sched_fair.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
  340. * that it favours >=0 over <0.
  341. *
  342. * -20 |
  343. * |
  344. * 0 --------+-------
  345. * .'
  346. * 19 .'
  347. *
  348. */
  349. static unsigned long
  350. calc_delta_asym(unsigned long delta, struct sched_entity *se)
  351. {
  352. struct load_weight lw = {
  353. .weight = NICE_0_LOAD,
  354. .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
  355. };
  356. for_each_sched_entity(se) {
  357. struct load_weight *se_lw = &se->load;
  358. #ifdef CONFIG_FAIR_SCHED_GROUP
  359. struct cfs_rq *cfs_rq = se->my_q;
  360. struct task_group *tg = NULL
  361. if (cfs_rq)
  362. tg = cfs_rq->tg;
  363. if (tg && tg->shares < NICE_0_LOAD) {
  364. /*
  365. * scale shares to what it would have been had
  366. * tg->weight been NICE_0_LOAD:
  367. *
  368. * weight = 1024 * shares / tg->weight
  369. */
  370. lw.weight *= se->load.weight;
  371. lw.weight /= tg->shares;
  372. lw.inv_weight = 0;
  373. se_lw = &lw;
  374. } else
  375. #endif
  376. if (se->load.weight < NICE_0_LOAD)
  377. se_lw = &lw;
  378. delta = calc_delta_mine(delta,
  379. cfs_rq_of(se)->load.weight, se_lw);
  380. }
  381. return delta;
  382. }
  383. /*
  384. * Update the current task's runtime statistics. Skip current tasks that
  385. * are not in our scheduling class.
  386. */
  387. static inline void
  388. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  389. unsigned long delta_exec)
  390. {
  391. unsigned long delta_exec_weighted;
  392. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  393. curr->sum_exec_runtime += delta_exec;
  394. schedstat_add(cfs_rq, exec_clock, delta_exec);
  395. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  396. curr->vruntime += delta_exec_weighted;
  397. }
  398. static void update_curr(struct cfs_rq *cfs_rq)
  399. {
  400. struct sched_entity *curr = cfs_rq->curr;
  401. u64 now = rq_of(cfs_rq)->clock;
  402. unsigned long delta_exec;
  403. if (unlikely(!curr))
  404. return;
  405. /*
  406. * Get the amount of time the current task was running
  407. * since the last time we changed load (this cannot
  408. * overflow on 32 bits):
  409. */
  410. delta_exec = (unsigned long)(now - curr->exec_start);
  411. __update_curr(cfs_rq, curr, delta_exec);
  412. curr->exec_start = now;
  413. if (entity_is_task(curr)) {
  414. struct task_struct *curtask = task_of(curr);
  415. cpuacct_charge(curtask, delta_exec);
  416. }
  417. }
  418. static inline void
  419. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  420. {
  421. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  422. }
  423. /*
  424. * Task is being enqueued - update stats:
  425. */
  426. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  427. {
  428. /*
  429. * Are we enqueueing a waiting task? (for current tasks
  430. * a dequeue/enqueue event is a NOP)
  431. */
  432. if (se != cfs_rq->curr)
  433. update_stats_wait_start(cfs_rq, se);
  434. }
  435. static void
  436. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  437. {
  438. schedstat_set(se->wait_max, max(se->wait_max,
  439. rq_of(cfs_rq)->clock - se->wait_start));
  440. schedstat_set(se->wait_count, se->wait_count + 1);
  441. schedstat_set(se->wait_sum, se->wait_sum +
  442. rq_of(cfs_rq)->clock - se->wait_start);
  443. schedstat_set(se->wait_start, 0);
  444. }
  445. static inline void
  446. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  447. {
  448. /*
  449. * Mark the end of the wait period if dequeueing a
  450. * waiting task:
  451. */
  452. if (se != cfs_rq->curr)
  453. update_stats_wait_end(cfs_rq, se);
  454. }
  455. /*
  456. * We are picking a new current task - update its stats:
  457. */
  458. static inline void
  459. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  460. {
  461. /*
  462. * We are starting a new run period:
  463. */
  464. se->exec_start = rq_of(cfs_rq)->clock;
  465. }
  466. /**************************************************
  467. * Scheduling class queueing methods:
  468. */
  469. static void
  470. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  471. {
  472. update_load_add(&cfs_rq->load, se->load.weight);
  473. cfs_rq->nr_running++;
  474. se->on_rq = 1;
  475. list_add(&se->group_node, &cfs_rq->tasks);
  476. }
  477. static void
  478. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  479. {
  480. update_load_sub(&cfs_rq->load, se->load.weight);
  481. cfs_rq->nr_running--;
  482. se->on_rq = 0;
  483. list_del_init(&se->group_node);
  484. }
  485. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  486. {
  487. #ifdef CONFIG_SCHEDSTATS
  488. if (se->sleep_start) {
  489. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  490. struct task_struct *tsk = task_of(se);
  491. if ((s64)delta < 0)
  492. delta = 0;
  493. if (unlikely(delta > se->sleep_max))
  494. se->sleep_max = delta;
  495. se->sleep_start = 0;
  496. se->sum_sleep_runtime += delta;
  497. account_scheduler_latency(tsk, delta >> 10, 1);
  498. }
  499. if (se->block_start) {
  500. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  501. struct task_struct *tsk = task_of(se);
  502. if ((s64)delta < 0)
  503. delta = 0;
  504. if (unlikely(delta > se->block_max))
  505. se->block_max = delta;
  506. se->block_start = 0;
  507. se->sum_sleep_runtime += delta;
  508. /*
  509. * Blocking time is in units of nanosecs, so shift by 20 to
  510. * get a milliseconds-range estimation of the amount of
  511. * time that the task spent sleeping:
  512. */
  513. if (unlikely(prof_on == SLEEP_PROFILING)) {
  514. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  515. delta >> 20);
  516. }
  517. account_scheduler_latency(tsk, delta >> 10, 0);
  518. }
  519. #endif
  520. }
  521. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  522. {
  523. #ifdef CONFIG_SCHED_DEBUG
  524. s64 d = se->vruntime - cfs_rq->min_vruntime;
  525. if (d < 0)
  526. d = -d;
  527. if (d > 3*sysctl_sched_latency)
  528. schedstat_inc(cfs_rq, nr_spread_over);
  529. #endif
  530. }
  531. static void
  532. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  533. {
  534. u64 vruntime;
  535. if (first_fair(cfs_rq)) {
  536. vruntime = min_vruntime(cfs_rq->min_vruntime,
  537. __pick_next_entity(cfs_rq)->vruntime);
  538. } else
  539. vruntime = cfs_rq->min_vruntime;
  540. /*
  541. * The 'current' period is already promised to the current tasks,
  542. * however the extra weight of the new task will slow them down a
  543. * little, place the new task so that it fits in the slot that
  544. * stays open at the end.
  545. */
  546. if (initial && sched_feat(START_DEBIT))
  547. vruntime += sched_vslice_add(cfs_rq, se);
  548. if (!initial) {
  549. /* sleeps upto a single latency don't count. */
  550. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  551. unsigned long thresh = sysctl_sched_latency;
  552. /*
  553. * convert the sleeper threshold into virtual time
  554. */
  555. if (sched_feat(NORMALIZED_SLEEPER))
  556. thresh = calc_delta_fair(thresh, se);
  557. vruntime -= thresh;
  558. }
  559. /* ensure we never gain time by being placed backwards. */
  560. vruntime = max_vruntime(se->vruntime, vruntime);
  561. }
  562. se->vruntime = vruntime;
  563. }
  564. static void
  565. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  566. {
  567. /*
  568. * Update run-time statistics of the 'current'.
  569. */
  570. update_curr(cfs_rq);
  571. account_entity_enqueue(cfs_rq, se);
  572. if (wakeup) {
  573. place_entity(cfs_rq, se, 0);
  574. enqueue_sleeper(cfs_rq, se);
  575. }
  576. update_stats_enqueue(cfs_rq, se);
  577. check_spread(cfs_rq, se);
  578. if (se != cfs_rq->curr)
  579. __enqueue_entity(cfs_rq, se);
  580. }
  581. static void update_avg(u64 *avg, u64 sample)
  582. {
  583. s64 diff = sample - *avg;
  584. *avg += diff >> 3;
  585. }
  586. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  587. {
  588. if (!se->last_wakeup)
  589. return;
  590. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  591. se->last_wakeup = 0;
  592. }
  593. static void
  594. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  595. {
  596. /*
  597. * Update run-time statistics of the 'current'.
  598. */
  599. update_curr(cfs_rq);
  600. update_stats_dequeue(cfs_rq, se);
  601. if (sleep) {
  602. update_avg_stats(cfs_rq, se);
  603. #ifdef CONFIG_SCHEDSTATS
  604. if (entity_is_task(se)) {
  605. struct task_struct *tsk = task_of(se);
  606. if (tsk->state & TASK_INTERRUPTIBLE)
  607. se->sleep_start = rq_of(cfs_rq)->clock;
  608. if (tsk->state & TASK_UNINTERRUPTIBLE)
  609. se->block_start = rq_of(cfs_rq)->clock;
  610. }
  611. #endif
  612. }
  613. if (se != cfs_rq->curr)
  614. __dequeue_entity(cfs_rq, se);
  615. account_entity_dequeue(cfs_rq, se);
  616. }
  617. /*
  618. * Preempt the current task with a newly woken task if needed:
  619. */
  620. static void
  621. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  622. {
  623. unsigned long ideal_runtime, delta_exec;
  624. ideal_runtime = sched_slice(cfs_rq, curr);
  625. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  626. if (delta_exec > ideal_runtime)
  627. resched_task(rq_of(cfs_rq)->curr);
  628. }
  629. static void
  630. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  631. {
  632. /* 'current' is not kept within the tree. */
  633. if (se->on_rq) {
  634. /*
  635. * Any task has to be enqueued before it get to execute on
  636. * a CPU. So account for the time it spent waiting on the
  637. * runqueue.
  638. */
  639. update_stats_wait_end(cfs_rq, se);
  640. __dequeue_entity(cfs_rq, se);
  641. }
  642. update_stats_curr_start(cfs_rq, se);
  643. cfs_rq->curr = se;
  644. #ifdef CONFIG_SCHEDSTATS
  645. /*
  646. * Track our maximum slice length, if the CPU's load is at
  647. * least twice that of our own weight (i.e. dont track it
  648. * when there are only lesser-weight tasks around):
  649. */
  650. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  651. se->slice_max = max(se->slice_max,
  652. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  653. }
  654. #endif
  655. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  656. }
  657. static int
  658. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  659. static struct sched_entity *
  660. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  661. {
  662. if (!cfs_rq->next)
  663. return se;
  664. if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
  665. return se;
  666. return cfs_rq->next;
  667. }
  668. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  669. {
  670. struct sched_entity *se = NULL;
  671. if (first_fair(cfs_rq)) {
  672. se = __pick_next_entity(cfs_rq);
  673. se = pick_next(cfs_rq, se);
  674. set_next_entity(cfs_rq, se);
  675. }
  676. return se;
  677. }
  678. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  679. {
  680. /*
  681. * If still on the runqueue then deactivate_task()
  682. * was not called and update_curr() has to be done:
  683. */
  684. if (prev->on_rq)
  685. update_curr(cfs_rq);
  686. check_spread(cfs_rq, prev);
  687. if (prev->on_rq) {
  688. update_stats_wait_start(cfs_rq, prev);
  689. /* Put 'current' back into the tree. */
  690. __enqueue_entity(cfs_rq, prev);
  691. }
  692. cfs_rq->curr = NULL;
  693. }
  694. static void
  695. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  696. {
  697. /*
  698. * Update run-time statistics of the 'current'.
  699. */
  700. update_curr(cfs_rq);
  701. #ifdef CONFIG_SCHED_HRTICK
  702. /*
  703. * queued ticks are scheduled to match the slice, so don't bother
  704. * validating it and just reschedule.
  705. */
  706. if (queued) {
  707. resched_task(rq_of(cfs_rq)->curr);
  708. return;
  709. }
  710. /*
  711. * don't let the period tick interfere with the hrtick preemption
  712. */
  713. if (!sched_feat(DOUBLE_TICK) &&
  714. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  715. return;
  716. #endif
  717. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  718. check_preempt_tick(cfs_rq, curr);
  719. }
  720. /**************************************************
  721. * CFS operations on tasks:
  722. */
  723. #ifdef CONFIG_SCHED_HRTICK
  724. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  725. {
  726. int requeue = rq->curr == p;
  727. struct sched_entity *se = &p->se;
  728. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  729. WARN_ON(task_rq(p) != rq);
  730. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  731. u64 slice = sched_slice(cfs_rq, se);
  732. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  733. s64 delta = slice - ran;
  734. if (delta < 0) {
  735. if (rq->curr == p)
  736. resched_task(p);
  737. return;
  738. }
  739. /*
  740. * Don't schedule slices shorter than 10000ns, that just
  741. * doesn't make sense. Rely on vruntime for fairness.
  742. */
  743. if (!requeue)
  744. delta = max(10000LL, delta);
  745. hrtick_start(rq, delta, requeue);
  746. }
  747. }
  748. #else
  749. static inline void
  750. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  751. {
  752. }
  753. #endif
  754. /*
  755. * The enqueue_task method is called before nr_running is
  756. * increased. Here we update the fair scheduling stats and
  757. * then put the task into the rbtree:
  758. */
  759. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  760. {
  761. struct cfs_rq *cfs_rq;
  762. struct sched_entity *se = &p->se;
  763. for_each_sched_entity(se) {
  764. if (se->on_rq)
  765. break;
  766. cfs_rq = cfs_rq_of(se);
  767. enqueue_entity(cfs_rq, se, wakeup);
  768. wakeup = 1;
  769. }
  770. hrtick_start_fair(rq, rq->curr);
  771. }
  772. /*
  773. * The dequeue_task method is called before nr_running is
  774. * decreased. We remove the task from the rbtree and
  775. * update the fair scheduling stats:
  776. */
  777. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  778. {
  779. struct cfs_rq *cfs_rq;
  780. struct sched_entity *se = &p->se;
  781. for_each_sched_entity(se) {
  782. cfs_rq = cfs_rq_of(se);
  783. dequeue_entity(cfs_rq, se, sleep);
  784. /* Don't dequeue parent if it has other entities besides us */
  785. if (cfs_rq->load.weight)
  786. break;
  787. sleep = 1;
  788. }
  789. hrtick_start_fair(rq, rq->curr);
  790. }
  791. /*
  792. * sched_yield() support is very simple - we dequeue and enqueue.
  793. *
  794. * If compat_yield is turned on then we requeue to the end of the tree.
  795. */
  796. static void yield_task_fair(struct rq *rq)
  797. {
  798. struct task_struct *curr = rq->curr;
  799. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  800. struct sched_entity *rightmost, *se = &curr->se;
  801. /*
  802. * Are we the only task in the tree?
  803. */
  804. if (unlikely(cfs_rq->nr_running == 1))
  805. return;
  806. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  807. update_rq_clock(rq);
  808. /*
  809. * Update run-time statistics of the 'current'.
  810. */
  811. update_curr(cfs_rq);
  812. return;
  813. }
  814. /*
  815. * Find the rightmost entry in the rbtree:
  816. */
  817. rightmost = __pick_last_entity(cfs_rq);
  818. /*
  819. * Already in the rightmost position?
  820. */
  821. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  822. return;
  823. /*
  824. * Minimally necessary key value to be last in the tree:
  825. * Upon rescheduling, sched_class::put_prev_task() will place
  826. * 'current' within the tree based on its new key value.
  827. */
  828. se->vruntime = rightmost->vruntime + 1;
  829. }
  830. /*
  831. * wake_idle() will wake a task on an idle cpu if task->cpu is
  832. * not idle and an idle cpu is available. The span of cpus to
  833. * search starts with cpus closest then further out as needed,
  834. * so we always favor a closer, idle cpu.
  835. *
  836. * Returns the CPU we should wake onto.
  837. */
  838. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  839. static int wake_idle(int cpu, struct task_struct *p)
  840. {
  841. cpumask_t tmp;
  842. struct sched_domain *sd;
  843. int i;
  844. /*
  845. * If it is idle, then it is the best cpu to run this task.
  846. *
  847. * This cpu is also the best, if it has more than one task already.
  848. * Siblings must be also busy(in most cases) as they didn't already
  849. * pickup the extra load from this cpu and hence we need not check
  850. * sibling runqueue info. This will avoid the checks and cache miss
  851. * penalities associated with that.
  852. */
  853. if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
  854. return cpu;
  855. for_each_domain(cpu, sd) {
  856. if ((sd->flags & SD_WAKE_IDLE)
  857. || ((sd->flags & SD_WAKE_IDLE_FAR)
  858. && !task_hot(p, task_rq(p)->clock, sd))) {
  859. cpus_and(tmp, sd->span, p->cpus_allowed);
  860. for_each_cpu_mask(i, tmp) {
  861. if (idle_cpu(i)) {
  862. if (i != task_cpu(p)) {
  863. schedstat_inc(p,
  864. se.nr_wakeups_idle);
  865. }
  866. return i;
  867. }
  868. }
  869. } else {
  870. break;
  871. }
  872. }
  873. return cpu;
  874. }
  875. #else
  876. static inline int wake_idle(int cpu, struct task_struct *p)
  877. {
  878. return cpu;
  879. }
  880. #endif
  881. #ifdef CONFIG_SMP
  882. static const struct sched_class fair_sched_class;
  883. static int
  884. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  885. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  886. int idx, unsigned long load, unsigned long this_load,
  887. unsigned int imbalance)
  888. {
  889. struct task_struct *curr = this_rq->curr;
  890. unsigned long tl = this_load;
  891. unsigned long tl_per_task;
  892. int balanced;
  893. if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
  894. return 0;
  895. /*
  896. * If sync wakeup then subtract the (maximum possible)
  897. * effect of the currently running task from the load
  898. * of the current CPU:
  899. */
  900. if (sync)
  901. tl -= current->se.load.weight;
  902. balanced = 100*(tl + p->se.load.weight) <= imbalance*load;
  903. /*
  904. * If the currently running task will sleep within
  905. * a reasonable amount of time then attract this newly
  906. * woken task:
  907. */
  908. if (sync && balanced && curr->sched_class == &fair_sched_class) {
  909. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  910. p->se.avg_overlap < sysctl_sched_migration_cost)
  911. return 1;
  912. }
  913. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  914. tl_per_task = cpu_avg_load_per_task(this_cpu);
  915. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  916. balanced) {
  917. /*
  918. * This domain has SD_WAKE_AFFINE and
  919. * p is cache cold in this domain, and
  920. * there is no bad imbalance.
  921. */
  922. schedstat_inc(this_sd, ttwu_move_affine);
  923. schedstat_inc(p, se.nr_wakeups_affine);
  924. return 1;
  925. }
  926. return 0;
  927. }
  928. static int select_task_rq_fair(struct task_struct *p, int sync)
  929. {
  930. struct sched_domain *sd, *this_sd = NULL;
  931. int prev_cpu, this_cpu, new_cpu;
  932. unsigned long load, this_load;
  933. struct rq *rq, *this_rq;
  934. unsigned int imbalance;
  935. int idx;
  936. prev_cpu = task_cpu(p);
  937. rq = task_rq(p);
  938. this_cpu = smp_processor_id();
  939. this_rq = cpu_rq(this_cpu);
  940. new_cpu = prev_cpu;
  941. /*
  942. * 'this_sd' is the first domain that both
  943. * this_cpu and prev_cpu are present in:
  944. */
  945. for_each_domain(this_cpu, sd) {
  946. if (cpu_isset(prev_cpu, sd->span)) {
  947. this_sd = sd;
  948. break;
  949. }
  950. }
  951. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  952. goto out;
  953. /*
  954. * Check for affine wakeup and passive balancing possibilities.
  955. */
  956. if (!this_sd)
  957. goto out;
  958. idx = this_sd->wake_idx;
  959. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  960. load = source_load(prev_cpu, idx);
  961. this_load = target_load(this_cpu, idx);
  962. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  963. load, this_load, imbalance))
  964. return this_cpu;
  965. if (prev_cpu == this_cpu)
  966. goto out;
  967. /*
  968. * Start passive balancing when half the imbalance_pct
  969. * limit is reached.
  970. */
  971. if (this_sd->flags & SD_WAKE_BALANCE) {
  972. if (imbalance*this_load <= 100*load) {
  973. schedstat_inc(this_sd, ttwu_move_balance);
  974. schedstat_inc(p, se.nr_wakeups_passive);
  975. return this_cpu;
  976. }
  977. }
  978. out:
  979. return wake_idle(new_cpu, p);
  980. }
  981. #endif /* CONFIG_SMP */
  982. static unsigned long wakeup_gran(struct sched_entity *se)
  983. {
  984. unsigned long gran = sysctl_sched_wakeup_granularity;
  985. /*
  986. * More easily preempt - nice tasks, while not making it harder for
  987. * + nice tasks.
  988. */
  989. if (sched_feat(ASYM_GRAN))
  990. gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
  991. else
  992. gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
  993. return gran;
  994. }
  995. /*
  996. * Should 'se' preempt 'curr'.
  997. *
  998. * |s1
  999. * |s2
  1000. * |s3
  1001. * g
  1002. * |<--->|c
  1003. *
  1004. * w(c, s1) = -1
  1005. * w(c, s2) = 0
  1006. * w(c, s3) = 1
  1007. *
  1008. */
  1009. static int
  1010. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1011. {
  1012. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1013. if (vdiff < 0)
  1014. return -1;
  1015. gran = wakeup_gran(curr);
  1016. if (vdiff > gran)
  1017. return 1;
  1018. return 0;
  1019. }
  1020. /* return depth at which a sched entity is present in the hierarchy */
  1021. static inline int depth_se(struct sched_entity *se)
  1022. {
  1023. int depth = 0;
  1024. for_each_sched_entity(se)
  1025. depth++;
  1026. return depth;
  1027. }
  1028. /*
  1029. * Preempt the current task with a newly woken task if needed:
  1030. */
  1031. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  1032. {
  1033. struct task_struct *curr = rq->curr;
  1034. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1035. struct sched_entity *se = &curr->se, *pse = &p->se;
  1036. int se_depth, pse_depth;
  1037. if (unlikely(rt_prio(p->prio))) {
  1038. update_rq_clock(rq);
  1039. update_curr(cfs_rq);
  1040. resched_task(curr);
  1041. return;
  1042. }
  1043. se->last_wakeup = se->sum_exec_runtime;
  1044. if (unlikely(se == pse))
  1045. return;
  1046. cfs_rq_of(pse)->next = pse;
  1047. /*
  1048. * Batch tasks do not preempt (their preemption is driven by
  1049. * the tick):
  1050. */
  1051. if (unlikely(p->policy == SCHED_BATCH))
  1052. return;
  1053. if (!sched_feat(WAKEUP_PREEMPT))
  1054. return;
  1055. /*
  1056. * preemption test can be made between sibling entities who are in the
  1057. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  1058. * both tasks until we find their ancestors who are siblings of common
  1059. * parent.
  1060. */
  1061. /* First walk up until both entities are at same depth */
  1062. se_depth = depth_se(se);
  1063. pse_depth = depth_se(pse);
  1064. while (se_depth > pse_depth) {
  1065. se_depth--;
  1066. se = parent_entity(se);
  1067. }
  1068. while (pse_depth > se_depth) {
  1069. pse_depth--;
  1070. pse = parent_entity(pse);
  1071. }
  1072. while (!is_same_group(se, pse)) {
  1073. se = parent_entity(se);
  1074. pse = parent_entity(pse);
  1075. }
  1076. if (wakeup_preempt_entity(se, pse) == 1)
  1077. resched_task(curr);
  1078. }
  1079. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1080. {
  1081. struct task_struct *p;
  1082. struct cfs_rq *cfs_rq = &rq->cfs;
  1083. struct sched_entity *se;
  1084. if (unlikely(!cfs_rq->nr_running))
  1085. return NULL;
  1086. do {
  1087. se = pick_next_entity(cfs_rq);
  1088. cfs_rq = group_cfs_rq(se);
  1089. } while (cfs_rq);
  1090. p = task_of(se);
  1091. hrtick_start_fair(rq, p);
  1092. return p;
  1093. }
  1094. /*
  1095. * Account for a descheduled task:
  1096. */
  1097. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1098. {
  1099. struct sched_entity *se = &prev->se;
  1100. struct cfs_rq *cfs_rq;
  1101. for_each_sched_entity(se) {
  1102. cfs_rq = cfs_rq_of(se);
  1103. put_prev_entity(cfs_rq, se);
  1104. }
  1105. }
  1106. #ifdef CONFIG_SMP
  1107. /**************************************************
  1108. * Fair scheduling class load-balancing methods:
  1109. */
  1110. /*
  1111. * Load-balancing iterator. Note: while the runqueue stays locked
  1112. * during the whole iteration, the current task might be
  1113. * dequeued so the iterator has to be dequeue-safe. Here we
  1114. * achieve that by always pre-iterating before returning
  1115. * the current task:
  1116. */
  1117. static struct task_struct *
  1118. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1119. {
  1120. struct task_struct *p = NULL;
  1121. struct sched_entity *se;
  1122. while (next != &cfs_rq->tasks) {
  1123. se = list_entry(next, struct sched_entity, group_node);
  1124. next = next->next;
  1125. /* Skip over entities that are not tasks */
  1126. if (entity_is_task(se)) {
  1127. p = task_of(se);
  1128. break;
  1129. }
  1130. }
  1131. cfs_rq->balance_iterator = next;
  1132. return p;
  1133. }
  1134. static struct task_struct *load_balance_start_fair(void *arg)
  1135. {
  1136. struct cfs_rq *cfs_rq = arg;
  1137. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1138. }
  1139. static struct task_struct *load_balance_next_fair(void *arg)
  1140. {
  1141. struct cfs_rq *cfs_rq = arg;
  1142. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1143. }
  1144. #ifdef CONFIG_FAIR_GROUP_SCHED
  1145. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  1146. {
  1147. struct sched_entity *curr;
  1148. struct task_struct *p;
  1149. if (!cfs_rq->nr_running || !first_fair(cfs_rq))
  1150. return MAX_PRIO;
  1151. curr = cfs_rq->curr;
  1152. if (!curr)
  1153. curr = __pick_next_entity(cfs_rq);
  1154. p = task_of(curr);
  1155. return p->prio;
  1156. }
  1157. #endif
  1158. static unsigned long
  1159. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. unsigned long max_load_move,
  1161. struct sched_domain *sd, enum cpu_idle_type idle,
  1162. int *all_pinned, int *this_best_prio)
  1163. {
  1164. struct cfs_rq *busy_cfs_rq;
  1165. long rem_load_move = max_load_move;
  1166. struct rq_iterator cfs_rq_iterator;
  1167. cfs_rq_iterator.start = load_balance_start_fair;
  1168. cfs_rq_iterator.next = load_balance_next_fair;
  1169. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1170. #ifdef CONFIG_FAIR_GROUP_SCHED
  1171. struct cfs_rq *this_cfs_rq;
  1172. long imbalance;
  1173. unsigned long maxload;
  1174. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  1175. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  1176. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  1177. if (imbalance <= 0)
  1178. continue;
  1179. /* Don't pull more than imbalance/2 */
  1180. imbalance /= 2;
  1181. maxload = min(rem_load_move, imbalance);
  1182. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  1183. #else
  1184. # define maxload rem_load_move
  1185. #endif
  1186. /*
  1187. * pass busy_cfs_rq argument into
  1188. * load_balance_[start|next]_fair iterators
  1189. */
  1190. cfs_rq_iterator.arg = busy_cfs_rq;
  1191. rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
  1192. maxload, sd, idle, all_pinned,
  1193. this_best_prio,
  1194. &cfs_rq_iterator);
  1195. if (rem_load_move <= 0)
  1196. break;
  1197. }
  1198. return max_load_move - rem_load_move;
  1199. }
  1200. static int
  1201. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1202. struct sched_domain *sd, enum cpu_idle_type idle)
  1203. {
  1204. struct cfs_rq *busy_cfs_rq;
  1205. struct rq_iterator cfs_rq_iterator;
  1206. cfs_rq_iterator.start = load_balance_start_fair;
  1207. cfs_rq_iterator.next = load_balance_next_fair;
  1208. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1209. /*
  1210. * pass busy_cfs_rq argument into
  1211. * load_balance_[start|next]_fair iterators
  1212. */
  1213. cfs_rq_iterator.arg = busy_cfs_rq;
  1214. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1215. &cfs_rq_iterator))
  1216. return 1;
  1217. }
  1218. return 0;
  1219. }
  1220. #endif
  1221. /*
  1222. * scheduler tick hitting a task of our scheduling class:
  1223. */
  1224. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1225. {
  1226. struct cfs_rq *cfs_rq;
  1227. struct sched_entity *se = &curr->se;
  1228. for_each_sched_entity(se) {
  1229. cfs_rq = cfs_rq_of(se);
  1230. entity_tick(cfs_rq, se, queued);
  1231. }
  1232. }
  1233. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1234. /*
  1235. * Share the fairness runtime between parent and child, thus the
  1236. * total amount of pressure for CPU stays equal - new tasks
  1237. * get a chance to run but frequent forkers are not allowed to
  1238. * monopolize the CPU. Note: the parent runqueue is locked,
  1239. * the child is not running yet.
  1240. */
  1241. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1242. {
  1243. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1244. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1245. int this_cpu = smp_processor_id();
  1246. sched_info_queued(p);
  1247. update_curr(cfs_rq);
  1248. place_entity(cfs_rq, se, 1);
  1249. /* 'curr' will be NULL if the child belongs to a different group */
  1250. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1251. curr && curr->vruntime < se->vruntime) {
  1252. /*
  1253. * Upon rescheduling, sched_class::put_prev_task() will place
  1254. * 'current' within the tree based on its new key value.
  1255. */
  1256. swap(curr->vruntime, se->vruntime);
  1257. }
  1258. enqueue_task_fair(rq, p, 0);
  1259. resched_task(rq->curr);
  1260. }
  1261. /*
  1262. * Priority of the task has changed. Check to see if we preempt
  1263. * the current task.
  1264. */
  1265. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1266. int oldprio, int running)
  1267. {
  1268. /*
  1269. * Reschedule if we are currently running on this runqueue and
  1270. * our priority decreased, or if we are not currently running on
  1271. * this runqueue and our priority is higher than the current's
  1272. */
  1273. if (running) {
  1274. if (p->prio > oldprio)
  1275. resched_task(rq->curr);
  1276. } else
  1277. check_preempt_curr(rq, p);
  1278. }
  1279. /*
  1280. * We switched to the sched_fair class.
  1281. */
  1282. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1283. int running)
  1284. {
  1285. /*
  1286. * We were most likely switched from sched_rt, so
  1287. * kick off the schedule if running, otherwise just see
  1288. * if we can still preempt the current task.
  1289. */
  1290. if (running)
  1291. resched_task(rq->curr);
  1292. else
  1293. check_preempt_curr(rq, p);
  1294. }
  1295. /* Account for a task changing its policy or group.
  1296. *
  1297. * This routine is mostly called to set cfs_rq->curr field when a task
  1298. * migrates between groups/classes.
  1299. */
  1300. static void set_curr_task_fair(struct rq *rq)
  1301. {
  1302. struct sched_entity *se = &rq->curr->se;
  1303. for_each_sched_entity(se)
  1304. set_next_entity(cfs_rq_of(se), se);
  1305. }
  1306. #ifdef CONFIG_FAIR_GROUP_SCHED
  1307. static void moved_group_fair(struct task_struct *p)
  1308. {
  1309. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1310. update_curr(cfs_rq);
  1311. place_entity(cfs_rq, &p->se, 1);
  1312. }
  1313. #endif
  1314. /*
  1315. * All the scheduling class methods:
  1316. */
  1317. static const struct sched_class fair_sched_class = {
  1318. .next = &idle_sched_class,
  1319. .enqueue_task = enqueue_task_fair,
  1320. .dequeue_task = dequeue_task_fair,
  1321. .yield_task = yield_task_fair,
  1322. #ifdef CONFIG_SMP
  1323. .select_task_rq = select_task_rq_fair,
  1324. #endif /* CONFIG_SMP */
  1325. .check_preempt_curr = check_preempt_wakeup,
  1326. .pick_next_task = pick_next_task_fair,
  1327. .put_prev_task = put_prev_task_fair,
  1328. #ifdef CONFIG_SMP
  1329. .load_balance = load_balance_fair,
  1330. .move_one_task = move_one_task_fair,
  1331. #endif
  1332. .set_curr_task = set_curr_task_fair,
  1333. .task_tick = task_tick_fair,
  1334. .task_new = task_new_fair,
  1335. .prio_changed = prio_changed_fair,
  1336. .switched_to = switched_to_fair,
  1337. #ifdef CONFIG_FAIR_GROUP_SCHED
  1338. .moved_group = moved_group_fair,
  1339. #endif
  1340. };
  1341. #ifdef CONFIG_SCHED_DEBUG
  1342. static void print_cfs_stats(struct seq_file *m, int cpu)
  1343. {
  1344. struct cfs_rq *cfs_rq;
  1345. rcu_read_lock();
  1346. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1347. print_cfs_rq(m, cpu, cfs_rq);
  1348. rcu_read_unlock();
  1349. }
  1350. #endif