net_namespace.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/workqueue.h>
  3. #include <linux/rtnetlink.h>
  4. #include <linux/cache.h>
  5. #include <linux/slab.h>
  6. #include <linux/list.h>
  7. #include <linux/delay.h>
  8. #include <linux/sched.h>
  9. #include <linux/idr.h>
  10. #include <linux/rculist.h>
  11. #include <linux/nsproxy.h>
  12. #include <linux/fs.h>
  13. #include <linux/proc_ns.h>
  14. #include <linux/file.h>
  15. #include <linux/export.h>
  16. #include <linux/user_namespace.h>
  17. #include <linux/net_namespace.h>
  18. #include <net/sock.h>
  19. #include <net/netlink.h>
  20. #include <net/net_namespace.h>
  21. #include <net/netns/generic.h>
  22. /*
  23. * Our network namespace constructor/destructor lists
  24. */
  25. static LIST_HEAD(pernet_list);
  26. static struct list_head *first_device = &pernet_list;
  27. DEFINE_MUTEX(net_mutex);
  28. LIST_HEAD(net_namespace_list);
  29. EXPORT_SYMBOL_GPL(net_namespace_list);
  30. struct net init_net = {
  31. .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
  32. };
  33. EXPORT_SYMBOL(init_net);
  34. #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */
  35. static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
  36. static struct net_generic *net_alloc_generic(void)
  37. {
  38. struct net_generic *ng;
  39. size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
  40. ng = kzalloc(generic_size, GFP_KERNEL);
  41. if (ng)
  42. ng->len = max_gen_ptrs;
  43. return ng;
  44. }
  45. static int net_assign_generic(struct net *net, int id, void *data)
  46. {
  47. struct net_generic *ng, *old_ng;
  48. BUG_ON(!mutex_is_locked(&net_mutex));
  49. BUG_ON(id == 0);
  50. old_ng = rcu_dereference_protected(net->gen,
  51. lockdep_is_held(&net_mutex));
  52. ng = old_ng;
  53. if (old_ng->len >= id)
  54. goto assign;
  55. ng = net_alloc_generic();
  56. if (ng == NULL)
  57. return -ENOMEM;
  58. /*
  59. * Some synchronisation notes:
  60. *
  61. * The net_generic explores the net->gen array inside rcu
  62. * read section. Besides once set the net->gen->ptr[x]
  63. * pointer never changes (see rules in netns/generic.h).
  64. *
  65. * That said, we simply duplicate this array and schedule
  66. * the old copy for kfree after a grace period.
  67. */
  68. memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
  69. rcu_assign_pointer(net->gen, ng);
  70. kfree_rcu(old_ng, rcu);
  71. assign:
  72. ng->ptr[id - 1] = data;
  73. return 0;
  74. }
  75. static int ops_init(const struct pernet_operations *ops, struct net *net)
  76. {
  77. int err = -ENOMEM;
  78. void *data = NULL;
  79. if (ops->id && ops->size) {
  80. data = kzalloc(ops->size, GFP_KERNEL);
  81. if (!data)
  82. goto out;
  83. err = net_assign_generic(net, *ops->id, data);
  84. if (err)
  85. goto cleanup;
  86. }
  87. err = 0;
  88. if (ops->init)
  89. err = ops->init(net);
  90. if (!err)
  91. return 0;
  92. cleanup:
  93. kfree(data);
  94. out:
  95. return err;
  96. }
  97. static void ops_free(const struct pernet_operations *ops, struct net *net)
  98. {
  99. if (ops->id && ops->size) {
  100. int id = *ops->id;
  101. kfree(net_generic(net, id));
  102. }
  103. }
  104. static void ops_exit_list(const struct pernet_operations *ops,
  105. struct list_head *net_exit_list)
  106. {
  107. struct net *net;
  108. if (ops->exit) {
  109. list_for_each_entry(net, net_exit_list, exit_list)
  110. ops->exit(net);
  111. }
  112. if (ops->exit_batch)
  113. ops->exit_batch(net_exit_list);
  114. }
  115. static void ops_free_list(const struct pernet_operations *ops,
  116. struct list_head *net_exit_list)
  117. {
  118. struct net *net;
  119. if (ops->size && ops->id) {
  120. list_for_each_entry(net, net_exit_list, exit_list)
  121. ops_free(ops, net);
  122. }
  123. }
  124. static void rtnl_net_notifyid(struct net *net, int cmd, int id);
  125. static int alloc_netid(struct net *net, struct net *peer, int reqid)
  126. {
  127. int min = 0, max = 0, id;
  128. ASSERT_RTNL();
  129. if (reqid >= 0) {
  130. min = reqid;
  131. max = reqid + 1;
  132. }
  133. id = idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
  134. if (id >= 0)
  135. rtnl_net_notifyid(net, RTM_NEWNSID, id);
  136. return id;
  137. }
  138. /* This function is used by idr_for_each(). If net is equal to peer, the
  139. * function returns the id so that idr_for_each() stops. Because we cannot
  140. * returns the id 0 (idr_for_each() will not stop), we return the magic value
  141. * NET_ID_ZERO (-1) for it.
  142. */
  143. #define NET_ID_ZERO -1
  144. static int net_eq_idr(int id, void *net, void *peer)
  145. {
  146. if (net_eq(net, peer))
  147. return id ? : NET_ID_ZERO;
  148. return 0;
  149. }
  150. static int __peernet2id(struct net *net, struct net *peer, bool alloc)
  151. {
  152. int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
  153. ASSERT_RTNL();
  154. /* Magic value for id 0. */
  155. if (id == NET_ID_ZERO)
  156. return 0;
  157. if (id > 0)
  158. return id;
  159. if (alloc) {
  160. id = alloc_netid(net, peer, -1);
  161. return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
  162. }
  163. return NETNSA_NSID_NOT_ASSIGNED;
  164. }
  165. /* This function returns the id of a peer netns. If no id is assigned, one will
  166. * be allocated and returned.
  167. */
  168. int peernet2id(struct net *net, struct net *peer)
  169. {
  170. bool alloc = atomic_read(&peer->count) == 0 ? false : true;
  171. return __peernet2id(net, peer, alloc);
  172. }
  173. EXPORT_SYMBOL(peernet2id);
  174. struct net *get_net_ns_by_id(struct net *net, int id)
  175. {
  176. struct net *peer;
  177. if (id < 0)
  178. return NULL;
  179. rcu_read_lock();
  180. peer = idr_find(&net->netns_ids, id);
  181. if (peer)
  182. get_net(peer);
  183. rcu_read_unlock();
  184. return peer;
  185. }
  186. /*
  187. * setup_net runs the initializers for the network namespace object.
  188. */
  189. static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
  190. {
  191. /* Must be called with net_mutex held */
  192. const struct pernet_operations *ops, *saved_ops;
  193. int error = 0;
  194. LIST_HEAD(net_exit_list);
  195. atomic_set(&net->count, 1);
  196. atomic_set(&net->passive, 1);
  197. net->dev_base_seq = 1;
  198. net->user_ns = user_ns;
  199. idr_init(&net->netns_ids);
  200. list_for_each_entry(ops, &pernet_list, list) {
  201. error = ops_init(ops, net);
  202. if (error < 0)
  203. goto out_undo;
  204. }
  205. out:
  206. return error;
  207. out_undo:
  208. /* Walk through the list backwards calling the exit functions
  209. * for the pernet modules whose init functions did not fail.
  210. */
  211. list_add(&net->exit_list, &net_exit_list);
  212. saved_ops = ops;
  213. list_for_each_entry_continue_reverse(ops, &pernet_list, list)
  214. ops_exit_list(ops, &net_exit_list);
  215. ops = saved_ops;
  216. list_for_each_entry_continue_reverse(ops, &pernet_list, list)
  217. ops_free_list(ops, &net_exit_list);
  218. rcu_barrier();
  219. goto out;
  220. }
  221. #ifdef CONFIG_NET_NS
  222. static struct kmem_cache *net_cachep;
  223. static struct workqueue_struct *netns_wq;
  224. static struct net *net_alloc(void)
  225. {
  226. struct net *net = NULL;
  227. struct net_generic *ng;
  228. ng = net_alloc_generic();
  229. if (!ng)
  230. goto out;
  231. net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
  232. if (!net)
  233. goto out_free;
  234. rcu_assign_pointer(net->gen, ng);
  235. out:
  236. return net;
  237. out_free:
  238. kfree(ng);
  239. goto out;
  240. }
  241. static void net_free(struct net *net)
  242. {
  243. kfree(rcu_access_pointer(net->gen));
  244. kmem_cache_free(net_cachep, net);
  245. }
  246. void net_drop_ns(void *p)
  247. {
  248. struct net *ns = p;
  249. if (ns && atomic_dec_and_test(&ns->passive))
  250. net_free(ns);
  251. }
  252. struct net *copy_net_ns(unsigned long flags,
  253. struct user_namespace *user_ns, struct net *old_net)
  254. {
  255. struct net *net;
  256. int rv;
  257. if (!(flags & CLONE_NEWNET))
  258. return get_net(old_net);
  259. net = net_alloc();
  260. if (!net)
  261. return ERR_PTR(-ENOMEM);
  262. get_user_ns(user_ns);
  263. mutex_lock(&net_mutex);
  264. rv = setup_net(net, user_ns);
  265. if (rv == 0) {
  266. rtnl_lock();
  267. list_add_tail_rcu(&net->list, &net_namespace_list);
  268. rtnl_unlock();
  269. }
  270. mutex_unlock(&net_mutex);
  271. if (rv < 0) {
  272. put_user_ns(user_ns);
  273. net_drop_ns(net);
  274. return ERR_PTR(rv);
  275. }
  276. return net;
  277. }
  278. static DEFINE_SPINLOCK(cleanup_list_lock);
  279. static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */
  280. static void cleanup_net(struct work_struct *work)
  281. {
  282. const struct pernet_operations *ops;
  283. struct net *net, *tmp;
  284. struct list_head net_kill_list;
  285. LIST_HEAD(net_exit_list);
  286. /* Atomically snapshot the list of namespaces to cleanup */
  287. spin_lock_irq(&cleanup_list_lock);
  288. list_replace_init(&cleanup_list, &net_kill_list);
  289. spin_unlock_irq(&cleanup_list_lock);
  290. mutex_lock(&net_mutex);
  291. /* Don't let anyone else find us. */
  292. rtnl_lock();
  293. list_for_each_entry(net, &net_kill_list, cleanup_list) {
  294. list_del_rcu(&net->list);
  295. list_add_tail(&net->exit_list, &net_exit_list);
  296. for_each_net(tmp) {
  297. int id = __peernet2id(tmp, net, false);
  298. if (id >= 0) {
  299. rtnl_net_notifyid(tmp, RTM_DELNSID, id);
  300. idr_remove(&tmp->netns_ids, id);
  301. }
  302. }
  303. idr_destroy(&net->netns_ids);
  304. }
  305. rtnl_unlock();
  306. /*
  307. * Another CPU might be rcu-iterating the list, wait for it.
  308. * This needs to be before calling the exit() notifiers, so
  309. * the rcu_barrier() below isn't sufficient alone.
  310. */
  311. synchronize_rcu();
  312. /* Run all of the network namespace exit methods */
  313. list_for_each_entry_reverse(ops, &pernet_list, list)
  314. ops_exit_list(ops, &net_exit_list);
  315. /* Free the net generic variables */
  316. list_for_each_entry_reverse(ops, &pernet_list, list)
  317. ops_free_list(ops, &net_exit_list);
  318. mutex_unlock(&net_mutex);
  319. /* Ensure there are no outstanding rcu callbacks using this
  320. * network namespace.
  321. */
  322. rcu_barrier();
  323. /* Finally it is safe to free my network namespace structure */
  324. list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
  325. list_del_init(&net->exit_list);
  326. put_user_ns(net->user_ns);
  327. net_drop_ns(net);
  328. }
  329. }
  330. static DECLARE_WORK(net_cleanup_work, cleanup_net);
  331. void __put_net(struct net *net)
  332. {
  333. /* Cleanup the network namespace in process context */
  334. unsigned long flags;
  335. spin_lock_irqsave(&cleanup_list_lock, flags);
  336. list_add(&net->cleanup_list, &cleanup_list);
  337. spin_unlock_irqrestore(&cleanup_list_lock, flags);
  338. queue_work(netns_wq, &net_cleanup_work);
  339. }
  340. EXPORT_SYMBOL_GPL(__put_net);
  341. struct net *get_net_ns_by_fd(int fd)
  342. {
  343. struct file *file;
  344. struct ns_common *ns;
  345. struct net *net;
  346. file = proc_ns_fget(fd);
  347. if (IS_ERR(file))
  348. return ERR_CAST(file);
  349. ns = get_proc_ns(file_inode(file));
  350. if (ns->ops == &netns_operations)
  351. net = get_net(container_of(ns, struct net, ns));
  352. else
  353. net = ERR_PTR(-EINVAL);
  354. fput(file);
  355. return net;
  356. }
  357. #else
  358. struct net *get_net_ns_by_fd(int fd)
  359. {
  360. return ERR_PTR(-EINVAL);
  361. }
  362. #endif
  363. EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
  364. struct net *get_net_ns_by_pid(pid_t pid)
  365. {
  366. struct task_struct *tsk;
  367. struct net *net;
  368. /* Lookup the network namespace */
  369. net = ERR_PTR(-ESRCH);
  370. rcu_read_lock();
  371. tsk = find_task_by_vpid(pid);
  372. if (tsk) {
  373. struct nsproxy *nsproxy;
  374. task_lock(tsk);
  375. nsproxy = tsk->nsproxy;
  376. if (nsproxy)
  377. net = get_net(nsproxy->net_ns);
  378. task_unlock(tsk);
  379. }
  380. rcu_read_unlock();
  381. return net;
  382. }
  383. EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
  384. static __net_init int net_ns_net_init(struct net *net)
  385. {
  386. #ifdef CONFIG_NET_NS
  387. net->ns.ops = &netns_operations;
  388. #endif
  389. return ns_alloc_inum(&net->ns);
  390. }
  391. static __net_exit void net_ns_net_exit(struct net *net)
  392. {
  393. ns_free_inum(&net->ns);
  394. }
  395. static struct pernet_operations __net_initdata net_ns_ops = {
  396. .init = net_ns_net_init,
  397. .exit = net_ns_net_exit,
  398. };
  399. static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
  400. [NETNSA_NONE] = { .type = NLA_UNSPEC },
  401. [NETNSA_NSID] = { .type = NLA_S32 },
  402. [NETNSA_PID] = { .type = NLA_U32 },
  403. [NETNSA_FD] = { .type = NLA_U32 },
  404. };
  405. static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
  406. {
  407. struct net *net = sock_net(skb->sk);
  408. struct nlattr *tb[NETNSA_MAX + 1];
  409. struct net *peer;
  410. int nsid, err;
  411. err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
  412. rtnl_net_policy);
  413. if (err < 0)
  414. return err;
  415. if (!tb[NETNSA_NSID])
  416. return -EINVAL;
  417. nsid = nla_get_s32(tb[NETNSA_NSID]);
  418. if (tb[NETNSA_PID])
  419. peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
  420. else if (tb[NETNSA_FD])
  421. peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
  422. else
  423. return -EINVAL;
  424. if (IS_ERR(peer))
  425. return PTR_ERR(peer);
  426. if (__peernet2id(net, peer, false) >= 0) {
  427. err = -EEXIST;
  428. goto out;
  429. }
  430. err = alloc_netid(net, peer, nsid);
  431. if (err > 0)
  432. err = 0;
  433. out:
  434. put_net(peer);
  435. return err;
  436. }
  437. static int rtnl_net_get_size(void)
  438. {
  439. return NLMSG_ALIGN(sizeof(struct rtgenmsg))
  440. + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
  441. ;
  442. }
  443. static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
  444. int cmd, struct net *net, int nsid)
  445. {
  446. struct nlmsghdr *nlh;
  447. struct rtgenmsg *rth;
  448. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
  449. if (!nlh)
  450. return -EMSGSIZE;
  451. rth = nlmsg_data(nlh);
  452. rth->rtgen_family = AF_UNSPEC;
  453. if (nla_put_s32(skb, NETNSA_NSID, nsid))
  454. goto nla_put_failure;
  455. nlmsg_end(skb, nlh);
  456. return 0;
  457. nla_put_failure:
  458. nlmsg_cancel(skb, nlh);
  459. return -EMSGSIZE;
  460. }
  461. static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
  462. {
  463. struct net *net = sock_net(skb->sk);
  464. struct nlattr *tb[NETNSA_MAX + 1];
  465. struct sk_buff *msg;
  466. struct net *peer;
  467. int err, id;
  468. err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
  469. rtnl_net_policy);
  470. if (err < 0)
  471. return err;
  472. if (tb[NETNSA_PID])
  473. peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
  474. else if (tb[NETNSA_FD])
  475. peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
  476. else
  477. return -EINVAL;
  478. if (IS_ERR(peer))
  479. return PTR_ERR(peer);
  480. msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
  481. if (!msg) {
  482. err = -ENOMEM;
  483. goto out;
  484. }
  485. id = __peernet2id(net, peer, false);
  486. err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
  487. RTM_GETNSID, net, id);
  488. if (err < 0)
  489. goto err_out;
  490. err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
  491. goto out;
  492. err_out:
  493. nlmsg_free(msg);
  494. out:
  495. put_net(peer);
  496. return err;
  497. }
  498. struct rtnl_net_dump_cb {
  499. struct net *net;
  500. struct sk_buff *skb;
  501. struct netlink_callback *cb;
  502. int idx;
  503. int s_idx;
  504. };
  505. static int rtnl_net_dumpid_one(int id, void *peer, void *data)
  506. {
  507. struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
  508. int ret;
  509. if (net_cb->idx < net_cb->s_idx)
  510. goto cont;
  511. ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
  512. net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
  513. RTM_NEWNSID, net_cb->net, id);
  514. if (ret < 0)
  515. return ret;
  516. cont:
  517. net_cb->idx++;
  518. return 0;
  519. }
  520. static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
  521. {
  522. struct net *net = sock_net(skb->sk);
  523. struct rtnl_net_dump_cb net_cb = {
  524. .net = net,
  525. .skb = skb,
  526. .cb = cb,
  527. .idx = 0,
  528. .s_idx = cb->args[0],
  529. };
  530. ASSERT_RTNL();
  531. idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
  532. cb->args[0] = net_cb.idx;
  533. return skb->len;
  534. }
  535. static void rtnl_net_notifyid(struct net *net, int cmd, int id)
  536. {
  537. struct sk_buff *msg;
  538. int err = -ENOMEM;
  539. msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
  540. if (!msg)
  541. goto out;
  542. err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
  543. if (err < 0)
  544. goto err_out;
  545. rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
  546. return;
  547. err_out:
  548. nlmsg_free(msg);
  549. out:
  550. rtnl_set_sk_err(net, RTNLGRP_NSID, err);
  551. }
  552. static int __init net_ns_init(void)
  553. {
  554. struct net_generic *ng;
  555. #ifdef CONFIG_NET_NS
  556. net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
  557. SMP_CACHE_BYTES,
  558. SLAB_PANIC, NULL);
  559. /* Create workqueue for cleanup */
  560. netns_wq = create_singlethread_workqueue("netns");
  561. if (!netns_wq)
  562. panic("Could not create netns workq");
  563. #endif
  564. ng = net_alloc_generic();
  565. if (!ng)
  566. panic("Could not allocate generic netns");
  567. rcu_assign_pointer(init_net.gen, ng);
  568. mutex_lock(&net_mutex);
  569. if (setup_net(&init_net, &init_user_ns))
  570. panic("Could not setup the initial network namespace");
  571. rtnl_lock();
  572. list_add_tail_rcu(&init_net.list, &net_namespace_list);
  573. rtnl_unlock();
  574. mutex_unlock(&net_mutex);
  575. register_pernet_subsys(&net_ns_ops);
  576. rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
  577. rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
  578. NULL);
  579. return 0;
  580. }
  581. pure_initcall(net_ns_init);
  582. #ifdef CONFIG_NET_NS
  583. static int __register_pernet_operations(struct list_head *list,
  584. struct pernet_operations *ops)
  585. {
  586. struct net *net;
  587. int error;
  588. LIST_HEAD(net_exit_list);
  589. list_add_tail(&ops->list, list);
  590. if (ops->init || (ops->id && ops->size)) {
  591. for_each_net(net) {
  592. error = ops_init(ops, net);
  593. if (error)
  594. goto out_undo;
  595. list_add_tail(&net->exit_list, &net_exit_list);
  596. }
  597. }
  598. return 0;
  599. out_undo:
  600. /* If I have an error cleanup all namespaces I initialized */
  601. list_del(&ops->list);
  602. ops_exit_list(ops, &net_exit_list);
  603. ops_free_list(ops, &net_exit_list);
  604. return error;
  605. }
  606. static void __unregister_pernet_operations(struct pernet_operations *ops)
  607. {
  608. struct net *net;
  609. LIST_HEAD(net_exit_list);
  610. list_del(&ops->list);
  611. for_each_net(net)
  612. list_add_tail(&net->exit_list, &net_exit_list);
  613. ops_exit_list(ops, &net_exit_list);
  614. ops_free_list(ops, &net_exit_list);
  615. }
  616. #else
  617. static int __register_pernet_operations(struct list_head *list,
  618. struct pernet_operations *ops)
  619. {
  620. return ops_init(ops, &init_net);
  621. }
  622. static void __unregister_pernet_operations(struct pernet_operations *ops)
  623. {
  624. LIST_HEAD(net_exit_list);
  625. list_add(&init_net.exit_list, &net_exit_list);
  626. ops_exit_list(ops, &net_exit_list);
  627. ops_free_list(ops, &net_exit_list);
  628. }
  629. #endif /* CONFIG_NET_NS */
  630. static DEFINE_IDA(net_generic_ids);
  631. static int register_pernet_operations(struct list_head *list,
  632. struct pernet_operations *ops)
  633. {
  634. int error;
  635. if (ops->id) {
  636. again:
  637. error = ida_get_new_above(&net_generic_ids, 1, ops->id);
  638. if (error < 0) {
  639. if (error == -EAGAIN) {
  640. ida_pre_get(&net_generic_ids, GFP_KERNEL);
  641. goto again;
  642. }
  643. return error;
  644. }
  645. max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
  646. }
  647. error = __register_pernet_operations(list, ops);
  648. if (error) {
  649. rcu_barrier();
  650. if (ops->id)
  651. ida_remove(&net_generic_ids, *ops->id);
  652. }
  653. return error;
  654. }
  655. static void unregister_pernet_operations(struct pernet_operations *ops)
  656. {
  657. __unregister_pernet_operations(ops);
  658. rcu_barrier();
  659. if (ops->id)
  660. ida_remove(&net_generic_ids, *ops->id);
  661. }
  662. /**
  663. * register_pernet_subsys - register a network namespace subsystem
  664. * @ops: pernet operations structure for the subsystem
  665. *
  666. * Register a subsystem which has init and exit functions
  667. * that are called when network namespaces are created and
  668. * destroyed respectively.
  669. *
  670. * When registered all network namespace init functions are
  671. * called for every existing network namespace. Allowing kernel
  672. * modules to have a race free view of the set of network namespaces.
  673. *
  674. * When a new network namespace is created all of the init
  675. * methods are called in the order in which they were registered.
  676. *
  677. * When a network namespace is destroyed all of the exit methods
  678. * are called in the reverse of the order with which they were
  679. * registered.
  680. */
  681. int register_pernet_subsys(struct pernet_operations *ops)
  682. {
  683. int error;
  684. mutex_lock(&net_mutex);
  685. error = register_pernet_operations(first_device, ops);
  686. mutex_unlock(&net_mutex);
  687. return error;
  688. }
  689. EXPORT_SYMBOL_GPL(register_pernet_subsys);
  690. /**
  691. * unregister_pernet_subsys - unregister a network namespace subsystem
  692. * @ops: pernet operations structure to manipulate
  693. *
  694. * Remove the pernet operations structure from the list to be
  695. * used when network namespaces are created or destroyed. In
  696. * addition run the exit method for all existing network
  697. * namespaces.
  698. */
  699. void unregister_pernet_subsys(struct pernet_operations *ops)
  700. {
  701. mutex_lock(&net_mutex);
  702. unregister_pernet_operations(ops);
  703. mutex_unlock(&net_mutex);
  704. }
  705. EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
  706. /**
  707. * register_pernet_device - register a network namespace device
  708. * @ops: pernet operations structure for the subsystem
  709. *
  710. * Register a device which has init and exit functions
  711. * that are called when network namespaces are created and
  712. * destroyed respectively.
  713. *
  714. * When registered all network namespace init functions are
  715. * called for every existing network namespace. Allowing kernel
  716. * modules to have a race free view of the set of network namespaces.
  717. *
  718. * When a new network namespace is created all of the init
  719. * methods are called in the order in which they were registered.
  720. *
  721. * When a network namespace is destroyed all of the exit methods
  722. * are called in the reverse of the order with which they were
  723. * registered.
  724. */
  725. int register_pernet_device(struct pernet_operations *ops)
  726. {
  727. int error;
  728. mutex_lock(&net_mutex);
  729. error = register_pernet_operations(&pernet_list, ops);
  730. if (!error && (first_device == &pernet_list))
  731. first_device = &ops->list;
  732. mutex_unlock(&net_mutex);
  733. return error;
  734. }
  735. EXPORT_SYMBOL_GPL(register_pernet_device);
  736. /**
  737. * unregister_pernet_device - unregister a network namespace netdevice
  738. * @ops: pernet operations structure to manipulate
  739. *
  740. * Remove the pernet operations structure from the list to be
  741. * used when network namespaces are created or destroyed. In
  742. * addition run the exit method for all existing network
  743. * namespaces.
  744. */
  745. void unregister_pernet_device(struct pernet_operations *ops)
  746. {
  747. mutex_lock(&net_mutex);
  748. if (&ops->list == first_device)
  749. first_device = first_device->next;
  750. unregister_pernet_operations(ops);
  751. mutex_unlock(&net_mutex);
  752. }
  753. EXPORT_SYMBOL_GPL(unregister_pernet_device);
  754. #ifdef CONFIG_NET_NS
  755. static struct ns_common *netns_get(struct task_struct *task)
  756. {
  757. struct net *net = NULL;
  758. struct nsproxy *nsproxy;
  759. task_lock(task);
  760. nsproxy = task->nsproxy;
  761. if (nsproxy)
  762. net = get_net(nsproxy->net_ns);
  763. task_unlock(task);
  764. return net ? &net->ns : NULL;
  765. }
  766. static inline struct net *to_net_ns(struct ns_common *ns)
  767. {
  768. return container_of(ns, struct net, ns);
  769. }
  770. static void netns_put(struct ns_common *ns)
  771. {
  772. put_net(to_net_ns(ns));
  773. }
  774. static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  775. {
  776. struct net *net = to_net_ns(ns);
  777. if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
  778. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  779. return -EPERM;
  780. put_net(nsproxy->net_ns);
  781. nsproxy->net_ns = get_net(net);
  782. return 0;
  783. }
  784. const struct proc_ns_operations netns_operations = {
  785. .name = "net",
  786. .type = CLONE_NEWNET,
  787. .get = netns_get,
  788. .put = netns_put,
  789. .install = netns_install,
  790. };
  791. #endif