vmalloc.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/notifier.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/radix-tree.h>
  26. #include <linux/rcupdate.h>
  27. #include <linux/pfn.h>
  28. #include <linux/kmemleak.h>
  29. #include <linux/atomic.h>
  30. #include <linux/compiler.h>
  31. #include <linux/llist.h>
  32. #include <linux/bitops.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/tlbflush.h>
  35. #include <asm/shmparam.h>
  36. #include "internal.h"
  37. struct vfree_deferred {
  38. struct llist_head list;
  39. struct work_struct wq;
  40. };
  41. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  42. static void __vunmap(const void *, int);
  43. static void free_work(struct work_struct *w)
  44. {
  45. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  46. struct llist_node *llnode = llist_del_all(&p->list);
  47. while (llnode) {
  48. void *p = llnode;
  49. llnode = llist_next(llnode);
  50. __vunmap(p, 1);
  51. }
  52. }
  53. /*** Page table manipulation functions ***/
  54. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  55. {
  56. pte_t *pte;
  57. pte = pte_offset_kernel(pmd, addr);
  58. do {
  59. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  60. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  61. } while (pte++, addr += PAGE_SIZE, addr != end);
  62. }
  63. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  64. {
  65. pmd_t *pmd;
  66. unsigned long next;
  67. pmd = pmd_offset(pud, addr);
  68. do {
  69. next = pmd_addr_end(addr, end);
  70. if (pmd_clear_huge(pmd))
  71. continue;
  72. if (pmd_none_or_clear_bad(pmd))
  73. continue;
  74. vunmap_pte_range(pmd, addr, next);
  75. } while (pmd++, addr = next, addr != end);
  76. }
  77. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  78. {
  79. pud_t *pud;
  80. unsigned long next;
  81. pud = pud_offset(pgd, addr);
  82. do {
  83. next = pud_addr_end(addr, end);
  84. if (pud_clear_huge(pud))
  85. continue;
  86. if (pud_none_or_clear_bad(pud))
  87. continue;
  88. vunmap_pmd_range(pud, addr, next);
  89. } while (pud++, addr = next, addr != end);
  90. }
  91. static void vunmap_page_range(unsigned long addr, unsigned long end)
  92. {
  93. pgd_t *pgd;
  94. unsigned long next;
  95. BUG_ON(addr >= end);
  96. pgd = pgd_offset_k(addr);
  97. do {
  98. next = pgd_addr_end(addr, end);
  99. if (pgd_none_or_clear_bad(pgd))
  100. continue;
  101. vunmap_pud_range(pgd, addr, next);
  102. } while (pgd++, addr = next, addr != end);
  103. }
  104. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  105. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  106. {
  107. pte_t *pte;
  108. /*
  109. * nr is a running index into the array which helps higher level
  110. * callers keep track of where we're up to.
  111. */
  112. pte = pte_alloc_kernel(pmd, addr);
  113. if (!pte)
  114. return -ENOMEM;
  115. do {
  116. struct page *page = pages[*nr];
  117. if (WARN_ON(!pte_none(*pte)))
  118. return -EBUSY;
  119. if (WARN_ON(!page))
  120. return -ENOMEM;
  121. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  122. (*nr)++;
  123. } while (pte++, addr += PAGE_SIZE, addr != end);
  124. return 0;
  125. }
  126. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  127. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  128. {
  129. pmd_t *pmd;
  130. unsigned long next;
  131. pmd = pmd_alloc(&init_mm, pud, addr);
  132. if (!pmd)
  133. return -ENOMEM;
  134. do {
  135. next = pmd_addr_end(addr, end);
  136. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  137. return -ENOMEM;
  138. } while (pmd++, addr = next, addr != end);
  139. return 0;
  140. }
  141. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  142. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  143. {
  144. pud_t *pud;
  145. unsigned long next;
  146. pud = pud_alloc(&init_mm, pgd, addr);
  147. if (!pud)
  148. return -ENOMEM;
  149. do {
  150. next = pud_addr_end(addr, end);
  151. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  152. return -ENOMEM;
  153. } while (pud++, addr = next, addr != end);
  154. return 0;
  155. }
  156. /*
  157. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  158. * will have pfns corresponding to the "pages" array.
  159. *
  160. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  161. */
  162. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  163. pgprot_t prot, struct page **pages)
  164. {
  165. pgd_t *pgd;
  166. unsigned long next;
  167. unsigned long addr = start;
  168. int err = 0;
  169. int nr = 0;
  170. BUG_ON(addr >= end);
  171. pgd = pgd_offset_k(addr);
  172. do {
  173. next = pgd_addr_end(addr, end);
  174. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  175. if (err)
  176. return err;
  177. } while (pgd++, addr = next, addr != end);
  178. return nr;
  179. }
  180. static int vmap_page_range(unsigned long start, unsigned long end,
  181. pgprot_t prot, struct page **pages)
  182. {
  183. int ret;
  184. ret = vmap_page_range_noflush(start, end, prot, pages);
  185. flush_cache_vmap(start, end);
  186. return ret;
  187. }
  188. int is_vmalloc_or_module_addr(const void *x)
  189. {
  190. /*
  191. * ARM, x86-64 and sparc64 put modules in a special place,
  192. * and fall back on vmalloc() if that fails. Others
  193. * just put it in the vmalloc space.
  194. */
  195. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  196. unsigned long addr = (unsigned long)x;
  197. if (addr >= MODULES_VADDR && addr < MODULES_END)
  198. return 1;
  199. #endif
  200. return is_vmalloc_addr(x);
  201. }
  202. /*
  203. * Walk a vmap address to the struct page it maps.
  204. */
  205. struct page *vmalloc_to_page(const void *vmalloc_addr)
  206. {
  207. unsigned long addr = (unsigned long) vmalloc_addr;
  208. struct page *page = NULL;
  209. pgd_t *pgd = pgd_offset_k(addr);
  210. /*
  211. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  212. * architectures that do not vmalloc module space
  213. */
  214. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  215. if (!pgd_none(*pgd)) {
  216. pud_t *pud = pud_offset(pgd, addr);
  217. if (!pud_none(*pud)) {
  218. pmd_t *pmd = pmd_offset(pud, addr);
  219. if (!pmd_none(*pmd)) {
  220. pte_t *ptep, pte;
  221. ptep = pte_offset_map(pmd, addr);
  222. pte = *ptep;
  223. if (pte_present(pte))
  224. page = pte_page(pte);
  225. pte_unmap(ptep);
  226. }
  227. }
  228. }
  229. return page;
  230. }
  231. EXPORT_SYMBOL(vmalloc_to_page);
  232. /*
  233. * Map a vmalloc()-space virtual address to the physical page frame number.
  234. */
  235. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  236. {
  237. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  238. }
  239. EXPORT_SYMBOL(vmalloc_to_pfn);
  240. /*** Global kva allocator ***/
  241. #define VM_VM_AREA 0x04
  242. static DEFINE_SPINLOCK(vmap_area_lock);
  243. /* Export for kexec only */
  244. LIST_HEAD(vmap_area_list);
  245. static LLIST_HEAD(vmap_purge_list);
  246. static struct rb_root vmap_area_root = RB_ROOT;
  247. /* The vmap cache globals are protected by vmap_area_lock */
  248. static struct rb_node *free_vmap_cache;
  249. static unsigned long cached_hole_size;
  250. static unsigned long cached_vstart;
  251. static unsigned long cached_align;
  252. static unsigned long vmap_area_pcpu_hole;
  253. static struct vmap_area *__find_vmap_area(unsigned long addr)
  254. {
  255. struct rb_node *n = vmap_area_root.rb_node;
  256. while (n) {
  257. struct vmap_area *va;
  258. va = rb_entry(n, struct vmap_area, rb_node);
  259. if (addr < va->va_start)
  260. n = n->rb_left;
  261. else if (addr >= va->va_end)
  262. n = n->rb_right;
  263. else
  264. return va;
  265. }
  266. return NULL;
  267. }
  268. static void __insert_vmap_area(struct vmap_area *va)
  269. {
  270. struct rb_node **p = &vmap_area_root.rb_node;
  271. struct rb_node *parent = NULL;
  272. struct rb_node *tmp;
  273. while (*p) {
  274. struct vmap_area *tmp_va;
  275. parent = *p;
  276. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  277. if (va->va_start < tmp_va->va_end)
  278. p = &(*p)->rb_left;
  279. else if (va->va_end > tmp_va->va_start)
  280. p = &(*p)->rb_right;
  281. else
  282. BUG();
  283. }
  284. rb_link_node(&va->rb_node, parent, p);
  285. rb_insert_color(&va->rb_node, &vmap_area_root);
  286. /* address-sort this list */
  287. tmp = rb_prev(&va->rb_node);
  288. if (tmp) {
  289. struct vmap_area *prev;
  290. prev = rb_entry(tmp, struct vmap_area, rb_node);
  291. list_add_rcu(&va->list, &prev->list);
  292. } else
  293. list_add_rcu(&va->list, &vmap_area_list);
  294. }
  295. static void purge_vmap_area_lazy(void);
  296. static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
  297. /*
  298. * Allocate a region of KVA of the specified size and alignment, within the
  299. * vstart and vend.
  300. */
  301. static struct vmap_area *alloc_vmap_area(unsigned long size,
  302. unsigned long align,
  303. unsigned long vstart, unsigned long vend,
  304. int node, gfp_t gfp_mask)
  305. {
  306. struct vmap_area *va;
  307. struct rb_node *n;
  308. unsigned long addr;
  309. int purged = 0;
  310. struct vmap_area *first;
  311. BUG_ON(!size);
  312. BUG_ON(offset_in_page(size));
  313. BUG_ON(!is_power_of_2(align));
  314. might_sleep_if(gfpflags_allow_blocking(gfp_mask));
  315. va = kmalloc_node(sizeof(struct vmap_area),
  316. gfp_mask & GFP_RECLAIM_MASK, node);
  317. if (unlikely(!va))
  318. return ERR_PTR(-ENOMEM);
  319. /*
  320. * Only scan the relevant parts containing pointers to other objects
  321. * to avoid false negatives.
  322. */
  323. kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
  324. retry:
  325. spin_lock(&vmap_area_lock);
  326. /*
  327. * Invalidate cache if we have more permissive parameters.
  328. * cached_hole_size notes the largest hole noticed _below_
  329. * the vmap_area cached in free_vmap_cache: if size fits
  330. * into that hole, we want to scan from vstart to reuse
  331. * the hole instead of allocating above free_vmap_cache.
  332. * Note that __free_vmap_area may update free_vmap_cache
  333. * without updating cached_hole_size or cached_align.
  334. */
  335. if (!free_vmap_cache ||
  336. size < cached_hole_size ||
  337. vstart < cached_vstart ||
  338. align < cached_align) {
  339. nocache:
  340. cached_hole_size = 0;
  341. free_vmap_cache = NULL;
  342. }
  343. /* record if we encounter less permissive parameters */
  344. cached_vstart = vstart;
  345. cached_align = align;
  346. /* find starting point for our search */
  347. if (free_vmap_cache) {
  348. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  349. addr = ALIGN(first->va_end, align);
  350. if (addr < vstart)
  351. goto nocache;
  352. if (addr + size < addr)
  353. goto overflow;
  354. } else {
  355. addr = ALIGN(vstart, align);
  356. if (addr + size < addr)
  357. goto overflow;
  358. n = vmap_area_root.rb_node;
  359. first = NULL;
  360. while (n) {
  361. struct vmap_area *tmp;
  362. tmp = rb_entry(n, struct vmap_area, rb_node);
  363. if (tmp->va_end >= addr) {
  364. first = tmp;
  365. if (tmp->va_start <= addr)
  366. break;
  367. n = n->rb_left;
  368. } else
  369. n = n->rb_right;
  370. }
  371. if (!first)
  372. goto found;
  373. }
  374. /* from the starting point, walk areas until a suitable hole is found */
  375. while (addr + size > first->va_start && addr + size <= vend) {
  376. if (addr + cached_hole_size < first->va_start)
  377. cached_hole_size = first->va_start - addr;
  378. addr = ALIGN(first->va_end, align);
  379. if (addr + size < addr)
  380. goto overflow;
  381. if (list_is_last(&first->list, &vmap_area_list))
  382. goto found;
  383. first = list_next_entry(first, list);
  384. }
  385. found:
  386. if (addr + size > vend)
  387. goto overflow;
  388. va->va_start = addr;
  389. va->va_end = addr + size;
  390. va->flags = 0;
  391. __insert_vmap_area(va);
  392. free_vmap_cache = &va->rb_node;
  393. spin_unlock(&vmap_area_lock);
  394. BUG_ON(!IS_ALIGNED(va->va_start, align));
  395. BUG_ON(va->va_start < vstart);
  396. BUG_ON(va->va_end > vend);
  397. return va;
  398. overflow:
  399. spin_unlock(&vmap_area_lock);
  400. if (!purged) {
  401. purge_vmap_area_lazy();
  402. purged = 1;
  403. goto retry;
  404. }
  405. if (gfpflags_allow_blocking(gfp_mask)) {
  406. unsigned long freed = 0;
  407. blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
  408. if (freed > 0) {
  409. purged = 0;
  410. goto retry;
  411. }
  412. }
  413. if (printk_ratelimit())
  414. pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
  415. size);
  416. kfree(va);
  417. return ERR_PTR(-EBUSY);
  418. }
  419. int register_vmap_purge_notifier(struct notifier_block *nb)
  420. {
  421. return blocking_notifier_chain_register(&vmap_notify_list, nb);
  422. }
  423. EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
  424. int unregister_vmap_purge_notifier(struct notifier_block *nb)
  425. {
  426. return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
  427. }
  428. EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
  429. static void __free_vmap_area(struct vmap_area *va)
  430. {
  431. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  432. if (free_vmap_cache) {
  433. if (va->va_end < cached_vstart) {
  434. free_vmap_cache = NULL;
  435. } else {
  436. struct vmap_area *cache;
  437. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  438. if (va->va_start <= cache->va_start) {
  439. free_vmap_cache = rb_prev(&va->rb_node);
  440. /*
  441. * We don't try to update cached_hole_size or
  442. * cached_align, but it won't go very wrong.
  443. */
  444. }
  445. }
  446. }
  447. rb_erase(&va->rb_node, &vmap_area_root);
  448. RB_CLEAR_NODE(&va->rb_node);
  449. list_del_rcu(&va->list);
  450. /*
  451. * Track the highest possible candidate for pcpu area
  452. * allocation. Areas outside of vmalloc area can be returned
  453. * here too, consider only end addresses which fall inside
  454. * vmalloc area proper.
  455. */
  456. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  457. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  458. kfree_rcu(va, rcu_head);
  459. }
  460. /*
  461. * Free a region of KVA allocated by alloc_vmap_area
  462. */
  463. static void free_vmap_area(struct vmap_area *va)
  464. {
  465. spin_lock(&vmap_area_lock);
  466. __free_vmap_area(va);
  467. spin_unlock(&vmap_area_lock);
  468. }
  469. /*
  470. * Clear the pagetable entries of a given vmap_area
  471. */
  472. static void unmap_vmap_area(struct vmap_area *va)
  473. {
  474. vunmap_page_range(va->va_start, va->va_end);
  475. }
  476. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  477. {
  478. /*
  479. * Unmap page tables and force a TLB flush immediately if pagealloc
  480. * debugging is enabled. This catches use after free bugs similarly to
  481. * those in linear kernel virtual address space after a page has been
  482. * freed.
  483. *
  484. * All the lazy freeing logic is still retained, in order to minimise
  485. * intrusiveness of this debugging feature.
  486. *
  487. * This is going to be *slow* (linear kernel virtual address debugging
  488. * doesn't do a broadcast TLB flush so it is a lot faster).
  489. */
  490. if (debug_pagealloc_enabled()) {
  491. vunmap_page_range(start, end);
  492. flush_tlb_kernel_range(start, end);
  493. }
  494. }
  495. /*
  496. * lazy_max_pages is the maximum amount of virtual address space we gather up
  497. * before attempting to purge with a TLB flush.
  498. *
  499. * There is a tradeoff here: a larger number will cover more kernel page tables
  500. * and take slightly longer to purge, but it will linearly reduce the number of
  501. * global TLB flushes that must be performed. It would seem natural to scale
  502. * this number up linearly with the number of CPUs (because vmapping activity
  503. * could also scale linearly with the number of CPUs), however it is likely
  504. * that in practice, workloads might be constrained in other ways that mean
  505. * vmap activity will not scale linearly with CPUs. Also, I want to be
  506. * conservative and not introduce a big latency on huge systems, so go with
  507. * a less aggressive log scale. It will still be an improvement over the old
  508. * code, and it will be simple to change the scale factor if we find that it
  509. * becomes a problem on bigger systems.
  510. */
  511. static unsigned long lazy_max_pages(void)
  512. {
  513. unsigned int log;
  514. log = fls(num_online_cpus());
  515. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  516. }
  517. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  518. /* for per-CPU blocks */
  519. static void purge_fragmented_blocks_allcpus(void);
  520. /*
  521. * called before a call to iounmap() if the caller wants vm_area_struct's
  522. * immediately freed.
  523. */
  524. void set_iounmap_nonlazy(void)
  525. {
  526. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  527. }
  528. /*
  529. * Purges all lazily-freed vmap areas.
  530. *
  531. * If sync is 0 then don't purge if there is already a purge in progress.
  532. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  533. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  534. * their own TLB flushing).
  535. * Returns with *start = min(*start, lowest purged address)
  536. * *end = max(*end, highest purged address)
  537. */
  538. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  539. int sync, int force_flush)
  540. {
  541. static DEFINE_SPINLOCK(purge_lock);
  542. struct llist_node *valist;
  543. struct vmap_area *va;
  544. struct vmap_area *n_va;
  545. int nr = 0;
  546. /*
  547. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  548. * should not expect such behaviour. This just simplifies locking for
  549. * the case that isn't actually used at the moment anyway.
  550. */
  551. if (!sync && !force_flush) {
  552. if (!spin_trylock(&purge_lock))
  553. return;
  554. } else
  555. spin_lock(&purge_lock);
  556. if (sync)
  557. purge_fragmented_blocks_allcpus();
  558. valist = llist_del_all(&vmap_purge_list);
  559. llist_for_each_entry(va, valist, purge_list) {
  560. if (va->va_start < *start)
  561. *start = va->va_start;
  562. if (va->va_end > *end)
  563. *end = va->va_end;
  564. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  565. }
  566. if (nr)
  567. atomic_sub(nr, &vmap_lazy_nr);
  568. if (nr || force_flush)
  569. flush_tlb_kernel_range(*start, *end);
  570. if (nr) {
  571. spin_lock(&vmap_area_lock);
  572. llist_for_each_entry_safe(va, n_va, valist, purge_list)
  573. __free_vmap_area(va);
  574. spin_unlock(&vmap_area_lock);
  575. }
  576. spin_unlock(&purge_lock);
  577. }
  578. /*
  579. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  580. * is already purging.
  581. */
  582. static void try_purge_vmap_area_lazy(void)
  583. {
  584. unsigned long start = ULONG_MAX, end = 0;
  585. __purge_vmap_area_lazy(&start, &end, 0, 0);
  586. }
  587. /*
  588. * Kick off a purge of the outstanding lazy areas.
  589. */
  590. static void purge_vmap_area_lazy(void)
  591. {
  592. unsigned long start = ULONG_MAX, end = 0;
  593. __purge_vmap_area_lazy(&start, &end, 1, 0);
  594. }
  595. /*
  596. * Free a vmap area, caller ensuring that the area has been unmapped
  597. * and flush_cache_vunmap had been called for the correct range
  598. * previously.
  599. */
  600. static void free_vmap_area_noflush(struct vmap_area *va)
  601. {
  602. int nr_lazy;
  603. nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
  604. &vmap_lazy_nr);
  605. /* After this point, we may free va at any time */
  606. llist_add(&va->purge_list, &vmap_purge_list);
  607. if (unlikely(nr_lazy > lazy_max_pages()))
  608. try_purge_vmap_area_lazy();
  609. }
  610. /*
  611. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  612. * called for the correct range previously.
  613. */
  614. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  615. {
  616. unmap_vmap_area(va);
  617. free_vmap_area_noflush(va);
  618. }
  619. /*
  620. * Free and unmap a vmap area
  621. */
  622. static void free_unmap_vmap_area(struct vmap_area *va)
  623. {
  624. flush_cache_vunmap(va->va_start, va->va_end);
  625. free_unmap_vmap_area_noflush(va);
  626. }
  627. static struct vmap_area *find_vmap_area(unsigned long addr)
  628. {
  629. struct vmap_area *va;
  630. spin_lock(&vmap_area_lock);
  631. va = __find_vmap_area(addr);
  632. spin_unlock(&vmap_area_lock);
  633. return va;
  634. }
  635. static void free_unmap_vmap_area_addr(unsigned long addr)
  636. {
  637. struct vmap_area *va;
  638. va = find_vmap_area(addr);
  639. BUG_ON(!va);
  640. free_unmap_vmap_area(va);
  641. }
  642. /*** Per cpu kva allocator ***/
  643. /*
  644. * vmap space is limited especially on 32 bit architectures. Ensure there is
  645. * room for at least 16 percpu vmap blocks per CPU.
  646. */
  647. /*
  648. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  649. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  650. * instead (we just need a rough idea)
  651. */
  652. #if BITS_PER_LONG == 32
  653. #define VMALLOC_SPACE (128UL*1024*1024)
  654. #else
  655. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  656. #endif
  657. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  658. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  659. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  660. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  661. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  662. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  663. #define VMAP_BBMAP_BITS \
  664. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  665. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  666. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  667. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  668. static bool vmap_initialized __read_mostly = false;
  669. struct vmap_block_queue {
  670. spinlock_t lock;
  671. struct list_head free;
  672. };
  673. struct vmap_block {
  674. spinlock_t lock;
  675. struct vmap_area *va;
  676. unsigned long free, dirty;
  677. unsigned long dirty_min, dirty_max; /*< dirty range */
  678. struct list_head free_list;
  679. struct rcu_head rcu_head;
  680. struct list_head purge;
  681. };
  682. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  683. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  684. /*
  685. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  686. * in the free path. Could get rid of this if we change the API to return a
  687. * "cookie" from alloc, to be passed to free. But no big deal yet.
  688. */
  689. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  690. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  691. /*
  692. * We should probably have a fallback mechanism to allocate virtual memory
  693. * out of partially filled vmap blocks. However vmap block sizing should be
  694. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  695. * big problem.
  696. */
  697. static unsigned long addr_to_vb_idx(unsigned long addr)
  698. {
  699. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  700. addr /= VMAP_BLOCK_SIZE;
  701. return addr;
  702. }
  703. static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
  704. {
  705. unsigned long addr;
  706. addr = va_start + (pages_off << PAGE_SHIFT);
  707. BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
  708. return (void *)addr;
  709. }
  710. /**
  711. * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
  712. * block. Of course pages number can't exceed VMAP_BBMAP_BITS
  713. * @order: how many 2^order pages should be occupied in newly allocated block
  714. * @gfp_mask: flags for the page level allocator
  715. *
  716. * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
  717. */
  718. static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
  719. {
  720. struct vmap_block_queue *vbq;
  721. struct vmap_block *vb;
  722. struct vmap_area *va;
  723. unsigned long vb_idx;
  724. int node, err;
  725. void *vaddr;
  726. node = numa_node_id();
  727. vb = kmalloc_node(sizeof(struct vmap_block),
  728. gfp_mask & GFP_RECLAIM_MASK, node);
  729. if (unlikely(!vb))
  730. return ERR_PTR(-ENOMEM);
  731. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  732. VMALLOC_START, VMALLOC_END,
  733. node, gfp_mask);
  734. if (IS_ERR(va)) {
  735. kfree(vb);
  736. return ERR_CAST(va);
  737. }
  738. err = radix_tree_preload(gfp_mask);
  739. if (unlikely(err)) {
  740. kfree(vb);
  741. free_vmap_area(va);
  742. return ERR_PTR(err);
  743. }
  744. vaddr = vmap_block_vaddr(va->va_start, 0);
  745. spin_lock_init(&vb->lock);
  746. vb->va = va;
  747. /* At least something should be left free */
  748. BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
  749. vb->free = VMAP_BBMAP_BITS - (1UL << order);
  750. vb->dirty = 0;
  751. vb->dirty_min = VMAP_BBMAP_BITS;
  752. vb->dirty_max = 0;
  753. INIT_LIST_HEAD(&vb->free_list);
  754. vb_idx = addr_to_vb_idx(va->va_start);
  755. spin_lock(&vmap_block_tree_lock);
  756. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  757. spin_unlock(&vmap_block_tree_lock);
  758. BUG_ON(err);
  759. radix_tree_preload_end();
  760. vbq = &get_cpu_var(vmap_block_queue);
  761. spin_lock(&vbq->lock);
  762. list_add_tail_rcu(&vb->free_list, &vbq->free);
  763. spin_unlock(&vbq->lock);
  764. put_cpu_var(vmap_block_queue);
  765. return vaddr;
  766. }
  767. static void free_vmap_block(struct vmap_block *vb)
  768. {
  769. struct vmap_block *tmp;
  770. unsigned long vb_idx;
  771. vb_idx = addr_to_vb_idx(vb->va->va_start);
  772. spin_lock(&vmap_block_tree_lock);
  773. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  774. spin_unlock(&vmap_block_tree_lock);
  775. BUG_ON(tmp != vb);
  776. free_vmap_area_noflush(vb->va);
  777. kfree_rcu(vb, rcu_head);
  778. }
  779. static void purge_fragmented_blocks(int cpu)
  780. {
  781. LIST_HEAD(purge);
  782. struct vmap_block *vb;
  783. struct vmap_block *n_vb;
  784. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  785. rcu_read_lock();
  786. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  787. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  788. continue;
  789. spin_lock(&vb->lock);
  790. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  791. vb->free = 0; /* prevent further allocs after releasing lock */
  792. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  793. vb->dirty_min = 0;
  794. vb->dirty_max = VMAP_BBMAP_BITS;
  795. spin_lock(&vbq->lock);
  796. list_del_rcu(&vb->free_list);
  797. spin_unlock(&vbq->lock);
  798. spin_unlock(&vb->lock);
  799. list_add_tail(&vb->purge, &purge);
  800. } else
  801. spin_unlock(&vb->lock);
  802. }
  803. rcu_read_unlock();
  804. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  805. list_del(&vb->purge);
  806. free_vmap_block(vb);
  807. }
  808. }
  809. static void purge_fragmented_blocks_allcpus(void)
  810. {
  811. int cpu;
  812. for_each_possible_cpu(cpu)
  813. purge_fragmented_blocks(cpu);
  814. }
  815. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  816. {
  817. struct vmap_block_queue *vbq;
  818. struct vmap_block *vb;
  819. void *vaddr = NULL;
  820. unsigned int order;
  821. BUG_ON(offset_in_page(size));
  822. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  823. if (WARN_ON(size == 0)) {
  824. /*
  825. * Allocating 0 bytes isn't what caller wants since
  826. * get_order(0) returns funny result. Just warn and terminate
  827. * early.
  828. */
  829. return NULL;
  830. }
  831. order = get_order(size);
  832. rcu_read_lock();
  833. vbq = &get_cpu_var(vmap_block_queue);
  834. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  835. unsigned long pages_off;
  836. spin_lock(&vb->lock);
  837. if (vb->free < (1UL << order)) {
  838. spin_unlock(&vb->lock);
  839. continue;
  840. }
  841. pages_off = VMAP_BBMAP_BITS - vb->free;
  842. vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
  843. vb->free -= 1UL << order;
  844. if (vb->free == 0) {
  845. spin_lock(&vbq->lock);
  846. list_del_rcu(&vb->free_list);
  847. spin_unlock(&vbq->lock);
  848. }
  849. spin_unlock(&vb->lock);
  850. break;
  851. }
  852. put_cpu_var(vmap_block_queue);
  853. rcu_read_unlock();
  854. /* Allocate new block if nothing was found */
  855. if (!vaddr)
  856. vaddr = new_vmap_block(order, gfp_mask);
  857. return vaddr;
  858. }
  859. static void vb_free(const void *addr, unsigned long size)
  860. {
  861. unsigned long offset;
  862. unsigned long vb_idx;
  863. unsigned int order;
  864. struct vmap_block *vb;
  865. BUG_ON(offset_in_page(size));
  866. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  867. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  868. order = get_order(size);
  869. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  870. offset >>= PAGE_SHIFT;
  871. vb_idx = addr_to_vb_idx((unsigned long)addr);
  872. rcu_read_lock();
  873. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  874. rcu_read_unlock();
  875. BUG_ON(!vb);
  876. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  877. spin_lock(&vb->lock);
  878. /* Expand dirty range */
  879. vb->dirty_min = min(vb->dirty_min, offset);
  880. vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
  881. vb->dirty += 1UL << order;
  882. if (vb->dirty == VMAP_BBMAP_BITS) {
  883. BUG_ON(vb->free);
  884. spin_unlock(&vb->lock);
  885. free_vmap_block(vb);
  886. } else
  887. spin_unlock(&vb->lock);
  888. }
  889. /**
  890. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  891. *
  892. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  893. * to amortize TLB flushing overheads. What this means is that any page you
  894. * have now, may, in a former life, have been mapped into kernel virtual
  895. * address by the vmap layer and so there might be some CPUs with TLB entries
  896. * still referencing that page (additional to the regular 1:1 kernel mapping).
  897. *
  898. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  899. * be sure that none of the pages we have control over will have any aliases
  900. * from the vmap layer.
  901. */
  902. void vm_unmap_aliases(void)
  903. {
  904. unsigned long start = ULONG_MAX, end = 0;
  905. int cpu;
  906. int flush = 0;
  907. if (unlikely(!vmap_initialized))
  908. return;
  909. for_each_possible_cpu(cpu) {
  910. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  911. struct vmap_block *vb;
  912. rcu_read_lock();
  913. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  914. spin_lock(&vb->lock);
  915. if (vb->dirty) {
  916. unsigned long va_start = vb->va->va_start;
  917. unsigned long s, e;
  918. s = va_start + (vb->dirty_min << PAGE_SHIFT);
  919. e = va_start + (vb->dirty_max << PAGE_SHIFT);
  920. start = min(s, start);
  921. end = max(e, end);
  922. flush = 1;
  923. }
  924. spin_unlock(&vb->lock);
  925. }
  926. rcu_read_unlock();
  927. }
  928. __purge_vmap_area_lazy(&start, &end, 1, flush);
  929. }
  930. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  931. /**
  932. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  933. * @mem: the pointer returned by vm_map_ram
  934. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  935. */
  936. void vm_unmap_ram(const void *mem, unsigned int count)
  937. {
  938. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  939. unsigned long addr = (unsigned long)mem;
  940. BUG_ON(!addr);
  941. BUG_ON(addr < VMALLOC_START);
  942. BUG_ON(addr > VMALLOC_END);
  943. BUG_ON(!PAGE_ALIGNED(addr));
  944. debug_check_no_locks_freed(mem, size);
  945. vmap_debug_free_range(addr, addr+size);
  946. if (likely(count <= VMAP_MAX_ALLOC))
  947. vb_free(mem, size);
  948. else
  949. free_unmap_vmap_area_addr(addr);
  950. }
  951. EXPORT_SYMBOL(vm_unmap_ram);
  952. /**
  953. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  954. * @pages: an array of pointers to the pages to be mapped
  955. * @count: number of pages
  956. * @node: prefer to allocate data structures on this node
  957. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  958. *
  959. * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
  960. * faster than vmap so it's good. But if you mix long-life and short-life
  961. * objects with vm_map_ram(), it could consume lots of address space through
  962. * fragmentation (especially on a 32bit machine). You could see failures in
  963. * the end. Please use this function for short-lived objects.
  964. *
  965. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  966. */
  967. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  968. {
  969. unsigned long size = (unsigned long)count << PAGE_SHIFT;
  970. unsigned long addr;
  971. void *mem;
  972. if (likely(count <= VMAP_MAX_ALLOC)) {
  973. mem = vb_alloc(size, GFP_KERNEL);
  974. if (IS_ERR(mem))
  975. return NULL;
  976. addr = (unsigned long)mem;
  977. } else {
  978. struct vmap_area *va;
  979. va = alloc_vmap_area(size, PAGE_SIZE,
  980. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  981. if (IS_ERR(va))
  982. return NULL;
  983. addr = va->va_start;
  984. mem = (void *)addr;
  985. }
  986. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  987. vm_unmap_ram(mem, count);
  988. return NULL;
  989. }
  990. return mem;
  991. }
  992. EXPORT_SYMBOL(vm_map_ram);
  993. static struct vm_struct *vmlist __initdata;
  994. /**
  995. * vm_area_add_early - add vmap area early during boot
  996. * @vm: vm_struct to add
  997. *
  998. * This function is used to add fixed kernel vm area to vmlist before
  999. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  1000. * should contain proper values and the other fields should be zero.
  1001. *
  1002. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1003. */
  1004. void __init vm_area_add_early(struct vm_struct *vm)
  1005. {
  1006. struct vm_struct *tmp, **p;
  1007. BUG_ON(vmap_initialized);
  1008. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1009. if (tmp->addr >= vm->addr) {
  1010. BUG_ON(tmp->addr < vm->addr + vm->size);
  1011. break;
  1012. } else
  1013. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1014. }
  1015. vm->next = *p;
  1016. *p = vm;
  1017. }
  1018. /**
  1019. * vm_area_register_early - register vmap area early during boot
  1020. * @vm: vm_struct to register
  1021. * @align: requested alignment
  1022. *
  1023. * This function is used to register kernel vm area before
  1024. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1025. * proper values on entry and other fields should be zero. On return,
  1026. * vm->addr contains the allocated address.
  1027. *
  1028. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1029. */
  1030. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1031. {
  1032. static size_t vm_init_off __initdata;
  1033. unsigned long addr;
  1034. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1035. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1036. vm->addr = (void *)addr;
  1037. vm_area_add_early(vm);
  1038. }
  1039. void __init vmalloc_init(void)
  1040. {
  1041. struct vmap_area *va;
  1042. struct vm_struct *tmp;
  1043. int i;
  1044. for_each_possible_cpu(i) {
  1045. struct vmap_block_queue *vbq;
  1046. struct vfree_deferred *p;
  1047. vbq = &per_cpu(vmap_block_queue, i);
  1048. spin_lock_init(&vbq->lock);
  1049. INIT_LIST_HEAD(&vbq->free);
  1050. p = &per_cpu(vfree_deferred, i);
  1051. init_llist_head(&p->list);
  1052. INIT_WORK(&p->wq, free_work);
  1053. }
  1054. /* Import existing vmlist entries. */
  1055. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1056. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1057. va->flags = VM_VM_AREA;
  1058. va->va_start = (unsigned long)tmp->addr;
  1059. va->va_end = va->va_start + tmp->size;
  1060. va->vm = tmp;
  1061. __insert_vmap_area(va);
  1062. }
  1063. vmap_area_pcpu_hole = VMALLOC_END;
  1064. vmap_initialized = true;
  1065. }
  1066. /**
  1067. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1068. * @addr: start of the VM area to map
  1069. * @size: size of the VM area to map
  1070. * @prot: page protection flags to use
  1071. * @pages: pages to map
  1072. *
  1073. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1074. * specify should have been allocated using get_vm_area() and its
  1075. * friends.
  1076. *
  1077. * NOTE:
  1078. * This function does NOT do any cache flushing. The caller is
  1079. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1080. * before calling this function.
  1081. *
  1082. * RETURNS:
  1083. * The number of pages mapped on success, -errno on failure.
  1084. */
  1085. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1086. pgprot_t prot, struct page **pages)
  1087. {
  1088. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1089. }
  1090. /**
  1091. * unmap_kernel_range_noflush - unmap kernel VM area
  1092. * @addr: start of the VM area to unmap
  1093. * @size: size of the VM area to unmap
  1094. *
  1095. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1096. * specify should have been allocated using get_vm_area() and its
  1097. * friends.
  1098. *
  1099. * NOTE:
  1100. * This function does NOT do any cache flushing. The caller is
  1101. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1102. * before calling this function and flush_tlb_kernel_range() after.
  1103. */
  1104. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1105. {
  1106. vunmap_page_range(addr, addr + size);
  1107. }
  1108. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1109. /**
  1110. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1111. * @addr: start of the VM area to unmap
  1112. * @size: size of the VM area to unmap
  1113. *
  1114. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1115. * the unmapping and tlb after.
  1116. */
  1117. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1118. {
  1119. unsigned long end = addr + size;
  1120. flush_cache_vunmap(addr, end);
  1121. vunmap_page_range(addr, end);
  1122. flush_tlb_kernel_range(addr, end);
  1123. }
  1124. EXPORT_SYMBOL_GPL(unmap_kernel_range);
  1125. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
  1126. {
  1127. unsigned long addr = (unsigned long)area->addr;
  1128. unsigned long end = addr + get_vm_area_size(area);
  1129. int err;
  1130. err = vmap_page_range(addr, end, prot, pages);
  1131. return err > 0 ? 0 : err;
  1132. }
  1133. EXPORT_SYMBOL_GPL(map_vm_area);
  1134. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1135. unsigned long flags, const void *caller)
  1136. {
  1137. spin_lock(&vmap_area_lock);
  1138. vm->flags = flags;
  1139. vm->addr = (void *)va->va_start;
  1140. vm->size = va->va_end - va->va_start;
  1141. vm->caller = caller;
  1142. va->vm = vm;
  1143. va->flags |= VM_VM_AREA;
  1144. spin_unlock(&vmap_area_lock);
  1145. }
  1146. static void clear_vm_uninitialized_flag(struct vm_struct *vm)
  1147. {
  1148. /*
  1149. * Before removing VM_UNINITIALIZED,
  1150. * we should make sure that vm has proper values.
  1151. * Pair with smp_rmb() in show_numa_info().
  1152. */
  1153. smp_wmb();
  1154. vm->flags &= ~VM_UNINITIALIZED;
  1155. }
  1156. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1157. unsigned long align, unsigned long flags, unsigned long start,
  1158. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1159. {
  1160. struct vmap_area *va;
  1161. struct vm_struct *area;
  1162. BUG_ON(in_interrupt());
  1163. size = PAGE_ALIGN(size);
  1164. if (unlikely(!size))
  1165. return NULL;
  1166. if (flags & VM_IOREMAP)
  1167. align = 1ul << clamp_t(int, get_count_order_long(size),
  1168. PAGE_SHIFT, IOREMAP_MAX_ORDER);
  1169. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1170. if (unlikely(!area))
  1171. return NULL;
  1172. if (!(flags & VM_NO_GUARD))
  1173. size += PAGE_SIZE;
  1174. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1175. if (IS_ERR(va)) {
  1176. kfree(area);
  1177. return NULL;
  1178. }
  1179. setup_vmalloc_vm(area, va, flags, caller);
  1180. return area;
  1181. }
  1182. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1183. unsigned long start, unsigned long end)
  1184. {
  1185. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1186. GFP_KERNEL, __builtin_return_address(0));
  1187. }
  1188. EXPORT_SYMBOL_GPL(__get_vm_area);
  1189. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1190. unsigned long start, unsigned long end,
  1191. const void *caller)
  1192. {
  1193. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1194. GFP_KERNEL, caller);
  1195. }
  1196. /**
  1197. * get_vm_area - reserve a contiguous kernel virtual area
  1198. * @size: size of the area
  1199. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1200. *
  1201. * Search an area of @size in the kernel virtual mapping area,
  1202. * and reserved it for out purposes. Returns the area descriptor
  1203. * on success or %NULL on failure.
  1204. */
  1205. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1206. {
  1207. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1208. NUMA_NO_NODE, GFP_KERNEL,
  1209. __builtin_return_address(0));
  1210. }
  1211. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1212. const void *caller)
  1213. {
  1214. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1215. NUMA_NO_NODE, GFP_KERNEL, caller);
  1216. }
  1217. /**
  1218. * find_vm_area - find a continuous kernel virtual area
  1219. * @addr: base address
  1220. *
  1221. * Search for the kernel VM area starting at @addr, and return it.
  1222. * It is up to the caller to do all required locking to keep the returned
  1223. * pointer valid.
  1224. */
  1225. struct vm_struct *find_vm_area(const void *addr)
  1226. {
  1227. struct vmap_area *va;
  1228. va = find_vmap_area((unsigned long)addr);
  1229. if (va && va->flags & VM_VM_AREA)
  1230. return va->vm;
  1231. return NULL;
  1232. }
  1233. /**
  1234. * remove_vm_area - find and remove a continuous kernel virtual area
  1235. * @addr: base address
  1236. *
  1237. * Search for the kernel VM area starting at @addr, and remove it.
  1238. * This function returns the found VM area, but using it is NOT safe
  1239. * on SMP machines, except for its size or flags.
  1240. */
  1241. struct vm_struct *remove_vm_area(const void *addr)
  1242. {
  1243. struct vmap_area *va;
  1244. va = find_vmap_area((unsigned long)addr);
  1245. if (va && va->flags & VM_VM_AREA) {
  1246. struct vm_struct *vm = va->vm;
  1247. spin_lock(&vmap_area_lock);
  1248. va->vm = NULL;
  1249. va->flags &= ~VM_VM_AREA;
  1250. spin_unlock(&vmap_area_lock);
  1251. vmap_debug_free_range(va->va_start, va->va_end);
  1252. kasan_free_shadow(vm);
  1253. free_unmap_vmap_area(va);
  1254. return vm;
  1255. }
  1256. return NULL;
  1257. }
  1258. static void __vunmap(const void *addr, int deallocate_pages)
  1259. {
  1260. struct vm_struct *area;
  1261. if (!addr)
  1262. return;
  1263. if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
  1264. addr))
  1265. return;
  1266. area = remove_vm_area(addr);
  1267. if (unlikely(!area)) {
  1268. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1269. addr);
  1270. return;
  1271. }
  1272. debug_check_no_locks_freed(addr, get_vm_area_size(area));
  1273. debug_check_no_obj_freed(addr, get_vm_area_size(area));
  1274. if (deallocate_pages) {
  1275. int i;
  1276. for (i = 0; i < area->nr_pages; i++) {
  1277. struct page *page = area->pages[i];
  1278. BUG_ON(!page);
  1279. __free_pages(page, 0);
  1280. }
  1281. kvfree(area->pages);
  1282. }
  1283. kfree(area);
  1284. return;
  1285. }
  1286. /**
  1287. * vfree - release memory allocated by vmalloc()
  1288. * @addr: memory base address
  1289. *
  1290. * Free the virtually continuous memory area starting at @addr, as
  1291. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1292. * NULL, no operation is performed.
  1293. *
  1294. * Must not be called in NMI context (strictly speaking, only if we don't
  1295. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1296. * conventions for vfree() arch-depenedent would be a really bad idea)
  1297. *
  1298. * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
  1299. */
  1300. void vfree(const void *addr)
  1301. {
  1302. BUG_ON(in_nmi());
  1303. kmemleak_free(addr);
  1304. if (!addr)
  1305. return;
  1306. if (unlikely(in_interrupt())) {
  1307. struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
  1308. if (llist_add((struct llist_node *)addr, &p->list))
  1309. schedule_work(&p->wq);
  1310. } else
  1311. __vunmap(addr, 1);
  1312. }
  1313. EXPORT_SYMBOL(vfree);
  1314. /**
  1315. * vunmap - release virtual mapping obtained by vmap()
  1316. * @addr: memory base address
  1317. *
  1318. * Free the virtually contiguous memory area starting at @addr,
  1319. * which was created from the page array passed to vmap().
  1320. *
  1321. * Must not be called in interrupt context.
  1322. */
  1323. void vunmap(const void *addr)
  1324. {
  1325. BUG_ON(in_interrupt());
  1326. might_sleep();
  1327. if (addr)
  1328. __vunmap(addr, 0);
  1329. }
  1330. EXPORT_SYMBOL(vunmap);
  1331. /**
  1332. * vmap - map an array of pages into virtually contiguous space
  1333. * @pages: array of page pointers
  1334. * @count: number of pages to map
  1335. * @flags: vm_area->flags
  1336. * @prot: page protection for the mapping
  1337. *
  1338. * Maps @count pages from @pages into contiguous kernel virtual
  1339. * space.
  1340. */
  1341. void *vmap(struct page **pages, unsigned int count,
  1342. unsigned long flags, pgprot_t prot)
  1343. {
  1344. struct vm_struct *area;
  1345. unsigned long size; /* In bytes */
  1346. might_sleep();
  1347. if (count > totalram_pages)
  1348. return NULL;
  1349. size = (unsigned long)count << PAGE_SHIFT;
  1350. area = get_vm_area_caller(size, flags, __builtin_return_address(0));
  1351. if (!area)
  1352. return NULL;
  1353. if (map_vm_area(area, prot, pages)) {
  1354. vunmap(area->addr);
  1355. return NULL;
  1356. }
  1357. return area->addr;
  1358. }
  1359. EXPORT_SYMBOL(vmap);
  1360. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1361. gfp_t gfp_mask, pgprot_t prot,
  1362. int node, const void *caller);
  1363. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1364. pgprot_t prot, int node)
  1365. {
  1366. struct page **pages;
  1367. unsigned int nr_pages, array_size, i;
  1368. const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1369. const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
  1370. nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
  1371. array_size = (nr_pages * sizeof(struct page *));
  1372. area->nr_pages = nr_pages;
  1373. /* Please note that the recursion is strictly bounded. */
  1374. if (array_size > PAGE_SIZE) {
  1375. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1376. PAGE_KERNEL, node, area->caller);
  1377. } else {
  1378. pages = kmalloc_node(array_size, nested_gfp, node);
  1379. }
  1380. area->pages = pages;
  1381. if (!area->pages) {
  1382. remove_vm_area(area->addr);
  1383. kfree(area);
  1384. return NULL;
  1385. }
  1386. for (i = 0; i < area->nr_pages; i++) {
  1387. struct page *page;
  1388. if (node == NUMA_NO_NODE)
  1389. page = alloc_page(alloc_mask);
  1390. else
  1391. page = alloc_pages_node(node, alloc_mask, 0);
  1392. if (unlikely(!page)) {
  1393. /* Successfully allocated i pages, free them in __vunmap() */
  1394. area->nr_pages = i;
  1395. goto fail;
  1396. }
  1397. area->pages[i] = page;
  1398. if (gfpflags_allow_blocking(gfp_mask))
  1399. cond_resched();
  1400. }
  1401. if (map_vm_area(area, prot, pages))
  1402. goto fail;
  1403. return area->addr;
  1404. fail:
  1405. warn_alloc(gfp_mask,
  1406. "vmalloc: allocation failure, allocated %ld of %ld bytes",
  1407. (area->nr_pages*PAGE_SIZE), area->size);
  1408. vfree(area->addr);
  1409. return NULL;
  1410. }
  1411. /**
  1412. * __vmalloc_node_range - allocate virtually contiguous memory
  1413. * @size: allocation size
  1414. * @align: desired alignment
  1415. * @start: vm area range start
  1416. * @end: vm area range end
  1417. * @gfp_mask: flags for the page level allocator
  1418. * @prot: protection mask for the allocated pages
  1419. * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
  1420. * @node: node to use for allocation or NUMA_NO_NODE
  1421. * @caller: caller's return address
  1422. *
  1423. * Allocate enough pages to cover @size from the page level
  1424. * allocator with @gfp_mask flags. Map them into contiguous
  1425. * kernel virtual space, using a pagetable protection of @prot.
  1426. */
  1427. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1428. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1429. pgprot_t prot, unsigned long vm_flags, int node,
  1430. const void *caller)
  1431. {
  1432. struct vm_struct *area;
  1433. void *addr;
  1434. unsigned long real_size = size;
  1435. size = PAGE_ALIGN(size);
  1436. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1437. goto fail;
  1438. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
  1439. vm_flags, start, end, node, gfp_mask, caller);
  1440. if (!area)
  1441. goto fail;
  1442. addr = __vmalloc_area_node(area, gfp_mask, prot, node);
  1443. if (!addr)
  1444. return NULL;
  1445. /*
  1446. * In this function, newly allocated vm_struct has VM_UNINITIALIZED
  1447. * flag. It means that vm_struct is not fully initialized.
  1448. * Now, it is fully initialized, so remove this flag here.
  1449. */
  1450. clear_vm_uninitialized_flag(area);
  1451. /*
  1452. * A ref_count = 2 is needed because vm_struct allocated in
  1453. * __get_vm_area_node() contains a reference to the virtual address of
  1454. * the vmalloc'ed block.
  1455. */
  1456. kmemleak_alloc(addr, real_size, 2, gfp_mask);
  1457. return addr;
  1458. fail:
  1459. warn_alloc(gfp_mask,
  1460. "vmalloc: allocation failure: %lu bytes", real_size);
  1461. return NULL;
  1462. }
  1463. /**
  1464. * __vmalloc_node - allocate virtually contiguous memory
  1465. * @size: allocation size
  1466. * @align: desired alignment
  1467. * @gfp_mask: flags for the page level allocator
  1468. * @prot: protection mask for the allocated pages
  1469. * @node: node to use for allocation or NUMA_NO_NODE
  1470. * @caller: caller's return address
  1471. *
  1472. * Allocate enough pages to cover @size from the page level
  1473. * allocator with @gfp_mask flags. Map them into contiguous
  1474. * kernel virtual space, using a pagetable protection of @prot.
  1475. */
  1476. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1477. gfp_t gfp_mask, pgprot_t prot,
  1478. int node, const void *caller)
  1479. {
  1480. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1481. gfp_mask, prot, 0, node, caller);
  1482. }
  1483. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1484. {
  1485. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1486. __builtin_return_address(0));
  1487. }
  1488. EXPORT_SYMBOL(__vmalloc);
  1489. static inline void *__vmalloc_node_flags(unsigned long size,
  1490. int node, gfp_t flags)
  1491. {
  1492. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1493. node, __builtin_return_address(0));
  1494. }
  1495. /**
  1496. * vmalloc - allocate virtually contiguous memory
  1497. * @size: allocation size
  1498. * Allocate enough pages to cover @size from the page level
  1499. * allocator and map them into contiguous kernel virtual space.
  1500. *
  1501. * For tight control over page level allocator and protection flags
  1502. * use __vmalloc() instead.
  1503. */
  1504. void *vmalloc(unsigned long size)
  1505. {
  1506. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1507. GFP_KERNEL | __GFP_HIGHMEM);
  1508. }
  1509. EXPORT_SYMBOL(vmalloc);
  1510. /**
  1511. * vzalloc - allocate virtually contiguous memory with zero fill
  1512. * @size: allocation size
  1513. * Allocate enough pages to cover @size from the page level
  1514. * allocator and map them into contiguous kernel virtual space.
  1515. * The memory allocated is set to zero.
  1516. *
  1517. * For tight control over page level allocator and protection flags
  1518. * use __vmalloc() instead.
  1519. */
  1520. void *vzalloc(unsigned long size)
  1521. {
  1522. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1523. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1524. }
  1525. EXPORT_SYMBOL(vzalloc);
  1526. /**
  1527. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1528. * @size: allocation size
  1529. *
  1530. * The resulting memory area is zeroed so it can be mapped to userspace
  1531. * without leaking data.
  1532. */
  1533. void *vmalloc_user(unsigned long size)
  1534. {
  1535. struct vm_struct *area;
  1536. void *ret;
  1537. ret = __vmalloc_node(size, SHMLBA,
  1538. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1539. PAGE_KERNEL, NUMA_NO_NODE,
  1540. __builtin_return_address(0));
  1541. if (ret) {
  1542. area = find_vm_area(ret);
  1543. area->flags |= VM_USERMAP;
  1544. }
  1545. return ret;
  1546. }
  1547. EXPORT_SYMBOL(vmalloc_user);
  1548. /**
  1549. * vmalloc_node - allocate memory on a specific node
  1550. * @size: allocation size
  1551. * @node: numa node
  1552. *
  1553. * Allocate enough pages to cover @size from the page level
  1554. * allocator and map them into contiguous kernel virtual space.
  1555. *
  1556. * For tight control over page level allocator and protection flags
  1557. * use __vmalloc() instead.
  1558. */
  1559. void *vmalloc_node(unsigned long size, int node)
  1560. {
  1561. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1562. node, __builtin_return_address(0));
  1563. }
  1564. EXPORT_SYMBOL(vmalloc_node);
  1565. /**
  1566. * vzalloc_node - allocate memory on a specific node with zero fill
  1567. * @size: allocation size
  1568. * @node: numa node
  1569. *
  1570. * Allocate enough pages to cover @size from the page level
  1571. * allocator and map them into contiguous kernel virtual space.
  1572. * The memory allocated is set to zero.
  1573. *
  1574. * For tight control over page level allocator and protection flags
  1575. * use __vmalloc_node() instead.
  1576. */
  1577. void *vzalloc_node(unsigned long size, int node)
  1578. {
  1579. return __vmalloc_node_flags(size, node,
  1580. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1581. }
  1582. EXPORT_SYMBOL(vzalloc_node);
  1583. #ifndef PAGE_KERNEL_EXEC
  1584. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1585. #endif
  1586. /**
  1587. * vmalloc_exec - allocate virtually contiguous, executable memory
  1588. * @size: allocation size
  1589. *
  1590. * Kernel-internal function to allocate enough pages to cover @size
  1591. * the page level allocator and map them into contiguous and
  1592. * executable kernel virtual space.
  1593. *
  1594. * For tight control over page level allocator and protection flags
  1595. * use __vmalloc() instead.
  1596. */
  1597. void *vmalloc_exec(unsigned long size)
  1598. {
  1599. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1600. NUMA_NO_NODE, __builtin_return_address(0));
  1601. }
  1602. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1603. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1604. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1605. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1606. #else
  1607. #define GFP_VMALLOC32 GFP_KERNEL
  1608. #endif
  1609. /**
  1610. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1611. * @size: allocation size
  1612. *
  1613. * Allocate enough 32bit PA addressable pages to cover @size from the
  1614. * page level allocator and map them into contiguous kernel virtual space.
  1615. */
  1616. void *vmalloc_32(unsigned long size)
  1617. {
  1618. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1619. NUMA_NO_NODE, __builtin_return_address(0));
  1620. }
  1621. EXPORT_SYMBOL(vmalloc_32);
  1622. /**
  1623. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1624. * @size: allocation size
  1625. *
  1626. * The resulting memory area is 32bit addressable and zeroed so it can be
  1627. * mapped to userspace without leaking data.
  1628. */
  1629. void *vmalloc_32_user(unsigned long size)
  1630. {
  1631. struct vm_struct *area;
  1632. void *ret;
  1633. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1634. NUMA_NO_NODE, __builtin_return_address(0));
  1635. if (ret) {
  1636. area = find_vm_area(ret);
  1637. area->flags |= VM_USERMAP;
  1638. }
  1639. return ret;
  1640. }
  1641. EXPORT_SYMBOL(vmalloc_32_user);
  1642. /*
  1643. * small helper routine , copy contents to buf from addr.
  1644. * If the page is not present, fill zero.
  1645. */
  1646. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1647. {
  1648. struct page *p;
  1649. int copied = 0;
  1650. while (count) {
  1651. unsigned long offset, length;
  1652. offset = offset_in_page(addr);
  1653. length = PAGE_SIZE - offset;
  1654. if (length > count)
  1655. length = count;
  1656. p = vmalloc_to_page(addr);
  1657. /*
  1658. * To do safe access to this _mapped_ area, we need
  1659. * lock. But adding lock here means that we need to add
  1660. * overhead of vmalloc()/vfree() calles for this _debug_
  1661. * interface, rarely used. Instead of that, we'll use
  1662. * kmap() and get small overhead in this access function.
  1663. */
  1664. if (p) {
  1665. /*
  1666. * we can expect USER0 is not used (see vread/vwrite's
  1667. * function description)
  1668. */
  1669. void *map = kmap_atomic(p);
  1670. memcpy(buf, map + offset, length);
  1671. kunmap_atomic(map);
  1672. } else
  1673. memset(buf, 0, length);
  1674. addr += length;
  1675. buf += length;
  1676. copied += length;
  1677. count -= length;
  1678. }
  1679. return copied;
  1680. }
  1681. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1682. {
  1683. struct page *p;
  1684. int copied = 0;
  1685. while (count) {
  1686. unsigned long offset, length;
  1687. offset = offset_in_page(addr);
  1688. length = PAGE_SIZE - offset;
  1689. if (length > count)
  1690. length = count;
  1691. p = vmalloc_to_page(addr);
  1692. /*
  1693. * To do safe access to this _mapped_ area, we need
  1694. * lock. But adding lock here means that we need to add
  1695. * overhead of vmalloc()/vfree() calles for this _debug_
  1696. * interface, rarely used. Instead of that, we'll use
  1697. * kmap() and get small overhead in this access function.
  1698. */
  1699. if (p) {
  1700. /*
  1701. * we can expect USER0 is not used (see vread/vwrite's
  1702. * function description)
  1703. */
  1704. void *map = kmap_atomic(p);
  1705. memcpy(map + offset, buf, length);
  1706. kunmap_atomic(map);
  1707. }
  1708. addr += length;
  1709. buf += length;
  1710. copied += length;
  1711. count -= length;
  1712. }
  1713. return copied;
  1714. }
  1715. /**
  1716. * vread() - read vmalloc area in a safe way.
  1717. * @buf: buffer for reading data
  1718. * @addr: vm address.
  1719. * @count: number of bytes to be read.
  1720. *
  1721. * Returns # of bytes which addr and buf should be increased.
  1722. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1723. * includes any intersect with alive vmalloc area.
  1724. *
  1725. * This function checks that addr is a valid vmalloc'ed area, and
  1726. * copy data from that area to a given buffer. If the given memory range
  1727. * of [addr...addr+count) includes some valid address, data is copied to
  1728. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1729. * IOREMAP area is treated as memory hole and no copy is done.
  1730. *
  1731. * If [addr...addr+count) doesn't includes any intersects with alive
  1732. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1733. *
  1734. * Note: In usual ops, vread() is never necessary because the caller
  1735. * should know vmalloc() area is valid and can use memcpy().
  1736. * This is for routines which have to access vmalloc area without
  1737. * any informaion, as /dev/kmem.
  1738. *
  1739. */
  1740. long vread(char *buf, char *addr, unsigned long count)
  1741. {
  1742. struct vmap_area *va;
  1743. struct vm_struct *vm;
  1744. char *vaddr, *buf_start = buf;
  1745. unsigned long buflen = count;
  1746. unsigned long n;
  1747. /* Don't allow overflow */
  1748. if ((unsigned long) addr + count < count)
  1749. count = -(unsigned long) addr;
  1750. spin_lock(&vmap_area_lock);
  1751. list_for_each_entry(va, &vmap_area_list, list) {
  1752. if (!count)
  1753. break;
  1754. if (!(va->flags & VM_VM_AREA))
  1755. continue;
  1756. vm = va->vm;
  1757. vaddr = (char *) vm->addr;
  1758. if (addr >= vaddr + get_vm_area_size(vm))
  1759. continue;
  1760. while (addr < vaddr) {
  1761. if (count == 0)
  1762. goto finished;
  1763. *buf = '\0';
  1764. buf++;
  1765. addr++;
  1766. count--;
  1767. }
  1768. n = vaddr + get_vm_area_size(vm) - addr;
  1769. if (n > count)
  1770. n = count;
  1771. if (!(vm->flags & VM_IOREMAP))
  1772. aligned_vread(buf, addr, n);
  1773. else /* IOREMAP area is treated as memory hole */
  1774. memset(buf, 0, n);
  1775. buf += n;
  1776. addr += n;
  1777. count -= n;
  1778. }
  1779. finished:
  1780. spin_unlock(&vmap_area_lock);
  1781. if (buf == buf_start)
  1782. return 0;
  1783. /* zero-fill memory holes */
  1784. if (buf != buf_start + buflen)
  1785. memset(buf, 0, buflen - (buf - buf_start));
  1786. return buflen;
  1787. }
  1788. /**
  1789. * vwrite() - write vmalloc area in a safe way.
  1790. * @buf: buffer for source data
  1791. * @addr: vm address.
  1792. * @count: number of bytes to be read.
  1793. *
  1794. * Returns # of bytes which addr and buf should be incresed.
  1795. * (same number to @count).
  1796. * If [addr...addr+count) doesn't includes any intersect with valid
  1797. * vmalloc area, returns 0.
  1798. *
  1799. * This function checks that addr is a valid vmalloc'ed area, and
  1800. * copy data from a buffer to the given addr. If specified range of
  1801. * [addr...addr+count) includes some valid address, data is copied from
  1802. * proper area of @buf. If there are memory holes, no copy to hole.
  1803. * IOREMAP area is treated as memory hole and no copy is done.
  1804. *
  1805. * If [addr...addr+count) doesn't includes any intersects with alive
  1806. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1807. *
  1808. * Note: In usual ops, vwrite() is never necessary because the caller
  1809. * should know vmalloc() area is valid and can use memcpy().
  1810. * This is for routines which have to access vmalloc area without
  1811. * any informaion, as /dev/kmem.
  1812. */
  1813. long vwrite(char *buf, char *addr, unsigned long count)
  1814. {
  1815. struct vmap_area *va;
  1816. struct vm_struct *vm;
  1817. char *vaddr;
  1818. unsigned long n, buflen;
  1819. int copied = 0;
  1820. /* Don't allow overflow */
  1821. if ((unsigned long) addr + count < count)
  1822. count = -(unsigned long) addr;
  1823. buflen = count;
  1824. spin_lock(&vmap_area_lock);
  1825. list_for_each_entry(va, &vmap_area_list, list) {
  1826. if (!count)
  1827. break;
  1828. if (!(va->flags & VM_VM_AREA))
  1829. continue;
  1830. vm = va->vm;
  1831. vaddr = (char *) vm->addr;
  1832. if (addr >= vaddr + get_vm_area_size(vm))
  1833. continue;
  1834. while (addr < vaddr) {
  1835. if (count == 0)
  1836. goto finished;
  1837. buf++;
  1838. addr++;
  1839. count--;
  1840. }
  1841. n = vaddr + get_vm_area_size(vm) - addr;
  1842. if (n > count)
  1843. n = count;
  1844. if (!(vm->flags & VM_IOREMAP)) {
  1845. aligned_vwrite(buf, addr, n);
  1846. copied++;
  1847. }
  1848. buf += n;
  1849. addr += n;
  1850. count -= n;
  1851. }
  1852. finished:
  1853. spin_unlock(&vmap_area_lock);
  1854. if (!copied)
  1855. return 0;
  1856. return buflen;
  1857. }
  1858. /**
  1859. * remap_vmalloc_range_partial - map vmalloc pages to userspace
  1860. * @vma: vma to cover
  1861. * @uaddr: target user address to start at
  1862. * @kaddr: virtual address of vmalloc kernel memory
  1863. * @size: size of map area
  1864. *
  1865. * Returns: 0 for success, -Exxx on failure
  1866. *
  1867. * This function checks that @kaddr is a valid vmalloc'ed area,
  1868. * and that it is big enough to cover the range starting at
  1869. * @uaddr in @vma. Will return failure if that criteria isn't
  1870. * met.
  1871. *
  1872. * Similar to remap_pfn_range() (see mm/memory.c)
  1873. */
  1874. int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
  1875. void *kaddr, unsigned long size)
  1876. {
  1877. struct vm_struct *area;
  1878. size = PAGE_ALIGN(size);
  1879. if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
  1880. return -EINVAL;
  1881. area = find_vm_area(kaddr);
  1882. if (!area)
  1883. return -EINVAL;
  1884. if (!(area->flags & VM_USERMAP))
  1885. return -EINVAL;
  1886. if (kaddr + size > area->addr + area->size)
  1887. return -EINVAL;
  1888. do {
  1889. struct page *page = vmalloc_to_page(kaddr);
  1890. int ret;
  1891. ret = vm_insert_page(vma, uaddr, page);
  1892. if (ret)
  1893. return ret;
  1894. uaddr += PAGE_SIZE;
  1895. kaddr += PAGE_SIZE;
  1896. size -= PAGE_SIZE;
  1897. } while (size > 0);
  1898. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1899. return 0;
  1900. }
  1901. EXPORT_SYMBOL(remap_vmalloc_range_partial);
  1902. /**
  1903. * remap_vmalloc_range - map vmalloc pages to userspace
  1904. * @vma: vma to cover (map full range of vma)
  1905. * @addr: vmalloc memory
  1906. * @pgoff: number of pages into addr before first page to map
  1907. *
  1908. * Returns: 0 for success, -Exxx on failure
  1909. *
  1910. * This function checks that addr is a valid vmalloc'ed area, and
  1911. * that it is big enough to cover the vma. Will return failure if
  1912. * that criteria isn't met.
  1913. *
  1914. * Similar to remap_pfn_range() (see mm/memory.c)
  1915. */
  1916. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1917. unsigned long pgoff)
  1918. {
  1919. return remap_vmalloc_range_partial(vma, vma->vm_start,
  1920. addr + (pgoff << PAGE_SHIFT),
  1921. vma->vm_end - vma->vm_start);
  1922. }
  1923. EXPORT_SYMBOL(remap_vmalloc_range);
  1924. /*
  1925. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1926. * have one.
  1927. */
  1928. void __weak vmalloc_sync_all(void)
  1929. {
  1930. }
  1931. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1932. {
  1933. pte_t ***p = data;
  1934. if (p) {
  1935. *(*p) = pte;
  1936. (*p)++;
  1937. }
  1938. return 0;
  1939. }
  1940. /**
  1941. * alloc_vm_area - allocate a range of kernel address space
  1942. * @size: size of the area
  1943. * @ptes: returns the PTEs for the address space
  1944. *
  1945. * Returns: NULL on failure, vm_struct on success
  1946. *
  1947. * This function reserves a range of kernel address space, and
  1948. * allocates pagetables to map that range. No actual mappings
  1949. * are created.
  1950. *
  1951. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1952. * allocated for the VM area are returned.
  1953. */
  1954. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1955. {
  1956. struct vm_struct *area;
  1957. area = get_vm_area_caller(size, VM_IOREMAP,
  1958. __builtin_return_address(0));
  1959. if (area == NULL)
  1960. return NULL;
  1961. /*
  1962. * This ensures that page tables are constructed for this region
  1963. * of kernel virtual address space and mapped into init_mm.
  1964. */
  1965. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1966. size, f, ptes ? &ptes : NULL)) {
  1967. free_vm_area(area);
  1968. return NULL;
  1969. }
  1970. return area;
  1971. }
  1972. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1973. void free_vm_area(struct vm_struct *area)
  1974. {
  1975. struct vm_struct *ret;
  1976. ret = remove_vm_area(area->addr);
  1977. BUG_ON(ret != area);
  1978. kfree(area);
  1979. }
  1980. EXPORT_SYMBOL_GPL(free_vm_area);
  1981. #ifdef CONFIG_SMP
  1982. static struct vmap_area *node_to_va(struct rb_node *n)
  1983. {
  1984. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1985. }
  1986. /**
  1987. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1988. * @end: target address
  1989. * @pnext: out arg for the next vmap_area
  1990. * @pprev: out arg for the previous vmap_area
  1991. *
  1992. * Returns: %true if either or both of next and prev are found,
  1993. * %false if no vmap_area exists
  1994. *
  1995. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1996. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1997. */
  1998. static bool pvm_find_next_prev(unsigned long end,
  1999. struct vmap_area **pnext,
  2000. struct vmap_area **pprev)
  2001. {
  2002. struct rb_node *n = vmap_area_root.rb_node;
  2003. struct vmap_area *va = NULL;
  2004. while (n) {
  2005. va = rb_entry(n, struct vmap_area, rb_node);
  2006. if (end < va->va_end)
  2007. n = n->rb_left;
  2008. else if (end > va->va_end)
  2009. n = n->rb_right;
  2010. else
  2011. break;
  2012. }
  2013. if (!va)
  2014. return false;
  2015. if (va->va_end > end) {
  2016. *pnext = va;
  2017. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2018. } else {
  2019. *pprev = va;
  2020. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2021. }
  2022. return true;
  2023. }
  2024. /**
  2025. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2026. * @pnext: in/out arg for the next vmap_area
  2027. * @pprev: in/out arg for the previous vmap_area
  2028. * @align: alignment
  2029. *
  2030. * Returns: determined end address
  2031. *
  2032. * Find the highest aligned address between *@pnext and *@pprev below
  2033. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2034. * down address is between the end addresses of the two vmap_areas.
  2035. *
  2036. * Please note that the address returned by this function may fall
  2037. * inside *@pnext vmap_area. The caller is responsible for checking
  2038. * that.
  2039. */
  2040. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2041. struct vmap_area **pprev,
  2042. unsigned long align)
  2043. {
  2044. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2045. unsigned long addr;
  2046. if (*pnext)
  2047. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2048. else
  2049. addr = vmalloc_end;
  2050. while (*pprev && (*pprev)->va_end > addr) {
  2051. *pnext = *pprev;
  2052. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2053. }
  2054. return addr;
  2055. }
  2056. /**
  2057. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2058. * @offsets: array containing offset of each area
  2059. * @sizes: array containing size of each area
  2060. * @nr_vms: the number of areas to allocate
  2061. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2062. *
  2063. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2064. * vm_structs on success, %NULL on failure
  2065. *
  2066. * Percpu allocator wants to use congruent vm areas so that it can
  2067. * maintain the offsets among percpu areas. This function allocates
  2068. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2069. * be scattered pretty far, distance between two areas easily going up
  2070. * to gigabytes. To avoid interacting with regular vmallocs, these
  2071. * areas are allocated from top.
  2072. *
  2073. * Despite its complicated look, this allocator is rather simple. It
  2074. * does everything top-down and scans areas from the end looking for
  2075. * matching slot. While scanning, if any of the areas overlaps with
  2076. * existing vmap_area, the base address is pulled down to fit the
  2077. * area. Scanning is repeated till all the areas fit and then all
  2078. * necessary data structres are inserted and the result is returned.
  2079. */
  2080. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2081. const size_t *sizes, int nr_vms,
  2082. size_t align)
  2083. {
  2084. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2085. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2086. struct vmap_area **vas, *prev, *next;
  2087. struct vm_struct **vms;
  2088. int area, area2, last_area, term_area;
  2089. unsigned long base, start, end, last_end;
  2090. bool purged = false;
  2091. /* verify parameters and allocate data structures */
  2092. BUG_ON(offset_in_page(align) || !is_power_of_2(align));
  2093. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2094. start = offsets[area];
  2095. end = start + sizes[area];
  2096. /* is everything aligned properly? */
  2097. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2098. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2099. /* detect the area with the highest address */
  2100. if (start > offsets[last_area])
  2101. last_area = area;
  2102. for (area2 = 0; area2 < nr_vms; area2++) {
  2103. unsigned long start2 = offsets[area2];
  2104. unsigned long end2 = start2 + sizes[area2];
  2105. if (area2 == area)
  2106. continue;
  2107. BUG_ON(start2 >= start && start2 < end);
  2108. BUG_ON(end2 <= end && end2 > start);
  2109. }
  2110. }
  2111. last_end = offsets[last_area] + sizes[last_area];
  2112. if (vmalloc_end - vmalloc_start < last_end) {
  2113. WARN_ON(true);
  2114. return NULL;
  2115. }
  2116. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2117. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2118. if (!vas || !vms)
  2119. goto err_free2;
  2120. for (area = 0; area < nr_vms; area++) {
  2121. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2122. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2123. if (!vas[area] || !vms[area])
  2124. goto err_free;
  2125. }
  2126. retry:
  2127. spin_lock(&vmap_area_lock);
  2128. /* start scanning - we scan from the top, begin with the last area */
  2129. area = term_area = last_area;
  2130. start = offsets[area];
  2131. end = start + sizes[area];
  2132. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2133. base = vmalloc_end - last_end;
  2134. goto found;
  2135. }
  2136. base = pvm_determine_end(&next, &prev, align) - end;
  2137. while (true) {
  2138. BUG_ON(next && next->va_end <= base + end);
  2139. BUG_ON(prev && prev->va_end > base + end);
  2140. /*
  2141. * base might have underflowed, add last_end before
  2142. * comparing.
  2143. */
  2144. if (base + last_end < vmalloc_start + last_end) {
  2145. spin_unlock(&vmap_area_lock);
  2146. if (!purged) {
  2147. purge_vmap_area_lazy();
  2148. purged = true;
  2149. goto retry;
  2150. }
  2151. goto err_free;
  2152. }
  2153. /*
  2154. * If next overlaps, move base downwards so that it's
  2155. * right below next and then recheck.
  2156. */
  2157. if (next && next->va_start < base + end) {
  2158. base = pvm_determine_end(&next, &prev, align) - end;
  2159. term_area = area;
  2160. continue;
  2161. }
  2162. /*
  2163. * If prev overlaps, shift down next and prev and move
  2164. * base so that it's right below new next and then
  2165. * recheck.
  2166. */
  2167. if (prev && prev->va_end > base + start) {
  2168. next = prev;
  2169. prev = node_to_va(rb_prev(&next->rb_node));
  2170. base = pvm_determine_end(&next, &prev, align) - end;
  2171. term_area = area;
  2172. continue;
  2173. }
  2174. /*
  2175. * This area fits, move on to the previous one. If
  2176. * the previous one is the terminal one, we're done.
  2177. */
  2178. area = (area + nr_vms - 1) % nr_vms;
  2179. if (area == term_area)
  2180. break;
  2181. start = offsets[area];
  2182. end = start + sizes[area];
  2183. pvm_find_next_prev(base + end, &next, &prev);
  2184. }
  2185. found:
  2186. /* we've found a fitting base, insert all va's */
  2187. for (area = 0; area < nr_vms; area++) {
  2188. struct vmap_area *va = vas[area];
  2189. va->va_start = base + offsets[area];
  2190. va->va_end = va->va_start + sizes[area];
  2191. __insert_vmap_area(va);
  2192. }
  2193. vmap_area_pcpu_hole = base + offsets[last_area];
  2194. spin_unlock(&vmap_area_lock);
  2195. /* insert all vm's */
  2196. for (area = 0; area < nr_vms; area++)
  2197. setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2198. pcpu_get_vm_areas);
  2199. kfree(vas);
  2200. return vms;
  2201. err_free:
  2202. for (area = 0; area < nr_vms; area++) {
  2203. kfree(vas[area]);
  2204. kfree(vms[area]);
  2205. }
  2206. err_free2:
  2207. kfree(vas);
  2208. kfree(vms);
  2209. return NULL;
  2210. }
  2211. /**
  2212. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2213. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2214. * @nr_vms: the number of allocated areas
  2215. *
  2216. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2217. */
  2218. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2219. {
  2220. int i;
  2221. for (i = 0; i < nr_vms; i++)
  2222. free_vm_area(vms[i]);
  2223. kfree(vms);
  2224. }
  2225. #endif /* CONFIG_SMP */
  2226. #ifdef CONFIG_PROC_FS
  2227. static void *s_start(struct seq_file *m, loff_t *pos)
  2228. __acquires(&vmap_area_lock)
  2229. {
  2230. loff_t n = *pos;
  2231. struct vmap_area *va;
  2232. spin_lock(&vmap_area_lock);
  2233. va = list_first_entry(&vmap_area_list, typeof(*va), list);
  2234. while (n > 0 && &va->list != &vmap_area_list) {
  2235. n--;
  2236. va = list_next_entry(va, list);
  2237. }
  2238. if (!n && &va->list != &vmap_area_list)
  2239. return va;
  2240. return NULL;
  2241. }
  2242. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2243. {
  2244. struct vmap_area *va = p, *next;
  2245. ++*pos;
  2246. next = list_next_entry(va, list);
  2247. if (&next->list != &vmap_area_list)
  2248. return next;
  2249. return NULL;
  2250. }
  2251. static void s_stop(struct seq_file *m, void *p)
  2252. __releases(&vmap_area_lock)
  2253. {
  2254. spin_unlock(&vmap_area_lock);
  2255. }
  2256. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2257. {
  2258. if (IS_ENABLED(CONFIG_NUMA)) {
  2259. unsigned int nr, *counters = m->private;
  2260. if (!counters)
  2261. return;
  2262. if (v->flags & VM_UNINITIALIZED)
  2263. return;
  2264. /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
  2265. smp_rmb();
  2266. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2267. for (nr = 0; nr < v->nr_pages; nr++)
  2268. counters[page_to_nid(v->pages[nr])]++;
  2269. for_each_node_state(nr, N_HIGH_MEMORY)
  2270. if (counters[nr])
  2271. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2272. }
  2273. }
  2274. static int s_show(struct seq_file *m, void *p)
  2275. {
  2276. struct vmap_area *va = p;
  2277. struct vm_struct *v;
  2278. /*
  2279. * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
  2280. * behalf of vmap area is being tear down or vm_map_ram allocation.
  2281. */
  2282. if (!(va->flags & VM_VM_AREA))
  2283. return 0;
  2284. v = va->vm;
  2285. seq_printf(m, "0x%pK-0x%pK %7ld",
  2286. v->addr, v->addr + v->size, v->size);
  2287. if (v->caller)
  2288. seq_printf(m, " %pS", v->caller);
  2289. if (v->nr_pages)
  2290. seq_printf(m, " pages=%d", v->nr_pages);
  2291. if (v->phys_addr)
  2292. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2293. if (v->flags & VM_IOREMAP)
  2294. seq_puts(m, " ioremap");
  2295. if (v->flags & VM_ALLOC)
  2296. seq_puts(m, " vmalloc");
  2297. if (v->flags & VM_MAP)
  2298. seq_puts(m, " vmap");
  2299. if (v->flags & VM_USERMAP)
  2300. seq_puts(m, " user");
  2301. if (is_vmalloc_addr(v->pages))
  2302. seq_puts(m, " vpages");
  2303. show_numa_info(m, v);
  2304. seq_putc(m, '\n');
  2305. return 0;
  2306. }
  2307. static const struct seq_operations vmalloc_op = {
  2308. .start = s_start,
  2309. .next = s_next,
  2310. .stop = s_stop,
  2311. .show = s_show,
  2312. };
  2313. static int vmalloc_open(struct inode *inode, struct file *file)
  2314. {
  2315. if (IS_ENABLED(CONFIG_NUMA))
  2316. return seq_open_private(file, &vmalloc_op,
  2317. nr_node_ids * sizeof(unsigned int));
  2318. else
  2319. return seq_open(file, &vmalloc_op);
  2320. }
  2321. static const struct file_operations proc_vmalloc_operations = {
  2322. .open = vmalloc_open,
  2323. .read = seq_read,
  2324. .llseek = seq_lseek,
  2325. .release = seq_release_private,
  2326. };
  2327. static int __init proc_vmalloc_init(void)
  2328. {
  2329. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2330. return 0;
  2331. }
  2332. module_init(proc_vmalloc_init);
  2333. #endif