traps.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
  12. * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
  13. * Copyright (C) 2014, Imagination Technologies Ltd.
  14. */
  15. #include <linux/bitops.h>
  16. #include <linux/bug.h>
  17. #include <linux/compiler.h>
  18. #include <linux/context_tracking.h>
  19. #include <linux/cpu_pm.h>
  20. #include <linux/kexec.h>
  21. #include <linux/init.h>
  22. #include <linux/kernel.h>
  23. #include <linux/module.h>
  24. #include <linux/extable.h>
  25. #include <linux/mm.h>
  26. #include <linux/sched/mm.h>
  27. #include <linux/sched/debug.h>
  28. #include <linux/smp.h>
  29. #include <linux/spinlock.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/kgdb.h>
  35. #include <linux/kdebug.h>
  36. #include <linux/kprobes.h>
  37. #include <linux/notifier.h>
  38. #include <linux/kdb.h>
  39. #include <linux/irq.h>
  40. #include <linux/perf_event.h>
  41. #include <asm/addrspace.h>
  42. #include <asm/bootinfo.h>
  43. #include <asm/branch.h>
  44. #include <asm/break.h>
  45. #include <asm/cop2.h>
  46. #include <asm/cpu.h>
  47. #include <asm/cpu-type.h>
  48. #include <asm/dsp.h>
  49. #include <asm/fpu.h>
  50. #include <asm/fpu_emulator.h>
  51. #include <asm/idle.h>
  52. #include <asm/mips-cps.h>
  53. #include <asm/mips-r2-to-r6-emul.h>
  54. #include <asm/mipsregs.h>
  55. #include <asm/mipsmtregs.h>
  56. #include <asm/module.h>
  57. #include <asm/msa.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/ptrace.h>
  60. #include <asm/sections.h>
  61. #include <asm/siginfo.h>
  62. #include <asm/tlbdebug.h>
  63. #include <asm/traps.h>
  64. #include <linux/uaccess.h>
  65. #include <asm/watch.h>
  66. #include <asm/mmu_context.h>
  67. #include <asm/types.h>
  68. #include <asm/stacktrace.h>
  69. #include <asm/uasm.h>
  70. extern void check_wait(void);
  71. extern asmlinkage void rollback_handle_int(void);
  72. extern asmlinkage void handle_int(void);
  73. extern u32 handle_tlbl[];
  74. extern u32 handle_tlbs[];
  75. extern u32 handle_tlbm[];
  76. extern asmlinkage void handle_adel(void);
  77. extern asmlinkage void handle_ades(void);
  78. extern asmlinkage void handle_ibe(void);
  79. extern asmlinkage void handle_dbe(void);
  80. extern asmlinkage void handle_sys(void);
  81. extern asmlinkage void handle_bp(void);
  82. extern asmlinkage void handle_ri(void);
  83. extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  84. extern asmlinkage void handle_ri_rdhwr(void);
  85. extern asmlinkage void handle_cpu(void);
  86. extern asmlinkage void handle_ov(void);
  87. extern asmlinkage void handle_tr(void);
  88. extern asmlinkage void handle_msa_fpe(void);
  89. extern asmlinkage void handle_fpe(void);
  90. extern asmlinkage void handle_ftlb(void);
  91. extern asmlinkage void handle_msa(void);
  92. extern asmlinkage void handle_mdmx(void);
  93. extern asmlinkage void handle_watch(void);
  94. extern asmlinkage void handle_mt(void);
  95. extern asmlinkage void handle_dsp(void);
  96. extern asmlinkage void handle_mcheck(void);
  97. extern asmlinkage void handle_reserved(void);
  98. extern void tlb_do_page_fault_0(void);
  99. void (*board_be_init)(void);
  100. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  101. void (*board_nmi_handler_setup)(void);
  102. void (*board_ejtag_handler_setup)(void);
  103. void (*board_bind_eic_interrupt)(int irq, int regset);
  104. void (*board_ebase_setup)(void);
  105. void(*board_cache_error_setup)(void);
  106. static void show_raw_backtrace(unsigned long reg29)
  107. {
  108. unsigned long *sp = (unsigned long *)(reg29 & ~3);
  109. unsigned long addr;
  110. printk("Call Trace:");
  111. #ifdef CONFIG_KALLSYMS
  112. printk("\n");
  113. #endif
  114. while (!kstack_end(sp)) {
  115. unsigned long __user *p =
  116. (unsigned long __user *)(unsigned long)sp++;
  117. if (__get_user(addr, p)) {
  118. printk(" (Bad stack address)");
  119. break;
  120. }
  121. if (__kernel_text_address(addr))
  122. print_ip_sym(addr);
  123. }
  124. printk("\n");
  125. }
  126. #ifdef CONFIG_KALLSYMS
  127. int raw_show_trace;
  128. static int __init set_raw_show_trace(char *str)
  129. {
  130. raw_show_trace = 1;
  131. return 1;
  132. }
  133. __setup("raw_show_trace", set_raw_show_trace);
  134. #endif
  135. static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
  136. {
  137. unsigned long sp = regs->regs[29];
  138. unsigned long ra = regs->regs[31];
  139. unsigned long pc = regs->cp0_epc;
  140. if (!task)
  141. task = current;
  142. if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
  143. show_raw_backtrace(sp);
  144. return;
  145. }
  146. printk("Call Trace:\n");
  147. do {
  148. print_ip_sym(pc);
  149. pc = unwind_stack(task, &sp, pc, &ra);
  150. } while (pc);
  151. pr_cont("\n");
  152. }
  153. /*
  154. * This routine abuses get_user()/put_user() to reference pointers
  155. * with at least a bit of error checking ...
  156. */
  157. static void show_stacktrace(struct task_struct *task,
  158. const struct pt_regs *regs)
  159. {
  160. const int field = 2 * sizeof(unsigned long);
  161. long stackdata;
  162. int i;
  163. unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
  164. printk("Stack :");
  165. i = 0;
  166. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  167. if (i && ((i % (64 / field)) == 0)) {
  168. pr_cont("\n");
  169. printk(" ");
  170. }
  171. if (i > 39) {
  172. pr_cont(" ...");
  173. break;
  174. }
  175. if (__get_user(stackdata, sp++)) {
  176. pr_cont(" (Bad stack address)");
  177. break;
  178. }
  179. pr_cont(" %0*lx", field, stackdata);
  180. i++;
  181. }
  182. pr_cont("\n");
  183. show_backtrace(task, regs);
  184. }
  185. void show_stack(struct task_struct *task, unsigned long *sp)
  186. {
  187. struct pt_regs regs;
  188. mm_segment_t old_fs = get_fs();
  189. regs.cp0_status = KSU_KERNEL;
  190. if (sp) {
  191. regs.regs[29] = (unsigned long)sp;
  192. regs.regs[31] = 0;
  193. regs.cp0_epc = 0;
  194. } else {
  195. if (task && task != current) {
  196. regs.regs[29] = task->thread.reg29;
  197. regs.regs[31] = 0;
  198. regs.cp0_epc = task->thread.reg31;
  199. #ifdef CONFIG_KGDB_KDB
  200. } else if (atomic_read(&kgdb_active) != -1 &&
  201. kdb_current_regs) {
  202. memcpy(&regs, kdb_current_regs, sizeof(regs));
  203. #endif /* CONFIG_KGDB_KDB */
  204. } else {
  205. prepare_frametrace(&regs);
  206. }
  207. }
  208. /*
  209. * show_stack() deals exclusively with kernel mode, so be sure to access
  210. * the stack in the kernel (not user) address space.
  211. */
  212. set_fs(KERNEL_DS);
  213. show_stacktrace(task, &regs);
  214. set_fs(old_fs);
  215. }
  216. static void show_code(unsigned int __user *pc)
  217. {
  218. long i;
  219. unsigned short __user *pc16 = NULL;
  220. printk("Code:");
  221. if ((unsigned long)pc & 1)
  222. pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
  223. for(i = -3 ; i < 6 ; i++) {
  224. unsigned int insn;
  225. if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
  226. pr_cont(" (Bad address in epc)\n");
  227. break;
  228. }
  229. pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
  230. }
  231. pr_cont("\n");
  232. }
  233. static void __show_regs(const struct pt_regs *regs)
  234. {
  235. const int field = 2 * sizeof(unsigned long);
  236. unsigned int cause = regs->cp0_cause;
  237. unsigned int exccode;
  238. int i;
  239. show_regs_print_info(KERN_DEFAULT);
  240. /*
  241. * Saved main processor registers
  242. */
  243. for (i = 0; i < 32; ) {
  244. if ((i % 4) == 0)
  245. printk("$%2d :", i);
  246. if (i == 0)
  247. pr_cont(" %0*lx", field, 0UL);
  248. else if (i == 26 || i == 27)
  249. pr_cont(" %*s", field, "");
  250. else
  251. pr_cont(" %0*lx", field, regs->regs[i]);
  252. i++;
  253. if ((i % 4) == 0)
  254. pr_cont("\n");
  255. }
  256. #ifdef CONFIG_CPU_HAS_SMARTMIPS
  257. printk("Acx : %0*lx\n", field, regs->acx);
  258. #endif
  259. printk("Hi : %0*lx\n", field, regs->hi);
  260. printk("Lo : %0*lx\n", field, regs->lo);
  261. /*
  262. * Saved cp0 registers
  263. */
  264. printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
  265. (void *) regs->cp0_epc);
  266. printk("ra : %0*lx %pS\n", field, regs->regs[31],
  267. (void *) regs->regs[31]);
  268. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  269. if (cpu_has_3kex) {
  270. if (regs->cp0_status & ST0_KUO)
  271. pr_cont("KUo ");
  272. if (regs->cp0_status & ST0_IEO)
  273. pr_cont("IEo ");
  274. if (regs->cp0_status & ST0_KUP)
  275. pr_cont("KUp ");
  276. if (regs->cp0_status & ST0_IEP)
  277. pr_cont("IEp ");
  278. if (regs->cp0_status & ST0_KUC)
  279. pr_cont("KUc ");
  280. if (regs->cp0_status & ST0_IEC)
  281. pr_cont("IEc ");
  282. } else if (cpu_has_4kex) {
  283. if (regs->cp0_status & ST0_KX)
  284. pr_cont("KX ");
  285. if (regs->cp0_status & ST0_SX)
  286. pr_cont("SX ");
  287. if (regs->cp0_status & ST0_UX)
  288. pr_cont("UX ");
  289. switch (regs->cp0_status & ST0_KSU) {
  290. case KSU_USER:
  291. pr_cont("USER ");
  292. break;
  293. case KSU_SUPERVISOR:
  294. pr_cont("SUPERVISOR ");
  295. break;
  296. case KSU_KERNEL:
  297. pr_cont("KERNEL ");
  298. break;
  299. default:
  300. pr_cont("BAD_MODE ");
  301. break;
  302. }
  303. if (regs->cp0_status & ST0_ERL)
  304. pr_cont("ERL ");
  305. if (regs->cp0_status & ST0_EXL)
  306. pr_cont("EXL ");
  307. if (regs->cp0_status & ST0_IE)
  308. pr_cont("IE ");
  309. }
  310. pr_cont("\n");
  311. exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  312. printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
  313. if (1 <= exccode && exccode <= 5)
  314. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  315. printk("PrId : %08x (%s)\n", read_c0_prid(),
  316. cpu_name_string());
  317. }
  318. /*
  319. * FIXME: really the generic show_regs should take a const pointer argument.
  320. */
  321. void show_regs(struct pt_regs *regs)
  322. {
  323. __show_regs((struct pt_regs *)regs);
  324. dump_stack();
  325. }
  326. void show_registers(struct pt_regs *regs)
  327. {
  328. const int field = 2 * sizeof(unsigned long);
  329. mm_segment_t old_fs = get_fs();
  330. __show_regs(regs);
  331. print_modules();
  332. printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
  333. current->comm, current->pid, current_thread_info(), current,
  334. field, current_thread_info()->tp_value);
  335. if (cpu_has_userlocal) {
  336. unsigned long tls;
  337. tls = read_c0_userlocal();
  338. if (tls != current_thread_info()->tp_value)
  339. printk("*HwTLS: %0*lx\n", field, tls);
  340. }
  341. if (!user_mode(regs))
  342. /* Necessary for getting the correct stack content */
  343. set_fs(KERNEL_DS);
  344. show_stacktrace(current, regs);
  345. show_code((unsigned int __user *) regs->cp0_epc);
  346. printk("\n");
  347. set_fs(old_fs);
  348. }
  349. static DEFINE_RAW_SPINLOCK(die_lock);
  350. void __noreturn die(const char *str, struct pt_regs *regs)
  351. {
  352. static int die_counter;
  353. int sig = SIGSEGV;
  354. oops_enter();
  355. if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
  356. SIGSEGV) == NOTIFY_STOP)
  357. sig = 0;
  358. console_verbose();
  359. raw_spin_lock_irq(&die_lock);
  360. bust_spinlocks(1);
  361. printk("%s[#%d]:\n", str, ++die_counter);
  362. show_registers(regs);
  363. add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
  364. raw_spin_unlock_irq(&die_lock);
  365. oops_exit();
  366. if (in_interrupt())
  367. panic("Fatal exception in interrupt");
  368. if (panic_on_oops)
  369. panic("Fatal exception");
  370. if (regs && kexec_should_crash(current))
  371. crash_kexec(regs);
  372. do_exit(sig);
  373. }
  374. extern struct exception_table_entry __start___dbe_table[];
  375. extern struct exception_table_entry __stop___dbe_table[];
  376. __asm__(
  377. " .section __dbe_table, \"a\"\n"
  378. " .previous \n");
  379. /* Given an address, look for it in the exception tables. */
  380. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  381. {
  382. const struct exception_table_entry *e;
  383. e = search_extable(__start___dbe_table,
  384. __stop___dbe_table - __start___dbe_table, addr);
  385. if (!e)
  386. e = search_module_dbetables(addr);
  387. return e;
  388. }
  389. asmlinkage void do_be(struct pt_regs *regs)
  390. {
  391. const int field = 2 * sizeof(unsigned long);
  392. const struct exception_table_entry *fixup = NULL;
  393. int data = regs->cp0_cause & 4;
  394. int action = MIPS_BE_FATAL;
  395. enum ctx_state prev_state;
  396. prev_state = exception_enter();
  397. /* XXX For now. Fixme, this searches the wrong table ... */
  398. if (data && !user_mode(regs))
  399. fixup = search_dbe_tables(exception_epc(regs));
  400. if (fixup)
  401. action = MIPS_BE_FIXUP;
  402. if (board_be_handler)
  403. action = board_be_handler(regs, fixup != NULL);
  404. else
  405. mips_cm_error_report();
  406. switch (action) {
  407. case MIPS_BE_DISCARD:
  408. goto out;
  409. case MIPS_BE_FIXUP:
  410. if (fixup) {
  411. regs->cp0_epc = fixup->nextinsn;
  412. goto out;
  413. }
  414. break;
  415. default:
  416. break;
  417. }
  418. /*
  419. * Assume it would be too dangerous to continue ...
  420. */
  421. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  422. data ? "Data" : "Instruction",
  423. field, regs->cp0_epc, field, regs->regs[31]);
  424. if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
  425. SIGBUS) == NOTIFY_STOP)
  426. goto out;
  427. die_if_kernel("Oops", regs);
  428. force_sig(SIGBUS, current);
  429. out:
  430. exception_exit(prev_state);
  431. }
  432. /*
  433. * ll/sc, rdhwr, sync emulation
  434. */
  435. #define OPCODE 0xfc000000
  436. #define BASE 0x03e00000
  437. #define RT 0x001f0000
  438. #define OFFSET 0x0000ffff
  439. #define LL 0xc0000000
  440. #define SC 0xe0000000
  441. #define SPEC0 0x00000000
  442. #define SPEC3 0x7c000000
  443. #define RD 0x0000f800
  444. #define FUNC 0x0000003f
  445. #define SYNC 0x0000000f
  446. #define RDHWR 0x0000003b
  447. /* microMIPS definitions */
  448. #define MM_POOL32A_FUNC 0xfc00ffff
  449. #define MM_RDHWR 0x00006b3c
  450. #define MM_RS 0x001f0000
  451. #define MM_RT 0x03e00000
  452. /*
  453. * The ll_bit is cleared by r*_switch.S
  454. */
  455. unsigned int ll_bit;
  456. struct task_struct *ll_task;
  457. static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
  458. {
  459. unsigned long value, __user *vaddr;
  460. long offset;
  461. /*
  462. * analyse the ll instruction that just caused a ri exception
  463. * and put the referenced address to addr.
  464. */
  465. /* sign extend offset */
  466. offset = opcode & OFFSET;
  467. offset <<= 16;
  468. offset >>= 16;
  469. vaddr = (unsigned long __user *)
  470. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  471. if ((unsigned long)vaddr & 3)
  472. return SIGBUS;
  473. if (get_user(value, vaddr))
  474. return SIGSEGV;
  475. preempt_disable();
  476. if (ll_task == NULL || ll_task == current) {
  477. ll_bit = 1;
  478. } else {
  479. ll_bit = 0;
  480. }
  481. ll_task = current;
  482. preempt_enable();
  483. regs->regs[(opcode & RT) >> 16] = value;
  484. return 0;
  485. }
  486. static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
  487. {
  488. unsigned long __user *vaddr;
  489. unsigned long reg;
  490. long offset;
  491. /*
  492. * analyse the sc instruction that just caused a ri exception
  493. * and put the referenced address to addr.
  494. */
  495. /* sign extend offset */
  496. offset = opcode & OFFSET;
  497. offset <<= 16;
  498. offset >>= 16;
  499. vaddr = (unsigned long __user *)
  500. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  501. reg = (opcode & RT) >> 16;
  502. if ((unsigned long)vaddr & 3)
  503. return SIGBUS;
  504. preempt_disable();
  505. if (ll_bit == 0 || ll_task != current) {
  506. regs->regs[reg] = 0;
  507. preempt_enable();
  508. return 0;
  509. }
  510. preempt_enable();
  511. if (put_user(regs->regs[reg], vaddr))
  512. return SIGSEGV;
  513. regs->regs[reg] = 1;
  514. return 0;
  515. }
  516. /*
  517. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  518. * opcodes are supposed to result in coprocessor unusable exceptions if
  519. * executed on ll/sc-less processors. That's the theory. In practice a
  520. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  521. * instead, so we're doing the emulation thing in both exception handlers.
  522. */
  523. static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
  524. {
  525. if ((opcode & OPCODE) == LL) {
  526. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  527. 1, regs, 0);
  528. return simulate_ll(regs, opcode);
  529. }
  530. if ((opcode & OPCODE) == SC) {
  531. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  532. 1, regs, 0);
  533. return simulate_sc(regs, opcode);
  534. }
  535. return -1; /* Must be something else ... */
  536. }
  537. /*
  538. * Simulate trapping 'rdhwr' instructions to provide user accessible
  539. * registers not implemented in hardware.
  540. */
  541. static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
  542. {
  543. struct thread_info *ti = task_thread_info(current);
  544. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  545. 1, regs, 0);
  546. switch (rd) {
  547. case MIPS_HWR_CPUNUM: /* CPU number */
  548. regs->regs[rt] = smp_processor_id();
  549. return 0;
  550. case MIPS_HWR_SYNCISTEP: /* SYNCI length */
  551. regs->regs[rt] = min(current_cpu_data.dcache.linesz,
  552. current_cpu_data.icache.linesz);
  553. return 0;
  554. case MIPS_HWR_CC: /* Read count register */
  555. regs->regs[rt] = read_c0_count();
  556. return 0;
  557. case MIPS_HWR_CCRES: /* Count register resolution */
  558. switch (current_cpu_type()) {
  559. case CPU_20KC:
  560. case CPU_25KF:
  561. regs->regs[rt] = 1;
  562. break;
  563. default:
  564. regs->regs[rt] = 2;
  565. }
  566. return 0;
  567. case MIPS_HWR_ULR: /* Read UserLocal register */
  568. regs->regs[rt] = ti->tp_value;
  569. return 0;
  570. default:
  571. return -1;
  572. }
  573. }
  574. static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
  575. {
  576. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  577. int rd = (opcode & RD) >> 11;
  578. int rt = (opcode & RT) >> 16;
  579. simulate_rdhwr(regs, rd, rt);
  580. return 0;
  581. }
  582. /* Not ours. */
  583. return -1;
  584. }
  585. static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
  586. {
  587. if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
  588. int rd = (opcode & MM_RS) >> 16;
  589. int rt = (opcode & MM_RT) >> 21;
  590. simulate_rdhwr(regs, rd, rt);
  591. return 0;
  592. }
  593. /* Not ours. */
  594. return -1;
  595. }
  596. static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
  597. {
  598. if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
  599. perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
  600. 1, regs, 0);
  601. return 0;
  602. }
  603. return -1; /* Must be something else ... */
  604. }
  605. asmlinkage void do_ov(struct pt_regs *regs)
  606. {
  607. enum ctx_state prev_state;
  608. prev_state = exception_enter();
  609. die_if_kernel("Integer overflow", regs);
  610. force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc, current);
  611. exception_exit(prev_state);
  612. }
  613. /*
  614. * Send SIGFPE according to FCSR Cause bits, which must have already
  615. * been masked against Enable bits. This is impotant as Inexact can
  616. * happen together with Overflow or Underflow, and `ptrace' can set
  617. * any bits.
  618. */
  619. void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
  620. struct task_struct *tsk)
  621. {
  622. int si_code = FPE_FLTUNK;
  623. if (fcr31 & FPU_CSR_INV_X)
  624. si_code = FPE_FLTINV;
  625. else if (fcr31 & FPU_CSR_DIV_X)
  626. si_code = FPE_FLTDIV;
  627. else if (fcr31 & FPU_CSR_OVF_X)
  628. si_code = FPE_FLTOVF;
  629. else if (fcr31 & FPU_CSR_UDF_X)
  630. si_code = FPE_FLTUND;
  631. else if (fcr31 & FPU_CSR_INE_X)
  632. si_code = FPE_FLTRES;
  633. force_sig_fault(SIGFPE, si_code, fault_addr, tsk);
  634. }
  635. int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
  636. {
  637. int si_code;
  638. struct vm_area_struct *vma;
  639. switch (sig) {
  640. case 0:
  641. return 0;
  642. case SIGFPE:
  643. force_fcr31_sig(fcr31, fault_addr, current);
  644. return 1;
  645. case SIGBUS:
  646. force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr, current);
  647. return 1;
  648. case SIGSEGV:
  649. down_read(&current->mm->mmap_sem);
  650. vma = find_vma(current->mm, (unsigned long)fault_addr);
  651. if (vma && (vma->vm_start <= (unsigned long)fault_addr))
  652. si_code = SEGV_ACCERR;
  653. else
  654. si_code = SEGV_MAPERR;
  655. up_read(&current->mm->mmap_sem);
  656. force_sig_fault(SIGSEGV, si_code, fault_addr, current);
  657. return 1;
  658. default:
  659. force_sig(sig, current);
  660. return 1;
  661. }
  662. }
  663. static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
  664. unsigned long old_epc, unsigned long old_ra)
  665. {
  666. union mips_instruction inst = { .word = opcode };
  667. void __user *fault_addr;
  668. unsigned long fcr31;
  669. int sig;
  670. /* If it's obviously not an FP instruction, skip it */
  671. switch (inst.i_format.opcode) {
  672. case cop1_op:
  673. case cop1x_op:
  674. case lwc1_op:
  675. case ldc1_op:
  676. case swc1_op:
  677. case sdc1_op:
  678. break;
  679. default:
  680. return -1;
  681. }
  682. /*
  683. * do_ri skipped over the instruction via compute_return_epc, undo
  684. * that for the FPU emulator.
  685. */
  686. regs->cp0_epc = old_epc;
  687. regs->regs[31] = old_ra;
  688. /* Save the FP context to struct thread_struct */
  689. lose_fpu(1);
  690. /* Run the emulator */
  691. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  692. &fault_addr);
  693. /*
  694. * We can't allow the emulated instruction to leave any
  695. * enabled Cause bits set in $fcr31.
  696. */
  697. fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
  698. current->thread.fpu.fcr31 &= ~fcr31;
  699. /* Restore the hardware register state */
  700. own_fpu(1);
  701. /* Send a signal if required. */
  702. process_fpemu_return(sig, fault_addr, fcr31);
  703. return 0;
  704. }
  705. /*
  706. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  707. */
  708. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  709. {
  710. enum ctx_state prev_state;
  711. void __user *fault_addr;
  712. int sig;
  713. prev_state = exception_enter();
  714. if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
  715. SIGFPE) == NOTIFY_STOP)
  716. goto out;
  717. /* Clear FCSR.Cause before enabling interrupts */
  718. write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
  719. local_irq_enable();
  720. die_if_kernel("FP exception in kernel code", regs);
  721. if (fcr31 & FPU_CSR_UNI_X) {
  722. /*
  723. * Unimplemented operation exception. If we've got the full
  724. * software emulator on-board, let's use it...
  725. *
  726. * Force FPU to dump state into task/thread context. We're
  727. * moving a lot of data here for what is probably a single
  728. * instruction, but the alternative is to pre-decode the FP
  729. * register operands before invoking the emulator, which seems
  730. * a bit extreme for what should be an infrequent event.
  731. */
  732. /* Ensure 'resume' not overwrite saved fp context again. */
  733. lose_fpu(1);
  734. /* Run the emulator */
  735. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
  736. &fault_addr);
  737. /*
  738. * We can't allow the emulated instruction to leave any
  739. * enabled Cause bits set in $fcr31.
  740. */
  741. fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
  742. current->thread.fpu.fcr31 &= ~fcr31;
  743. /* Restore the hardware register state */
  744. own_fpu(1); /* Using the FPU again. */
  745. } else {
  746. sig = SIGFPE;
  747. fault_addr = (void __user *) regs->cp0_epc;
  748. }
  749. /* Send a signal if required. */
  750. process_fpemu_return(sig, fault_addr, fcr31);
  751. out:
  752. exception_exit(prev_state);
  753. }
  754. void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
  755. const char *str)
  756. {
  757. char b[40];
  758. #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
  759. if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  760. SIGTRAP) == NOTIFY_STOP)
  761. return;
  762. #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
  763. if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
  764. SIGTRAP) == NOTIFY_STOP)
  765. return;
  766. /*
  767. * A short test says that IRIX 5.3 sends SIGTRAP for all trap
  768. * insns, even for trap and break codes that indicate arithmetic
  769. * failures. Weird ...
  770. * But should we continue the brokenness??? --macro
  771. */
  772. switch (code) {
  773. case BRK_OVERFLOW:
  774. case BRK_DIVZERO:
  775. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  776. die_if_kernel(b, regs);
  777. force_sig_fault(SIGFPE,
  778. code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
  779. (void __user *) regs->cp0_epc, current);
  780. break;
  781. case BRK_BUG:
  782. die_if_kernel("Kernel bug detected", regs);
  783. force_sig(SIGTRAP, current);
  784. break;
  785. case BRK_MEMU:
  786. /*
  787. * This breakpoint code is used by the FPU emulator to retake
  788. * control of the CPU after executing the instruction from the
  789. * delay slot of an emulated branch.
  790. *
  791. * Terminate if exception was recognized as a delay slot return
  792. * otherwise handle as normal.
  793. */
  794. if (do_dsemulret(regs))
  795. return;
  796. die_if_kernel("Math emu break/trap", regs);
  797. force_sig(SIGTRAP, current);
  798. break;
  799. default:
  800. scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
  801. die_if_kernel(b, regs);
  802. if (si_code) {
  803. force_sig_fault(SIGTRAP, si_code, NULL, current);
  804. } else {
  805. force_sig(SIGTRAP, current);
  806. }
  807. }
  808. }
  809. asmlinkage void do_bp(struct pt_regs *regs)
  810. {
  811. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  812. unsigned int opcode, bcode;
  813. enum ctx_state prev_state;
  814. mm_segment_t seg;
  815. seg = get_fs();
  816. if (!user_mode(regs))
  817. set_fs(KERNEL_DS);
  818. prev_state = exception_enter();
  819. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  820. if (get_isa16_mode(regs->cp0_epc)) {
  821. u16 instr[2];
  822. if (__get_user(instr[0], (u16 __user *)epc))
  823. goto out_sigsegv;
  824. if (!cpu_has_mmips) {
  825. /* MIPS16e mode */
  826. bcode = (instr[0] >> 5) & 0x3f;
  827. } else if (mm_insn_16bit(instr[0])) {
  828. /* 16-bit microMIPS BREAK */
  829. bcode = instr[0] & 0xf;
  830. } else {
  831. /* 32-bit microMIPS BREAK */
  832. if (__get_user(instr[1], (u16 __user *)(epc + 2)))
  833. goto out_sigsegv;
  834. opcode = (instr[0] << 16) | instr[1];
  835. bcode = (opcode >> 6) & ((1 << 20) - 1);
  836. }
  837. } else {
  838. if (__get_user(opcode, (unsigned int __user *)epc))
  839. goto out_sigsegv;
  840. bcode = (opcode >> 6) & ((1 << 20) - 1);
  841. }
  842. /*
  843. * There is the ancient bug in the MIPS assemblers that the break
  844. * code starts left to bit 16 instead to bit 6 in the opcode.
  845. * Gas is bug-compatible, but not always, grrr...
  846. * We handle both cases with a simple heuristics. --macro
  847. */
  848. if (bcode >= (1 << 10))
  849. bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
  850. /*
  851. * notify the kprobe handlers, if instruction is likely to
  852. * pertain to them.
  853. */
  854. switch (bcode) {
  855. case BRK_UPROBE:
  856. if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
  857. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  858. goto out;
  859. else
  860. break;
  861. case BRK_UPROBE_XOL:
  862. if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
  863. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  864. goto out;
  865. else
  866. break;
  867. case BRK_KPROBE_BP:
  868. if (notify_die(DIE_BREAK, "debug", regs, bcode,
  869. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  870. goto out;
  871. else
  872. break;
  873. case BRK_KPROBE_SSTEPBP:
  874. if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
  875. current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
  876. goto out;
  877. else
  878. break;
  879. default:
  880. break;
  881. }
  882. do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
  883. out:
  884. set_fs(seg);
  885. exception_exit(prev_state);
  886. return;
  887. out_sigsegv:
  888. force_sig(SIGSEGV, current);
  889. goto out;
  890. }
  891. asmlinkage void do_tr(struct pt_regs *regs)
  892. {
  893. u32 opcode, tcode = 0;
  894. enum ctx_state prev_state;
  895. u16 instr[2];
  896. mm_segment_t seg;
  897. unsigned long epc = msk_isa16_mode(exception_epc(regs));
  898. seg = get_fs();
  899. if (!user_mode(regs))
  900. set_fs(get_ds());
  901. prev_state = exception_enter();
  902. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  903. if (get_isa16_mode(regs->cp0_epc)) {
  904. if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
  905. __get_user(instr[1], (u16 __user *)(epc + 2)))
  906. goto out_sigsegv;
  907. opcode = (instr[0] << 16) | instr[1];
  908. /* Immediate versions don't provide a code. */
  909. if (!(opcode & OPCODE))
  910. tcode = (opcode >> 12) & ((1 << 4) - 1);
  911. } else {
  912. if (__get_user(opcode, (u32 __user *)epc))
  913. goto out_sigsegv;
  914. /* Immediate versions don't provide a code. */
  915. if (!(opcode & OPCODE))
  916. tcode = (opcode >> 6) & ((1 << 10) - 1);
  917. }
  918. do_trap_or_bp(regs, tcode, 0, "Trap");
  919. out:
  920. set_fs(seg);
  921. exception_exit(prev_state);
  922. return;
  923. out_sigsegv:
  924. force_sig(SIGSEGV, current);
  925. goto out;
  926. }
  927. asmlinkage void do_ri(struct pt_regs *regs)
  928. {
  929. unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
  930. unsigned long old_epc = regs->cp0_epc;
  931. unsigned long old31 = regs->regs[31];
  932. enum ctx_state prev_state;
  933. unsigned int opcode = 0;
  934. int status = -1;
  935. /*
  936. * Avoid any kernel code. Just emulate the R2 instruction
  937. * as quickly as possible.
  938. */
  939. if (mipsr2_emulation && cpu_has_mips_r6 &&
  940. likely(user_mode(regs)) &&
  941. likely(get_user(opcode, epc) >= 0)) {
  942. unsigned long fcr31 = 0;
  943. status = mipsr2_decoder(regs, opcode, &fcr31);
  944. switch (status) {
  945. case 0:
  946. case SIGEMT:
  947. return;
  948. case SIGILL:
  949. goto no_r2_instr;
  950. default:
  951. process_fpemu_return(status,
  952. &current->thread.cp0_baduaddr,
  953. fcr31);
  954. return;
  955. }
  956. }
  957. no_r2_instr:
  958. prev_state = exception_enter();
  959. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  960. if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
  961. SIGILL) == NOTIFY_STOP)
  962. goto out;
  963. die_if_kernel("Reserved instruction in kernel code", regs);
  964. if (unlikely(compute_return_epc(regs) < 0))
  965. goto out;
  966. if (!get_isa16_mode(regs->cp0_epc)) {
  967. if (unlikely(get_user(opcode, epc) < 0))
  968. status = SIGSEGV;
  969. if (!cpu_has_llsc && status < 0)
  970. status = simulate_llsc(regs, opcode);
  971. if (status < 0)
  972. status = simulate_rdhwr_normal(regs, opcode);
  973. if (status < 0)
  974. status = simulate_sync(regs, opcode);
  975. if (status < 0)
  976. status = simulate_fp(regs, opcode, old_epc, old31);
  977. } else if (cpu_has_mmips) {
  978. unsigned short mmop[2] = { 0 };
  979. if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
  980. status = SIGSEGV;
  981. if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
  982. status = SIGSEGV;
  983. opcode = mmop[0];
  984. opcode = (opcode << 16) | mmop[1];
  985. if (status < 0)
  986. status = simulate_rdhwr_mm(regs, opcode);
  987. }
  988. if (status < 0)
  989. status = SIGILL;
  990. if (unlikely(status > 0)) {
  991. regs->cp0_epc = old_epc; /* Undo skip-over. */
  992. regs->regs[31] = old31;
  993. force_sig(status, current);
  994. }
  995. out:
  996. exception_exit(prev_state);
  997. }
  998. /*
  999. * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
  1000. * emulated more than some threshold number of instructions, force migration to
  1001. * a "CPU" that has FP support.
  1002. */
  1003. static void mt_ase_fp_affinity(void)
  1004. {
  1005. #ifdef CONFIG_MIPS_MT_FPAFF
  1006. if (mt_fpemul_threshold > 0 &&
  1007. ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
  1008. /*
  1009. * If there's no FPU present, or if the application has already
  1010. * restricted the allowed set to exclude any CPUs with FPUs,
  1011. * we'll skip the procedure.
  1012. */
  1013. if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
  1014. cpumask_t tmask;
  1015. current->thread.user_cpus_allowed
  1016. = current->cpus_allowed;
  1017. cpumask_and(&tmask, &current->cpus_allowed,
  1018. &mt_fpu_cpumask);
  1019. set_cpus_allowed_ptr(current, &tmask);
  1020. set_thread_flag(TIF_FPUBOUND);
  1021. }
  1022. }
  1023. #endif /* CONFIG_MIPS_MT_FPAFF */
  1024. }
  1025. /*
  1026. * No lock; only written during early bootup by CPU 0.
  1027. */
  1028. static RAW_NOTIFIER_HEAD(cu2_chain);
  1029. int __ref register_cu2_notifier(struct notifier_block *nb)
  1030. {
  1031. return raw_notifier_chain_register(&cu2_chain, nb);
  1032. }
  1033. int cu2_notifier_call_chain(unsigned long val, void *v)
  1034. {
  1035. return raw_notifier_call_chain(&cu2_chain, val, v);
  1036. }
  1037. static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
  1038. void *data)
  1039. {
  1040. struct pt_regs *regs = data;
  1041. die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
  1042. "instruction", regs);
  1043. force_sig(SIGILL, current);
  1044. return NOTIFY_OK;
  1045. }
  1046. static int enable_restore_fp_context(int msa)
  1047. {
  1048. int err, was_fpu_owner, prior_msa;
  1049. /*
  1050. * If an FP mode switch is currently underway, wait for it to
  1051. * complete before proceeding.
  1052. */
  1053. wait_var_event(&current->mm->context.fp_mode_switching,
  1054. !atomic_read(&current->mm->context.fp_mode_switching));
  1055. if (!used_math()) {
  1056. /* First time FP context user. */
  1057. preempt_disable();
  1058. err = init_fpu();
  1059. if (msa && !err) {
  1060. enable_msa();
  1061. init_msa_upper();
  1062. set_thread_flag(TIF_USEDMSA);
  1063. set_thread_flag(TIF_MSA_CTX_LIVE);
  1064. }
  1065. preempt_enable();
  1066. if (!err)
  1067. set_used_math();
  1068. return err;
  1069. }
  1070. /*
  1071. * This task has formerly used the FP context.
  1072. *
  1073. * If this thread has no live MSA vector context then we can simply
  1074. * restore the scalar FP context. If it has live MSA vector context
  1075. * (that is, it has or may have used MSA since last performing a
  1076. * function call) then we'll need to restore the vector context. This
  1077. * applies even if we're currently only executing a scalar FP
  1078. * instruction. This is because if we were to later execute an MSA
  1079. * instruction then we'd either have to:
  1080. *
  1081. * - Restore the vector context & clobber any registers modified by
  1082. * scalar FP instructions between now & then.
  1083. *
  1084. * or
  1085. *
  1086. * - Not restore the vector context & lose the most significant bits
  1087. * of all vector registers.
  1088. *
  1089. * Neither of those options is acceptable. We cannot restore the least
  1090. * significant bits of the registers now & only restore the most
  1091. * significant bits later because the most significant bits of any
  1092. * vector registers whose aliased FP register is modified now will have
  1093. * been zeroed. We'd have no way to know that when restoring the vector
  1094. * context & thus may load an outdated value for the most significant
  1095. * bits of a vector register.
  1096. */
  1097. if (!msa && !thread_msa_context_live())
  1098. return own_fpu(1);
  1099. /*
  1100. * This task is using or has previously used MSA. Thus we require
  1101. * that Status.FR == 1.
  1102. */
  1103. preempt_disable();
  1104. was_fpu_owner = is_fpu_owner();
  1105. err = own_fpu_inatomic(0);
  1106. if (err)
  1107. goto out;
  1108. enable_msa();
  1109. write_msa_csr(current->thread.fpu.msacsr);
  1110. set_thread_flag(TIF_USEDMSA);
  1111. /*
  1112. * If this is the first time that the task is using MSA and it has
  1113. * previously used scalar FP in this time slice then we already nave
  1114. * FP context which we shouldn't clobber. We do however need to clear
  1115. * the upper 64b of each vector register so that this task has no
  1116. * opportunity to see data left behind by another.
  1117. */
  1118. prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
  1119. if (!prior_msa && was_fpu_owner) {
  1120. init_msa_upper();
  1121. goto out;
  1122. }
  1123. if (!prior_msa) {
  1124. /*
  1125. * Restore the least significant 64b of each vector register
  1126. * from the existing scalar FP context.
  1127. */
  1128. _restore_fp(current);
  1129. /*
  1130. * The task has not formerly used MSA, so clear the upper 64b
  1131. * of each vector register such that it cannot see data left
  1132. * behind by another task.
  1133. */
  1134. init_msa_upper();
  1135. } else {
  1136. /* We need to restore the vector context. */
  1137. restore_msa(current);
  1138. /* Restore the scalar FP control & status register */
  1139. if (!was_fpu_owner)
  1140. write_32bit_cp1_register(CP1_STATUS,
  1141. current->thread.fpu.fcr31);
  1142. }
  1143. out:
  1144. preempt_enable();
  1145. return 0;
  1146. }
  1147. asmlinkage void do_cpu(struct pt_regs *regs)
  1148. {
  1149. enum ctx_state prev_state;
  1150. unsigned int __user *epc;
  1151. unsigned long old_epc, old31;
  1152. void __user *fault_addr;
  1153. unsigned int opcode;
  1154. unsigned long fcr31;
  1155. unsigned int cpid;
  1156. int status, err;
  1157. int sig;
  1158. prev_state = exception_enter();
  1159. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  1160. if (cpid != 2)
  1161. die_if_kernel("do_cpu invoked from kernel context!", regs);
  1162. switch (cpid) {
  1163. case 0:
  1164. epc = (unsigned int __user *)exception_epc(regs);
  1165. old_epc = regs->cp0_epc;
  1166. old31 = regs->regs[31];
  1167. opcode = 0;
  1168. status = -1;
  1169. if (unlikely(compute_return_epc(regs) < 0))
  1170. break;
  1171. if (!get_isa16_mode(regs->cp0_epc)) {
  1172. if (unlikely(get_user(opcode, epc) < 0))
  1173. status = SIGSEGV;
  1174. if (!cpu_has_llsc && status < 0)
  1175. status = simulate_llsc(regs, opcode);
  1176. }
  1177. if (status < 0)
  1178. status = SIGILL;
  1179. if (unlikely(status > 0)) {
  1180. regs->cp0_epc = old_epc; /* Undo skip-over. */
  1181. regs->regs[31] = old31;
  1182. force_sig(status, current);
  1183. }
  1184. break;
  1185. case 3:
  1186. /*
  1187. * The COP3 opcode space and consequently the CP0.Status.CU3
  1188. * bit and the CP0.Cause.CE=3 encoding have been removed as
  1189. * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
  1190. * up the space has been reused for COP1X instructions, that
  1191. * are enabled by the CP0.Status.CU1 bit and consequently
  1192. * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
  1193. * exceptions. Some FPU-less processors that implement one
  1194. * of these ISAs however use this code erroneously for COP1X
  1195. * instructions. Therefore we redirect this trap to the FP
  1196. * emulator too.
  1197. */
  1198. if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
  1199. force_sig(SIGILL, current);
  1200. break;
  1201. }
  1202. /* Fall through. */
  1203. case 1:
  1204. err = enable_restore_fp_context(0);
  1205. if (raw_cpu_has_fpu && !err)
  1206. break;
  1207. sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
  1208. &fault_addr);
  1209. /*
  1210. * We can't allow the emulated instruction to leave
  1211. * any enabled Cause bits set in $fcr31.
  1212. */
  1213. fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
  1214. current->thread.fpu.fcr31 &= ~fcr31;
  1215. /* Send a signal if required. */
  1216. if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
  1217. mt_ase_fp_affinity();
  1218. break;
  1219. case 2:
  1220. raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
  1221. break;
  1222. }
  1223. exception_exit(prev_state);
  1224. }
  1225. asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
  1226. {
  1227. enum ctx_state prev_state;
  1228. prev_state = exception_enter();
  1229. current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
  1230. if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
  1231. current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
  1232. goto out;
  1233. /* Clear MSACSR.Cause before enabling interrupts */
  1234. write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
  1235. local_irq_enable();
  1236. die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
  1237. force_sig(SIGFPE, current);
  1238. out:
  1239. exception_exit(prev_state);
  1240. }
  1241. asmlinkage void do_msa(struct pt_regs *regs)
  1242. {
  1243. enum ctx_state prev_state;
  1244. int err;
  1245. prev_state = exception_enter();
  1246. if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
  1247. force_sig(SIGILL, current);
  1248. goto out;
  1249. }
  1250. die_if_kernel("do_msa invoked from kernel context!", regs);
  1251. err = enable_restore_fp_context(1);
  1252. if (err)
  1253. force_sig(SIGILL, current);
  1254. out:
  1255. exception_exit(prev_state);
  1256. }
  1257. asmlinkage void do_mdmx(struct pt_regs *regs)
  1258. {
  1259. enum ctx_state prev_state;
  1260. prev_state = exception_enter();
  1261. force_sig(SIGILL, current);
  1262. exception_exit(prev_state);
  1263. }
  1264. /*
  1265. * Called with interrupts disabled.
  1266. */
  1267. asmlinkage void do_watch(struct pt_regs *regs)
  1268. {
  1269. enum ctx_state prev_state;
  1270. prev_state = exception_enter();
  1271. /*
  1272. * Clear WP (bit 22) bit of cause register so we don't loop
  1273. * forever.
  1274. */
  1275. clear_c0_cause(CAUSEF_WP);
  1276. /*
  1277. * If the current thread has the watch registers loaded, save
  1278. * their values and send SIGTRAP. Otherwise another thread
  1279. * left the registers set, clear them and continue.
  1280. */
  1281. if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
  1282. mips_read_watch_registers();
  1283. local_irq_enable();
  1284. force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL, current);
  1285. } else {
  1286. mips_clear_watch_registers();
  1287. local_irq_enable();
  1288. }
  1289. exception_exit(prev_state);
  1290. }
  1291. asmlinkage void do_mcheck(struct pt_regs *regs)
  1292. {
  1293. int multi_match = regs->cp0_status & ST0_TS;
  1294. enum ctx_state prev_state;
  1295. mm_segment_t old_fs = get_fs();
  1296. prev_state = exception_enter();
  1297. show_regs(regs);
  1298. if (multi_match) {
  1299. dump_tlb_regs();
  1300. pr_info("\n");
  1301. dump_tlb_all();
  1302. }
  1303. if (!user_mode(regs))
  1304. set_fs(KERNEL_DS);
  1305. show_code((unsigned int __user *) regs->cp0_epc);
  1306. set_fs(old_fs);
  1307. /*
  1308. * Some chips may have other causes of machine check (e.g. SB1
  1309. * graduation timer)
  1310. */
  1311. panic("Caught Machine Check exception - %scaused by multiple "
  1312. "matching entries in the TLB.",
  1313. (multi_match) ? "" : "not ");
  1314. }
  1315. asmlinkage void do_mt(struct pt_regs *regs)
  1316. {
  1317. int subcode;
  1318. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  1319. >> VPECONTROL_EXCPT_SHIFT;
  1320. switch (subcode) {
  1321. case 0:
  1322. printk(KERN_DEBUG "Thread Underflow\n");
  1323. break;
  1324. case 1:
  1325. printk(KERN_DEBUG "Thread Overflow\n");
  1326. break;
  1327. case 2:
  1328. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  1329. break;
  1330. case 3:
  1331. printk(KERN_DEBUG "Gating Storage Exception\n");
  1332. break;
  1333. case 4:
  1334. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  1335. break;
  1336. case 5:
  1337. printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
  1338. break;
  1339. default:
  1340. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  1341. subcode);
  1342. break;
  1343. }
  1344. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  1345. force_sig(SIGILL, current);
  1346. }
  1347. asmlinkage void do_dsp(struct pt_regs *regs)
  1348. {
  1349. if (cpu_has_dsp)
  1350. panic("Unexpected DSP exception");
  1351. force_sig(SIGILL, current);
  1352. }
  1353. asmlinkage void do_reserved(struct pt_regs *regs)
  1354. {
  1355. /*
  1356. * Game over - no way to handle this if it ever occurs. Most probably
  1357. * caused by a new unknown cpu type or after another deadly
  1358. * hard/software error.
  1359. */
  1360. show_regs(regs);
  1361. panic("Caught reserved exception %ld - should not happen.",
  1362. (regs->cp0_cause & 0x7f) >> 2);
  1363. }
  1364. static int __initdata l1parity = 1;
  1365. static int __init nol1parity(char *s)
  1366. {
  1367. l1parity = 0;
  1368. return 1;
  1369. }
  1370. __setup("nol1par", nol1parity);
  1371. static int __initdata l2parity = 1;
  1372. static int __init nol2parity(char *s)
  1373. {
  1374. l2parity = 0;
  1375. return 1;
  1376. }
  1377. __setup("nol2par", nol2parity);
  1378. /*
  1379. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  1380. * it different ways.
  1381. */
  1382. static inline void parity_protection_init(void)
  1383. {
  1384. #define ERRCTL_PE 0x80000000
  1385. #define ERRCTL_L2P 0x00800000
  1386. if (mips_cm_revision() >= CM_REV_CM3) {
  1387. ulong gcr_ectl, cp0_ectl;
  1388. /*
  1389. * With CM3 systems we need to ensure that the L1 & L2
  1390. * parity enables are set to the same value, since this
  1391. * is presumed by the hardware engineers.
  1392. *
  1393. * If the user disabled either of L1 or L2 ECC checking,
  1394. * disable both.
  1395. */
  1396. l1parity &= l2parity;
  1397. l2parity &= l1parity;
  1398. /* Probe L1 ECC support */
  1399. cp0_ectl = read_c0_ecc();
  1400. write_c0_ecc(cp0_ectl | ERRCTL_PE);
  1401. back_to_back_c0_hazard();
  1402. cp0_ectl = read_c0_ecc();
  1403. /* Probe L2 ECC support */
  1404. gcr_ectl = read_gcr_err_control();
  1405. if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
  1406. !(cp0_ectl & ERRCTL_PE)) {
  1407. /*
  1408. * One of L1 or L2 ECC checking isn't supported,
  1409. * so we cannot enable either.
  1410. */
  1411. l1parity = l2parity = 0;
  1412. }
  1413. /* Configure L1 ECC checking */
  1414. if (l1parity)
  1415. cp0_ectl |= ERRCTL_PE;
  1416. else
  1417. cp0_ectl &= ~ERRCTL_PE;
  1418. write_c0_ecc(cp0_ectl);
  1419. back_to_back_c0_hazard();
  1420. WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
  1421. /* Configure L2 ECC checking */
  1422. if (l2parity)
  1423. gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
  1424. else
  1425. gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
  1426. write_gcr_err_control(gcr_ectl);
  1427. gcr_ectl = read_gcr_err_control();
  1428. gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
  1429. WARN_ON(!!gcr_ectl != l2parity);
  1430. pr_info("Cache parity protection %sabled\n",
  1431. l1parity ? "en" : "dis");
  1432. return;
  1433. }
  1434. switch (current_cpu_type()) {
  1435. case CPU_24K:
  1436. case CPU_34K:
  1437. case CPU_74K:
  1438. case CPU_1004K:
  1439. case CPU_1074K:
  1440. case CPU_INTERAPTIV:
  1441. case CPU_PROAPTIV:
  1442. case CPU_P5600:
  1443. case CPU_QEMU_GENERIC:
  1444. case CPU_P6600:
  1445. {
  1446. unsigned long errctl;
  1447. unsigned int l1parity_present, l2parity_present;
  1448. errctl = read_c0_ecc();
  1449. errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
  1450. /* probe L1 parity support */
  1451. write_c0_ecc(errctl | ERRCTL_PE);
  1452. back_to_back_c0_hazard();
  1453. l1parity_present = (read_c0_ecc() & ERRCTL_PE);
  1454. /* probe L2 parity support */
  1455. write_c0_ecc(errctl|ERRCTL_L2P);
  1456. back_to_back_c0_hazard();
  1457. l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
  1458. if (l1parity_present && l2parity_present) {
  1459. if (l1parity)
  1460. errctl |= ERRCTL_PE;
  1461. if (l1parity ^ l2parity)
  1462. errctl |= ERRCTL_L2P;
  1463. } else if (l1parity_present) {
  1464. if (l1parity)
  1465. errctl |= ERRCTL_PE;
  1466. } else if (l2parity_present) {
  1467. if (l2parity)
  1468. errctl |= ERRCTL_L2P;
  1469. } else {
  1470. /* No parity available */
  1471. }
  1472. printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
  1473. write_c0_ecc(errctl);
  1474. back_to_back_c0_hazard();
  1475. errctl = read_c0_ecc();
  1476. printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
  1477. if (l1parity_present)
  1478. printk(KERN_INFO "Cache parity protection %sabled\n",
  1479. (errctl & ERRCTL_PE) ? "en" : "dis");
  1480. if (l2parity_present) {
  1481. if (l1parity_present && l1parity)
  1482. errctl ^= ERRCTL_L2P;
  1483. printk(KERN_INFO "L2 cache parity protection %sabled\n",
  1484. (errctl & ERRCTL_L2P) ? "en" : "dis");
  1485. }
  1486. }
  1487. break;
  1488. case CPU_5KC:
  1489. case CPU_5KE:
  1490. case CPU_LOONGSON1:
  1491. write_c0_ecc(0x80000000);
  1492. back_to_back_c0_hazard();
  1493. /* Set the PE bit (bit 31) in the c0_errctl register. */
  1494. printk(KERN_INFO "Cache parity protection %sabled\n",
  1495. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  1496. break;
  1497. case CPU_20KC:
  1498. case CPU_25KF:
  1499. /* Clear the DE bit (bit 16) in the c0_status register. */
  1500. printk(KERN_INFO "Enable cache parity protection for "
  1501. "MIPS 20KC/25KF CPUs.\n");
  1502. clear_c0_status(ST0_DE);
  1503. break;
  1504. default:
  1505. break;
  1506. }
  1507. }
  1508. asmlinkage void cache_parity_error(void)
  1509. {
  1510. const int field = 2 * sizeof(unsigned long);
  1511. unsigned int reg_val;
  1512. /* For the moment, report the problem and hang. */
  1513. printk("Cache error exception:\n");
  1514. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1515. reg_val = read_c0_cacheerr();
  1516. printk("c0_cacheerr == %08x\n", reg_val);
  1517. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1518. reg_val & (1<<30) ? "secondary" : "primary",
  1519. reg_val & (1<<31) ? "data" : "insn");
  1520. if ((cpu_has_mips_r2_r6) &&
  1521. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
  1522. pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
  1523. reg_val & (1<<29) ? "ED " : "",
  1524. reg_val & (1<<28) ? "ET " : "",
  1525. reg_val & (1<<27) ? "ES " : "",
  1526. reg_val & (1<<26) ? "EE " : "",
  1527. reg_val & (1<<25) ? "EB " : "",
  1528. reg_val & (1<<24) ? "EI " : "",
  1529. reg_val & (1<<23) ? "E1 " : "",
  1530. reg_val & (1<<22) ? "E0 " : "");
  1531. } else {
  1532. pr_err("Error bits: %s%s%s%s%s%s%s\n",
  1533. reg_val & (1<<29) ? "ED " : "",
  1534. reg_val & (1<<28) ? "ET " : "",
  1535. reg_val & (1<<26) ? "EE " : "",
  1536. reg_val & (1<<25) ? "EB " : "",
  1537. reg_val & (1<<24) ? "EI " : "",
  1538. reg_val & (1<<23) ? "E1 " : "",
  1539. reg_val & (1<<22) ? "E0 " : "");
  1540. }
  1541. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  1542. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  1543. if (reg_val & (1<<22))
  1544. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  1545. if (reg_val & (1<<23))
  1546. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  1547. #endif
  1548. panic("Can't handle the cache error!");
  1549. }
  1550. asmlinkage void do_ftlb(void)
  1551. {
  1552. const int field = 2 * sizeof(unsigned long);
  1553. unsigned int reg_val;
  1554. /* For the moment, report the problem and hang. */
  1555. if ((cpu_has_mips_r2_r6) &&
  1556. (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
  1557. ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
  1558. pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
  1559. read_c0_ecc());
  1560. pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  1561. reg_val = read_c0_cacheerr();
  1562. pr_err("c0_cacheerr == %08x\n", reg_val);
  1563. if ((reg_val & 0xc0000000) == 0xc0000000) {
  1564. pr_err("Decoded c0_cacheerr: FTLB parity error\n");
  1565. } else {
  1566. pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  1567. reg_val & (1<<30) ? "secondary" : "primary",
  1568. reg_val & (1<<31) ? "data" : "insn");
  1569. }
  1570. } else {
  1571. pr_err("FTLB error exception\n");
  1572. }
  1573. /* Just print the cacheerr bits for now */
  1574. cache_parity_error();
  1575. }
  1576. /*
  1577. * SDBBP EJTAG debug exception handler.
  1578. * We skip the instruction and return to the next instruction.
  1579. */
  1580. void ejtag_exception_handler(struct pt_regs *regs)
  1581. {
  1582. const int field = 2 * sizeof(unsigned long);
  1583. unsigned long depc, old_epc, old_ra;
  1584. unsigned int debug;
  1585. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  1586. depc = read_c0_depc();
  1587. debug = read_c0_debug();
  1588. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  1589. if (debug & 0x80000000) {
  1590. /*
  1591. * In branch delay slot.
  1592. * We cheat a little bit here and use EPC to calculate the
  1593. * debug return address (DEPC). EPC is restored after the
  1594. * calculation.
  1595. */
  1596. old_epc = regs->cp0_epc;
  1597. old_ra = regs->regs[31];
  1598. regs->cp0_epc = depc;
  1599. compute_return_epc(regs);
  1600. depc = regs->cp0_epc;
  1601. regs->cp0_epc = old_epc;
  1602. regs->regs[31] = old_ra;
  1603. } else
  1604. depc += 4;
  1605. write_c0_depc(depc);
  1606. #if 0
  1607. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  1608. write_c0_debug(debug | 0x100);
  1609. #endif
  1610. }
  1611. /*
  1612. * NMI exception handler.
  1613. * No lock; only written during early bootup by CPU 0.
  1614. */
  1615. static RAW_NOTIFIER_HEAD(nmi_chain);
  1616. int register_nmi_notifier(struct notifier_block *nb)
  1617. {
  1618. return raw_notifier_chain_register(&nmi_chain, nb);
  1619. }
  1620. void __noreturn nmi_exception_handler(struct pt_regs *regs)
  1621. {
  1622. char str[100];
  1623. nmi_enter();
  1624. raw_notifier_call_chain(&nmi_chain, 0, regs);
  1625. bust_spinlocks(1);
  1626. snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
  1627. smp_processor_id(), regs->cp0_epc);
  1628. regs->cp0_epc = read_c0_errorepc();
  1629. die(str, regs);
  1630. nmi_exit();
  1631. }
  1632. #define VECTORSPACING 0x100 /* for EI/VI mode */
  1633. unsigned long ebase;
  1634. EXPORT_SYMBOL_GPL(ebase);
  1635. unsigned long exception_handlers[32];
  1636. unsigned long vi_handlers[64];
  1637. void __init *set_except_vector(int n, void *addr)
  1638. {
  1639. unsigned long handler = (unsigned long) addr;
  1640. unsigned long old_handler;
  1641. #ifdef CONFIG_CPU_MICROMIPS
  1642. /*
  1643. * Only the TLB handlers are cache aligned with an even
  1644. * address. All other handlers are on an odd address and
  1645. * require no modification. Otherwise, MIPS32 mode will
  1646. * be entered when handling any TLB exceptions. That
  1647. * would be bad...since we must stay in microMIPS mode.
  1648. */
  1649. if (!(handler & 0x1))
  1650. handler |= 1;
  1651. #endif
  1652. old_handler = xchg(&exception_handlers[n], handler);
  1653. if (n == 0 && cpu_has_divec) {
  1654. #ifdef CONFIG_CPU_MICROMIPS
  1655. unsigned long jump_mask = ~((1 << 27) - 1);
  1656. #else
  1657. unsigned long jump_mask = ~((1 << 28) - 1);
  1658. #endif
  1659. u32 *buf = (u32 *)(ebase + 0x200);
  1660. unsigned int k0 = 26;
  1661. if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
  1662. uasm_i_j(&buf, handler & ~jump_mask);
  1663. uasm_i_nop(&buf);
  1664. } else {
  1665. UASM_i_LA(&buf, k0, handler);
  1666. uasm_i_jr(&buf, k0);
  1667. uasm_i_nop(&buf);
  1668. }
  1669. local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
  1670. }
  1671. return (void *)old_handler;
  1672. }
  1673. static void do_default_vi(void)
  1674. {
  1675. show_regs(get_irq_regs());
  1676. panic("Caught unexpected vectored interrupt.");
  1677. }
  1678. static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
  1679. {
  1680. unsigned long handler;
  1681. unsigned long old_handler = vi_handlers[n];
  1682. int srssets = current_cpu_data.srsets;
  1683. u16 *h;
  1684. unsigned char *b;
  1685. BUG_ON(!cpu_has_veic && !cpu_has_vint);
  1686. if (addr == NULL) {
  1687. handler = (unsigned long) do_default_vi;
  1688. srs = 0;
  1689. } else
  1690. handler = (unsigned long) addr;
  1691. vi_handlers[n] = handler;
  1692. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  1693. if (srs >= srssets)
  1694. panic("Shadow register set %d not supported", srs);
  1695. if (cpu_has_veic) {
  1696. if (board_bind_eic_interrupt)
  1697. board_bind_eic_interrupt(n, srs);
  1698. } else if (cpu_has_vint) {
  1699. /* SRSMap is only defined if shadow sets are implemented */
  1700. if (srssets > 1)
  1701. change_c0_srsmap(0xf << n*4, srs << n*4);
  1702. }
  1703. if (srs == 0) {
  1704. /*
  1705. * If no shadow set is selected then use the default handler
  1706. * that does normal register saving and standard interrupt exit
  1707. */
  1708. extern char except_vec_vi, except_vec_vi_lui;
  1709. extern char except_vec_vi_ori, except_vec_vi_end;
  1710. extern char rollback_except_vec_vi;
  1711. char *vec_start = using_rollback_handler() ?
  1712. &rollback_except_vec_vi : &except_vec_vi;
  1713. #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
  1714. const int lui_offset = &except_vec_vi_lui - vec_start + 2;
  1715. const int ori_offset = &except_vec_vi_ori - vec_start + 2;
  1716. #else
  1717. const int lui_offset = &except_vec_vi_lui - vec_start;
  1718. const int ori_offset = &except_vec_vi_ori - vec_start;
  1719. #endif
  1720. const int handler_len = &except_vec_vi_end - vec_start;
  1721. if (handler_len > VECTORSPACING) {
  1722. /*
  1723. * Sigh... panicing won't help as the console
  1724. * is probably not configured :(
  1725. */
  1726. panic("VECTORSPACING too small");
  1727. }
  1728. set_handler(((unsigned long)b - ebase), vec_start,
  1729. #ifdef CONFIG_CPU_MICROMIPS
  1730. (handler_len - 1));
  1731. #else
  1732. handler_len);
  1733. #endif
  1734. h = (u16 *)(b + lui_offset);
  1735. *h = (handler >> 16) & 0xffff;
  1736. h = (u16 *)(b + ori_offset);
  1737. *h = (handler & 0xffff);
  1738. local_flush_icache_range((unsigned long)b,
  1739. (unsigned long)(b+handler_len));
  1740. }
  1741. else {
  1742. /*
  1743. * In other cases jump directly to the interrupt handler. It
  1744. * is the handler's responsibility to save registers if required
  1745. * (eg hi/lo) and return from the exception using "eret".
  1746. */
  1747. u32 insn;
  1748. h = (u16 *)b;
  1749. /* j handler */
  1750. #ifdef CONFIG_CPU_MICROMIPS
  1751. insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
  1752. #else
  1753. insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
  1754. #endif
  1755. h[0] = (insn >> 16) & 0xffff;
  1756. h[1] = insn & 0xffff;
  1757. h[2] = 0;
  1758. h[3] = 0;
  1759. local_flush_icache_range((unsigned long)b,
  1760. (unsigned long)(b+8));
  1761. }
  1762. return (void *)old_handler;
  1763. }
  1764. void *set_vi_handler(int n, vi_handler_t addr)
  1765. {
  1766. return set_vi_srs_handler(n, addr, 0);
  1767. }
  1768. extern void tlb_init(void);
  1769. /*
  1770. * Timer interrupt
  1771. */
  1772. int cp0_compare_irq;
  1773. EXPORT_SYMBOL_GPL(cp0_compare_irq);
  1774. int cp0_compare_irq_shift;
  1775. /*
  1776. * Performance counter IRQ or -1 if shared with timer
  1777. */
  1778. int cp0_perfcount_irq;
  1779. EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
  1780. /*
  1781. * Fast debug channel IRQ or -1 if not present
  1782. */
  1783. int cp0_fdc_irq;
  1784. EXPORT_SYMBOL_GPL(cp0_fdc_irq);
  1785. static int noulri;
  1786. static int __init ulri_disable(char *s)
  1787. {
  1788. pr_info("Disabling ulri\n");
  1789. noulri = 1;
  1790. return 1;
  1791. }
  1792. __setup("noulri", ulri_disable);
  1793. /* configure STATUS register */
  1794. static void configure_status(void)
  1795. {
  1796. /*
  1797. * Disable coprocessors and select 32-bit or 64-bit addressing
  1798. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1799. * flag that some firmware may have left set and the TS bit (for
  1800. * IP27). Set XX for ISA IV code to work.
  1801. */
  1802. unsigned int status_set = ST0_CU0;
  1803. #ifdef CONFIG_64BIT
  1804. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1805. #endif
  1806. if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
  1807. status_set |= ST0_XX;
  1808. if (cpu_has_dsp)
  1809. status_set |= ST0_MX;
  1810. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1811. status_set);
  1812. }
  1813. unsigned int hwrena;
  1814. EXPORT_SYMBOL_GPL(hwrena);
  1815. /* configure HWRENA register */
  1816. static void configure_hwrena(void)
  1817. {
  1818. hwrena = cpu_hwrena_impl_bits;
  1819. if (cpu_has_mips_r2_r6)
  1820. hwrena |= MIPS_HWRENA_CPUNUM |
  1821. MIPS_HWRENA_SYNCISTEP |
  1822. MIPS_HWRENA_CC |
  1823. MIPS_HWRENA_CCRES;
  1824. if (!noulri && cpu_has_userlocal)
  1825. hwrena |= MIPS_HWRENA_ULR;
  1826. if (hwrena)
  1827. write_c0_hwrena(hwrena);
  1828. }
  1829. static void configure_exception_vector(void)
  1830. {
  1831. if (cpu_has_veic || cpu_has_vint) {
  1832. unsigned long sr = set_c0_status(ST0_BEV);
  1833. /* If available, use WG to set top bits of EBASE */
  1834. if (cpu_has_ebase_wg) {
  1835. #ifdef CONFIG_64BIT
  1836. write_c0_ebase_64(ebase | MIPS_EBASE_WG);
  1837. #else
  1838. write_c0_ebase(ebase | MIPS_EBASE_WG);
  1839. #endif
  1840. }
  1841. write_c0_ebase(ebase);
  1842. write_c0_status(sr);
  1843. /* Setting vector spacing enables EI/VI mode */
  1844. change_c0_intctl(0x3e0, VECTORSPACING);
  1845. }
  1846. if (cpu_has_divec) {
  1847. if (cpu_has_mipsmt) {
  1848. unsigned int vpflags = dvpe();
  1849. set_c0_cause(CAUSEF_IV);
  1850. evpe(vpflags);
  1851. } else
  1852. set_c0_cause(CAUSEF_IV);
  1853. }
  1854. }
  1855. void per_cpu_trap_init(bool is_boot_cpu)
  1856. {
  1857. unsigned int cpu = smp_processor_id();
  1858. configure_status();
  1859. configure_hwrena();
  1860. configure_exception_vector();
  1861. /*
  1862. * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
  1863. *
  1864. * o read IntCtl.IPTI to determine the timer interrupt
  1865. * o read IntCtl.IPPCI to determine the performance counter interrupt
  1866. * o read IntCtl.IPFDC to determine the fast debug channel interrupt
  1867. */
  1868. if (cpu_has_mips_r2_r6) {
  1869. /*
  1870. * We shouldn't trust a secondary core has a sane EBASE register
  1871. * so use the one calculated by the boot CPU.
  1872. */
  1873. if (!is_boot_cpu) {
  1874. /* If available, use WG to set top bits of EBASE */
  1875. if (cpu_has_ebase_wg) {
  1876. #ifdef CONFIG_64BIT
  1877. write_c0_ebase_64(ebase | MIPS_EBASE_WG);
  1878. #else
  1879. write_c0_ebase(ebase | MIPS_EBASE_WG);
  1880. #endif
  1881. }
  1882. write_c0_ebase(ebase);
  1883. }
  1884. cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
  1885. cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
  1886. cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
  1887. cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
  1888. if (!cp0_fdc_irq)
  1889. cp0_fdc_irq = -1;
  1890. } else {
  1891. cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
  1892. cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
  1893. cp0_perfcount_irq = -1;
  1894. cp0_fdc_irq = -1;
  1895. }
  1896. if (!cpu_data[cpu].asid_cache)
  1897. cpu_data[cpu].asid_cache = asid_first_version(cpu);
  1898. mmgrab(&init_mm);
  1899. current->active_mm = &init_mm;
  1900. BUG_ON(current->mm);
  1901. enter_lazy_tlb(&init_mm, current);
  1902. /* Boot CPU's cache setup in setup_arch(). */
  1903. if (!is_boot_cpu)
  1904. cpu_cache_init();
  1905. tlb_init();
  1906. TLBMISS_HANDLER_SETUP();
  1907. }
  1908. /* Install CPU exception handler */
  1909. void set_handler(unsigned long offset, void *addr, unsigned long size)
  1910. {
  1911. #ifdef CONFIG_CPU_MICROMIPS
  1912. memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
  1913. #else
  1914. memcpy((void *)(ebase + offset), addr, size);
  1915. #endif
  1916. local_flush_icache_range(ebase + offset, ebase + offset + size);
  1917. }
  1918. static const char panic_null_cerr[] =
  1919. "Trying to set NULL cache error exception handler\n";
  1920. /*
  1921. * Install uncached CPU exception handler.
  1922. * This is suitable only for the cache error exception which is the only
  1923. * exception handler that is being run uncached.
  1924. */
  1925. void set_uncached_handler(unsigned long offset, void *addr,
  1926. unsigned long size)
  1927. {
  1928. unsigned long uncached_ebase = CKSEG1ADDR(ebase);
  1929. if (!addr)
  1930. panic(panic_null_cerr);
  1931. memcpy((void *)(uncached_ebase + offset), addr, size);
  1932. }
  1933. static int __initdata rdhwr_noopt;
  1934. static int __init set_rdhwr_noopt(char *str)
  1935. {
  1936. rdhwr_noopt = 1;
  1937. return 1;
  1938. }
  1939. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1940. void __init trap_init(void)
  1941. {
  1942. extern char except_vec3_generic;
  1943. extern char except_vec4;
  1944. extern char except_vec3_r4000;
  1945. unsigned long i;
  1946. check_wait();
  1947. if (cpu_has_veic || cpu_has_vint) {
  1948. unsigned long size = 0x200 + VECTORSPACING*64;
  1949. phys_addr_t ebase_pa;
  1950. ebase = (unsigned long)
  1951. __alloc_bootmem(size, 1 << fls(size), 0);
  1952. /*
  1953. * Try to ensure ebase resides in KSeg0 if possible.
  1954. *
  1955. * It shouldn't generally be in XKPhys on MIPS64 to avoid
  1956. * hitting a poorly defined exception base for Cache Errors.
  1957. * The allocation is likely to be in the low 512MB of physical,
  1958. * in which case we should be able to convert to KSeg0.
  1959. *
  1960. * EVA is special though as it allows segments to be rearranged
  1961. * and to become uncached during cache error handling.
  1962. */
  1963. ebase_pa = __pa(ebase);
  1964. if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
  1965. ebase = CKSEG0ADDR(ebase_pa);
  1966. } else {
  1967. ebase = CAC_BASE;
  1968. if (cpu_has_mips_r2_r6) {
  1969. if (cpu_has_ebase_wg) {
  1970. #ifdef CONFIG_64BIT
  1971. ebase = (read_c0_ebase_64() & ~0xfff);
  1972. #else
  1973. ebase = (read_c0_ebase() & ~0xfff);
  1974. #endif
  1975. } else {
  1976. ebase += (read_c0_ebase() & 0x3ffff000);
  1977. }
  1978. }
  1979. }
  1980. if (cpu_has_mmips) {
  1981. unsigned int config3 = read_c0_config3();
  1982. if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
  1983. write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
  1984. else
  1985. write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
  1986. }
  1987. if (board_ebase_setup)
  1988. board_ebase_setup();
  1989. per_cpu_trap_init(true);
  1990. /*
  1991. * Copy the generic exception handlers to their final destination.
  1992. * This will be overridden later as suitable for a particular
  1993. * configuration.
  1994. */
  1995. set_handler(0x180, &except_vec3_generic, 0x80);
  1996. /*
  1997. * Setup default vectors
  1998. */
  1999. for (i = 0; i <= 31; i++)
  2000. set_except_vector(i, handle_reserved);
  2001. /*
  2002. * Copy the EJTAG debug exception vector handler code to it's final
  2003. * destination.
  2004. */
  2005. if (cpu_has_ejtag && board_ejtag_handler_setup)
  2006. board_ejtag_handler_setup();
  2007. /*
  2008. * Only some CPUs have the watch exceptions.
  2009. */
  2010. if (cpu_has_watch)
  2011. set_except_vector(EXCCODE_WATCH, handle_watch);
  2012. /*
  2013. * Initialise interrupt handlers
  2014. */
  2015. if (cpu_has_veic || cpu_has_vint) {
  2016. int nvec = cpu_has_veic ? 64 : 8;
  2017. for (i = 0; i < nvec; i++)
  2018. set_vi_handler(i, NULL);
  2019. }
  2020. else if (cpu_has_divec)
  2021. set_handler(0x200, &except_vec4, 0x8);
  2022. /*
  2023. * Some CPUs can enable/disable for cache parity detection, but does
  2024. * it different ways.
  2025. */
  2026. parity_protection_init();
  2027. /*
  2028. * The Data Bus Errors / Instruction Bus Errors are signaled
  2029. * by external hardware. Therefore these two exceptions
  2030. * may have board specific handlers.
  2031. */
  2032. if (board_be_init)
  2033. board_be_init();
  2034. set_except_vector(EXCCODE_INT, using_rollback_handler() ?
  2035. rollback_handle_int : handle_int);
  2036. set_except_vector(EXCCODE_MOD, handle_tlbm);
  2037. set_except_vector(EXCCODE_TLBL, handle_tlbl);
  2038. set_except_vector(EXCCODE_TLBS, handle_tlbs);
  2039. set_except_vector(EXCCODE_ADEL, handle_adel);
  2040. set_except_vector(EXCCODE_ADES, handle_ades);
  2041. set_except_vector(EXCCODE_IBE, handle_ibe);
  2042. set_except_vector(EXCCODE_DBE, handle_dbe);
  2043. set_except_vector(EXCCODE_SYS, handle_sys);
  2044. set_except_vector(EXCCODE_BP, handle_bp);
  2045. if (rdhwr_noopt)
  2046. set_except_vector(EXCCODE_RI, handle_ri);
  2047. else {
  2048. if (cpu_has_vtag_icache)
  2049. set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
  2050. else if (current_cpu_type() == CPU_LOONGSON3)
  2051. set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
  2052. else
  2053. set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
  2054. }
  2055. set_except_vector(EXCCODE_CPU, handle_cpu);
  2056. set_except_vector(EXCCODE_OV, handle_ov);
  2057. set_except_vector(EXCCODE_TR, handle_tr);
  2058. set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
  2059. if (board_nmi_handler_setup)
  2060. board_nmi_handler_setup();
  2061. if (cpu_has_fpu && !cpu_has_nofpuex)
  2062. set_except_vector(EXCCODE_FPE, handle_fpe);
  2063. set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
  2064. if (cpu_has_rixiex) {
  2065. set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
  2066. set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
  2067. }
  2068. set_except_vector(EXCCODE_MSADIS, handle_msa);
  2069. set_except_vector(EXCCODE_MDMX, handle_mdmx);
  2070. if (cpu_has_mcheck)
  2071. set_except_vector(EXCCODE_MCHECK, handle_mcheck);
  2072. if (cpu_has_mipsmt)
  2073. set_except_vector(EXCCODE_THREAD, handle_mt);
  2074. set_except_vector(EXCCODE_DSPDIS, handle_dsp);
  2075. if (board_cache_error_setup)
  2076. board_cache_error_setup();
  2077. if (cpu_has_vce)
  2078. /* Special exception: R4[04]00 uses also the divec space. */
  2079. set_handler(0x180, &except_vec3_r4000, 0x100);
  2080. else if (cpu_has_4kex)
  2081. set_handler(0x180, &except_vec3_generic, 0x80);
  2082. else
  2083. set_handler(0x080, &except_vec3_generic, 0x80);
  2084. local_flush_icache_range(ebase, ebase + 0x400);
  2085. sort_extable(__start___dbe_table, __stop___dbe_table);
  2086. cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
  2087. }
  2088. static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
  2089. void *v)
  2090. {
  2091. switch (cmd) {
  2092. case CPU_PM_ENTER_FAILED:
  2093. case CPU_PM_EXIT:
  2094. configure_status();
  2095. configure_hwrena();
  2096. configure_exception_vector();
  2097. /* Restore register with CPU number for TLB handlers */
  2098. TLBMISS_HANDLER_RESTORE();
  2099. break;
  2100. }
  2101. return NOTIFY_OK;
  2102. }
  2103. static struct notifier_block trap_pm_notifier_block = {
  2104. .notifier_call = trap_pm_notifier,
  2105. };
  2106. static int __init trap_pm_init(void)
  2107. {
  2108. return cpu_pm_register_notifier(&trap_pm_notifier_block);
  2109. }
  2110. arch_initcall(trap_pm_init);