cpuset.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
  62. /* See "Frequency meter" comments, below. */
  63. struct fmeter {
  64. int cnt; /* unprocessed events count */
  65. int val; /* most recent output value */
  66. time_t time; /* clock (secs) when val computed */
  67. spinlock_t lock; /* guards read or write of above */
  68. };
  69. struct cpuset {
  70. struct cgroup_subsys_state css;
  71. unsigned long flags; /* "unsigned long" so bitops work */
  72. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  73. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  74. /*
  75. * This is old Memory Nodes tasks took on.
  76. *
  77. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  78. * - A new cpuset's old_mems_allowed is initialized when some
  79. * task is moved into it.
  80. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  81. * cpuset.mems_allowed and have tasks' nodemask updated, and
  82. * then old_mems_allowed is updated to mems_allowed.
  83. */
  84. nodemask_t old_mems_allowed;
  85. struct fmeter fmeter; /* memory_pressure filter */
  86. /*
  87. * Tasks are being attached to this cpuset. Used to prevent
  88. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  89. */
  90. int attach_in_progress;
  91. /* partition number for rebuild_sched_domains() */
  92. int pn;
  93. /* for custom sched domain */
  94. int relax_domain_level;
  95. };
  96. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  97. {
  98. return css ? container_of(css, struct cpuset, css) : NULL;
  99. }
  100. /* Retrieve the cpuset for a task */
  101. static inline struct cpuset *task_cs(struct task_struct *task)
  102. {
  103. return css_cs(task_css(task, cpuset_cgrp_id));
  104. }
  105. static inline struct cpuset *parent_cs(struct cpuset *cs)
  106. {
  107. return css_cs(css_parent(&cs->css));
  108. }
  109. #ifdef CONFIG_NUMA
  110. static inline bool task_has_mempolicy(struct task_struct *task)
  111. {
  112. return task->mempolicy;
  113. }
  114. #else
  115. static inline bool task_has_mempolicy(struct task_struct *task)
  116. {
  117. return false;
  118. }
  119. #endif
  120. /* bits in struct cpuset flags field */
  121. typedef enum {
  122. CS_ONLINE,
  123. CS_CPU_EXCLUSIVE,
  124. CS_MEM_EXCLUSIVE,
  125. CS_MEM_HARDWALL,
  126. CS_MEMORY_MIGRATE,
  127. CS_SCHED_LOAD_BALANCE,
  128. CS_SPREAD_PAGE,
  129. CS_SPREAD_SLAB,
  130. } cpuset_flagbits_t;
  131. /* convenient tests for these bits */
  132. static inline bool is_cpuset_online(const struct cpuset *cs)
  133. {
  134. return test_bit(CS_ONLINE, &cs->flags);
  135. }
  136. static inline int is_cpu_exclusive(const struct cpuset *cs)
  137. {
  138. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  139. }
  140. static inline int is_mem_exclusive(const struct cpuset *cs)
  141. {
  142. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  143. }
  144. static inline int is_mem_hardwall(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  147. }
  148. static inline int is_sched_load_balance(const struct cpuset *cs)
  149. {
  150. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  151. }
  152. static inline int is_memory_migrate(const struct cpuset *cs)
  153. {
  154. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  155. }
  156. static inline int is_spread_page(const struct cpuset *cs)
  157. {
  158. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  159. }
  160. static inline int is_spread_slab(const struct cpuset *cs)
  161. {
  162. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  163. }
  164. static struct cpuset top_cpuset = {
  165. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  166. (1 << CS_MEM_EXCLUSIVE)),
  167. };
  168. /**
  169. * cpuset_for_each_child - traverse online children of a cpuset
  170. * @child_cs: loop cursor pointing to the current child
  171. * @pos_css: used for iteration
  172. * @parent_cs: target cpuset to walk children of
  173. *
  174. * Walk @child_cs through the online children of @parent_cs. Must be used
  175. * with RCU read locked.
  176. */
  177. #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
  178. css_for_each_child((pos_css), &(parent_cs)->css) \
  179. if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
  180. /**
  181. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  182. * @des_cs: loop cursor pointing to the current descendant
  183. * @pos_css: used for iteration
  184. * @root_cs: target cpuset to walk ancestor of
  185. *
  186. * Walk @des_cs through the online descendants of @root_cs. Must be used
  187. * with RCU read locked. The caller may modify @pos_css by calling
  188. * css_rightmost_descendant() to skip subtree. @root_cs is included in the
  189. * iteration and the first node to be visited.
  190. */
  191. #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
  192. css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
  193. if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
  194. /*
  195. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  196. * and callback_mutex. The latter may nest inside the former. We also
  197. * require taking task_lock() when dereferencing a task's cpuset pointer.
  198. * See "The task_lock() exception", at the end of this comment.
  199. *
  200. * A task must hold both mutexes to modify cpusets. If a task holds
  201. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  202. * is the only task able to also acquire callback_mutex and be able to
  203. * modify cpusets. It can perform various checks on the cpuset structure
  204. * first, knowing nothing will change. It can also allocate memory while
  205. * just holding cpuset_mutex. While it is performing these checks, various
  206. * callback routines can briefly acquire callback_mutex to query cpusets.
  207. * Once it is ready to make the changes, it takes callback_mutex, blocking
  208. * everyone else.
  209. *
  210. * Calls to the kernel memory allocator can not be made while holding
  211. * callback_mutex, as that would risk double tripping on callback_mutex
  212. * from one of the callbacks into the cpuset code from within
  213. * __alloc_pages().
  214. *
  215. * If a task is only holding callback_mutex, then it has read-only
  216. * access to cpusets.
  217. *
  218. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  219. * by other task, we use alloc_lock in the task_struct fields to protect
  220. * them.
  221. *
  222. * The cpuset_common_file_read() handlers only hold callback_mutex across
  223. * small pieces of code, such as when reading out possibly multi-word
  224. * cpumasks and nodemasks.
  225. *
  226. * Accessing a task's cpuset should be done in accordance with the
  227. * guidelines for accessing subsystem state in kernel/cgroup.c
  228. */
  229. static DEFINE_MUTEX(cpuset_mutex);
  230. static DEFINE_MUTEX(callback_mutex);
  231. /*
  232. * CPU / memory hotplug is handled asynchronously.
  233. */
  234. static void cpuset_hotplug_workfn(struct work_struct *work);
  235. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  236. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  237. /*
  238. * This is ugly, but preserves the userspace API for existing cpuset
  239. * users. If someone tries to mount the "cpuset" filesystem, we
  240. * silently switch it to mount "cgroup" instead
  241. */
  242. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  243. int flags, const char *unused_dev_name, void *data)
  244. {
  245. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  246. struct dentry *ret = ERR_PTR(-ENODEV);
  247. if (cgroup_fs) {
  248. char mountopts[] =
  249. "cpuset,noprefix,"
  250. "release_agent=/sbin/cpuset_release_agent";
  251. ret = cgroup_fs->mount(cgroup_fs, flags,
  252. unused_dev_name, mountopts);
  253. put_filesystem(cgroup_fs);
  254. }
  255. return ret;
  256. }
  257. static struct file_system_type cpuset_fs_type = {
  258. .name = "cpuset",
  259. .mount = cpuset_mount,
  260. };
  261. /*
  262. * Return in pmask the portion of a cpusets's cpus_allowed that
  263. * are online. If none are online, walk up the cpuset hierarchy
  264. * until we find one that does have some online cpus. The top
  265. * cpuset always has some cpus online.
  266. *
  267. * One way or another, we guarantee to return some non-empty subset
  268. * of cpu_online_mask.
  269. *
  270. * Call with callback_mutex held.
  271. */
  272. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  273. {
  274. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  275. cs = parent_cs(cs);
  276. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  277. }
  278. /*
  279. * Return in *pmask the portion of a cpusets's mems_allowed that
  280. * are online, with memory. If none are online with memory, walk
  281. * up the cpuset hierarchy until we find one that does have some
  282. * online mems. The top cpuset always has some mems online.
  283. *
  284. * One way or another, we guarantee to return some non-empty subset
  285. * of node_states[N_MEMORY].
  286. *
  287. * Call with callback_mutex held.
  288. */
  289. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  290. {
  291. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  292. cs = parent_cs(cs);
  293. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  294. }
  295. /*
  296. * update task's spread flag if cpuset's page/slab spread flag is set
  297. *
  298. * Called with callback_mutex/cpuset_mutex held
  299. */
  300. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  301. struct task_struct *tsk)
  302. {
  303. if (is_spread_page(cs))
  304. tsk->flags |= PF_SPREAD_PAGE;
  305. else
  306. tsk->flags &= ~PF_SPREAD_PAGE;
  307. if (is_spread_slab(cs))
  308. tsk->flags |= PF_SPREAD_SLAB;
  309. else
  310. tsk->flags &= ~PF_SPREAD_SLAB;
  311. }
  312. /*
  313. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  314. *
  315. * One cpuset is a subset of another if all its allowed CPUs and
  316. * Memory Nodes are a subset of the other, and its exclusive flags
  317. * are only set if the other's are set. Call holding cpuset_mutex.
  318. */
  319. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  320. {
  321. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  322. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  323. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  324. is_mem_exclusive(p) <= is_mem_exclusive(q);
  325. }
  326. /**
  327. * alloc_trial_cpuset - allocate a trial cpuset
  328. * @cs: the cpuset that the trial cpuset duplicates
  329. */
  330. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  331. {
  332. struct cpuset *trial;
  333. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  334. if (!trial)
  335. return NULL;
  336. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  337. kfree(trial);
  338. return NULL;
  339. }
  340. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  341. return trial;
  342. }
  343. /**
  344. * free_trial_cpuset - free the trial cpuset
  345. * @trial: the trial cpuset to be freed
  346. */
  347. static void free_trial_cpuset(struct cpuset *trial)
  348. {
  349. free_cpumask_var(trial->cpus_allowed);
  350. kfree(trial);
  351. }
  352. /*
  353. * validate_change() - Used to validate that any proposed cpuset change
  354. * follows the structural rules for cpusets.
  355. *
  356. * If we replaced the flag and mask values of the current cpuset
  357. * (cur) with those values in the trial cpuset (trial), would
  358. * our various subset and exclusive rules still be valid? Presumes
  359. * cpuset_mutex held.
  360. *
  361. * 'cur' is the address of an actual, in-use cpuset. Operations
  362. * such as list traversal that depend on the actual address of the
  363. * cpuset in the list must use cur below, not trial.
  364. *
  365. * 'trial' is the address of bulk structure copy of cur, with
  366. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  367. * or flags changed to new, trial values.
  368. *
  369. * Return 0 if valid, -errno if not.
  370. */
  371. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  372. {
  373. struct cgroup_subsys_state *css;
  374. struct cpuset *c, *par;
  375. int ret;
  376. rcu_read_lock();
  377. /* Each of our child cpusets must be a subset of us */
  378. ret = -EBUSY;
  379. cpuset_for_each_child(c, css, cur)
  380. if (!is_cpuset_subset(c, trial))
  381. goto out;
  382. /* Remaining checks don't apply to root cpuset */
  383. ret = 0;
  384. if (cur == &top_cpuset)
  385. goto out;
  386. par = parent_cs(cur);
  387. /* We must be a subset of our parent cpuset */
  388. ret = -EACCES;
  389. if (!is_cpuset_subset(trial, par))
  390. goto out;
  391. /*
  392. * If either I or some sibling (!= me) is exclusive, we can't
  393. * overlap
  394. */
  395. ret = -EINVAL;
  396. cpuset_for_each_child(c, css, par) {
  397. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  398. c != cur &&
  399. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  400. goto out;
  401. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  402. c != cur &&
  403. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  404. goto out;
  405. }
  406. /*
  407. * Cpusets with tasks - existing or newly being attached - can't
  408. * be changed to have empty cpus_allowed or mems_allowed.
  409. */
  410. ret = -ENOSPC;
  411. if ((cgroup_has_tasks(cur->css.cgroup) || cur->attach_in_progress)) {
  412. if (!cpumask_empty(cur->cpus_allowed) &&
  413. cpumask_empty(trial->cpus_allowed))
  414. goto out;
  415. if (!nodes_empty(cur->mems_allowed) &&
  416. nodes_empty(trial->mems_allowed))
  417. goto out;
  418. }
  419. ret = 0;
  420. out:
  421. rcu_read_unlock();
  422. return ret;
  423. }
  424. #ifdef CONFIG_SMP
  425. /*
  426. * Helper routine for generate_sched_domains().
  427. * Do cpusets a, b have overlapping cpus_allowed masks?
  428. */
  429. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  430. {
  431. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  432. }
  433. static void
  434. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  435. {
  436. if (dattr->relax_domain_level < c->relax_domain_level)
  437. dattr->relax_domain_level = c->relax_domain_level;
  438. return;
  439. }
  440. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  441. struct cpuset *root_cs)
  442. {
  443. struct cpuset *cp;
  444. struct cgroup_subsys_state *pos_css;
  445. rcu_read_lock();
  446. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  447. if (cp == root_cs)
  448. continue;
  449. /* skip the whole subtree if @cp doesn't have any CPU */
  450. if (cpumask_empty(cp->cpus_allowed)) {
  451. pos_css = css_rightmost_descendant(pos_css);
  452. continue;
  453. }
  454. if (is_sched_load_balance(cp))
  455. update_domain_attr(dattr, cp);
  456. }
  457. rcu_read_unlock();
  458. }
  459. /*
  460. * generate_sched_domains()
  461. *
  462. * This function builds a partial partition of the systems CPUs
  463. * A 'partial partition' is a set of non-overlapping subsets whose
  464. * union is a subset of that set.
  465. * The output of this function needs to be passed to kernel/sched/core.c
  466. * partition_sched_domains() routine, which will rebuild the scheduler's
  467. * load balancing domains (sched domains) as specified by that partial
  468. * partition.
  469. *
  470. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  471. * for a background explanation of this.
  472. *
  473. * Does not return errors, on the theory that the callers of this
  474. * routine would rather not worry about failures to rebuild sched
  475. * domains when operating in the severe memory shortage situations
  476. * that could cause allocation failures below.
  477. *
  478. * Must be called with cpuset_mutex held.
  479. *
  480. * The three key local variables below are:
  481. * q - a linked-list queue of cpuset pointers, used to implement a
  482. * top-down scan of all cpusets. This scan loads a pointer
  483. * to each cpuset marked is_sched_load_balance into the
  484. * array 'csa'. For our purposes, rebuilding the schedulers
  485. * sched domains, we can ignore !is_sched_load_balance cpusets.
  486. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  487. * that need to be load balanced, for convenient iterative
  488. * access by the subsequent code that finds the best partition,
  489. * i.e the set of domains (subsets) of CPUs such that the
  490. * cpus_allowed of every cpuset marked is_sched_load_balance
  491. * is a subset of one of these domains, while there are as
  492. * many such domains as possible, each as small as possible.
  493. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  494. * the kernel/sched/core.c routine partition_sched_domains() in a
  495. * convenient format, that can be easily compared to the prior
  496. * value to determine what partition elements (sched domains)
  497. * were changed (added or removed.)
  498. *
  499. * Finding the best partition (set of domains):
  500. * The triple nested loops below over i, j, k scan over the
  501. * load balanced cpusets (using the array of cpuset pointers in
  502. * csa[]) looking for pairs of cpusets that have overlapping
  503. * cpus_allowed, but which don't have the same 'pn' partition
  504. * number and gives them in the same partition number. It keeps
  505. * looping on the 'restart' label until it can no longer find
  506. * any such pairs.
  507. *
  508. * The union of the cpus_allowed masks from the set of
  509. * all cpusets having the same 'pn' value then form the one
  510. * element of the partition (one sched domain) to be passed to
  511. * partition_sched_domains().
  512. */
  513. static int generate_sched_domains(cpumask_var_t **domains,
  514. struct sched_domain_attr **attributes)
  515. {
  516. struct cpuset *cp; /* scans q */
  517. struct cpuset **csa; /* array of all cpuset ptrs */
  518. int csn; /* how many cpuset ptrs in csa so far */
  519. int i, j, k; /* indices for partition finding loops */
  520. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  521. struct sched_domain_attr *dattr; /* attributes for custom domains */
  522. int ndoms = 0; /* number of sched domains in result */
  523. int nslot; /* next empty doms[] struct cpumask slot */
  524. struct cgroup_subsys_state *pos_css;
  525. doms = NULL;
  526. dattr = NULL;
  527. csa = NULL;
  528. /* Special case for the 99% of systems with one, full, sched domain */
  529. if (is_sched_load_balance(&top_cpuset)) {
  530. ndoms = 1;
  531. doms = alloc_sched_domains(ndoms);
  532. if (!doms)
  533. goto done;
  534. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  535. if (dattr) {
  536. *dattr = SD_ATTR_INIT;
  537. update_domain_attr_tree(dattr, &top_cpuset);
  538. }
  539. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  540. goto done;
  541. }
  542. csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
  543. if (!csa)
  544. goto done;
  545. csn = 0;
  546. rcu_read_lock();
  547. cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
  548. if (cp == &top_cpuset)
  549. continue;
  550. /*
  551. * Continue traversing beyond @cp iff @cp has some CPUs and
  552. * isn't load balancing. The former is obvious. The
  553. * latter: All child cpusets contain a subset of the
  554. * parent's cpus, so just skip them, and then we call
  555. * update_domain_attr_tree() to calc relax_domain_level of
  556. * the corresponding sched domain.
  557. */
  558. if (!cpumask_empty(cp->cpus_allowed) &&
  559. !is_sched_load_balance(cp))
  560. continue;
  561. if (is_sched_load_balance(cp))
  562. csa[csn++] = cp;
  563. /* skip @cp's subtree */
  564. pos_css = css_rightmost_descendant(pos_css);
  565. }
  566. rcu_read_unlock();
  567. for (i = 0; i < csn; i++)
  568. csa[i]->pn = i;
  569. ndoms = csn;
  570. restart:
  571. /* Find the best partition (set of sched domains) */
  572. for (i = 0; i < csn; i++) {
  573. struct cpuset *a = csa[i];
  574. int apn = a->pn;
  575. for (j = 0; j < csn; j++) {
  576. struct cpuset *b = csa[j];
  577. int bpn = b->pn;
  578. if (apn != bpn && cpusets_overlap(a, b)) {
  579. for (k = 0; k < csn; k++) {
  580. struct cpuset *c = csa[k];
  581. if (c->pn == bpn)
  582. c->pn = apn;
  583. }
  584. ndoms--; /* one less element */
  585. goto restart;
  586. }
  587. }
  588. }
  589. /*
  590. * Now we know how many domains to create.
  591. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  592. */
  593. doms = alloc_sched_domains(ndoms);
  594. if (!doms)
  595. goto done;
  596. /*
  597. * The rest of the code, including the scheduler, can deal with
  598. * dattr==NULL case. No need to abort if alloc fails.
  599. */
  600. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  601. for (nslot = 0, i = 0; i < csn; i++) {
  602. struct cpuset *a = csa[i];
  603. struct cpumask *dp;
  604. int apn = a->pn;
  605. if (apn < 0) {
  606. /* Skip completed partitions */
  607. continue;
  608. }
  609. dp = doms[nslot];
  610. if (nslot == ndoms) {
  611. static int warnings = 10;
  612. if (warnings) {
  613. printk(KERN_WARNING
  614. "rebuild_sched_domains confused:"
  615. " nslot %d, ndoms %d, csn %d, i %d,"
  616. " apn %d\n",
  617. nslot, ndoms, csn, i, apn);
  618. warnings--;
  619. }
  620. continue;
  621. }
  622. cpumask_clear(dp);
  623. if (dattr)
  624. *(dattr + nslot) = SD_ATTR_INIT;
  625. for (j = i; j < csn; j++) {
  626. struct cpuset *b = csa[j];
  627. if (apn == b->pn) {
  628. cpumask_or(dp, dp, b->cpus_allowed);
  629. if (dattr)
  630. update_domain_attr_tree(dattr + nslot, b);
  631. /* Done with this partition */
  632. b->pn = -1;
  633. }
  634. }
  635. nslot++;
  636. }
  637. BUG_ON(nslot != ndoms);
  638. done:
  639. kfree(csa);
  640. /*
  641. * Fallback to the default domain if kmalloc() failed.
  642. * See comments in partition_sched_domains().
  643. */
  644. if (doms == NULL)
  645. ndoms = 1;
  646. *domains = doms;
  647. *attributes = dattr;
  648. return ndoms;
  649. }
  650. /*
  651. * Rebuild scheduler domains.
  652. *
  653. * If the flag 'sched_load_balance' of any cpuset with non-empty
  654. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  655. * which has that flag enabled, or if any cpuset with a non-empty
  656. * 'cpus' is removed, then call this routine to rebuild the
  657. * scheduler's dynamic sched domains.
  658. *
  659. * Call with cpuset_mutex held. Takes get_online_cpus().
  660. */
  661. static void rebuild_sched_domains_locked(void)
  662. {
  663. struct sched_domain_attr *attr;
  664. cpumask_var_t *doms;
  665. int ndoms;
  666. lockdep_assert_held(&cpuset_mutex);
  667. get_online_cpus();
  668. /*
  669. * We have raced with CPU hotplug. Don't do anything to avoid
  670. * passing doms with offlined cpu to partition_sched_domains().
  671. * Anyways, hotplug work item will rebuild sched domains.
  672. */
  673. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  674. goto out;
  675. /* Generate domain masks and attrs */
  676. ndoms = generate_sched_domains(&doms, &attr);
  677. /* Have scheduler rebuild the domains */
  678. partition_sched_domains(ndoms, doms, attr);
  679. out:
  680. put_online_cpus();
  681. }
  682. #else /* !CONFIG_SMP */
  683. static void rebuild_sched_domains_locked(void)
  684. {
  685. }
  686. #endif /* CONFIG_SMP */
  687. void rebuild_sched_domains(void)
  688. {
  689. mutex_lock(&cpuset_mutex);
  690. rebuild_sched_domains_locked();
  691. mutex_unlock(&cpuset_mutex);
  692. }
  693. /*
  694. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  695. * @cs: the cpuset in interest
  696. *
  697. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  698. * with non-empty cpus. We use effective cpumask whenever:
  699. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  700. * if the cpuset they reside in has no cpus)
  701. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  702. *
  703. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  704. * exception. See comments there.
  705. */
  706. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  707. {
  708. while (cpumask_empty(cs->cpus_allowed))
  709. cs = parent_cs(cs);
  710. return cs;
  711. }
  712. /*
  713. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  714. * @cs: the cpuset in interest
  715. *
  716. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  717. * with non-empty memss. We use effective nodemask whenever:
  718. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  719. * if the cpuset they reside in has no mems)
  720. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  721. *
  722. * Called with cpuset_mutex held.
  723. */
  724. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  725. {
  726. while (nodes_empty(cs->mems_allowed))
  727. cs = parent_cs(cs);
  728. return cs;
  729. }
  730. /**
  731. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  732. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  733. *
  734. * Iterate through each task of @cs updating its cpus_allowed to the
  735. * effective cpuset's. As this function is called with cpuset_mutex held,
  736. * cpuset membership stays stable.
  737. */
  738. static void update_tasks_cpumask(struct cpuset *cs)
  739. {
  740. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  741. struct css_task_iter it;
  742. struct task_struct *task;
  743. css_task_iter_start(&cs->css, &it);
  744. while ((task = css_task_iter_next(&it)))
  745. set_cpus_allowed_ptr(task, cpus_cs->cpus_allowed);
  746. css_task_iter_end(&it);
  747. }
  748. /*
  749. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  750. * @root_cs: the root cpuset of the hierarchy
  751. * @update_root: update root cpuset or not?
  752. *
  753. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  754. * which take on cpumask of @root_cs.
  755. *
  756. * Called with cpuset_mutex held
  757. */
  758. static void update_tasks_cpumask_hier(struct cpuset *root_cs, bool update_root)
  759. {
  760. struct cpuset *cp;
  761. struct cgroup_subsys_state *pos_css;
  762. rcu_read_lock();
  763. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  764. if (cp == root_cs) {
  765. if (!update_root)
  766. continue;
  767. } else {
  768. /* skip the whole subtree if @cp have some CPU */
  769. if (!cpumask_empty(cp->cpus_allowed)) {
  770. pos_css = css_rightmost_descendant(pos_css);
  771. continue;
  772. }
  773. }
  774. if (!css_tryget(&cp->css))
  775. continue;
  776. rcu_read_unlock();
  777. update_tasks_cpumask(cp);
  778. rcu_read_lock();
  779. css_put(&cp->css);
  780. }
  781. rcu_read_unlock();
  782. }
  783. /**
  784. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  785. * @cs: the cpuset to consider
  786. * @buf: buffer of cpu numbers written to this cpuset
  787. */
  788. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  789. const char *buf)
  790. {
  791. int retval;
  792. int is_load_balanced;
  793. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  794. if (cs == &top_cpuset)
  795. return -EACCES;
  796. /*
  797. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  798. * Since cpulist_parse() fails on an empty mask, we special case
  799. * that parsing. The validate_change() call ensures that cpusets
  800. * with tasks have cpus.
  801. */
  802. if (!*buf) {
  803. cpumask_clear(trialcs->cpus_allowed);
  804. } else {
  805. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  806. if (retval < 0)
  807. return retval;
  808. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  809. return -EINVAL;
  810. }
  811. /* Nothing to do if the cpus didn't change */
  812. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  813. return 0;
  814. retval = validate_change(cs, trialcs);
  815. if (retval < 0)
  816. return retval;
  817. is_load_balanced = is_sched_load_balance(trialcs);
  818. mutex_lock(&callback_mutex);
  819. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  820. mutex_unlock(&callback_mutex);
  821. update_tasks_cpumask_hier(cs, true);
  822. if (is_load_balanced)
  823. rebuild_sched_domains_locked();
  824. return 0;
  825. }
  826. /*
  827. * cpuset_migrate_mm
  828. *
  829. * Migrate memory region from one set of nodes to another.
  830. *
  831. * Temporarilly set tasks mems_allowed to target nodes of migration,
  832. * so that the migration code can allocate pages on these nodes.
  833. *
  834. * While the mm_struct we are migrating is typically from some
  835. * other task, the task_struct mems_allowed that we are hacking
  836. * is for our current task, which must allocate new pages for that
  837. * migrating memory region.
  838. */
  839. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  840. const nodemask_t *to)
  841. {
  842. struct task_struct *tsk = current;
  843. struct cpuset *mems_cs;
  844. tsk->mems_allowed = *to;
  845. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  846. rcu_read_lock();
  847. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  848. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  849. rcu_read_unlock();
  850. }
  851. /*
  852. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  853. * @tsk: the task to change
  854. * @newmems: new nodes that the task will be set
  855. *
  856. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  857. * we structure updates as setting all new allowed nodes, then clearing newly
  858. * disallowed ones.
  859. */
  860. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  861. nodemask_t *newmems)
  862. {
  863. bool need_loop;
  864. /*
  865. * Allow tasks that have access to memory reserves because they have
  866. * been OOM killed to get memory anywhere.
  867. */
  868. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  869. return;
  870. if (current->flags & PF_EXITING) /* Let dying task have memory */
  871. return;
  872. task_lock(tsk);
  873. /*
  874. * Determine if a loop is necessary if another thread is doing
  875. * read_mems_allowed_begin(). If at least one node remains unchanged and
  876. * tsk does not have a mempolicy, then an empty nodemask will not be
  877. * possible when mems_allowed is larger than a word.
  878. */
  879. need_loop = task_has_mempolicy(tsk) ||
  880. !nodes_intersects(*newmems, tsk->mems_allowed);
  881. if (need_loop) {
  882. local_irq_disable();
  883. write_seqcount_begin(&tsk->mems_allowed_seq);
  884. }
  885. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  886. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  887. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  888. tsk->mems_allowed = *newmems;
  889. if (need_loop) {
  890. write_seqcount_end(&tsk->mems_allowed_seq);
  891. local_irq_enable();
  892. }
  893. task_unlock(tsk);
  894. }
  895. static void *cpuset_being_rebound;
  896. /**
  897. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  898. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  899. *
  900. * Iterate through each task of @cs updating its mems_allowed to the
  901. * effective cpuset's. As this function is called with cpuset_mutex held,
  902. * cpuset membership stays stable.
  903. */
  904. static void update_tasks_nodemask(struct cpuset *cs)
  905. {
  906. static nodemask_t newmems; /* protected by cpuset_mutex */
  907. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  908. struct css_task_iter it;
  909. struct task_struct *task;
  910. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  911. guarantee_online_mems(mems_cs, &newmems);
  912. /*
  913. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  914. * take while holding tasklist_lock. Forks can happen - the
  915. * mpol_dup() cpuset_being_rebound check will catch such forks,
  916. * and rebind their vma mempolicies too. Because we still hold
  917. * the global cpuset_mutex, we know that no other rebind effort
  918. * will be contending for the global variable cpuset_being_rebound.
  919. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  920. * is idempotent. Also migrate pages in each mm to new nodes.
  921. */
  922. css_task_iter_start(&cs->css, &it);
  923. while ((task = css_task_iter_next(&it))) {
  924. struct mm_struct *mm;
  925. bool migrate;
  926. cpuset_change_task_nodemask(task, &newmems);
  927. mm = get_task_mm(task);
  928. if (!mm)
  929. continue;
  930. migrate = is_memory_migrate(cs);
  931. mpol_rebind_mm(mm, &cs->mems_allowed);
  932. if (migrate)
  933. cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
  934. mmput(mm);
  935. }
  936. css_task_iter_end(&it);
  937. /*
  938. * All the tasks' nodemasks have been updated, update
  939. * cs->old_mems_allowed.
  940. */
  941. cs->old_mems_allowed = newmems;
  942. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  943. cpuset_being_rebound = NULL;
  944. }
  945. /*
  946. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  947. * @cs: the root cpuset of the hierarchy
  948. * @update_root: update the root cpuset or not?
  949. *
  950. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  951. * which take on nodemask of @root_cs.
  952. *
  953. * Called with cpuset_mutex held
  954. */
  955. static void update_tasks_nodemask_hier(struct cpuset *root_cs, bool update_root)
  956. {
  957. struct cpuset *cp;
  958. struct cgroup_subsys_state *pos_css;
  959. rcu_read_lock();
  960. cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
  961. if (cp == root_cs) {
  962. if (!update_root)
  963. continue;
  964. } else {
  965. /* skip the whole subtree if @cp have some CPU */
  966. if (!nodes_empty(cp->mems_allowed)) {
  967. pos_css = css_rightmost_descendant(pos_css);
  968. continue;
  969. }
  970. }
  971. if (!css_tryget(&cp->css))
  972. continue;
  973. rcu_read_unlock();
  974. update_tasks_nodemask(cp);
  975. rcu_read_lock();
  976. css_put(&cp->css);
  977. }
  978. rcu_read_unlock();
  979. }
  980. /*
  981. * Handle user request to change the 'mems' memory placement
  982. * of a cpuset. Needs to validate the request, update the
  983. * cpusets mems_allowed, and for each task in the cpuset,
  984. * update mems_allowed and rebind task's mempolicy and any vma
  985. * mempolicies and if the cpuset is marked 'memory_migrate',
  986. * migrate the tasks pages to the new memory.
  987. *
  988. * Call with cpuset_mutex held. May take callback_mutex during call.
  989. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  990. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  991. * their mempolicies to the cpusets new mems_allowed.
  992. */
  993. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  994. const char *buf)
  995. {
  996. int retval;
  997. /*
  998. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  999. * it's read-only
  1000. */
  1001. if (cs == &top_cpuset) {
  1002. retval = -EACCES;
  1003. goto done;
  1004. }
  1005. /*
  1006. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1007. * Since nodelist_parse() fails on an empty mask, we special case
  1008. * that parsing. The validate_change() call ensures that cpusets
  1009. * with tasks have memory.
  1010. */
  1011. if (!*buf) {
  1012. nodes_clear(trialcs->mems_allowed);
  1013. } else {
  1014. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1015. if (retval < 0)
  1016. goto done;
  1017. if (!nodes_subset(trialcs->mems_allowed,
  1018. node_states[N_MEMORY])) {
  1019. retval = -EINVAL;
  1020. goto done;
  1021. }
  1022. }
  1023. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1024. retval = 0; /* Too easy - nothing to do */
  1025. goto done;
  1026. }
  1027. retval = validate_change(cs, trialcs);
  1028. if (retval < 0)
  1029. goto done;
  1030. mutex_lock(&callback_mutex);
  1031. cs->mems_allowed = trialcs->mems_allowed;
  1032. mutex_unlock(&callback_mutex);
  1033. update_tasks_nodemask_hier(cs, true);
  1034. done:
  1035. return retval;
  1036. }
  1037. int current_cpuset_is_being_rebound(void)
  1038. {
  1039. return task_cs(current) == cpuset_being_rebound;
  1040. }
  1041. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1042. {
  1043. #ifdef CONFIG_SMP
  1044. if (val < -1 || val >= sched_domain_level_max)
  1045. return -EINVAL;
  1046. #endif
  1047. if (val != cs->relax_domain_level) {
  1048. cs->relax_domain_level = val;
  1049. if (!cpumask_empty(cs->cpus_allowed) &&
  1050. is_sched_load_balance(cs))
  1051. rebuild_sched_domains_locked();
  1052. }
  1053. return 0;
  1054. }
  1055. /**
  1056. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1057. * @cs: the cpuset in which each task's spread flags needs to be changed
  1058. *
  1059. * Iterate through each task of @cs updating its spread flags. As this
  1060. * function is called with cpuset_mutex held, cpuset membership stays
  1061. * stable.
  1062. */
  1063. static void update_tasks_flags(struct cpuset *cs)
  1064. {
  1065. struct css_task_iter it;
  1066. struct task_struct *task;
  1067. css_task_iter_start(&cs->css, &it);
  1068. while ((task = css_task_iter_next(&it)))
  1069. cpuset_update_task_spread_flag(cs, task);
  1070. css_task_iter_end(&it);
  1071. }
  1072. /*
  1073. * update_flag - read a 0 or a 1 in a file and update associated flag
  1074. * bit: the bit to update (see cpuset_flagbits_t)
  1075. * cs: the cpuset to update
  1076. * turning_on: whether the flag is being set or cleared
  1077. *
  1078. * Call with cpuset_mutex held.
  1079. */
  1080. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1081. int turning_on)
  1082. {
  1083. struct cpuset *trialcs;
  1084. int balance_flag_changed;
  1085. int spread_flag_changed;
  1086. int err;
  1087. trialcs = alloc_trial_cpuset(cs);
  1088. if (!trialcs)
  1089. return -ENOMEM;
  1090. if (turning_on)
  1091. set_bit(bit, &trialcs->flags);
  1092. else
  1093. clear_bit(bit, &trialcs->flags);
  1094. err = validate_change(cs, trialcs);
  1095. if (err < 0)
  1096. goto out;
  1097. balance_flag_changed = (is_sched_load_balance(cs) !=
  1098. is_sched_load_balance(trialcs));
  1099. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1100. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1101. mutex_lock(&callback_mutex);
  1102. cs->flags = trialcs->flags;
  1103. mutex_unlock(&callback_mutex);
  1104. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1105. rebuild_sched_domains_locked();
  1106. if (spread_flag_changed)
  1107. update_tasks_flags(cs);
  1108. out:
  1109. free_trial_cpuset(trialcs);
  1110. return err;
  1111. }
  1112. /*
  1113. * Frequency meter - How fast is some event occurring?
  1114. *
  1115. * These routines manage a digitally filtered, constant time based,
  1116. * event frequency meter. There are four routines:
  1117. * fmeter_init() - initialize a frequency meter.
  1118. * fmeter_markevent() - called each time the event happens.
  1119. * fmeter_getrate() - returns the recent rate of such events.
  1120. * fmeter_update() - internal routine used to update fmeter.
  1121. *
  1122. * A common data structure is passed to each of these routines,
  1123. * which is used to keep track of the state required to manage the
  1124. * frequency meter and its digital filter.
  1125. *
  1126. * The filter works on the number of events marked per unit time.
  1127. * The filter is single-pole low-pass recursive (IIR). The time unit
  1128. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1129. * simulate 3 decimal digits of precision (multiplied by 1000).
  1130. *
  1131. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1132. * has a half-life of 10 seconds, meaning that if the events quit
  1133. * happening, then the rate returned from the fmeter_getrate()
  1134. * will be cut in half each 10 seconds, until it converges to zero.
  1135. *
  1136. * It is not worth doing a real infinitely recursive filter. If more
  1137. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1138. * just compute FM_MAXTICKS ticks worth, by which point the level
  1139. * will be stable.
  1140. *
  1141. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1142. * arithmetic overflow in the fmeter_update() routine.
  1143. *
  1144. * Given the simple 32 bit integer arithmetic used, this meter works
  1145. * best for reporting rates between one per millisecond (msec) and
  1146. * one per 32 (approx) seconds. At constant rates faster than one
  1147. * per msec it maxes out at values just under 1,000,000. At constant
  1148. * rates between one per msec, and one per second it will stabilize
  1149. * to a value N*1000, where N is the rate of events per second.
  1150. * At constant rates between one per second and one per 32 seconds,
  1151. * it will be choppy, moving up on the seconds that have an event,
  1152. * and then decaying until the next event. At rates slower than
  1153. * about one in 32 seconds, it decays all the way back to zero between
  1154. * each event.
  1155. */
  1156. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1157. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1158. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1159. #define FM_SCALE 1000 /* faux fixed point scale */
  1160. /* Initialize a frequency meter */
  1161. static void fmeter_init(struct fmeter *fmp)
  1162. {
  1163. fmp->cnt = 0;
  1164. fmp->val = 0;
  1165. fmp->time = 0;
  1166. spin_lock_init(&fmp->lock);
  1167. }
  1168. /* Internal meter update - process cnt events and update value */
  1169. static void fmeter_update(struct fmeter *fmp)
  1170. {
  1171. time_t now = get_seconds();
  1172. time_t ticks = now - fmp->time;
  1173. if (ticks == 0)
  1174. return;
  1175. ticks = min(FM_MAXTICKS, ticks);
  1176. while (ticks-- > 0)
  1177. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1178. fmp->time = now;
  1179. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1180. fmp->cnt = 0;
  1181. }
  1182. /* Process any previous ticks, then bump cnt by one (times scale). */
  1183. static void fmeter_markevent(struct fmeter *fmp)
  1184. {
  1185. spin_lock(&fmp->lock);
  1186. fmeter_update(fmp);
  1187. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1188. spin_unlock(&fmp->lock);
  1189. }
  1190. /* Process any previous ticks, then return current value. */
  1191. static int fmeter_getrate(struct fmeter *fmp)
  1192. {
  1193. int val;
  1194. spin_lock(&fmp->lock);
  1195. fmeter_update(fmp);
  1196. val = fmp->val;
  1197. spin_unlock(&fmp->lock);
  1198. return val;
  1199. }
  1200. static struct cpuset *cpuset_attach_old_cs;
  1201. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1202. static int cpuset_can_attach(struct cgroup_subsys_state *css,
  1203. struct cgroup_taskset *tset)
  1204. {
  1205. struct cpuset *cs = css_cs(css);
  1206. struct task_struct *task;
  1207. int ret;
  1208. /* used later by cpuset_attach() */
  1209. cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset));
  1210. mutex_lock(&cpuset_mutex);
  1211. /*
  1212. * We allow to move tasks into an empty cpuset if sane_behavior
  1213. * flag is set.
  1214. */
  1215. ret = -ENOSPC;
  1216. if (!cgroup_sane_behavior(css->cgroup) &&
  1217. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1218. goto out_unlock;
  1219. cgroup_taskset_for_each(task, tset) {
  1220. /*
  1221. * Kthreads which disallow setaffinity shouldn't be moved
  1222. * to a new cpuset; we don't want to change their cpu
  1223. * affinity and isolating such threads by their set of
  1224. * allowed nodes is unnecessary. Thus, cpusets are not
  1225. * applicable for such threads. This prevents checking for
  1226. * success of set_cpus_allowed_ptr() on all attached tasks
  1227. * before cpus_allowed may be changed.
  1228. */
  1229. ret = -EINVAL;
  1230. if (task->flags & PF_NO_SETAFFINITY)
  1231. goto out_unlock;
  1232. ret = security_task_setscheduler(task);
  1233. if (ret)
  1234. goto out_unlock;
  1235. }
  1236. /*
  1237. * Mark attach is in progress. This makes validate_change() fail
  1238. * changes which zero cpus/mems_allowed.
  1239. */
  1240. cs->attach_in_progress++;
  1241. ret = 0;
  1242. out_unlock:
  1243. mutex_unlock(&cpuset_mutex);
  1244. return ret;
  1245. }
  1246. static void cpuset_cancel_attach(struct cgroup_subsys_state *css,
  1247. struct cgroup_taskset *tset)
  1248. {
  1249. mutex_lock(&cpuset_mutex);
  1250. css_cs(css)->attach_in_progress--;
  1251. mutex_unlock(&cpuset_mutex);
  1252. }
  1253. /*
  1254. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1255. * but we can't allocate it dynamically there. Define it global and
  1256. * allocate from cpuset_init().
  1257. */
  1258. static cpumask_var_t cpus_attach;
  1259. static void cpuset_attach(struct cgroup_subsys_state *css,
  1260. struct cgroup_taskset *tset)
  1261. {
  1262. /* static buf protected by cpuset_mutex */
  1263. static nodemask_t cpuset_attach_nodemask_to;
  1264. struct mm_struct *mm;
  1265. struct task_struct *task;
  1266. struct task_struct *leader = cgroup_taskset_first(tset);
  1267. struct cpuset *cs = css_cs(css);
  1268. struct cpuset *oldcs = cpuset_attach_old_cs;
  1269. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1270. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1271. mutex_lock(&cpuset_mutex);
  1272. /* prepare for attach */
  1273. if (cs == &top_cpuset)
  1274. cpumask_copy(cpus_attach, cpu_possible_mask);
  1275. else
  1276. guarantee_online_cpus(cpus_cs, cpus_attach);
  1277. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1278. cgroup_taskset_for_each(task, tset) {
  1279. /*
  1280. * can_attach beforehand should guarantee that this doesn't
  1281. * fail. TODO: have a better way to handle failure here
  1282. */
  1283. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1284. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1285. cpuset_update_task_spread_flag(cs, task);
  1286. }
  1287. /*
  1288. * Change mm, possibly for multiple threads in a threadgroup. This is
  1289. * expensive and may sleep.
  1290. */
  1291. cpuset_attach_nodemask_to = cs->mems_allowed;
  1292. mm = get_task_mm(leader);
  1293. if (mm) {
  1294. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1295. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1296. /*
  1297. * old_mems_allowed is the same with mems_allowed here, except
  1298. * if this task is being moved automatically due to hotplug.
  1299. * In that case @mems_allowed has been updated and is empty,
  1300. * so @old_mems_allowed is the right nodesets that we migrate
  1301. * mm from.
  1302. */
  1303. if (is_memory_migrate(cs)) {
  1304. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1305. &cpuset_attach_nodemask_to);
  1306. }
  1307. mmput(mm);
  1308. }
  1309. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1310. cs->attach_in_progress--;
  1311. if (!cs->attach_in_progress)
  1312. wake_up(&cpuset_attach_wq);
  1313. mutex_unlock(&cpuset_mutex);
  1314. }
  1315. /* The various types of files and directories in a cpuset file system */
  1316. typedef enum {
  1317. FILE_MEMORY_MIGRATE,
  1318. FILE_CPULIST,
  1319. FILE_MEMLIST,
  1320. FILE_CPU_EXCLUSIVE,
  1321. FILE_MEM_EXCLUSIVE,
  1322. FILE_MEM_HARDWALL,
  1323. FILE_SCHED_LOAD_BALANCE,
  1324. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1325. FILE_MEMORY_PRESSURE_ENABLED,
  1326. FILE_MEMORY_PRESSURE,
  1327. FILE_SPREAD_PAGE,
  1328. FILE_SPREAD_SLAB,
  1329. } cpuset_filetype_t;
  1330. static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
  1331. u64 val)
  1332. {
  1333. struct cpuset *cs = css_cs(css);
  1334. cpuset_filetype_t type = cft->private;
  1335. int retval = 0;
  1336. mutex_lock(&cpuset_mutex);
  1337. if (!is_cpuset_online(cs)) {
  1338. retval = -ENODEV;
  1339. goto out_unlock;
  1340. }
  1341. switch (type) {
  1342. case FILE_CPU_EXCLUSIVE:
  1343. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1344. break;
  1345. case FILE_MEM_EXCLUSIVE:
  1346. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1347. break;
  1348. case FILE_MEM_HARDWALL:
  1349. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1350. break;
  1351. case FILE_SCHED_LOAD_BALANCE:
  1352. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1353. break;
  1354. case FILE_MEMORY_MIGRATE:
  1355. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1356. break;
  1357. case FILE_MEMORY_PRESSURE_ENABLED:
  1358. cpuset_memory_pressure_enabled = !!val;
  1359. break;
  1360. case FILE_MEMORY_PRESSURE:
  1361. retval = -EACCES;
  1362. break;
  1363. case FILE_SPREAD_PAGE:
  1364. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1365. break;
  1366. case FILE_SPREAD_SLAB:
  1367. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1368. break;
  1369. default:
  1370. retval = -EINVAL;
  1371. break;
  1372. }
  1373. out_unlock:
  1374. mutex_unlock(&cpuset_mutex);
  1375. return retval;
  1376. }
  1377. static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
  1378. s64 val)
  1379. {
  1380. struct cpuset *cs = css_cs(css);
  1381. cpuset_filetype_t type = cft->private;
  1382. int retval = -ENODEV;
  1383. mutex_lock(&cpuset_mutex);
  1384. if (!is_cpuset_online(cs))
  1385. goto out_unlock;
  1386. switch (type) {
  1387. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1388. retval = update_relax_domain_level(cs, val);
  1389. break;
  1390. default:
  1391. retval = -EINVAL;
  1392. break;
  1393. }
  1394. out_unlock:
  1395. mutex_unlock(&cpuset_mutex);
  1396. return retval;
  1397. }
  1398. /*
  1399. * Common handling for a write to a "cpus" or "mems" file.
  1400. */
  1401. static int cpuset_write_resmask(struct cgroup_subsys_state *css,
  1402. struct cftype *cft, char *buf)
  1403. {
  1404. struct cpuset *cs = css_cs(css);
  1405. struct cpuset *trialcs;
  1406. int retval = -ENODEV;
  1407. /*
  1408. * CPU or memory hotunplug may leave @cs w/o any execution
  1409. * resources, in which case the hotplug code asynchronously updates
  1410. * configuration and transfers all tasks to the nearest ancestor
  1411. * which can execute.
  1412. *
  1413. * As writes to "cpus" or "mems" may restore @cs's execution
  1414. * resources, wait for the previously scheduled operations before
  1415. * proceeding, so that we don't end up keep removing tasks added
  1416. * after execution capability is restored.
  1417. */
  1418. flush_work(&cpuset_hotplug_work);
  1419. mutex_lock(&cpuset_mutex);
  1420. if (!is_cpuset_online(cs))
  1421. goto out_unlock;
  1422. trialcs = alloc_trial_cpuset(cs);
  1423. if (!trialcs) {
  1424. retval = -ENOMEM;
  1425. goto out_unlock;
  1426. }
  1427. switch (cft->private) {
  1428. case FILE_CPULIST:
  1429. retval = update_cpumask(cs, trialcs, buf);
  1430. break;
  1431. case FILE_MEMLIST:
  1432. retval = update_nodemask(cs, trialcs, buf);
  1433. break;
  1434. default:
  1435. retval = -EINVAL;
  1436. break;
  1437. }
  1438. free_trial_cpuset(trialcs);
  1439. out_unlock:
  1440. mutex_unlock(&cpuset_mutex);
  1441. return retval;
  1442. }
  1443. /*
  1444. * These ascii lists should be read in a single call, by using a user
  1445. * buffer large enough to hold the entire map. If read in smaller
  1446. * chunks, there is no guarantee of atomicity. Since the display format
  1447. * used, list of ranges of sequential numbers, is variable length,
  1448. * and since these maps can change value dynamically, one could read
  1449. * gibberish by doing partial reads while a list was changing.
  1450. */
  1451. static int cpuset_common_seq_show(struct seq_file *sf, void *v)
  1452. {
  1453. struct cpuset *cs = css_cs(seq_css(sf));
  1454. cpuset_filetype_t type = seq_cft(sf)->private;
  1455. ssize_t count;
  1456. char *buf, *s;
  1457. int ret = 0;
  1458. count = seq_get_buf(sf, &buf);
  1459. s = buf;
  1460. mutex_lock(&callback_mutex);
  1461. switch (type) {
  1462. case FILE_CPULIST:
  1463. s += cpulist_scnprintf(s, count, cs->cpus_allowed);
  1464. break;
  1465. case FILE_MEMLIST:
  1466. s += nodelist_scnprintf(s, count, cs->mems_allowed);
  1467. break;
  1468. default:
  1469. ret = -EINVAL;
  1470. goto out_unlock;
  1471. }
  1472. if (s < buf + count - 1) {
  1473. *s++ = '\n';
  1474. seq_commit(sf, s - buf);
  1475. } else {
  1476. seq_commit(sf, -1);
  1477. }
  1478. out_unlock:
  1479. mutex_unlock(&callback_mutex);
  1480. return ret;
  1481. }
  1482. static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
  1483. {
  1484. struct cpuset *cs = css_cs(css);
  1485. cpuset_filetype_t type = cft->private;
  1486. switch (type) {
  1487. case FILE_CPU_EXCLUSIVE:
  1488. return is_cpu_exclusive(cs);
  1489. case FILE_MEM_EXCLUSIVE:
  1490. return is_mem_exclusive(cs);
  1491. case FILE_MEM_HARDWALL:
  1492. return is_mem_hardwall(cs);
  1493. case FILE_SCHED_LOAD_BALANCE:
  1494. return is_sched_load_balance(cs);
  1495. case FILE_MEMORY_MIGRATE:
  1496. return is_memory_migrate(cs);
  1497. case FILE_MEMORY_PRESSURE_ENABLED:
  1498. return cpuset_memory_pressure_enabled;
  1499. case FILE_MEMORY_PRESSURE:
  1500. return fmeter_getrate(&cs->fmeter);
  1501. case FILE_SPREAD_PAGE:
  1502. return is_spread_page(cs);
  1503. case FILE_SPREAD_SLAB:
  1504. return is_spread_slab(cs);
  1505. default:
  1506. BUG();
  1507. }
  1508. /* Unreachable but makes gcc happy */
  1509. return 0;
  1510. }
  1511. static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
  1512. {
  1513. struct cpuset *cs = css_cs(css);
  1514. cpuset_filetype_t type = cft->private;
  1515. switch (type) {
  1516. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1517. return cs->relax_domain_level;
  1518. default:
  1519. BUG();
  1520. }
  1521. /* Unrechable but makes gcc happy */
  1522. return 0;
  1523. }
  1524. /*
  1525. * for the common functions, 'private' gives the type of file
  1526. */
  1527. static struct cftype files[] = {
  1528. {
  1529. .name = "cpus",
  1530. .seq_show = cpuset_common_seq_show,
  1531. .write_string = cpuset_write_resmask,
  1532. .max_write_len = (100U + 6 * NR_CPUS),
  1533. .private = FILE_CPULIST,
  1534. },
  1535. {
  1536. .name = "mems",
  1537. .seq_show = cpuset_common_seq_show,
  1538. .write_string = cpuset_write_resmask,
  1539. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1540. .private = FILE_MEMLIST,
  1541. },
  1542. {
  1543. .name = "cpu_exclusive",
  1544. .read_u64 = cpuset_read_u64,
  1545. .write_u64 = cpuset_write_u64,
  1546. .private = FILE_CPU_EXCLUSIVE,
  1547. },
  1548. {
  1549. .name = "mem_exclusive",
  1550. .read_u64 = cpuset_read_u64,
  1551. .write_u64 = cpuset_write_u64,
  1552. .private = FILE_MEM_EXCLUSIVE,
  1553. },
  1554. {
  1555. .name = "mem_hardwall",
  1556. .read_u64 = cpuset_read_u64,
  1557. .write_u64 = cpuset_write_u64,
  1558. .private = FILE_MEM_HARDWALL,
  1559. },
  1560. {
  1561. .name = "sched_load_balance",
  1562. .read_u64 = cpuset_read_u64,
  1563. .write_u64 = cpuset_write_u64,
  1564. .private = FILE_SCHED_LOAD_BALANCE,
  1565. },
  1566. {
  1567. .name = "sched_relax_domain_level",
  1568. .read_s64 = cpuset_read_s64,
  1569. .write_s64 = cpuset_write_s64,
  1570. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1571. },
  1572. {
  1573. .name = "memory_migrate",
  1574. .read_u64 = cpuset_read_u64,
  1575. .write_u64 = cpuset_write_u64,
  1576. .private = FILE_MEMORY_MIGRATE,
  1577. },
  1578. {
  1579. .name = "memory_pressure",
  1580. .read_u64 = cpuset_read_u64,
  1581. .write_u64 = cpuset_write_u64,
  1582. .private = FILE_MEMORY_PRESSURE,
  1583. .mode = S_IRUGO,
  1584. },
  1585. {
  1586. .name = "memory_spread_page",
  1587. .read_u64 = cpuset_read_u64,
  1588. .write_u64 = cpuset_write_u64,
  1589. .private = FILE_SPREAD_PAGE,
  1590. },
  1591. {
  1592. .name = "memory_spread_slab",
  1593. .read_u64 = cpuset_read_u64,
  1594. .write_u64 = cpuset_write_u64,
  1595. .private = FILE_SPREAD_SLAB,
  1596. },
  1597. {
  1598. .name = "memory_pressure_enabled",
  1599. .flags = CFTYPE_ONLY_ON_ROOT,
  1600. .read_u64 = cpuset_read_u64,
  1601. .write_u64 = cpuset_write_u64,
  1602. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1603. },
  1604. { } /* terminate */
  1605. };
  1606. /*
  1607. * cpuset_css_alloc - allocate a cpuset css
  1608. * cgrp: control group that the new cpuset will be part of
  1609. */
  1610. static struct cgroup_subsys_state *
  1611. cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
  1612. {
  1613. struct cpuset *cs;
  1614. if (!parent_css)
  1615. return &top_cpuset.css;
  1616. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1617. if (!cs)
  1618. return ERR_PTR(-ENOMEM);
  1619. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1620. kfree(cs);
  1621. return ERR_PTR(-ENOMEM);
  1622. }
  1623. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1624. cpumask_clear(cs->cpus_allowed);
  1625. nodes_clear(cs->mems_allowed);
  1626. fmeter_init(&cs->fmeter);
  1627. cs->relax_domain_level = -1;
  1628. return &cs->css;
  1629. }
  1630. static int cpuset_css_online(struct cgroup_subsys_state *css)
  1631. {
  1632. struct cpuset *cs = css_cs(css);
  1633. struct cpuset *parent = parent_cs(cs);
  1634. struct cpuset *tmp_cs;
  1635. struct cgroup_subsys_state *pos_css;
  1636. if (!parent)
  1637. return 0;
  1638. mutex_lock(&cpuset_mutex);
  1639. set_bit(CS_ONLINE, &cs->flags);
  1640. if (is_spread_page(parent))
  1641. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1642. if (is_spread_slab(parent))
  1643. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1644. cpuset_inc();
  1645. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
  1646. goto out_unlock;
  1647. /*
  1648. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1649. * set. This flag handling is implemented in cgroup core for
  1650. * histrical reasons - the flag may be specified during mount.
  1651. *
  1652. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1653. * refuse to clone the configuration - thereby refusing the task to
  1654. * be entered, and as a result refusing the sys_unshare() or
  1655. * clone() which initiated it. If this becomes a problem for some
  1656. * users who wish to allow that scenario, then this could be
  1657. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1658. * (and likewise for mems) to the new cgroup.
  1659. */
  1660. rcu_read_lock();
  1661. cpuset_for_each_child(tmp_cs, pos_css, parent) {
  1662. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1663. rcu_read_unlock();
  1664. goto out_unlock;
  1665. }
  1666. }
  1667. rcu_read_unlock();
  1668. mutex_lock(&callback_mutex);
  1669. cs->mems_allowed = parent->mems_allowed;
  1670. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1671. mutex_unlock(&callback_mutex);
  1672. out_unlock:
  1673. mutex_unlock(&cpuset_mutex);
  1674. return 0;
  1675. }
  1676. /*
  1677. * If the cpuset being removed has its flag 'sched_load_balance'
  1678. * enabled, then simulate turning sched_load_balance off, which
  1679. * will call rebuild_sched_domains_locked().
  1680. */
  1681. static void cpuset_css_offline(struct cgroup_subsys_state *css)
  1682. {
  1683. struct cpuset *cs = css_cs(css);
  1684. mutex_lock(&cpuset_mutex);
  1685. if (is_sched_load_balance(cs))
  1686. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1687. cpuset_dec();
  1688. clear_bit(CS_ONLINE, &cs->flags);
  1689. mutex_unlock(&cpuset_mutex);
  1690. }
  1691. static void cpuset_css_free(struct cgroup_subsys_state *css)
  1692. {
  1693. struct cpuset *cs = css_cs(css);
  1694. free_cpumask_var(cs->cpus_allowed);
  1695. kfree(cs);
  1696. }
  1697. struct cgroup_subsys cpuset_cgrp_subsys = {
  1698. .css_alloc = cpuset_css_alloc,
  1699. .css_online = cpuset_css_online,
  1700. .css_offline = cpuset_css_offline,
  1701. .css_free = cpuset_css_free,
  1702. .can_attach = cpuset_can_attach,
  1703. .cancel_attach = cpuset_cancel_attach,
  1704. .attach = cpuset_attach,
  1705. .base_cftypes = files,
  1706. .early_init = 1,
  1707. };
  1708. /**
  1709. * cpuset_init - initialize cpusets at system boot
  1710. *
  1711. * Description: Initialize top_cpuset and the cpuset internal file system,
  1712. **/
  1713. int __init cpuset_init(void)
  1714. {
  1715. int err = 0;
  1716. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1717. BUG();
  1718. cpumask_setall(top_cpuset.cpus_allowed);
  1719. nodes_setall(top_cpuset.mems_allowed);
  1720. fmeter_init(&top_cpuset.fmeter);
  1721. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1722. top_cpuset.relax_domain_level = -1;
  1723. err = register_filesystem(&cpuset_fs_type);
  1724. if (err < 0)
  1725. return err;
  1726. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1727. BUG();
  1728. return 0;
  1729. }
  1730. /*
  1731. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1732. * or memory nodes, we need to walk over the cpuset hierarchy,
  1733. * removing that CPU or node from all cpusets. If this removes the
  1734. * last CPU or node from a cpuset, then move the tasks in the empty
  1735. * cpuset to its next-highest non-empty parent.
  1736. */
  1737. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1738. {
  1739. struct cpuset *parent;
  1740. /*
  1741. * Find its next-highest non-empty parent, (top cpuset
  1742. * has online cpus, so can't be empty).
  1743. */
  1744. parent = parent_cs(cs);
  1745. while (cpumask_empty(parent->cpus_allowed) ||
  1746. nodes_empty(parent->mems_allowed))
  1747. parent = parent_cs(parent);
  1748. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1749. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset ");
  1750. pr_cont_cgroup_name(cs->css.cgroup);
  1751. pr_cont("\n");
  1752. }
  1753. }
  1754. /**
  1755. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1756. * @cs: cpuset in interest
  1757. *
  1758. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1759. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1760. * all its tasks are moved to the nearest ancestor with both resources.
  1761. */
  1762. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1763. {
  1764. static cpumask_t off_cpus;
  1765. static nodemask_t off_mems;
  1766. bool is_empty;
  1767. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1768. retry:
  1769. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1770. mutex_lock(&cpuset_mutex);
  1771. /*
  1772. * We have raced with task attaching. We wait until attaching
  1773. * is finished, so we won't attach a task to an empty cpuset.
  1774. */
  1775. if (cs->attach_in_progress) {
  1776. mutex_unlock(&cpuset_mutex);
  1777. goto retry;
  1778. }
  1779. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1780. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1781. mutex_lock(&callback_mutex);
  1782. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1783. mutex_unlock(&callback_mutex);
  1784. /*
  1785. * If sane_behavior flag is set, we need to update tasks' cpumask
  1786. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1787. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1788. * the tasks in it will be migrated to an ancestor.
  1789. */
  1790. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1791. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1792. update_tasks_cpumask(cs);
  1793. mutex_lock(&callback_mutex);
  1794. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1795. mutex_unlock(&callback_mutex);
  1796. /*
  1797. * If sane_behavior flag is set, we need to update tasks' nodemask
  1798. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1799. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1800. * the tasks in it will be migratd to an ancestor.
  1801. */
  1802. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1803. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1804. update_tasks_nodemask(cs);
  1805. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1806. nodes_empty(cs->mems_allowed);
  1807. mutex_unlock(&cpuset_mutex);
  1808. /*
  1809. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1810. *
  1811. * Otherwise move tasks to the nearest ancestor with execution
  1812. * resources. This is full cgroup operation which will
  1813. * also call back into cpuset. Should be done outside any lock.
  1814. */
  1815. if (!sane && is_empty)
  1816. remove_tasks_in_empty_cpuset(cs);
  1817. }
  1818. /**
  1819. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1820. *
  1821. * This function is called after either CPU or memory configuration has
  1822. * changed and updates cpuset accordingly. The top_cpuset is always
  1823. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1824. * order to make cpusets transparent (of no affect) on systems that are
  1825. * actively using CPU hotplug but making no active use of cpusets.
  1826. *
  1827. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1828. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1829. * all descendants.
  1830. *
  1831. * Note that CPU offlining during suspend is ignored. We don't modify
  1832. * cpusets across suspend/resume cycles at all.
  1833. */
  1834. static void cpuset_hotplug_workfn(struct work_struct *work)
  1835. {
  1836. static cpumask_t new_cpus;
  1837. static nodemask_t new_mems;
  1838. bool cpus_updated, mems_updated;
  1839. mutex_lock(&cpuset_mutex);
  1840. /* fetch the available cpus/mems and find out which changed how */
  1841. cpumask_copy(&new_cpus, cpu_active_mask);
  1842. new_mems = node_states[N_MEMORY];
  1843. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1844. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1845. /* synchronize cpus_allowed to cpu_active_mask */
  1846. if (cpus_updated) {
  1847. mutex_lock(&callback_mutex);
  1848. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1849. mutex_unlock(&callback_mutex);
  1850. /* we don't mess with cpumasks of tasks in top_cpuset */
  1851. }
  1852. /* synchronize mems_allowed to N_MEMORY */
  1853. if (mems_updated) {
  1854. mutex_lock(&callback_mutex);
  1855. top_cpuset.mems_allowed = new_mems;
  1856. mutex_unlock(&callback_mutex);
  1857. update_tasks_nodemask(&top_cpuset);
  1858. }
  1859. mutex_unlock(&cpuset_mutex);
  1860. /* if cpus or mems changed, we need to propagate to descendants */
  1861. if (cpus_updated || mems_updated) {
  1862. struct cpuset *cs;
  1863. struct cgroup_subsys_state *pos_css;
  1864. rcu_read_lock();
  1865. cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
  1866. if (cs == &top_cpuset || !css_tryget(&cs->css))
  1867. continue;
  1868. rcu_read_unlock();
  1869. cpuset_hotplug_update_tasks(cs);
  1870. rcu_read_lock();
  1871. css_put(&cs->css);
  1872. }
  1873. rcu_read_unlock();
  1874. }
  1875. /* rebuild sched domains if cpus_allowed has changed */
  1876. if (cpus_updated)
  1877. rebuild_sched_domains();
  1878. }
  1879. void cpuset_update_active_cpus(bool cpu_online)
  1880. {
  1881. /*
  1882. * We're inside cpu hotplug critical region which usually nests
  1883. * inside cgroup synchronization. Bounce actual hotplug processing
  1884. * to a work item to avoid reverse locking order.
  1885. *
  1886. * We still need to do partition_sched_domains() synchronously;
  1887. * otherwise, the scheduler will get confused and put tasks to the
  1888. * dead CPU. Fall back to the default single domain.
  1889. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1890. */
  1891. partition_sched_domains(1, NULL, NULL);
  1892. schedule_work(&cpuset_hotplug_work);
  1893. }
  1894. /*
  1895. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1896. * Call this routine anytime after node_states[N_MEMORY] changes.
  1897. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1898. */
  1899. static int cpuset_track_online_nodes(struct notifier_block *self,
  1900. unsigned long action, void *arg)
  1901. {
  1902. schedule_work(&cpuset_hotplug_work);
  1903. return NOTIFY_OK;
  1904. }
  1905. static struct notifier_block cpuset_track_online_nodes_nb = {
  1906. .notifier_call = cpuset_track_online_nodes,
  1907. .priority = 10, /* ??! */
  1908. };
  1909. /**
  1910. * cpuset_init_smp - initialize cpus_allowed
  1911. *
  1912. * Description: Finish top cpuset after cpu, node maps are initialized
  1913. */
  1914. void __init cpuset_init_smp(void)
  1915. {
  1916. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  1917. top_cpuset.mems_allowed = node_states[N_MEMORY];
  1918. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  1919. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  1920. }
  1921. /**
  1922. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1923. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1924. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1925. *
  1926. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1927. * attached to the specified @tsk. Guaranteed to return some non-empty
  1928. * subset of cpu_online_mask, even if this means going outside the
  1929. * tasks cpuset.
  1930. **/
  1931. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1932. {
  1933. struct cpuset *cpus_cs;
  1934. mutex_lock(&callback_mutex);
  1935. rcu_read_lock();
  1936. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  1937. guarantee_online_cpus(cpus_cs, pmask);
  1938. rcu_read_unlock();
  1939. mutex_unlock(&callback_mutex);
  1940. }
  1941. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  1942. {
  1943. struct cpuset *cpus_cs;
  1944. rcu_read_lock();
  1945. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  1946. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  1947. rcu_read_unlock();
  1948. /*
  1949. * We own tsk->cpus_allowed, nobody can change it under us.
  1950. *
  1951. * But we used cs && cs->cpus_allowed lockless and thus can
  1952. * race with cgroup_attach_task() or update_cpumask() and get
  1953. * the wrong tsk->cpus_allowed. However, both cases imply the
  1954. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  1955. * which takes task_rq_lock().
  1956. *
  1957. * If we are called after it dropped the lock we must see all
  1958. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  1959. * set any mask even if it is not right from task_cs() pov,
  1960. * the pending set_cpus_allowed_ptr() will fix things.
  1961. *
  1962. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  1963. * if required.
  1964. */
  1965. }
  1966. void cpuset_init_current_mems_allowed(void)
  1967. {
  1968. nodes_setall(current->mems_allowed);
  1969. }
  1970. /**
  1971. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1972. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1973. *
  1974. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1975. * attached to the specified @tsk. Guaranteed to return some non-empty
  1976. * subset of node_states[N_MEMORY], even if this means going outside the
  1977. * tasks cpuset.
  1978. **/
  1979. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1980. {
  1981. struct cpuset *mems_cs;
  1982. nodemask_t mask;
  1983. mutex_lock(&callback_mutex);
  1984. rcu_read_lock();
  1985. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  1986. guarantee_online_mems(mems_cs, &mask);
  1987. rcu_read_unlock();
  1988. mutex_unlock(&callback_mutex);
  1989. return mask;
  1990. }
  1991. /**
  1992. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1993. * @nodemask: the nodemask to be checked
  1994. *
  1995. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1996. */
  1997. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1998. {
  1999. return nodes_intersects(*nodemask, current->mems_allowed);
  2000. }
  2001. /*
  2002. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2003. * mem_hardwall ancestor to the specified cpuset. Call holding
  2004. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2005. * (an unusual configuration), then returns the root cpuset.
  2006. */
  2007. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2008. {
  2009. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2010. cs = parent_cs(cs);
  2011. return cs;
  2012. }
  2013. /**
  2014. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2015. * @node: is this an allowed node?
  2016. * @gfp_mask: memory allocation flags
  2017. *
  2018. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2019. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2020. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2021. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2022. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2023. * flag, yes.
  2024. * Otherwise, no.
  2025. *
  2026. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2027. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2028. * might sleep, and might allow a node from an enclosing cpuset.
  2029. *
  2030. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2031. * cpusets, and never sleeps.
  2032. *
  2033. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2034. * by forcibly using a zonelist starting at a specified node, and by
  2035. * (in get_page_from_freelist()) refusing to consider the zones for
  2036. * any node on the zonelist except the first. By the time any such
  2037. * calls get to this routine, we should just shut up and say 'yes'.
  2038. *
  2039. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2040. * and do not allow allocations outside the current tasks cpuset
  2041. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2042. * GFP_KERNEL allocations are not so marked, so can escape to the
  2043. * nearest enclosing hardwalled ancestor cpuset.
  2044. *
  2045. * Scanning up parent cpusets requires callback_mutex. The
  2046. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2047. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2048. * current tasks mems_allowed came up empty on the first pass over
  2049. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2050. * cpuset are short of memory, might require taking the callback_mutex
  2051. * mutex.
  2052. *
  2053. * The first call here from mm/page_alloc:get_page_from_freelist()
  2054. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2055. * so no allocation on a node outside the cpuset is allowed (unless
  2056. * in interrupt, of course).
  2057. *
  2058. * The second pass through get_page_from_freelist() doesn't even call
  2059. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2060. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2061. * in alloc_flags. That logic and the checks below have the combined
  2062. * affect that:
  2063. * in_interrupt - any node ok (current task context irrelevant)
  2064. * GFP_ATOMIC - any node ok
  2065. * TIF_MEMDIE - any node ok
  2066. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2067. * GFP_USER - only nodes in current tasks mems allowed ok.
  2068. *
  2069. * Rule:
  2070. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2071. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2072. * the code that might scan up ancestor cpusets and sleep.
  2073. */
  2074. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2075. {
  2076. struct cpuset *cs; /* current cpuset ancestors */
  2077. int allowed; /* is allocation in zone z allowed? */
  2078. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2079. return 1;
  2080. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2081. if (node_isset(node, current->mems_allowed))
  2082. return 1;
  2083. /*
  2084. * Allow tasks that have access to memory reserves because they have
  2085. * been OOM killed to get memory anywhere.
  2086. */
  2087. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2088. return 1;
  2089. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2090. return 0;
  2091. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2092. return 1;
  2093. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2094. mutex_lock(&callback_mutex);
  2095. rcu_read_lock();
  2096. cs = nearest_hardwall_ancestor(task_cs(current));
  2097. allowed = node_isset(node, cs->mems_allowed);
  2098. rcu_read_unlock();
  2099. mutex_unlock(&callback_mutex);
  2100. return allowed;
  2101. }
  2102. /*
  2103. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2104. * @node: is this an allowed node?
  2105. * @gfp_mask: memory allocation flags
  2106. *
  2107. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2108. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2109. * yes. If the task has been OOM killed and has access to memory reserves as
  2110. * specified by the TIF_MEMDIE flag, yes.
  2111. * Otherwise, no.
  2112. *
  2113. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2114. * by forcibly using a zonelist starting at a specified node, and by
  2115. * (in get_page_from_freelist()) refusing to consider the zones for
  2116. * any node on the zonelist except the first. By the time any such
  2117. * calls get to this routine, we should just shut up and say 'yes'.
  2118. *
  2119. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2120. * this variant requires that the node be in the current task's
  2121. * mems_allowed or that we're in interrupt. It does not scan up the
  2122. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2123. * It never sleeps.
  2124. */
  2125. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2126. {
  2127. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2128. return 1;
  2129. if (node_isset(node, current->mems_allowed))
  2130. return 1;
  2131. /*
  2132. * Allow tasks that have access to memory reserves because they have
  2133. * been OOM killed to get memory anywhere.
  2134. */
  2135. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2136. return 1;
  2137. return 0;
  2138. }
  2139. /**
  2140. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2141. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2142. *
  2143. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2144. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2145. * and if the memory allocation used cpuset_mem_spread_node()
  2146. * to determine on which node to start looking, as it will for
  2147. * certain page cache or slab cache pages such as used for file
  2148. * system buffers and inode caches, then instead of starting on the
  2149. * local node to look for a free page, rather spread the starting
  2150. * node around the tasks mems_allowed nodes.
  2151. *
  2152. * We don't have to worry about the returned node being offline
  2153. * because "it can't happen", and even if it did, it would be ok.
  2154. *
  2155. * The routines calling guarantee_online_mems() are careful to
  2156. * only set nodes in task->mems_allowed that are online. So it
  2157. * should not be possible for the following code to return an
  2158. * offline node. But if it did, that would be ok, as this routine
  2159. * is not returning the node where the allocation must be, only
  2160. * the node where the search should start. The zonelist passed to
  2161. * __alloc_pages() will include all nodes. If the slab allocator
  2162. * is passed an offline node, it will fall back to the local node.
  2163. * See kmem_cache_alloc_node().
  2164. */
  2165. static int cpuset_spread_node(int *rotor)
  2166. {
  2167. int node;
  2168. node = next_node(*rotor, current->mems_allowed);
  2169. if (node == MAX_NUMNODES)
  2170. node = first_node(current->mems_allowed);
  2171. *rotor = node;
  2172. return node;
  2173. }
  2174. int cpuset_mem_spread_node(void)
  2175. {
  2176. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2177. current->cpuset_mem_spread_rotor =
  2178. node_random(&current->mems_allowed);
  2179. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2180. }
  2181. int cpuset_slab_spread_node(void)
  2182. {
  2183. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2184. current->cpuset_slab_spread_rotor =
  2185. node_random(&current->mems_allowed);
  2186. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2187. }
  2188. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2189. /**
  2190. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2191. * @tsk1: pointer to task_struct of some task.
  2192. * @tsk2: pointer to task_struct of some other task.
  2193. *
  2194. * Description: Return true if @tsk1's mems_allowed intersects the
  2195. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2196. * one of the task's memory usage might impact the memory available
  2197. * to the other.
  2198. **/
  2199. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2200. const struct task_struct *tsk2)
  2201. {
  2202. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2203. }
  2204. #define CPUSET_NODELIST_LEN (256)
  2205. /**
  2206. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2207. * @task: pointer to task_struct of some task.
  2208. *
  2209. * Description: Prints @task's name, cpuset name, and cached copy of its
  2210. * mems_allowed to the kernel log.
  2211. */
  2212. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2213. {
  2214. /* Statically allocated to prevent using excess stack. */
  2215. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2216. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2217. struct cgroup *cgrp;
  2218. spin_lock(&cpuset_buffer_lock);
  2219. rcu_read_lock();
  2220. cgrp = task_cs(tsk)->css.cgroup;
  2221. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2222. tsk->mems_allowed);
  2223. printk(KERN_INFO "%s cpuset=", tsk->comm);
  2224. pr_cont_cgroup_name(cgrp);
  2225. pr_cont(" mems_allowed=%s\n", cpuset_nodelist);
  2226. rcu_read_unlock();
  2227. spin_unlock(&cpuset_buffer_lock);
  2228. }
  2229. /*
  2230. * Collection of memory_pressure is suppressed unless
  2231. * this flag is enabled by writing "1" to the special
  2232. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2233. */
  2234. int cpuset_memory_pressure_enabled __read_mostly;
  2235. /**
  2236. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2237. *
  2238. * Keep a running average of the rate of synchronous (direct)
  2239. * page reclaim efforts initiated by tasks in each cpuset.
  2240. *
  2241. * This represents the rate at which some task in the cpuset
  2242. * ran low on memory on all nodes it was allowed to use, and
  2243. * had to enter the kernels page reclaim code in an effort to
  2244. * create more free memory by tossing clean pages or swapping
  2245. * or writing dirty pages.
  2246. *
  2247. * Display to user space in the per-cpuset read-only file
  2248. * "memory_pressure". Value displayed is an integer
  2249. * representing the recent rate of entry into the synchronous
  2250. * (direct) page reclaim by any task attached to the cpuset.
  2251. **/
  2252. void __cpuset_memory_pressure_bump(void)
  2253. {
  2254. rcu_read_lock();
  2255. fmeter_markevent(&task_cs(current)->fmeter);
  2256. rcu_read_unlock();
  2257. }
  2258. #ifdef CONFIG_PROC_PID_CPUSET
  2259. /*
  2260. * proc_cpuset_show()
  2261. * - Print tasks cpuset path into seq_file.
  2262. * - Used for /proc/<pid>/cpuset.
  2263. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2264. * doesn't really matter if tsk->cpuset changes after we read it,
  2265. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2266. * anyway.
  2267. */
  2268. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2269. {
  2270. struct pid *pid;
  2271. struct task_struct *tsk;
  2272. char *buf, *p;
  2273. struct cgroup_subsys_state *css;
  2274. int retval;
  2275. retval = -ENOMEM;
  2276. buf = kmalloc(PATH_MAX, GFP_KERNEL);
  2277. if (!buf)
  2278. goto out;
  2279. retval = -ESRCH;
  2280. pid = m->private;
  2281. tsk = get_pid_task(pid, PIDTYPE_PID);
  2282. if (!tsk)
  2283. goto out_free;
  2284. retval = -ENAMETOOLONG;
  2285. rcu_read_lock();
  2286. css = task_css(tsk, cpuset_cgrp_id);
  2287. p = cgroup_path(css->cgroup, buf, PATH_MAX);
  2288. rcu_read_unlock();
  2289. if (!p)
  2290. goto out_put_task;
  2291. seq_puts(m, p);
  2292. seq_putc(m, '\n');
  2293. retval = 0;
  2294. out_put_task:
  2295. put_task_struct(tsk);
  2296. out_free:
  2297. kfree(buf);
  2298. out:
  2299. return retval;
  2300. }
  2301. #endif /* CONFIG_PROC_PID_CPUSET */
  2302. /* Display task mems_allowed in /proc/<pid>/status file. */
  2303. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2304. {
  2305. seq_printf(m, "Mems_allowed:\t");
  2306. seq_nodemask(m, &task->mems_allowed);
  2307. seq_printf(m, "\n");
  2308. seq_printf(m, "Mems_allowed_list:\t");
  2309. seq_nodemask_list(m, &task->mems_allowed);
  2310. seq_printf(m, "\n");
  2311. }