init.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/string.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/mm.h>
  15. #include <linux/hugetlb.h>
  16. #include <linux/slab.h>
  17. #include <linux/initrd.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/poison.h>
  21. #include <linux/fs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/kprobes.h>
  24. #include <linux/cache.h>
  25. #include <linux/sort.h>
  26. #include <asm/head.h>
  27. #include <asm/system.h>
  28. #include <asm/page.h>
  29. #include <asm/pgalloc.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/oplib.h>
  32. #include <asm/iommu.h>
  33. #include <asm/io.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/tlbflush.h>
  37. #include <asm/dma.h>
  38. #include <asm/starfire.h>
  39. #include <asm/tlb.h>
  40. #include <asm/spitfire.h>
  41. #include <asm/sections.h>
  42. #include <asm/tsb.h>
  43. #include <asm/hypervisor.h>
  44. #include <asm/prom.h>
  45. extern void device_scan(void);
  46. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  47. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  48. #define KPTE_BITMAP_BYTES \
  49. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  50. unsigned long kern_linear_pte_xor[2] __read_mostly;
  51. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  52. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  53. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  54. */
  55. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  56. /* A special kernel TSB for 4MB and 256MB linear mappings. */
  57. struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  58. #define MAX_BANKS 32
  59. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  60. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  61. static int pavail_ents __initdata;
  62. static int pavail_rescan_ents __initdata;
  63. static int cmp_p64(const void *a, const void *b)
  64. {
  65. const struct linux_prom64_registers *x = a, *y = b;
  66. if (x->phys_addr > y->phys_addr)
  67. return 1;
  68. if (x->phys_addr < y->phys_addr)
  69. return -1;
  70. return 0;
  71. }
  72. static void __init read_obp_memory(const char *property,
  73. struct linux_prom64_registers *regs,
  74. int *num_ents)
  75. {
  76. int node = prom_finddevice("/memory");
  77. int prop_size = prom_getproplen(node, property);
  78. int ents, ret, i;
  79. ents = prop_size / sizeof(struct linux_prom64_registers);
  80. if (ents > MAX_BANKS) {
  81. prom_printf("The machine has more %s property entries than "
  82. "this kernel can support (%d).\n",
  83. property, MAX_BANKS);
  84. prom_halt();
  85. }
  86. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  87. if (ret == -1) {
  88. prom_printf("Couldn't get %s property from /memory.\n");
  89. prom_halt();
  90. }
  91. /* Sanitize what we got from the firmware, by page aligning
  92. * everything.
  93. */
  94. for (i = 0; i < ents; i++) {
  95. unsigned long base, size;
  96. base = regs[i].phys_addr;
  97. size = regs[i].reg_size;
  98. size &= PAGE_MASK;
  99. if (base & ~PAGE_MASK) {
  100. unsigned long new_base = PAGE_ALIGN(base);
  101. size -= new_base - base;
  102. if ((long) size < 0L)
  103. size = 0UL;
  104. base = new_base;
  105. }
  106. regs[i].phys_addr = base;
  107. regs[i].reg_size = size;
  108. }
  109. for (i = 0; i < ents; i++) {
  110. if (regs[i].reg_size == 0UL) {
  111. int j;
  112. for (j = i; j < ents - 1; j++) {
  113. regs[j].phys_addr =
  114. regs[j+1].phys_addr;
  115. regs[j].reg_size =
  116. regs[j+1].reg_size;
  117. }
  118. ents--;
  119. i--;
  120. }
  121. }
  122. *num_ents = ents;
  123. sort(regs, ents, sizeof(struct linux_prom64_registers),
  124. cmp_p64, NULL);
  125. }
  126. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  127. /* Kernel physical address base and size in bytes. */
  128. unsigned long kern_base __read_mostly;
  129. unsigned long kern_size __read_mostly;
  130. /* get_new_mmu_context() uses "cache + 1". */
  131. DEFINE_SPINLOCK(ctx_alloc_lock);
  132. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  133. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  134. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  135. /* References to special section boundaries */
  136. extern char _start[], _end[];
  137. /* Initial ramdisk setup */
  138. extern unsigned long sparc_ramdisk_image64;
  139. extern unsigned int sparc_ramdisk_image;
  140. extern unsigned int sparc_ramdisk_size;
  141. struct page *mem_map_zero __read_mostly;
  142. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  143. unsigned long sparc64_kern_pri_context __read_mostly;
  144. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  145. unsigned long sparc64_kern_sec_context __read_mostly;
  146. int bigkernel = 0;
  147. kmem_cache_t *pgtable_cache __read_mostly;
  148. static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
  149. {
  150. clear_page(addr);
  151. }
  152. extern void tsb_cache_init(void);
  153. void pgtable_cache_init(void)
  154. {
  155. pgtable_cache = kmem_cache_create("pgtable_cache",
  156. PAGE_SIZE, PAGE_SIZE,
  157. SLAB_HWCACHE_ALIGN |
  158. SLAB_MUST_HWCACHE_ALIGN,
  159. zero_ctor,
  160. NULL);
  161. if (!pgtable_cache) {
  162. prom_printf("Could not create pgtable_cache\n");
  163. prom_halt();
  164. }
  165. tsb_cache_init();
  166. }
  167. #ifdef CONFIG_DEBUG_DCFLUSH
  168. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  169. #ifdef CONFIG_SMP
  170. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  171. #endif
  172. #endif
  173. inline void flush_dcache_page_impl(struct page *page)
  174. {
  175. BUG_ON(tlb_type == hypervisor);
  176. #ifdef CONFIG_DEBUG_DCFLUSH
  177. atomic_inc(&dcpage_flushes);
  178. #endif
  179. #ifdef DCACHE_ALIASING_POSSIBLE
  180. __flush_dcache_page(page_address(page),
  181. ((tlb_type == spitfire) &&
  182. page_mapping(page) != NULL));
  183. #else
  184. if (page_mapping(page) != NULL &&
  185. tlb_type == spitfire)
  186. __flush_icache_page(__pa(page_address(page)));
  187. #endif
  188. }
  189. #define PG_dcache_dirty PG_arch_1
  190. #define PG_dcache_cpu_shift 24UL
  191. #define PG_dcache_cpu_mask (256UL - 1UL)
  192. #if NR_CPUS > 256
  193. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  194. #endif
  195. #define dcache_dirty_cpu(page) \
  196. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  197. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  198. {
  199. unsigned long mask = this_cpu;
  200. unsigned long non_cpu_bits;
  201. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  202. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  203. __asm__ __volatile__("1:\n\t"
  204. "ldx [%2], %%g7\n\t"
  205. "and %%g7, %1, %%g1\n\t"
  206. "or %%g1, %0, %%g1\n\t"
  207. "casx [%2], %%g7, %%g1\n\t"
  208. "cmp %%g7, %%g1\n\t"
  209. "membar #StoreLoad | #StoreStore\n\t"
  210. "bne,pn %%xcc, 1b\n\t"
  211. " nop"
  212. : /* no outputs */
  213. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  214. : "g1", "g7");
  215. }
  216. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  217. {
  218. unsigned long mask = (1UL << PG_dcache_dirty);
  219. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  220. "1:\n\t"
  221. "ldx [%2], %%g7\n\t"
  222. "srlx %%g7, %4, %%g1\n\t"
  223. "and %%g1, %3, %%g1\n\t"
  224. "cmp %%g1, %0\n\t"
  225. "bne,pn %%icc, 2f\n\t"
  226. " andn %%g7, %1, %%g1\n\t"
  227. "casx [%2], %%g7, %%g1\n\t"
  228. "cmp %%g7, %%g1\n\t"
  229. "membar #StoreLoad | #StoreStore\n\t"
  230. "bne,pn %%xcc, 1b\n\t"
  231. " nop\n"
  232. "2:"
  233. : /* no outputs */
  234. : "r" (cpu), "r" (mask), "r" (&page->flags),
  235. "i" (PG_dcache_cpu_mask),
  236. "i" (PG_dcache_cpu_shift)
  237. : "g1", "g7");
  238. }
  239. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  240. {
  241. unsigned long tsb_addr = (unsigned long) ent;
  242. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  243. tsb_addr = __pa(tsb_addr);
  244. __tsb_insert(tsb_addr, tag, pte);
  245. }
  246. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  247. unsigned long _PAGE_SZBITS __read_mostly;
  248. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  249. {
  250. struct mm_struct *mm;
  251. struct tsb *tsb;
  252. unsigned long tag, flags;
  253. unsigned long tsb_index, tsb_hash_shift;
  254. if (tlb_type != hypervisor) {
  255. unsigned long pfn = pte_pfn(pte);
  256. unsigned long pg_flags;
  257. struct page *page;
  258. if (pfn_valid(pfn) &&
  259. (page = pfn_to_page(pfn), page_mapping(page)) &&
  260. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  261. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  262. PG_dcache_cpu_mask);
  263. int this_cpu = get_cpu();
  264. /* This is just to optimize away some function calls
  265. * in the SMP case.
  266. */
  267. if (cpu == this_cpu)
  268. flush_dcache_page_impl(page);
  269. else
  270. smp_flush_dcache_page_impl(page, cpu);
  271. clear_dcache_dirty_cpu(page, cpu);
  272. put_cpu();
  273. }
  274. }
  275. mm = vma->vm_mm;
  276. tsb_index = MM_TSB_BASE;
  277. tsb_hash_shift = PAGE_SHIFT;
  278. spin_lock_irqsave(&mm->context.lock, flags);
  279. #ifdef CONFIG_HUGETLB_PAGE
  280. if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
  281. if ((tlb_type == hypervisor &&
  282. (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
  283. (tlb_type != hypervisor &&
  284. (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
  285. tsb_index = MM_TSB_HUGE;
  286. tsb_hash_shift = HPAGE_SHIFT;
  287. }
  288. }
  289. #endif
  290. tsb = mm->context.tsb_block[tsb_index].tsb;
  291. tsb += ((address >> tsb_hash_shift) &
  292. (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
  293. tag = (address >> 22UL);
  294. tsb_insert(tsb, tag, pte_val(pte));
  295. spin_unlock_irqrestore(&mm->context.lock, flags);
  296. }
  297. void flush_dcache_page(struct page *page)
  298. {
  299. struct address_space *mapping;
  300. int this_cpu;
  301. if (tlb_type == hypervisor)
  302. return;
  303. /* Do not bother with the expensive D-cache flush if it
  304. * is merely the zero page. The 'bigcore' testcase in GDB
  305. * causes this case to run millions of times.
  306. */
  307. if (page == ZERO_PAGE(0))
  308. return;
  309. this_cpu = get_cpu();
  310. mapping = page_mapping(page);
  311. if (mapping && !mapping_mapped(mapping)) {
  312. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  313. if (dirty) {
  314. int dirty_cpu = dcache_dirty_cpu(page);
  315. if (dirty_cpu == this_cpu)
  316. goto out;
  317. smp_flush_dcache_page_impl(page, dirty_cpu);
  318. }
  319. set_dcache_dirty(page, this_cpu);
  320. } else {
  321. /* We could delay the flush for the !page_mapping
  322. * case too. But that case is for exec env/arg
  323. * pages and those are %99 certainly going to get
  324. * faulted into the tlb (and thus flushed) anyways.
  325. */
  326. flush_dcache_page_impl(page);
  327. }
  328. out:
  329. put_cpu();
  330. }
  331. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  332. {
  333. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  334. if (tlb_type == spitfire) {
  335. unsigned long kaddr;
  336. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  337. __flush_icache_page(__get_phys(kaddr));
  338. }
  339. }
  340. void show_mem(void)
  341. {
  342. printk("Mem-info:\n");
  343. show_free_areas();
  344. printk("Free swap: %6ldkB\n",
  345. nr_swap_pages << (PAGE_SHIFT-10));
  346. printk("%ld pages of RAM\n", num_physpages);
  347. printk("%d free pages\n", nr_free_pages());
  348. }
  349. void mmu_info(struct seq_file *m)
  350. {
  351. if (tlb_type == cheetah)
  352. seq_printf(m, "MMU Type\t: Cheetah\n");
  353. else if (tlb_type == cheetah_plus)
  354. seq_printf(m, "MMU Type\t: Cheetah+\n");
  355. else if (tlb_type == spitfire)
  356. seq_printf(m, "MMU Type\t: Spitfire\n");
  357. else if (tlb_type == hypervisor)
  358. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  359. else
  360. seq_printf(m, "MMU Type\t: ???\n");
  361. #ifdef CONFIG_DEBUG_DCFLUSH
  362. seq_printf(m, "DCPageFlushes\t: %d\n",
  363. atomic_read(&dcpage_flushes));
  364. #ifdef CONFIG_SMP
  365. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  366. atomic_read(&dcpage_flushes_xcall));
  367. #endif /* CONFIG_SMP */
  368. #endif /* CONFIG_DEBUG_DCFLUSH */
  369. }
  370. struct linux_prom_translation {
  371. unsigned long virt;
  372. unsigned long size;
  373. unsigned long data;
  374. };
  375. /* Exported for kernel TLB miss handling in ktlb.S */
  376. struct linux_prom_translation prom_trans[512] __read_mostly;
  377. unsigned int prom_trans_ents __read_mostly;
  378. /* Exported for SMP bootup purposes. */
  379. unsigned long kern_locked_tte_data;
  380. /* The obp translations are saved based on 8k pagesize, since obp can
  381. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  382. * HI_OBP_ADDRESS range are handled in ktlb.S.
  383. */
  384. static inline int in_obp_range(unsigned long vaddr)
  385. {
  386. return (vaddr >= LOW_OBP_ADDRESS &&
  387. vaddr < HI_OBP_ADDRESS);
  388. }
  389. static int cmp_ptrans(const void *a, const void *b)
  390. {
  391. const struct linux_prom_translation *x = a, *y = b;
  392. if (x->virt > y->virt)
  393. return 1;
  394. if (x->virt < y->virt)
  395. return -1;
  396. return 0;
  397. }
  398. /* Read OBP translations property into 'prom_trans[]'. */
  399. static void __init read_obp_translations(void)
  400. {
  401. int n, node, ents, first, last, i;
  402. node = prom_finddevice("/virtual-memory");
  403. n = prom_getproplen(node, "translations");
  404. if (unlikely(n == 0 || n == -1)) {
  405. prom_printf("prom_mappings: Couldn't get size.\n");
  406. prom_halt();
  407. }
  408. if (unlikely(n > sizeof(prom_trans))) {
  409. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  410. prom_halt();
  411. }
  412. if ((n = prom_getproperty(node, "translations",
  413. (char *)&prom_trans[0],
  414. sizeof(prom_trans))) == -1) {
  415. prom_printf("prom_mappings: Couldn't get property.\n");
  416. prom_halt();
  417. }
  418. n = n / sizeof(struct linux_prom_translation);
  419. ents = n;
  420. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  421. cmp_ptrans, NULL);
  422. /* Now kick out all the non-OBP entries. */
  423. for (i = 0; i < ents; i++) {
  424. if (in_obp_range(prom_trans[i].virt))
  425. break;
  426. }
  427. first = i;
  428. for (; i < ents; i++) {
  429. if (!in_obp_range(prom_trans[i].virt))
  430. break;
  431. }
  432. last = i;
  433. for (i = 0; i < (last - first); i++) {
  434. struct linux_prom_translation *src = &prom_trans[i + first];
  435. struct linux_prom_translation *dest = &prom_trans[i];
  436. *dest = *src;
  437. }
  438. for (; i < ents; i++) {
  439. struct linux_prom_translation *dest = &prom_trans[i];
  440. dest->virt = dest->size = dest->data = 0x0UL;
  441. }
  442. prom_trans_ents = last - first;
  443. if (tlb_type == spitfire) {
  444. /* Clear diag TTE bits. */
  445. for (i = 0; i < prom_trans_ents; i++)
  446. prom_trans[i].data &= ~0x0003fe0000000000UL;
  447. }
  448. }
  449. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  450. unsigned long pte,
  451. unsigned long mmu)
  452. {
  453. register unsigned long func asm("%o5");
  454. register unsigned long arg0 asm("%o0");
  455. register unsigned long arg1 asm("%o1");
  456. register unsigned long arg2 asm("%o2");
  457. register unsigned long arg3 asm("%o3");
  458. func = HV_FAST_MMU_MAP_PERM_ADDR;
  459. arg0 = vaddr;
  460. arg1 = 0;
  461. arg2 = pte;
  462. arg3 = mmu;
  463. __asm__ __volatile__("ta 0x80"
  464. : "=&r" (func), "=&r" (arg0),
  465. "=&r" (arg1), "=&r" (arg2),
  466. "=&r" (arg3)
  467. : "0" (func), "1" (arg0), "2" (arg1),
  468. "3" (arg2), "4" (arg3));
  469. if (arg0 != 0) {
  470. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  471. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  472. prom_halt();
  473. }
  474. }
  475. static unsigned long kern_large_tte(unsigned long paddr);
  476. static void __init remap_kernel(void)
  477. {
  478. unsigned long phys_page, tte_vaddr, tte_data;
  479. int tlb_ent = sparc64_highest_locked_tlbent();
  480. tte_vaddr = (unsigned long) KERNBASE;
  481. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  482. tte_data = kern_large_tte(phys_page);
  483. kern_locked_tte_data = tte_data;
  484. /* Now lock us into the TLBs via Hypervisor or OBP. */
  485. if (tlb_type == hypervisor) {
  486. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  487. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  488. if (bigkernel) {
  489. tte_vaddr += 0x400000;
  490. tte_data += 0x400000;
  491. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  492. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  493. }
  494. } else {
  495. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  496. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  497. if (bigkernel) {
  498. tlb_ent -= 1;
  499. prom_dtlb_load(tlb_ent,
  500. tte_data + 0x400000,
  501. tte_vaddr + 0x400000);
  502. prom_itlb_load(tlb_ent,
  503. tte_data + 0x400000,
  504. tte_vaddr + 0x400000);
  505. }
  506. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  507. }
  508. if (tlb_type == cheetah_plus) {
  509. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  510. CTX_CHEETAH_PLUS_NUC);
  511. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  512. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  513. }
  514. }
  515. static void __init inherit_prom_mappings(void)
  516. {
  517. read_obp_translations();
  518. /* Now fixup OBP's idea about where we really are mapped. */
  519. prom_printf("Remapping the kernel... ");
  520. remap_kernel();
  521. prom_printf("done.\n");
  522. }
  523. void prom_world(int enter)
  524. {
  525. if (!enter)
  526. set_fs((mm_segment_t) { get_thread_current_ds() });
  527. __asm__ __volatile__("flushw");
  528. }
  529. #ifdef DCACHE_ALIASING_POSSIBLE
  530. void __flush_dcache_range(unsigned long start, unsigned long end)
  531. {
  532. unsigned long va;
  533. if (tlb_type == spitfire) {
  534. int n = 0;
  535. for (va = start; va < end; va += 32) {
  536. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  537. if (++n >= 512)
  538. break;
  539. }
  540. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  541. start = __pa(start);
  542. end = __pa(end);
  543. for (va = start; va < end; va += 32)
  544. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  545. "membar #Sync"
  546. : /* no outputs */
  547. : "r" (va),
  548. "i" (ASI_DCACHE_INVALIDATE));
  549. }
  550. }
  551. #endif /* DCACHE_ALIASING_POSSIBLE */
  552. /* Caller does TLB context flushing on local CPU if necessary.
  553. * The caller also ensures that CTX_VALID(mm->context) is false.
  554. *
  555. * We must be careful about boundary cases so that we never
  556. * let the user have CTX 0 (nucleus) or we ever use a CTX
  557. * version of zero (and thus NO_CONTEXT would not be caught
  558. * by version mis-match tests in mmu_context.h).
  559. *
  560. * Always invoked with interrupts disabled.
  561. */
  562. void get_new_mmu_context(struct mm_struct *mm)
  563. {
  564. unsigned long ctx, new_ctx;
  565. unsigned long orig_pgsz_bits;
  566. unsigned long flags;
  567. int new_version;
  568. spin_lock_irqsave(&ctx_alloc_lock, flags);
  569. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  570. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  571. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  572. new_version = 0;
  573. if (new_ctx >= (1 << CTX_NR_BITS)) {
  574. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  575. if (new_ctx >= ctx) {
  576. int i;
  577. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  578. CTX_FIRST_VERSION;
  579. if (new_ctx == 1)
  580. new_ctx = CTX_FIRST_VERSION;
  581. /* Don't call memset, for 16 entries that's just
  582. * plain silly...
  583. */
  584. mmu_context_bmap[0] = 3;
  585. mmu_context_bmap[1] = 0;
  586. mmu_context_bmap[2] = 0;
  587. mmu_context_bmap[3] = 0;
  588. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  589. mmu_context_bmap[i + 0] = 0;
  590. mmu_context_bmap[i + 1] = 0;
  591. mmu_context_bmap[i + 2] = 0;
  592. mmu_context_bmap[i + 3] = 0;
  593. }
  594. new_version = 1;
  595. goto out;
  596. }
  597. }
  598. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  599. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  600. out:
  601. tlb_context_cache = new_ctx;
  602. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  603. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  604. if (unlikely(new_version))
  605. smp_new_mmu_context_version();
  606. }
  607. void sparc_ultra_dump_itlb(void)
  608. {
  609. int slot;
  610. if (tlb_type == spitfire) {
  611. printk ("Contents of itlb: ");
  612. for (slot = 0; slot < 14; slot++) printk (" ");
  613. printk ("%2x:%016lx,%016lx\n",
  614. 0,
  615. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  616. for (slot = 1; slot < 64; slot+=3) {
  617. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  618. slot,
  619. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  620. slot+1,
  621. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  622. slot+2,
  623. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  624. }
  625. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  626. printk ("Contents of itlb0:\n");
  627. for (slot = 0; slot < 16; slot+=2) {
  628. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  629. slot,
  630. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  631. slot+1,
  632. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  633. }
  634. printk ("Contents of itlb2:\n");
  635. for (slot = 0; slot < 128; slot+=2) {
  636. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  637. slot,
  638. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  639. slot+1,
  640. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  641. }
  642. }
  643. }
  644. void sparc_ultra_dump_dtlb(void)
  645. {
  646. int slot;
  647. if (tlb_type == spitfire) {
  648. printk ("Contents of dtlb: ");
  649. for (slot = 0; slot < 14; slot++) printk (" ");
  650. printk ("%2x:%016lx,%016lx\n", 0,
  651. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  652. for (slot = 1; slot < 64; slot+=3) {
  653. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  654. slot,
  655. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  656. slot+1,
  657. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  658. slot+2,
  659. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  660. }
  661. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  662. printk ("Contents of dtlb0:\n");
  663. for (slot = 0; slot < 16; slot+=2) {
  664. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  665. slot,
  666. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  667. slot+1,
  668. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  669. }
  670. printk ("Contents of dtlb2:\n");
  671. for (slot = 0; slot < 512; slot+=2) {
  672. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  673. slot,
  674. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  675. slot+1,
  676. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  677. }
  678. if (tlb_type == cheetah_plus) {
  679. printk ("Contents of dtlb3:\n");
  680. for (slot = 0; slot < 512; slot+=2) {
  681. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  682. slot,
  683. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  684. slot+1,
  685. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  686. }
  687. }
  688. }
  689. }
  690. extern unsigned long cmdline_memory_size;
  691. /* Find a free area for the bootmem map, avoiding the kernel image
  692. * and the initial ramdisk.
  693. */
  694. static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
  695. unsigned long end_pfn)
  696. {
  697. unsigned long avoid_start, avoid_end, bootmap_size;
  698. int i;
  699. bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
  700. bootmap_size = ALIGN(bootmap_size, sizeof(long));
  701. avoid_start = avoid_end = 0;
  702. #ifdef CONFIG_BLK_DEV_INITRD
  703. avoid_start = initrd_start;
  704. avoid_end = PAGE_ALIGN(initrd_end);
  705. #endif
  706. #ifdef CONFIG_DEBUG_BOOTMEM
  707. prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
  708. kern_base, PAGE_ALIGN(kern_base + kern_size),
  709. avoid_start, avoid_end);
  710. #endif
  711. for (i = 0; i < pavail_ents; i++) {
  712. unsigned long start, end;
  713. start = pavail[i].phys_addr;
  714. end = start + pavail[i].reg_size;
  715. while (start < end) {
  716. if (start >= kern_base &&
  717. start < PAGE_ALIGN(kern_base + kern_size)) {
  718. start = PAGE_ALIGN(kern_base + kern_size);
  719. continue;
  720. }
  721. if (start >= avoid_start && start < avoid_end) {
  722. start = avoid_end;
  723. continue;
  724. }
  725. if ((end - start) < bootmap_size)
  726. break;
  727. if (start < kern_base &&
  728. (start + bootmap_size) > kern_base) {
  729. start = PAGE_ALIGN(kern_base + kern_size);
  730. continue;
  731. }
  732. if (start < avoid_start &&
  733. (start + bootmap_size) > avoid_start) {
  734. start = avoid_end;
  735. continue;
  736. }
  737. /* OK, it doesn't overlap anything, use it. */
  738. #ifdef CONFIG_DEBUG_BOOTMEM
  739. prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
  740. start >> PAGE_SHIFT, start);
  741. #endif
  742. return start >> PAGE_SHIFT;
  743. }
  744. }
  745. prom_printf("Cannot find free area for bootmap, aborting.\n");
  746. prom_halt();
  747. }
  748. static unsigned long __init bootmem_init(unsigned long *pages_avail,
  749. unsigned long phys_base)
  750. {
  751. unsigned long bootmap_size, end_pfn;
  752. unsigned long end_of_phys_memory = 0UL;
  753. unsigned long bootmap_pfn, bytes_avail, size;
  754. int i;
  755. #ifdef CONFIG_DEBUG_BOOTMEM
  756. prom_printf("bootmem_init: Scan pavail, ");
  757. #endif
  758. bytes_avail = 0UL;
  759. for (i = 0; i < pavail_ents; i++) {
  760. end_of_phys_memory = pavail[i].phys_addr +
  761. pavail[i].reg_size;
  762. bytes_avail += pavail[i].reg_size;
  763. if (cmdline_memory_size) {
  764. if (bytes_avail > cmdline_memory_size) {
  765. unsigned long slack = bytes_avail - cmdline_memory_size;
  766. bytes_avail -= slack;
  767. end_of_phys_memory -= slack;
  768. pavail[i].reg_size -= slack;
  769. if ((long)pavail[i].reg_size <= 0L) {
  770. pavail[i].phys_addr = 0xdeadbeefUL;
  771. pavail[i].reg_size = 0UL;
  772. pavail_ents = i;
  773. } else {
  774. pavail[i+1].reg_size = 0Ul;
  775. pavail[i+1].phys_addr = 0xdeadbeefUL;
  776. pavail_ents = i + 1;
  777. }
  778. break;
  779. }
  780. }
  781. }
  782. *pages_avail = bytes_avail >> PAGE_SHIFT;
  783. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  784. #ifdef CONFIG_BLK_DEV_INITRD
  785. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  786. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  787. unsigned long ramdisk_image = sparc_ramdisk_image ?
  788. sparc_ramdisk_image : sparc_ramdisk_image64;
  789. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  790. ramdisk_image -= KERNBASE;
  791. initrd_start = ramdisk_image + phys_base;
  792. initrd_end = initrd_start + sparc_ramdisk_size;
  793. if (initrd_end > end_of_phys_memory) {
  794. printk(KERN_CRIT "initrd extends beyond end of memory "
  795. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  796. initrd_end, end_of_phys_memory);
  797. initrd_start = 0;
  798. initrd_end = 0;
  799. }
  800. }
  801. #endif
  802. /* Initialize the boot-time allocator. */
  803. max_pfn = max_low_pfn = end_pfn;
  804. min_low_pfn = (phys_base >> PAGE_SHIFT);
  805. bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
  806. #ifdef CONFIG_DEBUG_BOOTMEM
  807. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  808. min_low_pfn, bootmap_pfn, max_low_pfn);
  809. #endif
  810. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
  811. min_low_pfn, end_pfn);
  812. /* Now register the available physical memory with the
  813. * allocator.
  814. */
  815. for (i = 0; i < pavail_ents; i++) {
  816. #ifdef CONFIG_DEBUG_BOOTMEM
  817. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  818. i, pavail[i].phys_addr, pavail[i].reg_size);
  819. #endif
  820. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  821. }
  822. #ifdef CONFIG_BLK_DEV_INITRD
  823. if (initrd_start) {
  824. size = initrd_end - initrd_start;
  825. /* Resert the initrd image area. */
  826. #ifdef CONFIG_DEBUG_BOOTMEM
  827. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  828. initrd_start, initrd_end);
  829. #endif
  830. reserve_bootmem(initrd_start, size);
  831. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  832. initrd_start += PAGE_OFFSET;
  833. initrd_end += PAGE_OFFSET;
  834. }
  835. #endif
  836. /* Reserve the kernel text/data/bss. */
  837. #ifdef CONFIG_DEBUG_BOOTMEM
  838. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  839. #endif
  840. reserve_bootmem(kern_base, kern_size);
  841. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  842. /* Reserve the bootmem map. We do not account for it
  843. * in pages_avail because we will release that memory
  844. * in free_all_bootmem.
  845. */
  846. size = bootmap_size;
  847. #ifdef CONFIG_DEBUG_BOOTMEM
  848. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  849. (bootmap_pfn << PAGE_SHIFT), size);
  850. #endif
  851. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  852. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  853. for (i = 0; i < pavail_ents; i++) {
  854. unsigned long start_pfn, end_pfn;
  855. start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
  856. end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
  857. #ifdef CONFIG_DEBUG_BOOTMEM
  858. prom_printf("memory_present(0, %lx, %lx)\n",
  859. start_pfn, end_pfn);
  860. #endif
  861. memory_present(0, start_pfn, end_pfn);
  862. }
  863. sparse_init();
  864. return end_pfn;
  865. }
  866. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  867. static int pall_ents __initdata;
  868. #ifdef CONFIG_DEBUG_PAGEALLOC
  869. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  870. {
  871. unsigned long vstart = PAGE_OFFSET + pstart;
  872. unsigned long vend = PAGE_OFFSET + pend;
  873. unsigned long alloc_bytes = 0UL;
  874. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  875. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  876. vstart, vend);
  877. prom_halt();
  878. }
  879. while (vstart < vend) {
  880. unsigned long this_end, paddr = __pa(vstart);
  881. pgd_t *pgd = pgd_offset_k(vstart);
  882. pud_t *pud;
  883. pmd_t *pmd;
  884. pte_t *pte;
  885. pud = pud_offset(pgd, vstart);
  886. if (pud_none(*pud)) {
  887. pmd_t *new;
  888. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  889. alloc_bytes += PAGE_SIZE;
  890. pud_populate(&init_mm, pud, new);
  891. }
  892. pmd = pmd_offset(pud, vstart);
  893. if (!pmd_present(*pmd)) {
  894. pte_t *new;
  895. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  896. alloc_bytes += PAGE_SIZE;
  897. pmd_populate_kernel(&init_mm, pmd, new);
  898. }
  899. pte = pte_offset_kernel(pmd, vstart);
  900. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  901. if (this_end > vend)
  902. this_end = vend;
  903. while (vstart < this_end) {
  904. pte_val(*pte) = (paddr | pgprot_val(prot));
  905. vstart += PAGE_SIZE;
  906. paddr += PAGE_SIZE;
  907. pte++;
  908. }
  909. }
  910. return alloc_bytes;
  911. }
  912. extern unsigned int kvmap_linear_patch[1];
  913. #endif /* CONFIG_DEBUG_PAGEALLOC */
  914. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  915. {
  916. const unsigned long shift_256MB = 28;
  917. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  918. const unsigned long size_256MB = (1UL << shift_256MB);
  919. while (start < end) {
  920. long remains;
  921. remains = end - start;
  922. if (remains < size_256MB)
  923. break;
  924. if (start & mask_256MB) {
  925. start = (start + size_256MB) & ~mask_256MB;
  926. continue;
  927. }
  928. while (remains >= size_256MB) {
  929. unsigned long index = start >> shift_256MB;
  930. __set_bit(index, kpte_linear_bitmap);
  931. start += size_256MB;
  932. remains -= size_256MB;
  933. }
  934. }
  935. }
  936. static void __init kernel_physical_mapping_init(void)
  937. {
  938. unsigned long i;
  939. #ifdef CONFIG_DEBUG_PAGEALLOC
  940. unsigned long mem_alloced = 0UL;
  941. #endif
  942. read_obp_memory("reg", &pall[0], &pall_ents);
  943. for (i = 0; i < pall_ents; i++) {
  944. unsigned long phys_start, phys_end;
  945. phys_start = pall[i].phys_addr;
  946. phys_end = phys_start + pall[i].reg_size;
  947. mark_kpte_bitmap(phys_start, phys_end);
  948. #ifdef CONFIG_DEBUG_PAGEALLOC
  949. mem_alloced += kernel_map_range(phys_start, phys_end,
  950. PAGE_KERNEL);
  951. #endif
  952. }
  953. #ifdef CONFIG_DEBUG_PAGEALLOC
  954. printk("Allocated %ld bytes for kernel page tables.\n",
  955. mem_alloced);
  956. kvmap_linear_patch[0] = 0x01000000; /* nop */
  957. flushi(&kvmap_linear_patch[0]);
  958. __flush_tlb_all();
  959. #endif
  960. }
  961. #ifdef CONFIG_DEBUG_PAGEALLOC
  962. void kernel_map_pages(struct page *page, int numpages, int enable)
  963. {
  964. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  965. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  966. kernel_map_range(phys_start, phys_end,
  967. (enable ? PAGE_KERNEL : __pgprot(0)));
  968. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  969. PAGE_OFFSET + phys_end);
  970. /* we should perform an IPI and flush all tlbs,
  971. * but that can deadlock->flush only current cpu.
  972. */
  973. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  974. PAGE_OFFSET + phys_end);
  975. }
  976. #endif
  977. unsigned long __init find_ecache_flush_span(unsigned long size)
  978. {
  979. int i;
  980. for (i = 0; i < pavail_ents; i++) {
  981. if (pavail[i].reg_size >= size)
  982. return pavail[i].phys_addr;
  983. }
  984. return ~0UL;
  985. }
  986. static void __init tsb_phys_patch(void)
  987. {
  988. struct tsb_ldquad_phys_patch_entry *pquad;
  989. struct tsb_phys_patch_entry *p;
  990. pquad = &__tsb_ldquad_phys_patch;
  991. while (pquad < &__tsb_ldquad_phys_patch_end) {
  992. unsigned long addr = pquad->addr;
  993. if (tlb_type == hypervisor)
  994. *(unsigned int *) addr = pquad->sun4v_insn;
  995. else
  996. *(unsigned int *) addr = pquad->sun4u_insn;
  997. wmb();
  998. __asm__ __volatile__("flush %0"
  999. : /* no outputs */
  1000. : "r" (addr));
  1001. pquad++;
  1002. }
  1003. p = &__tsb_phys_patch;
  1004. while (p < &__tsb_phys_patch_end) {
  1005. unsigned long addr = p->addr;
  1006. *(unsigned int *) addr = p->insn;
  1007. wmb();
  1008. __asm__ __volatile__("flush %0"
  1009. : /* no outputs */
  1010. : "r" (addr));
  1011. p++;
  1012. }
  1013. }
  1014. /* Don't mark as init, we give this to the Hypervisor. */
  1015. static struct hv_tsb_descr ktsb_descr[2];
  1016. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  1017. static void __init sun4v_ktsb_init(void)
  1018. {
  1019. unsigned long ktsb_pa;
  1020. /* First KTSB for PAGE_SIZE mappings. */
  1021. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1022. switch (PAGE_SIZE) {
  1023. case 8 * 1024:
  1024. default:
  1025. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  1026. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  1027. break;
  1028. case 64 * 1024:
  1029. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  1030. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  1031. break;
  1032. case 512 * 1024:
  1033. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1034. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1035. break;
  1036. case 4 * 1024 * 1024:
  1037. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1038. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1039. break;
  1040. };
  1041. ktsb_descr[0].assoc = 1;
  1042. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1043. ktsb_descr[0].ctx_idx = 0;
  1044. ktsb_descr[0].tsb_base = ktsb_pa;
  1045. ktsb_descr[0].resv = 0;
  1046. /* Second KTSB for 4MB/256MB mappings. */
  1047. ktsb_pa = (kern_base +
  1048. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1049. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1050. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1051. HV_PGSZ_MASK_256MB);
  1052. ktsb_descr[1].assoc = 1;
  1053. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1054. ktsb_descr[1].ctx_idx = 0;
  1055. ktsb_descr[1].tsb_base = ktsb_pa;
  1056. ktsb_descr[1].resv = 0;
  1057. }
  1058. void __cpuinit sun4v_ktsb_register(void)
  1059. {
  1060. register unsigned long func asm("%o5");
  1061. register unsigned long arg0 asm("%o0");
  1062. register unsigned long arg1 asm("%o1");
  1063. unsigned long pa;
  1064. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1065. func = HV_FAST_MMU_TSB_CTX0;
  1066. arg0 = 2;
  1067. arg1 = pa;
  1068. __asm__ __volatile__("ta %6"
  1069. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  1070. : "0" (func), "1" (arg0), "2" (arg1),
  1071. "i" (HV_FAST_TRAP));
  1072. }
  1073. /* paging_init() sets up the page tables */
  1074. extern void cheetah_ecache_flush_init(void);
  1075. extern void sun4v_patch_tlb_handlers(void);
  1076. static unsigned long last_valid_pfn;
  1077. pgd_t swapper_pg_dir[2048];
  1078. static void sun4u_pgprot_init(void);
  1079. static void sun4v_pgprot_init(void);
  1080. void __init paging_init(void)
  1081. {
  1082. unsigned long end_pfn, pages_avail, shift, phys_base;
  1083. unsigned long real_end, i;
  1084. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1085. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1086. /* Invalidate both kernel TSBs. */
  1087. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1088. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1089. if (tlb_type == hypervisor)
  1090. sun4v_pgprot_init();
  1091. else
  1092. sun4u_pgprot_init();
  1093. if (tlb_type == cheetah_plus ||
  1094. tlb_type == hypervisor)
  1095. tsb_phys_patch();
  1096. if (tlb_type == hypervisor) {
  1097. sun4v_patch_tlb_handlers();
  1098. sun4v_ktsb_init();
  1099. }
  1100. /* Find available physical memory... */
  1101. read_obp_memory("available", &pavail[0], &pavail_ents);
  1102. phys_base = 0xffffffffffffffffUL;
  1103. for (i = 0; i < pavail_ents; i++)
  1104. phys_base = min(phys_base, pavail[i].phys_addr);
  1105. set_bit(0, mmu_context_bmap);
  1106. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1107. real_end = (unsigned long)_end;
  1108. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1109. bigkernel = 1;
  1110. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1111. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1112. prom_halt();
  1113. }
  1114. /* Set kernel pgd to upper alias so physical page computations
  1115. * work.
  1116. */
  1117. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1118. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1119. /* Now can init the kernel/bad page tables. */
  1120. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1121. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1122. inherit_prom_mappings();
  1123. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1124. setup_tba();
  1125. __flush_tlb_all();
  1126. if (tlb_type == hypervisor)
  1127. sun4v_ktsb_register();
  1128. /* Setup bootmem... */
  1129. pages_avail = 0;
  1130. last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
  1131. max_mapnr = last_valid_pfn;
  1132. kernel_physical_mapping_init();
  1133. prom_build_devicetree();
  1134. {
  1135. unsigned long zones_size[MAX_NR_ZONES];
  1136. unsigned long zholes_size[MAX_NR_ZONES];
  1137. int znum;
  1138. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1139. zones_size[znum] = zholes_size[znum] = 0;
  1140. zones_size[ZONE_DMA] = end_pfn;
  1141. zholes_size[ZONE_DMA] = end_pfn - pages_avail;
  1142. free_area_init_node(0, &contig_page_data, zones_size,
  1143. __pa(PAGE_OFFSET) >> PAGE_SHIFT,
  1144. zholes_size);
  1145. }
  1146. device_scan();
  1147. }
  1148. static void __init taint_real_pages(void)
  1149. {
  1150. int i;
  1151. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1152. /* Find changes discovered in the physmem available rescan and
  1153. * reserve the lost portions in the bootmem maps.
  1154. */
  1155. for (i = 0; i < pavail_ents; i++) {
  1156. unsigned long old_start, old_end;
  1157. old_start = pavail[i].phys_addr;
  1158. old_end = old_start +
  1159. pavail[i].reg_size;
  1160. while (old_start < old_end) {
  1161. int n;
  1162. for (n = 0; n < pavail_rescan_ents; n++) {
  1163. unsigned long new_start, new_end;
  1164. new_start = pavail_rescan[n].phys_addr;
  1165. new_end = new_start +
  1166. pavail_rescan[n].reg_size;
  1167. if (new_start <= old_start &&
  1168. new_end >= (old_start + PAGE_SIZE)) {
  1169. set_bit(old_start >> 22,
  1170. sparc64_valid_addr_bitmap);
  1171. goto do_next_page;
  1172. }
  1173. }
  1174. reserve_bootmem(old_start, PAGE_SIZE);
  1175. do_next_page:
  1176. old_start += PAGE_SIZE;
  1177. }
  1178. }
  1179. }
  1180. int __init page_in_phys_avail(unsigned long paddr)
  1181. {
  1182. int i;
  1183. paddr &= PAGE_MASK;
  1184. for (i = 0; i < pavail_rescan_ents; i++) {
  1185. unsigned long start, end;
  1186. start = pavail_rescan[i].phys_addr;
  1187. end = start + pavail_rescan[i].reg_size;
  1188. if (paddr >= start && paddr < end)
  1189. return 1;
  1190. }
  1191. if (paddr >= kern_base && paddr < (kern_base + kern_size))
  1192. return 1;
  1193. #ifdef CONFIG_BLK_DEV_INITRD
  1194. if (paddr >= __pa(initrd_start) &&
  1195. paddr < __pa(PAGE_ALIGN(initrd_end)))
  1196. return 1;
  1197. #endif
  1198. return 0;
  1199. }
  1200. void __init mem_init(void)
  1201. {
  1202. unsigned long codepages, datapages, initpages;
  1203. unsigned long addr, last;
  1204. int i;
  1205. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1206. i += 1;
  1207. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1208. if (sparc64_valid_addr_bitmap == NULL) {
  1209. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1210. prom_halt();
  1211. }
  1212. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1213. addr = PAGE_OFFSET + kern_base;
  1214. last = PAGE_ALIGN(kern_size) + addr;
  1215. while (addr < last) {
  1216. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1217. addr += PAGE_SIZE;
  1218. }
  1219. taint_real_pages();
  1220. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1221. #ifdef CONFIG_DEBUG_BOOTMEM
  1222. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1223. #endif
  1224. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1225. /*
  1226. * Set up the zero page, mark it reserved, so that page count
  1227. * is not manipulated when freeing the page from user ptes.
  1228. */
  1229. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1230. if (mem_map_zero == NULL) {
  1231. prom_printf("paging_init: Cannot alloc zero page.\n");
  1232. prom_halt();
  1233. }
  1234. SetPageReserved(mem_map_zero);
  1235. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1236. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1237. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1238. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1239. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1240. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1241. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1242. nr_free_pages() << (PAGE_SHIFT-10),
  1243. codepages << (PAGE_SHIFT-10),
  1244. datapages << (PAGE_SHIFT-10),
  1245. initpages << (PAGE_SHIFT-10),
  1246. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1247. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1248. cheetah_ecache_flush_init();
  1249. }
  1250. void free_initmem(void)
  1251. {
  1252. unsigned long addr, initend;
  1253. /*
  1254. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1255. */
  1256. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1257. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1258. for (; addr < initend; addr += PAGE_SIZE) {
  1259. unsigned long page;
  1260. struct page *p;
  1261. page = (addr +
  1262. ((unsigned long) __va(kern_base)) -
  1263. ((unsigned long) KERNBASE));
  1264. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  1265. p = virt_to_page(page);
  1266. ClearPageReserved(p);
  1267. init_page_count(p);
  1268. __free_page(p);
  1269. num_physpages++;
  1270. totalram_pages++;
  1271. }
  1272. }
  1273. #ifdef CONFIG_BLK_DEV_INITRD
  1274. void free_initrd_mem(unsigned long start, unsigned long end)
  1275. {
  1276. if (start < end)
  1277. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1278. for (; start < end; start += PAGE_SIZE) {
  1279. struct page *p = virt_to_page(start);
  1280. ClearPageReserved(p);
  1281. init_page_count(p);
  1282. __free_page(p);
  1283. num_physpages++;
  1284. totalram_pages++;
  1285. }
  1286. }
  1287. #endif
  1288. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1289. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1290. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1291. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1292. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1293. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1294. pgprot_t PAGE_KERNEL __read_mostly;
  1295. EXPORT_SYMBOL(PAGE_KERNEL);
  1296. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1297. pgprot_t PAGE_COPY __read_mostly;
  1298. pgprot_t PAGE_SHARED __read_mostly;
  1299. EXPORT_SYMBOL(PAGE_SHARED);
  1300. pgprot_t PAGE_EXEC __read_mostly;
  1301. unsigned long pg_iobits __read_mostly;
  1302. unsigned long _PAGE_IE __read_mostly;
  1303. EXPORT_SYMBOL(_PAGE_IE);
  1304. unsigned long _PAGE_E __read_mostly;
  1305. EXPORT_SYMBOL(_PAGE_E);
  1306. unsigned long _PAGE_CACHE __read_mostly;
  1307. EXPORT_SYMBOL(_PAGE_CACHE);
  1308. static void prot_init_common(unsigned long page_none,
  1309. unsigned long page_shared,
  1310. unsigned long page_copy,
  1311. unsigned long page_readonly,
  1312. unsigned long page_exec_bit)
  1313. {
  1314. PAGE_COPY = __pgprot(page_copy);
  1315. PAGE_SHARED = __pgprot(page_shared);
  1316. protection_map[0x0] = __pgprot(page_none);
  1317. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1318. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1319. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1320. protection_map[0x4] = __pgprot(page_readonly);
  1321. protection_map[0x5] = __pgprot(page_readonly);
  1322. protection_map[0x6] = __pgprot(page_copy);
  1323. protection_map[0x7] = __pgprot(page_copy);
  1324. protection_map[0x8] = __pgprot(page_none);
  1325. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1326. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1327. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1328. protection_map[0xc] = __pgprot(page_readonly);
  1329. protection_map[0xd] = __pgprot(page_readonly);
  1330. protection_map[0xe] = __pgprot(page_shared);
  1331. protection_map[0xf] = __pgprot(page_shared);
  1332. }
  1333. static void __init sun4u_pgprot_init(void)
  1334. {
  1335. unsigned long page_none, page_shared, page_copy, page_readonly;
  1336. unsigned long page_exec_bit;
  1337. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1338. _PAGE_CACHE_4U | _PAGE_P_4U |
  1339. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1340. _PAGE_EXEC_4U);
  1341. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1342. _PAGE_CACHE_4U | _PAGE_P_4U |
  1343. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1344. _PAGE_EXEC_4U | _PAGE_L_4U);
  1345. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1346. _PAGE_IE = _PAGE_IE_4U;
  1347. _PAGE_E = _PAGE_E_4U;
  1348. _PAGE_CACHE = _PAGE_CACHE_4U;
  1349. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1350. __ACCESS_BITS_4U | _PAGE_E_4U);
  1351. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1352. 0xfffff80000000000;
  1353. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1354. _PAGE_P_4U | _PAGE_W_4U);
  1355. /* XXX Should use 256MB on Panther. XXX */
  1356. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1357. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1358. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1359. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1360. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1361. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1362. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1363. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1364. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1365. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1366. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1367. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1368. page_exec_bit = _PAGE_EXEC_4U;
  1369. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1370. page_exec_bit);
  1371. }
  1372. static void __init sun4v_pgprot_init(void)
  1373. {
  1374. unsigned long page_none, page_shared, page_copy, page_readonly;
  1375. unsigned long page_exec_bit;
  1376. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1377. _PAGE_CACHE_4V | _PAGE_P_4V |
  1378. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1379. _PAGE_EXEC_4V);
  1380. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1381. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1382. _PAGE_IE = _PAGE_IE_4V;
  1383. _PAGE_E = _PAGE_E_4V;
  1384. _PAGE_CACHE = _PAGE_CACHE_4V;
  1385. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1386. 0xfffff80000000000;
  1387. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1388. _PAGE_P_4V | _PAGE_W_4V);
  1389. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1390. 0xfffff80000000000;
  1391. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1392. _PAGE_P_4V | _PAGE_W_4V);
  1393. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1394. __ACCESS_BITS_4V | _PAGE_E_4V);
  1395. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1396. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1397. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1398. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1399. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1400. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1401. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1402. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1403. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1404. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1405. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1406. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1407. page_exec_bit = _PAGE_EXEC_4V;
  1408. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1409. page_exec_bit);
  1410. }
  1411. unsigned long pte_sz_bits(unsigned long sz)
  1412. {
  1413. if (tlb_type == hypervisor) {
  1414. switch (sz) {
  1415. case 8 * 1024:
  1416. default:
  1417. return _PAGE_SZ8K_4V;
  1418. case 64 * 1024:
  1419. return _PAGE_SZ64K_4V;
  1420. case 512 * 1024:
  1421. return _PAGE_SZ512K_4V;
  1422. case 4 * 1024 * 1024:
  1423. return _PAGE_SZ4MB_4V;
  1424. };
  1425. } else {
  1426. switch (sz) {
  1427. case 8 * 1024:
  1428. default:
  1429. return _PAGE_SZ8K_4U;
  1430. case 64 * 1024:
  1431. return _PAGE_SZ64K_4U;
  1432. case 512 * 1024:
  1433. return _PAGE_SZ512K_4U;
  1434. case 4 * 1024 * 1024:
  1435. return _PAGE_SZ4MB_4U;
  1436. };
  1437. }
  1438. }
  1439. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1440. {
  1441. pte_t pte;
  1442. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1443. pte_val(pte) |= (((unsigned long)space) << 32);
  1444. pte_val(pte) |= pte_sz_bits(page_size);
  1445. return pte;
  1446. }
  1447. static unsigned long kern_large_tte(unsigned long paddr)
  1448. {
  1449. unsigned long val;
  1450. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1451. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1452. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1453. if (tlb_type == hypervisor)
  1454. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1455. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1456. _PAGE_EXEC_4V | _PAGE_W_4V);
  1457. return val | paddr;
  1458. }
  1459. /*
  1460. * Translate PROM's mapping we capture at boot time into physical address.
  1461. * The second parameter is only set from prom_callback() invocations.
  1462. */
  1463. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1464. {
  1465. unsigned long mask;
  1466. int i;
  1467. mask = _PAGE_PADDR_4U;
  1468. if (tlb_type == hypervisor)
  1469. mask = _PAGE_PADDR_4V;
  1470. for (i = 0; i < prom_trans_ents; i++) {
  1471. struct linux_prom_translation *p = &prom_trans[i];
  1472. if (promva >= p->virt &&
  1473. promva < (p->virt + p->size)) {
  1474. unsigned long base = p->data & mask;
  1475. if (error)
  1476. *error = 0;
  1477. return base + (promva & (8192 - 1));
  1478. }
  1479. }
  1480. if (error)
  1481. *error = 1;
  1482. return 0UL;
  1483. }
  1484. /* XXX We should kill off this ugly thing at so me point. XXX */
  1485. unsigned long sun4u_get_pte(unsigned long addr)
  1486. {
  1487. pgd_t *pgdp;
  1488. pud_t *pudp;
  1489. pmd_t *pmdp;
  1490. pte_t *ptep;
  1491. unsigned long mask = _PAGE_PADDR_4U;
  1492. if (tlb_type == hypervisor)
  1493. mask = _PAGE_PADDR_4V;
  1494. if (addr >= PAGE_OFFSET)
  1495. return addr & mask;
  1496. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1497. return prom_virt_to_phys(addr, NULL);
  1498. pgdp = pgd_offset_k(addr);
  1499. pudp = pud_offset(pgdp, addr);
  1500. pmdp = pmd_offset(pudp, addr);
  1501. ptep = pte_offset_kernel(pmdp, addr);
  1502. return pte_val(*ptep) & mask;
  1503. }
  1504. /* If not locked, zap it. */
  1505. void __flush_tlb_all(void)
  1506. {
  1507. unsigned long pstate;
  1508. int i;
  1509. __asm__ __volatile__("flushw\n\t"
  1510. "rdpr %%pstate, %0\n\t"
  1511. "wrpr %0, %1, %%pstate"
  1512. : "=r" (pstate)
  1513. : "i" (PSTATE_IE));
  1514. if (tlb_type == spitfire) {
  1515. for (i = 0; i < 64; i++) {
  1516. /* Spitfire Errata #32 workaround */
  1517. /* NOTE: Always runs on spitfire, so no
  1518. * cheetah+ page size encodings.
  1519. */
  1520. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1521. "flush %%g6"
  1522. : /* No outputs */
  1523. : "r" (0),
  1524. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1525. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1526. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1527. "membar #Sync"
  1528. : /* no outputs */
  1529. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1530. spitfire_put_dtlb_data(i, 0x0UL);
  1531. }
  1532. /* Spitfire Errata #32 workaround */
  1533. /* NOTE: Always runs on spitfire, so no
  1534. * cheetah+ page size encodings.
  1535. */
  1536. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1537. "flush %%g6"
  1538. : /* No outputs */
  1539. : "r" (0),
  1540. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1541. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1542. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1543. "membar #Sync"
  1544. : /* no outputs */
  1545. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1546. spitfire_put_itlb_data(i, 0x0UL);
  1547. }
  1548. }
  1549. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1550. cheetah_flush_dtlb_all();
  1551. cheetah_flush_itlb_all();
  1552. }
  1553. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1554. : : "r" (pstate));
  1555. }
  1556. #ifdef CONFIG_MEMORY_HOTPLUG
  1557. void online_page(struct page *page)
  1558. {
  1559. ClearPageReserved(page);
  1560. init_page_count(page);
  1561. __free_page(page);
  1562. totalram_pages++;
  1563. num_physpages++;
  1564. }
  1565. int remove_memory(u64 start, u64 size)
  1566. {
  1567. return -EINVAL;
  1568. }
  1569. #endif /* CONFIG_MEMORY_HOTPLUG */