intel_dp.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /*
  61. * CHV supports eDP 1.4 that have more link rates.
  62. * Below only provides the fixed rate but exclude variable rate.
  63. */
  64. static const struct dp_link_dpll chv_dpll[] = {
  65. /*
  66. * CHV requires to program fractional division for m2.
  67. * m2 is stored in fixed point format using formula below
  68. * (m2_int << 22) | m2_fraction
  69. */
  70. { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
  71. { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
  72. { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
  73. { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
  74. { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
  75. { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
  76. };
  77. /**
  78. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  79. * @intel_dp: DP struct
  80. *
  81. * If a CPU or PCH DP output is attached to an eDP panel, this function
  82. * will return true, and false otherwise.
  83. */
  84. static bool is_edp(struct intel_dp *intel_dp)
  85. {
  86. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  87. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  88. }
  89. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  90. {
  91. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  92. return intel_dig_port->base.base.dev;
  93. }
  94. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95. {
  96. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  97. }
  98. static void intel_dp_link_down(struct intel_dp *intel_dp);
  99. static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
  100. static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  101. static int
  102. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  103. {
  104. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  105. struct drm_device *dev = intel_dp->attached_connector->base.dev;
  106. switch (max_link_bw) {
  107. case DP_LINK_BW_1_62:
  108. case DP_LINK_BW_2_7:
  109. break;
  110. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  111. if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
  112. INTEL_INFO(dev)->gen >= 8) &&
  113. intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
  114. max_link_bw = DP_LINK_BW_5_4;
  115. else
  116. max_link_bw = DP_LINK_BW_2_7;
  117. break;
  118. default:
  119. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  120. max_link_bw);
  121. max_link_bw = DP_LINK_BW_1_62;
  122. break;
  123. }
  124. return max_link_bw;
  125. }
  126. static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
  127. {
  128. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  129. struct drm_device *dev = intel_dig_port->base.base.dev;
  130. u8 source_max, sink_max;
  131. source_max = 4;
  132. if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
  133. (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
  134. source_max = 2;
  135. sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
  136. return min(source_max, sink_max);
  137. }
  138. /*
  139. * The units on the numbers in the next two are... bizarre. Examples will
  140. * make it clearer; this one parallels an example in the eDP spec.
  141. *
  142. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  143. *
  144. * 270000 * 1 * 8 / 10 == 216000
  145. *
  146. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  147. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  148. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  149. * 119000. At 18bpp that's 2142000 kilobits per second.
  150. *
  151. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  152. * get the result in decakilobits instead of kilobits.
  153. */
  154. static int
  155. intel_dp_link_required(int pixel_clock, int bpp)
  156. {
  157. return (pixel_clock * bpp + 9) / 10;
  158. }
  159. static int
  160. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  161. {
  162. return (max_link_clock * max_lanes * 8) / 10;
  163. }
  164. static enum drm_mode_status
  165. intel_dp_mode_valid(struct drm_connector *connector,
  166. struct drm_display_mode *mode)
  167. {
  168. struct intel_dp *intel_dp = intel_attached_dp(connector);
  169. struct intel_connector *intel_connector = to_intel_connector(connector);
  170. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  171. int target_clock = mode->clock;
  172. int max_rate, mode_rate, max_lanes, max_link_clock;
  173. if (is_edp(intel_dp) && fixed_mode) {
  174. if (mode->hdisplay > fixed_mode->hdisplay)
  175. return MODE_PANEL;
  176. if (mode->vdisplay > fixed_mode->vdisplay)
  177. return MODE_PANEL;
  178. target_clock = fixed_mode->clock;
  179. }
  180. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  181. max_lanes = intel_dp_max_lane_count(intel_dp);
  182. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  183. mode_rate = intel_dp_link_required(target_clock, 18);
  184. if (mode_rate > max_rate)
  185. return MODE_CLOCK_HIGH;
  186. if (mode->clock < 10000)
  187. return MODE_CLOCK_LOW;
  188. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  189. return MODE_H_ILLEGAL;
  190. return MODE_OK;
  191. }
  192. static uint32_t
  193. pack_aux(uint8_t *src, int src_bytes)
  194. {
  195. int i;
  196. uint32_t v = 0;
  197. if (src_bytes > 4)
  198. src_bytes = 4;
  199. for (i = 0; i < src_bytes; i++)
  200. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  201. return v;
  202. }
  203. static void
  204. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  205. {
  206. int i;
  207. if (dst_bytes > 4)
  208. dst_bytes = 4;
  209. for (i = 0; i < dst_bytes; i++)
  210. dst[i] = src >> ((3-i) * 8);
  211. }
  212. /* hrawclock is 1/4 the FSB frequency */
  213. static int
  214. intel_hrawclk(struct drm_device *dev)
  215. {
  216. struct drm_i915_private *dev_priv = dev->dev_private;
  217. uint32_t clkcfg;
  218. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  219. if (IS_VALLEYVIEW(dev))
  220. return 200;
  221. clkcfg = I915_READ(CLKCFG);
  222. switch (clkcfg & CLKCFG_FSB_MASK) {
  223. case CLKCFG_FSB_400:
  224. return 100;
  225. case CLKCFG_FSB_533:
  226. return 133;
  227. case CLKCFG_FSB_667:
  228. return 166;
  229. case CLKCFG_FSB_800:
  230. return 200;
  231. case CLKCFG_FSB_1067:
  232. return 266;
  233. case CLKCFG_FSB_1333:
  234. return 333;
  235. /* these two are just a guess; one of them might be right */
  236. case CLKCFG_FSB_1600:
  237. case CLKCFG_FSB_1600_ALT:
  238. return 400;
  239. default:
  240. return 133;
  241. }
  242. }
  243. static void
  244. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  245. struct intel_dp *intel_dp,
  246. struct edp_power_seq *out);
  247. static void
  248. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  249. struct intel_dp *intel_dp,
  250. struct edp_power_seq *out);
  251. static enum pipe
  252. vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
  253. {
  254. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  255. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  256. struct drm_device *dev = intel_dig_port->base.base.dev;
  257. struct drm_i915_private *dev_priv = dev->dev_private;
  258. enum port port = intel_dig_port->port;
  259. enum pipe pipe;
  260. /* modeset should have pipe */
  261. if (crtc)
  262. return to_intel_crtc(crtc)->pipe;
  263. /* init time, try to find a pipe with this port selected */
  264. for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
  265. u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
  266. PANEL_PORT_SELECT_MASK;
  267. if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
  268. return pipe;
  269. if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
  270. return pipe;
  271. }
  272. /* shrug */
  273. return PIPE_A;
  274. }
  275. static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
  276. {
  277. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  278. if (HAS_PCH_SPLIT(dev))
  279. return PCH_PP_CONTROL;
  280. else
  281. return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
  282. }
  283. static u32 _pp_stat_reg(struct intel_dp *intel_dp)
  284. {
  285. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  286. if (HAS_PCH_SPLIT(dev))
  287. return PCH_PP_STATUS;
  288. else
  289. return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
  290. }
  291. static bool edp_have_panel_power(struct intel_dp *intel_dp)
  292. {
  293. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  294. struct drm_i915_private *dev_priv = dev->dev_private;
  295. return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
  296. }
  297. static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
  298. {
  299. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  300. struct drm_i915_private *dev_priv = dev->dev_private;
  301. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  302. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  303. enum intel_display_power_domain power_domain;
  304. power_domain = intel_display_port_power_domain(intel_encoder);
  305. return intel_display_power_enabled(dev_priv, power_domain) &&
  306. (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
  307. }
  308. static void
  309. intel_dp_check_edp(struct intel_dp *intel_dp)
  310. {
  311. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. if (!is_edp(intel_dp))
  314. return;
  315. if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
  316. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  317. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  318. I915_READ(_pp_stat_reg(intel_dp)),
  319. I915_READ(_pp_ctrl_reg(intel_dp)));
  320. }
  321. }
  322. static uint32_t
  323. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  324. {
  325. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  326. struct drm_device *dev = intel_dig_port->base.base.dev;
  327. struct drm_i915_private *dev_priv = dev->dev_private;
  328. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  329. uint32_t status;
  330. bool done;
  331. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  332. if (has_aux_irq)
  333. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  334. msecs_to_jiffies_timeout(10));
  335. else
  336. done = wait_for_atomic(C, 10) == 0;
  337. if (!done)
  338. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  339. has_aux_irq);
  340. #undef C
  341. return status;
  342. }
  343. static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  344. {
  345. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  346. struct drm_device *dev = intel_dig_port->base.base.dev;
  347. /*
  348. * The clock divider is based off the hrawclk, and would like to run at
  349. * 2MHz. So, take the hrawclk value and divide by 2 and use that
  350. */
  351. return index ? 0 : intel_hrawclk(dev) / 2;
  352. }
  353. static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  354. {
  355. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  356. struct drm_device *dev = intel_dig_port->base.base.dev;
  357. if (index)
  358. return 0;
  359. if (intel_dig_port->port == PORT_A) {
  360. if (IS_GEN6(dev) || IS_GEN7(dev))
  361. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  362. else
  363. return 225; /* eDP input clock at 450Mhz */
  364. } else {
  365. return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  366. }
  367. }
  368. static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  369. {
  370. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  371. struct drm_device *dev = intel_dig_port->base.base.dev;
  372. struct drm_i915_private *dev_priv = dev->dev_private;
  373. if (intel_dig_port->port == PORT_A) {
  374. if (index)
  375. return 0;
  376. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  377. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  378. /* Workaround for non-ULT HSW */
  379. switch (index) {
  380. case 0: return 63;
  381. case 1: return 72;
  382. default: return 0;
  383. }
  384. } else {
  385. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  386. }
  387. }
  388. static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  389. {
  390. return index ? 0 : 100;
  391. }
  392. static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
  393. bool has_aux_irq,
  394. int send_bytes,
  395. uint32_t aux_clock_divider)
  396. {
  397. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  398. struct drm_device *dev = intel_dig_port->base.base.dev;
  399. uint32_t precharge, timeout;
  400. if (IS_GEN6(dev))
  401. precharge = 3;
  402. else
  403. precharge = 5;
  404. if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
  405. timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
  406. else
  407. timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
  408. return DP_AUX_CH_CTL_SEND_BUSY |
  409. DP_AUX_CH_CTL_DONE |
  410. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  411. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  412. timeout |
  413. DP_AUX_CH_CTL_RECEIVE_ERROR |
  414. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  415. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  416. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
  417. }
  418. static int
  419. intel_dp_aux_ch(struct intel_dp *intel_dp,
  420. uint8_t *send, int send_bytes,
  421. uint8_t *recv, int recv_size)
  422. {
  423. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  424. struct drm_device *dev = intel_dig_port->base.base.dev;
  425. struct drm_i915_private *dev_priv = dev->dev_private;
  426. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  427. uint32_t ch_data = ch_ctl + 4;
  428. uint32_t aux_clock_divider;
  429. int i, ret, recv_bytes;
  430. uint32_t status;
  431. int try, clock = 0;
  432. bool has_aux_irq = HAS_AUX_IRQ(dev);
  433. bool vdd;
  434. vdd = _edp_panel_vdd_on(intel_dp);
  435. /* dp aux is extremely sensitive to irq latency, hence request the
  436. * lowest possible wakeup latency and so prevent the cpu from going into
  437. * deep sleep states.
  438. */
  439. pm_qos_update_request(&dev_priv->pm_qos, 0);
  440. intel_dp_check_edp(intel_dp);
  441. intel_aux_display_runtime_get(dev_priv);
  442. /* Try to wait for any previous AUX channel activity */
  443. for (try = 0; try < 3; try++) {
  444. status = I915_READ_NOTRACE(ch_ctl);
  445. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  446. break;
  447. msleep(1);
  448. }
  449. if (try == 3) {
  450. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  451. I915_READ(ch_ctl));
  452. ret = -EBUSY;
  453. goto out;
  454. }
  455. /* Only 5 data registers! */
  456. if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
  457. ret = -E2BIG;
  458. goto out;
  459. }
  460. while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
  461. u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
  462. has_aux_irq,
  463. send_bytes,
  464. aux_clock_divider);
  465. /* Must try at least 3 times according to DP spec */
  466. for (try = 0; try < 5; try++) {
  467. /* Load the send data into the aux channel data registers */
  468. for (i = 0; i < send_bytes; i += 4)
  469. I915_WRITE(ch_data + i,
  470. pack_aux(send + i, send_bytes - i));
  471. /* Send the command and wait for it to complete */
  472. I915_WRITE(ch_ctl, send_ctl);
  473. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  474. /* Clear done status and any errors */
  475. I915_WRITE(ch_ctl,
  476. status |
  477. DP_AUX_CH_CTL_DONE |
  478. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  479. DP_AUX_CH_CTL_RECEIVE_ERROR);
  480. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  481. DP_AUX_CH_CTL_RECEIVE_ERROR))
  482. continue;
  483. if (status & DP_AUX_CH_CTL_DONE)
  484. break;
  485. }
  486. if (status & DP_AUX_CH_CTL_DONE)
  487. break;
  488. }
  489. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  490. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  491. ret = -EBUSY;
  492. goto out;
  493. }
  494. /* Check for timeout or receive error.
  495. * Timeouts occur when the sink is not connected
  496. */
  497. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  498. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  499. ret = -EIO;
  500. goto out;
  501. }
  502. /* Timeouts occur when the device isn't connected, so they're
  503. * "normal" -- don't fill the kernel log with these */
  504. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  505. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  506. ret = -ETIMEDOUT;
  507. goto out;
  508. }
  509. /* Unload any bytes sent back from the other side */
  510. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  511. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  512. if (recv_bytes > recv_size)
  513. recv_bytes = recv_size;
  514. for (i = 0; i < recv_bytes; i += 4)
  515. unpack_aux(I915_READ(ch_data + i),
  516. recv + i, recv_bytes - i);
  517. ret = recv_bytes;
  518. out:
  519. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  520. intel_aux_display_runtime_put(dev_priv);
  521. if (vdd)
  522. edp_panel_vdd_off(intel_dp, false);
  523. return ret;
  524. }
  525. #define BARE_ADDRESS_SIZE 3
  526. #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
  527. static ssize_t
  528. intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
  529. {
  530. struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
  531. uint8_t txbuf[20], rxbuf[20];
  532. size_t txsize, rxsize;
  533. int ret;
  534. txbuf[0] = msg->request << 4;
  535. txbuf[1] = msg->address >> 8;
  536. txbuf[2] = msg->address & 0xff;
  537. txbuf[3] = msg->size - 1;
  538. switch (msg->request & ~DP_AUX_I2C_MOT) {
  539. case DP_AUX_NATIVE_WRITE:
  540. case DP_AUX_I2C_WRITE:
  541. txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
  542. rxsize = 1;
  543. if (WARN_ON(txsize > 20))
  544. return -E2BIG;
  545. memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
  546. ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
  547. if (ret > 0) {
  548. msg->reply = rxbuf[0] >> 4;
  549. /* Return payload size. */
  550. ret = msg->size;
  551. }
  552. break;
  553. case DP_AUX_NATIVE_READ:
  554. case DP_AUX_I2C_READ:
  555. txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
  556. rxsize = msg->size + 1;
  557. if (WARN_ON(rxsize > 20))
  558. return -E2BIG;
  559. ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
  560. if (ret > 0) {
  561. msg->reply = rxbuf[0] >> 4;
  562. /*
  563. * Assume happy day, and copy the data. The caller is
  564. * expected to check msg->reply before touching it.
  565. *
  566. * Return payload size.
  567. */
  568. ret--;
  569. memcpy(msg->buffer, rxbuf + 1, ret);
  570. }
  571. break;
  572. default:
  573. ret = -EINVAL;
  574. break;
  575. }
  576. return ret;
  577. }
  578. static void
  579. intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
  580. {
  581. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  582. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  583. enum port port = intel_dig_port->port;
  584. const char *name = NULL;
  585. int ret;
  586. switch (port) {
  587. case PORT_A:
  588. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  589. name = "DPDDC-A";
  590. break;
  591. case PORT_B:
  592. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  593. name = "DPDDC-B";
  594. break;
  595. case PORT_C:
  596. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  597. name = "DPDDC-C";
  598. break;
  599. case PORT_D:
  600. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  601. name = "DPDDC-D";
  602. break;
  603. default:
  604. BUG();
  605. }
  606. if (!HAS_DDI(dev))
  607. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  608. intel_dp->aux.name = name;
  609. intel_dp->aux.dev = dev->dev;
  610. intel_dp->aux.transfer = intel_dp_aux_transfer;
  611. DRM_DEBUG_KMS("registering %s bus for %s\n", name,
  612. connector->base.kdev->kobj.name);
  613. ret = drm_dp_aux_register(&intel_dp->aux);
  614. if (ret < 0) {
  615. DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
  616. name, ret);
  617. return;
  618. }
  619. ret = sysfs_create_link(&connector->base.kdev->kobj,
  620. &intel_dp->aux.ddc.dev.kobj,
  621. intel_dp->aux.ddc.dev.kobj.name);
  622. if (ret < 0) {
  623. DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
  624. drm_dp_aux_unregister(&intel_dp->aux);
  625. }
  626. }
  627. static void
  628. intel_dp_connector_unregister(struct intel_connector *intel_connector)
  629. {
  630. struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
  631. sysfs_remove_link(&intel_connector->base.kdev->kobj,
  632. intel_dp->aux.ddc.dev.kobj.name);
  633. intel_connector_unregister(intel_connector);
  634. }
  635. static void
  636. intel_dp_set_clock(struct intel_encoder *encoder,
  637. struct intel_crtc_config *pipe_config, int link_bw)
  638. {
  639. struct drm_device *dev = encoder->base.dev;
  640. const struct dp_link_dpll *divisor = NULL;
  641. int i, count = 0;
  642. if (IS_G4X(dev)) {
  643. divisor = gen4_dpll;
  644. count = ARRAY_SIZE(gen4_dpll);
  645. } else if (IS_HASWELL(dev)) {
  646. /* Haswell has special-purpose DP DDI clocks. */
  647. } else if (HAS_PCH_SPLIT(dev)) {
  648. divisor = pch_dpll;
  649. count = ARRAY_SIZE(pch_dpll);
  650. } else if (IS_CHERRYVIEW(dev)) {
  651. divisor = chv_dpll;
  652. count = ARRAY_SIZE(chv_dpll);
  653. } else if (IS_VALLEYVIEW(dev)) {
  654. divisor = vlv_dpll;
  655. count = ARRAY_SIZE(vlv_dpll);
  656. }
  657. if (divisor && count) {
  658. for (i = 0; i < count; i++) {
  659. if (link_bw == divisor[i].link_bw) {
  660. pipe_config->dpll = divisor[i].dpll;
  661. pipe_config->clock_set = true;
  662. break;
  663. }
  664. }
  665. }
  666. }
  667. static void
  668. intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
  669. {
  670. struct drm_device *dev = crtc->base.dev;
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. enum transcoder transcoder = crtc->config.cpu_transcoder;
  673. I915_WRITE(PIPE_DATA_M2(transcoder),
  674. TU_SIZE(m_n->tu) | m_n->gmch_m);
  675. I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
  676. I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
  677. I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
  678. }
  679. bool
  680. intel_dp_compute_config(struct intel_encoder *encoder,
  681. struct intel_crtc_config *pipe_config)
  682. {
  683. struct drm_device *dev = encoder->base.dev;
  684. struct drm_i915_private *dev_priv = dev->dev_private;
  685. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  686. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  687. enum port port = dp_to_dig_port(intel_dp)->port;
  688. struct intel_crtc *intel_crtc = encoder->new_crtc;
  689. struct intel_connector *intel_connector = intel_dp->attached_connector;
  690. int lane_count, clock;
  691. int min_lane_count = 1;
  692. int max_lane_count = intel_dp_max_lane_count(intel_dp);
  693. /* Conveniently, the link BW constants become indices with a shift...*/
  694. int min_clock = 0;
  695. int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
  696. int bpp, mode_rate;
  697. static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
  698. int link_avail, link_clock;
  699. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  700. pipe_config->has_pch_encoder = true;
  701. pipe_config->has_dp_encoder = true;
  702. pipe_config->has_audio = intel_dp->has_audio;
  703. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  704. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  705. adjusted_mode);
  706. if (!HAS_PCH_SPLIT(dev))
  707. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  708. intel_connector->panel.fitting_mode);
  709. else
  710. intel_pch_panel_fitting(intel_crtc, pipe_config,
  711. intel_connector->panel.fitting_mode);
  712. }
  713. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  714. return false;
  715. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  716. "max bw %02x pixel clock %iKHz\n",
  717. max_lane_count, bws[max_clock],
  718. adjusted_mode->crtc_clock);
  719. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  720. * bpc in between. */
  721. bpp = pipe_config->pipe_bpp;
  722. if (is_edp(intel_dp)) {
  723. if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
  724. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  725. dev_priv->vbt.edp_bpp);
  726. bpp = dev_priv->vbt.edp_bpp;
  727. }
  728. if (IS_BROADWELL(dev)) {
  729. /* Yes, it's an ugly hack. */
  730. min_lane_count = max_lane_count;
  731. DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
  732. min_lane_count);
  733. } else if (dev_priv->vbt.edp_lanes) {
  734. min_lane_count = min(dev_priv->vbt.edp_lanes,
  735. max_lane_count);
  736. DRM_DEBUG_KMS("using min %u lanes per VBT\n",
  737. min_lane_count);
  738. }
  739. if (dev_priv->vbt.edp_rate) {
  740. min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
  741. DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
  742. bws[min_clock]);
  743. }
  744. }
  745. for (; bpp >= 6*3; bpp -= 2*3) {
  746. mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
  747. bpp);
  748. for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
  749. for (clock = min_clock; clock <= max_clock; clock++) {
  750. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  751. link_avail = intel_dp_max_data_rate(link_clock,
  752. lane_count);
  753. if (mode_rate <= link_avail) {
  754. goto found;
  755. }
  756. }
  757. }
  758. }
  759. return false;
  760. found:
  761. if (intel_dp->color_range_auto) {
  762. /*
  763. * See:
  764. * CEA-861-E - 5.1 Default Encoding Parameters
  765. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  766. */
  767. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  768. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  769. else
  770. intel_dp->color_range = 0;
  771. }
  772. if (intel_dp->color_range)
  773. pipe_config->limited_color_range = true;
  774. intel_dp->link_bw = bws[clock];
  775. intel_dp->lane_count = lane_count;
  776. pipe_config->pipe_bpp = bpp;
  777. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  778. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  779. intel_dp->link_bw, intel_dp->lane_count,
  780. pipe_config->port_clock, bpp);
  781. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  782. mode_rate, link_avail);
  783. intel_link_compute_m_n(bpp, lane_count,
  784. adjusted_mode->crtc_clock,
  785. pipe_config->port_clock,
  786. &pipe_config->dp_m_n);
  787. if (intel_connector->panel.downclock_mode != NULL &&
  788. intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
  789. intel_link_compute_m_n(bpp, lane_count,
  790. intel_connector->panel.downclock_mode->clock,
  791. pipe_config->port_clock,
  792. &pipe_config->dp_m2_n2);
  793. }
  794. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  795. return true;
  796. }
  797. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  798. {
  799. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  800. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  801. struct drm_device *dev = crtc->base.dev;
  802. struct drm_i915_private *dev_priv = dev->dev_private;
  803. u32 dpa_ctl;
  804. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  805. dpa_ctl = I915_READ(DP_A);
  806. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  807. if (crtc->config.port_clock == 162000) {
  808. /* For a long time we've carried around a ILK-DevA w/a for the
  809. * 160MHz clock. If we're really unlucky, it's still required.
  810. */
  811. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  812. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  813. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  814. } else {
  815. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  816. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  817. }
  818. I915_WRITE(DP_A, dpa_ctl);
  819. POSTING_READ(DP_A);
  820. udelay(500);
  821. }
  822. static void intel_dp_prepare(struct intel_encoder *encoder)
  823. {
  824. struct drm_device *dev = encoder->base.dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  827. enum port port = dp_to_dig_port(intel_dp)->port;
  828. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  829. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  830. /*
  831. * There are four kinds of DP registers:
  832. *
  833. * IBX PCH
  834. * SNB CPU
  835. * IVB CPU
  836. * CPT PCH
  837. *
  838. * IBX PCH and CPU are the same for almost everything,
  839. * except that the CPU DP PLL is configured in this
  840. * register
  841. *
  842. * CPT PCH is quite different, having many bits moved
  843. * to the TRANS_DP_CTL register instead. That
  844. * configuration happens (oddly) in ironlake_pch_enable
  845. */
  846. /* Preserve the BIOS-computed detected bit. This is
  847. * supposed to be read-only.
  848. */
  849. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  850. /* Handle DP bits in common between all three register formats */
  851. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  852. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  853. if (crtc->config.has_audio) {
  854. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  855. pipe_name(crtc->pipe));
  856. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  857. intel_write_eld(&encoder->base, adjusted_mode);
  858. }
  859. /* Split out the IBX/CPU vs CPT settings */
  860. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  861. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  862. intel_dp->DP |= DP_SYNC_HS_HIGH;
  863. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  864. intel_dp->DP |= DP_SYNC_VS_HIGH;
  865. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  866. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  867. intel_dp->DP |= DP_ENHANCED_FRAMING;
  868. intel_dp->DP |= crtc->pipe << 29;
  869. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  870. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  871. intel_dp->DP |= intel_dp->color_range;
  872. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  873. intel_dp->DP |= DP_SYNC_HS_HIGH;
  874. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  875. intel_dp->DP |= DP_SYNC_VS_HIGH;
  876. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  877. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  878. intel_dp->DP |= DP_ENHANCED_FRAMING;
  879. if (!IS_CHERRYVIEW(dev)) {
  880. if (crtc->pipe == 1)
  881. intel_dp->DP |= DP_PIPEB_SELECT;
  882. } else {
  883. intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
  884. }
  885. } else {
  886. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  887. }
  888. }
  889. #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  890. #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  891. #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
  892. #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
  893. #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  894. #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  895. static void wait_panel_status(struct intel_dp *intel_dp,
  896. u32 mask,
  897. u32 value)
  898. {
  899. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  900. struct drm_i915_private *dev_priv = dev->dev_private;
  901. u32 pp_stat_reg, pp_ctrl_reg;
  902. pp_stat_reg = _pp_stat_reg(intel_dp);
  903. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  904. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  905. mask, value,
  906. I915_READ(pp_stat_reg),
  907. I915_READ(pp_ctrl_reg));
  908. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  909. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  910. I915_READ(pp_stat_reg),
  911. I915_READ(pp_ctrl_reg));
  912. }
  913. DRM_DEBUG_KMS("Wait complete\n");
  914. }
  915. static void wait_panel_on(struct intel_dp *intel_dp)
  916. {
  917. DRM_DEBUG_KMS("Wait for panel power on\n");
  918. wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  919. }
  920. static void wait_panel_off(struct intel_dp *intel_dp)
  921. {
  922. DRM_DEBUG_KMS("Wait for panel power off time\n");
  923. wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  924. }
  925. static void wait_panel_power_cycle(struct intel_dp *intel_dp)
  926. {
  927. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  928. /* When we disable the VDD override bit last we have to do the manual
  929. * wait. */
  930. wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
  931. intel_dp->panel_power_cycle_delay);
  932. wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  933. }
  934. static void wait_backlight_on(struct intel_dp *intel_dp)
  935. {
  936. wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
  937. intel_dp->backlight_on_delay);
  938. }
  939. static void edp_wait_backlight_off(struct intel_dp *intel_dp)
  940. {
  941. wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
  942. intel_dp->backlight_off_delay);
  943. }
  944. /* Read the current pp_control value, unlocking the register if it
  945. * is locked
  946. */
  947. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  948. {
  949. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  950. struct drm_i915_private *dev_priv = dev->dev_private;
  951. u32 control;
  952. control = I915_READ(_pp_ctrl_reg(intel_dp));
  953. control &= ~PANEL_UNLOCK_MASK;
  954. control |= PANEL_UNLOCK_REGS;
  955. return control;
  956. }
  957. static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
  958. {
  959. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  960. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  961. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  962. struct drm_i915_private *dev_priv = dev->dev_private;
  963. enum intel_display_power_domain power_domain;
  964. u32 pp;
  965. u32 pp_stat_reg, pp_ctrl_reg;
  966. bool need_to_disable = !intel_dp->want_panel_vdd;
  967. if (!is_edp(intel_dp))
  968. return false;
  969. intel_dp->want_panel_vdd = true;
  970. if (edp_have_panel_vdd(intel_dp))
  971. return need_to_disable;
  972. power_domain = intel_display_port_power_domain(intel_encoder);
  973. intel_display_power_get(dev_priv, power_domain);
  974. DRM_DEBUG_KMS("Turning eDP VDD on\n");
  975. if (!edp_have_panel_power(intel_dp))
  976. wait_panel_power_cycle(intel_dp);
  977. pp = ironlake_get_pp_control(intel_dp);
  978. pp |= EDP_FORCE_VDD;
  979. pp_stat_reg = _pp_stat_reg(intel_dp);
  980. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  981. I915_WRITE(pp_ctrl_reg, pp);
  982. POSTING_READ(pp_ctrl_reg);
  983. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  984. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  985. /*
  986. * If the panel wasn't on, delay before accessing aux channel
  987. */
  988. if (!edp_have_panel_power(intel_dp)) {
  989. DRM_DEBUG_KMS("eDP was not running\n");
  990. msleep(intel_dp->panel_power_up_delay);
  991. }
  992. return need_to_disable;
  993. }
  994. void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
  995. {
  996. if (is_edp(intel_dp)) {
  997. bool vdd = _edp_panel_vdd_on(intel_dp);
  998. WARN(!vdd, "eDP VDD already requested on\n");
  999. }
  1000. }
  1001. static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
  1002. {
  1003. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. u32 pp;
  1006. u32 pp_stat_reg, pp_ctrl_reg;
  1007. WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
  1008. if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
  1009. struct intel_digital_port *intel_dig_port =
  1010. dp_to_dig_port(intel_dp);
  1011. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1012. enum intel_display_power_domain power_domain;
  1013. DRM_DEBUG_KMS("Turning eDP VDD off\n");
  1014. pp = ironlake_get_pp_control(intel_dp);
  1015. pp &= ~EDP_FORCE_VDD;
  1016. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1017. pp_stat_reg = _pp_stat_reg(intel_dp);
  1018. I915_WRITE(pp_ctrl_reg, pp);
  1019. POSTING_READ(pp_ctrl_reg);
  1020. /* Make sure sequencer is idle before allowing subsequent activity */
  1021. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  1022. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  1023. if ((pp & POWER_TARGET_ON) == 0)
  1024. intel_dp->last_power_cycle = jiffies;
  1025. power_domain = intel_display_port_power_domain(intel_encoder);
  1026. intel_display_power_put(dev_priv, power_domain);
  1027. }
  1028. }
  1029. static void edp_panel_vdd_work(struct work_struct *__work)
  1030. {
  1031. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  1032. struct intel_dp, panel_vdd_work);
  1033. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1034. drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
  1035. edp_panel_vdd_off_sync(intel_dp);
  1036. drm_modeset_unlock(&dev->mode_config.connection_mutex);
  1037. }
  1038. static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  1039. {
  1040. if (!is_edp(intel_dp))
  1041. return;
  1042. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  1043. intel_dp->want_panel_vdd = false;
  1044. if (sync) {
  1045. edp_panel_vdd_off_sync(intel_dp);
  1046. } else {
  1047. /*
  1048. * Queue the timer to fire a long
  1049. * time from now (relative to the power down delay)
  1050. * to keep the panel power up across a sequence of operations
  1051. */
  1052. schedule_delayed_work(&intel_dp->panel_vdd_work,
  1053. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  1054. }
  1055. }
  1056. void intel_edp_panel_on(struct intel_dp *intel_dp)
  1057. {
  1058. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1059. struct drm_i915_private *dev_priv = dev->dev_private;
  1060. u32 pp;
  1061. u32 pp_ctrl_reg;
  1062. if (!is_edp(intel_dp))
  1063. return;
  1064. DRM_DEBUG_KMS("Turn eDP power on\n");
  1065. if (edp_have_panel_power(intel_dp)) {
  1066. DRM_DEBUG_KMS("eDP power already on\n");
  1067. return;
  1068. }
  1069. wait_panel_power_cycle(intel_dp);
  1070. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1071. pp = ironlake_get_pp_control(intel_dp);
  1072. if (IS_GEN5(dev)) {
  1073. /* ILK workaround: disable reset around power sequence */
  1074. pp &= ~PANEL_POWER_RESET;
  1075. I915_WRITE(pp_ctrl_reg, pp);
  1076. POSTING_READ(pp_ctrl_reg);
  1077. }
  1078. pp |= POWER_TARGET_ON;
  1079. if (!IS_GEN5(dev))
  1080. pp |= PANEL_POWER_RESET;
  1081. I915_WRITE(pp_ctrl_reg, pp);
  1082. POSTING_READ(pp_ctrl_reg);
  1083. wait_panel_on(intel_dp);
  1084. intel_dp->last_power_on = jiffies;
  1085. if (IS_GEN5(dev)) {
  1086. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1087. I915_WRITE(pp_ctrl_reg, pp);
  1088. POSTING_READ(pp_ctrl_reg);
  1089. }
  1090. }
  1091. void intel_edp_panel_off(struct intel_dp *intel_dp)
  1092. {
  1093. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1094. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1095. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1096. struct drm_i915_private *dev_priv = dev->dev_private;
  1097. enum intel_display_power_domain power_domain;
  1098. u32 pp;
  1099. u32 pp_ctrl_reg;
  1100. if (!is_edp(intel_dp))
  1101. return;
  1102. DRM_DEBUG_KMS("Turn eDP power off\n");
  1103. edp_wait_backlight_off(intel_dp);
  1104. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1105. pp = ironlake_get_pp_control(intel_dp);
  1106. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1107. * panels get very unhappy and cease to work. */
  1108. pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
  1109. EDP_BLC_ENABLE);
  1110. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1111. intel_dp->want_panel_vdd = false;
  1112. I915_WRITE(pp_ctrl_reg, pp);
  1113. POSTING_READ(pp_ctrl_reg);
  1114. intel_dp->last_power_cycle = jiffies;
  1115. wait_panel_off(intel_dp);
  1116. /* We got a reference when we enabled the VDD. */
  1117. power_domain = intel_display_port_power_domain(intel_encoder);
  1118. intel_display_power_put(dev_priv, power_domain);
  1119. }
  1120. void intel_edp_backlight_on(struct intel_dp *intel_dp)
  1121. {
  1122. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1123. struct drm_device *dev = intel_dig_port->base.base.dev;
  1124. struct drm_i915_private *dev_priv = dev->dev_private;
  1125. u32 pp;
  1126. u32 pp_ctrl_reg;
  1127. if (!is_edp(intel_dp))
  1128. return;
  1129. DRM_DEBUG_KMS("\n");
  1130. /*
  1131. * If we enable the backlight right away following a panel power
  1132. * on, we may see slight flicker as the panel syncs with the eDP
  1133. * link. So delay a bit to make sure the image is solid before
  1134. * allowing it to appear.
  1135. */
  1136. wait_backlight_on(intel_dp);
  1137. pp = ironlake_get_pp_control(intel_dp);
  1138. pp |= EDP_BLC_ENABLE;
  1139. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1140. I915_WRITE(pp_ctrl_reg, pp);
  1141. POSTING_READ(pp_ctrl_reg);
  1142. intel_panel_enable_backlight(intel_dp->attached_connector);
  1143. }
  1144. void intel_edp_backlight_off(struct intel_dp *intel_dp)
  1145. {
  1146. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1147. struct drm_i915_private *dev_priv = dev->dev_private;
  1148. u32 pp;
  1149. u32 pp_ctrl_reg;
  1150. if (!is_edp(intel_dp))
  1151. return;
  1152. intel_panel_disable_backlight(intel_dp->attached_connector);
  1153. DRM_DEBUG_KMS("\n");
  1154. pp = ironlake_get_pp_control(intel_dp);
  1155. pp &= ~EDP_BLC_ENABLE;
  1156. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1157. I915_WRITE(pp_ctrl_reg, pp);
  1158. POSTING_READ(pp_ctrl_reg);
  1159. intel_dp->last_backlight_off = jiffies;
  1160. }
  1161. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1162. {
  1163. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1164. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1165. struct drm_device *dev = crtc->dev;
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. u32 dpa_ctl;
  1168. assert_pipe_disabled(dev_priv,
  1169. to_intel_crtc(crtc)->pipe);
  1170. DRM_DEBUG_KMS("\n");
  1171. dpa_ctl = I915_READ(DP_A);
  1172. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1173. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1174. /* We don't adjust intel_dp->DP while tearing down the link, to
  1175. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1176. * enable bits here to ensure that we don't enable too much. */
  1177. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1178. intel_dp->DP |= DP_PLL_ENABLE;
  1179. I915_WRITE(DP_A, intel_dp->DP);
  1180. POSTING_READ(DP_A);
  1181. udelay(200);
  1182. }
  1183. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1184. {
  1185. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1186. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1187. struct drm_device *dev = crtc->dev;
  1188. struct drm_i915_private *dev_priv = dev->dev_private;
  1189. u32 dpa_ctl;
  1190. assert_pipe_disabled(dev_priv,
  1191. to_intel_crtc(crtc)->pipe);
  1192. dpa_ctl = I915_READ(DP_A);
  1193. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1194. "dp pll off, should be on\n");
  1195. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1196. /* We can't rely on the value tracked for the DP register in
  1197. * intel_dp->DP because link_down must not change that (otherwise link
  1198. * re-training will fail. */
  1199. dpa_ctl &= ~DP_PLL_ENABLE;
  1200. I915_WRITE(DP_A, dpa_ctl);
  1201. POSTING_READ(DP_A);
  1202. udelay(200);
  1203. }
  1204. /* If the sink supports it, try to set the power state appropriately */
  1205. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1206. {
  1207. int ret, i;
  1208. /* Should have a valid DPCD by this point */
  1209. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1210. return;
  1211. if (mode != DRM_MODE_DPMS_ON) {
  1212. ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
  1213. DP_SET_POWER_D3);
  1214. if (ret != 1)
  1215. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1216. } else {
  1217. /*
  1218. * When turning on, we need to retry for 1ms to give the sink
  1219. * time to wake up.
  1220. */
  1221. for (i = 0; i < 3; i++) {
  1222. ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
  1223. DP_SET_POWER_D0);
  1224. if (ret == 1)
  1225. break;
  1226. msleep(1);
  1227. }
  1228. }
  1229. }
  1230. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1231. enum pipe *pipe)
  1232. {
  1233. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1234. enum port port = dp_to_dig_port(intel_dp)->port;
  1235. struct drm_device *dev = encoder->base.dev;
  1236. struct drm_i915_private *dev_priv = dev->dev_private;
  1237. enum intel_display_power_domain power_domain;
  1238. u32 tmp;
  1239. power_domain = intel_display_port_power_domain(encoder);
  1240. if (!intel_display_power_enabled(dev_priv, power_domain))
  1241. return false;
  1242. tmp = I915_READ(intel_dp->output_reg);
  1243. if (!(tmp & DP_PORT_EN))
  1244. return false;
  1245. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1246. *pipe = PORT_TO_PIPE_CPT(tmp);
  1247. } else if (IS_CHERRYVIEW(dev)) {
  1248. *pipe = DP_PORT_TO_PIPE_CHV(tmp);
  1249. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1250. *pipe = PORT_TO_PIPE(tmp);
  1251. } else {
  1252. u32 trans_sel;
  1253. u32 trans_dp;
  1254. int i;
  1255. switch (intel_dp->output_reg) {
  1256. case PCH_DP_B:
  1257. trans_sel = TRANS_DP_PORT_SEL_B;
  1258. break;
  1259. case PCH_DP_C:
  1260. trans_sel = TRANS_DP_PORT_SEL_C;
  1261. break;
  1262. case PCH_DP_D:
  1263. trans_sel = TRANS_DP_PORT_SEL_D;
  1264. break;
  1265. default:
  1266. return true;
  1267. }
  1268. for_each_pipe(i) {
  1269. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1270. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1271. *pipe = i;
  1272. return true;
  1273. }
  1274. }
  1275. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1276. intel_dp->output_reg);
  1277. }
  1278. return true;
  1279. }
  1280. static void intel_dp_get_config(struct intel_encoder *encoder,
  1281. struct intel_crtc_config *pipe_config)
  1282. {
  1283. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1284. u32 tmp, flags = 0;
  1285. struct drm_device *dev = encoder->base.dev;
  1286. struct drm_i915_private *dev_priv = dev->dev_private;
  1287. enum port port = dp_to_dig_port(intel_dp)->port;
  1288. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1289. int dotclock;
  1290. tmp = I915_READ(intel_dp->output_reg);
  1291. if (tmp & DP_AUDIO_OUTPUT_ENABLE)
  1292. pipe_config->has_audio = true;
  1293. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1294. if (tmp & DP_SYNC_HS_HIGH)
  1295. flags |= DRM_MODE_FLAG_PHSYNC;
  1296. else
  1297. flags |= DRM_MODE_FLAG_NHSYNC;
  1298. if (tmp & DP_SYNC_VS_HIGH)
  1299. flags |= DRM_MODE_FLAG_PVSYNC;
  1300. else
  1301. flags |= DRM_MODE_FLAG_NVSYNC;
  1302. } else {
  1303. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1304. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1305. flags |= DRM_MODE_FLAG_PHSYNC;
  1306. else
  1307. flags |= DRM_MODE_FLAG_NHSYNC;
  1308. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1309. flags |= DRM_MODE_FLAG_PVSYNC;
  1310. else
  1311. flags |= DRM_MODE_FLAG_NVSYNC;
  1312. }
  1313. pipe_config->adjusted_mode.flags |= flags;
  1314. pipe_config->has_dp_encoder = true;
  1315. intel_dp_get_m_n(crtc, pipe_config);
  1316. if (port == PORT_A) {
  1317. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1318. pipe_config->port_clock = 162000;
  1319. else
  1320. pipe_config->port_clock = 270000;
  1321. }
  1322. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1323. &pipe_config->dp_m_n);
  1324. if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
  1325. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  1326. pipe_config->adjusted_mode.crtc_clock = dotclock;
  1327. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
  1328. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1329. /*
  1330. * This is a big fat ugly hack.
  1331. *
  1332. * Some machines in UEFI boot mode provide us a VBT that has 18
  1333. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1334. * unknown we fail to light up. Yet the same BIOS boots up with
  1335. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1336. * max, not what it tells us to use.
  1337. *
  1338. * Note: This will still be broken if the eDP panel is not lit
  1339. * up by the BIOS, and thus we can't get the mode at module
  1340. * load.
  1341. */
  1342. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1343. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1344. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1345. }
  1346. }
  1347. static bool is_edp_psr(struct intel_dp *intel_dp)
  1348. {
  1349. return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
  1350. }
  1351. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1352. {
  1353. struct drm_i915_private *dev_priv = dev->dev_private;
  1354. if (!HAS_PSR(dev))
  1355. return false;
  1356. return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1357. }
  1358. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1359. struct edp_vsc_psr *vsc_psr)
  1360. {
  1361. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1362. struct drm_device *dev = dig_port->base.base.dev;
  1363. struct drm_i915_private *dev_priv = dev->dev_private;
  1364. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1365. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1366. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1367. uint32_t *data = (uint32_t *) vsc_psr;
  1368. unsigned int i;
  1369. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1370. the video DIP being updated before program video DIP data buffer
  1371. registers for DIP being updated. */
  1372. I915_WRITE(ctl_reg, 0);
  1373. POSTING_READ(ctl_reg);
  1374. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1375. if (i < sizeof(struct edp_vsc_psr))
  1376. I915_WRITE(data_reg + i, *data++);
  1377. else
  1378. I915_WRITE(data_reg + i, 0);
  1379. }
  1380. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1381. POSTING_READ(ctl_reg);
  1382. }
  1383. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1384. {
  1385. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1386. struct drm_i915_private *dev_priv = dev->dev_private;
  1387. struct edp_vsc_psr psr_vsc;
  1388. if (dev_priv->psr.setup_done)
  1389. return;
  1390. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1391. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1392. psr_vsc.sdp_header.HB0 = 0;
  1393. psr_vsc.sdp_header.HB1 = 0x7;
  1394. psr_vsc.sdp_header.HB2 = 0x2;
  1395. psr_vsc.sdp_header.HB3 = 0x8;
  1396. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1397. /* Avoid continuous PSR exit by masking memup and hpd */
  1398. I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
  1399. EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
  1400. dev_priv->psr.setup_done = true;
  1401. }
  1402. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1403. {
  1404. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1405. struct drm_device *dev = dig_port->base.base.dev;
  1406. struct drm_i915_private *dev_priv = dev->dev_private;
  1407. uint32_t aux_clock_divider;
  1408. int precharge = 0x3;
  1409. int msg_size = 5; /* Header(4) + Message(1) */
  1410. bool only_standby = false;
  1411. aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
  1412. if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
  1413. only_standby = true;
  1414. /* Enable PSR in sink */
  1415. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
  1416. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
  1417. DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
  1418. else
  1419. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
  1420. DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
  1421. /* Setup AUX registers */
  1422. I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
  1423. I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
  1424. I915_WRITE(EDP_PSR_AUX_CTL(dev),
  1425. DP_AUX_CH_CTL_TIME_OUT_400us |
  1426. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1427. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1428. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1429. }
  1430. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1431. {
  1432. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1433. struct drm_device *dev = dig_port->base.base.dev;
  1434. struct drm_i915_private *dev_priv = dev->dev_private;
  1435. uint32_t max_sleep_time = 0x1f;
  1436. uint32_t idle_frames = 1;
  1437. uint32_t val = 0x0;
  1438. const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
  1439. bool only_standby = false;
  1440. if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
  1441. only_standby = true;
  1442. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
  1443. val |= EDP_PSR_LINK_STANDBY;
  1444. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1445. val |= EDP_PSR_TP1_TIME_0us;
  1446. val |= EDP_PSR_SKIP_AUX_EXIT;
  1447. val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
  1448. } else
  1449. val |= EDP_PSR_LINK_DISABLE;
  1450. I915_WRITE(EDP_PSR_CTL(dev), val |
  1451. (IS_BROADWELL(dev) ? 0 : link_entry_time) |
  1452. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1453. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1454. EDP_PSR_ENABLE);
  1455. }
  1456. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1457. {
  1458. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1459. struct drm_device *dev = dig_port->base.base.dev;
  1460. struct drm_i915_private *dev_priv = dev->dev_private;
  1461. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1462. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1463. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
  1464. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1465. dev_priv->psr.source_ok = false;
  1466. if (!HAS_PSR(dev)) {
  1467. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1468. return false;
  1469. }
  1470. if (IS_HASWELL(dev) && (intel_encoder->type != INTEL_OUTPUT_EDP ||
  1471. dig_port->port != PORT_A)) {
  1472. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1473. return false;
  1474. }
  1475. if (!i915.enable_psr) {
  1476. DRM_DEBUG_KMS("PSR disable by flag\n");
  1477. return false;
  1478. }
  1479. crtc = dig_port->base.base.crtc;
  1480. if (crtc == NULL) {
  1481. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1482. return false;
  1483. }
  1484. intel_crtc = to_intel_crtc(crtc);
  1485. if (!intel_crtc_active(crtc)) {
  1486. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1487. return false;
  1488. }
  1489. obj = to_intel_framebuffer(crtc->primary->fb)->obj;
  1490. if (obj->tiling_mode != I915_TILING_X ||
  1491. obj->fence_reg == I915_FENCE_REG_NONE) {
  1492. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1493. return false;
  1494. }
  1495. /* Below limitations aren't valid for Broadwell */
  1496. if (IS_BROADWELL(dev))
  1497. goto out;
  1498. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1499. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1500. return false;
  1501. }
  1502. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1503. S3D_ENABLE) {
  1504. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1505. return false;
  1506. }
  1507. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1508. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1509. return false;
  1510. }
  1511. out:
  1512. dev_priv->psr.source_ok = true;
  1513. return true;
  1514. }
  1515. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1516. {
  1517. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1518. struct drm_device *dev = intel_dig_port->base.base.dev;
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. if (intel_edp_is_psr_enabled(dev))
  1521. return;
  1522. /* Enable PSR on the panel */
  1523. intel_edp_psr_enable_sink(intel_dp);
  1524. /* Enable PSR on the host */
  1525. intel_edp_psr_enable_source(intel_dp);
  1526. dev_priv->psr.enabled = true;
  1527. dev_priv->psr.active = true;
  1528. }
  1529. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1530. {
  1531. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1532. if (!HAS_PSR(dev)) {
  1533. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1534. return;
  1535. }
  1536. if (!is_edp_psr(intel_dp)) {
  1537. DRM_DEBUG_KMS("PSR not supported by this panel\n");
  1538. return;
  1539. }
  1540. /* Setup PSR once */
  1541. intel_edp_psr_setup(intel_dp);
  1542. if (intel_edp_psr_match_conditions(intel_dp))
  1543. intel_edp_psr_do_enable(intel_dp);
  1544. }
  1545. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1546. {
  1547. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1548. struct drm_i915_private *dev_priv = dev->dev_private;
  1549. if (!dev_priv->psr.enabled)
  1550. return;
  1551. I915_WRITE(EDP_PSR_CTL(dev),
  1552. I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
  1553. /* Wait till PSR is idle */
  1554. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
  1555. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1556. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1557. dev_priv->psr.enabled = false;
  1558. }
  1559. static void intel_edp_psr_work(struct work_struct *work)
  1560. {
  1561. struct drm_i915_private *dev_priv =
  1562. container_of(work, typeof(*dev_priv), psr.work.work);
  1563. struct drm_device *dev = dev_priv->dev;
  1564. struct intel_encoder *encoder;
  1565. struct intel_dp *intel_dp = NULL;
  1566. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1567. if (encoder->type == INTEL_OUTPUT_EDP) {
  1568. intel_dp = enc_to_intel_dp(&encoder->base);
  1569. if (!intel_edp_psr_match_conditions(intel_dp))
  1570. intel_edp_psr_disable(intel_dp);
  1571. else
  1572. intel_edp_psr_do_enable(intel_dp);
  1573. }
  1574. }
  1575. static void intel_edp_psr_inactivate(struct drm_device *dev)
  1576. {
  1577. struct drm_i915_private *dev_priv = dev->dev_private;
  1578. dev_priv->psr.active = false;
  1579. I915_WRITE(EDP_PSR_CTL(dev), I915_READ(EDP_PSR_CTL(dev))
  1580. & ~EDP_PSR_ENABLE);
  1581. }
  1582. void intel_edp_psr_exit(struct drm_device *dev)
  1583. {
  1584. struct drm_i915_private *dev_priv = dev->dev_private;
  1585. if (!HAS_PSR(dev))
  1586. return;
  1587. if (!dev_priv->psr.setup_done)
  1588. return;
  1589. cancel_delayed_work_sync(&dev_priv->psr.work);
  1590. if (dev_priv->psr.active)
  1591. intel_edp_psr_inactivate(dev);
  1592. schedule_delayed_work(&dev_priv->psr.work,
  1593. msecs_to_jiffies(100));
  1594. }
  1595. void intel_edp_psr_init(struct drm_device *dev)
  1596. {
  1597. struct drm_i915_private *dev_priv = dev->dev_private;
  1598. if (!HAS_PSR(dev))
  1599. return;
  1600. INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
  1601. }
  1602. static void intel_disable_dp(struct intel_encoder *encoder)
  1603. {
  1604. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1605. enum port port = dp_to_dig_port(intel_dp)->port;
  1606. struct drm_device *dev = encoder->base.dev;
  1607. /* Make sure the panel is off before trying to change the mode. But also
  1608. * ensure that we have vdd while we switch off the panel. */
  1609. intel_edp_panel_vdd_on(intel_dp);
  1610. intel_edp_backlight_off(intel_dp);
  1611. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1612. intel_edp_panel_off(intel_dp);
  1613. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1614. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1615. intel_dp_link_down(intel_dp);
  1616. }
  1617. static void g4x_post_disable_dp(struct intel_encoder *encoder)
  1618. {
  1619. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1620. enum port port = dp_to_dig_port(intel_dp)->port;
  1621. if (port != PORT_A)
  1622. return;
  1623. intel_dp_link_down(intel_dp);
  1624. ironlake_edp_pll_off(intel_dp);
  1625. }
  1626. static void vlv_post_disable_dp(struct intel_encoder *encoder)
  1627. {
  1628. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1629. intel_dp_link_down(intel_dp);
  1630. }
  1631. static void chv_post_disable_dp(struct intel_encoder *encoder)
  1632. {
  1633. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1634. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1635. struct drm_device *dev = encoder->base.dev;
  1636. struct drm_i915_private *dev_priv = dev->dev_private;
  1637. struct intel_crtc *intel_crtc =
  1638. to_intel_crtc(encoder->base.crtc);
  1639. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1640. enum pipe pipe = intel_crtc->pipe;
  1641. u32 val;
  1642. intel_dp_link_down(intel_dp);
  1643. mutex_lock(&dev_priv->dpio_lock);
  1644. /* Propagate soft reset to data lane reset */
  1645. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1646. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1647. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1648. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1649. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1650. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1651. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1652. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1653. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1654. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1655. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1656. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1657. mutex_unlock(&dev_priv->dpio_lock);
  1658. }
  1659. static void intel_enable_dp(struct intel_encoder *encoder)
  1660. {
  1661. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1662. struct drm_device *dev = encoder->base.dev;
  1663. struct drm_i915_private *dev_priv = dev->dev_private;
  1664. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1665. if (WARN_ON(dp_reg & DP_PORT_EN))
  1666. return;
  1667. intel_edp_panel_vdd_on(intel_dp);
  1668. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1669. intel_dp_start_link_train(intel_dp);
  1670. intel_edp_panel_on(intel_dp);
  1671. edp_panel_vdd_off(intel_dp, true);
  1672. intel_dp_complete_link_train(intel_dp);
  1673. intel_dp_stop_link_train(intel_dp);
  1674. }
  1675. static void g4x_enable_dp(struct intel_encoder *encoder)
  1676. {
  1677. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1678. intel_enable_dp(encoder);
  1679. intel_edp_backlight_on(intel_dp);
  1680. }
  1681. static void vlv_enable_dp(struct intel_encoder *encoder)
  1682. {
  1683. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1684. intel_edp_backlight_on(intel_dp);
  1685. }
  1686. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1687. {
  1688. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1689. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1690. intel_dp_prepare(encoder);
  1691. /* Only ilk+ has port A */
  1692. if (dport->port == PORT_A) {
  1693. ironlake_set_pll_cpu_edp(intel_dp);
  1694. ironlake_edp_pll_on(intel_dp);
  1695. }
  1696. }
  1697. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1698. {
  1699. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1700. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1701. struct drm_device *dev = encoder->base.dev;
  1702. struct drm_i915_private *dev_priv = dev->dev_private;
  1703. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1704. enum dpio_channel port = vlv_dport_to_channel(dport);
  1705. int pipe = intel_crtc->pipe;
  1706. struct edp_power_seq power_seq;
  1707. u32 val;
  1708. mutex_lock(&dev_priv->dpio_lock);
  1709. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  1710. val = 0;
  1711. if (pipe)
  1712. val |= (1<<21);
  1713. else
  1714. val &= ~(1<<21);
  1715. val |= 0x001000c4;
  1716. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  1717. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1718. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1719. mutex_unlock(&dev_priv->dpio_lock);
  1720. if (is_edp(intel_dp)) {
  1721. /* init power sequencer on this pipe and port */
  1722. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1723. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1724. &power_seq);
  1725. }
  1726. intel_enable_dp(encoder);
  1727. vlv_wait_port_ready(dev_priv, dport);
  1728. }
  1729. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1730. {
  1731. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1732. struct drm_device *dev = encoder->base.dev;
  1733. struct drm_i915_private *dev_priv = dev->dev_private;
  1734. struct intel_crtc *intel_crtc =
  1735. to_intel_crtc(encoder->base.crtc);
  1736. enum dpio_channel port = vlv_dport_to_channel(dport);
  1737. int pipe = intel_crtc->pipe;
  1738. intel_dp_prepare(encoder);
  1739. /* Program Tx lane resets to default */
  1740. mutex_lock(&dev_priv->dpio_lock);
  1741. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1742. DPIO_PCS_TX_LANE2_RESET |
  1743. DPIO_PCS_TX_LANE1_RESET);
  1744. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1745. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1746. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1747. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1748. DPIO_PCS_CLK_SOFT_RESET);
  1749. /* Fix up inter-pair skew failure */
  1750. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1751. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1752. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1753. mutex_unlock(&dev_priv->dpio_lock);
  1754. }
  1755. static void chv_pre_enable_dp(struct intel_encoder *encoder)
  1756. {
  1757. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1758. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1759. struct drm_device *dev = encoder->base.dev;
  1760. struct drm_i915_private *dev_priv = dev->dev_private;
  1761. struct edp_power_seq power_seq;
  1762. struct intel_crtc *intel_crtc =
  1763. to_intel_crtc(encoder->base.crtc);
  1764. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1765. int pipe = intel_crtc->pipe;
  1766. int data, i;
  1767. u32 val;
  1768. mutex_lock(&dev_priv->dpio_lock);
  1769. /* Deassert soft data lane reset*/
  1770. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1771. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1772. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1773. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1774. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1775. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1776. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1777. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1778. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1779. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1780. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1781. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1782. /* Program Tx lane latency optimal setting*/
  1783. for (i = 0; i < 4; i++) {
  1784. /* Set the latency optimal bit */
  1785. data = (i == 1) ? 0x0 : 0x6;
  1786. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
  1787. data << DPIO_FRC_LATENCY_SHFIT);
  1788. /* Set the upar bit */
  1789. data = (i == 1) ? 0x0 : 0x1;
  1790. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1791. data << DPIO_UPAR_SHIFT);
  1792. }
  1793. /* Data lane stagger programming */
  1794. /* FIXME: Fix up value only after power analysis */
  1795. mutex_unlock(&dev_priv->dpio_lock);
  1796. if (is_edp(intel_dp)) {
  1797. /* init power sequencer on this pipe and port */
  1798. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1799. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1800. &power_seq);
  1801. }
  1802. intel_enable_dp(encoder);
  1803. vlv_wait_port_ready(dev_priv, dport);
  1804. }
  1805. static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1806. {
  1807. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1808. struct drm_device *dev = encoder->base.dev;
  1809. struct drm_i915_private *dev_priv = dev->dev_private;
  1810. struct intel_crtc *intel_crtc =
  1811. to_intel_crtc(encoder->base.crtc);
  1812. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1813. enum pipe pipe = intel_crtc->pipe;
  1814. u32 val;
  1815. mutex_lock(&dev_priv->dpio_lock);
  1816. /* program left/right clock distribution */
  1817. if (pipe != PIPE_B) {
  1818. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
  1819. val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
  1820. if (ch == DPIO_CH0)
  1821. val |= CHV_BUFLEFTENA1_FORCE;
  1822. if (ch == DPIO_CH1)
  1823. val |= CHV_BUFRIGHTENA1_FORCE;
  1824. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
  1825. } else {
  1826. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
  1827. val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
  1828. if (ch == DPIO_CH0)
  1829. val |= CHV_BUFLEFTENA2_FORCE;
  1830. if (ch == DPIO_CH1)
  1831. val |= CHV_BUFRIGHTENA2_FORCE;
  1832. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
  1833. }
  1834. /* program clock channel usage */
  1835. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
  1836. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1837. if (pipe != PIPE_B)
  1838. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1839. else
  1840. val |= CHV_PCS_USEDCLKCHANNEL;
  1841. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
  1842. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
  1843. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1844. if (pipe != PIPE_B)
  1845. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1846. else
  1847. val |= CHV_PCS_USEDCLKCHANNEL;
  1848. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
  1849. /*
  1850. * This a a bit weird since generally CL
  1851. * matches the pipe, but here we need to
  1852. * pick the CL based on the port.
  1853. */
  1854. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
  1855. if (pipe != PIPE_B)
  1856. val &= ~CHV_CMN_USEDCLKCHANNEL;
  1857. else
  1858. val |= CHV_CMN_USEDCLKCHANNEL;
  1859. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
  1860. mutex_unlock(&dev_priv->dpio_lock);
  1861. }
  1862. /*
  1863. * Native read with retry for link status and receiver capability reads for
  1864. * cases where the sink may still be asleep.
  1865. *
  1866. * Sinks are *supposed* to come up within 1ms from an off state, but we're also
  1867. * supposed to retry 3 times per the spec.
  1868. */
  1869. static ssize_t
  1870. intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
  1871. void *buffer, size_t size)
  1872. {
  1873. ssize_t ret;
  1874. int i;
  1875. for (i = 0; i < 3; i++) {
  1876. ret = drm_dp_dpcd_read(aux, offset, buffer, size);
  1877. if (ret == size)
  1878. return ret;
  1879. msleep(1);
  1880. }
  1881. return ret;
  1882. }
  1883. /*
  1884. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1885. * link status information
  1886. */
  1887. static bool
  1888. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1889. {
  1890. return intel_dp_dpcd_read_wake(&intel_dp->aux,
  1891. DP_LANE0_1_STATUS,
  1892. link_status,
  1893. DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
  1894. }
  1895. /* These are source-specific values. */
  1896. static uint8_t
  1897. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1898. {
  1899. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1900. enum port port = dp_to_dig_port(intel_dp)->port;
  1901. if (IS_VALLEYVIEW(dev))
  1902. return DP_TRAIN_VOLTAGE_SWING_1200;
  1903. else if (IS_GEN7(dev) && port == PORT_A)
  1904. return DP_TRAIN_VOLTAGE_SWING_800;
  1905. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1906. return DP_TRAIN_VOLTAGE_SWING_1200;
  1907. else
  1908. return DP_TRAIN_VOLTAGE_SWING_800;
  1909. }
  1910. static uint8_t
  1911. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1912. {
  1913. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1914. enum port port = dp_to_dig_port(intel_dp)->port;
  1915. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1916. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1917. case DP_TRAIN_VOLTAGE_SWING_400:
  1918. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1919. case DP_TRAIN_VOLTAGE_SWING_600:
  1920. return DP_TRAIN_PRE_EMPHASIS_6;
  1921. case DP_TRAIN_VOLTAGE_SWING_800:
  1922. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1923. case DP_TRAIN_VOLTAGE_SWING_1200:
  1924. default:
  1925. return DP_TRAIN_PRE_EMPHASIS_0;
  1926. }
  1927. } else if (IS_VALLEYVIEW(dev)) {
  1928. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1929. case DP_TRAIN_VOLTAGE_SWING_400:
  1930. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1931. case DP_TRAIN_VOLTAGE_SWING_600:
  1932. return DP_TRAIN_PRE_EMPHASIS_6;
  1933. case DP_TRAIN_VOLTAGE_SWING_800:
  1934. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1935. case DP_TRAIN_VOLTAGE_SWING_1200:
  1936. default:
  1937. return DP_TRAIN_PRE_EMPHASIS_0;
  1938. }
  1939. } else if (IS_GEN7(dev) && port == PORT_A) {
  1940. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1941. case DP_TRAIN_VOLTAGE_SWING_400:
  1942. return DP_TRAIN_PRE_EMPHASIS_6;
  1943. case DP_TRAIN_VOLTAGE_SWING_600:
  1944. case DP_TRAIN_VOLTAGE_SWING_800:
  1945. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1946. default:
  1947. return DP_TRAIN_PRE_EMPHASIS_0;
  1948. }
  1949. } else {
  1950. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1951. case DP_TRAIN_VOLTAGE_SWING_400:
  1952. return DP_TRAIN_PRE_EMPHASIS_6;
  1953. case DP_TRAIN_VOLTAGE_SWING_600:
  1954. return DP_TRAIN_PRE_EMPHASIS_6;
  1955. case DP_TRAIN_VOLTAGE_SWING_800:
  1956. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1957. case DP_TRAIN_VOLTAGE_SWING_1200:
  1958. default:
  1959. return DP_TRAIN_PRE_EMPHASIS_0;
  1960. }
  1961. }
  1962. }
  1963. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1964. {
  1965. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1966. struct drm_i915_private *dev_priv = dev->dev_private;
  1967. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1968. struct intel_crtc *intel_crtc =
  1969. to_intel_crtc(dport->base.base.crtc);
  1970. unsigned long demph_reg_value, preemph_reg_value,
  1971. uniqtranscale_reg_value;
  1972. uint8_t train_set = intel_dp->train_set[0];
  1973. enum dpio_channel port = vlv_dport_to_channel(dport);
  1974. int pipe = intel_crtc->pipe;
  1975. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1976. case DP_TRAIN_PRE_EMPHASIS_0:
  1977. preemph_reg_value = 0x0004000;
  1978. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1979. case DP_TRAIN_VOLTAGE_SWING_400:
  1980. demph_reg_value = 0x2B405555;
  1981. uniqtranscale_reg_value = 0x552AB83A;
  1982. break;
  1983. case DP_TRAIN_VOLTAGE_SWING_600:
  1984. demph_reg_value = 0x2B404040;
  1985. uniqtranscale_reg_value = 0x5548B83A;
  1986. break;
  1987. case DP_TRAIN_VOLTAGE_SWING_800:
  1988. demph_reg_value = 0x2B245555;
  1989. uniqtranscale_reg_value = 0x5560B83A;
  1990. break;
  1991. case DP_TRAIN_VOLTAGE_SWING_1200:
  1992. demph_reg_value = 0x2B405555;
  1993. uniqtranscale_reg_value = 0x5598DA3A;
  1994. break;
  1995. default:
  1996. return 0;
  1997. }
  1998. break;
  1999. case DP_TRAIN_PRE_EMPHASIS_3_5:
  2000. preemph_reg_value = 0x0002000;
  2001. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2002. case DP_TRAIN_VOLTAGE_SWING_400:
  2003. demph_reg_value = 0x2B404040;
  2004. uniqtranscale_reg_value = 0x5552B83A;
  2005. break;
  2006. case DP_TRAIN_VOLTAGE_SWING_600:
  2007. demph_reg_value = 0x2B404848;
  2008. uniqtranscale_reg_value = 0x5580B83A;
  2009. break;
  2010. case DP_TRAIN_VOLTAGE_SWING_800:
  2011. demph_reg_value = 0x2B404040;
  2012. uniqtranscale_reg_value = 0x55ADDA3A;
  2013. break;
  2014. default:
  2015. return 0;
  2016. }
  2017. break;
  2018. case DP_TRAIN_PRE_EMPHASIS_6:
  2019. preemph_reg_value = 0x0000000;
  2020. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2021. case DP_TRAIN_VOLTAGE_SWING_400:
  2022. demph_reg_value = 0x2B305555;
  2023. uniqtranscale_reg_value = 0x5570B83A;
  2024. break;
  2025. case DP_TRAIN_VOLTAGE_SWING_600:
  2026. demph_reg_value = 0x2B2B4040;
  2027. uniqtranscale_reg_value = 0x55ADDA3A;
  2028. break;
  2029. default:
  2030. return 0;
  2031. }
  2032. break;
  2033. case DP_TRAIN_PRE_EMPHASIS_9_5:
  2034. preemph_reg_value = 0x0006000;
  2035. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2036. case DP_TRAIN_VOLTAGE_SWING_400:
  2037. demph_reg_value = 0x1B405555;
  2038. uniqtranscale_reg_value = 0x55ADDA3A;
  2039. break;
  2040. default:
  2041. return 0;
  2042. }
  2043. break;
  2044. default:
  2045. return 0;
  2046. }
  2047. mutex_lock(&dev_priv->dpio_lock);
  2048. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
  2049. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
  2050. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
  2051. uniqtranscale_reg_value);
  2052. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
  2053. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  2054. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
  2055. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
  2056. mutex_unlock(&dev_priv->dpio_lock);
  2057. return 0;
  2058. }
  2059. static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
  2060. {
  2061. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2062. struct drm_i915_private *dev_priv = dev->dev_private;
  2063. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  2064. struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
  2065. u32 deemph_reg_value, margin_reg_value, val;
  2066. uint8_t train_set = intel_dp->train_set[0];
  2067. enum dpio_channel ch = vlv_dport_to_channel(dport);
  2068. enum pipe pipe = intel_crtc->pipe;
  2069. int i;
  2070. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  2071. case DP_TRAIN_PRE_EMPHASIS_0:
  2072. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2073. case DP_TRAIN_VOLTAGE_SWING_400:
  2074. deemph_reg_value = 128;
  2075. margin_reg_value = 52;
  2076. break;
  2077. case DP_TRAIN_VOLTAGE_SWING_600:
  2078. deemph_reg_value = 128;
  2079. margin_reg_value = 77;
  2080. break;
  2081. case DP_TRAIN_VOLTAGE_SWING_800:
  2082. deemph_reg_value = 128;
  2083. margin_reg_value = 102;
  2084. break;
  2085. case DP_TRAIN_VOLTAGE_SWING_1200:
  2086. deemph_reg_value = 128;
  2087. margin_reg_value = 154;
  2088. /* FIXME extra to set for 1200 */
  2089. break;
  2090. default:
  2091. return 0;
  2092. }
  2093. break;
  2094. case DP_TRAIN_PRE_EMPHASIS_3_5:
  2095. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2096. case DP_TRAIN_VOLTAGE_SWING_400:
  2097. deemph_reg_value = 85;
  2098. margin_reg_value = 78;
  2099. break;
  2100. case DP_TRAIN_VOLTAGE_SWING_600:
  2101. deemph_reg_value = 85;
  2102. margin_reg_value = 116;
  2103. break;
  2104. case DP_TRAIN_VOLTAGE_SWING_800:
  2105. deemph_reg_value = 85;
  2106. margin_reg_value = 154;
  2107. break;
  2108. default:
  2109. return 0;
  2110. }
  2111. break;
  2112. case DP_TRAIN_PRE_EMPHASIS_6:
  2113. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2114. case DP_TRAIN_VOLTAGE_SWING_400:
  2115. deemph_reg_value = 64;
  2116. margin_reg_value = 104;
  2117. break;
  2118. case DP_TRAIN_VOLTAGE_SWING_600:
  2119. deemph_reg_value = 64;
  2120. margin_reg_value = 154;
  2121. break;
  2122. default:
  2123. return 0;
  2124. }
  2125. break;
  2126. case DP_TRAIN_PRE_EMPHASIS_9_5:
  2127. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2128. case DP_TRAIN_VOLTAGE_SWING_400:
  2129. deemph_reg_value = 43;
  2130. margin_reg_value = 154;
  2131. break;
  2132. default:
  2133. return 0;
  2134. }
  2135. break;
  2136. default:
  2137. return 0;
  2138. }
  2139. mutex_lock(&dev_priv->dpio_lock);
  2140. /* Clear calc init */
  2141. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  2142. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  2143. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  2144. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  2145. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  2146. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  2147. /* Program swing deemph */
  2148. for (i = 0; i < 4; i++) {
  2149. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  2150. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  2151. val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
  2152. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  2153. }
  2154. /* Program swing margin */
  2155. for (i = 0; i < 4; i++) {
  2156. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  2157. val &= ~DPIO_SWING_MARGIN_MASK;
  2158. val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
  2159. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  2160. }
  2161. /* Disable unique transition scale */
  2162. for (i = 0; i < 4; i++) {
  2163. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  2164. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  2165. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  2166. }
  2167. if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
  2168. == DP_TRAIN_PRE_EMPHASIS_0) &&
  2169. ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
  2170. == DP_TRAIN_VOLTAGE_SWING_1200)) {
  2171. /*
  2172. * The document said it needs to set bit 27 for ch0 and bit 26
  2173. * for ch1. Might be a typo in the doc.
  2174. * For now, for this unique transition scale selection, set bit
  2175. * 27 for ch0 and ch1.
  2176. */
  2177. for (i = 0; i < 4; i++) {
  2178. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  2179. val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
  2180. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  2181. }
  2182. for (i = 0; i < 4; i++) {
  2183. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  2184. val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
  2185. val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
  2186. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  2187. }
  2188. }
  2189. /* Start swing calculation */
  2190. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  2191. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  2192. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  2193. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  2194. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  2195. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  2196. /* LRC Bypass */
  2197. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
  2198. val |= DPIO_LRC_BYPASS;
  2199. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
  2200. mutex_unlock(&dev_priv->dpio_lock);
  2201. return 0;
  2202. }
  2203. static void
  2204. intel_get_adjust_train(struct intel_dp *intel_dp,
  2205. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  2206. {
  2207. uint8_t v = 0;
  2208. uint8_t p = 0;
  2209. int lane;
  2210. uint8_t voltage_max;
  2211. uint8_t preemph_max;
  2212. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  2213. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  2214. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  2215. if (this_v > v)
  2216. v = this_v;
  2217. if (this_p > p)
  2218. p = this_p;
  2219. }
  2220. voltage_max = intel_dp_voltage_max(intel_dp);
  2221. if (v >= voltage_max)
  2222. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  2223. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  2224. if (p >= preemph_max)
  2225. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  2226. for (lane = 0; lane < 4; lane++)
  2227. intel_dp->train_set[lane] = v | p;
  2228. }
  2229. static uint32_t
  2230. intel_gen4_signal_levels(uint8_t train_set)
  2231. {
  2232. uint32_t signal_levels = 0;
  2233. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2234. case DP_TRAIN_VOLTAGE_SWING_400:
  2235. default:
  2236. signal_levels |= DP_VOLTAGE_0_4;
  2237. break;
  2238. case DP_TRAIN_VOLTAGE_SWING_600:
  2239. signal_levels |= DP_VOLTAGE_0_6;
  2240. break;
  2241. case DP_TRAIN_VOLTAGE_SWING_800:
  2242. signal_levels |= DP_VOLTAGE_0_8;
  2243. break;
  2244. case DP_TRAIN_VOLTAGE_SWING_1200:
  2245. signal_levels |= DP_VOLTAGE_1_2;
  2246. break;
  2247. }
  2248. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  2249. case DP_TRAIN_PRE_EMPHASIS_0:
  2250. default:
  2251. signal_levels |= DP_PRE_EMPHASIS_0;
  2252. break;
  2253. case DP_TRAIN_PRE_EMPHASIS_3_5:
  2254. signal_levels |= DP_PRE_EMPHASIS_3_5;
  2255. break;
  2256. case DP_TRAIN_PRE_EMPHASIS_6:
  2257. signal_levels |= DP_PRE_EMPHASIS_6;
  2258. break;
  2259. case DP_TRAIN_PRE_EMPHASIS_9_5:
  2260. signal_levels |= DP_PRE_EMPHASIS_9_5;
  2261. break;
  2262. }
  2263. return signal_levels;
  2264. }
  2265. /* Gen6's DP voltage swing and pre-emphasis control */
  2266. static uint32_t
  2267. intel_gen6_edp_signal_levels(uint8_t train_set)
  2268. {
  2269. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2270. DP_TRAIN_PRE_EMPHASIS_MASK);
  2271. switch (signal_levels) {
  2272. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2273. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2274. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  2275. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2276. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  2277. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2278. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  2279. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  2280. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2281. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2282. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  2283. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2284. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  2285. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  2286. default:
  2287. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2288. "0x%x\n", signal_levels);
  2289. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  2290. }
  2291. }
  2292. /* Gen7's DP voltage swing and pre-emphasis control */
  2293. static uint32_t
  2294. intel_gen7_edp_signal_levels(uint8_t train_set)
  2295. {
  2296. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2297. DP_TRAIN_PRE_EMPHASIS_MASK);
  2298. switch (signal_levels) {
  2299. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2300. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  2301. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2302. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  2303. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2304. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  2305. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2306. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  2307. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2308. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  2309. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2310. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  2311. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2312. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  2313. default:
  2314. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2315. "0x%x\n", signal_levels);
  2316. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  2317. }
  2318. }
  2319. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  2320. static uint32_t
  2321. intel_hsw_signal_levels(uint8_t train_set)
  2322. {
  2323. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2324. DP_TRAIN_PRE_EMPHASIS_MASK);
  2325. switch (signal_levels) {
  2326. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2327. return DDI_BUF_EMP_400MV_0DB_HSW;
  2328. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2329. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  2330. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2331. return DDI_BUF_EMP_400MV_6DB_HSW;
  2332. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  2333. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  2334. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2335. return DDI_BUF_EMP_600MV_0DB_HSW;
  2336. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2337. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  2338. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  2339. return DDI_BUF_EMP_600MV_6DB_HSW;
  2340. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2341. return DDI_BUF_EMP_800MV_0DB_HSW;
  2342. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2343. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  2344. default:
  2345. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2346. "0x%x\n", signal_levels);
  2347. return DDI_BUF_EMP_400MV_0DB_HSW;
  2348. }
  2349. }
  2350. /* Properly updates "DP" with the correct signal levels. */
  2351. static void
  2352. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  2353. {
  2354. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2355. enum port port = intel_dig_port->port;
  2356. struct drm_device *dev = intel_dig_port->base.base.dev;
  2357. uint32_t signal_levels, mask;
  2358. uint8_t train_set = intel_dp->train_set[0];
  2359. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2360. signal_levels = intel_hsw_signal_levels(train_set);
  2361. mask = DDI_BUF_EMP_MASK;
  2362. } else if (IS_CHERRYVIEW(dev)) {
  2363. signal_levels = intel_chv_signal_levels(intel_dp);
  2364. mask = 0;
  2365. } else if (IS_VALLEYVIEW(dev)) {
  2366. signal_levels = intel_vlv_signal_levels(intel_dp);
  2367. mask = 0;
  2368. } else if (IS_GEN7(dev) && port == PORT_A) {
  2369. signal_levels = intel_gen7_edp_signal_levels(train_set);
  2370. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  2371. } else if (IS_GEN6(dev) && port == PORT_A) {
  2372. signal_levels = intel_gen6_edp_signal_levels(train_set);
  2373. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  2374. } else {
  2375. signal_levels = intel_gen4_signal_levels(train_set);
  2376. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  2377. }
  2378. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  2379. *DP = (*DP & ~mask) | signal_levels;
  2380. }
  2381. static bool
  2382. intel_dp_set_link_train(struct intel_dp *intel_dp,
  2383. uint32_t *DP,
  2384. uint8_t dp_train_pat)
  2385. {
  2386. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2387. struct drm_device *dev = intel_dig_port->base.base.dev;
  2388. struct drm_i915_private *dev_priv = dev->dev_private;
  2389. enum port port = intel_dig_port->port;
  2390. uint8_t buf[sizeof(intel_dp->train_set) + 1];
  2391. int ret, len;
  2392. if (HAS_DDI(dev)) {
  2393. uint32_t temp = I915_READ(DP_TP_CTL(port));
  2394. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  2395. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  2396. else
  2397. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  2398. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2399. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2400. case DP_TRAINING_PATTERN_DISABLE:
  2401. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  2402. break;
  2403. case DP_TRAINING_PATTERN_1:
  2404. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2405. break;
  2406. case DP_TRAINING_PATTERN_2:
  2407. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  2408. break;
  2409. case DP_TRAINING_PATTERN_3:
  2410. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  2411. break;
  2412. }
  2413. I915_WRITE(DP_TP_CTL(port), temp);
  2414. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2415. *DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2416. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2417. case DP_TRAINING_PATTERN_DISABLE:
  2418. *DP |= DP_LINK_TRAIN_OFF_CPT;
  2419. break;
  2420. case DP_TRAINING_PATTERN_1:
  2421. *DP |= DP_LINK_TRAIN_PAT_1_CPT;
  2422. break;
  2423. case DP_TRAINING_PATTERN_2:
  2424. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2425. break;
  2426. case DP_TRAINING_PATTERN_3:
  2427. DRM_ERROR("DP training pattern 3 not supported\n");
  2428. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2429. break;
  2430. }
  2431. } else {
  2432. *DP &= ~DP_LINK_TRAIN_MASK;
  2433. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2434. case DP_TRAINING_PATTERN_DISABLE:
  2435. *DP |= DP_LINK_TRAIN_OFF;
  2436. break;
  2437. case DP_TRAINING_PATTERN_1:
  2438. *DP |= DP_LINK_TRAIN_PAT_1;
  2439. break;
  2440. case DP_TRAINING_PATTERN_2:
  2441. *DP |= DP_LINK_TRAIN_PAT_2;
  2442. break;
  2443. case DP_TRAINING_PATTERN_3:
  2444. DRM_ERROR("DP training pattern 3 not supported\n");
  2445. *DP |= DP_LINK_TRAIN_PAT_2;
  2446. break;
  2447. }
  2448. }
  2449. I915_WRITE(intel_dp->output_reg, *DP);
  2450. POSTING_READ(intel_dp->output_reg);
  2451. buf[0] = dp_train_pat;
  2452. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
  2453. DP_TRAINING_PATTERN_DISABLE) {
  2454. /* don't write DP_TRAINING_LANEx_SET on disable */
  2455. len = 1;
  2456. } else {
  2457. /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
  2458. memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
  2459. len = intel_dp->lane_count + 1;
  2460. }
  2461. ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
  2462. buf, len);
  2463. return ret == len;
  2464. }
  2465. static bool
  2466. intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2467. uint8_t dp_train_pat)
  2468. {
  2469. memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
  2470. intel_dp_set_signal_levels(intel_dp, DP);
  2471. return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
  2472. }
  2473. static bool
  2474. intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2475. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  2476. {
  2477. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2478. struct drm_device *dev = intel_dig_port->base.base.dev;
  2479. struct drm_i915_private *dev_priv = dev->dev_private;
  2480. int ret;
  2481. intel_get_adjust_train(intel_dp, link_status);
  2482. intel_dp_set_signal_levels(intel_dp, DP);
  2483. I915_WRITE(intel_dp->output_reg, *DP);
  2484. POSTING_READ(intel_dp->output_reg);
  2485. ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
  2486. intel_dp->train_set, intel_dp->lane_count);
  2487. return ret == intel_dp->lane_count;
  2488. }
  2489. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  2490. {
  2491. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2492. struct drm_device *dev = intel_dig_port->base.base.dev;
  2493. struct drm_i915_private *dev_priv = dev->dev_private;
  2494. enum port port = intel_dig_port->port;
  2495. uint32_t val;
  2496. if (!HAS_DDI(dev))
  2497. return;
  2498. val = I915_READ(DP_TP_CTL(port));
  2499. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2500. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  2501. I915_WRITE(DP_TP_CTL(port), val);
  2502. /*
  2503. * On PORT_A we can have only eDP in SST mode. There the only reason
  2504. * we need to set idle transmission mode is to work around a HW issue
  2505. * where we enable the pipe while not in idle link-training mode.
  2506. * In this case there is requirement to wait for a minimum number of
  2507. * idle patterns to be sent.
  2508. */
  2509. if (port == PORT_A)
  2510. return;
  2511. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2512. 1))
  2513. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2514. }
  2515. /* Enable corresponding port and start training pattern 1 */
  2516. void
  2517. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2518. {
  2519. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2520. struct drm_device *dev = encoder->dev;
  2521. int i;
  2522. uint8_t voltage;
  2523. int voltage_tries, loop_tries;
  2524. uint32_t DP = intel_dp->DP;
  2525. uint8_t link_config[2];
  2526. if (HAS_DDI(dev))
  2527. intel_ddi_prepare_link_retrain(encoder);
  2528. /* Write the link configuration data */
  2529. link_config[0] = intel_dp->link_bw;
  2530. link_config[1] = intel_dp->lane_count;
  2531. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2532. link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  2533. drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
  2534. link_config[0] = 0;
  2535. link_config[1] = DP_SET_ANSI_8B10B;
  2536. drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
  2537. DP |= DP_PORT_EN;
  2538. /* clock recovery */
  2539. if (!intel_dp_reset_link_train(intel_dp, &DP,
  2540. DP_TRAINING_PATTERN_1 |
  2541. DP_LINK_SCRAMBLING_DISABLE)) {
  2542. DRM_ERROR("failed to enable link training\n");
  2543. return;
  2544. }
  2545. voltage = 0xff;
  2546. voltage_tries = 0;
  2547. loop_tries = 0;
  2548. for (;;) {
  2549. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2550. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2551. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2552. DRM_ERROR("failed to get link status\n");
  2553. break;
  2554. }
  2555. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2556. DRM_DEBUG_KMS("clock recovery OK\n");
  2557. break;
  2558. }
  2559. /* Check to see if we've tried the max voltage */
  2560. for (i = 0; i < intel_dp->lane_count; i++)
  2561. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2562. break;
  2563. if (i == intel_dp->lane_count) {
  2564. ++loop_tries;
  2565. if (loop_tries == 5) {
  2566. DRM_ERROR("too many full retries, give up\n");
  2567. break;
  2568. }
  2569. intel_dp_reset_link_train(intel_dp, &DP,
  2570. DP_TRAINING_PATTERN_1 |
  2571. DP_LINK_SCRAMBLING_DISABLE);
  2572. voltage_tries = 0;
  2573. continue;
  2574. }
  2575. /* Check to see if we've tried the same voltage 5 times */
  2576. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2577. ++voltage_tries;
  2578. if (voltage_tries == 5) {
  2579. DRM_ERROR("too many voltage retries, give up\n");
  2580. break;
  2581. }
  2582. } else
  2583. voltage_tries = 0;
  2584. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2585. /* Update training set as requested by target */
  2586. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2587. DRM_ERROR("failed to update link training\n");
  2588. break;
  2589. }
  2590. }
  2591. intel_dp->DP = DP;
  2592. }
  2593. void
  2594. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2595. {
  2596. bool channel_eq = false;
  2597. int tries, cr_tries;
  2598. uint32_t DP = intel_dp->DP;
  2599. uint32_t training_pattern = DP_TRAINING_PATTERN_2;
  2600. /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
  2601. if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
  2602. training_pattern = DP_TRAINING_PATTERN_3;
  2603. /* channel equalization */
  2604. if (!intel_dp_set_link_train(intel_dp, &DP,
  2605. training_pattern |
  2606. DP_LINK_SCRAMBLING_DISABLE)) {
  2607. DRM_ERROR("failed to start channel equalization\n");
  2608. return;
  2609. }
  2610. tries = 0;
  2611. cr_tries = 0;
  2612. channel_eq = false;
  2613. for (;;) {
  2614. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2615. if (cr_tries > 5) {
  2616. DRM_ERROR("failed to train DP, aborting\n");
  2617. break;
  2618. }
  2619. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2620. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2621. DRM_ERROR("failed to get link status\n");
  2622. break;
  2623. }
  2624. /* Make sure clock is still ok */
  2625. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2626. intel_dp_start_link_train(intel_dp);
  2627. intel_dp_set_link_train(intel_dp, &DP,
  2628. training_pattern |
  2629. DP_LINK_SCRAMBLING_DISABLE);
  2630. cr_tries++;
  2631. continue;
  2632. }
  2633. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2634. channel_eq = true;
  2635. break;
  2636. }
  2637. /* Try 5 times, then try clock recovery if that fails */
  2638. if (tries > 5) {
  2639. intel_dp_link_down(intel_dp);
  2640. intel_dp_start_link_train(intel_dp);
  2641. intel_dp_set_link_train(intel_dp, &DP,
  2642. training_pattern |
  2643. DP_LINK_SCRAMBLING_DISABLE);
  2644. tries = 0;
  2645. cr_tries++;
  2646. continue;
  2647. }
  2648. /* Update training set as requested by target */
  2649. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2650. DRM_ERROR("failed to update link training\n");
  2651. break;
  2652. }
  2653. ++tries;
  2654. }
  2655. intel_dp_set_idle_link_train(intel_dp);
  2656. intel_dp->DP = DP;
  2657. if (channel_eq)
  2658. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2659. }
  2660. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2661. {
  2662. intel_dp_set_link_train(intel_dp, &intel_dp->DP,
  2663. DP_TRAINING_PATTERN_DISABLE);
  2664. }
  2665. static void
  2666. intel_dp_link_down(struct intel_dp *intel_dp)
  2667. {
  2668. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2669. enum port port = intel_dig_port->port;
  2670. struct drm_device *dev = intel_dig_port->base.base.dev;
  2671. struct drm_i915_private *dev_priv = dev->dev_private;
  2672. struct intel_crtc *intel_crtc =
  2673. to_intel_crtc(intel_dig_port->base.base.crtc);
  2674. uint32_t DP = intel_dp->DP;
  2675. if (WARN_ON(HAS_DDI(dev)))
  2676. return;
  2677. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2678. return;
  2679. DRM_DEBUG_KMS("\n");
  2680. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2681. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2682. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2683. } else {
  2684. DP &= ~DP_LINK_TRAIN_MASK;
  2685. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2686. }
  2687. POSTING_READ(intel_dp->output_reg);
  2688. if (HAS_PCH_IBX(dev) &&
  2689. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2690. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2691. /* Hardware workaround: leaving our transcoder select
  2692. * set to transcoder B while it's off will prevent the
  2693. * corresponding HDMI output on transcoder A.
  2694. *
  2695. * Combine this with another hardware workaround:
  2696. * transcoder select bit can only be cleared while the
  2697. * port is enabled.
  2698. */
  2699. DP &= ~DP_PIPEB_SELECT;
  2700. I915_WRITE(intel_dp->output_reg, DP);
  2701. /* Changes to enable or select take place the vblank
  2702. * after being written.
  2703. */
  2704. if (WARN_ON(crtc == NULL)) {
  2705. /* We should never try to disable a port without a crtc
  2706. * attached. For paranoia keep the code around for a
  2707. * bit. */
  2708. POSTING_READ(intel_dp->output_reg);
  2709. msleep(50);
  2710. } else
  2711. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2712. }
  2713. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2714. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2715. POSTING_READ(intel_dp->output_reg);
  2716. msleep(intel_dp->panel_power_down_delay);
  2717. }
  2718. static bool
  2719. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2720. {
  2721. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  2722. struct drm_device *dev = dig_port->base.base.dev;
  2723. struct drm_i915_private *dev_priv = dev->dev_private;
  2724. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2725. if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
  2726. sizeof(intel_dp->dpcd)) < 0)
  2727. return false; /* aux transfer failed */
  2728. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2729. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2730. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2731. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2732. return false; /* DPCD not present */
  2733. /* Check if the panel supports PSR */
  2734. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2735. if (is_edp(intel_dp)) {
  2736. intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
  2737. intel_dp->psr_dpcd,
  2738. sizeof(intel_dp->psr_dpcd));
  2739. if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
  2740. dev_priv->psr.sink_support = true;
  2741. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2742. }
  2743. }
  2744. /* Training Pattern 3 support */
  2745. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
  2746. intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
  2747. intel_dp->use_tps3 = true;
  2748. DRM_DEBUG_KMS("Displayport TPS3 supported");
  2749. } else
  2750. intel_dp->use_tps3 = false;
  2751. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2752. DP_DWN_STRM_PORT_PRESENT))
  2753. return true; /* native DP sink */
  2754. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2755. return true; /* no per-port downstream info */
  2756. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
  2757. intel_dp->downstream_ports,
  2758. DP_MAX_DOWNSTREAM_PORTS) < 0)
  2759. return false; /* downstream port status fetch failed */
  2760. return true;
  2761. }
  2762. static void
  2763. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2764. {
  2765. u8 buf[3];
  2766. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2767. return;
  2768. intel_edp_panel_vdd_on(intel_dp);
  2769. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
  2770. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2771. buf[0], buf[1], buf[2]);
  2772. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
  2773. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2774. buf[0], buf[1], buf[2]);
  2775. edp_panel_vdd_off(intel_dp, false);
  2776. }
  2777. int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
  2778. {
  2779. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2780. struct drm_device *dev = intel_dig_port->base.base.dev;
  2781. struct intel_crtc *intel_crtc =
  2782. to_intel_crtc(intel_dig_port->base.base.crtc);
  2783. u8 buf[1];
  2784. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
  2785. return -EAGAIN;
  2786. if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
  2787. return -ENOTTY;
  2788. if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
  2789. DP_TEST_SINK_START) < 0)
  2790. return -EAGAIN;
  2791. /* Wait 2 vblanks to be sure we will have the correct CRC value */
  2792. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2793. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2794. if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
  2795. return -EAGAIN;
  2796. drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
  2797. return 0;
  2798. }
  2799. static bool
  2800. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2801. {
  2802. return intel_dp_dpcd_read_wake(&intel_dp->aux,
  2803. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2804. sink_irq_vector, 1) == 1;
  2805. }
  2806. static void
  2807. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2808. {
  2809. /* NAK by default */
  2810. drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
  2811. }
  2812. /*
  2813. * According to DP spec
  2814. * 5.1.2:
  2815. * 1. Read DPCD
  2816. * 2. Configure link according to Receiver Capabilities
  2817. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2818. * 4. Check link status on receipt of hot-plug interrupt
  2819. */
  2820. void
  2821. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2822. {
  2823. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2824. u8 sink_irq_vector;
  2825. u8 link_status[DP_LINK_STATUS_SIZE];
  2826. /* FIXME: This access isn't protected by any locks. */
  2827. if (!intel_encoder->connectors_active)
  2828. return;
  2829. if (WARN_ON(!intel_encoder->base.crtc))
  2830. return;
  2831. /* Try to read receiver status if the link appears to be up */
  2832. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2833. return;
  2834. }
  2835. /* Now read the DPCD to see if it's actually running */
  2836. if (!intel_dp_get_dpcd(intel_dp)) {
  2837. return;
  2838. }
  2839. /* Try to read the source of the interrupt */
  2840. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2841. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2842. /* Clear interrupt source */
  2843. drm_dp_dpcd_writeb(&intel_dp->aux,
  2844. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2845. sink_irq_vector);
  2846. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2847. intel_dp_handle_test_request(intel_dp);
  2848. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2849. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2850. }
  2851. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2852. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2853. intel_encoder->base.name);
  2854. intel_dp_start_link_train(intel_dp);
  2855. intel_dp_complete_link_train(intel_dp);
  2856. intel_dp_stop_link_train(intel_dp);
  2857. }
  2858. }
  2859. /* XXX this is probably wrong for multiple downstream ports */
  2860. static enum drm_connector_status
  2861. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2862. {
  2863. uint8_t *dpcd = intel_dp->dpcd;
  2864. uint8_t type;
  2865. if (!intel_dp_get_dpcd(intel_dp))
  2866. return connector_status_disconnected;
  2867. /* if there's no downstream port, we're done */
  2868. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2869. return connector_status_connected;
  2870. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2871. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2872. intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
  2873. uint8_t reg;
  2874. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
  2875. &reg, 1) < 0)
  2876. return connector_status_unknown;
  2877. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2878. : connector_status_disconnected;
  2879. }
  2880. /* If no HPD, poke DDC gently */
  2881. if (drm_probe_ddc(&intel_dp->aux.ddc))
  2882. return connector_status_connected;
  2883. /* Well we tried, say unknown for unreliable port types */
  2884. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  2885. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2886. if (type == DP_DS_PORT_TYPE_VGA ||
  2887. type == DP_DS_PORT_TYPE_NON_EDID)
  2888. return connector_status_unknown;
  2889. } else {
  2890. type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2891. DP_DWN_STRM_PORT_TYPE_MASK;
  2892. if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
  2893. type == DP_DWN_STRM_PORT_TYPE_OTHER)
  2894. return connector_status_unknown;
  2895. }
  2896. /* Anything else is out of spec, warn and ignore */
  2897. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2898. return connector_status_disconnected;
  2899. }
  2900. static enum drm_connector_status
  2901. ironlake_dp_detect(struct intel_dp *intel_dp)
  2902. {
  2903. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2904. struct drm_i915_private *dev_priv = dev->dev_private;
  2905. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2906. enum drm_connector_status status;
  2907. /* Can't disconnect eDP, but you can close the lid... */
  2908. if (is_edp(intel_dp)) {
  2909. status = intel_panel_detect(dev);
  2910. if (status == connector_status_unknown)
  2911. status = connector_status_connected;
  2912. return status;
  2913. }
  2914. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2915. return connector_status_disconnected;
  2916. return intel_dp_detect_dpcd(intel_dp);
  2917. }
  2918. static enum drm_connector_status
  2919. g4x_dp_detect(struct intel_dp *intel_dp)
  2920. {
  2921. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2922. struct drm_i915_private *dev_priv = dev->dev_private;
  2923. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2924. uint32_t bit;
  2925. /* Can't disconnect eDP, but you can close the lid... */
  2926. if (is_edp(intel_dp)) {
  2927. enum drm_connector_status status;
  2928. status = intel_panel_detect(dev);
  2929. if (status == connector_status_unknown)
  2930. status = connector_status_connected;
  2931. return status;
  2932. }
  2933. if (IS_VALLEYVIEW(dev)) {
  2934. switch (intel_dig_port->port) {
  2935. case PORT_B:
  2936. bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
  2937. break;
  2938. case PORT_C:
  2939. bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
  2940. break;
  2941. case PORT_D:
  2942. bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
  2943. break;
  2944. default:
  2945. return connector_status_unknown;
  2946. }
  2947. } else {
  2948. switch (intel_dig_port->port) {
  2949. case PORT_B:
  2950. bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
  2951. break;
  2952. case PORT_C:
  2953. bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
  2954. break;
  2955. case PORT_D:
  2956. bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
  2957. break;
  2958. default:
  2959. return connector_status_unknown;
  2960. }
  2961. }
  2962. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2963. return connector_status_disconnected;
  2964. return intel_dp_detect_dpcd(intel_dp);
  2965. }
  2966. static struct edid *
  2967. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2968. {
  2969. struct intel_connector *intel_connector = to_intel_connector(connector);
  2970. /* use cached edid if we have one */
  2971. if (intel_connector->edid) {
  2972. /* invalid edid */
  2973. if (IS_ERR(intel_connector->edid))
  2974. return NULL;
  2975. return drm_edid_duplicate(intel_connector->edid);
  2976. }
  2977. return drm_get_edid(connector, adapter);
  2978. }
  2979. static int
  2980. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2981. {
  2982. struct intel_connector *intel_connector = to_intel_connector(connector);
  2983. /* use cached edid if we have one */
  2984. if (intel_connector->edid) {
  2985. /* invalid edid */
  2986. if (IS_ERR(intel_connector->edid))
  2987. return 0;
  2988. return intel_connector_update_modes(connector,
  2989. intel_connector->edid);
  2990. }
  2991. return intel_ddc_get_modes(connector, adapter);
  2992. }
  2993. static enum drm_connector_status
  2994. intel_dp_detect(struct drm_connector *connector, bool force)
  2995. {
  2996. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2997. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2998. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2999. struct drm_device *dev = connector->dev;
  3000. struct drm_i915_private *dev_priv = dev->dev_private;
  3001. enum drm_connector_status status;
  3002. enum intel_display_power_domain power_domain;
  3003. struct edid *edid = NULL;
  3004. intel_runtime_pm_get(dev_priv);
  3005. power_domain = intel_display_port_power_domain(intel_encoder);
  3006. intel_display_power_get(dev_priv, power_domain);
  3007. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3008. connector->base.id, connector->name);
  3009. intel_dp->has_audio = false;
  3010. if (HAS_PCH_SPLIT(dev))
  3011. status = ironlake_dp_detect(intel_dp);
  3012. else
  3013. status = g4x_dp_detect(intel_dp);
  3014. if (status != connector_status_connected)
  3015. goto out;
  3016. intel_dp_probe_oui(intel_dp);
  3017. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  3018. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  3019. } else {
  3020. edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
  3021. if (edid) {
  3022. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  3023. kfree(edid);
  3024. }
  3025. }
  3026. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  3027. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3028. status = connector_status_connected;
  3029. out:
  3030. intel_display_power_put(dev_priv, power_domain);
  3031. intel_runtime_pm_put(dev_priv);
  3032. return status;
  3033. }
  3034. static int intel_dp_get_modes(struct drm_connector *connector)
  3035. {
  3036. struct intel_dp *intel_dp = intel_attached_dp(connector);
  3037. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  3038. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3039. struct intel_connector *intel_connector = to_intel_connector(connector);
  3040. struct drm_device *dev = connector->dev;
  3041. struct drm_i915_private *dev_priv = dev->dev_private;
  3042. enum intel_display_power_domain power_domain;
  3043. int ret;
  3044. /* We should parse the EDID data and find out if it has an audio sink
  3045. */
  3046. power_domain = intel_display_port_power_domain(intel_encoder);
  3047. intel_display_power_get(dev_priv, power_domain);
  3048. ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
  3049. intel_display_power_put(dev_priv, power_domain);
  3050. if (ret)
  3051. return ret;
  3052. /* if eDP has no EDID, fall back to fixed mode */
  3053. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  3054. struct drm_display_mode *mode;
  3055. mode = drm_mode_duplicate(dev,
  3056. intel_connector->panel.fixed_mode);
  3057. if (mode) {
  3058. drm_mode_probed_add(connector, mode);
  3059. return 1;
  3060. }
  3061. }
  3062. return 0;
  3063. }
  3064. static bool
  3065. intel_dp_detect_audio(struct drm_connector *connector)
  3066. {
  3067. struct intel_dp *intel_dp = intel_attached_dp(connector);
  3068. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  3069. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3070. struct drm_device *dev = connector->dev;
  3071. struct drm_i915_private *dev_priv = dev->dev_private;
  3072. enum intel_display_power_domain power_domain;
  3073. struct edid *edid;
  3074. bool has_audio = false;
  3075. power_domain = intel_display_port_power_domain(intel_encoder);
  3076. intel_display_power_get(dev_priv, power_domain);
  3077. edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
  3078. if (edid) {
  3079. has_audio = drm_detect_monitor_audio(edid);
  3080. kfree(edid);
  3081. }
  3082. intel_display_power_put(dev_priv, power_domain);
  3083. return has_audio;
  3084. }
  3085. static int
  3086. intel_dp_set_property(struct drm_connector *connector,
  3087. struct drm_property *property,
  3088. uint64_t val)
  3089. {
  3090. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  3091. struct intel_connector *intel_connector = to_intel_connector(connector);
  3092. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  3093. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  3094. int ret;
  3095. ret = drm_object_property_set_value(&connector->base, property, val);
  3096. if (ret)
  3097. return ret;
  3098. if (property == dev_priv->force_audio_property) {
  3099. int i = val;
  3100. bool has_audio;
  3101. if (i == intel_dp->force_audio)
  3102. return 0;
  3103. intel_dp->force_audio = i;
  3104. if (i == HDMI_AUDIO_AUTO)
  3105. has_audio = intel_dp_detect_audio(connector);
  3106. else
  3107. has_audio = (i == HDMI_AUDIO_ON);
  3108. if (has_audio == intel_dp->has_audio)
  3109. return 0;
  3110. intel_dp->has_audio = has_audio;
  3111. goto done;
  3112. }
  3113. if (property == dev_priv->broadcast_rgb_property) {
  3114. bool old_auto = intel_dp->color_range_auto;
  3115. uint32_t old_range = intel_dp->color_range;
  3116. switch (val) {
  3117. case INTEL_BROADCAST_RGB_AUTO:
  3118. intel_dp->color_range_auto = true;
  3119. break;
  3120. case INTEL_BROADCAST_RGB_FULL:
  3121. intel_dp->color_range_auto = false;
  3122. intel_dp->color_range = 0;
  3123. break;
  3124. case INTEL_BROADCAST_RGB_LIMITED:
  3125. intel_dp->color_range_auto = false;
  3126. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  3127. break;
  3128. default:
  3129. return -EINVAL;
  3130. }
  3131. if (old_auto == intel_dp->color_range_auto &&
  3132. old_range == intel_dp->color_range)
  3133. return 0;
  3134. goto done;
  3135. }
  3136. if (is_edp(intel_dp) &&
  3137. property == connector->dev->mode_config.scaling_mode_property) {
  3138. if (val == DRM_MODE_SCALE_NONE) {
  3139. DRM_DEBUG_KMS("no scaling not supported\n");
  3140. return -EINVAL;
  3141. }
  3142. if (intel_connector->panel.fitting_mode == val) {
  3143. /* the eDP scaling property is not changed */
  3144. return 0;
  3145. }
  3146. intel_connector->panel.fitting_mode = val;
  3147. goto done;
  3148. }
  3149. return -EINVAL;
  3150. done:
  3151. if (intel_encoder->base.crtc)
  3152. intel_crtc_restore_mode(intel_encoder->base.crtc);
  3153. return 0;
  3154. }
  3155. static void
  3156. intel_dp_connector_destroy(struct drm_connector *connector)
  3157. {
  3158. struct intel_connector *intel_connector = to_intel_connector(connector);
  3159. if (!IS_ERR_OR_NULL(intel_connector->edid))
  3160. kfree(intel_connector->edid);
  3161. /* Can't call is_edp() since the encoder may have been destroyed
  3162. * already. */
  3163. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  3164. intel_panel_fini(&intel_connector->panel);
  3165. drm_connector_cleanup(connector);
  3166. kfree(connector);
  3167. }
  3168. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  3169. {
  3170. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  3171. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3172. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  3173. drm_dp_aux_unregister(&intel_dp->aux);
  3174. drm_encoder_cleanup(encoder);
  3175. if (is_edp(intel_dp)) {
  3176. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3177. drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
  3178. edp_panel_vdd_off_sync(intel_dp);
  3179. drm_modeset_unlock(&dev->mode_config.connection_mutex);
  3180. }
  3181. kfree(intel_dig_port);
  3182. }
  3183. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  3184. .dpms = intel_connector_dpms,
  3185. .detect = intel_dp_detect,
  3186. .fill_modes = drm_helper_probe_single_connector_modes,
  3187. .set_property = intel_dp_set_property,
  3188. .destroy = intel_dp_connector_destroy,
  3189. };
  3190. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  3191. .get_modes = intel_dp_get_modes,
  3192. .mode_valid = intel_dp_mode_valid,
  3193. .best_encoder = intel_best_encoder,
  3194. };
  3195. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  3196. .destroy = intel_dp_encoder_destroy,
  3197. };
  3198. static void
  3199. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  3200. {
  3201. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  3202. intel_dp_check_link_status(intel_dp);
  3203. }
  3204. /* Return which DP Port should be selected for Transcoder DP control */
  3205. int
  3206. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  3207. {
  3208. struct drm_device *dev = crtc->dev;
  3209. struct intel_encoder *intel_encoder;
  3210. struct intel_dp *intel_dp;
  3211. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3212. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  3213. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  3214. intel_encoder->type == INTEL_OUTPUT_EDP)
  3215. return intel_dp->output_reg;
  3216. }
  3217. return -1;
  3218. }
  3219. /* check the VBT to see whether the eDP is on DP-D port */
  3220. bool intel_dp_is_edp(struct drm_device *dev, enum port port)
  3221. {
  3222. struct drm_i915_private *dev_priv = dev->dev_private;
  3223. union child_device_config *p_child;
  3224. int i;
  3225. static const short port_mapping[] = {
  3226. [PORT_B] = PORT_IDPB,
  3227. [PORT_C] = PORT_IDPC,
  3228. [PORT_D] = PORT_IDPD,
  3229. };
  3230. if (port == PORT_A)
  3231. return true;
  3232. if (!dev_priv->vbt.child_dev_num)
  3233. return false;
  3234. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  3235. p_child = dev_priv->vbt.child_dev + i;
  3236. if (p_child->common.dvo_port == port_mapping[port] &&
  3237. (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
  3238. (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
  3239. return true;
  3240. }
  3241. return false;
  3242. }
  3243. static void
  3244. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  3245. {
  3246. struct intel_connector *intel_connector = to_intel_connector(connector);
  3247. intel_attach_force_audio_property(connector);
  3248. intel_attach_broadcast_rgb_property(connector);
  3249. intel_dp->color_range_auto = true;
  3250. if (is_edp(intel_dp)) {
  3251. drm_mode_create_scaling_mode_property(connector->dev);
  3252. drm_object_attach_property(
  3253. &connector->base,
  3254. connector->dev->mode_config.scaling_mode_property,
  3255. DRM_MODE_SCALE_ASPECT);
  3256. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  3257. }
  3258. }
  3259. static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
  3260. {
  3261. intel_dp->last_power_cycle = jiffies;
  3262. intel_dp->last_power_on = jiffies;
  3263. intel_dp->last_backlight_off = jiffies;
  3264. }
  3265. static void
  3266. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  3267. struct intel_dp *intel_dp,
  3268. struct edp_power_seq *out)
  3269. {
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. struct edp_power_seq cur, vbt, spec, final;
  3272. u32 pp_on, pp_off, pp_div, pp;
  3273. int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  3274. if (HAS_PCH_SPLIT(dev)) {
  3275. pp_ctrl_reg = PCH_PP_CONTROL;
  3276. pp_on_reg = PCH_PP_ON_DELAYS;
  3277. pp_off_reg = PCH_PP_OFF_DELAYS;
  3278. pp_div_reg = PCH_PP_DIVISOR;
  3279. } else {
  3280. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  3281. pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
  3282. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  3283. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  3284. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  3285. }
  3286. /* Workaround: Need to write PP_CONTROL with the unlock key as
  3287. * the very first thing. */
  3288. pp = ironlake_get_pp_control(intel_dp);
  3289. I915_WRITE(pp_ctrl_reg, pp);
  3290. pp_on = I915_READ(pp_on_reg);
  3291. pp_off = I915_READ(pp_off_reg);
  3292. pp_div = I915_READ(pp_div_reg);
  3293. /* Pull timing values out of registers */
  3294. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  3295. PANEL_POWER_UP_DELAY_SHIFT;
  3296. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  3297. PANEL_LIGHT_ON_DELAY_SHIFT;
  3298. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  3299. PANEL_LIGHT_OFF_DELAY_SHIFT;
  3300. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  3301. PANEL_POWER_DOWN_DELAY_SHIFT;
  3302. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  3303. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  3304. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  3305. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  3306. vbt = dev_priv->vbt.edp_pps;
  3307. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  3308. * our hw here, which are all in 100usec. */
  3309. spec.t1_t3 = 210 * 10;
  3310. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  3311. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  3312. spec.t10 = 500 * 10;
  3313. /* This one is special and actually in units of 100ms, but zero
  3314. * based in the hw (so we need to add 100 ms). But the sw vbt
  3315. * table multiplies it with 1000 to make it in units of 100usec,
  3316. * too. */
  3317. spec.t11_t12 = (510 + 100) * 10;
  3318. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  3319. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  3320. /* Use the max of the register settings and vbt. If both are
  3321. * unset, fall back to the spec limits. */
  3322. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  3323. spec.field : \
  3324. max(cur.field, vbt.field))
  3325. assign_final(t1_t3);
  3326. assign_final(t8);
  3327. assign_final(t9);
  3328. assign_final(t10);
  3329. assign_final(t11_t12);
  3330. #undef assign_final
  3331. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  3332. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  3333. intel_dp->backlight_on_delay = get_delay(t8);
  3334. intel_dp->backlight_off_delay = get_delay(t9);
  3335. intel_dp->panel_power_down_delay = get_delay(t10);
  3336. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  3337. #undef get_delay
  3338. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  3339. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  3340. intel_dp->panel_power_cycle_delay);
  3341. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  3342. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  3343. if (out)
  3344. *out = final;
  3345. }
  3346. static void
  3347. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  3348. struct intel_dp *intel_dp,
  3349. struct edp_power_seq *seq)
  3350. {
  3351. struct drm_i915_private *dev_priv = dev->dev_private;
  3352. u32 pp_on, pp_off, pp_div, port_sel = 0;
  3353. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  3354. int pp_on_reg, pp_off_reg, pp_div_reg;
  3355. if (HAS_PCH_SPLIT(dev)) {
  3356. pp_on_reg = PCH_PP_ON_DELAYS;
  3357. pp_off_reg = PCH_PP_OFF_DELAYS;
  3358. pp_div_reg = PCH_PP_DIVISOR;
  3359. } else {
  3360. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  3361. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  3362. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  3363. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  3364. }
  3365. /*
  3366. * And finally store the new values in the power sequencer. The
  3367. * backlight delays are set to 1 because we do manual waits on them. For
  3368. * T8, even BSpec recommends doing it. For T9, if we don't do this,
  3369. * we'll end up waiting for the backlight off delay twice: once when we
  3370. * do the manual sleep, and once when we disable the panel and wait for
  3371. * the PP_STATUS bit to become zero.
  3372. */
  3373. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  3374. (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
  3375. pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  3376. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  3377. /* Compute the divisor for the pp clock, simply match the Bspec
  3378. * formula. */
  3379. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  3380. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  3381. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  3382. /* Haswell doesn't have any port selection bits for the panel
  3383. * power sequencer any more. */
  3384. if (IS_VALLEYVIEW(dev)) {
  3385. if (dp_to_dig_port(intel_dp)->port == PORT_B)
  3386. port_sel = PANEL_PORT_SELECT_DPB_VLV;
  3387. else
  3388. port_sel = PANEL_PORT_SELECT_DPC_VLV;
  3389. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  3390. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  3391. port_sel = PANEL_PORT_SELECT_DPA;
  3392. else
  3393. port_sel = PANEL_PORT_SELECT_DPD;
  3394. }
  3395. pp_on |= port_sel;
  3396. I915_WRITE(pp_on_reg, pp_on);
  3397. I915_WRITE(pp_off_reg, pp_off);
  3398. I915_WRITE(pp_div_reg, pp_div);
  3399. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  3400. I915_READ(pp_on_reg),
  3401. I915_READ(pp_off_reg),
  3402. I915_READ(pp_div_reg));
  3403. }
  3404. void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
  3405. {
  3406. struct drm_i915_private *dev_priv = dev->dev_private;
  3407. struct intel_encoder *encoder;
  3408. struct intel_dp *intel_dp = NULL;
  3409. struct intel_crtc_config *config = NULL;
  3410. struct intel_crtc *intel_crtc = NULL;
  3411. struct intel_connector *intel_connector = dev_priv->drrs.connector;
  3412. u32 reg, val;
  3413. enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
  3414. if (refresh_rate <= 0) {
  3415. DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
  3416. return;
  3417. }
  3418. if (intel_connector == NULL) {
  3419. DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
  3420. return;
  3421. }
  3422. if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
  3423. DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
  3424. return;
  3425. }
  3426. encoder = intel_attached_encoder(&intel_connector->base);
  3427. intel_dp = enc_to_intel_dp(&encoder->base);
  3428. intel_crtc = encoder->new_crtc;
  3429. if (!intel_crtc) {
  3430. DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
  3431. return;
  3432. }
  3433. config = &intel_crtc->config;
  3434. if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
  3435. DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
  3436. return;
  3437. }
  3438. if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
  3439. index = DRRS_LOW_RR;
  3440. if (index == intel_dp->drrs_state.refresh_rate_type) {
  3441. DRM_DEBUG_KMS(
  3442. "DRRS requested for previously set RR...ignoring\n");
  3443. return;
  3444. }
  3445. if (!intel_crtc->active) {
  3446. DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
  3447. return;
  3448. }
  3449. if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
  3450. reg = PIPECONF(intel_crtc->config.cpu_transcoder);
  3451. val = I915_READ(reg);
  3452. if (index > DRRS_HIGH_RR) {
  3453. val |= PIPECONF_EDP_RR_MODE_SWITCH;
  3454. intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
  3455. } else {
  3456. val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
  3457. }
  3458. I915_WRITE(reg, val);
  3459. }
  3460. /*
  3461. * mutex taken to ensure that there is no race between differnt
  3462. * drrs calls trying to update refresh rate. This scenario may occur
  3463. * in future when idleness detection based DRRS in kernel and
  3464. * possible calls from user space to set differnt RR are made.
  3465. */
  3466. mutex_lock(&intel_dp->drrs_state.mutex);
  3467. intel_dp->drrs_state.refresh_rate_type = index;
  3468. mutex_unlock(&intel_dp->drrs_state.mutex);
  3469. DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
  3470. }
  3471. static struct drm_display_mode *
  3472. intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
  3473. struct intel_connector *intel_connector,
  3474. struct drm_display_mode *fixed_mode)
  3475. {
  3476. struct drm_connector *connector = &intel_connector->base;
  3477. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3478. struct drm_device *dev = intel_dig_port->base.base.dev;
  3479. struct drm_i915_private *dev_priv = dev->dev_private;
  3480. struct drm_display_mode *downclock_mode = NULL;
  3481. if (INTEL_INFO(dev)->gen <= 6) {
  3482. DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
  3483. return NULL;
  3484. }
  3485. if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
  3486. DRM_INFO("VBT doesn't support DRRS\n");
  3487. return NULL;
  3488. }
  3489. downclock_mode = intel_find_panel_downclock
  3490. (dev, fixed_mode, connector);
  3491. if (!downclock_mode) {
  3492. DRM_INFO("DRRS not supported\n");
  3493. return NULL;
  3494. }
  3495. dev_priv->drrs.connector = intel_connector;
  3496. mutex_init(&intel_dp->drrs_state.mutex);
  3497. intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
  3498. intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
  3499. DRM_INFO("seamless DRRS supported for eDP panel.\n");
  3500. return downclock_mode;
  3501. }
  3502. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  3503. struct intel_connector *intel_connector,
  3504. struct edp_power_seq *power_seq)
  3505. {
  3506. struct drm_connector *connector = &intel_connector->base;
  3507. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  3508. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3509. struct drm_device *dev = intel_encoder->base.dev;
  3510. struct drm_i915_private *dev_priv = dev->dev_private;
  3511. struct drm_display_mode *fixed_mode = NULL;
  3512. struct drm_display_mode *downclock_mode = NULL;
  3513. bool has_dpcd;
  3514. struct drm_display_mode *scan;
  3515. struct edid *edid;
  3516. intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
  3517. if (!is_edp(intel_dp))
  3518. return true;
  3519. /* The VDD bit needs a power domain reference, so if the bit is already
  3520. * enabled when we boot, grab this reference. */
  3521. if (edp_have_panel_vdd(intel_dp)) {
  3522. enum intel_display_power_domain power_domain;
  3523. power_domain = intel_display_port_power_domain(intel_encoder);
  3524. intel_display_power_get(dev_priv, power_domain);
  3525. }
  3526. /* Cache DPCD and EDID for edp. */
  3527. intel_edp_panel_vdd_on(intel_dp);
  3528. has_dpcd = intel_dp_get_dpcd(intel_dp);
  3529. edp_panel_vdd_off(intel_dp, false);
  3530. if (has_dpcd) {
  3531. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  3532. dev_priv->no_aux_handshake =
  3533. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  3534. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  3535. } else {
  3536. /* if this fails, presume the device is a ghost */
  3537. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  3538. return false;
  3539. }
  3540. /* We now know it's not a ghost, init power sequence regs. */
  3541. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
  3542. mutex_lock(&dev->mode_config.mutex);
  3543. edid = drm_get_edid(connector, &intel_dp->aux.ddc);
  3544. if (edid) {
  3545. if (drm_add_edid_modes(connector, edid)) {
  3546. drm_mode_connector_update_edid_property(connector,
  3547. edid);
  3548. drm_edid_to_eld(connector, edid);
  3549. } else {
  3550. kfree(edid);
  3551. edid = ERR_PTR(-EINVAL);
  3552. }
  3553. } else {
  3554. edid = ERR_PTR(-ENOENT);
  3555. }
  3556. intel_connector->edid = edid;
  3557. /* prefer fixed mode from EDID if available */
  3558. list_for_each_entry(scan, &connector->probed_modes, head) {
  3559. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  3560. fixed_mode = drm_mode_duplicate(dev, scan);
  3561. downclock_mode = intel_dp_drrs_init(
  3562. intel_dig_port,
  3563. intel_connector, fixed_mode);
  3564. break;
  3565. }
  3566. }
  3567. /* fallback to VBT if available for eDP */
  3568. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  3569. fixed_mode = drm_mode_duplicate(dev,
  3570. dev_priv->vbt.lfp_lvds_vbt_mode);
  3571. if (fixed_mode)
  3572. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  3573. }
  3574. mutex_unlock(&dev->mode_config.mutex);
  3575. intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
  3576. intel_panel_setup_backlight(connector);
  3577. return true;
  3578. }
  3579. bool
  3580. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  3581. struct intel_connector *intel_connector)
  3582. {
  3583. struct drm_connector *connector = &intel_connector->base;
  3584. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3585. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3586. struct drm_device *dev = intel_encoder->base.dev;
  3587. struct drm_i915_private *dev_priv = dev->dev_private;
  3588. enum port port = intel_dig_port->port;
  3589. struct edp_power_seq power_seq = { 0 };
  3590. int type;
  3591. /* intel_dp vfuncs */
  3592. if (IS_VALLEYVIEW(dev))
  3593. intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
  3594. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3595. intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
  3596. else if (HAS_PCH_SPLIT(dev))
  3597. intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
  3598. else
  3599. intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
  3600. intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
  3601. /* Preserve the current hw state. */
  3602. intel_dp->DP = I915_READ(intel_dp->output_reg);
  3603. intel_dp->attached_connector = intel_connector;
  3604. if (intel_dp_is_edp(dev, port))
  3605. type = DRM_MODE_CONNECTOR_eDP;
  3606. else
  3607. type = DRM_MODE_CONNECTOR_DisplayPort;
  3608. /*
  3609. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  3610. * for DP the encoder type can be set by the caller to
  3611. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  3612. */
  3613. if (type == DRM_MODE_CONNECTOR_eDP)
  3614. intel_encoder->type = INTEL_OUTPUT_EDP;
  3615. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  3616. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  3617. port_name(port));
  3618. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  3619. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  3620. connector->interlace_allowed = true;
  3621. connector->doublescan_allowed = 0;
  3622. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  3623. edp_panel_vdd_work);
  3624. intel_connector_attach_encoder(intel_connector, intel_encoder);
  3625. drm_connector_register(connector);
  3626. if (HAS_DDI(dev))
  3627. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  3628. else
  3629. intel_connector->get_hw_state = intel_connector_get_hw_state;
  3630. intel_connector->unregister = intel_dp_connector_unregister;
  3631. /* Set up the hotplug pin. */
  3632. switch (port) {
  3633. case PORT_A:
  3634. intel_encoder->hpd_pin = HPD_PORT_A;
  3635. break;
  3636. case PORT_B:
  3637. intel_encoder->hpd_pin = HPD_PORT_B;
  3638. break;
  3639. case PORT_C:
  3640. intel_encoder->hpd_pin = HPD_PORT_C;
  3641. break;
  3642. case PORT_D:
  3643. intel_encoder->hpd_pin = HPD_PORT_D;
  3644. break;
  3645. default:
  3646. BUG();
  3647. }
  3648. if (is_edp(intel_dp)) {
  3649. intel_dp_init_panel_power_timestamps(intel_dp);
  3650. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  3651. }
  3652. intel_dp_aux_init(intel_dp, intel_connector);
  3653. if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
  3654. drm_dp_aux_unregister(&intel_dp->aux);
  3655. if (is_edp(intel_dp)) {
  3656. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3657. drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
  3658. edp_panel_vdd_off_sync(intel_dp);
  3659. drm_modeset_unlock(&dev->mode_config.connection_mutex);
  3660. }
  3661. drm_connector_unregister(connector);
  3662. drm_connector_cleanup(connector);
  3663. return false;
  3664. }
  3665. intel_dp_add_properties(intel_dp, connector);
  3666. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  3667. * 0xd. Failure to do so will result in spurious interrupts being
  3668. * generated on the port when a cable is not attached.
  3669. */
  3670. if (IS_G4X(dev) && !IS_GM45(dev)) {
  3671. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  3672. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  3673. }
  3674. return true;
  3675. }
  3676. void
  3677. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  3678. {
  3679. struct intel_digital_port *intel_dig_port;
  3680. struct intel_encoder *intel_encoder;
  3681. struct drm_encoder *encoder;
  3682. struct intel_connector *intel_connector;
  3683. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3684. if (!intel_dig_port)
  3685. return;
  3686. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  3687. if (!intel_connector) {
  3688. kfree(intel_dig_port);
  3689. return;
  3690. }
  3691. intel_encoder = &intel_dig_port->base;
  3692. encoder = &intel_encoder->base;
  3693. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3694. DRM_MODE_ENCODER_TMDS);
  3695. intel_encoder->compute_config = intel_dp_compute_config;
  3696. intel_encoder->disable = intel_disable_dp;
  3697. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3698. intel_encoder->get_config = intel_dp_get_config;
  3699. if (IS_CHERRYVIEW(dev)) {
  3700. intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
  3701. intel_encoder->pre_enable = chv_pre_enable_dp;
  3702. intel_encoder->enable = vlv_enable_dp;
  3703. intel_encoder->post_disable = chv_post_disable_dp;
  3704. } else if (IS_VALLEYVIEW(dev)) {
  3705. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3706. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3707. intel_encoder->enable = vlv_enable_dp;
  3708. intel_encoder->post_disable = vlv_post_disable_dp;
  3709. } else {
  3710. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3711. intel_encoder->enable = g4x_enable_dp;
  3712. intel_encoder->post_disable = g4x_post_disable_dp;
  3713. }
  3714. intel_dig_port->port = port;
  3715. intel_dig_port->dp.output_reg = output_reg;
  3716. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3717. if (IS_CHERRYVIEW(dev)) {
  3718. if (port == PORT_D)
  3719. intel_encoder->crtc_mask = 1 << 2;
  3720. else
  3721. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  3722. } else {
  3723. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3724. }
  3725. intel_encoder->cloneable = 0;
  3726. intel_encoder->hot_plug = intel_dp_hot_plug;
  3727. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3728. drm_encoder_cleanup(encoder);
  3729. kfree(intel_dig_port);
  3730. kfree(intel_connector);
  3731. }
  3732. }