core.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028
  1. /*
  2. * linux/drivers/mmc/core/core.c
  3. *
  4. * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
  5. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
  6. * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
  7. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/completion.h>
  17. #include <linux/device.h>
  18. #include <linux/delay.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/err.h>
  21. #include <linux/leds.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/log2.h>
  24. #include <linux/regulator/consumer.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/pm_wakeup.h>
  27. #include <linux/suspend.h>
  28. #include <linux/fault-inject.h>
  29. #include <linux/random.h>
  30. #include <linux/slab.h>
  31. #include <linux/of.h>
  32. #include <linux/mmc/card.h>
  33. #include <linux/mmc/host.h>
  34. #include <linux/mmc/mmc.h>
  35. #include <linux/mmc/sd.h>
  36. #include <linux/mmc/slot-gpio.h>
  37. #define CREATE_TRACE_POINTS
  38. #include <trace/events/mmc.h>
  39. #include "core.h"
  40. #include "card.h"
  41. #include "bus.h"
  42. #include "host.h"
  43. #include "sdio_bus.h"
  44. #include "pwrseq.h"
  45. #include "mmc_ops.h"
  46. #include "sd_ops.h"
  47. #include "sdio_ops.h"
  48. /* If the device is not responding */
  49. #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
  50. /* The max erase timeout, used when host->max_busy_timeout isn't specified */
  51. #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
  52. static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  53. /*
  54. * Enabling software CRCs on the data blocks can be a significant (30%)
  55. * performance cost, and for other reasons may not always be desired.
  56. * So we allow it it to be disabled.
  57. */
  58. bool use_spi_crc = 1;
  59. module_param(use_spi_crc, bool, 0);
  60. static int mmc_schedule_delayed_work(struct delayed_work *work,
  61. unsigned long delay)
  62. {
  63. /*
  64. * We use the system_freezable_wq, because of two reasons.
  65. * First, it allows several works (not the same work item) to be
  66. * executed simultaneously. Second, the queue becomes frozen when
  67. * userspace becomes frozen during system PM.
  68. */
  69. return queue_delayed_work(system_freezable_wq, work, delay);
  70. }
  71. #ifdef CONFIG_FAIL_MMC_REQUEST
  72. /*
  73. * Internal function. Inject random data errors.
  74. * If mmc_data is NULL no errors are injected.
  75. */
  76. static void mmc_should_fail_request(struct mmc_host *host,
  77. struct mmc_request *mrq)
  78. {
  79. struct mmc_command *cmd = mrq->cmd;
  80. struct mmc_data *data = mrq->data;
  81. static const int data_errors[] = {
  82. -ETIMEDOUT,
  83. -EILSEQ,
  84. -EIO,
  85. };
  86. if (!data)
  87. return;
  88. if (cmd->error || data->error ||
  89. !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  90. return;
  91. data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
  92. data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
  93. }
  94. #else /* CONFIG_FAIL_MMC_REQUEST */
  95. static inline void mmc_should_fail_request(struct mmc_host *host,
  96. struct mmc_request *mrq)
  97. {
  98. }
  99. #endif /* CONFIG_FAIL_MMC_REQUEST */
  100. static inline void mmc_complete_cmd(struct mmc_request *mrq)
  101. {
  102. if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
  103. complete_all(&mrq->cmd_completion);
  104. }
  105. void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
  106. {
  107. if (!mrq->cap_cmd_during_tfr)
  108. return;
  109. mmc_complete_cmd(mrq);
  110. pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
  111. mmc_hostname(host), mrq->cmd->opcode);
  112. }
  113. EXPORT_SYMBOL(mmc_command_done);
  114. /**
  115. * mmc_request_done - finish processing an MMC request
  116. * @host: MMC host which completed request
  117. * @mrq: MMC request which request
  118. *
  119. * MMC drivers should call this function when they have completed
  120. * their processing of a request.
  121. */
  122. void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
  123. {
  124. struct mmc_command *cmd = mrq->cmd;
  125. int err = cmd->error;
  126. /* Flag re-tuning needed on CRC errors */
  127. if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
  128. cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
  129. (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
  130. (mrq->data && mrq->data->error == -EILSEQ) ||
  131. (mrq->stop && mrq->stop->error == -EILSEQ)))
  132. mmc_retune_needed(host);
  133. if (err && cmd->retries && mmc_host_is_spi(host)) {
  134. if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
  135. cmd->retries = 0;
  136. }
  137. if (host->ongoing_mrq == mrq)
  138. host->ongoing_mrq = NULL;
  139. mmc_complete_cmd(mrq);
  140. trace_mmc_request_done(host, mrq);
  141. /*
  142. * We list various conditions for the command to be considered
  143. * properly done:
  144. *
  145. * - There was no error, OK fine then
  146. * - We are not doing some kind of retry
  147. * - The card was removed (...so just complete everything no matter
  148. * if there are errors or retries)
  149. */
  150. if (!err || !cmd->retries || mmc_card_removed(host->card)) {
  151. mmc_should_fail_request(host, mrq);
  152. if (!host->ongoing_mrq)
  153. led_trigger_event(host->led, LED_OFF);
  154. if (mrq->sbc) {
  155. pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
  156. mmc_hostname(host), mrq->sbc->opcode,
  157. mrq->sbc->error,
  158. mrq->sbc->resp[0], mrq->sbc->resp[1],
  159. mrq->sbc->resp[2], mrq->sbc->resp[3]);
  160. }
  161. pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
  162. mmc_hostname(host), cmd->opcode, err,
  163. cmd->resp[0], cmd->resp[1],
  164. cmd->resp[2], cmd->resp[3]);
  165. if (mrq->data) {
  166. pr_debug("%s: %d bytes transferred: %d\n",
  167. mmc_hostname(host),
  168. mrq->data->bytes_xfered, mrq->data->error);
  169. }
  170. if (mrq->stop) {
  171. pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
  172. mmc_hostname(host), mrq->stop->opcode,
  173. mrq->stop->error,
  174. mrq->stop->resp[0], mrq->stop->resp[1],
  175. mrq->stop->resp[2], mrq->stop->resp[3]);
  176. }
  177. }
  178. /*
  179. * Request starter must handle retries - see
  180. * mmc_wait_for_req_done().
  181. */
  182. if (mrq->done)
  183. mrq->done(mrq);
  184. }
  185. EXPORT_SYMBOL(mmc_request_done);
  186. static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
  187. {
  188. int err;
  189. /* Assumes host controller has been runtime resumed by mmc_claim_host */
  190. err = mmc_retune(host);
  191. if (err) {
  192. mrq->cmd->error = err;
  193. mmc_request_done(host, mrq);
  194. return;
  195. }
  196. /*
  197. * For sdio rw commands we must wait for card busy otherwise some
  198. * sdio devices won't work properly.
  199. * And bypass I/O abort, reset and bus suspend operations.
  200. */
  201. if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
  202. host->ops->card_busy) {
  203. int tries = 500; /* Wait aprox 500ms at maximum */
  204. while (host->ops->card_busy(host) && --tries)
  205. mmc_delay(1);
  206. if (tries == 0) {
  207. mrq->cmd->error = -EBUSY;
  208. mmc_request_done(host, mrq);
  209. return;
  210. }
  211. }
  212. if (mrq->cap_cmd_during_tfr) {
  213. host->ongoing_mrq = mrq;
  214. /*
  215. * Retry path could come through here without having waiting on
  216. * cmd_completion, so ensure it is reinitialised.
  217. */
  218. reinit_completion(&mrq->cmd_completion);
  219. }
  220. trace_mmc_request_start(host, mrq);
  221. if (host->cqe_on)
  222. host->cqe_ops->cqe_off(host);
  223. host->ops->request(host, mrq);
  224. }
  225. static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
  226. bool cqe)
  227. {
  228. if (mrq->sbc) {
  229. pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
  230. mmc_hostname(host), mrq->sbc->opcode,
  231. mrq->sbc->arg, mrq->sbc->flags);
  232. }
  233. if (mrq->cmd) {
  234. pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
  235. mmc_hostname(host), cqe ? "CQE direct " : "",
  236. mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
  237. } else if (cqe) {
  238. pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
  239. mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
  240. }
  241. if (mrq->data) {
  242. pr_debug("%s: blksz %d blocks %d flags %08x "
  243. "tsac %d ms nsac %d\n",
  244. mmc_hostname(host), mrq->data->blksz,
  245. mrq->data->blocks, mrq->data->flags,
  246. mrq->data->timeout_ns / 1000000,
  247. mrq->data->timeout_clks);
  248. }
  249. if (mrq->stop) {
  250. pr_debug("%s: CMD%u arg %08x flags %08x\n",
  251. mmc_hostname(host), mrq->stop->opcode,
  252. mrq->stop->arg, mrq->stop->flags);
  253. }
  254. }
  255. static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
  256. {
  257. unsigned int i, sz = 0;
  258. struct scatterlist *sg;
  259. if (mrq->cmd) {
  260. mrq->cmd->error = 0;
  261. mrq->cmd->mrq = mrq;
  262. mrq->cmd->data = mrq->data;
  263. }
  264. if (mrq->sbc) {
  265. mrq->sbc->error = 0;
  266. mrq->sbc->mrq = mrq;
  267. }
  268. if (mrq->data) {
  269. if (mrq->data->blksz > host->max_blk_size ||
  270. mrq->data->blocks > host->max_blk_count ||
  271. mrq->data->blocks * mrq->data->blksz > host->max_req_size)
  272. return -EINVAL;
  273. for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
  274. sz += sg->length;
  275. if (sz != mrq->data->blocks * mrq->data->blksz)
  276. return -EINVAL;
  277. mrq->data->error = 0;
  278. mrq->data->mrq = mrq;
  279. if (mrq->stop) {
  280. mrq->data->stop = mrq->stop;
  281. mrq->stop->error = 0;
  282. mrq->stop->mrq = mrq;
  283. }
  284. }
  285. return 0;
  286. }
  287. int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
  288. {
  289. int err;
  290. mmc_retune_hold(host);
  291. if (mmc_card_removed(host->card))
  292. return -ENOMEDIUM;
  293. mmc_mrq_pr_debug(host, mrq, false);
  294. WARN_ON(!host->claimed);
  295. err = mmc_mrq_prep(host, mrq);
  296. if (err)
  297. return err;
  298. led_trigger_event(host->led, LED_FULL);
  299. __mmc_start_request(host, mrq);
  300. return 0;
  301. }
  302. EXPORT_SYMBOL(mmc_start_request);
  303. /*
  304. * mmc_wait_data_done() - done callback for data request
  305. * @mrq: done data request
  306. *
  307. * Wakes up mmc context, passed as a callback to host controller driver
  308. */
  309. static void mmc_wait_data_done(struct mmc_request *mrq)
  310. {
  311. struct mmc_context_info *context_info = &mrq->host->context_info;
  312. context_info->is_done_rcv = true;
  313. wake_up_interruptible(&context_info->wait);
  314. }
  315. static void mmc_wait_done(struct mmc_request *mrq)
  316. {
  317. complete(&mrq->completion);
  318. }
  319. static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
  320. {
  321. struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
  322. /*
  323. * If there is an ongoing transfer, wait for the command line to become
  324. * available.
  325. */
  326. if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
  327. wait_for_completion(&ongoing_mrq->cmd_completion);
  328. }
  329. /*
  330. *__mmc_start_data_req() - starts data request
  331. * @host: MMC host to start the request
  332. * @mrq: data request to start
  333. *
  334. * Sets the done callback to be called when request is completed by the card.
  335. * Starts data mmc request execution
  336. * If an ongoing transfer is already in progress, wait for the command line
  337. * to become available before sending another command.
  338. */
  339. static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
  340. {
  341. int err;
  342. mmc_wait_ongoing_tfr_cmd(host);
  343. mrq->done = mmc_wait_data_done;
  344. mrq->host = host;
  345. init_completion(&mrq->cmd_completion);
  346. err = mmc_start_request(host, mrq);
  347. if (err) {
  348. mrq->cmd->error = err;
  349. mmc_complete_cmd(mrq);
  350. mmc_wait_data_done(mrq);
  351. }
  352. return err;
  353. }
  354. static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
  355. {
  356. int err;
  357. mmc_wait_ongoing_tfr_cmd(host);
  358. init_completion(&mrq->completion);
  359. mrq->done = mmc_wait_done;
  360. init_completion(&mrq->cmd_completion);
  361. err = mmc_start_request(host, mrq);
  362. if (err) {
  363. mrq->cmd->error = err;
  364. mmc_complete_cmd(mrq);
  365. complete(&mrq->completion);
  366. }
  367. return err;
  368. }
  369. void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
  370. {
  371. struct mmc_command *cmd;
  372. while (1) {
  373. wait_for_completion(&mrq->completion);
  374. cmd = mrq->cmd;
  375. /*
  376. * If host has timed out waiting for the sanitize
  377. * to complete, card might be still in programming state
  378. * so let's try to bring the card out of programming
  379. * state.
  380. */
  381. if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
  382. if (!mmc_interrupt_hpi(host->card)) {
  383. pr_warn("%s: %s: Interrupted sanitize\n",
  384. mmc_hostname(host), __func__);
  385. cmd->error = 0;
  386. break;
  387. } else {
  388. pr_err("%s: %s: Failed to interrupt sanitize\n",
  389. mmc_hostname(host), __func__);
  390. }
  391. }
  392. if (!cmd->error || !cmd->retries ||
  393. mmc_card_removed(host->card))
  394. break;
  395. mmc_retune_recheck(host);
  396. pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
  397. mmc_hostname(host), cmd->opcode, cmd->error);
  398. cmd->retries--;
  399. cmd->error = 0;
  400. __mmc_start_request(host, mrq);
  401. }
  402. mmc_retune_release(host);
  403. }
  404. EXPORT_SYMBOL(mmc_wait_for_req_done);
  405. /*
  406. * mmc_cqe_start_req - Start a CQE request.
  407. * @host: MMC host to start the request
  408. * @mrq: request to start
  409. *
  410. * Start the request, re-tuning if needed and it is possible. Returns an error
  411. * code if the request fails to start or -EBUSY if CQE is busy.
  412. */
  413. int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
  414. {
  415. int err;
  416. /*
  417. * CQE cannot process re-tuning commands. Caller must hold retuning
  418. * while CQE is in use. Re-tuning can happen here only when CQE has no
  419. * active requests i.e. this is the first. Note, re-tuning will call
  420. * ->cqe_off().
  421. */
  422. err = mmc_retune(host);
  423. if (err)
  424. goto out_err;
  425. mrq->host = host;
  426. mmc_mrq_pr_debug(host, mrq, true);
  427. err = mmc_mrq_prep(host, mrq);
  428. if (err)
  429. goto out_err;
  430. err = host->cqe_ops->cqe_request(host, mrq);
  431. if (err)
  432. goto out_err;
  433. trace_mmc_request_start(host, mrq);
  434. return 0;
  435. out_err:
  436. if (mrq->cmd) {
  437. pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
  438. mmc_hostname(host), mrq->cmd->opcode, err);
  439. } else {
  440. pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
  441. mmc_hostname(host), mrq->tag, err);
  442. }
  443. return err;
  444. }
  445. EXPORT_SYMBOL(mmc_cqe_start_req);
  446. /**
  447. * mmc_cqe_request_done - CQE has finished processing an MMC request
  448. * @host: MMC host which completed request
  449. * @mrq: MMC request which completed
  450. *
  451. * CQE drivers should call this function when they have completed
  452. * their processing of a request.
  453. */
  454. void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
  455. {
  456. mmc_should_fail_request(host, mrq);
  457. /* Flag re-tuning needed on CRC errors */
  458. if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
  459. (mrq->data && mrq->data->error == -EILSEQ))
  460. mmc_retune_needed(host);
  461. trace_mmc_request_done(host, mrq);
  462. if (mrq->cmd) {
  463. pr_debug("%s: CQE req done (direct CMD%u): %d\n",
  464. mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
  465. } else {
  466. pr_debug("%s: CQE transfer done tag %d\n",
  467. mmc_hostname(host), mrq->tag);
  468. }
  469. if (mrq->data) {
  470. pr_debug("%s: %d bytes transferred: %d\n",
  471. mmc_hostname(host),
  472. mrq->data->bytes_xfered, mrq->data->error);
  473. }
  474. mrq->done(mrq);
  475. }
  476. EXPORT_SYMBOL(mmc_cqe_request_done);
  477. /**
  478. * mmc_cqe_post_req - CQE post process of a completed MMC request
  479. * @host: MMC host
  480. * @mrq: MMC request to be processed
  481. */
  482. void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
  483. {
  484. if (host->cqe_ops->cqe_post_req)
  485. host->cqe_ops->cqe_post_req(host, mrq);
  486. }
  487. EXPORT_SYMBOL(mmc_cqe_post_req);
  488. /* Arbitrary 1 second timeout */
  489. #define MMC_CQE_RECOVERY_TIMEOUT 1000
  490. /*
  491. * mmc_cqe_recovery - Recover from CQE errors.
  492. * @host: MMC host to recover
  493. *
  494. * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
  495. * in eMMC, and discarding the queue in CQE. CQE must call
  496. * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
  497. * fails to discard its queue.
  498. */
  499. int mmc_cqe_recovery(struct mmc_host *host)
  500. {
  501. struct mmc_command cmd;
  502. int err;
  503. mmc_retune_hold_now(host);
  504. /*
  505. * Recovery is expected seldom, if at all, but it reduces performance,
  506. * so make sure it is not completely silent.
  507. */
  508. pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
  509. host->cqe_ops->cqe_recovery_start(host);
  510. memset(&cmd, 0, sizeof(cmd));
  511. cmd.opcode = MMC_STOP_TRANSMISSION,
  512. cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
  513. cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
  514. cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
  515. mmc_wait_for_cmd(host, &cmd, 0);
  516. memset(&cmd, 0, sizeof(cmd));
  517. cmd.opcode = MMC_CMDQ_TASK_MGMT;
  518. cmd.arg = 1; /* Discard entire queue */
  519. cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
  520. cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
  521. cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
  522. err = mmc_wait_for_cmd(host, &cmd, 0);
  523. host->cqe_ops->cqe_recovery_finish(host);
  524. mmc_retune_release(host);
  525. return err;
  526. }
  527. EXPORT_SYMBOL(mmc_cqe_recovery);
  528. /**
  529. * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
  530. * @host: MMC host
  531. * @mrq: MMC request
  532. *
  533. * mmc_is_req_done() is used with requests that have
  534. * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
  535. * starting a request and before waiting for it to complete. That is,
  536. * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
  537. * and before mmc_wait_for_req_done(). If it is called at other times the
  538. * result is not meaningful.
  539. */
  540. bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
  541. {
  542. if (host->areq)
  543. return host->context_info.is_done_rcv;
  544. else
  545. return completion_done(&mrq->completion);
  546. }
  547. EXPORT_SYMBOL(mmc_is_req_done);
  548. /**
  549. * mmc_pre_req - Prepare for a new request
  550. * @host: MMC host to prepare command
  551. * @mrq: MMC request to prepare for
  552. *
  553. * mmc_pre_req() is called in prior to mmc_start_req() to let
  554. * host prepare for the new request. Preparation of a request may be
  555. * performed while another request is running on the host.
  556. */
  557. static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
  558. {
  559. if (host->ops->pre_req)
  560. host->ops->pre_req(host, mrq);
  561. }
  562. /**
  563. * mmc_post_req - Post process a completed request
  564. * @host: MMC host to post process command
  565. * @mrq: MMC request to post process for
  566. * @err: Error, if non zero, clean up any resources made in pre_req
  567. *
  568. * Let the host post process a completed request. Post processing of
  569. * a request may be performed while another reuqest is running.
  570. */
  571. static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
  572. int err)
  573. {
  574. if (host->ops->post_req)
  575. host->ops->post_req(host, mrq, err);
  576. }
  577. /**
  578. * mmc_finalize_areq() - finalize an asynchronous request
  579. * @host: MMC host to finalize any ongoing request on
  580. *
  581. * Returns the status of the ongoing asynchronous request, but
  582. * MMC_BLK_SUCCESS if no request was going on.
  583. */
  584. static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
  585. {
  586. struct mmc_context_info *context_info = &host->context_info;
  587. enum mmc_blk_status status;
  588. if (!host->areq)
  589. return MMC_BLK_SUCCESS;
  590. while (1) {
  591. wait_event_interruptible(context_info->wait,
  592. (context_info->is_done_rcv ||
  593. context_info->is_new_req));
  594. if (context_info->is_done_rcv) {
  595. struct mmc_command *cmd;
  596. context_info->is_done_rcv = false;
  597. cmd = host->areq->mrq->cmd;
  598. if (!cmd->error || !cmd->retries ||
  599. mmc_card_removed(host->card)) {
  600. status = host->areq->err_check(host->card,
  601. host->areq);
  602. break; /* return status */
  603. } else {
  604. mmc_retune_recheck(host);
  605. pr_info("%s: req failed (CMD%u): %d, retrying...\n",
  606. mmc_hostname(host),
  607. cmd->opcode, cmd->error);
  608. cmd->retries--;
  609. cmd->error = 0;
  610. __mmc_start_request(host, host->areq->mrq);
  611. continue; /* wait for done/new event again */
  612. }
  613. }
  614. return MMC_BLK_NEW_REQUEST;
  615. }
  616. mmc_retune_release(host);
  617. /*
  618. * Check BKOPS urgency for each R1 response
  619. */
  620. if (host->card && mmc_card_mmc(host->card) &&
  621. ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
  622. (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
  623. (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
  624. mmc_start_bkops(host->card, true);
  625. }
  626. return status;
  627. }
  628. /**
  629. * mmc_start_areq - start an asynchronous request
  630. * @host: MMC host to start command
  631. * @areq: asynchronous request to start
  632. * @ret_stat: out parameter for status
  633. *
  634. * Start a new MMC custom command request for a host.
  635. * If there is on ongoing async request wait for completion
  636. * of that request and start the new one and return.
  637. * Does not wait for the new request to complete.
  638. *
  639. * Returns the completed request, NULL in case of none completed.
  640. * Wait for the an ongoing request (previoulsy started) to complete and
  641. * return the completed request. If there is no ongoing request, NULL
  642. * is returned without waiting. NULL is not an error condition.
  643. */
  644. struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
  645. struct mmc_async_req *areq,
  646. enum mmc_blk_status *ret_stat)
  647. {
  648. enum mmc_blk_status status;
  649. int start_err = 0;
  650. struct mmc_async_req *previous = host->areq;
  651. /* Prepare a new request */
  652. if (areq)
  653. mmc_pre_req(host, areq->mrq);
  654. /* Finalize previous request */
  655. status = mmc_finalize_areq(host);
  656. if (ret_stat)
  657. *ret_stat = status;
  658. /* The previous request is still going on... */
  659. if (status == MMC_BLK_NEW_REQUEST)
  660. return NULL;
  661. /* Fine so far, start the new request! */
  662. if (status == MMC_BLK_SUCCESS && areq)
  663. start_err = __mmc_start_data_req(host, areq->mrq);
  664. /* Postprocess the old request at this point */
  665. if (host->areq)
  666. mmc_post_req(host, host->areq->mrq, 0);
  667. /* Cancel a prepared request if it was not started. */
  668. if ((status != MMC_BLK_SUCCESS || start_err) && areq)
  669. mmc_post_req(host, areq->mrq, -EINVAL);
  670. if (status != MMC_BLK_SUCCESS)
  671. host->areq = NULL;
  672. else
  673. host->areq = areq;
  674. return previous;
  675. }
  676. EXPORT_SYMBOL(mmc_start_areq);
  677. /**
  678. * mmc_wait_for_req - start a request and wait for completion
  679. * @host: MMC host to start command
  680. * @mrq: MMC request to start
  681. *
  682. * Start a new MMC custom command request for a host, and wait
  683. * for the command to complete. In the case of 'cap_cmd_during_tfr'
  684. * requests, the transfer is ongoing and the caller can issue further
  685. * commands that do not use the data lines, and then wait by calling
  686. * mmc_wait_for_req_done().
  687. * Does not attempt to parse the response.
  688. */
  689. void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
  690. {
  691. __mmc_start_req(host, mrq);
  692. if (!mrq->cap_cmd_during_tfr)
  693. mmc_wait_for_req_done(host, mrq);
  694. }
  695. EXPORT_SYMBOL(mmc_wait_for_req);
  696. /**
  697. * mmc_wait_for_cmd - start a command and wait for completion
  698. * @host: MMC host to start command
  699. * @cmd: MMC command to start
  700. * @retries: maximum number of retries
  701. *
  702. * Start a new MMC command for a host, and wait for the command
  703. * to complete. Return any error that occurred while the command
  704. * was executing. Do not attempt to parse the response.
  705. */
  706. int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
  707. {
  708. struct mmc_request mrq = {};
  709. WARN_ON(!host->claimed);
  710. memset(cmd->resp, 0, sizeof(cmd->resp));
  711. cmd->retries = retries;
  712. mrq.cmd = cmd;
  713. cmd->data = NULL;
  714. mmc_wait_for_req(host, &mrq);
  715. return cmd->error;
  716. }
  717. EXPORT_SYMBOL(mmc_wait_for_cmd);
  718. /**
  719. * mmc_set_data_timeout - set the timeout for a data command
  720. * @data: data phase for command
  721. * @card: the MMC card associated with the data transfer
  722. *
  723. * Computes the data timeout parameters according to the
  724. * correct algorithm given the card type.
  725. */
  726. void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
  727. {
  728. unsigned int mult;
  729. /*
  730. * SDIO cards only define an upper 1 s limit on access.
  731. */
  732. if (mmc_card_sdio(card)) {
  733. data->timeout_ns = 1000000000;
  734. data->timeout_clks = 0;
  735. return;
  736. }
  737. /*
  738. * SD cards use a 100 multiplier rather than 10
  739. */
  740. mult = mmc_card_sd(card) ? 100 : 10;
  741. /*
  742. * Scale up the multiplier (and therefore the timeout) by
  743. * the r2w factor for writes.
  744. */
  745. if (data->flags & MMC_DATA_WRITE)
  746. mult <<= card->csd.r2w_factor;
  747. data->timeout_ns = card->csd.taac_ns * mult;
  748. data->timeout_clks = card->csd.taac_clks * mult;
  749. /*
  750. * SD cards also have an upper limit on the timeout.
  751. */
  752. if (mmc_card_sd(card)) {
  753. unsigned int timeout_us, limit_us;
  754. timeout_us = data->timeout_ns / 1000;
  755. if (card->host->ios.clock)
  756. timeout_us += data->timeout_clks * 1000 /
  757. (card->host->ios.clock / 1000);
  758. if (data->flags & MMC_DATA_WRITE)
  759. /*
  760. * The MMC spec "It is strongly recommended
  761. * for hosts to implement more than 500ms
  762. * timeout value even if the card indicates
  763. * the 250ms maximum busy length." Even the
  764. * previous value of 300ms is known to be
  765. * insufficient for some cards.
  766. */
  767. limit_us = 3000000;
  768. else
  769. limit_us = 100000;
  770. /*
  771. * SDHC cards always use these fixed values.
  772. */
  773. if (timeout_us > limit_us) {
  774. data->timeout_ns = limit_us * 1000;
  775. data->timeout_clks = 0;
  776. }
  777. /* assign limit value if invalid */
  778. if (timeout_us == 0)
  779. data->timeout_ns = limit_us * 1000;
  780. }
  781. /*
  782. * Some cards require longer data read timeout than indicated in CSD.
  783. * Address this by setting the read timeout to a "reasonably high"
  784. * value. For the cards tested, 600ms has proven enough. If necessary,
  785. * this value can be increased if other problematic cards require this.
  786. */
  787. if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
  788. data->timeout_ns = 600000000;
  789. data->timeout_clks = 0;
  790. }
  791. /*
  792. * Some cards need very high timeouts if driven in SPI mode.
  793. * The worst observed timeout was 900ms after writing a
  794. * continuous stream of data until the internal logic
  795. * overflowed.
  796. */
  797. if (mmc_host_is_spi(card->host)) {
  798. if (data->flags & MMC_DATA_WRITE) {
  799. if (data->timeout_ns < 1000000000)
  800. data->timeout_ns = 1000000000; /* 1s */
  801. } else {
  802. if (data->timeout_ns < 100000000)
  803. data->timeout_ns = 100000000; /* 100ms */
  804. }
  805. }
  806. }
  807. EXPORT_SYMBOL(mmc_set_data_timeout);
  808. /**
  809. * mmc_align_data_size - pads a transfer size to a more optimal value
  810. * @card: the MMC card associated with the data transfer
  811. * @sz: original transfer size
  812. *
  813. * Pads the original data size with a number of extra bytes in
  814. * order to avoid controller bugs and/or performance hits
  815. * (e.g. some controllers revert to PIO for certain sizes).
  816. *
  817. * Returns the improved size, which might be unmodified.
  818. *
  819. * Note that this function is only relevant when issuing a
  820. * single scatter gather entry.
  821. */
  822. unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
  823. {
  824. /*
  825. * FIXME: We don't have a system for the controller to tell
  826. * the core about its problems yet, so for now we just 32-bit
  827. * align the size.
  828. */
  829. sz = ((sz + 3) / 4) * 4;
  830. return sz;
  831. }
  832. EXPORT_SYMBOL(mmc_align_data_size);
  833. /*
  834. * Allow claiming an already claimed host if the context is the same or there is
  835. * no context but the task is the same.
  836. */
  837. static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
  838. struct task_struct *task)
  839. {
  840. return host->claimer == ctx ||
  841. (!ctx && task && host->claimer->task == task);
  842. }
  843. static inline void mmc_ctx_set_claimer(struct mmc_host *host,
  844. struct mmc_ctx *ctx,
  845. struct task_struct *task)
  846. {
  847. if (!host->claimer) {
  848. if (ctx)
  849. host->claimer = ctx;
  850. else
  851. host->claimer = &host->default_ctx;
  852. }
  853. if (task)
  854. host->claimer->task = task;
  855. }
  856. /**
  857. * __mmc_claim_host - exclusively claim a host
  858. * @host: mmc host to claim
  859. * @ctx: context that claims the host or NULL in which case the default
  860. * context will be used
  861. * @abort: whether or not the operation should be aborted
  862. *
  863. * Claim a host for a set of operations. If @abort is non null and
  864. * dereference a non-zero value then this will return prematurely with
  865. * that non-zero value without acquiring the lock. Returns zero
  866. * with the lock held otherwise.
  867. */
  868. int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
  869. atomic_t *abort)
  870. {
  871. struct task_struct *task = ctx ? NULL : current;
  872. DECLARE_WAITQUEUE(wait, current);
  873. unsigned long flags;
  874. int stop;
  875. bool pm = false;
  876. might_sleep();
  877. add_wait_queue(&host->wq, &wait);
  878. spin_lock_irqsave(&host->lock, flags);
  879. while (1) {
  880. set_current_state(TASK_UNINTERRUPTIBLE);
  881. stop = abort ? atomic_read(abort) : 0;
  882. if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
  883. break;
  884. spin_unlock_irqrestore(&host->lock, flags);
  885. schedule();
  886. spin_lock_irqsave(&host->lock, flags);
  887. }
  888. set_current_state(TASK_RUNNING);
  889. if (!stop) {
  890. host->claimed = 1;
  891. mmc_ctx_set_claimer(host, ctx, task);
  892. host->claim_cnt += 1;
  893. if (host->claim_cnt == 1)
  894. pm = true;
  895. } else
  896. wake_up(&host->wq);
  897. spin_unlock_irqrestore(&host->lock, flags);
  898. remove_wait_queue(&host->wq, &wait);
  899. if (pm)
  900. pm_runtime_get_sync(mmc_dev(host));
  901. return stop;
  902. }
  903. EXPORT_SYMBOL(__mmc_claim_host);
  904. /**
  905. * mmc_release_host - release a host
  906. * @host: mmc host to release
  907. *
  908. * Release a MMC host, allowing others to claim the host
  909. * for their operations.
  910. */
  911. void mmc_release_host(struct mmc_host *host)
  912. {
  913. unsigned long flags;
  914. WARN_ON(!host->claimed);
  915. spin_lock_irqsave(&host->lock, flags);
  916. if (--host->claim_cnt) {
  917. /* Release for nested claim */
  918. spin_unlock_irqrestore(&host->lock, flags);
  919. } else {
  920. host->claimed = 0;
  921. host->claimer->task = NULL;
  922. host->claimer = NULL;
  923. spin_unlock_irqrestore(&host->lock, flags);
  924. wake_up(&host->wq);
  925. pm_runtime_mark_last_busy(mmc_dev(host));
  926. pm_runtime_put_autosuspend(mmc_dev(host));
  927. }
  928. }
  929. EXPORT_SYMBOL(mmc_release_host);
  930. /*
  931. * This is a helper function, which fetches a runtime pm reference for the
  932. * card device and also claims the host.
  933. */
  934. void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
  935. {
  936. pm_runtime_get_sync(&card->dev);
  937. __mmc_claim_host(card->host, ctx, NULL);
  938. }
  939. EXPORT_SYMBOL(mmc_get_card);
  940. /*
  941. * This is a helper function, which releases the host and drops the runtime
  942. * pm reference for the card device.
  943. */
  944. void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
  945. {
  946. struct mmc_host *host = card->host;
  947. WARN_ON(ctx && host->claimer != ctx);
  948. mmc_release_host(host);
  949. pm_runtime_mark_last_busy(&card->dev);
  950. pm_runtime_put_autosuspend(&card->dev);
  951. }
  952. EXPORT_SYMBOL(mmc_put_card);
  953. /*
  954. * Internal function that does the actual ios call to the host driver,
  955. * optionally printing some debug output.
  956. */
  957. static inline void mmc_set_ios(struct mmc_host *host)
  958. {
  959. struct mmc_ios *ios = &host->ios;
  960. pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
  961. "width %u timing %u\n",
  962. mmc_hostname(host), ios->clock, ios->bus_mode,
  963. ios->power_mode, ios->chip_select, ios->vdd,
  964. 1 << ios->bus_width, ios->timing);
  965. host->ops->set_ios(host, ios);
  966. }
  967. /*
  968. * Control chip select pin on a host.
  969. */
  970. void mmc_set_chip_select(struct mmc_host *host, int mode)
  971. {
  972. host->ios.chip_select = mode;
  973. mmc_set_ios(host);
  974. }
  975. /*
  976. * Sets the host clock to the highest possible frequency that
  977. * is below "hz".
  978. */
  979. void mmc_set_clock(struct mmc_host *host, unsigned int hz)
  980. {
  981. WARN_ON(hz && hz < host->f_min);
  982. if (hz > host->f_max)
  983. hz = host->f_max;
  984. host->ios.clock = hz;
  985. mmc_set_ios(host);
  986. }
  987. int mmc_execute_tuning(struct mmc_card *card)
  988. {
  989. struct mmc_host *host = card->host;
  990. u32 opcode;
  991. int err;
  992. if (!host->ops->execute_tuning)
  993. return 0;
  994. if (host->cqe_on)
  995. host->cqe_ops->cqe_off(host);
  996. if (mmc_card_mmc(card))
  997. opcode = MMC_SEND_TUNING_BLOCK_HS200;
  998. else
  999. opcode = MMC_SEND_TUNING_BLOCK;
  1000. err = host->ops->execute_tuning(host, opcode);
  1001. if (err)
  1002. pr_err("%s: tuning execution failed: %d\n",
  1003. mmc_hostname(host), err);
  1004. else
  1005. mmc_retune_enable(host);
  1006. return err;
  1007. }
  1008. /*
  1009. * Change the bus mode (open drain/push-pull) of a host.
  1010. */
  1011. void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
  1012. {
  1013. host->ios.bus_mode = mode;
  1014. mmc_set_ios(host);
  1015. }
  1016. /*
  1017. * Change data bus width of a host.
  1018. */
  1019. void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
  1020. {
  1021. host->ios.bus_width = width;
  1022. mmc_set_ios(host);
  1023. }
  1024. /*
  1025. * Set initial state after a power cycle or a hw_reset.
  1026. */
  1027. void mmc_set_initial_state(struct mmc_host *host)
  1028. {
  1029. if (host->cqe_on)
  1030. host->cqe_ops->cqe_off(host);
  1031. mmc_retune_disable(host);
  1032. if (mmc_host_is_spi(host))
  1033. host->ios.chip_select = MMC_CS_HIGH;
  1034. else
  1035. host->ios.chip_select = MMC_CS_DONTCARE;
  1036. host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
  1037. host->ios.bus_width = MMC_BUS_WIDTH_1;
  1038. host->ios.timing = MMC_TIMING_LEGACY;
  1039. host->ios.drv_type = 0;
  1040. host->ios.enhanced_strobe = false;
  1041. /*
  1042. * Make sure we are in non-enhanced strobe mode before we
  1043. * actually enable it in ext_csd.
  1044. */
  1045. if ((host->caps2 & MMC_CAP2_HS400_ES) &&
  1046. host->ops->hs400_enhanced_strobe)
  1047. host->ops->hs400_enhanced_strobe(host, &host->ios);
  1048. mmc_set_ios(host);
  1049. }
  1050. /**
  1051. * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
  1052. * @vdd: voltage (mV)
  1053. * @low_bits: prefer low bits in boundary cases
  1054. *
  1055. * This function returns the OCR bit number according to the provided @vdd
  1056. * value. If conversion is not possible a negative errno value returned.
  1057. *
  1058. * Depending on the @low_bits flag the function prefers low or high OCR bits
  1059. * on boundary voltages. For example,
  1060. * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
  1061. * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
  1062. *
  1063. * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
  1064. */
  1065. static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
  1066. {
  1067. const int max_bit = ilog2(MMC_VDD_35_36);
  1068. int bit;
  1069. if (vdd < 1650 || vdd > 3600)
  1070. return -EINVAL;
  1071. if (vdd >= 1650 && vdd <= 1950)
  1072. return ilog2(MMC_VDD_165_195);
  1073. if (low_bits)
  1074. vdd -= 1;
  1075. /* Base 2000 mV, step 100 mV, bit's base 8. */
  1076. bit = (vdd - 2000) / 100 + 8;
  1077. if (bit > max_bit)
  1078. return max_bit;
  1079. return bit;
  1080. }
  1081. /**
  1082. * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
  1083. * @vdd_min: minimum voltage value (mV)
  1084. * @vdd_max: maximum voltage value (mV)
  1085. *
  1086. * This function returns the OCR mask bits according to the provided @vdd_min
  1087. * and @vdd_max values. If conversion is not possible the function returns 0.
  1088. *
  1089. * Notes wrt boundary cases:
  1090. * This function sets the OCR bits for all boundary voltages, for example
  1091. * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
  1092. * MMC_VDD_34_35 mask.
  1093. */
  1094. u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
  1095. {
  1096. u32 mask = 0;
  1097. if (vdd_max < vdd_min)
  1098. return 0;
  1099. /* Prefer high bits for the boundary vdd_max values. */
  1100. vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
  1101. if (vdd_max < 0)
  1102. return 0;
  1103. /* Prefer low bits for the boundary vdd_min values. */
  1104. vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
  1105. if (vdd_min < 0)
  1106. return 0;
  1107. /* Fill the mask, from max bit to min bit. */
  1108. while (vdd_max >= vdd_min)
  1109. mask |= 1 << vdd_max--;
  1110. return mask;
  1111. }
  1112. EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
  1113. #ifdef CONFIG_OF
  1114. /**
  1115. * mmc_of_parse_voltage - return mask of supported voltages
  1116. * @np: The device node need to be parsed.
  1117. * @mask: mask of voltages available for MMC/SD/SDIO
  1118. *
  1119. * Parse the "voltage-ranges" DT property, returning zero if it is not
  1120. * found, negative errno if the voltage-range specification is invalid,
  1121. * or one if the voltage-range is specified and successfully parsed.
  1122. */
  1123. int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
  1124. {
  1125. const u32 *voltage_ranges;
  1126. int num_ranges, i;
  1127. voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
  1128. num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
  1129. if (!voltage_ranges) {
  1130. pr_debug("%pOF: voltage-ranges unspecified\n", np);
  1131. return 0;
  1132. }
  1133. if (!num_ranges) {
  1134. pr_err("%pOF: voltage-ranges empty\n", np);
  1135. return -EINVAL;
  1136. }
  1137. for (i = 0; i < num_ranges; i++) {
  1138. const int j = i * 2;
  1139. u32 ocr_mask;
  1140. ocr_mask = mmc_vddrange_to_ocrmask(
  1141. be32_to_cpu(voltage_ranges[j]),
  1142. be32_to_cpu(voltage_ranges[j + 1]));
  1143. if (!ocr_mask) {
  1144. pr_err("%pOF: voltage-range #%d is invalid\n",
  1145. np, i);
  1146. return -EINVAL;
  1147. }
  1148. *mask |= ocr_mask;
  1149. }
  1150. return 1;
  1151. }
  1152. EXPORT_SYMBOL(mmc_of_parse_voltage);
  1153. #endif /* CONFIG_OF */
  1154. static int mmc_of_get_func_num(struct device_node *node)
  1155. {
  1156. u32 reg;
  1157. int ret;
  1158. ret = of_property_read_u32(node, "reg", &reg);
  1159. if (ret < 0)
  1160. return ret;
  1161. return reg;
  1162. }
  1163. struct device_node *mmc_of_find_child_device(struct mmc_host *host,
  1164. unsigned func_num)
  1165. {
  1166. struct device_node *node;
  1167. if (!host->parent || !host->parent->of_node)
  1168. return NULL;
  1169. for_each_child_of_node(host->parent->of_node, node) {
  1170. if (mmc_of_get_func_num(node) == func_num)
  1171. return node;
  1172. }
  1173. return NULL;
  1174. }
  1175. #ifdef CONFIG_REGULATOR
  1176. /**
  1177. * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
  1178. * @vdd_bit: OCR bit number
  1179. * @min_uV: minimum voltage value (mV)
  1180. * @max_uV: maximum voltage value (mV)
  1181. *
  1182. * This function returns the voltage range according to the provided OCR
  1183. * bit number. If conversion is not possible a negative errno value returned.
  1184. */
  1185. static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
  1186. {
  1187. int tmp;
  1188. if (!vdd_bit)
  1189. return -EINVAL;
  1190. /*
  1191. * REVISIT mmc_vddrange_to_ocrmask() may have set some
  1192. * bits this regulator doesn't quite support ... don't
  1193. * be too picky, most cards and regulators are OK with
  1194. * a 0.1V range goof (it's a small error percentage).
  1195. */
  1196. tmp = vdd_bit - ilog2(MMC_VDD_165_195);
  1197. if (tmp == 0) {
  1198. *min_uV = 1650 * 1000;
  1199. *max_uV = 1950 * 1000;
  1200. } else {
  1201. *min_uV = 1900 * 1000 + tmp * 100 * 1000;
  1202. *max_uV = *min_uV + 100 * 1000;
  1203. }
  1204. return 0;
  1205. }
  1206. /**
  1207. * mmc_regulator_get_ocrmask - return mask of supported voltages
  1208. * @supply: regulator to use
  1209. *
  1210. * This returns either a negative errno, or a mask of voltages that
  1211. * can be provided to MMC/SD/SDIO devices using the specified voltage
  1212. * regulator. This would normally be called before registering the
  1213. * MMC host adapter.
  1214. */
  1215. int mmc_regulator_get_ocrmask(struct regulator *supply)
  1216. {
  1217. int result = 0;
  1218. int count;
  1219. int i;
  1220. int vdd_uV;
  1221. int vdd_mV;
  1222. count = regulator_count_voltages(supply);
  1223. if (count < 0)
  1224. return count;
  1225. for (i = 0; i < count; i++) {
  1226. vdd_uV = regulator_list_voltage(supply, i);
  1227. if (vdd_uV <= 0)
  1228. continue;
  1229. vdd_mV = vdd_uV / 1000;
  1230. result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
  1231. }
  1232. if (!result) {
  1233. vdd_uV = regulator_get_voltage(supply);
  1234. if (vdd_uV <= 0)
  1235. return vdd_uV;
  1236. vdd_mV = vdd_uV / 1000;
  1237. result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
  1238. }
  1239. return result;
  1240. }
  1241. EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
  1242. /**
  1243. * mmc_regulator_set_ocr - set regulator to match host->ios voltage
  1244. * @mmc: the host to regulate
  1245. * @supply: regulator to use
  1246. * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
  1247. *
  1248. * Returns zero on success, else negative errno.
  1249. *
  1250. * MMC host drivers may use this to enable or disable a regulator using
  1251. * a particular supply voltage. This would normally be called from the
  1252. * set_ios() method.
  1253. */
  1254. int mmc_regulator_set_ocr(struct mmc_host *mmc,
  1255. struct regulator *supply,
  1256. unsigned short vdd_bit)
  1257. {
  1258. int result = 0;
  1259. int min_uV, max_uV;
  1260. if (vdd_bit) {
  1261. mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
  1262. result = regulator_set_voltage(supply, min_uV, max_uV);
  1263. if (result == 0 && !mmc->regulator_enabled) {
  1264. result = regulator_enable(supply);
  1265. if (!result)
  1266. mmc->regulator_enabled = true;
  1267. }
  1268. } else if (mmc->regulator_enabled) {
  1269. result = regulator_disable(supply);
  1270. if (result == 0)
  1271. mmc->regulator_enabled = false;
  1272. }
  1273. if (result)
  1274. dev_err(mmc_dev(mmc),
  1275. "could not set regulator OCR (%d)\n", result);
  1276. return result;
  1277. }
  1278. EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
  1279. static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
  1280. int min_uV, int target_uV,
  1281. int max_uV)
  1282. {
  1283. /*
  1284. * Check if supported first to avoid errors since we may try several
  1285. * signal levels during power up and don't want to show errors.
  1286. */
  1287. if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
  1288. return -EINVAL;
  1289. return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
  1290. max_uV);
  1291. }
  1292. /**
  1293. * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
  1294. *
  1295. * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
  1296. * That will match the behavior of old boards where VQMMC and VMMC were supplied
  1297. * by the same supply. The Bus Operating conditions for 3.3V signaling in the
  1298. * SD card spec also define VQMMC in terms of VMMC.
  1299. * If this is not possible we'll try the full 2.7-3.6V of the spec.
  1300. *
  1301. * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
  1302. * requested voltage. This is definitely a good idea for UHS where there's a
  1303. * separate regulator on the card that's trying to make 1.8V and it's best if
  1304. * we match.
  1305. *
  1306. * This function is expected to be used by a controller's
  1307. * start_signal_voltage_switch() function.
  1308. */
  1309. int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
  1310. {
  1311. struct device *dev = mmc_dev(mmc);
  1312. int ret, volt, min_uV, max_uV;
  1313. /* If no vqmmc supply then we can't change the voltage */
  1314. if (IS_ERR(mmc->supply.vqmmc))
  1315. return -EINVAL;
  1316. switch (ios->signal_voltage) {
  1317. case MMC_SIGNAL_VOLTAGE_120:
  1318. return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1319. 1100000, 1200000, 1300000);
  1320. case MMC_SIGNAL_VOLTAGE_180:
  1321. return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1322. 1700000, 1800000, 1950000);
  1323. case MMC_SIGNAL_VOLTAGE_330:
  1324. ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
  1325. if (ret < 0)
  1326. return ret;
  1327. dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
  1328. __func__, volt, max_uV);
  1329. min_uV = max(volt - 300000, 2700000);
  1330. max_uV = min(max_uV + 200000, 3600000);
  1331. /*
  1332. * Due to a limitation in the current implementation of
  1333. * regulator_set_voltage_triplet() which is taking the lowest
  1334. * voltage possible if below the target, search for a suitable
  1335. * voltage in two steps and try to stay close to vmmc
  1336. * with a 0.3V tolerance at first.
  1337. */
  1338. if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1339. min_uV, volt, max_uV))
  1340. return 0;
  1341. return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
  1342. 2700000, volt, 3600000);
  1343. default:
  1344. return -EINVAL;
  1345. }
  1346. }
  1347. EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
  1348. #endif /* CONFIG_REGULATOR */
  1349. int mmc_regulator_get_supply(struct mmc_host *mmc)
  1350. {
  1351. struct device *dev = mmc_dev(mmc);
  1352. int ret;
  1353. mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
  1354. mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
  1355. if (IS_ERR(mmc->supply.vmmc)) {
  1356. if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
  1357. return -EPROBE_DEFER;
  1358. dev_dbg(dev, "No vmmc regulator found\n");
  1359. } else {
  1360. ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
  1361. if (ret > 0)
  1362. mmc->ocr_avail = ret;
  1363. else
  1364. dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
  1365. }
  1366. if (IS_ERR(mmc->supply.vqmmc)) {
  1367. if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
  1368. return -EPROBE_DEFER;
  1369. dev_dbg(dev, "No vqmmc regulator found\n");
  1370. }
  1371. return 0;
  1372. }
  1373. EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
  1374. /*
  1375. * Mask off any voltages we don't support and select
  1376. * the lowest voltage
  1377. */
  1378. u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
  1379. {
  1380. int bit;
  1381. /*
  1382. * Sanity check the voltages that the card claims to
  1383. * support.
  1384. */
  1385. if (ocr & 0x7F) {
  1386. dev_warn(mmc_dev(host),
  1387. "card claims to support voltages below defined range\n");
  1388. ocr &= ~0x7F;
  1389. }
  1390. ocr &= host->ocr_avail;
  1391. if (!ocr) {
  1392. dev_warn(mmc_dev(host), "no support for card's volts\n");
  1393. return 0;
  1394. }
  1395. if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
  1396. bit = ffs(ocr) - 1;
  1397. ocr &= 3 << bit;
  1398. mmc_power_cycle(host, ocr);
  1399. } else {
  1400. bit = fls(ocr) - 1;
  1401. ocr &= 3 << bit;
  1402. if (bit != host->ios.vdd)
  1403. dev_warn(mmc_dev(host), "exceeding card's volts\n");
  1404. }
  1405. return ocr;
  1406. }
  1407. int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
  1408. {
  1409. int err = 0;
  1410. int old_signal_voltage = host->ios.signal_voltage;
  1411. host->ios.signal_voltage = signal_voltage;
  1412. if (host->ops->start_signal_voltage_switch)
  1413. err = host->ops->start_signal_voltage_switch(host, &host->ios);
  1414. if (err)
  1415. host->ios.signal_voltage = old_signal_voltage;
  1416. return err;
  1417. }
  1418. int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
  1419. {
  1420. struct mmc_command cmd = {};
  1421. int err = 0;
  1422. u32 clock;
  1423. /*
  1424. * If we cannot switch voltages, return failure so the caller
  1425. * can continue without UHS mode
  1426. */
  1427. if (!host->ops->start_signal_voltage_switch)
  1428. return -EPERM;
  1429. if (!host->ops->card_busy)
  1430. pr_warn("%s: cannot verify signal voltage switch\n",
  1431. mmc_hostname(host));
  1432. cmd.opcode = SD_SWITCH_VOLTAGE;
  1433. cmd.arg = 0;
  1434. cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1435. err = mmc_wait_for_cmd(host, &cmd, 0);
  1436. if (err)
  1437. return err;
  1438. if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
  1439. return -EIO;
  1440. /*
  1441. * The card should drive cmd and dat[0:3] low immediately
  1442. * after the response of cmd11, but wait 1 ms to be sure
  1443. */
  1444. mmc_delay(1);
  1445. if (host->ops->card_busy && !host->ops->card_busy(host)) {
  1446. err = -EAGAIN;
  1447. goto power_cycle;
  1448. }
  1449. /*
  1450. * During a signal voltage level switch, the clock must be gated
  1451. * for 5 ms according to the SD spec
  1452. */
  1453. clock = host->ios.clock;
  1454. host->ios.clock = 0;
  1455. mmc_set_ios(host);
  1456. if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180)) {
  1457. /*
  1458. * Voltages may not have been switched, but we've already
  1459. * sent CMD11, so a power cycle is required anyway
  1460. */
  1461. err = -EAGAIN;
  1462. goto power_cycle;
  1463. }
  1464. /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
  1465. mmc_delay(10);
  1466. host->ios.clock = clock;
  1467. mmc_set_ios(host);
  1468. /* Wait for at least 1 ms according to spec */
  1469. mmc_delay(1);
  1470. /*
  1471. * Failure to switch is indicated by the card holding
  1472. * dat[0:3] low
  1473. */
  1474. if (host->ops->card_busy && host->ops->card_busy(host))
  1475. err = -EAGAIN;
  1476. power_cycle:
  1477. if (err) {
  1478. pr_debug("%s: Signal voltage switch failed, "
  1479. "power cycling card\n", mmc_hostname(host));
  1480. mmc_power_cycle(host, ocr);
  1481. }
  1482. return err;
  1483. }
  1484. /*
  1485. * Select timing parameters for host.
  1486. */
  1487. void mmc_set_timing(struct mmc_host *host, unsigned int timing)
  1488. {
  1489. host->ios.timing = timing;
  1490. mmc_set_ios(host);
  1491. }
  1492. /*
  1493. * Select appropriate driver type for host.
  1494. */
  1495. void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
  1496. {
  1497. host->ios.drv_type = drv_type;
  1498. mmc_set_ios(host);
  1499. }
  1500. int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
  1501. int card_drv_type, int *drv_type)
  1502. {
  1503. struct mmc_host *host = card->host;
  1504. int host_drv_type = SD_DRIVER_TYPE_B;
  1505. *drv_type = 0;
  1506. if (!host->ops->select_drive_strength)
  1507. return 0;
  1508. /* Use SD definition of driver strength for hosts */
  1509. if (host->caps & MMC_CAP_DRIVER_TYPE_A)
  1510. host_drv_type |= SD_DRIVER_TYPE_A;
  1511. if (host->caps & MMC_CAP_DRIVER_TYPE_C)
  1512. host_drv_type |= SD_DRIVER_TYPE_C;
  1513. if (host->caps & MMC_CAP_DRIVER_TYPE_D)
  1514. host_drv_type |= SD_DRIVER_TYPE_D;
  1515. /*
  1516. * The drive strength that the hardware can support
  1517. * depends on the board design. Pass the appropriate
  1518. * information and let the hardware specific code
  1519. * return what is possible given the options
  1520. */
  1521. return host->ops->select_drive_strength(card, max_dtr,
  1522. host_drv_type,
  1523. card_drv_type,
  1524. drv_type);
  1525. }
  1526. /*
  1527. * Apply power to the MMC stack. This is a two-stage process.
  1528. * First, we enable power to the card without the clock running.
  1529. * We then wait a bit for the power to stabilise. Finally,
  1530. * enable the bus drivers and clock to the card.
  1531. *
  1532. * We must _NOT_ enable the clock prior to power stablising.
  1533. *
  1534. * If a host does all the power sequencing itself, ignore the
  1535. * initial MMC_POWER_UP stage.
  1536. */
  1537. void mmc_power_up(struct mmc_host *host, u32 ocr)
  1538. {
  1539. if (host->ios.power_mode == MMC_POWER_ON)
  1540. return;
  1541. mmc_pwrseq_pre_power_on(host);
  1542. host->ios.vdd = fls(ocr) - 1;
  1543. host->ios.power_mode = MMC_POWER_UP;
  1544. /* Set initial state and call mmc_set_ios */
  1545. mmc_set_initial_state(host);
  1546. /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
  1547. if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
  1548. dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
  1549. else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
  1550. dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
  1551. else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
  1552. dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
  1553. /*
  1554. * This delay should be sufficient to allow the power supply
  1555. * to reach the minimum voltage.
  1556. */
  1557. mmc_delay(10);
  1558. mmc_pwrseq_post_power_on(host);
  1559. host->ios.clock = host->f_init;
  1560. host->ios.power_mode = MMC_POWER_ON;
  1561. mmc_set_ios(host);
  1562. /*
  1563. * This delay must be at least 74 clock sizes, or 1 ms, or the
  1564. * time required to reach a stable voltage.
  1565. */
  1566. mmc_delay(10);
  1567. }
  1568. void mmc_power_off(struct mmc_host *host)
  1569. {
  1570. if (host->ios.power_mode == MMC_POWER_OFF)
  1571. return;
  1572. mmc_pwrseq_power_off(host);
  1573. host->ios.clock = 0;
  1574. host->ios.vdd = 0;
  1575. host->ios.power_mode = MMC_POWER_OFF;
  1576. /* Set initial state and call mmc_set_ios */
  1577. mmc_set_initial_state(host);
  1578. /*
  1579. * Some configurations, such as the 802.11 SDIO card in the OLPC
  1580. * XO-1.5, require a short delay after poweroff before the card
  1581. * can be successfully turned on again.
  1582. */
  1583. mmc_delay(1);
  1584. }
  1585. void mmc_power_cycle(struct mmc_host *host, u32 ocr)
  1586. {
  1587. mmc_power_off(host);
  1588. /* Wait at least 1 ms according to SD spec */
  1589. mmc_delay(1);
  1590. mmc_power_up(host, ocr);
  1591. }
  1592. /*
  1593. * Cleanup when the last reference to the bus operator is dropped.
  1594. */
  1595. static void __mmc_release_bus(struct mmc_host *host)
  1596. {
  1597. WARN_ON(!host->bus_dead);
  1598. host->bus_ops = NULL;
  1599. }
  1600. /*
  1601. * Increase reference count of bus operator
  1602. */
  1603. static inline void mmc_bus_get(struct mmc_host *host)
  1604. {
  1605. unsigned long flags;
  1606. spin_lock_irqsave(&host->lock, flags);
  1607. host->bus_refs++;
  1608. spin_unlock_irqrestore(&host->lock, flags);
  1609. }
  1610. /*
  1611. * Decrease reference count of bus operator and free it if
  1612. * it is the last reference.
  1613. */
  1614. static inline void mmc_bus_put(struct mmc_host *host)
  1615. {
  1616. unsigned long flags;
  1617. spin_lock_irqsave(&host->lock, flags);
  1618. host->bus_refs--;
  1619. if ((host->bus_refs == 0) && host->bus_ops)
  1620. __mmc_release_bus(host);
  1621. spin_unlock_irqrestore(&host->lock, flags);
  1622. }
  1623. /*
  1624. * Assign a mmc bus handler to a host. Only one bus handler may control a
  1625. * host at any given time.
  1626. */
  1627. void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
  1628. {
  1629. unsigned long flags;
  1630. WARN_ON(!host->claimed);
  1631. spin_lock_irqsave(&host->lock, flags);
  1632. WARN_ON(host->bus_ops);
  1633. WARN_ON(host->bus_refs);
  1634. host->bus_ops = ops;
  1635. host->bus_refs = 1;
  1636. host->bus_dead = 0;
  1637. spin_unlock_irqrestore(&host->lock, flags);
  1638. }
  1639. /*
  1640. * Remove the current bus handler from a host.
  1641. */
  1642. void mmc_detach_bus(struct mmc_host *host)
  1643. {
  1644. unsigned long flags;
  1645. WARN_ON(!host->claimed);
  1646. WARN_ON(!host->bus_ops);
  1647. spin_lock_irqsave(&host->lock, flags);
  1648. host->bus_dead = 1;
  1649. spin_unlock_irqrestore(&host->lock, flags);
  1650. mmc_bus_put(host);
  1651. }
  1652. static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
  1653. bool cd_irq)
  1654. {
  1655. /*
  1656. * If the device is configured as wakeup, we prevent a new sleep for
  1657. * 5 s to give provision for user space to consume the event.
  1658. */
  1659. if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
  1660. device_can_wakeup(mmc_dev(host)))
  1661. pm_wakeup_event(mmc_dev(host), 5000);
  1662. host->detect_change = 1;
  1663. mmc_schedule_delayed_work(&host->detect, delay);
  1664. }
  1665. /**
  1666. * mmc_detect_change - process change of state on a MMC socket
  1667. * @host: host which changed state.
  1668. * @delay: optional delay to wait before detection (jiffies)
  1669. *
  1670. * MMC drivers should call this when they detect a card has been
  1671. * inserted or removed. The MMC layer will confirm that any
  1672. * present card is still functional, and initialize any newly
  1673. * inserted.
  1674. */
  1675. void mmc_detect_change(struct mmc_host *host, unsigned long delay)
  1676. {
  1677. _mmc_detect_change(host, delay, true);
  1678. }
  1679. EXPORT_SYMBOL(mmc_detect_change);
  1680. void mmc_init_erase(struct mmc_card *card)
  1681. {
  1682. unsigned int sz;
  1683. if (is_power_of_2(card->erase_size))
  1684. card->erase_shift = ffs(card->erase_size) - 1;
  1685. else
  1686. card->erase_shift = 0;
  1687. /*
  1688. * It is possible to erase an arbitrarily large area of an SD or MMC
  1689. * card. That is not desirable because it can take a long time
  1690. * (minutes) potentially delaying more important I/O, and also the
  1691. * timeout calculations become increasingly hugely over-estimated.
  1692. * Consequently, 'pref_erase' is defined as a guide to limit erases
  1693. * to that size and alignment.
  1694. *
  1695. * For SD cards that define Allocation Unit size, limit erases to one
  1696. * Allocation Unit at a time.
  1697. * For MMC, have a stab at ai good value and for modern cards it will
  1698. * end up being 4MiB. Note that if the value is too small, it can end
  1699. * up taking longer to erase. Also note, erase_size is already set to
  1700. * High Capacity Erase Size if available when this function is called.
  1701. */
  1702. if (mmc_card_sd(card) && card->ssr.au) {
  1703. card->pref_erase = card->ssr.au;
  1704. card->erase_shift = ffs(card->ssr.au) - 1;
  1705. } else if (card->erase_size) {
  1706. sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
  1707. if (sz < 128)
  1708. card->pref_erase = 512 * 1024 / 512;
  1709. else if (sz < 512)
  1710. card->pref_erase = 1024 * 1024 / 512;
  1711. else if (sz < 1024)
  1712. card->pref_erase = 2 * 1024 * 1024 / 512;
  1713. else
  1714. card->pref_erase = 4 * 1024 * 1024 / 512;
  1715. if (card->pref_erase < card->erase_size)
  1716. card->pref_erase = card->erase_size;
  1717. else {
  1718. sz = card->pref_erase % card->erase_size;
  1719. if (sz)
  1720. card->pref_erase += card->erase_size - sz;
  1721. }
  1722. } else
  1723. card->pref_erase = 0;
  1724. }
  1725. static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
  1726. unsigned int arg, unsigned int qty)
  1727. {
  1728. unsigned int erase_timeout;
  1729. if (arg == MMC_DISCARD_ARG ||
  1730. (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
  1731. erase_timeout = card->ext_csd.trim_timeout;
  1732. } else if (card->ext_csd.erase_group_def & 1) {
  1733. /* High Capacity Erase Group Size uses HC timeouts */
  1734. if (arg == MMC_TRIM_ARG)
  1735. erase_timeout = card->ext_csd.trim_timeout;
  1736. else
  1737. erase_timeout = card->ext_csd.hc_erase_timeout;
  1738. } else {
  1739. /* CSD Erase Group Size uses write timeout */
  1740. unsigned int mult = (10 << card->csd.r2w_factor);
  1741. unsigned int timeout_clks = card->csd.taac_clks * mult;
  1742. unsigned int timeout_us;
  1743. /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
  1744. if (card->csd.taac_ns < 1000000)
  1745. timeout_us = (card->csd.taac_ns * mult) / 1000;
  1746. else
  1747. timeout_us = (card->csd.taac_ns / 1000) * mult;
  1748. /*
  1749. * ios.clock is only a target. The real clock rate might be
  1750. * less but not that much less, so fudge it by multiplying by 2.
  1751. */
  1752. timeout_clks <<= 1;
  1753. timeout_us += (timeout_clks * 1000) /
  1754. (card->host->ios.clock / 1000);
  1755. erase_timeout = timeout_us / 1000;
  1756. /*
  1757. * Theoretically, the calculation could underflow so round up
  1758. * to 1ms in that case.
  1759. */
  1760. if (!erase_timeout)
  1761. erase_timeout = 1;
  1762. }
  1763. /* Multiplier for secure operations */
  1764. if (arg & MMC_SECURE_ARGS) {
  1765. if (arg == MMC_SECURE_ERASE_ARG)
  1766. erase_timeout *= card->ext_csd.sec_erase_mult;
  1767. else
  1768. erase_timeout *= card->ext_csd.sec_trim_mult;
  1769. }
  1770. erase_timeout *= qty;
  1771. /*
  1772. * Ensure at least a 1 second timeout for SPI as per
  1773. * 'mmc_set_data_timeout()'
  1774. */
  1775. if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
  1776. erase_timeout = 1000;
  1777. return erase_timeout;
  1778. }
  1779. static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
  1780. unsigned int arg,
  1781. unsigned int qty)
  1782. {
  1783. unsigned int erase_timeout;
  1784. if (card->ssr.erase_timeout) {
  1785. /* Erase timeout specified in SD Status Register (SSR) */
  1786. erase_timeout = card->ssr.erase_timeout * qty +
  1787. card->ssr.erase_offset;
  1788. } else {
  1789. /*
  1790. * Erase timeout not specified in SD Status Register (SSR) so
  1791. * use 250ms per write block.
  1792. */
  1793. erase_timeout = 250 * qty;
  1794. }
  1795. /* Must not be less than 1 second */
  1796. if (erase_timeout < 1000)
  1797. erase_timeout = 1000;
  1798. return erase_timeout;
  1799. }
  1800. static unsigned int mmc_erase_timeout(struct mmc_card *card,
  1801. unsigned int arg,
  1802. unsigned int qty)
  1803. {
  1804. if (mmc_card_sd(card))
  1805. return mmc_sd_erase_timeout(card, arg, qty);
  1806. else
  1807. return mmc_mmc_erase_timeout(card, arg, qty);
  1808. }
  1809. static int mmc_do_erase(struct mmc_card *card, unsigned int from,
  1810. unsigned int to, unsigned int arg)
  1811. {
  1812. struct mmc_command cmd = {};
  1813. unsigned int qty = 0, busy_timeout = 0;
  1814. bool use_r1b_resp = false;
  1815. unsigned long timeout;
  1816. int err;
  1817. mmc_retune_hold(card->host);
  1818. /*
  1819. * qty is used to calculate the erase timeout which depends on how many
  1820. * erase groups (or allocation units in SD terminology) are affected.
  1821. * We count erasing part of an erase group as one erase group.
  1822. * For SD, the allocation units are always a power of 2. For MMC, the
  1823. * erase group size is almost certainly also power of 2, but it does not
  1824. * seem to insist on that in the JEDEC standard, so we fall back to
  1825. * division in that case. SD may not specify an allocation unit size,
  1826. * in which case the timeout is based on the number of write blocks.
  1827. *
  1828. * Note that the timeout for secure trim 2 will only be correct if the
  1829. * number of erase groups specified is the same as the total of all
  1830. * preceding secure trim 1 commands. Since the power may have been
  1831. * lost since the secure trim 1 commands occurred, it is generally
  1832. * impossible to calculate the secure trim 2 timeout correctly.
  1833. */
  1834. if (card->erase_shift)
  1835. qty += ((to >> card->erase_shift) -
  1836. (from >> card->erase_shift)) + 1;
  1837. else if (mmc_card_sd(card))
  1838. qty += to - from + 1;
  1839. else
  1840. qty += ((to / card->erase_size) -
  1841. (from / card->erase_size)) + 1;
  1842. if (!mmc_card_blockaddr(card)) {
  1843. from <<= 9;
  1844. to <<= 9;
  1845. }
  1846. if (mmc_card_sd(card))
  1847. cmd.opcode = SD_ERASE_WR_BLK_START;
  1848. else
  1849. cmd.opcode = MMC_ERASE_GROUP_START;
  1850. cmd.arg = from;
  1851. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  1852. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1853. if (err) {
  1854. pr_err("mmc_erase: group start error %d, "
  1855. "status %#x\n", err, cmd.resp[0]);
  1856. err = -EIO;
  1857. goto out;
  1858. }
  1859. memset(&cmd, 0, sizeof(struct mmc_command));
  1860. if (mmc_card_sd(card))
  1861. cmd.opcode = SD_ERASE_WR_BLK_END;
  1862. else
  1863. cmd.opcode = MMC_ERASE_GROUP_END;
  1864. cmd.arg = to;
  1865. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  1866. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1867. if (err) {
  1868. pr_err("mmc_erase: group end error %d, status %#x\n",
  1869. err, cmd.resp[0]);
  1870. err = -EIO;
  1871. goto out;
  1872. }
  1873. memset(&cmd, 0, sizeof(struct mmc_command));
  1874. cmd.opcode = MMC_ERASE;
  1875. cmd.arg = arg;
  1876. busy_timeout = mmc_erase_timeout(card, arg, qty);
  1877. /*
  1878. * If the host controller supports busy signalling and the timeout for
  1879. * the erase operation does not exceed the max_busy_timeout, we should
  1880. * use R1B response. Or we need to prevent the host from doing hw busy
  1881. * detection, which is done by converting to a R1 response instead.
  1882. */
  1883. if (card->host->max_busy_timeout &&
  1884. busy_timeout > card->host->max_busy_timeout) {
  1885. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  1886. } else {
  1887. cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
  1888. cmd.busy_timeout = busy_timeout;
  1889. use_r1b_resp = true;
  1890. }
  1891. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1892. if (err) {
  1893. pr_err("mmc_erase: erase error %d, status %#x\n",
  1894. err, cmd.resp[0]);
  1895. err = -EIO;
  1896. goto out;
  1897. }
  1898. if (mmc_host_is_spi(card->host))
  1899. goto out;
  1900. /*
  1901. * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
  1902. * shall be avoided.
  1903. */
  1904. if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
  1905. goto out;
  1906. timeout = jiffies + msecs_to_jiffies(busy_timeout);
  1907. do {
  1908. memset(&cmd, 0, sizeof(struct mmc_command));
  1909. cmd.opcode = MMC_SEND_STATUS;
  1910. cmd.arg = card->rca << 16;
  1911. cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1912. /* Do not retry else we can't see errors */
  1913. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  1914. if (err || (cmd.resp[0] & 0xFDF92000)) {
  1915. pr_err("error %d requesting status %#x\n",
  1916. err, cmd.resp[0]);
  1917. err = -EIO;
  1918. goto out;
  1919. }
  1920. /* Timeout if the device never becomes ready for data and
  1921. * never leaves the program state.
  1922. */
  1923. if (time_after(jiffies, timeout)) {
  1924. pr_err("%s: Card stuck in programming state! %s\n",
  1925. mmc_hostname(card->host), __func__);
  1926. err = -EIO;
  1927. goto out;
  1928. }
  1929. } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
  1930. (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
  1931. out:
  1932. mmc_retune_release(card->host);
  1933. return err;
  1934. }
  1935. static unsigned int mmc_align_erase_size(struct mmc_card *card,
  1936. unsigned int *from,
  1937. unsigned int *to,
  1938. unsigned int nr)
  1939. {
  1940. unsigned int from_new = *from, nr_new = nr, rem;
  1941. /*
  1942. * When the 'card->erase_size' is power of 2, we can use round_up/down()
  1943. * to align the erase size efficiently.
  1944. */
  1945. if (is_power_of_2(card->erase_size)) {
  1946. unsigned int temp = from_new;
  1947. from_new = round_up(temp, card->erase_size);
  1948. rem = from_new - temp;
  1949. if (nr_new > rem)
  1950. nr_new -= rem;
  1951. else
  1952. return 0;
  1953. nr_new = round_down(nr_new, card->erase_size);
  1954. } else {
  1955. rem = from_new % card->erase_size;
  1956. if (rem) {
  1957. rem = card->erase_size - rem;
  1958. from_new += rem;
  1959. if (nr_new > rem)
  1960. nr_new -= rem;
  1961. else
  1962. return 0;
  1963. }
  1964. rem = nr_new % card->erase_size;
  1965. if (rem)
  1966. nr_new -= rem;
  1967. }
  1968. if (nr_new == 0)
  1969. return 0;
  1970. *to = from_new + nr_new;
  1971. *from = from_new;
  1972. return nr_new;
  1973. }
  1974. /**
  1975. * mmc_erase - erase sectors.
  1976. * @card: card to erase
  1977. * @from: first sector to erase
  1978. * @nr: number of sectors to erase
  1979. * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
  1980. *
  1981. * Caller must claim host before calling this function.
  1982. */
  1983. int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
  1984. unsigned int arg)
  1985. {
  1986. unsigned int rem, to = from + nr;
  1987. int err;
  1988. if (!(card->host->caps & MMC_CAP_ERASE) ||
  1989. !(card->csd.cmdclass & CCC_ERASE))
  1990. return -EOPNOTSUPP;
  1991. if (!card->erase_size)
  1992. return -EOPNOTSUPP;
  1993. if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
  1994. return -EOPNOTSUPP;
  1995. if ((arg & MMC_SECURE_ARGS) &&
  1996. !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
  1997. return -EOPNOTSUPP;
  1998. if ((arg & MMC_TRIM_ARGS) &&
  1999. !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
  2000. return -EOPNOTSUPP;
  2001. if (arg == MMC_SECURE_ERASE_ARG) {
  2002. if (from % card->erase_size || nr % card->erase_size)
  2003. return -EINVAL;
  2004. }
  2005. if (arg == MMC_ERASE_ARG)
  2006. nr = mmc_align_erase_size(card, &from, &to, nr);
  2007. if (nr == 0)
  2008. return 0;
  2009. if (to <= from)
  2010. return -EINVAL;
  2011. /* 'from' and 'to' are inclusive */
  2012. to -= 1;
  2013. /*
  2014. * Special case where only one erase-group fits in the timeout budget:
  2015. * If the region crosses an erase-group boundary on this particular
  2016. * case, we will be trimming more than one erase-group which, does not
  2017. * fit in the timeout budget of the controller, so we need to split it
  2018. * and call mmc_do_erase() twice if necessary. This special case is
  2019. * identified by the card->eg_boundary flag.
  2020. */
  2021. rem = card->erase_size - (from % card->erase_size);
  2022. if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
  2023. err = mmc_do_erase(card, from, from + rem - 1, arg);
  2024. from += rem;
  2025. if ((err) || (to <= from))
  2026. return err;
  2027. }
  2028. return mmc_do_erase(card, from, to, arg);
  2029. }
  2030. EXPORT_SYMBOL(mmc_erase);
  2031. int mmc_can_erase(struct mmc_card *card)
  2032. {
  2033. if ((card->host->caps & MMC_CAP_ERASE) &&
  2034. (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
  2035. return 1;
  2036. return 0;
  2037. }
  2038. EXPORT_SYMBOL(mmc_can_erase);
  2039. int mmc_can_trim(struct mmc_card *card)
  2040. {
  2041. if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
  2042. (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
  2043. return 1;
  2044. return 0;
  2045. }
  2046. EXPORT_SYMBOL(mmc_can_trim);
  2047. int mmc_can_discard(struct mmc_card *card)
  2048. {
  2049. /*
  2050. * As there's no way to detect the discard support bit at v4.5
  2051. * use the s/w feature support filed.
  2052. */
  2053. if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
  2054. return 1;
  2055. return 0;
  2056. }
  2057. EXPORT_SYMBOL(mmc_can_discard);
  2058. int mmc_can_sanitize(struct mmc_card *card)
  2059. {
  2060. if (!mmc_can_trim(card) && !mmc_can_erase(card))
  2061. return 0;
  2062. if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
  2063. return 1;
  2064. return 0;
  2065. }
  2066. EXPORT_SYMBOL(mmc_can_sanitize);
  2067. int mmc_can_secure_erase_trim(struct mmc_card *card)
  2068. {
  2069. if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
  2070. !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
  2071. return 1;
  2072. return 0;
  2073. }
  2074. EXPORT_SYMBOL(mmc_can_secure_erase_trim);
  2075. int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
  2076. unsigned int nr)
  2077. {
  2078. if (!card->erase_size)
  2079. return 0;
  2080. if (from % card->erase_size || nr % card->erase_size)
  2081. return 0;
  2082. return 1;
  2083. }
  2084. EXPORT_SYMBOL(mmc_erase_group_aligned);
  2085. static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
  2086. unsigned int arg)
  2087. {
  2088. struct mmc_host *host = card->host;
  2089. unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
  2090. unsigned int last_timeout = 0;
  2091. unsigned int max_busy_timeout = host->max_busy_timeout ?
  2092. host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
  2093. if (card->erase_shift) {
  2094. max_qty = UINT_MAX >> card->erase_shift;
  2095. min_qty = card->pref_erase >> card->erase_shift;
  2096. } else if (mmc_card_sd(card)) {
  2097. max_qty = UINT_MAX;
  2098. min_qty = card->pref_erase;
  2099. } else {
  2100. max_qty = UINT_MAX / card->erase_size;
  2101. min_qty = card->pref_erase / card->erase_size;
  2102. }
  2103. /*
  2104. * We should not only use 'host->max_busy_timeout' as the limitation
  2105. * when deciding the max discard sectors. We should set a balance value
  2106. * to improve the erase speed, and it can not get too long timeout at
  2107. * the same time.
  2108. *
  2109. * Here we set 'card->pref_erase' as the minimal discard sectors no
  2110. * matter what size of 'host->max_busy_timeout', but if the
  2111. * 'host->max_busy_timeout' is large enough for more discard sectors,
  2112. * then we can continue to increase the max discard sectors until we
  2113. * get a balance value. In cases when the 'host->max_busy_timeout'
  2114. * isn't specified, use the default max erase timeout.
  2115. */
  2116. do {
  2117. y = 0;
  2118. for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
  2119. timeout = mmc_erase_timeout(card, arg, qty + x);
  2120. if (qty + x > min_qty && timeout > max_busy_timeout)
  2121. break;
  2122. if (timeout < last_timeout)
  2123. break;
  2124. last_timeout = timeout;
  2125. y = x;
  2126. }
  2127. qty += y;
  2128. } while (y);
  2129. if (!qty)
  2130. return 0;
  2131. /*
  2132. * When specifying a sector range to trim, chances are we might cross
  2133. * an erase-group boundary even if the amount of sectors is less than
  2134. * one erase-group.
  2135. * If we can only fit one erase-group in the controller timeout budget,
  2136. * we have to care that erase-group boundaries are not crossed by a
  2137. * single trim operation. We flag that special case with "eg_boundary".
  2138. * In all other cases we can just decrement qty and pretend that we
  2139. * always touch (qty + 1) erase-groups as a simple optimization.
  2140. */
  2141. if (qty == 1)
  2142. card->eg_boundary = 1;
  2143. else
  2144. qty--;
  2145. /* Convert qty to sectors */
  2146. if (card->erase_shift)
  2147. max_discard = qty << card->erase_shift;
  2148. else if (mmc_card_sd(card))
  2149. max_discard = qty + 1;
  2150. else
  2151. max_discard = qty * card->erase_size;
  2152. return max_discard;
  2153. }
  2154. unsigned int mmc_calc_max_discard(struct mmc_card *card)
  2155. {
  2156. struct mmc_host *host = card->host;
  2157. unsigned int max_discard, max_trim;
  2158. /*
  2159. * Without erase_group_def set, MMC erase timeout depends on clock
  2160. * frequence which can change. In that case, the best choice is
  2161. * just the preferred erase size.
  2162. */
  2163. if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
  2164. return card->pref_erase;
  2165. max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
  2166. if (mmc_can_trim(card)) {
  2167. max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
  2168. if (max_trim < max_discard)
  2169. max_discard = max_trim;
  2170. } else if (max_discard < card->erase_size) {
  2171. max_discard = 0;
  2172. }
  2173. pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
  2174. mmc_hostname(host), max_discard, host->max_busy_timeout ?
  2175. host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
  2176. return max_discard;
  2177. }
  2178. EXPORT_SYMBOL(mmc_calc_max_discard);
  2179. bool mmc_card_is_blockaddr(struct mmc_card *card)
  2180. {
  2181. return card ? mmc_card_blockaddr(card) : false;
  2182. }
  2183. EXPORT_SYMBOL(mmc_card_is_blockaddr);
  2184. int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
  2185. {
  2186. struct mmc_command cmd = {};
  2187. if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
  2188. mmc_card_hs400(card) || mmc_card_hs400es(card))
  2189. return 0;
  2190. cmd.opcode = MMC_SET_BLOCKLEN;
  2191. cmd.arg = blocklen;
  2192. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  2193. return mmc_wait_for_cmd(card->host, &cmd, 5);
  2194. }
  2195. EXPORT_SYMBOL(mmc_set_blocklen);
  2196. int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
  2197. bool is_rel_write)
  2198. {
  2199. struct mmc_command cmd = {};
  2200. cmd.opcode = MMC_SET_BLOCK_COUNT;
  2201. cmd.arg = blockcount & 0x0000FFFF;
  2202. if (is_rel_write)
  2203. cmd.arg |= 1 << 31;
  2204. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  2205. return mmc_wait_for_cmd(card->host, &cmd, 5);
  2206. }
  2207. EXPORT_SYMBOL(mmc_set_blockcount);
  2208. static void mmc_hw_reset_for_init(struct mmc_host *host)
  2209. {
  2210. mmc_pwrseq_reset(host);
  2211. if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
  2212. return;
  2213. host->ops->hw_reset(host);
  2214. }
  2215. int mmc_hw_reset(struct mmc_host *host)
  2216. {
  2217. int ret;
  2218. if (!host->card)
  2219. return -EINVAL;
  2220. mmc_bus_get(host);
  2221. if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
  2222. mmc_bus_put(host);
  2223. return -EOPNOTSUPP;
  2224. }
  2225. ret = host->bus_ops->reset(host);
  2226. mmc_bus_put(host);
  2227. if (ret)
  2228. pr_warn("%s: tried to reset card, got error %d\n",
  2229. mmc_hostname(host), ret);
  2230. return ret;
  2231. }
  2232. EXPORT_SYMBOL(mmc_hw_reset);
  2233. static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
  2234. {
  2235. host->f_init = freq;
  2236. pr_debug("%s: %s: trying to init card at %u Hz\n",
  2237. mmc_hostname(host), __func__, host->f_init);
  2238. mmc_power_up(host, host->ocr_avail);
  2239. /*
  2240. * Some eMMCs (with VCCQ always on) may not be reset after power up, so
  2241. * do a hardware reset if possible.
  2242. */
  2243. mmc_hw_reset_for_init(host);
  2244. /*
  2245. * sdio_reset sends CMD52 to reset card. Since we do not know
  2246. * if the card is being re-initialized, just send it. CMD52
  2247. * should be ignored by SD/eMMC cards.
  2248. * Skip it if we already know that we do not support SDIO commands
  2249. */
  2250. if (!(host->caps2 & MMC_CAP2_NO_SDIO))
  2251. sdio_reset(host);
  2252. mmc_go_idle(host);
  2253. if (!(host->caps2 & MMC_CAP2_NO_SD))
  2254. mmc_send_if_cond(host, host->ocr_avail);
  2255. /* Order's important: probe SDIO, then SD, then MMC */
  2256. if (!(host->caps2 & MMC_CAP2_NO_SDIO))
  2257. if (!mmc_attach_sdio(host))
  2258. return 0;
  2259. if (!(host->caps2 & MMC_CAP2_NO_SD))
  2260. if (!mmc_attach_sd(host))
  2261. return 0;
  2262. if (!(host->caps2 & MMC_CAP2_NO_MMC))
  2263. if (!mmc_attach_mmc(host))
  2264. return 0;
  2265. mmc_power_off(host);
  2266. return -EIO;
  2267. }
  2268. int _mmc_detect_card_removed(struct mmc_host *host)
  2269. {
  2270. int ret;
  2271. if (!host->card || mmc_card_removed(host->card))
  2272. return 1;
  2273. ret = host->bus_ops->alive(host);
  2274. /*
  2275. * Card detect status and alive check may be out of sync if card is
  2276. * removed slowly, when card detect switch changes while card/slot
  2277. * pads are still contacted in hardware (refer to "SD Card Mechanical
  2278. * Addendum, Appendix C: Card Detection Switch"). So reschedule a
  2279. * detect work 200ms later for this case.
  2280. */
  2281. if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
  2282. mmc_detect_change(host, msecs_to_jiffies(200));
  2283. pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
  2284. }
  2285. if (ret) {
  2286. mmc_card_set_removed(host->card);
  2287. pr_debug("%s: card remove detected\n", mmc_hostname(host));
  2288. }
  2289. return ret;
  2290. }
  2291. int mmc_detect_card_removed(struct mmc_host *host)
  2292. {
  2293. struct mmc_card *card = host->card;
  2294. int ret;
  2295. WARN_ON(!host->claimed);
  2296. if (!card)
  2297. return 1;
  2298. if (!mmc_card_is_removable(host))
  2299. return 0;
  2300. ret = mmc_card_removed(card);
  2301. /*
  2302. * The card will be considered unchanged unless we have been asked to
  2303. * detect a change or host requires polling to provide card detection.
  2304. */
  2305. if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
  2306. return ret;
  2307. host->detect_change = 0;
  2308. if (!ret) {
  2309. ret = _mmc_detect_card_removed(host);
  2310. if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
  2311. /*
  2312. * Schedule a detect work as soon as possible to let a
  2313. * rescan handle the card removal.
  2314. */
  2315. cancel_delayed_work(&host->detect);
  2316. _mmc_detect_change(host, 0, false);
  2317. }
  2318. }
  2319. return ret;
  2320. }
  2321. EXPORT_SYMBOL(mmc_detect_card_removed);
  2322. void mmc_rescan(struct work_struct *work)
  2323. {
  2324. struct mmc_host *host =
  2325. container_of(work, struct mmc_host, detect.work);
  2326. int i;
  2327. if (host->rescan_disable)
  2328. return;
  2329. /* If there is a non-removable card registered, only scan once */
  2330. if (!mmc_card_is_removable(host) && host->rescan_entered)
  2331. return;
  2332. host->rescan_entered = 1;
  2333. if (host->trigger_card_event && host->ops->card_event) {
  2334. mmc_claim_host(host);
  2335. host->ops->card_event(host);
  2336. mmc_release_host(host);
  2337. host->trigger_card_event = false;
  2338. }
  2339. mmc_bus_get(host);
  2340. /*
  2341. * if there is a _removable_ card registered, check whether it is
  2342. * still present
  2343. */
  2344. if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
  2345. host->bus_ops->detect(host);
  2346. host->detect_change = 0;
  2347. /*
  2348. * Let mmc_bus_put() free the bus/bus_ops if we've found that
  2349. * the card is no longer present.
  2350. */
  2351. mmc_bus_put(host);
  2352. mmc_bus_get(host);
  2353. /* if there still is a card present, stop here */
  2354. if (host->bus_ops != NULL) {
  2355. mmc_bus_put(host);
  2356. goto out;
  2357. }
  2358. /*
  2359. * Only we can add a new handler, so it's safe to
  2360. * release the lock here.
  2361. */
  2362. mmc_bus_put(host);
  2363. mmc_claim_host(host);
  2364. if (mmc_card_is_removable(host) && host->ops->get_cd &&
  2365. host->ops->get_cd(host) == 0) {
  2366. mmc_power_off(host);
  2367. mmc_release_host(host);
  2368. goto out;
  2369. }
  2370. for (i = 0; i < ARRAY_SIZE(freqs); i++) {
  2371. if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
  2372. break;
  2373. if (freqs[i] <= host->f_min)
  2374. break;
  2375. }
  2376. mmc_release_host(host);
  2377. out:
  2378. if (host->caps & MMC_CAP_NEEDS_POLL)
  2379. mmc_schedule_delayed_work(&host->detect, HZ);
  2380. }
  2381. void mmc_start_host(struct mmc_host *host)
  2382. {
  2383. host->f_init = max(freqs[0], host->f_min);
  2384. host->rescan_disable = 0;
  2385. host->ios.power_mode = MMC_POWER_UNDEFINED;
  2386. if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
  2387. mmc_claim_host(host);
  2388. mmc_power_up(host, host->ocr_avail);
  2389. mmc_release_host(host);
  2390. }
  2391. mmc_gpiod_request_cd_irq(host);
  2392. _mmc_detect_change(host, 0, false);
  2393. }
  2394. void mmc_stop_host(struct mmc_host *host)
  2395. {
  2396. if (host->slot.cd_irq >= 0) {
  2397. if (host->slot.cd_wake_enabled)
  2398. disable_irq_wake(host->slot.cd_irq);
  2399. disable_irq(host->slot.cd_irq);
  2400. }
  2401. host->rescan_disable = 1;
  2402. cancel_delayed_work_sync(&host->detect);
  2403. /* clear pm flags now and let card drivers set them as needed */
  2404. host->pm_flags = 0;
  2405. mmc_bus_get(host);
  2406. if (host->bus_ops && !host->bus_dead) {
  2407. /* Calling bus_ops->remove() with a claimed host can deadlock */
  2408. host->bus_ops->remove(host);
  2409. mmc_claim_host(host);
  2410. mmc_detach_bus(host);
  2411. mmc_power_off(host);
  2412. mmc_release_host(host);
  2413. mmc_bus_put(host);
  2414. return;
  2415. }
  2416. mmc_bus_put(host);
  2417. mmc_claim_host(host);
  2418. mmc_power_off(host);
  2419. mmc_release_host(host);
  2420. }
  2421. int mmc_power_save_host(struct mmc_host *host)
  2422. {
  2423. int ret = 0;
  2424. pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
  2425. mmc_bus_get(host);
  2426. if (!host->bus_ops || host->bus_dead) {
  2427. mmc_bus_put(host);
  2428. return -EINVAL;
  2429. }
  2430. if (host->bus_ops->power_save)
  2431. ret = host->bus_ops->power_save(host);
  2432. mmc_bus_put(host);
  2433. mmc_power_off(host);
  2434. return ret;
  2435. }
  2436. EXPORT_SYMBOL(mmc_power_save_host);
  2437. int mmc_power_restore_host(struct mmc_host *host)
  2438. {
  2439. int ret;
  2440. pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
  2441. mmc_bus_get(host);
  2442. if (!host->bus_ops || host->bus_dead) {
  2443. mmc_bus_put(host);
  2444. return -EINVAL;
  2445. }
  2446. mmc_power_up(host, host->card->ocr);
  2447. ret = host->bus_ops->power_restore(host);
  2448. mmc_bus_put(host);
  2449. return ret;
  2450. }
  2451. EXPORT_SYMBOL(mmc_power_restore_host);
  2452. #ifdef CONFIG_PM_SLEEP
  2453. /* Do the card removal on suspend if card is assumed removeable
  2454. * Do that in pm notifier while userspace isn't yet frozen, so we will be able
  2455. to sync the card.
  2456. */
  2457. static int mmc_pm_notify(struct notifier_block *notify_block,
  2458. unsigned long mode, void *unused)
  2459. {
  2460. struct mmc_host *host = container_of(
  2461. notify_block, struct mmc_host, pm_notify);
  2462. unsigned long flags;
  2463. int err = 0;
  2464. switch (mode) {
  2465. case PM_HIBERNATION_PREPARE:
  2466. case PM_SUSPEND_PREPARE:
  2467. case PM_RESTORE_PREPARE:
  2468. spin_lock_irqsave(&host->lock, flags);
  2469. host->rescan_disable = 1;
  2470. spin_unlock_irqrestore(&host->lock, flags);
  2471. cancel_delayed_work_sync(&host->detect);
  2472. if (!host->bus_ops)
  2473. break;
  2474. /* Validate prerequisites for suspend */
  2475. if (host->bus_ops->pre_suspend)
  2476. err = host->bus_ops->pre_suspend(host);
  2477. if (!err)
  2478. break;
  2479. /* Calling bus_ops->remove() with a claimed host can deadlock */
  2480. host->bus_ops->remove(host);
  2481. mmc_claim_host(host);
  2482. mmc_detach_bus(host);
  2483. mmc_power_off(host);
  2484. mmc_release_host(host);
  2485. host->pm_flags = 0;
  2486. break;
  2487. case PM_POST_SUSPEND:
  2488. case PM_POST_HIBERNATION:
  2489. case PM_POST_RESTORE:
  2490. spin_lock_irqsave(&host->lock, flags);
  2491. host->rescan_disable = 0;
  2492. spin_unlock_irqrestore(&host->lock, flags);
  2493. _mmc_detect_change(host, 0, false);
  2494. }
  2495. return 0;
  2496. }
  2497. void mmc_register_pm_notifier(struct mmc_host *host)
  2498. {
  2499. host->pm_notify.notifier_call = mmc_pm_notify;
  2500. register_pm_notifier(&host->pm_notify);
  2501. }
  2502. void mmc_unregister_pm_notifier(struct mmc_host *host)
  2503. {
  2504. unregister_pm_notifier(&host->pm_notify);
  2505. }
  2506. #endif
  2507. /**
  2508. * mmc_init_context_info() - init synchronization context
  2509. * @host: mmc host
  2510. *
  2511. * Init struct context_info needed to implement asynchronous
  2512. * request mechanism, used by mmc core, host driver and mmc requests
  2513. * supplier.
  2514. */
  2515. void mmc_init_context_info(struct mmc_host *host)
  2516. {
  2517. host->context_info.is_new_req = false;
  2518. host->context_info.is_done_rcv = false;
  2519. host->context_info.is_waiting_last_req = false;
  2520. init_waitqueue_head(&host->context_info.wait);
  2521. }
  2522. static int __init mmc_init(void)
  2523. {
  2524. int ret;
  2525. ret = mmc_register_bus();
  2526. if (ret)
  2527. return ret;
  2528. ret = mmc_register_host_class();
  2529. if (ret)
  2530. goto unregister_bus;
  2531. ret = sdio_register_bus();
  2532. if (ret)
  2533. goto unregister_host_class;
  2534. return 0;
  2535. unregister_host_class:
  2536. mmc_unregister_host_class();
  2537. unregister_bus:
  2538. mmc_unregister_bus();
  2539. return ret;
  2540. }
  2541. static void __exit mmc_exit(void)
  2542. {
  2543. sdio_unregister_bus();
  2544. mmc_unregister_host_class();
  2545. mmc_unregister_bus();
  2546. }
  2547. subsys_initcall(mmc_init);
  2548. module_exit(mmc_exit);
  2549. MODULE_LICENSE("GPL");