
  2241. if (current->flags & PF_MEMALLOC)
  2242. goto nopage;
  2243. /* Avoid allocations with no watermarks from looping endlessly */
  2244. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  2245. goto nopage;
  2246. /*
  2247. * Try direct compaction. The first pass is asynchronous. Subsequent
  2248. * attempts after direct reclaim are synchronous
  2249. */
  2250. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2251. high_zoneidx, nodemask, alloc_flags,
  2252. preferred_zone,
  2253. classzone_idx, migratetype,
  2254. migration_mode, &contended_compaction,
  2255. &deferred_compaction,
  2256. &did_some_progress);
  2257. if (page)
  2258. goto got_pg;
  2259. /*
  2260. * It can become very expensive to allocate transparent hugepages at
  2261. * fault, so use asynchronous memory compaction for THP unless it is
  2262. * khugepaged trying to collapse.
  2263. */
  2264. if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
  2265. migration_mode = MIGRATE_SYNC_LIGHT;
  2266. /*
  2267. * If compaction is deferred for high-order allocations, it is because
  2268. * sync compaction recently failed. In this is the case and the caller
  2269. * requested a movable allocation that does not heavily disrupt the
  2270. * system then fail the allocation instead of entering direct reclaim.
  2271. */
  2272. if ((deferred_compaction || contended_compaction) &&
  2273. (gfp_mask & __GFP_NO_KSWAPD))
  2274. goto nopage;
  2275. /* Try direct reclaim and then allocating */
  2276. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  2277. zonelist, high_zoneidx,
  2278. nodemask,
  2279. alloc_flags, preferred_zone,
  2280. classzone_idx, migratetype,
  2281. &did_some_progress);
  2282. if (page)
  2283. goto got_pg;
  2284. /*
  2285. * If we failed to make any progress reclaiming, then we are
  2286. * running out of options and have to consider going OOM
  2287. */
  2288. if (!did_some_progress) {
  2289. if (oom_gfp_allowed(gfp_mask)) {
  2290. if (oom_killer_disabled)
  2291. goto nopage;
  2292. /* Coredumps can quickly deplete all memory reserves */
  2293. if ((current->flags & PF_DUMPCORE) &&
  2294. !(gfp_mask & __GFP_NOFAIL))
  2295. goto nopage;
  2296. page = __alloc_pages_may_oom(gfp_mask, order,
  2297. zonelist, high_zoneidx,
  2298. nodemask, preferred_zone,
  2299. classzone_idx, migratetype);
  2300. if (page)
  2301. goto got_pg;
  2302. if (!(gfp_mask & __GFP_NOFAIL)) {
  2303. /*
  2304. * The oom killer is not called for high-order
  2305. * allocations that may fail, so if no progress
  2306. * is being made, there are no other options and
  2307. * retrying is unlikely to help.
  2308. */
  2309. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2310. goto nopage;
  2311. /*
  2312. * The oom killer is not called for lowmem
  2313. * allocations to prevent needlessly killing
  2314. * innocent tasks.
  2315. */
  2316. if (high_zoneidx < ZONE_NORMAL)
  2317. goto nopage;
  2318. }
  2319. goto restart;
  2320. }
  2321. }
  2322. /* Check if we should retry the allocation */
  2323. pages_reclaimed += did_some_progress;
  2324. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  2325. pages_reclaimed)) {
  2326. /* Wait for some write requests to complete then retry */
  2327. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  2328. goto rebalance;
  2329. } else {
  2330. /*
  2331. * High-order allocations do not necessarily loop after
  2332. * direct reclaim and reclaim/compaction depends on compaction
  2333. * being called after reclaim so call directly if necessary
  2334. */
  2335. page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
  2336. high_zoneidx, nodemask, alloc_flags,
  2337. preferred_zone,
  2338. classzone_idx, migratetype,
  2339. migration_mode, &contended_compaction,
  2340. &deferred_compaction,
  2341. &did_some_progress);
  2342. if (page)
  2343. goto got_pg;
  2344. }
  2345. nopage:
  2346. warn_alloc_failed(gfp_mask, order, NULL);
  2347. return page;
  2348. got_pg:
  2349. if (kmemcheck_enabled)
  2350. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2351. return page;
  2352. }
  2353. /*
  2354. * This is the 'heart' of the zoned buddy allocator.
  2355. */
  2356. struct page *
  2357. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2358. struct zonelist *zonelist, nodemask_t *nodemask)
  2359. {
  2360. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2361. struct zone *preferred_zone;
  2362. struct zoneref *preferred_zoneref;
  2363. struct page *page = NULL;
  2364. int migratetype = allocflags_to_migratetype(gfp_mask);
  2365. unsigned int cpuset_mems_cookie;
  2366. int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
  2367. int classzone_idx;
  2368. gfp_mask &= gfp_allowed_mask;
  2369. lockdep_trace_alloc(gfp_mask);
  2370. might_sleep_if(gfp_mask & __GFP_WAIT);
  2371. if (should_fail_alloc_page(gfp_mask, order))
  2372. return NULL;
  2373. /*
  2374. * Check the zones suitable for the gfp_mask contain at least one
  2375. * valid zone. It's possible to have an empty zonelist as a result
  2376. * of GFP_THISNODE and a memoryless node
  2377. */
  2378. if (unlikely(!zonelist->_zonerefs->zone))
  2379. return NULL;
  2380. retry_cpuset:
  2381. cpuset_mems_cookie = read_mems_allowed_begin();
  2382. /* The preferred zone is used for statistics later */
  2383. preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
  2384. nodemask ? : &cpuset_current_mems_allowed,
  2385. &preferred_zone);
  2386. if (!preferred_zone)
  2387. goto out;
  2388. classzone_idx = zonelist_zone_idx(preferred_zoneref);
  2389. #ifdef CONFIG_CMA
  2390. if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2391. alloc_flags |= ALLOC_CMA;
  2392. #endif
  2393. retry:
  2394. /* First allocation attempt */
  2395. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2396. zonelist, high_zoneidx, alloc_flags,
  2397. preferred_zone, classzone_idx, migratetype);
  2398. if (unlikely(!page)) {
  2399. /*
  2400. * The first pass makes sure allocations are spread
  2401. * fairly within the local node. However, the local
  2402. * node might have free pages left after the fairness
  2403. * batches are exhausted, and remote zones haven't
  2404. * even been considered yet. Try once more without
  2405. * fairness, and include remote zones now, before
  2406. * entering the slowpath and waking kswapd: prefer
  2407. * spilling to a remote zone over swapping locally.
  2408. */
  2409. if (alloc_flags & ALLOC_FAIR) {
  2410. reset_alloc_batches(zonelist, high_zoneidx,
  2411. preferred_zone);
  2412. alloc_flags &= ~ALLOC_FAIR;
  2413. goto retry;
  2414. }
  2415. /*
  2416. * Runtime PM, block IO and its error handling path
  2417. * can deadlock because I/O on the device might not
  2418. * complete.
  2419. */
  2420. gfp_mask = memalloc_noio_flags(gfp_mask);
  2421. page = __alloc_pages_slowpath(gfp_mask, order,
  2422. zonelist, high_zoneidx, nodemask,
  2423. preferred_zone, classzone_idx, migratetype);
  2424. }
  2425. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2426. out:
  2427. /*
  2428. * When updating a task's mems_allowed, it is possible to race with
  2429. * parallel threads in such a way that an allocation can fail while
  2430. * the mask is being updated. If a page allocation is about to fail,
  2431. * check if the cpuset changed during allocation and if so, retry.
  2432. */
  2433. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
  2434. goto retry_cpuset;
  2435. return page;
  2436. }
  2437. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2438. /*
  2439. * Common helper functions.
  2440. */
  2441. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2442. {
  2443. struct page *page;
  2444. /*
  2445. * __get_free_pages() returns a 32-bit address, which cannot represent
  2446. * a highmem page
  2447. */
  2448. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2449. page = alloc_pages(gfp_mask, order);
  2450. if (!page)
  2451. return 0;
  2452. return (unsigned long) page_address(page);
  2453. }
  2454. EXPORT_SYMBOL(__get_free_pages);
  2455. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2456. {
  2457. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2458. }
  2459. EXPORT_SYMBOL(get_zeroed_page);
  2460. void __free_pages(struct page *page, unsigned int order)
  2461. {
  2462. if (put_page_testzero(page)) {
  2463. if (order == 0)
  2464. free_hot_cold_page(page, false);
  2465. else
  2466. __free_pages_ok(page, order);
  2467. }
  2468. }
  2469. EXPORT_SYMBOL(__free_pages);
  2470. void free_pages(unsigned long addr, unsigned int order)
  2471. {
  2472. if (addr != 0) {
  2473. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2474. __free_pages(virt_to_page((void *)addr), order);
  2475. }
  2476. }
  2477. EXPORT_SYMBOL(free_pages);
  2478. /*
  2479. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  2480. * of the current memory cgroup.
  2481. *
  2482. * It should be used when the caller would like to use kmalloc, but since the
  2483. * allocation is large, it has to fall back to the page allocator.
  2484. */
  2485. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  2486. {
  2487. struct page *page;
  2488. struct mem_cgroup *memcg = NULL;
  2489. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2490. return NULL;
  2491. page = alloc_pages(gfp_mask, order);
  2492. memcg_kmem_commit_charge(page, memcg, order);
  2493. return page;
  2494. }
  2495. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  2496. {
  2497. struct page *page;
  2498. struct mem_cgroup *memcg = NULL;
  2499. if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
  2500. return NULL;
  2501. page = alloc_pages_node(nid, gfp_mask, order);
  2502. memcg_kmem_commit_charge(page, memcg, order);
  2503. return page;
  2504. }
  2505. /*
  2506. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  2507. * alloc_kmem_pages.
  2508. */
  2509. void __free_kmem_pages(struct page *page, unsigned int order)
  2510. {
  2511. memcg_kmem_uncharge_pages(page, order);
  2512. __free_pages(page, order);
  2513. }
  2514. void free_kmem_pages(unsigned long addr, unsigned int order)
  2515. {
  2516. if (addr != 0) {
  2517. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2518. __free_kmem_pages(virt_to_page((void *)addr), order);
  2519. }
  2520. }
  2521. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2522. {
  2523. if (addr) {
  2524. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2525. unsigned long used = addr + PAGE_ALIGN(size);
  2526. split_page(virt_to_page((void *)addr), order);
  2527. while (used < alloc_end) {
  2528. free_page(used);
  2529. used += PAGE_SIZE;
  2530. }
  2531. }
  2532. return (void *)addr;
  2533. }
  2534. /**
  2535. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2536. * @size: the number of bytes to allocate
  2537. * @gfp_mask: GFP flags for the allocation
  2538. *
  2539. * This function is similar to alloc_pages(), except that it allocates the
  2540. * minimum number of pages to satisfy the request. alloc_pages() can only
  2541. * allocate memory in power-of-two pages.
  2542. *
  2543. * This function is also limited by MAX_ORDER.
  2544. *
  2545. * Memory allocated by this function must be released by free_pages_exact().
  2546. */
  2547. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2548. {
  2549. unsigned int order = get_order(size);
  2550. unsigned long addr;
  2551. addr = __get_free_pages(gfp_mask, order);
  2552. return make_alloc_exact(addr, order, size);
  2553. }
  2554. EXPORT_SYMBOL(alloc_pages_exact);
  2555. /**
  2556. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2557. * pages on a node.
  2558. * @nid: the preferred node ID where memory should be allocated
  2559. * @size: the number of bytes to allocate
  2560. * @gfp_mask: GFP flags for the allocation
  2561. *
  2562. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2563. * back.
  2564. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2565. * but is not exact.
  2566. */
  2567. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2568. {
  2569. unsigned order = get_order(size);
  2570. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2571. if (!p)
  2572. return NULL;
  2573. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2574. }
  2575. /**
  2576. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2577. * @virt: the value returned by alloc_pages_exact.
  2578. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2579. *
  2580. * Release the memory allocated by a previous call to alloc_pages_exact.
  2581. */
  2582. void free_pages_exact(void *virt, size_t size)
  2583. {
  2584. unsigned long addr = (unsigned long)virt;
  2585. unsigned long end = addr + PAGE_ALIGN(size);
  2586. while (addr < end) {
  2587. free_page(addr);
  2588. addr += PAGE_SIZE;
  2589. }
  2590. }
  2591. EXPORT_SYMBOL(free_pages_exact);
  2592. /**
  2593. * nr_free_zone_pages - count number of pages beyond high watermark
  2594. * @offset: The zone index of the highest zone
  2595. *
  2596. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  2597. * high watermark within all zones at or below a given zone index. For each
  2598. * zone, the number of pages is calculated as:
  2599. * managed_pages - high_pages
  2600. */
  2601. static unsigned long nr_free_zone_pages(int offset)
  2602. {
  2603. struct zoneref *z;
  2604. struct zone *zone;
  2605. /* Just pick one node, since fallback list is circular */
  2606. unsigned long sum = 0;
  2607. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2608. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2609. unsigned long size = zone->managed_pages;
  2610. unsigned long high = high_wmark_pages(zone);
  2611. if (size > high)
  2612. sum += size - high;
  2613. }
  2614. return sum;
  2615. }
  2616. /**
  2617. * nr_free_buffer_pages - count number of pages beyond high watermark
  2618. *
  2619. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  2620. * watermark within ZONE_DMA and ZONE_NORMAL.
  2621. */
  2622. unsigned long nr_free_buffer_pages(void)
  2623. {
  2624. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2625. }
  2626. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2627. /**
  2628. * nr_free_pagecache_pages - count number of pages beyond high watermark
  2629. *
  2630. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  2631. * high watermark within all zones.
  2632. */
  2633. unsigned long nr_free_pagecache_pages(void)
  2634. {
  2635. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2636. }
  2637. static inline void show_node(struct zone *zone)
  2638. {
  2639. if (IS_ENABLED(CONFIG_NUMA))
  2640. printk("Node %d ", zone_to_nid(zone));
  2641. }
  2642. void si_meminfo(struct sysinfo *val)
  2643. {
  2644. val->totalram = totalram_pages;
  2645. val->sharedram = global_page_state(NR_SHMEM);
  2646. val->freeram = global_page_state(NR_FREE_PAGES);
  2647. val->bufferram = nr_blockdev_pages();
  2648. val->totalhigh = totalhigh_pages;
  2649. val->freehigh = nr_free_highpages();
  2650. val->mem_unit = PAGE_SIZE;
  2651. }
  2652. EXPORT_SYMBOL(si_meminfo);
  2653. #ifdef CONFIG_NUMA
  2654. void si_meminfo_node(struct sysinfo *val, int nid)
  2655. {
  2656. int zone_type; /* needs to be signed */
  2657. unsigned long managed_pages = 0;
  2658. pg_data_t *pgdat = NODE_DATA(nid);
  2659. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  2660. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  2661. val->totalram = managed_pages;
  2662. val->sharedram = node_page_state(nid, NR_SHMEM);
  2663. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2664. #ifdef CONFIG_HIGHMEM
  2665. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
  2666. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2667. NR_FREE_PAGES);
  2668. #else
  2669. val->totalhigh = 0;
  2670. val->freehigh = 0;
  2671. #endif
  2672. val->mem_unit = PAGE_SIZE;
  2673. }
  2674. #endif
  2675. /*
  2676. * Determine whether the node should be displayed or not, depending on whether
  2677. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2678. */
  2679. bool skip_free_areas_node(unsigned int flags, int nid)
  2680. {
  2681. bool ret = false;
  2682. unsigned int cpuset_mems_cookie;
  2683. if (!(flags & SHOW_MEM_FILTER_NODES))
  2684. goto out;
  2685. do {
  2686. cpuset_mems_cookie = read_mems_allowed_begin();
  2687. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2688. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  2689. out:
  2690. return ret;
  2691. }
  2692. #define K(x) ((x) << (PAGE_SHIFT-10))
  2693. static void show_migration_types(unsigned char type)
  2694. {
  2695. static const char types[MIGRATE_TYPES] = {
  2696. [MIGRATE_UNMOVABLE] = 'U',
  2697. [MIGRATE_RECLAIMABLE] = 'E',
  2698. [MIGRATE_MOVABLE] = 'M',
  2699. [MIGRATE_RESERVE] = 'R',
  2700. #ifdef CONFIG_CMA
  2701. [MIGRATE_CMA] = 'C',
  2702. #endif
  2703. #ifdef CONFIG_MEMORY_ISOLATION
  2704. [MIGRATE_ISOLATE] = 'I',
  2705. #endif
  2706. };
  2707. char tmp[MIGRATE_TYPES + 1];
  2708. char *p = tmp;
  2709. int i;
  2710. for (i = 0; i < MIGRATE_TYPES; i++) {
  2711. if (type & (1 << i))
  2712. *p++ = types[i];
  2713. }
  2714. *p = '\0';
  2715. printk("(%s) ", tmp);
  2716. }
  2717. /*
  2718. * Show free area list (used inside shift_scroll-lock stuff)
  2719. * We also calculate the percentage fragmentation. We do this by counting the
  2720. * memory on each free list with the exception of the first item on the list.
  2721. * Suppresses nodes that are not allowed by current's cpuset if
  2722. * SHOW_MEM_FILTER_NODES is passed.
  2723. */
  2724. void show_free_areas(unsigned int filter)
  2725. {
  2726. int cpu;
  2727. struct zone *zone;
  2728. for_each_populated_zone(zone) {
  2729. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2730. continue;
  2731. show_node(zone);
  2732. printk("%s per-cpu:\n", zone->name);
  2733. for_each_online_cpu(cpu) {
  2734. struct per_cpu_pageset *pageset;
  2735. pageset = per_cpu_ptr(zone->pageset, cpu);
  2736. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2737. cpu, pageset->pcp.high,
  2738. pageset->pcp.batch, pageset->pcp.count);
  2739. }
  2740. }
  2741. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2742. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2743. " unevictable:%lu"
  2744. " dirty:%lu writeback:%lu unstable:%lu\n"
  2745. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2746. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  2747. " free_cma:%lu\n",
  2748. global_page_state(NR_ACTIVE_ANON),
  2749. global_page_state(NR_INACTIVE_ANON),
  2750. global_page_state(NR_ISOLATED_ANON),
  2751. global_page_state(NR_ACTIVE_FILE),
  2752. global_page_state(NR_INACTIVE_FILE),
  2753. global_page_state(NR_ISOLATED_FILE),
  2754. global_page_state(NR_UNEVICTABLE),
  2755. global_page_state(NR_FILE_DIRTY),
  2756. global_page_state(NR_WRITEBACK),
  2757. global_page_state(NR_UNSTABLE_NFS),
  2758. global_page_state(NR_FREE_PAGES),
  2759. global_page_state(NR_SLAB_RECLAIMABLE),
  2760. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2761. global_page_state(NR_FILE_MAPPED),
  2762. global_page_state(NR_SHMEM),
  2763. global_page_state(NR_PAGETABLE),
  2764. global_page_state(NR_BOUNCE),
  2765. global_page_state(NR_FREE_CMA_PAGES));
  2766. for_each_populated_zone(zone) {
  2767. int i;
  2768. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2769. continue;
  2770. show_node(zone);
  2771. printk("%s"
  2772. " free:%lukB"
  2773. " min:%lukB"
  2774. " low:%lukB"
  2775. " high:%lukB"
  2776. " active_anon:%lukB"
  2777. " inactive_anon:%lukB"
  2778. " active_file:%lukB"
  2779. " inactive_file:%lukB"
  2780. " unevictable:%lukB"
  2781. " isolated(anon):%lukB"
  2782. " isolated(file):%lukB"
  2783. " present:%lukB"
  2784. " managed:%lukB"
  2785. " mlocked:%lukB"
  2786. " dirty:%lukB"
  2787. " writeback:%lukB"
  2788. " mapped:%lukB"
  2789. " shmem:%lukB"
  2790. " slab_reclaimable:%lukB"
  2791. " slab_unreclaimable:%lukB"
  2792. " kernel_stack:%lukB"
  2793. " pagetables:%lukB"
  2794. " unstable:%lukB"
  2795. " bounce:%lukB"
  2796. " free_cma:%lukB"
  2797. " writeback_tmp:%lukB"
  2798. " pages_scanned:%lu"
  2799. " all_unreclaimable? %s"
  2800. "\n",
  2801. zone->name,
  2802. K(zone_page_state(zone, NR_FREE_PAGES)),
  2803. K(min_wmark_pages(zone)),
  2804. K(low_wmark_pages(zone)),
  2805. K(high_wmark_pages(zone)),
  2806. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2807. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2808. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2809. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2810. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2811. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2812. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2813. K(zone->present_pages),
  2814. K(zone->managed_pages),
  2815. K(zone_page_state(zone, NR_MLOCK)),
  2816. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2817. K(zone_page_state(zone, NR_WRITEBACK)),
  2818. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2819. K(zone_page_state(zone, NR_SHMEM)),
  2820. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2821. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2822. zone_page_state(zone, NR_KERNEL_STACK) *
  2823. THREAD_SIZE / 1024,
  2824. K(zone_page_state(zone, NR_PAGETABLE)),
  2825. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2826. K(zone_page_state(zone, NR_BOUNCE)),
  2827. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  2828. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2829. zone->pages_scanned,
  2830. (!zone_reclaimable(zone) ? "yes" : "no")
  2831. );
  2832. printk("lowmem_reserve[]:");
  2833. for (i = 0; i < MAX_NR_ZONES; i++)
  2834. printk(" %lu", zone->lowmem_reserve[i]);
  2835. printk("\n");
  2836. }
  2837. for_each_populated_zone(zone) {
  2838. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2839. unsigned char types[MAX_ORDER];
  2840. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2841. continue;
  2842. show_node(zone);
  2843. printk("%s: ", zone->name);
  2844. spin_lock_irqsave(&zone->lock, flags);
  2845. for (order = 0; order < MAX_ORDER; order++) {
  2846. struct free_area *area = &zone->free_area[order];
  2847. int type;
  2848. nr[order] = area->nr_free;
  2849. total += nr[order] << order;
  2850. types[order] = 0;
  2851. for (type = 0; type < MIGRATE_TYPES; type++) {
  2852. if (!list_empty(&area->free_list[type]))
  2853. types[order] |= 1 << type;
  2854. }
  2855. }
  2856. spin_unlock_irqrestore(&zone->lock, flags);
  2857. for (order = 0; order < MAX_ORDER; order++) {
  2858. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2859. if (nr[order])
  2860. show_migration_types(types[order]);
  2861. }
  2862. printk("= %lukB\n", K(total));
  2863. }
  2864. hugetlb_show_meminfo();
  2865. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2866. show_swap_cache_info();
  2867. }
  2868. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2869. {
  2870. zoneref->zone = zone;
  2871. zoneref->zone_idx = zone_idx(zone);
  2872. }
  2873. /*
  2874. * Builds allocation fallback zone lists.
  2875. *
  2876. * Add all populated zones of a node to the zonelist.
  2877. */
  2878. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2879. int nr_zones)
  2880. {
  2881. struct zone *zone;
  2882. enum zone_type zone_type = MAX_NR_ZONES;
  2883. do {
  2884. zone_type--;
  2885. zone = pgdat->node_zones + zone_type;
  2886. if (populated_zone(zone)) {
  2887. zoneref_set_zone(zone,
  2888. &zonelist->_zonerefs[nr_zones++]);
  2889. check_highest_zone(zone_type);
  2890. }
  2891. } while (zone_type);
  2892. return nr_zones;
  2893. }
  2894. /*
  2895. * zonelist_order:
  2896. * 0 = automatic detection of better ordering.
  2897. * 1 = order by ([node] distance, -zonetype)
  2898. * 2 = order by (-zonetype, [node] distance)
  2899. *
  2900. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2901. * the same zonelist. So only NUMA can configure this param.
  2902. */
  2903. #define ZONELIST_ORDER_DEFAULT 0
  2904. #define ZONELIST_ORDER_NODE 1
  2905. #define ZONELIST_ORDER_ZONE 2
  2906. /* zonelist order in the kernel.
  2907. * set_zonelist_order() will set this to NODE or ZONE.
  2908. */
  2909. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2910. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2911. #ifdef CONFIG_NUMA
  2912. /* The value user specified ....changed by config */
  2913. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2914. /* string for sysctl */
  2915. #define NUMA_ZONELIST_ORDER_LEN 16
  2916. char numa_zonelist_order[16] = "default";
  2917. /*
  2918. * interface for configure zonelist ordering.
  2919. * command line option "numa_zonelist_order"
  2920. * = "[dD]efault - default, automatic configuration.
  2921. * = "[nN]ode - order by node locality, then by zone within node
  2922. * = "[zZ]one - order by zone, then by locality within zone
  2923. */
  2924. static int __parse_numa_zonelist_order(char *s)
  2925. {
  2926. if (*s == 'd' || *s == 'D') {
  2927. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2928. } else if (*s == 'n' || *s == 'N') {
  2929. user_zonelist_order = ZONELIST_ORDER_NODE;
  2930. } else if (*s == 'z' || *s == 'Z') {
  2931. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2932. } else {
  2933. printk(KERN_WARNING
  2934. "Ignoring invalid numa_zonelist_order value: "
  2935. "%s\n", s);
  2936. return -EINVAL;
  2937. }
  2938. return 0;
  2939. }
  2940. static __init int setup_numa_zonelist_order(char *s)
  2941. {
  2942. int ret;
  2943. if (!s)
  2944. return 0;
  2945. ret = __parse_numa_zonelist_order(s);
  2946. if (ret == 0)
  2947. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2948. return ret;
  2949. }
  2950. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2951. /*
  2952. * sysctl handler for numa_zonelist_order
  2953. */
  2954. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  2955. void __user *buffer, size_t *length,
  2956. loff_t *ppos)
  2957. {
  2958. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2959. int ret;
  2960. static DEFINE_MUTEX(zl_order_mutex);
  2961. mutex_lock(&zl_order_mutex);
  2962. if (write) {
  2963. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  2964. ret = -EINVAL;
  2965. goto out;
  2966. }
  2967. strcpy(saved_string, (char *)table->data);
  2968. }
  2969. ret = proc_dostring(table, write, buffer, length, ppos);
  2970. if (ret)
  2971. goto out;
  2972. if (write) {
  2973. int oldval = user_zonelist_order;
  2974. ret = __parse_numa_zonelist_order((char *)table->data);
  2975. if (ret) {
  2976. /*
  2977. * bogus value. restore saved string
  2978. */
  2979. strncpy((char *)table->data, saved_string,
  2980. NUMA_ZONELIST_ORDER_LEN);
  2981. user_zonelist_order = oldval;
  2982. } else if (oldval != user_zonelist_order) {
  2983. mutex_lock(&zonelists_mutex);
  2984. build_all_zonelists(NULL, NULL);
  2985. mutex_unlock(&zonelists_mutex);
  2986. }
  2987. }
  2988. out:
  2989. mutex_unlock(&zl_order_mutex);
  2990. return ret;
  2991. }
  2992. #define MAX_NODE_LOAD (nr_online_nodes)
  2993. static int node_load[MAX_NUMNODES];
  2994. /**
  2995. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2996. * @node: node whose fallback list we're appending
  2997. * @used_node_mask: nodemask_t of already used nodes
  2998. *
  2999. * We use a number of factors to determine which is the next node that should
  3000. * appear on a given node's fallback list. The node should not have appeared
  3001. * already in @node's fallback list, and it should be the next closest node
  3002. * according to the distance array (which contains arbitrary distance values
  3003. * from each node to each node in the system), and should also prefer nodes
  3004. * with no CPUs, since presumably they'll have very little allocation pressure
  3005. * on them otherwise.
  3006. * It returns -1 if no node is found.
  3007. */
  3008. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  3009. {
  3010. int n, val;
  3011. int min_val = INT_MAX;
  3012. int best_node = NUMA_NO_NODE;
  3013. const struct cpumask *tmp = cpumask_of_node(0);
  3014. /* Use the local node if we haven't already */
  3015. if (!node_isset(node, *used_node_mask)) {
  3016. node_set(node, *used_node_mask);
  3017. return node;
  3018. }
  3019. for_each_node_state(n, N_MEMORY) {
  3020. /* Don't want a node to appear more than once */
  3021. if (node_isset(n, *used_node_mask))
  3022. continue;
  3023. /* Use the distance array to find the distance */
  3024. val = node_distance(node, n);
  3025. /* Penalize nodes under us ("prefer the next node") */
  3026. val += (n < node);
  3027. /* Give preference to headless and unused nodes */
  3028. tmp = cpumask_of_node(n);
  3029. if (!cpumask_empty(tmp))
  3030. val += PENALTY_FOR_NODE_WITH_CPUS;
  3031. /* Slight preference for less loaded node */
  3032. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  3033. val += node_load[n];
  3034. if (val < min_val) {
  3035. min_val = val;
  3036. best_node = n;
  3037. }
  3038. }
  3039. if (best_node >= 0)
  3040. node_set(best_node, *used_node_mask);
  3041. return best_node;
  3042. }
  3043. /*
  3044. * Build zonelists ordered by node and zones within node.
  3045. * This results in maximum locality--normal zone overflows into local
  3046. * DMA zone, if any--but risks exhausting DMA zone.
  3047. */
  3048. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  3049. {
  3050. int j;
  3051. struct zonelist *zonelist;
  3052. zonelist = &pgdat->node_zonelists[0];
  3053. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  3054. ;
  3055. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3056. zonelist->_zonerefs[j].zone = NULL;
  3057. zonelist->_zonerefs[j].zone_idx = 0;
  3058. }
  3059. /*
  3060. * Build gfp_thisnode zonelists
  3061. */
  3062. static void build_thisnode_zonelists(pg_data_t *pgdat)
  3063. {
  3064. int j;
  3065. struct zonelist *zonelist;
  3066. zonelist = &pgdat->node_zonelists[1];
  3067. j = build_zonelists_node(pgdat, zonelist, 0);
  3068. zonelist->_zonerefs[j].zone = NULL;
  3069. zonelist->_zonerefs[j].zone_idx = 0;
  3070. }
  3071. /*
  3072. * Build zonelists ordered by zone and nodes within zones.
  3073. * This results in conserving DMA zone[s] until all Normal memory is
  3074. * exhausted, but results in overflowing to remote node while memory
  3075. * may still exist in local DMA zone.
  3076. */
  3077. static int node_order[MAX_NUMNODES];
  3078. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  3079. {
  3080. int pos, j, node;
  3081. int zone_type; /* needs to be signed */
  3082. struct zone *z;
  3083. struct zonelist *zonelist;
  3084. zonelist = &pgdat->node_zonelists[0];
  3085. pos = 0;
  3086. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  3087. for (j = 0; j < nr_nodes; j++) {
  3088. node = node_order[j];
  3089. z = &NODE_DATA(node)->node_zones[zone_type];
  3090. if (populated_zone(z)) {
  3091. zoneref_set_zone(z,
  3092. &zonelist->_zonerefs[pos++]);
  3093. check_highest_zone(zone_type);
  3094. }
  3095. }
  3096. }
  3097. zonelist->_zonerefs[pos].zone = NULL;
  3098. zonelist->_zonerefs[pos].zone_idx = 0;
  3099. }
  3100. static int default_zonelist_order(void)
  3101. {
  3102. int nid, zone_type;
  3103. unsigned long low_kmem_size, total_size;
  3104. struct zone *z;
  3105. int average_size;
  3106. /*
  3107. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  3108. * If they are really small and used heavily, the system can fall
  3109. * into OOM very easily.
  3110. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  3111. */
  3112. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  3113. low_kmem_size = 0;
  3114. total_size = 0;
  3115. for_each_online_node(nid) {
  3116. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3117. z = &NODE_DATA(nid)->node_zones[zone_type];
  3118. if (populated_zone(z)) {
  3119. if (zone_type < ZONE_NORMAL)
  3120. low_kmem_size += z->managed_pages;
  3121. total_size += z->managed_pages;
  3122. } else if (zone_type == ZONE_NORMAL) {
  3123. /*
  3124. * If any node has only lowmem, then node order
  3125. * is preferred to allow kernel allocations
  3126. * locally; otherwise, they can easily infringe
  3127. * on other nodes when there is an abundance of
  3128. * lowmem available to allocate from.
  3129. */
  3130. return ZONELIST_ORDER_NODE;
  3131. }
  3132. }
  3133. }
  3134. if (!low_kmem_size || /* there are no DMA area. */
  3135. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  3136. return ZONELIST_ORDER_NODE;
  3137. /*
  3138. * look into each node's config.
  3139. * If there is a node whose DMA/DMA32 memory is very big area on
  3140. * local memory, NODE_ORDER may be suitable.
  3141. */
  3142. average_size = total_size /
  3143. (nodes_weight(node_states[N_MEMORY]) + 1);
  3144. for_each_online_node(nid) {
  3145. low_kmem_size = 0;
  3146. total_size = 0;
  3147. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3148. z = &NODE_DATA(nid)->node_zones[zone_type];
  3149. if (populated_zone(z)) {
  3150. if (zone_type < ZONE_NORMAL)
  3151. low_kmem_size += z->present_pages;
  3152. total_size += z->present_pages;
  3153. }
  3154. }
  3155. if (low_kmem_size &&
  3156. total_size > average_size && /* ignore small node */
  3157. low_kmem_size > total_size * 70/100)
  3158. return ZONELIST_ORDER_NODE;
  3159. }
  3160. return ZONELIST_ORDER_ZONE;
  3161. }
  3162. static void set_zonelist_order(void)
  3163. {
  3164. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  3165. current_zonelist_order = default_zonelist_order();
  3166. else
  3167. current_zonelist_order = user_zonelist_order;
  3168. }
  3169. static void build_zonelists(pg_data_t *pgdat)
  3170. {
  3171. int j, node, load;
  3172. enum zone_type i;
  3173. nodemask_t used_mask;
  3174. int local_node, prev_node;
  3175. struct zonelist *zonelist;
  3176. int order = current_zonelist_order;
  3177. /* initialize zonelists */
  3178. for (i = 0; i < MAX_ZONELISTS; i++) {
  3179. zonelist = pgdat->node_zonelists + i;
  3180. zonelist->_zonerefs[0].zone = NULL;
  3181. zonelist->_zonerefs[0].zone_idx = 0;
  3182. }
  3183. /* NUMA-aware ordering of nodes */
  3184. local_node = pgdat->node_id;
  3185. load = nr_online_nodes;
  3186. prev_node = local_node;
  3187. nodes_clear(used_mask);
  3188. memset(node_order, 0, sizeof(node_order));
  3189. j = 0;
  3190. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  3191. /*
  3192. * We don't want to pressure a particular node.
  3193. * So adding penalty to the first node in same
  3194. * distance group to make it round-robin.
  3195. */
  3196. if (node_distance(local_node, node) !=
  3197. node_distance(local_node, prev_node))
  3198. node_load[node] = load;
  3199. prev_node = node;
  3200. load--;
  3201. if (order == ZONELIST_ORDER_NODE)
  3202. build_zonelists_in_node_order(pgdat, node);
  3203. else
  3204. node_order[j++] = node; /* remember order */
  3205. }
  3206. if (order == ZONELIST_ORDER_ZONE) {
  3207. /* calculate node order -- i.e., DMA last! */
  3208. build_zonelists_in_zone_order(pgdat, j);
  3209. }
  3210. build_thisnode_zonelists(pgdat);
  3211. }
  3212. /* Construct the zonelist performance cache - see further mmzone.h */
  3213. static void build_zonelist_cache(pg_data_t *pgdat)
  3214. {
  3215. struct zonelist *zonelist;
  3216. struct zonelist_cache *zlc;
  3217. struct zoneref *z;
  3218. zonelist = &pgdat->node_zonelists[0];
  3219. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  3220. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  3221. for (z = zonelist->_zonerefs; z->zone; z++)
  3222. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  3223. }
  3224. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3225. /*
  3226. * Return node id of node used for "local" allocations.
  3227. * I.e., first node id of first zone in arg node's generic zonelist.
  3228. * Used for initializing percpu 'numa_mem', which is used primarily
  3229. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  3230. */
  3231. int local_memory_node(int node)
  3232. {
  3233. struct zone *zone;
  3234. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  3235. gfp_zone(GFP_KERNEL),
  3236. NULL,
  3237. &zone);
  3238. return zone->node;
  3239. }
  3240. #endif
  3241. #else /* CONFIG_NUMA */
  3242. static void set_zonelist_order(void)
  3243. {
  3244. current_zonelist_order = ZONELIST_ORDER_ZONE;
  3245. }
  3246. static void build_zonelists(pg_data_t *pgdat)
  3247. {
  3248. int node, local_node;
  3249. enum zone_type j;
  3250. struct zonelist *zonelist;
  3251. local_node = pgdat->node_id;
  3252. zonelist = &pgdat->node_zonelists[0];
  3253. j = build_zonelists_node(pgdat, zonelist, 0);
  3254. /*
  3255. * Now we build the zonelist so that it contains the zones
  3256. * of all the other nodes.
  3257. * We don't want to pressure a particular node, so when
  3258. * building the zones for node N, we make sure that the
  3259. * zones coming right after the local ones are those from
  3260. * node N+1 (modulo N)
  3261. */
  3262. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  3263. if (!node_online(node))
  3264. continue;
  3265. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3266. }
  3267. for (node = 0; node < local_node; node++) {
  3268. if (!node_online(node))
  3269. continue;
  3270. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  3271. }
  3272. zonelist->_zonerefs[j].zone = NULL;
  3273. zonelist->_zonerefs[j].zone_idx = 0;
  3274. }
  3275. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  3276. static void build_zonelist_cache(pg_data_t *pgdat)
  3277. {
  3278. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  3279. }
  3280. #endif /* CONFIG_NUMA */
  3281. /*
  3282. * Boot pageset table. One per cpu which is going to be used for all
  3283. * zones and all nodes. The parameters will be set in such a way
  3284. * that an item put on a list will immediately be handed over to
  3285. * the buddy list. This is safe since pageset manipulation is done
  3286. * with interrupts disabled.
  3287. *
  3288. * The boot_pagesets must be kept even after bootup is complete for
  3289. * unused processors and/or zones. They do play a role for bootstrapping
  3290. * hotplugged processors.
  3291. *
  3292. * zoneinfo_show() and maybe other functions do
  3293. * not check if the processor is online before following the pageset pointer.
  3294. * Other parts of the kernel may not check if the zone is available.
  3295. */
  3296. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  3297. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  3298. static void setup_zone_pageset(struct zone *zone);
  3299. /*
  3300. * Global mutex to protect against size modification of zonelists
  3301. * as well as to serialize pageset setup for the new populated zone.
  3302. */
  3303. DEFINE_MUTEX(zonelists_mutex);
  3304. /* return values int ....just for stop_machine() */
  3305. static int __build_all_zonelists(void *data)
  3306. {
  3307. int nid;
  3308. int cpu;
  3309. pg_data_t *self = data;
  3310. #ifdef CONFIG_NUMA
  3311. memset(node_load, 0, sizeof(node_load));
  3312. #endif
  3313. if (self && !node_online(self->node_id)) {
  3314. build_zonelists(self);
  3315. build_zonelist_cache(self);
  3316. }
  3317. for_each_online_node(nid) {
  3318. pg_data_t *pgdat = NODE_DATA(nid);
  3319. build_zonelists(pgdat);
  3320. build_zonelist_cache(pgdat);
  3321. }
  3322. /*
  3323. * Initialize the boot_pagesets that are going to be used
  3324. * for bootstrapping processors. The real pagesets for
  3325. * each zone will be allocated later when the per cpu
  3326. * allocator is available.
  3327. *
  3328. * boot_pagesets are used also for bootstrapping offline
  3329. * cpus if the system is already booted because the pagesets
  3330. * are needed to initialize allocators on a specific cpu too.
  3331. * F.e. the percpu allocator needs the page allocator which
  3332. * needs the percpu allocator in order to allocate its pagesets
  3333. * (a chicken-egg dilemma).
  3334. */
  3335. for_each_possible_cpu(cpu) {
  3336. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  3337. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  3338. /*
  3339. * We now know the "local memory node" for each node--
  3340. * i.e., the node of the first zone in the generic zonelist.
  3341. * Set up numa_mem percpu variable for on-line cpus. During
  3342. * boot, only the boot cpu should be on-line; we'll init the
  3343. * secondary cpus' numa_mem as they come on-line. During
  3344. * node/memory hotplug, we'll fixup all on-line cpus.
  3345. */
  3346. if (cpu_online(cpu))
  3347. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  3348. #endif
  3349. }
  3350. return 0;
  3351. }
  3352. /*
  3353. * Called with zonelists_mutex held always
  3354. * unless system_state == SYSTEM_BOOTING.
  3355. */
  3356. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  3357. {
  3358. set_zonelist_order();
  3359. if (system_state == SYSTEM_BOOTING) {
  3360. __build_all_zonelists(NULL);
  3361. mminit_verify_zonelist();
  3362. cpuset_init_current_mems_allowed();
  3363. } else {
  3364. #ifdef CONFIG_MEMORY_HOTPLUG
  3365. if (zone)
  3366. setup_zone_pageset(zone);
  3367. #endif
  3368. /* we have to stop all cpus to guarantee there is no user
  3369. of zonelist */
  3370. stop_machine(__build_all_zonelists, pgdat, NULL);
  3371. /* cpuset refresh routine should be here */
  3372. }
  3373. vm_total_pages = nr_free_pagecache_pages();
  3374. /*
  3375. * Disable grouping by mobility if the number of pages in the
  3376. * system is too low to allow the mechanism to work. It would be
  3377. * more accurate, but expensive to check per-zone. This check is
  3378. * made on memory-hotadd so a system can start with mobility
  3379. * disabled and enable it later
  3380. */
  3381. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  3382. page_group_by_mobility_disabled = 1;
  3383. else
  3384. page_group_by_mobility_disabled = 0;
  3385. printk("Built %i zonelists in %s order, mobility grouping %s. "
  3386. "Total pages: %ld\n",
  3387. nr_online_nodes,
  3388. zonelist_order_name[current_zonelist_order],
  3389. page_group_by_mobility_disabled ? "off" : "on",
  3390. vm_total_pages);
  3391. #ifdef CONFIG_NUMA
  3392. printk("Policy zone: %s\n", zone_names[policy_zone]);
  3393. #endif
  3394. }
  3395. /*
  3396. * Helper functions to size the waitqueue hash table.
  3397. * Essentially these want to choose hash table sizes sufficiently
  3398. * large so that collisions trying to wait on pages are rare.
  3399. * But in fact, the number of active page waitqueues on typical
  3400. * systems is ridiculously low, less than 200. So this is even
  3401. * conservative, even though it seems large.
  3402. *
  3403. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  3404. * waitqueues, i.e. the size of the waitq table given the number of pages.
  3405. */
  3406. #define PAGES_PER_WAITQUEUE 256
  3407. #ifndef CONFIG_MEMORY_HOTPLUG
  3408. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3409. {
  3410. unsigned long size = 1;
  3411. pages /= PAGES_PER_WAITQUEUE;
  3412. while (size < pages)
  3413. size <<= 1;
  3414. /*
  3415. * Once we have dozens or even hundreds of threads sleeping
  3416. * on IO we've got bigger problems than wait queue collision.
  3417. * Limit the size of the wait table to a reasonable size.
  3418. */
  3419. size = min(size, 4096UL);
  3420. return max(size, 4UL);
  3421. }
  3422. #else
  3423. /*
  3424. * A zone's size might be changed by hot-add, so it is not possible to determine
  3425. * a suitable size for its wait_table. So we use the maximum size now.
  3426. *
  3427. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  3428. *
  3429. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  3430. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  3431. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  3432. *
  3433. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  3434. * or more by the traditional way. (See above). It equals:
  3435. *
  3436. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  3437. * ia64(16K page size) : = ( 8G + 4M)byte.
  3438. * powerpc (64K page size) : = (32G +16M)byte.
  3439. */
  3440. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  3441. {
  3442. return 4096UL;
  3443. }
  3444. #endif
  3445. /*
  3446. * This is an integer logarithm so that shifts can be used later
  3447. * to extract the more random high bits from the multiplicative
  3448. * hash function before the remainder is taken.
  3449. */
  3450. static inline unsigned long wait_table_bits(unsigned long size)
  3451. {
  3452. return ffz(~size);
  3453. }
  3454. /*
  3455. * Check if a pageblock contains reserved pages
  3456. */
  3457. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  3458. {
  3459. unsigned long pfn;
  3460. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3461. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  3462. return 1;
  3463. }
  3464. return 0;
  3465. }
  3466. /*
  3467. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  3468. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  3469. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  3470. * higher will lead to a bigger reserve which will get freed as contiguous
  3471. * blocks as reclaim kicks in
  3472. */
  3473. static void setup_zone_migrate_reserve(struct zone *zone)
  3474. {
  3475. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  3476. struct page *page;
  3477. unsigned long block_migratetype;
  3478. int reserve;
  3479. int old_reserve;
  3480. /*
  3481. * Get the start pfn, end pfn and the number of blocks to reserve
  3482. * We have to be careful to be aligned to pageblock_nr_pages to
  3483. * make sure that we always check pfn_valid for the first page in
  3484. * the block.
  3485. */
  3486. start_pfn = zone->zone_start_pfn;
  3487. end_pfn = zone_end_pfn(zone);
  3488. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  3489. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  3490. pageblock_order;
  3491. /*
  3492. * Reserve blocks are generally in place to help high-order atomic
  3493. * allocations that are short-lived. A min_free_kbytes value that
  3494. * would result in more than 2 reserve blocks for atomic allocations
  3495. * is assumed to be in place to help anti-fragmentation for the
  3496. * future allocation of hugepages at runtime.
  3497. */
  3498. reserve = min(2, reserve);
  3499. old_reserve = zone->nr_migrate_reserve_block;
  3500. /* When memory hot-add, we almost always need to do nothing */
  3501. if (reserve == old_reserve)
  3502. return;
  3503. zone->nr_migrate_reserve_block = reserve;
  3504. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3505. if (!pfn_valid(pfn))
  3506. continue;
  3507. page = pfn_to_page(pfn);
  3508. /* Watch out for overlapping nodes */
  3509. if (page_to_nid(page) != zone_to_nid(zone))
  3510. continue;
  3511. block_migratetype = get_pageblock_migratetype(page);
  3512. /* Only test what is necessary when the reserves are not met */
  3513. if (reserve > 0) {
  3514. /*
  3515. * Blocks with reserved pages will never free, skip
  3516. * them.
  3517. */
  3518. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3519. if (pageblock_is_reserved(pfn, block_end_pfn))
  3520. continue;
  3521. /* If this block is reserved, account for it */
  3522. if (block_migratetype == MIGRATE_RESERVE) {
  3523. reserve--;
  3524. continue;
  3525. }
  3526. /* Suitable for reserving if this block is movable */
  3527. if (block_migratetype == MIGRATE_MOVABLE) {
  3528. set_pageblock_migratetype(page,
  3529. MIGRATE_RESERVE);
  3530. move_freepages_block(zone, page,
  3531. MIGRATE_RESERVE);
  3532. reserve--;
  3533. continue;
  3534. }
  3535. } else if (!old_reserve) {
  3536. /*
  3537. * At boot time we don't need to scan the whole zone
  3538. * for turning off MIGRATE_RESERVE.
  3539. */
  3540. break;
  3541. }
  3542. /*
  3543. * If the reserve is met and this is a previous reserved block,
  3544. * take it back
  3545. */
  3546. if (block_migratetype == MIGRATE_RESERVE) {
  3547. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3548. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3549. }
  3550. }
  3551. }
  3552. /*
  3553. * Initially all pages are reserved - free ones are freed
  3554. * up by free_all_bootmem() once the early boot process is
  3555. * done. Non-atomic initialization, single-pass.
  3556. */
  3557. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3558. unsigned long start_pfn, enum memmap_context context)
  3559. {
  3560. struct page *page;
  3561. unsigned long end_pfn = start_pfn + size;
  3562. unsigned long pfn;
  3563. struct zone *z;
  3564. if (highest_memmap_pfn < end_pfn - 1)
  3565. highest_memmap_pfn = end_pfn - 1;
  3566. z = &NODE_DATA(nid)->node_zones[zone];
  3567. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3568. /*
  3569. * There can be holes in boot-time mem_map[]s
  3570. * handed to this function. They do not
  3571. * exist on hotplugged memory.
  3572. */
  3573. if (context == MEMMAP_EARLY) {
  3574. if (!early_pfn_valid(pfn))
  3575. continue;
  3576. if (!early_pfn_in_nid(pfn, nid))
  3577. continue;
  3578. }
  3579. page = pfn_to_page(pfn);
  3580. set_page_links(page, zone, nid, pfn);
  3581. mminit_verify_page_links(page, zone, nid, pfn);
  3582. init_page_count(page);
  3583. page_mapcount_reset(page);
  3584. page_cpupid_reset_last(page);
  3585. SetPageReserved(page);
  3586. /*
  3587. * Mark the block movable so that blocks are reserved for
  3588. * movable at startup. This will force kernel allocations
  3589. * to reserve their blocks rather than leaking throughout
  3590. * the address space during boot when many long-lived
  3591. * kernel allocations are made. Later some blocks near
  3592. * the start are marked MIGRATE_RESERVE by
  3593. * setup_zone_migrate_reserve()
  3594. *
  3595. * bitmap is created for zone's valid pfn range. but memmap
  3596. * can be created for invalid pages (for alignment)
  3597. * check here not to call set_pageblock_migratetype() against
  3598. * pfn out of zone.
  3599. */
  3600. if ((z->zone_start_pfn <= pfn)
  3601. && (pfn < zone_end_pfn(z))
  3602. && !(pfn & (pageblock_nr_pages - 1)))
  3603. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3604. INIT_LIST_HEAD(&page->lru);
  3605. #ifdef WANT_PAGE_VIRTUAL
  3606. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3607. if (!is_highmem_idx(zone))
  3608. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3609. #endif
  3610. }
  3611. }
  3612. static void __meminit zone_init_free_lists(struct zone *zone)
  3613. {
  3614. unsigned int order, t;
  3615. for_each_migratetype_order(order, t) {
  3616. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3617. zone->free_area[order].nr_free = 0;
  3618. }
  3619. }
  3620. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3621. #define memmap_init(size, nid, zone, start_pfn) \
  3622. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3623. #endif
  3624. static int zone_batchsize(struct zone *zone)
  3625. {
  3626. #ifdef CONFIG_MMU
  3627. int batch;
  3628. /*
  3629. * The per-cpu-pages pools are set to around 1000th of the
  3630. * size of the zone. But no more than 1/2 of a meg.
  3631. *
  3632. * OK, so we don't know how big the cache is. So guess.
  3633. */
  3634. batch = zone->managed_pages / 1024;
  3635. if (batch * PAGE_SIZE > 512 * 1024)
  3636. batch = (512 * 1024) / PAGE_SIZE;
  3637. batch /= 4; /* We effectively *= 4 below */
  3638. if (batch < 1)
  3639. batch = 1;
  3640. /*
  3641. * Clamp the batch to a 2^n - 1 value. Having a power
  3642. * of 2 value was found to be more likely to have
  3643. * suboptimal cache aliasing properties in some cases.
  3644. *
  3645. * For example if 2 tasks are alternately allocating
  3646. * batches of pages, one task can end up with a lot
  3647. * of pages of one half of the possible page colors
  3648. * and the other with pages of the other colors.
  3649. */
  3650. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3651. return batch;
  3652. #else
  3653. /* The deferral and batching of frees should be suppressed under NOMMU
  3654. * conditions.
  3655. *
  3656. * The problem is that NOMMU needs to be able to allocate large chunks
  3657. * of contiguous memory as there's no hardware page translation to
  3658. * assemble apparent contiguous memory from discontiguous pages.
  3659. *
  3660. * Queueing large contiguous runs of pages for batching, however,
  3661. * causes the pages to actually be freed in smaller chunks. As there
  3662. * can be a significant delay between the individual batches being
  3663. * recycled, this leads to the once large chunks of space being
  3664. * fragmented and becoming unavailable for high-order allocations.
  3665. */
  3666. return 0;
  3667. #endif
  3668. }
  3669. /*
  3670. * pcp->high and pcp->batch values are related and dependent on one another:
  3671. * ->batch must never be higher then ->high.
  3672. * The following function updates them in a safe manner without read side
  3673. * locking.
  3674. *
  3675. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  3676. * those fields changing asynchronously (acording the the above rule).
  3677. *
  3678. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  3679. * outside of boot time (or some other assurance that no concurrent updaters
  3680. * exist).
  3681. */
  3682. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  3683. unsigned long batch)
  3684. {
  3685. /* start with a fail safe value for batch */
  3686. pcp->batch = 1;
  3687. smp_wmb();
  3688. /* Update high, then batch, in order */
  3689. pcp->high = high;
  3690. smp_wmb();
  3691. pcp->batch = batch;
  3692. }
  3693. /* a companion to pageset_set_high() */
  3694. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  3695. {
  3696. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  3697. }
  3698. static void pageset_init(struct per_cpu_pageset *p)
  3699. {
  3700. struct per_cpu_pages *pcp;
  3701. int migratetype;
  3702. memset(p, 0, sizeof(*p));
  3703. pcp = &p->pcp;
  3704. pcp->count = 0;
  3705. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3706. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3707. }
  3708. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3709. {
  3710. pageset_init(p);
  3711. pageset_set_batch(p, batch);
  3712. }
  3713. /*
  3714. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  3715. * to the value high for the pageset p.
  3716. */
  3717. static void pageset_set_high(struct per_cpu_pageset *p,
  3718. unsigned long high)
  3719. {
  3720. unsigned long batch = max(1UL, high / 4);
  3721. if ((high / 4) > (PAGE_SHIFT * 8))
  3722. batch = PAGE_SHIFT * 8;
  3723. pageset_update(&p->pcp, high, batch);
  3724. }
  3725. static void pageset_set_high_and_batch(struct zone *zone,
  3726. struct per_cpu_pageset *pcp)
  3727. {
  3728. if (percpu_pagelist_fraction)
  3729. pageset_set_high(pcp,
  3730. (zone->managed_pages /
  3731. percpu_pagelist_fraction));
  3732. else
  3733. pageset_set_batch(pcp, zone_batchsize(zone));
  3734. }
  3735. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  3736. {
  3737. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3738. pageset_init(pcp);
  3739. pageset_set_high_and_batch(zone, pcp);
  3740. }
  3741. static void __meminit setup_zone_pageset(struct zone *zone)
  3742. {
  3743. int cpu;
  3744. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3745. for_each_possible_cpu(cpu)
  3746. zone_pageset_init(zone, cpu);
  3747. }
  3748. /*
  3749. * Allocate per cpu pagesets and initialize them.
  3750. * Before this call only boot pagesets were available.
  3751. */
  3752. void __init setup_per_cpu_pageset(void)
  3753. {
  3754. struct zone *zone;
  3755. for_each_populated_zone(zone)
  3756. setup_zone_pageset(zone);
  3757. }
  3758. static noinline __init_refok
  3759. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3760. {
  3761. int i;
  3762. size_t alloc_size;
  3763. /*
  3764. * The per-page waitqueue mechanism uses hashed waitqueues
  3765. * per zone.
  3766. */
  3767. zone->wait_table_hash_nr_entries =
  3768. wait_table_hash_nr_entries(zone_size_pages);
  3769. zone->wait_table_bits =
  3770. wait_table_bits(zone->wait_table_hash_nr_entries);
  3771. alloc_size = zone->wait_table_hash_nr_entries
  3772. * sizeof(wait_queue_head_t);
  3773. if (!slab_is_available()) {
  3774. zone->wait_table = (wait_queue_head_t *)
  3775. memblock_virt_alloc_node_nopanic(
  3776. alloc_size, zone->zone_pgdat->node_id);
  3777. } else {
  3778. /*
  3779. * This case means that a zone whose size was 0 gets new memory
  3780. * via memory hot-add.
  3781. * But it may be the case that a new node was hot-added. In
  3782. * this case vmalloc() will not be able to use this new node's
  3783. * memory - this wait_table must be initialized to use this new
  3784. * node itself as well.
  3785. * To use this new node's memory, further consideration will be
  3786. * necessary.
  3787. */
  3788. zone->wait_table = vmalloc(alloc_size);
  3789. }
  3790. if (!zone->wait_table)
  3791. return -ENOMEM;
  3792. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3793. init_waitqueue_head(zone->wait_table + i);
  3794. return 0;
  3795. }
  3796. static __meminit void zone_pcp_init(struct zone *zone)
  3797. {
  3798. /*
  3799. * per cpu subsystem is not up at this point. The following code
  3800. * relies on the ability of the linker to provide the
  3801. * offset of a (static) per cpu variable into the per cpu area.
  3802. */
  3803. zone->pageset = &boot_pageset;
  3804. if (populated_zone(zone))
  3805. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3806. zone->name, zone->present_pages,
  3807. zone_batchsize(zone));
  3808. }
  3809. int __meminit init_currently_empty_zone(struct zone *zone,
  3810. unsigned long zone_start_pfn,
  3811. unsigned long size,
  3812. enum memmap_context context)
  3813. {
  3814. struct pglist_data *pgdat = zone->zone_pgdat;
  3815. int ret;
  3816. ret = zone_wait_table_init(zone, size);
  3817. if (ret)
  3818. return ret;
  3819. pgdat->nr_zones = zone_idx(zone) + 1;
  3820. zone->zone_start_pfn = zone_start_pfn;
  3821. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3822. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3823. pgdat->node_id,
  3824. (unsigned long)zone_idx(zone),
  3825. zone_start_pfn, (zone_start_pfn + size));
  3826. zone_init_free_lists(zone);
  3827. return 0;
  3828. }
  3829. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3830. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3831. /*
  3832. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3833. */
  3834. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3835. {
  3836. unsigned long start_pfn, end_pfn;
  3837. int nid;
  3838. /*
  3839. * NOTE: The following SMP-unsafe globals are only used early in boot
  3840. * when the kernel is running single-threaded.
  3841. */
  3842. static unsigned long __meminitdata last_start_pfn, last_end_pfn;
  3843. static int __meminitdata last_nid;
  3844. if (last_start_pfn <= pfn && pfn < last_end_pfn)
  3845. return last_nid;
  3846. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  3847. if (nid != -1) {
  3848. last_start_pfn = start_pfn;
  3849. last_end_pfn = end_pfn;
  3850. last_nid = nid;
  3851. }
  3852. return nid;
  3853. }
  3854. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3855. int __meminit early_pfn_to_nid(unsigned long pfn)
  3856. {
  3857. int nid;
  3858. nid = __early_pfn_to_nid(pfn);
  3859. if (nid >= 0)
  3860. return nid;
  3861. /* just returns 0 */
  3862. return 0;
  3863. }
  3864. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3865. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3866. {
  3867. int nid;
  3868. nid = __early_pfn_to_nid(pfn);
  3869. if (nid >= 0 && nid != node)
  3870. return false;
  3871. return true;
  3872. }
  3873. #endif
  3874. /**
  3875. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  3876. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3877. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  3878. *
  3879. * If an architecture guarantees that all ranges registered contain no holes
  3880. * and may be freed, this this function may be used instead of calling
  3881. * memblock_free_early_nid() manually.
  3882. */
  3883. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3884. {
  3885. unsigned long start_pfn, end_pfn;
  3886. int i, this_nid;
  3887. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3888. start_pfn = min(start_pfn, max_low_pfn);
  3889. end_pfn = min(end_pfn, max_low_pfn);
  3890. if (start_pfn < end_pfn)
  3891. memblock_free_early_nid(PFN_PHYS(start_pfn),
  3892. (end_pfn - start_pfn) << PAGE_SHIFT,
  3893. this_nid);
  3894. }
  3895. }
  3896. /**
  3897. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3898. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3899. *
  3900. * If an architecture guarantees that all ranges registered contain no holes and may
  3901. * be freed, this function may be used instead of calling memory_present() manually.
  3902. */
  3903. void __init sparse_memory_present_with_active_regions(int nid)
  3904. {
  3905. unsigned long start_pfn, end_pfn;
  3906. int i, this_nid;
  3907. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3908. memory_present(this_nid, start_pfn, end_pfn);
  3909. }
  3910. /**
  3911. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3912. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3913. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3914. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3915. *
  3916. * It returns the start and end page frame of a node based on information
  3917. * provided by memblock_set_node(). If called for a node
  3918. * with no available memory, a warning is printed and the start and end
  3919. * PFNs will be 0.
  3920. */
  3921. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3922. unsigned long *start_pfn, unsigned long *end_pfn)
  3923. {
  3924. unsigned long this_start_pfn, this_end_pfn;
  3925. int i;
  3926. *start_pfn = -1UL;
  3927. *end_pfn = 0;
  3928. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3929. *start_pfn = min(*start_pfn, this_start_pfn);
  3930. *end_pfn = max(*end_pfn, this_end_pfn);
  3931. }
  3932. if (*start_pfn == -1UL)
  3933. *start_pfn = 0;
  3934. }
  3935. /*
  3936. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3937. * assumption is made that zones within a node are ordered in monotonic
  3938. * increasing memory addresses so that the "highest" populated zone is used
  3939. */
  3940. static void __init find_usable_zone_for_movable(void)
  3941. {
  3942. int zone_index;
  3943. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3944. if (zone_index == ZONE_MOVABLE)
  3945. continue;
  3946. if (arch_zone_highest_possible_pfn[zone_index] >
  3947. arch_zone_lowest_possible_pfn[zone_index])
  3948. break;
  3949. }
  3950. VM_BUG_ON(zone_index == -1);
  3951. movable_zone = zone_index;
  3952. }
  3953. /*
  3954. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3955. * because it is sized independent of architecture. Unlike the other zones,
  3956. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3957. * in each node depending on the size of each node and how evenly kernelcore
  3958. * is distributed. This helper function adjusts the zone ranges
  3959. * provided by the architecture for a given node by using the end of the
  3960. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3961. * zones within a node are in order of monotonic increases memory addresses
  3962. */
  3963. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3964. unsigned long zone_type,
  3965. unsigned long node_start_pfn,
  3966. unsigned long node_end_pfn,
  3967. unsigned long *zone_start_pfn,
  3968. unsigned long *zone_end_pfn)
  3969. {
  3970. /* Only adjust if ZONE_MOVABLE is on this node */
  3971. if (zone_movable_pfn[nid]) {
  3972. /* Size ZONE_MOVABLE */
  3973. if (zone_type == ZONE_MOVABLE) {
  3974. *zone_start_pfn = zone_movable_pfn[nid];
  3975. *zone_end_pfn = min(node_end_pfn,
  3976. arch_zone_highest_possible_pfn[movable_zone]);
  3977. /* Adjust for ZONE_MOVABLE starting within this range */
  3978. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3979. *zone_end_pfn > zone_movable_pfn[nid]) {
  3980. *zone_end_pfn = zone_movable_pfn[nid];
  3981. /* Check if this whole range is within ZONE_MOVABLE */
  3982. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3983. *zone_start_pfn = *zone_end_pfn;
  3984. }
  3985. }
  3986. /*
  3987. * Return the number of pages a zone spans in a node, including holes
  3988. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3989. */
  3990. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3991. unsigned long zone_type,
  3992. unsigned long node_start_pfn,
  3993. unsigned long node_end_pfn,
  3994. unsigned long *ignored)
  3995. {
  3996. unsigned long zone_start_pfn, zone_end_pfn;
  3997. /* Get the start and end of the zone */
  3998. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3999. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4000. adjust_zone_range_for_zone_movable(nid, zone_type,
  4001. node_start_pfn, node_end_pfn,
  4002. &zone_start_pfn, &zone_end_pfn);
  4003. /* Check that this node has pages within the zone's required range */
  4004. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  4005. return 0;
  4006. /* Move the zone boundaries inside the node if necessary */
  4007. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  4008. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  4009. /* Return the spanned pages */
  4010. return zone_end_pfn - zone_start_pfn;
  4011. }
  4012. /*
  4013. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4014. * then all holes in the requested range will be accounted for.
  4015. */
  4016. unsigned long __meminit __absent_pages_in_range(int nid,
  4017. unsigned long range_start_pfn,
  4018. unsigned long range_end_pfn)
  4019. {
  4020. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4021. unsigned long start_pfn, end_pfn;
  4022. int i;
  4023. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4024. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4025. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4026. nr_absent -= end_pfn - start_pfn;
  4027. }
  4028. return nr_absent;
  4029. }
  4030. /**
  4031. * absent_pages_in_range - Return number of page frames in holes within a range
  4032. * @start_pfn: The start PFN to start searching for holes
  4033. * @end_pfn: The end PFN to stop searching for holes
  4034. *
  4035. * It returns the number of pages frames in memory holes within a range.
  4036. */
  4037. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4038. unsigned long end_pfn)
  4039. {
  4040. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4041. }
  4042. /* Return the number of page frames in holes in a zone on a node */
  4043. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4044. unsigned long zone_type,
  4045. unsigned long node_start_pfn,
  4046. unsigned long node_end_pfn,
  4047. unsigned long *ignored)
  4048. {
  4049. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4050. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4051. unsigned long zone_start_pfn, zone_end_pfn;
  4052. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4053. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4054. adjust_zone_range_for_zone_movable(nid, zone_type,
  4055. node_start_pfn, node_end_pfn,
  4056. &zone_start_pfn, &zone_end_pfn);
  4057. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4058. }
  4059. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4060. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4061. unsigned long zone_type,
  4062. unsigned long node_start_pfn,
  4063. unsigned long node_end_pfn,
  4064. unsigned long *zones_size)
  4065. {
  4066. return zones_size[zone_type];
  4067. }
  4068. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4069. unsigned long zone_type,
  4070. unsigned long node_start_pfn,
  4071. unsigned long node_end_pfn,
  4072. unsigned long *zholes_size)
  4073. {
  4074. if (!zholes_size)
  4075. return 0;
  4076. return zholes_size[zone_type];
  4077. }
  4078. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4079. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4080. unsigned long node_start_pfn,
  4081. unsigned long node_end_pfn,
  4082. unsigned long *zones_size,
  4083. unsigned long *zholes_size)
  4084. {
  4085. unsigned long realtotalpages, totalpages = 0;
  4086. enum zone_type i;
  4087. for (i = 0; i < MAX_NR_ZONES; i++)
  4088. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  4089. node_start_pfn,
  4090. node_end_pfn,
  4091. zones_size);
  4092. pgdat->node_spanned_pages = totalpages;
  4093. realtotalpages = totalpages;
  4094. for (i = 0; i < MAX_NR_ZONES; i++)
  4095. realtotalpages -=
  4096. zone_absent_pages_in_node(pgdat->node_id, i,
  4097. node_start_pfn, node_end_pfn,
  4098. zholes_size);
  4099. pgdat->node_present_pages = realtotalpages;
  4100. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  4101. realtotalpages);
  4102. }
  4103. #ifndef CONFIG_SPARSEMEM
  4104. /*
  4105. * Calculate the size of the zone->blockflags rounded to an unsigned long
  4106. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  4107. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  4108. * round what is now in bits to nearest long in bits, then return it in
  4109. * bytes.
  4110. */
  4111. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  4112. {
  4113. unsigned long usemapsize;
  4114. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  4115. usemapsize = roundup(zonesize, pageblock_nr_pages);
  4116. usemapsize = usemapsize >> pageblock_order;
  4117. usemapsize *= NR_PAGEBLOCK_BITS;
  4118. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  4119. return usemapsize / 8;
  4120. }
  4121. static void __init setup_usemap(struct pglist_data *pgdat,
  4122. struct zone *zone,
  4123. unsigned long zone_start_pfn,
  4124. unsigned long zonesize)
  4125. {
  4126. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  4127. zone->pageblock_flags = NULL;
  4128. if (usemapsize)
  4129. zone->pageblock_flags =
  4130. memblock_virt_alloc_node_nopanic(usemapsize,
  4131. pgdat->node_id);
  4132. }
  4133. #else
  4134. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  4135. unsigned long zone_start_pfn, unsigned long zonesize) {}
  4136. #endif /* CONFIG_SPARSEMEM */
  4137. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  4138. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  4139. void __paginginit set_pageblock_order(void)
  4140. {
  4141. unsigned int order;
  4142. /* Check that pageblock_nr_pages has not already been setup */
  4143. if (pageblock_order)
  4144. return;
  4145. if (HPAGE_SHIFT > PAGE_SHIFT)
  4146. order = HUGETLB_PAGE_ORDER;
  4147. else
  4148. order = MAX_ORDER - 1;
  4149. /*
  4150. * Assume the largest contiguous order of interest is a huge page.
  4151. * This value may be variable depending on boot parameters on IA64 and
  4152. * powerpc.
  4153. */
  4154. pageblock_order = order;
  4155. }
  4156. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4157. /*
  4158. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  4159. * is unused as pageblock_order is set at compile-time. See
  4160. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  4161. * the kernel config
  4162. */
  4163. void __paginginit set_pageblock_order(void)
  4164. {
  4165. }
  4166. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  4167. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  4168. unsigned long present_pages)
  4169. {
  4170. unsigned long pages = spanned_pages;
  4171. /*
  4172. * Provide a more accurate estimation if there are holes within
  4173. * the zone and SPARSEMEM is in use. If there are holes within the
  4174. * zone, each populated memory region may cost us one or two extra
  4175. * memmap pages due to alignment because memmap pages for each
  4176. * populated regions may not naturally algined on page boundary.
  4177. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  4178. */
  4179. if (spanned_pages > present_pages + (present_pages >> 4) &&
  4180. IS_ENABLED(CONFIG_SPARSEMEM))
  4181. pages = present_pages;
  4182. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  4183. }
  4184. /*
  4185. * Set up the zone data structures:
  4186. * - mark all pages reserved
  4187. * - mark all memory queues empty
  4188. * - clear the memory bitmaps
  4189. *
  4190. * NOTE: pgdat should get zeroed by caller.
  4191. */
  4192. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  4193. unsigned long node_start_pfn, unsigned long node_end_pfn,
  4194. unsigned long *zones_size, unsigned long *zholes_size)
  4195. {
  4196. enum zone_type j;
  4197. int nid = pgdat->node_id;
  4198. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  4199. int ret;
  4200. pgdat_resize_init(pgdat);
  4201. #ifdef CONFIG_NUMA_BALANCING
  4202. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  4203. pgdat->numabalancing_migrate_nr_pages = 0;
  4204. pgdat->numabalancing_migrate_next_window = jiffies;
  4205. #endif
  4206. init_waitqueue_head(&pgdat->kswapd_wait);
  4207. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  4208. pgdat_page_cgroup_init(pgdat);
  4209. for (j = 0; j < MAX_NR_ZONES; j++) {
  4210. struct zone *zone = pgdat->node_zones + j;
  4211. unsigned long size, realsize, freesize, memmap_pages;
  4212. size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
  4213. node_end_pfn, zones_size);
  4214. realsize = freesize = size - zone_absent_pages_in_node(nid, j,
  4215. node_start_pfn,
  4216. node_end_pfn,
  4217. zholes_size);
  4218. /*
  4219. * Adjust freesize so that it accounts for how much memory
  4220. * is used by this zone for memmap. This affects the watermark
  4221. * and per-cpu initialisations
  4222. */
  4223. memmap_pages = calc_memmap_size(size, realsize);
  4224. if (freesize >= memmap_pages) {
  4225. freesize -= memmap_pages;
  4226. if (memmap_pages)
  4227. printk(KERN_DEBUG
  4228. " %s zone: %lu pages used for memmap\n",
  4229. zone_names[j], memmap_pages);
  4230. } else
  4231. printk(KERN_WARNING
  4232. " %s zone: %lu pages exceeds freesize %lu\n",
  4233. zone_names[j], memmap_pages, freesize);
  4234. /* Account for reserved pages */
  4235. if (j == 0 && freesize > dma_reserve) {
  4236. freesize -= dma_reserve;
  4237. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  4238. zone_names[0], dma_reserve);
  4239. }
  4240. if (!is_highmem_idx(j))
  4241. nr_kernel_pages += freesize;
  4242. /* Charge for highmem memmap if there are enough kernel pages */
  4243. else if (nr_kernel_pages > memmap_pages * 2)
  4244. nr_kernel_pages -= memmap_pages;
  4245. nr_all_pages += freesize;
  4246. zone->spanned_pages = size;
  4247. zone->present_pages = realsize;
  4248. /*
  4249. * Set an approximate value for lowmem here, it will be adjusted
  4250. * when the bootmem allocator frees pages into the buddy system.
  4251. * And all highmem pages will be managed by the buddy system.
  4252. */
  4253. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  4254. #ifdef CONFIG_NUMA
  4255. zone->node = nid;
  4256. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  4257. / 100;
  4258. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  4259. #endif
  4260. zone->name = zone_names[j];
  4261. spin_lock_init(&zone->lock);
  4262. spin_lock_init(&zone->lru_lock);
  4263. zone_seqlock_init(zone);
  4264. zone->zone_pgdat = pgdat;
  4265. zone_pcp_init(zone);
  4266. /* For bootup, initialized properly in watermark setup */
  4267. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  4268. lruvec_init(&zone->lruvec);
  4269. if (!size)
  4270. continue;
  4271. set_pageblock_order();
  4272. setup_usemap(pgdat, zone, zone_start_pfn, size);
  4273. ret = init_currently_empty_zone(zone, zone_start_pfn,
  4274. size, MEMMAP_EARLY);
  4275. BUG_ON(ret);
  4276. memmap_init(size, nid, j, zone_start_pfn);
  4277. zone_start_pfn += size;
  4278. }
  4279. }
  4280. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  4281. {
  4282. /* Skip empty nodes */
  4283. if (!pgdat->node_spanned_pages)
  4284. return;
  4285. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4286. /* ia64 gets its own node_mem_map, before this, without bootmem */
  4287. if (!pgdat->node_mem_map) {
  4288. unsigned long size, start, end;
  4289. struct page *map;
  4290. /*
  4291. * The zone's endpoints aren't required to be MAX_ORDER
  4292. * aligned but the node_mem_map endpoints must be in order
  4293. * for the buddy allocator to function correctly.
  4294. */
  4295. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  4296. end = pgdat_end_pfn(pgdat);
  4297. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  4298. size = (end - start) * sizeof(struct page);
  4299. map = alloc_remap(pgdat->node_id, size);
  4300. if (!map)
  4301. map = memblock_virt_alloc_node_nopanic(size,
  4302. pgdat->node_id);
  4303. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  4304. }
  4305. #ifndef CONFIG_NEED_MULTIPLE_NODES
  4306. /*
  4307. * With no DISCONTIG, the global mem_map is just set as node 0's
  4308. */
  4309. if (pgdat == NODE_DATA(0)) {
  4310. mem_map = NODE_DATA(0)->node_mem_map;
  4311. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4312. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  4313. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  4314. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4315. }
  4316. #endif
  4317. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  4318. }
  4319. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  4320. unsigned long node_start_pfn, unsigned long *zholes_size)
  4321. {
  4322. pg_data_t *pgdat = NODE_DATA(nid);
  4323. unsigned long start_pfn = 0;
  4324. unsigned long end_pfn = 0;
  4325. /* pg_data_t should be reset to zero when it's allocated */
  4326. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  4327. pgdat->node_id = nid;
  4328. pgdat->node_start_pfn = node_start_pfn;
  4329. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4330. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  4331. #endif
  4332. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  4333. zones_size, zholes_size);
  4334. alloc_node_mem_map(pgdat);
  4335. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  4336. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  4337. nid, (unsigned long)pgdat,
  4338. (unsigned long)pgdat->node_mem_map);
  4339. #endif
  4340. free_area_init_core(pgdat, start_pfn, end_pfn,
  4341. zones_size, zholes_size);
  4342. }
  4343. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4344. #if MAX_NUMNODES > 1
  4345. /*
  4346. * Figure out the number of possible node ids.
  4347. */
  4348. void __init setup_nr_node_ids(void)
  4349. {
  4350. unsigned int node;
  4351. unsigned int highest = 0;
  4352. for_each_node_mask(node, node_possible_map)
  4353. highest = node;
  4354. nr_node_ids = highest + 1;
  4355. }
  4356. #endif
  4357. /**
  4358. * node_map_pfn_alignment - determine the maximum internode alignment
  4359. *
  4360. * This function should be called after node map is populated and sorted.
  4361. * It calculates the maximum power of two alignment which can distinguish
  4362. * all the nodes.
  4363. *
  4364. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  4365. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  4366. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  4367. * shifted, 1GiB is enough and this function will indicate so.
  4368. *
  4369. * This is used to test whether pfn -> nid mapping of the chosen memory
  4370. * model has fine enough granularity to avoid incorrect mapping for the
  4371. * populated node map.
  4372. *
  4373. * Returns the determined alignment in pfn's. 0 if there is no alignment
  4374. * requirement (single node).
  4375. */
  4376. unsigned long __init node_map_pfn_alignment(void)
  4377. {
  4378. unsigned long accl_mask = 0, last_end = 0;
  4379. unsigned long start, end, mask;
  4380. int last_nid = -1;
  4381. int i, nid;
  4382. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  4383. if (!start || last_nid < 0 || last_nid == nid) {
  4384. last_nid = nid;
  4385. last_end = end;
  4386. continue;
  4387. }
  4388. /*
  4389. * Start with a mask granular enough to pin-point to the
  4390. * start pfn and tick off bits one-by-one until it becomes
  4391. * too coarse to separate the current node from the last.
  4392. */
  4393. mask = ~((1 << __ffs(start)) - 1);
  4394. while (mask && last_end <= (start & (mask << 1)))
  4395. mask <<= 1;
  4396. /* accumulate all internode masks */
  4397. accl_mask |= mask;
  4398. }
  4399. /* convert mask to number of pages */
  4400. return ~accl_mask + 1;
  4401. }
  4402. /* Find the lowest pfn for a node */
  4403. static unsigned long __init find_min_pfn_for_node(int nid)
  4404. {
  4405. unsigned long min_pfn = ULONG_MAX;
  4406. unsigned long start_pfn;
  4407. int i;
  4408. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  4409. min_pfn = min(min_pfn, start_pfn);
  4410. if (min_pfn == ULONG_MAX) {
  4411. printk(KERN_WARNING
  4412. "Could not find start_pfn for node %d\n", nid);
  4413. return 0;
  4414. }
  4415. return min_pfn;
  4416. }
  4417. /**
  4418. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  4419. *
  4420. * It returns the minimum PFN based on information provided via
  4421. * memblock_set_node().
  4422. */
  4423. unsigned long __init find_min_pfn_with_active_regions(void)
  4424. {
  4425. return find_min_pfn_for_node(MAX_NUMNODES);
  4426. }
  4427. /*
  4428. * early_calculate_totalpages()
  4429. * Sum pages in active regions for movable zone.
  4430. * Populate N_MEMORY for calculating usable_nodes.
  4431. */
  4432. static unsigned long __init early_calculate_totalpages(void)
  4433. {
  4434. unsigned long totalpages = 0;
  4435. unsigned long start_pfn, end_pfn;
  4436. int i, nid;
  4437. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  4438. unsigned long pages = end_pfn - start_pfn;
  4439. totalpages += pages;
  4440. if (pages)
  4441. node_set_state(nid, N_MEMORY);
  4442. }
  4443. return totalpages;
  4444. }
  4445. /*
  4446. * Find the PFN the Movable zone begins in each node. Kernel memory
  4447. * is spread evenly between nodes as long as the nodes have enough
  4448. * memory. When they don't, some nodes will have more kernelcore than
  4449. * others
  4450. */
  4451. static void __init find_zone_movable_pfns_for_nodes(void)
  4452. {
  4453. int i, nid;
  4454. unsigned long usable_startpfn;
  4455. unsigned long kernelcore_node, kernelcore_remaining;
  4456. /* save the state before borrow the nodemask */
  4457. nodemask_t saved_node_state = node_states[N_MEMORY];
  4458. unsigned long totalpages = early_calculate_totalpages();
  4459. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  4460. struct memblock_region *r;
  4461. /* Need to find movable_zone earlier when movable_node is specified. */
  4462. find_usable_zone_for_movable();
  4463. /*
  4464. * If movable_node is specified, ignore kernelcore and movablecore
  4465. * options.
  4466. */
  4467. if (movable_node_is_enabled()) {
  4468. for_each_memblock(memory, r) {
  4469. if (!memblock_is_hotpluggable(r))
  4470. continue;
  4471. nid = r->nid;
  4472. usable_startpfn = PFN_DOWN(r->base);
  4473. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  4474. min(usable_startpfn, zone_movable_pfn[nid]) :
  4475. usable_startpfn;
  4476. }
  4477. goto out2;
  4478. }
  4479. /*
  4480. * If movablecore=nn[KMG] was specified, calculate what size of
  4481. * kernelcore that corresponds so that memory usable for
  4482. * any allocation type is evenly spread. If both kernelcore
  4483. * and movablecore are specified, then the value of kernelcore
  4484. * will be used for required_kernelcore if it's greater than
  4485. * what movablecore would have allowed.
  4486. */
  4487. if (required_movablecore) {
  4488. unsigned long corepages;
  4489. /*
  4490. * Round-up so that ZONE_MOVABLE is at least as large as what
  4491. * was requested by the user
  4492. */
  4493. required_movablecore =
  4494. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  4495. corepages = totalpages - required_movablecore;
  4496. required_kernelcore = max(required_kernelcore, corepages);
  4497. }
  4498. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  4499. if (!required_kernelcore)
  4500. goto out;
  4501. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  4502. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  4503. restart:
  4504. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4505. kernelcore_node = required_kernelcore / usable_nodes;
  4506. for_each_node_state(nid, N_MEMORY) {
  4507. unsigned long start_pfn, end_pfn;
  4508. /*
  4509. * Recalculate kernelcore_node if the division per node
  4510. * now exceeds what is necessary to satisfy the requested
  4511. * amount of memory for the kernel
  4512. */
  4513. if (required_kernelcore < kernelcore_node)
  4514. kernelcore_node = required_kernelcore / usable_nodes;
  4515. /*
  4516. * As the map is walked, we track how much memory is usable
  4517. * by the kernel using kernelcore_remaining. When it is
  4518. * 0, the rest of the node is usable by ZONE_MOVABLE
  4519. */
  4520. kernelcore_remaining = kernelcore_node;
  4521. /* Go through each range of PFNs within this node */
  4522. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4523. unsigned long size_pages;
  4524. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  4525. if (start_pfn >= end_pfn)
  4526. continue;
  4527. /* Account for what is only usable for kernelcore */
  4528. if (start_pfn < usable_startpfn) {
  4529. unsigned long kernel_pages;
  4530. kernel_pages = min(end_pfn, usable_startpfn)
  4531. - start_pfn;
  4532. kernelcore_remaining -= min(kernel_pages,
  4533. kernelcore_remaining);
  4534. required_kernelcore -= min(kernel_pages,
  4535. required_kernelcore);
  4536. /* Continue if range is now fully accounted */
  4537. if (end_pfn <= usable_startpfn) {
  4538. /*
  4539. * Push zone_movable_pfn to the end so
  4540. * that if we have to rebalance
  4541. * kernelcore across nodes, we will
  4542. * not double account here
  4543. */
  4544. zone_movable_pfn[nid] = end_pfn;
  4545. continue;
  4546. }
  4547. start_pfn = usable_startpfn;
  4548. }
  4549. /*
  4550. * The usable PFN range for ZONE_MOVABLE is from
  4551. * start_pfn->end_pfn. Calculate size_pages as the
  4552. * number of pages used as kernelcore
  4553. */
  4554. size_pages = end_pfn - start_pfn;
  4555. if (size_pages > kernelcore_remaining)
  4556. size_pages = kernelcore_remaining;
  4557. zone_movable_pfn[nid] = start_pfn + size_pages;
  4558. /*
  4559. * Some kernelcore has been met, update counts and
  4560. * break if the kernelcore for this node has been
  4561. * satisfied
  4562. */
  4563. required_kernelcore -= min(required_kernelcore,
  4564. size_pages);
  4565. kernelcore_remaining -= size_pages;
  4566. if (!kernelcore_remaining)
  4567. break;
  4568. }
  4569. }
  4570. /*
  4571. * If there is still required_kernelcore, we do another pass with one
  4572. * less node in the count. This will push zone_movable_pfn[nid] further
  4573. * along on the nodes that still have memory until kernelcore is
  4574. * satisfied
  4575. */
  4576. usable_nodes--;
  4577. if (usable_nodes && required_kernelcore > usable_nodes)
  4578. goto restart;
  4579. out2:
  4580. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4581. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4582. zone_movable_pfn[nid] =
  4583. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4584. out:
  4585. /* restore the node_state */
  4586. node_states[N_MEMORY] = saved_node_state;
  4587. }
  4588. /* Any regular or high memory on that node ? */
  4589. static void check_for_memory(pg_data_t *pgdat, int nid)
  4590. {
  4591. enum zone_type zone_type;
  4592. if (N_MEMORY == N_NORMAL_MEMORY)
  4593. return;
  4594. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  4595. struct zone *zone = &pgdat->node_zones[zone_type];
  4596. if (populated_zone(zone)) {
  4597. node_set_state(nid, N_HIGH_MEMORY);
  4598. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  4599. zone_type <= ZONE_NORMAL)
  4600. node_set_state(nid, N_NORMAL_MEMORY);
  4601. break;
  4602. }
  4603. }
  4604. }
  4605. /**
  4606. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4607. * @max_zone_pfn: an array of max PFNs for each zone
  4608. *
  4609. * This will call free_area_init_node() for each active node in the system.
  4610. * Using the page ranges provided by memblock_set_node(), the size of each
  4611. * zone in each node and their holes is calculated. If the maximum PFN
  4612. * between two adjacent zones match, it is assumed that the zone is empty.
  4613. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4614. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4615. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4616. * at arch_max_dma_pfn.
  4617. */
  4618. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4619. {
  4620. unsigned long start_pfn, end_pfn;
  4621. int i, nid;
  4622. /* Record where the zone boundaries are */
  4623. memset(arch_zone_lowest_possible_pfn, 0,
  4624. sizeof(arch_zone_lowest_possible_pfn));
  4625. memset(arch_zone_highest_possible_pfn, 0,
  4626. sizeof(arch_zone_highest_possible_pfn));
  4627. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4628. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4629. for (i = 1; i < MAX_NR_ZONES; i++) {
  4630. if (i == ZONE_MOVABLE)
  4631. continue;
  4632. arch_zone_lowest_possible_pfn[i] =
  4633. arch_zone_highest_possible_pfn[i-1];
  4634. arch_zone_highest_possible_pfn[i] =
  4635. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4636. }
  4637. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4638. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4639. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4640. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4641. find_zone_movable_pfns_for_nodes();
  4642. /* Print out the zone ranges */
  4643. printk("Zone ranges:\n");
  4644. for (i = 0; i < MAX_NR_ZONES; i++) {
  4645. if (i == ZONE_MOVABLE)
  4646. continue;
  4647. printk(KERN_CONT " %-8s ", zone_names[i]);
  4648. if (arch_zone_lowest_possible_pfn[i] ==
  4649. arch_zone_highest_possible_pfn[i])
  4650. printk(KERN_CONT "empty\n");
  4651. else
  4652. printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
  4653. arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
  4654. (arch_zone_highest_possible_pfn[i]
  4655. << PAGE_SHIFT) - 1);
  4656. }
  4657. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4658. printk("Movable zone start for each node\n");
  4659. for (i = 0; i < MAX_NUMNODES; i++) {
  4660. if (zone_movable_pfn[i])
  4661. printk(" Node %d: %#010lx\n", i,
  4662. zone_movable_pfn[i] << PAGE_SHIFT);
  4663. }
  4664. /* Print out the early node map */
  4665. printk("Early memory node ranges\n");
  4666. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4667. printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
  4668. start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
  4669. /* Initialise every node */
  4670. mminit_verify_pageflags_layout();
  4671. setup_nr_node_ids();
  4672. for_each_online_node(nid) {
  4673. pg_data_t *pgdat = NODE_DATA(nid);
  4674. free_area_init_node(nid, NULL,
  4675. find_min_pfn_for_node(nid), NULL);
  4676. /* Any memory on that node */
  4677. if (pgdat->node_present_pages)
  4678. node_set_state(nid, N_MEMORY);
  4679. check_for_memory(pgdat, nid);
  4680. }
  4681. }
  4682. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4683. {
  4684. unsigned long long coremem;
  4685. if (!p)
  4686. return -EINVAL;
  4687. coremem = memparse(p, &p);
  4688. *core = coremem >> PAGE_SHIFT;
  4689. /* Paranoid check that UL is enough for the coremem value */
  4690. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4691. return 0;
  4692. }
  4693. /*
  4694. * kernelcore=size sets the amount of memory for use for allocations that
  4695. * cannot be reclaimed or migrated.
  4696. */
  4697. static int __init cmdline_parse_kernelcore(char *p)
  4698. {
  4699. return cmdline_parse_core(p, &required_kernelcore);
  4700. }
  4701. /*
  4702. * movablecore=size sets the amount of memory for use for allocations that
  4703. * can be reclaimed or migrated.
  4704. */
  4705. static int __init cmdline_parse_movablecore(char *p)
  4706. {
  4707. return cmdline_parse_core(p, &required_movablecore);
  4708. }
  4709. early_param("kernelcore", cmdline_parse_kernelcore);
  4710. early_param("movablecore", cmdline_parse_movablecore);
  4711. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4712. void adjust_managed_page_count(struct page *page, long count)
  4713. {
  4714. spin_lock(&managed_page_count_lock);
  4715. page_zone(page)->managed_pages += count;
  4716. totalram_pages += count;
  4717. #ifdef CONFIG_HIGHMEM
  4718. if (PageHighMem(page))
  4719. totalhigh_pages += count;
  4720. #endif
  4721. spin_unlock(&managed_page_count_lock);
  4722. }
  4723. EXPORT_SYMBOL(adjust_managed_page_count);
  4724. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  4725. {
  4726. void *pos;
  4727. unsigned long pages = 0;
  4728. start = (void *)PAGE_ALIGN((unsigned long)start);
  4729. end = (void *)((unsigned long)end & PAGE_MASK);
  4730. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  4731. if ((unsigned int)poison <= 0xFF)
  4732. memset(pos, poison, PAGE_SIZE);
  4733. free_reserved_page(virt_to_page(pos));
  4734. }
  4735. if (pages && s)
  4736. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  4737. s, pages << (PAGE_SHIFT - 10), start, end);
  4738. return pages;
  4739. }
  4740. EXPORT_SYMBOL(free_reserved_area);
  4741. #ifdef CONFIG_HIGHMEM
  4742. void free_highmem_page(struct page *page)
  4743. {
  4744. __free_reserved_page(page);
  4745. totalram_pages++;
  4746. page_zone(page)->managed_pages++;
  4747. totalhigh_pages++;
  4748. }
  4749. #endif
  4750. void __init mem_init_print_info(const char *str)
  4751. {
  4752. unsigned long physpages, codesize, datasize, rosize, bss_size;
  4753. unsigned long init_code_size, init_data_size;
  4754. physpages = get_num_physpages();
  4755. codesize = _etext - _stext;
  4756. datasize = _edata - _sdata;
  4757. rosize = __end_rodata - __start_rodata;
  4758. bss_size = __bss_stop - __bss_start;
  4759. init_data_size = __init_end - __init_begin;
  4760. init_code_size = _einittext - _sinittext;
  4761. /*
  4762. * Detect special cases and adjust section sizes accordingly:
  4763. * 1) .init.* may be embedded into .data sections
  4764. * 2) .init.text.* may be out of [__init_begin, __init_end],
  4765. * please refer to arch/tile/kernel/vmlinux.lds.S.
  4766. * 3) .rodata.* may be embedded into .text or .data sections.
  4767. */
  4768. #define adj_init_size(start, end, size, pos, adj) \
  4769. do { \
  4770. if (start <= pos && pos < end && size > adj) \
  4771. size -= adj; \
  4772. } while (0)
  4773. adj_init_size(__init_begin, __init_end, init_data_size,
  4774. _sinittext, init_code_size);
  4775. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  4776. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  4777. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  4778. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  4779. #undef adj_init_size
  4780. printk("Memory: %luK/%luK available "
  4781. "(%luK kernel code, %luK rwdata, %luK rodata, "
  4782. "%luK init, %luK bss, %luK reserved"
  4783. #ifdef CONFIG_HIGHMEM
  4784. ", %luK highmem"
  4785. #endif
  4786. "%s%s)\n",
  4787. nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
  4788. codesize >> 10, datasize >> 10, rosize >> 10,
  4789. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  4790. (physpages - totalram_pages) << (PAGE_SHIFT-10),
  4791. #ifdef CONFIG_HIGHMEM
  4792. totalhigh_pages << (PAGE_SHIFT-10),
  4793. #endif
  4794. str ? ", " : "", str ? str : "");
  4795. }
  4796. /**
  4797. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4798. * @new_dma_reserve: The number of pages to mark reserved
  4799. *
  4800. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4801. * In the DMA zone, a significant percentage may be consumed by kernel image
  4802. * and other unfreeable allocations which can skew the watermarks badly. This
  4803. * function may optionally be used to account for unfreeable pages in the
  4804. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4805. * smaller per-cpu batchsize.
  4806. */
  4807. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4808. {
  4809. dma_reserve = new_dma_reserve;
  4810. }
  4811. void __init free_area_init(unsigned long *zones_size)
  4812. {
  4813. free_area_init_node(0, zones_size,
  4814. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4815. }
  4816. static int page_alloc_cpu_notify(struct notifier_block *self,
  4817. unsigned long action, void *hcpu)
  4818. {
  4819. int cpu = (unsigned long)hcpu;
  4820. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4821. lru_add_drain_cpu(cpu);
  4822. drain_pages(cpu);
  4823. /*
  4824. * Spill the event counters of the dead processor
  4825. * into the current processors event counters.
  4826. * This artificially elevates the count of the current
  4827. * processor.
  4828. */
  4829. vm_events_fold_cpu(cpu);
  4830. /*
  4831. * Zero the differential counters of the dead processor
  4832. * so that the vm statistics are consistent.
  4833. *
  4834. * This is only okay since the processor is dead and cannot
  4835. * race with what we are doing.
  4836. */
  4837. cpu_vm_stats_fold(cpu);
  4838. }
  4839. return NOTIFY_OK;
  4840. }
  4841. void __init page_alloc_init(void)
  4842. {
  4843. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4844. }
  4845. /*
  4846. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4847. * or min_free_kbytes changes.
  4848. */
  4849. static void calculate_totalreserve_pages(void)
  4850. {
  4851. struct pglist_data *pgdat;
  4852. unsigned long reserve_pages = 0;
  4853. enum zone_type i, j;
  4854. for_each_online_pgdat(pgdat) {
  4855. for (i = 0; i < MAX_NR_ZONES; i++) {
  4856. struct zone *zone = pgdat->node_zones + i;
  4857. unsigned long max = 0;
  4858. /* Find valid and maximum lowmem_reserve in the zone */
  4859. for (j = i; j < MAX_NR_ZONES; j++) {
  4860. if (zone->lowmem_reserve[j] > max)
  4861. max = zone->lowmem_reserve[j];
  4862. }
  4863. /* we treat the high watermark as reserved pages. */
  4864. max += high_wmark_pages(zone);
  4865. if (max > zone->managed_pages)
  4866. max = zone->managed_pages;
  4867. reserve_pages += max;
  4868. /*
  4869. * Lowmem reserves are not available to
  4870. * GFP_HIGHUSER page cache allocations and
  4871. * kswapd tries to balance zones to their high
  4872. * watermark. As a result, neither should be
  4873. * regarded as dirtyable memory, to prevent a
  4874. * situation where reclaim has to clean pages
  4875. * in order to balance the zones.
  4876. */
  4877. zone->dirty_balance_reserve = max;
  4878. }
  4879. }
  4880. dirty_balance_reserve = reserve_pages;
  4881. totalreserve_pages = reserve_pages;
  4882. }
  4883. /*
  4884. * setup_per_zone_lowmem_reserve - called whenever
  4885. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4886. * has a correct pages reserved value, so an adequate number of
  4887. * pages are left in the zone after a successful __alloc_pages().
  4888. */
  4889. static void setup_per_zone_lowmem_reserve(void)
  4890. {
  4891. struct pglist_data *pgdat;
  4892. enum zone_type j, idx;
  4893. for_each_online_pgdat(pgdat) {
  4894. for (j = 0; j < MAX_NR_ZONES; j++) {
  4895. struct zone *zone = pgdat->node_zones + j;
  4896. unsigned long managed_pages = zone->managed_pages;
  4897. zone->lowmem_reserve[j] = 0;
  4898. idx = j;
  4899. while (idx) {
  4900. struct zone *lower_zone;
  4901. idx--;
  4902. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4903. sysctl_lowmem_reserve_ratio[idx] = 1;
  4904. lower_zone = pgdat->node_zones + idx;
  4905. lower_zone->lowmem_reserve[j] = managed_pages /
  4906. sysctl_lowmem_reserve_ratio[idx];
  4907. managed_pages += lower_zone->managed_pages;
  4908. }
  4909. }
  4910. }
  4911. /* update totalreserve_pages */
  4912. calculate_totalreserve_pages();
  4913. }
  4914. static void __setup_per_zone_wmarks(void)
  4915. {
  4916. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4917. unsigned long lowmem_pages = 0;
  4918. struct zone *zone;
  4919. unsigned long flags;
  4920. /* Calculate total number of !ZONE_HIGHMEM pages */
  4921. for_each_zone(zone) {
  4922. if (!is_highmem(zone))
  4923. lowmem_pages += zone->managed_pages;
  4924. }
  4925. for_each_zone(zone) {
  4926. u64 tmp;
  4927. spin_lock_irqsave(&zone->lock, flags);
  4928. tmp = (u64)pages_min * zone->managed_pages;
  4929. do_div(tmp, lowmem_pages);
  4930. if (is_highmem(zone)) {
  4931. /*
  4932. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4933. * need highmem pages, so cap pages_min to a small
  4934. * value here.
  4935. *
  4936. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4937. * deltas controls asynch page reclaim, and so should
  4938. * not be capped for highmem.
  4939. */
  4940. unsigned long min_pages;
  4941. min_pages = zone->managed_pages / 1024;
  4942. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  4943. zone->watermark[WMARK_MIN] = min_pages;
  4944. } else {
  4945. /*
  4946. * If it's a lowmem zone, reserve a number of pages
  4947. * proportionate to the zone's size.
  4948. */
  4949. zone->watermark[WMARK_MIN] = tmp;
  4950. }
  4951. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4952. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4953. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  4954. high_wmark_pages(zone) -
  4955. low_wmark_pages(zone) -
  4956. zone_page_state(zone, NR_ALLOC_BATCH));
  4957. setup_zone_migrate_reserve(zone);
  4958. spin_unlock_irqrestore(&zone->lock, flags);
  4959. }
  4960. /* update totalreserve_pages */
  4961. calculate_totalreserve_pages();
  4962. }
  4963. /**
  4964. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4965. * or when memory is hot-{added|removed}
  4966. *
  4967. * Ensures that the watermark[min,low,high] values for each zone are set
  4968. * correctly with respect to min_free_kbytes.
  4969. */
  4970. void setup_per_zone_wmarks(void)
  4971. {
  4972. mutex_lock(&zonelists_mutex);
  4973. __setup_per_zone_wmarks();
  4974. mutex_unlock(&zonelists_mutex);
  4975. }
  4976. /*
  4977. * The inactive anon list should be small enough that the VM never has to
  4978. * do too much work, but large enough that each inactive page has a chance
  4979. * to be referenced again before it is swapped out.
  4980. *
  4981. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4982. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4983. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4984. * the anonymous pages are kept on the inactive list.
  4985. *
  4986. * total target max
  4987. * memory ratio inactive anon
  4988. * -------------------------------------
  4989. * 10MB 1 5MB
  4990. * 100MB 1 50MB
  4991. * 1GB 3 250MB
  4992. * 10GB 10 0.9GB
  4993. * 100GB 31 3GB
  4994. * 1TB 101 10GB
  4995. * 10TB 320 32GB
  4996. */
  4997. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4998. {
  4999. unsigned int gb, ratio;
  5000. /* Zone size in gigabytes */
  5001. gb = zone->managed_pages >> (30 - PAGE_SHIFT);
  5002. if (gb)
  5003. ratio = int_sqrt(10 * gb);
  5004. else
  5005. ratio = 1;
  5006. zone->inactive_ratio = ratio;
  5007. }
  5008. static void __meminit setup_per_zone_inactive_ratio(void)
  5009. {
  5010. struct zone *zone;
  5011. for_each_zone(zone)
  5012. calculate_zone_inactive_ratio(zone);
  5013. }
  5014. /*
  5015. * Initialise min_free_kbytes.
  5016. *
  5017. * For small machines we want it small (128k min). For large machines
  5018. * we want it large (64MB max). But it is not linear, because network
  5019. * bandwidth does not increase linearly with machine size. We use
  5020. *
  5021. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5022. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5023. *
  5024. * which yields
  5025. *
  5026. * 16MB: 512k
  5027. * 32MB: 724k
  5028. * 64MB: 1024k
  5029. * 128MB: 1448k
  5030. * 256MB: 2048k
  5031. * 512MB: 2896k
  5032. * 1024MB: 4096k
  5033. * 2048MB: 5792k
  5034. * 4096MB: 8192k
  5035. * 8192MB: 11584k
  5036. * 16384MB: 16384k
  5037. */
  5038. int __meminit init_per_zone_wmark_min(void)
  5039. {
  5040. unsigned long lowmem_kbytes;
  5041. int new_min_free_kbytes;
  5042. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5043. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5044. if (new_min_free_kbytes > user_min_free_kbytes) {
  5045. min_free_kbytes = new_min_free_kbytes;
  5046. if (min_free_kbytes < 128)
  5047. min_free_kbytes = 128;
  5048. if (min_free_kbytes > 65536)
  5049. min_free_kbytes = 65536;
  5050. } else {
  5051. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5052. new_min_free_kbytes, user_min_free_kbytes);
  5053. }
  5054. setup_per_zone_wmarks();
  5055. refresh_zone_stat_thresholds();
  5056. setup_per_zone_lowmem_reserve();
  5057. setup_per_zone_inactive_ratio();
  5058. return 0;
  5059. }
  5060. module_init(init_per_zone_wmark_min)
  5061. /*
  5062. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5063. * that we can call two helper functions whenever min_free_kbytes
  5064. * changes.
  5065. */
  5066. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5067. void __user *buffer, size_t *length, loff_t *ppos)
  5068. {
  5069. int rc;
  5070. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5071. if (rc)
  5072. return rc;
  5073. if (write) {
  5074. user_min_free_kbytes = min_free_kbytes;
  5075. setup_per_zone_wmarks();
  5076. }
  5077. return 0;
  5078. }
  5079. #ifdef CONFIG_NUMA
  5080. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5081. void __user *buffer, size_t *length, loff_t *ppos)
  5082. {
  5083. struct zone *zone;
  5084. int rc;
  5085. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5086. if (rc)
  5087. return rc;
  5088. for_each_zone(zone)
  5089. zone->min_unmapped_pages = (zone->managed_pages *
  5090. sysctl_min_unmapped_ratio) / 100;
  5091. return 0;
  5092. }
  5093. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  5094. void __user *buffer, size_t *length, loff_t *ppos)
  5095. {
  5096. struct zone *zone;
  5097. int rc;
  5098. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5099. if (rc)
  5100. return rc;
  5101. for_each_zone(zone)
  5102. zone->min_slab_pages = (zone->managed_pages *
  5103. sysctl_min_slab_ratio) / 100;
  5104. return 0;
  5105. }
  5106. #endif
  5107. /*
  5108. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  5109. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  5110. * whenever sysctl_lowmem_reserve_ratio changes.
  5111. *
  5112. * The reserve ratio obviously has absolutely no relation with the
  5113. * minimum watermarks. The lowmem reserve ratio can only make sense
  5114. * if in function of the boot time zone sizes.
  5115. */
  5116. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  5117. void __user *buffer, size_t *length, loff_t *ppos)
  5118. {
  5119. proc_dointvec_minmax(table, write, buffer, length, ppos);
  5120. setup_per_zone_lowmem_reserve();
  5121. return 0;
  5122. }
  5123. /*
  5124. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  5125. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  5126. * pagelist can have before it gets flushed back to buddy allocator.
  5127. */
  5128. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  5129. void __user *buffer, size_t *length, loff_t *ppos)
  5130. {
  5131. struct zone *zone;
  5132. int old_percpu_pagelist_fraction;
  5133. int ret;
  5134. mutex_lock(&pcp_batch_high_lock);
  5135. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  5136. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5137. if (!write || ret < 0)
  5138. goto out;
  5139. /* Sanity checking to avoid pcp imbalance */
  5140. if (percpu_pagelist_fraction &&
  5141. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  5142. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  5143. ret = -EINVAL;
  5144. goto out;
  5145. }
  5146. /* No change? */
  5147. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  5148. goto out;
  5149. for_each_populated_zone(zone) {
  5150. unsigned int cpu;
  5151. for_each_possible_cpu(cpu)
  5152. pageset_set_high_and_batch(zone,
  5153. per_cpu_ptr(zone->pageset, cpu));
  5154. }
  5155. out:
  5156. mutex_unlock(&pcp_batch_high_lock);
  5157. return ret;
  5158. }
  5159. int hashdist = HASHDIST_DEFAULT;
  5160. #ifdef CONFIG_NUMA
  5161. static int __init set_hashdist(char *str)
  5162. {
  5163. if (!str)
  5164. return 0;
  5165. hashdist = simple_strtoul(str, &str, 0);
  5166. return 1;
  5167. }
  5168. __setup("hashdist=", set_hashdist);
  5169. #endif
  5170. /*
  5171. * allocate a large system hash table from bootmem
  5172. * - it is assumed that the hash table must contain an exact power-of-2
  5173. * quantity of entries
  5174. * - limit is the number of hash buckets, not the total allocation size
  5175. */
  5176. void *__init alloc_large_system_hash(const char *tablename,
  5177. unsigned long bucketsize,
  5178. unsigned long numentries,
  5179. int scale,
  5180. int flags,
  5181. unsigned int *_hash_shift,
  5182. unsigned int *_hash_mask,
  5183. unsigned long low_limit,
  5184. unsigned long high_limit)
  5185. {
  5186. unsigned long long max = high_limit;
  5187. unsigned long log2qty, size;
  5188. void *table = NULL;
  5189. /* allow the kernel cmdline to have a say */
  5190. if (!numentries) {
  5191. /* round applicable memory size up to nearest megabyte */
  5192. numentries = nr_kernel_pages;
  5193. /* It isn't necessary when PAGE_SIZE >= 1MB */
  5194. if (PAGE_SHIFT < 20)
  5195. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  5196. /* limit to 1 bucket per 2^scale bytes of low memory */
  5197. if (scale > PAGE_SHIFT)
  5198. numentries >>= (scale - PAGE_SHIFT);
  5199. else
  5200. numentries <<= (PAGE_SHIFT - scale);
  5201. /* Make sure we've got at least a 0-order allocation.. */
  5202. if (unlikely(flags & HASH_SMALL)) {
  5203. /* Makes no sense without HASH_EARLY */
  5204. WARN_ON(!(flags & HASH_EARLY));
  5205. if (!(numentries >> *_hash_shift)) {
  5206. numentries = 1UL << *_hash_shift;
  5207. BUG_ON(!numentries);
  5208. }
  5209. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  5210. numentries = PAGE_SIZE / bucketsize;
  5211. }
  5212. numentries = roundup_pow_of_two(numentries);
  5213. /* limit allocation size to 1/16 total memory by default */
  5214. if (max == 0) {
  5215. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  5216. do_div(max, bucketsize);
  5217. }
  5218. max = min(max, 0x80000000ULL);
  5219. if (numentries < low_limit)
  5220. numentries = low_limit;
  5221. if (numentries > max)
  5222. numentries = max;
  5223. log2qty = ilog2(numentries);
  5224. do {
  5225. size = bucketsize << log2qty;
  5226. if (flags & HASH_EARLY)
  5227. table = memblock_virt_alloc_nopanic(size, 0);
  5228. else if (hashdist)
  5229. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  5230. else {
  5231. /*
  5232. * If bucketsize is not a power-of-two, we may free
  5233. * some pages at the end of hash table which
  5234. * alloc_pages_exact() automatically does
  5235. */
  5236. if (get_order(size) < MAX_ORDER) {
  5237. table = alloc_pages_exact(size, GFP_ATOMIC);
  5238. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  5239. }
  5240. }
  5241. } while (!table && size > PAGE_SIZE && --log2qty);
  5242. if (!table)
  5243. panic("Failed to allocate %s hash table\n", tablename);
  5244. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  5245. tablename,
  5246. (1UL << log2qty),
  5247. ilog2(size) - PAGE_SHIFT,
  5248. size);
  5249. if (_hash_shift)
  5250. *_hash_shift = log2qty;
  5251. if (_hash_mask)
  5252. *_hash_mask = (1 << log2qty) - 1;
  5253. return table;
  5254. }
  5255. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  5256. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  5257. unsigned long pfn)
  5258. {
  5259. #ifdef CONFIG_SPARSEMEM
  5260. return __pfn_to_section(pfn)->pageblock_flags;
  5261. #else
  5262. return zone->pageblock_flags;
  5263. #endif /* CONFIG_SPARSEMEM */
  5264. }
  5265. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  5266. {
  5267. #ifdef CONFIG_SPARSEMEM
  5268. pfn &= (PAGES_PER_SECTION-1);
  5269. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5270. #else
  5271. pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
  5272. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  5273. #endif /* CONFIG_SPARSEMEM */
  5274. }
  5275. /**
  5276. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  5277. * @page: The page within the block of interest
  5278. * @pfn: The target page frame number
  5279. * @end_bitidx: The last bit of interest to retrieve
  5280. * @mask: mask of bits that the caller is interested in
  5281. *
  5282. * Return: pageblock_bits flags
  5283. */
  5284. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  5285. unsigned long end_bitidx,
  5286. unsigned long mask)
  5287. {
  5288. struct zone *zone;
  5289. unsigned long *bitmap;
  5290. unsigned long bitidx, word_bitidx;
  5291. unsigned long word;
  5292. zone = page_zone(page);
  5293. bitmap = get_pageblock_bitmap(zone, pfn);
  5294. bitidx = pfn_to_bitidx(zone, pfn);
  5295. word_bitidx = bitidx / BITS_PER_LONG;
  5296. bitidx &= (BITS_PER_LONG-1);
  5297. word = bitmap[word_bitidx];
  5298. bitidx += end_bitidx;
  5299. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  5300. }
  5301. /**
  5302. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  5303. * @page: The page within the block of interest
  5304. * @flags: The flags to set
  5305. * @pfn: The target page frame number
  5306. * @end_bitidx: The last bit of interest
  5307. * @mask: mask of bits that the caller is interested in
  5308. */
  5309. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  5310. unsigned long pfn,
  5311. unsigned long end_bitidx,
  5312. unsigned long mask)
  5313. {
  5314. struct zone *zone;
  5315. unsigned long *bitmap;
  5316. unsigned long bitidx, word_bitidx;
  5317. unsigned long old_word, word;
  5318. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  5319. zone = page_zone(page);
  5320. bitmap = get_pageblock_bitmap(zone, pfn);
  5321. bitidx = pfn_to_bitidx(zone, pfn);
  5322. word_bitidx = bitidx / BITS_PER_LONG;
  5323. bitidx &= (BITS_PER_LONG-1);
  5324. VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
  5325. bitidx += end_bitidx;
  5326. mask <<= (BITS_PER_LONG - bitidx - 1);
  5327. flags <<= (BITS_PER_LONG - bitidx - 1);
  5328. word = ACCESS_ONCE(bitmap[word_bitidx]);
  5329. for (;;) {
  5330. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  5331. if (word == old_word)
  5332. break;
  5333. word = old_word;
  5334. }
  5335. }
  5336. /*
  5337. * This function checks whether pageblock includes unmovable pages or not.
  5338. * If @count is not zero, it is okay to include less @count unmovable pages
  5339. *
  5340. * PageLRU check without isolation or lru_lock could race so that
  5341. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  5342. * expect this function should be exact.
  5343. */
  5344. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  5345. bool skip_hwpoisoned_pages)
  5346. {
  5347. unsigned long pfn, iter, found;
  5348. int mt;
  5349. /*
  5350. * For avoiding noise data, lru_add_drain_all() should be called
  5351. * If ZONE_MOVABLE, the zone never contains unmovable pages
  5352. */
  5353. if (zone_idx(zone) == ZONE_MOVABLE)
  5354. return false;
  5355. mt = get_pageblock_migratetype(page);
  5356. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  5357. return false;
  5358. pfn = page_to_pfn(page);
  5359. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  5360. unsigned long check = pfn + iter;
  5361. if (!pfn_valid_within(check))
  5362. continue;
  5363. page = pfn_to_page(check);
  5364. /*
  5365. * Hugepages are not in LRU lists, but they're movable.
  5366. * We need not scan over tail pages bacause we don't
  5367. * handle each tail page individually in migration.
  5368. */
  5369. if (PageHuge(page)) {
  5370. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  5371. continue;
  5372. }
  5373. /*
  5374. * We can't use page_count without pin a page
  5375. * because another CPU can free compound page.
  5376. * This check already skips compound tails of THP
  5377. * because their page->_count is zero at all time.
  5378. */
  5379. if (!atomic_read(&page->_count)) {
  5380. if (PageBuddy(page))
  5381. iter += (1 << page_order(page)) - 1;
  5382. continue;
  5383. }
  5384. /*
  5385. * The HWPoisoned page may be not in buddy system, and
  5386. * page_count() is not 0.
  5387. */
  5388. if (skip_hwpoisoned_pages && PageHWPoison(page))
  5389. continue;
  5390. if (!PageLRU(page))
  5391. found++;
  5392. /*
  5393. * If there are RECLAIMABLE pages, we need to check it.
  5394. * But now, memory offline itself doesn't call shrink_slab()
  5395. * and it still to be fixed.
  5396. */
  5397. /*
  5398. * If the page is not RAM, page_count()should be 0.
  5399. * we don't need more check. This is an _used_ not-movable page.
  5400. *
  5401. * The problematic thing here is PG_reserved pages. PG_reserved
  5402. * is set to both of a memory hole page and a _used_ kernel
  5403. * page at boot.
  5404. */
  5405. if (found > count)
  5406. return true;
  5407. }
  5408. return false;
  5409. }
  5410. bool is_pageblock_removable_nolock(struct page *page)
  5411. {
  5412. struct zone *zone;
  5413. unsigned long pfn;
  5414. /*
  5415. * We have to be careful here because we are iterating over memory
  5416. * sections which are not zone aware so we might end up outside of
  5417. * the zone but still within the section.
  5418. * We have to take care about the node as well. If the node is offline
  5419. * its NODE_DATA will be NULL - see page_zone.
  5420. */
  5421. if (!node_online(page_to_nid(page)))
  5422. return false;
  5423. zone = page_zone(page);
  5424. pfn = page_to_pfn(page);
  5425. if (!zone_spans_pfn(zone, pfn))
  5426. return false;
  5427. return !has_unmovable_pages(zone, page, 0, true);
  5428. }
  5429. #ifdef CONFIG_CMA
  5430. static unsigned long pfn_max_align_down(unsigned long pfn)
  5431. {
  5432. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5433. pageblock_nr_pages) - 1);
  5434. }
  5435. static unsigned long pfn_max_align_up(unsigned long pfn)
  5436. {
  5437. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  5438. pageblock_nr_pages));
  5439. }
  5440. /* [start, end) must belong to a single zone. */
  5441. static int __alloc_contig_migrate_range(struct compact_control *cc,
  5442. unsigned long start, unsigned long end)
  5443. {
  5444. /* This function is based on compact_zone() from compaction.c. */
  5445. unsigned long nr_reclaimed;
  5446. unsigned long pfn = start;
  5447. unsigned int tries = 0;
  5448. int ret = 0;
  5449. migrate_prep();
  5450. while (pfn < end || !list_empty(&cc->migratepages)) {
  5451. if (fatal_signal_pending(current)) {
  5452. ret = -EINTR;
  5453. break;
  5454. }
  5455. if (list_empty(&cc->migratepages)) {
  5456. cc->nr_migratepages = 0;
  5457. pfn = isolate_migratepages_range(cc->zone, cc,
  5458. pfn, end, true);
  5459. if (!pfn) {
  5460. ret = -EINTR;
  5461. break;
  5462. }
  5463. tries = 0;
  5464. } else if (++tries == 5) {
  5465. ret = ret < 0 ? ret : -EBUSY;
  5466. break;
  5467. }
  5468. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  5469. &cc->migratepages);
  5470. cc->nr_migratepages -= nr_reclaimed;
  5471. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  5472. NULL, 0, cc->mode, MR_CMA);
  5473. }
  5474. if (ret < 0) {
  5475. putback_movable_pages(&cc->migratepages);
  5476. return ret;
  5477. }
  5478. return 0;
  5479. }
  5480. /**
  5481. * alloc_contig_range() -- tries to allocate given range of pages
  5482. * @start: start PFN to allocate
  5483. * @end: one-past-the-last PFN to allocate
  5484. * @migratetype: migratetype of the underlaying pageblocks (either
  5485. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  5486. * in range must have the same migratetype and it must
  5487. * be either of the two.
  5488. *
  5489. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  5490. * aligned, however it's the caller's responsibility to guarantee that
  5491. * we are the only thread that changes migrate type of pageblocks the
  5492. * pages fall in.
  5493. *
  5494. * The PFN range must belong to a single zone.
  5495. *
  5496. * Returns zero on success or negative error code. On success all
  5497. * pages which PFN is in [start, end) are allocated for the caller and
  5498. * need to be freed with free_contig_range().
  5499. */
  5500. int alloc_contig_range(unsigned long start, unsigned long end,
  5501. unsigned migratetype)
  5502. {
  5503. unsigned long outer_start, outer_end;
  5504. int ret = 0, order;
  5505. struct compact_control cc = {
  5506. .nr_migratepages = 0,
  5507. .order = -1,
  5508. .zone = page_zone(pfn_to_page(start)),
  5509. .mode = MIGRATE_SYNC,
  5510. .ignore_skip_hint = true,
  5511. };
  5512. INIT_LIST_HEAD(&cc.migratepages);
  5513. /*
  5514. * What we do here is we mark all pageblocks in range as
  5515. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  5516. * have different sizes, and due to the way page allocator
  5517. * work, we align the range to biggest of the two pages so
  5518. * that page allocator won't try to merge buddies from
  5519. * different pageblocks and change MIGRATE_ISOLATE to some
  5520. * other migration type.
  5521. *
  5522. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  5523. * migrate the pages from an unaligned range (ie. pages that
  5524. * we are interested in). This will put all the pages in
  5525. * range back to page allocator as MIGRATE_ISOLATE.
  5526. *
  5527. * When this is done, we take the pages in range from page
  5528. * allocator removing them from the buddy system. This way
  5529. * page allocator will never consider using them.
  5530. *
  5531. * This lets us mark the pageblocks back as
  5532. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  5533. * aligned range but not in the unaligned, original range are
  5534. * put back to page allocator so that buddy can use them.
  5535. */
  5536. ret = start_isolate_page_range(pfn_max_align_down(start),
  5537. pfn_max_align_up(end), migratetype,
  5538. false);
  5539. if (ret)
  5540. return ret;
  5541. ret = __alloc_contig_migrate_range(&cc, start, end);
  5542. if (ret)
  5543. goto done;
  5544. /*
  5545. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  5546. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  5547. * more, all pages in [start, end) are free in page allocator.
  5548. * What we are going to do is to allocate all pages from
  5549. * [start, end) (that is remove them from page allocator).
  5550. *
  5551. * The only problem is that pages at the beginning and at the
  5552. * end of interesting range may be not aligned with pages that
  5553. * page allocator holds, ie. they can be part of higher order
  5554. * pages. Because of this, we reserve the bigger range and
  5555. * once this is done free the pages we are not interested in.
  5556. *
  5557. * We don't have to hold zone->lock here because the pages are
  5558. * isolated thus they won't get removed from buddy.
  5559. */
  5560. lru_add_drain_all();
  5561. drain_all_pages();
  5562. order = 0;
  5563. outer_start = start;
  5564. while (!PageBuddy(pfn_to_page(outer_start))) {
  5565. if (++order >= MAX_ORDER) {
  5566. ret = -EBUSY;
  5567. goto done;
  5568. }
  5569. outer_start &= ~0UL << order;
  5570. }
  5571. /* Make sure the range is really isolated. */
  5572. if (test_pages_isolated(outer_start, end, false)) {
  5573. pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
  5574. outer_start, end);
  5575. ret = -EBUSY;
  5576. goto done;
  5577. }
  5578. /* Grab isolated pages from freelists. */
  5579. outer_end = isolate_freepages_range(&cc, outer_start, end);
  5580. if (!outer_end) {
  5581. ret = -EBUSY;
  5582. goto done;
  5583. }
  5584. /* Free head and tail (if any) */
  5585. if (start != outer_start)
  5586. free_contig_range(outer_start, start - outer_start);
  5587. if (end != outer_end)
  5588. free_contig_range(end, outer_end - end);
  5589. done:
  5590. undo_isolate_page_range(pfn_max_align_down(start),
  5591. pfn_max_align_up(end), migratetype);
  5592. return ret;
  5593. }
  5594. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  5595. {
  5596. unsigned int count = 0;
  5597. for (; nr_pages--; pfn++) {
  5598. struct page *page = pfn_to_page(pfn);
  5599. count += page_count(page) != 1;
  5600. __free_page(page);
  5601. }
  5602. WARN(count != 0, "%d pages are still in use!\n", count);
  5603. }
  5604. #endif
  5605. #ifdef CONFIG_MEMORY_HOTPLUG
  5606. /*
  5607. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  5608. * page high values need to be recalulated.
  5609. */
  5610. void __meminit zone_pcp_update(struct zone *zone)
  5611. {
  5612. unsigned cpu;
  5613. mutex_lock(&pcp_batch_high_lock);
  5614. for_each_possible_cpu(cpu)
  5615. pageset_set_high_and_batch(zone,
  5616. per_cpu_ptr(zone->pageset, cpu));
  5617. mutex_unlock(&pcp_batch_high_lock);
  5618. }
  5619. #endif
  5620. void zone_pcp_reset(struct zone *zone)
  5621. {
  5622. unsigned long flags;
  5623. int cpu;
  5624. struct per_cpu_pageset *pset;
  5625. /* avoid races with drain_pages() */
  5626. local_irq_save(flags);
  5627. if (zone->pageset != &boot_pageset) {
  5628. for_each_online_cpu(cpu) {
  5629. pset = per_cpu_ptr(zone->pageset, cpu);
  5630. drain_zonestat(zone, pset);
  5631. }
  5632. free_percpu(zone->pageset);
  5633. zone->pageset = &boot_pageset;
  5634. }
  5635. local_irq_restore(flags);
  5636. }
  5637. #ifdef CONFIG_MEMORY_HOTREMOVE
  5638. /*
  5639. * All pages in the range must be isolated before calling this.
  5640. */
  5641. void
  5642. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  5643. {
  5644. struct page *page;
  5645. struct zone *zone;
  5646. unsigned int order, i;
  5647. unsigned long pfn;
  5648. unsigned long flags;
  5649. /* find the first valid pfn */
  5650. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  5651. if (pfn_valid(pfn))
  5652. break;
  5653. if (pfn == end_pfn)
  5654. return;
  5655. zone = page_zone(pfn_to_page(pfn));
  5656. spin_lock_irqsave(&zone->lock, flags);
  5657. pfn = start_pfn;
  5658. while (pfn < end_pfn) {
  5659. if (!pfn_valid(pfn)) {
  5660. pfn++;
  5661. continue;
  5662. }
  5663. page = pfn_to_page(pfn);
  5664. /*
  5665. * The HWPoisoned page may be not in buddy system, and
  5666. * page_count() is not 0.
  5667. */
  5668. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  5669. pfn++;
  5670. SetPageReserved(page);
  5671. continue;
  5672. }
  5673. BUG_ON(page_count(page));
  5674. BUG_ON(!PageBuddy(page));
  5675. order = page_order(page);
  5676. #ifdef CONFIG_DEBUG_VM
  5677. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  5678. pfn, 1 << order, end_pfn);
  5679. #endif
  5680. list_del(&page->lru);
  5681. rmv_page_order(page);
  5682. zone->free_area[order].nr_free--;
  5683. for (i = 0; i < (1 << order); i++)
  5684. SetPageReserved((page+i));
  5685. pfn += (1 << order);
  5686. }
  5687. spin_unlock_irqrestore(&zone->lock, flags);
  5688. }
  5689. #endif
  5690. #ifdef CONFIG_MEMORY_FAILURE
  5691. bool is_free_buddy_page(struct page *page)
  5692. {
  5693. struct zone *zone = page_zone(page);
  5694. unsigned long pfn = page_to_pfn(page);
  5695. unsigned long flags;
  5696. unsigned int order;
  5697. spin_lock_irqsave(&zone->lock, flags);
  5698. for (order = 0; order < MAX_ORDER; order++) {
  5699. struct page *page_head = page - (pfn & ((1 << order) - 1));
  5700. if (PageBuddy(page_head) && page_order(page_head) >= order)
  5701. break;
  5702. }
  5703. spin_unlock_irqrestore(&zone->lock, flags);
  5704. return order < MAX_ORDER;
  5705. }
  5706. #endif
  5707. static const struct trace_print_flags pageflag_names[] = {
  5708. {1UL << PG_locked, "locked" },
  5709. {1UL << PG_error, "error" },
  5710. {1UL << PG_referenced, "referenced" },
  5711. {1UL << PG_uptodate, "uptodate" },
  5712. {1UL << PG_dirty, "dirty" },
  5713. {1UL << PG_lru, "lru" },
  5714. {1UL << PG_active, "active" },
  5715. {1UL << PG_slab, "slab" },
  5716. {1UL << PG_owner_priv_1, "owner_priv_1" },
  5717. {1UL << PG_arch_1, "arch_1" },
  5718. {1UL << PG_reserved, "reserved" },
  5719. {1UL << PG_private, "private" },
  5720. {1UL << PG_private_2, "private_2" },
  5721. {1UL << PG_writeback, "writeback" },
  5722. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  5723. {1UL << PG_head, "head" },
  5724. {1UL << PG_tail, "tail" },
  5725. #else
  5726. {1UL << PG_compound, "compound" },
  5727. #endif
  5728. {1UL << PG_swapcache, "swapcache" },
  5729. {1UL << PG_mappedtodisk, "mappedtodisk" },
  5730. {1UL << PG_reclaim, "reclaim" },
  5731. {1UL << PG_swapbacked, "swapbacked" },
  5732. {1UL << PG_unevictable, "unevictable" },
  5733. #ifdef CONFIG_MMU
  5734. {1UL << PG_mlocked, "mlocked" },
  5735. #endif
  5736. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  5737. {1UL << PG_uncached, "uncached" },
  5738. #endif
  5739. #ifdef CONFIG_MEMORY_FAILURE
  5740. {1UL << PG_hwpoison, "hwpoison" },
  5741. #endif
  5742. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5743. {1UL << PG_compound_lock, "compound_lock" },
  5744. #endif
  5745. };
  5746. static void dump_page_flags(unsigned long flags)
  5747. {
  5748. const char *delim = "";
  5749. unsigned long mask;
  5750. int i;
  5751. BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
  5752. printk(KERN_ALERT "page flags: %#lx(", flags);
  5753. /* remove zone id */
  5754. flags &= (1UL << NR_PAGEFLAGS) - 1;
  5755. for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
  5756. mask = pageflag_names[i].mask;
  5757. if ((flags & mask) != mask)
  5758. continue;
  5759. flags &= ~mask;
  5760. printk("%s%s", delim, pageflag_names[i].name);
  5761. delim = "|";
  5762. }
  5763. /* check for left over flags */
  5764. if (flags)
  5765. printk("%s%#lx", delim, flags);
  5766. printk(")\n");
  5767. }
  5768. void dump_page_badflags(struct page *page, const char *reason,
  5769. unsigned long badflags)
  5770. {
  5771. printk(KERN_ALERT
  5772. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  5773. page, atomic_read(&page->_count), page_mapcount(page),
  5774. page->mapping, page->index);
  5775. dump_page_flags(page->flags);
  5776. if (reason)
  5777. pr_alert("page dumped because: %s\n", reason);
  5778. if (page->flags & badflags) {
  5779. pr_alert("bad because of flags:\n");
  5780. dump_page_flags(page->flags & badflags);
  5781. }
  5782. mem_cgroup_print_bad_page(page);
  5783. }
  5784. void dump_page(struct page *page, const char *reason)
  5785. {
  5786. dump_page_badflags(page, reason, 0);
  5787. }
  5788. EXPORT_SYMBOL(dump_page);