i915_gem.c 129 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/drm_vma_manager.h>
  29. #include <drm/i915_drm.h>
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  40. bool force);
  41. static __must_check int
  42. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  43. bool readonly);
  44. static void
  45. i915_gem_object_retire(struct drm_i915_gem_object *obj);
  46. static int i915_gem_phys_pwrite(struct drm_device *dev,
  47. struct drm_i915_gem_object *obj,
  48. struct drm_i915_gem_pwrite *args,
  49. struct drm_file *file);
  50. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  51. struct drm_i915_gem_object *obj);
  52. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  53. struct drm_i915_fence_reg *fence,
  54. bool enable);
  55. static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
  56. struct shrink_control *sc);
  57. static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
  58. struct shrink_control *sc);
  59. static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  60. static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  61. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  62. static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
  63. static bool cpu_cache_is_coherent(struct drm_device *dev,
  64. enum i915_cache_level level)
  65. {
  66. return HAS_LLC(dev) || level != I915_CACHE_NONE;
  67. }
  68. static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  69. {
  70. if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  71. return true;
  72. return obj->pin_display;
  73. }
  74. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  75. {
  76. if (obj->tiling_mode)
  77. i915_gem_release_mmap(obj);
  78. /* As we do not have an associated fence register, we will force
  79. * a tiling change if we ever need to acquire one.
  80. */
  81. obj->fence_dirty = false;
  82. obj->fence_reg = I915_FENCE_REG_NONE;
  83. }
  84. /* some bookkeeping */
  85. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  86. size_t size)
  87. {
  88. spin_lock(&dev_priv->mm.object_stat_lock);
  89. dev_priv->mm.object_count++;
  90. dev_priv->mm.object_memory += size;
  91. spin_unlock(&dev_priv->mm.object_stat_lock);
  92. }
  93. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  94. size_t size)
  95. {
  96. spin_lock(&dev_priv->mm.object_stat_lock);
  97. dev_priv->mm.object_count--;
  98. dev_priv->mm.object_memory -= size;
  99. spin_unlock(&dev_priv->mm.object_stat_lock);
  100. }
  101. static int
  102. i915_gem_wait_for_error(struct i915_gpu_error *error)
  103. {
  104. int ret;
  105. #define EXIT_COND (!i915_reset_in_progress(error) || \
  106. i915_terminally_wedged(error))
  107. if (EXIT_COND)
  108. return 0;
  109. /*
  110. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  111. * userspace. If it takes that long something really bad is going on and
  112. * we should simply try to bail out and fail as gracefully as possible.
  113. */
  114. ret = wait_event_interruptible_timeout(error->reset_queue,
  115. EXIT_COND,
  116. 10*HZ);
  117. if (ret == 0) {
  118. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  119. return -EIO;
  120. } else if (ret < 0) {
  121. return ret;
  122. }
  123. #undef EXIT_COND
  124. return 0;
  125. }
  126. int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. WARN_ON(i915_verify_lists(dev));
  137. return 0;
  138. }
  139. static inline bool
  140. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  141. {
  142. return i915_gem_obj_bound_any(obj) && !obj->active;
  143. }
  144. int
  145. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  146. struct drm_file *file)
  147. {
  148. struct drm_i915_private *dev_priv = dev->dev_private;
  149. struct drm_i915_gem_init *args = data;
  150. if (drm_core_check_feature(dev, DRIVER_MODESET))
  151. return -ENODEV;
  152. if (args->gtt_start >= args->gtt_end ||
  153. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  154. return -EINVAL;
  155. /* GEM with user mode setting was never supported on ilk and later. */
  156. if (INTEL_INFO(dev)->gen >= 5)
  157. return -ENODEV;
  158. mutex_lock(&dev->struct_mutex);
  159. i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
  160. args->gtt_end);
  161. dev_priv->gtt.mappable_end = args->gtt_end;
  162. mutex_unlock(&dev->struct_mutex);
  163. return 0;
  164. }
  165. int
  166. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file)
  168. {
  169. struct drm_i915_private *dev_priv = dev->dev_private;
  170. struct drm_i915_gem_get_aperture *args = data;
  171. struct drm_i915_gem_object *obj;
  172. size_t pinned;
  173. pinned = 0;
  174. mutex_lock(&dev->struct_mutex);
  175. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  176. if (i915_gem_obj_is_pinned(obj))
  177. pinned += i915_gem_obj_ggtt_size(obj);
  178. mutex_unlock(&dev->struct_mutex);
  179. args->aper_size = dev_priv->gtt.base.total;
  180. args->aper_available_size = args->aper_size - pinned;
  181. return 0;
  182. }
  183. void *i915_gem_object_alloc(struct drm_device *dev)
  184. {
  185. struct drm_i915_private *dev_priv = dev->dev_private;
  186. return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
  187. }
  188. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  189. {
  190. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  191. kmem_cache_free(dev_priv->slab, obj);
  192. }
  193. static int
  194. i915_gem_create(struct drm_file *file,
  195. struct drm_device *dev,
  196. uint64_t size,
  197. uint32_t *handle_p)
  198. {
  199. struct drm_i915_gem_object *obj;
  200. int ret;
  201. u32 handle;
  202. size = roundup(size, PAGE_SIZE);
  203. if (size == 0)
  204. return -EINVAL;
  205. /* Allocate the new object */
  206. obj = i915_gem_alloc_object(dev, size);
  207. if (obj == NULL)
  208. return -ENOMEM;
  209. ret = drm_gem_handle_create(file, &obj->base, &handle);
  210. /* drop reference from allocate - handle holds it now */
  211. drm_gem_object_unreference_unlocked(&obj->base);
  212. if (ret)
  213. return ret;
  214. *handle_p = handle;
  215. return 0;
  216. }
  217. int
  218. i915_gem_dumb_create(struct drm_file *file,
  219. struct drm_device *dev,
  220. struct drm_mode_create_dumb *args)
  221. {
  222. /* have to work out size/pitch and return them */
  223. args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
  224. args->size = args->pitch * args->height;
  225. return i915_gem_create(file, dev,
  226. args->size, &args->handle);
  227. }
  228. /**
  229. * Creates a new mm object and returns a handle to it.
  230. */
  231. int
  232. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  233. struct drm_file *file)
  234. {
  235. struct drm_i915_gem_create *args = data;
  236. return i915_gem_create(file, dev,
  237. args->size, &args->handle);
  238. }
  239. static inline int
  240. __copy_to_user_swizzled(char __user *cpu_vaddr,
  241. const char *gpu_vaddr, int gpu_offset,
  242. int length)
  243. {
  244. int ret, cpu_offset = 0;
  245. while (length > 0) {
  246. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  247. int this_length = min(cacheline_end - gpu_offset, length);
  248. int swizzled_gpu_offset = gpu_offset ^ 64;
  249. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  250. gpu_vaddr + swizzled_gpu_offset,
  251. this_length);
  252. if (ret)
  253. return ret + length;
  254. cpu_offset += this_length;
  255. gpu_offset += this_length;
  256. length -= this_length;
  257. }
  258. return 0;
  259. }
  260. static inline int
  261. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  262. const char __user *cpu_vaddr,
  263. int length)
  264. {
  265. int ret, cpu_offset = 0;
  266. while (length > 0) {
  267. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  268. int this_length = min(cacheline_end - gpu_offset, length);
  269. int swizzled_gpu_offset = gpu_offset ^ 64;
  270. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  271. cpu_vaddr + cpu_offset,
  272. this_length);
  273. if (ret)
  274. return ret + length;
  275. cpu_offset += this_length;
  276. gpu_offset += this_length;
  277. length -= this_length;
  278. }
  279. return 0;
  280. }
  281. /*
  282. * Pins the specified object's pages and synchronizes the object with
  283. * GPU accesses. Sets needs_clflush to non-zero if the caller should
  284. * flush the object from the CPU cache.
  285. */
  286. int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
  287. int *needs_clflush)
  288. {
  289. int ret;
  290. *needs_clflush = 0;
  291. if (!obj->base.filp)
  292. return -EINVAL;
  293. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  294. /* If we're not in the cpu read domain, set ourself into the gtt
  295. * read domain and manually flush cachelines (if required). This
  296. * optimizes for the case when the gpu will dirty the data
  297. * anyway again before the next pread happens. */
  298. *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
  299. obj->cache_level);
  300. ret = i915_gem_object_wait_rendering(obj, true);
  301. if (ret)
  302. return ret;
  303. i915_gem_object_retire(obj);
  304. }
  305. ret = i915_gem_object_get_pages(obj);
  306. if (ret)
  307. return ret;
  308. i915_gem_object_pin_pages(obj);
  309. return ret;
  310. }
  311. /* Per-page copy function for the shmem pread fastpath.
  312. * Flushes invalid cachelines before reading the target if
  313. * needs_clflush is set. */
  314. static int
  315. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  316. char __user *user_data,
  317. bool page_do_bit17_swizzling, bool needs_clflush)
  318. {
  319. char *vaddr;
  320. int ret;
  321. if (unlikely(page_do_bit17_swizzling))
  322. return -EINVAL;
  323. vaddr = kmap_atomic(page);
  324. if (needs_clflush)
  325. drm_clflush_virt_range(vaddr + shmem_page_offset,
  326. page_length);
  327. ret = __copy_to_user_inatomic(user_data,
  328. vaddr + shmem_page_offset,
  329. page_length);
  330. kunmap_atomic(vaddr);
  331. return ret ? -EFAULT : 0;
  332. }
  333. static void
  334. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  335. bool swizzled)
  336. {
  337. if (unlikely(swizzled)) {
  338. unsigned long start = (unsigned long) addr;
  339. unsigned long end = (unsigned long) addr + length;
  340. /* For swizzling simply ensure that we always flush both
  341. * channels. Lame, but simple and it works. Swizzled
  342. * pwrite/pread is far from a hotpath - current userspace
  343. * doesn't use it at all. */
  344. start = round_down(start, 128);
  345. end = round_up(end, 128);
  346. drm_clflush_virt_range((void *)start, end - start);
  347. } else {
  348. drm_clflush_virt_range(addr, length);
  349. }
  350. }
  351. /* Only difference to the fast-path function is that this can handle bit17
  352. * and uses non-atomic copy and kmap functions. */
  353. static int
  354. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  355. char __user *user_data,
  356. bool page_do_bit17_swizzling, bool needs_clflush)
  357. {
  358. char *vaddr;
  359. int ret;
  360. vaddr = kmap(page);
  361. if (needs_clflush)
  362. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  363. page_length,
  364. page_do_bit17_swizzling);
  365. if (page_do_bit17_swizzling)
  366. ret = __copy_to_user_swizzled(user_data,
  367. vaddr, shmem_page_offset,
  368. page_length);
  369. else
  370. ret = __copy_to_user(user_data,
  371. vaddr + shmem_page_offset,
  372. page_length);
  373. kunmap(page);
  374. return ret ? - EFAULT : 0;
  375. }
  376. static int
  377. i915_gem_shmem_pread(struct drm_device *dev,
  378. struct drm_i915_gem_object *obj,
  379. struct drm_i915_gem_pread *args,
  380. struct drm_file *file)
  381. {
  382. char __user *user_data;
  383. ssize_t remain;
  384. loff_t offset;
  385. int shmem_page_offset, page_length, ret = 0;
  386. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  387. int prefaulted = 0;
  388. int needs_clflush = 0;
  389. struct sg_page_iter sg_iter;
  390. user_data = to_user_ptr(args->data_ptr);
  391. remain = args->size;
  392. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  393. ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
  394. if (ret)
  395. return ret;
  396. offset = args->offset;
  397. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  398. offset >> PAGE_SHIFT) {
  399. struct page *page = sg_page_iter_page(&sg_iter);
  400. if (remain <= 0)
  401. break;
  402. /* Operation in this page
  403. *
  404. * shmem_page_offset = offset within page in shmem file
  405. * page_length = bytes to copy for this page
  406. */
  407. shmem_page_offset = offset_in_page(offset);
  408. page_length = remain;
  409. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  410. page_length = PAGE_SIZE - shmem_page_offset;
  411. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  412. (page_to_phys(page) & (1 << 17)) != 0;
  413. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  414. user_data, page_do_bit17_swizzling,
  415. needs_clflush);
  416. if (ret == 0)
  417. goto next_page;
  418. mutex_unlock(&dev->struct_mutex);
  419. if (likely(!i915.prefault_disable) && !prefaulted) {
  420. ret = fault_in_multipages_writeable(user_data, remain);
  421. /* Userspace is tricking us, but we've already clobbered
  422. * its pages with the prefault and promised to write the
  423. * data up to the first fault. Hence ignore any errors
  424. * and just continue. */
  425. (void)ret;
  426. prefaulted = 1;
  427. }
  428. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  429. user_data, page_do_bit17_swizzling,
  430. needs_clflush);
  431. mutex_lock(&dev->struct_mutex);
  432. if (ret)
  433. goto out;
  434. next_page:
  435. remain -= page_length;
  436. user_data += page_length;
  437. offset += page_length;
  438. }
  439. out:
  440. i915_gem_object_unpin_pages(obj);
  441. return ret;
  442. }
  443. /**
  444. * Reads data from the object referenced by handle.
  445. *
  446. * On error, the contents of *data are undefined.
  447. */
  448. int
  449. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  450. struct drm_file *file)
  451. {
  452. struct drm_i915_gem_pread *args = data;
  453. struct drm_i915_gem_object *obj;
  454. int ret = 0;
  455. if (args->size == 0)
  456. return 0;
  457. if (!access_ok(VERIFY_WRITE,
  458. to_user_ptr(args->data_ptr),
  459. args->size))
  460. return -EFAULT;
  461. ret = i915_mutex_lock_interruptible(dev);
  462. if (ret)
  463. return ret;
  464. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  465. if (&obj->base == NULL) {
  466. ret = -ENOENT;
  467. goto unlock;
  468. }
  469. /* Bounds check source. */
  470. if (args->offset > obj->base.size ||
  471. args->size > obj->base.size - args->offset) {
  472. ret = -EINVAL;
  473. goto out;
  474. }
  475. /* prime objects have no backing filp to GEM pread/pwrite
  476. * pages from.
  477. */
  478. if (!obj->base.filp) {
  479. ret = -EINVAL;
  480. goto out;
  481. }
  482. trace_i915_gem_object_pread(obj, args->offset, args->size);
  483. ret = i915_gem_shmem_pread(dev, obj, args, file);
  484. out:
  485. drm_gem_object_unreference(&obj->base);
  486. unlock:
  487. mutex_unlock(&dev->struct_mutex);
  488. return ret;
  489. }
  490. /* This is the fast write path which cannot handle
  491. * page faults in the source data
  492. */
  493. static inline int
  494. fast_user_write(struct io_mapping *mapping,
  495. loff_t page_base, int page_offset,
  496. char __user *user_data,
  497. int length)
  498. {
  499. void __iomem *vaddr_atomic;
  500. void *vaddr;
  501. unsigned long unwritten;
  502. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  503. /* We can use the cpu mem copy function because this is X86. */
  504. vaddr = (void __force*)vaddr_atomic + page_offset;
  505. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  506. user_data, length);
  507. io_mapping_unmap_atomic(vaddr_atomic);
  508. return unwritten;
  509. }
  510. /**
  511. * This is the fast pwrite path, where we copy the data directly from the
  512. * user into the GTT, uncached.
  513. */
  514. static int
  515. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  516. struct drm_i915_gem_object *obj,
  517. struct drm_i915_gem_pwrite *args,
  518. struct drm_file *file)
  519. {
  520. struct drm_i915_private *dev_priv = dev->dev_private;
  521. ssize_t remain;
  522. loff_t offset, page_base;
  523. char __user *user_data;
  524. int page_offset, page_length, ret;
  525. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
  526. if (ret)
  527. goto out;
  528. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  529. if (ret)
  530. goto out_unpin;
  531. ret = i915_gem_object_put_fence(obj);
  532. if (ret)
  533. goto out_unpin;
  534. user_data = to_user_ptr(args->data_ptr);
  535. remain = args->size;
  536. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  537. while (remain > 0) {
  538. /* Operation in this page
  539. *
  540. * page_base = page offset within aperture
  541. * page_offset = offset within page
  542. * page_length = bytes to copy for this page
  543. */
  544. page_base = offset & PAGE_MASK;
  545. page_offset = offset_in_page(offset);
  546. page_length = remain;
  547. if ((page_offset + remain) > PAGE_SIZE)
  548. page_length = PAGE_SIZE - page_offset;
  549. /* If we get a fault while copying data, then (presumably) our
  550. * source page isn't available. Return the error and we'll
  551. * retry in the slow path.
  552. */
  553. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  554. page_offset, user_data, page_length)) {
  555. ret = -EFAULT;
  556. goto out_unpin;
  557. }
  558. remain -= page_length;
  559. user_data += page_length;
  560. offset += page_length;
  561. }
  562. out_unpin:
  563. i915_gem_object_ggtt_unpin(obj);
  564. out:
  565. return ret;
  566. }
  567. /* Per-page copy function for the shmem pwrite fastpath.
  568. * Flushes invalid cachelines before writing to the target if
  569. * needs_clflush_before is set and flushes out any written cachelines after
  570. * writing if needs_clflush is set. */
  571. static int
  572. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  573. char __user *user_data,
  574. bool page_do_bit17_swizzling,
  575. bool needs_clflush_before,
  576. bool needs_clflush_after)
  577. {
  578. char *vaddr;
  579. int ret;
  580. if (unlikely(page_do_bit17_swizzling))
  581. return -EINVAL;
  582. vaddr = kmap_atomic(page);
  583. if (needs_clflush_before)
  584. drm_clflush_virt_range(vaddr + shmem_page_offset,
  585. page_length);
  586. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  587. user_data, page_length);
  588. if (needs_clflush_after)
  589. drm_clflush_virt_range(vaddr + shmem_page_offset,
  590. page_length);
  591. kunmap_atomic(vaddr);
  592. return ret ? -EFAULT : 0;
  593. }
  594. /* Only difference to the fast-path function is that this can handle bit17
  595. * and uses non-atomic copy and kmap functions. */
  596. static int
  597. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  598. char __user *user_data,
  599. bool page_do_bit17_swizzling,
  600. bool needs_clflush_before,
  601. bool needs_clflush_after)
  602. {
  603. char *vaddr;
  604. int ret;
  605. vaddr = kmap(page);
  606. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  607. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  608. page_length,
  609. page_do_bit17_swizzling);
  610. if (page_do_bit17_swizzling)
  611. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  612. user_data,
  613. page_length);
  614. else
  615. ret = __copy_from_user(vaddr + shmem_page_offset,
  616. user_data,
  617. page_length);
  618. if (needs_clflush_after)
  619. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  620. page_length,
  621. page_do_bit17_swizzling);
  622. kunmap(page);
  623. return ret ? -EFAULT : 0;
  624. }
  625. static int
  626. i915_gem_shmem_pwrite(struct drm_device *dev,
  627. struct drm_i915_gem_object *obj,
  628. struct drm_i915_gem_pwrite *args,
  629. struct drm_file *file)
  630. {
  631. ssize_t remain;
  632. loff_t offset;
  633. char __user *user_data;
  634. int shmem_page_offset, page_length, ret = 0;
  635. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  636. int hit_slowpath = 0;
  637. int needs_clflush_after = 0;
  638. int needs_clflush_before = 0;
  639. struct sg_page_iter sg_iter;
  640. user_data = to_user_ptr(args->data_ptr);
  641. remain = args->size;
  642. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  643. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  644. /* If we're not in the cpu write domain, set ourself into the gtt
  645. * write domain and manually flush cachelines (if required). This
  646. * optimizes for the case when the gpu will use the data
  647. * right away and we therefore have to clflush anyway. */
  648. needs_clflush_after = cpu_write_needs_clflush(obj);
  649. ret = i915_gem_object_wait_rendering(obj, false);
  650. if (ret)
  651. return ret;
  652. i915_gem_object_retire(obj);
  653. }
  654. /* Same trick applies to invalidate partially written cachelines read
  655. * before writing. */
  656. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  657. needs_clflush_before =
  658. !cpu_cache_is_coherent(dev, obj->cache_level);
  659. ret = i915_gem_object_get_pages(obj);
  660. if (ret)
  661. return ret;
  662. i915_gem_object_pin_pages(obj);
  663. offset = args->offset;
  664. obj->dirty = 1;
  665. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  666. offset >> PAGE_SHIFT) {
  667. struct page *page = sg_page_iter_page(&sg_iter);
  668. int partial_cacheline_write;
  669. if (remain <= 0)
  670. break;
  671. /* Operation in this page
  672. *
  673. * shmem_page_offset = offset within page in shmem file
  674. * page_length = bytes to copy for this page
  675. */
  676. shmem_page_offset = offset_in_page(offset);
  677. page_length = remain;
  678. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  679. page_length = PAGE_SIZE - shmem_page_offset;
  680. /* If we don't overwrite a cacheline completely we need to be
  681. * careful to have up-to-date data by first clflushing. Don't
  682. * overcomplicate things and flush the entire patch. */
  683. partial_cacheline_write = needs_clflush_before &&
  684. ((shmem_page_offset | page_length)
  685. & (boot_cpu_data.x86_clflush_size - 1));
  686. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  687. (page_to_phys(page) & (1 << 17)) != 0;
  688. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  689. user_data, page_do_bit17_swizzling,
  690. partial_cacheline_write,
  691. needs_clflush_after);
  692. if (ret == 0)
  693. goto next_page;
  694. hit_slowpath = 1;
  695. mutex_unlock(&dev->struct_mutex);
  696. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  697. user_data, page_do_bit17_swizzling,
  698. partial_cacheline_write,
  699. needs_clflush_after);
  700. mutex_lock(&dev->struct_mutex);
  701. if (ret)
  702. goto out;
  703. next_page:
  704. remain -= page_length;
  705. user_data += page_length;
  706. offset += page_length;
  707. }
  708. out:
  709. i915_gem_object_unpin_pages(obj);
  710. if (hit_slowpath) {
  711. /*
  712. * Fixup: Flush cpu caches in case we didn't flush the dirty
  713. * cachelines in-line while writing and the object moved
  714. * out of the cpu write domain while we've dropped the lock.
  715. */
  716. if (!needs_clflush_after &&
  717. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  718. if (i915_gem_clflush_object(obj, obj->pin_display))
  719. i915_gem_chipset_flush(dev);
  720. }
  721. }
  722. if (needs_clflush_after)
  723. i915_gem_chipset_flush(dev);
  724. return ret;
  725. }
  726. /**
  727. * Writes data to the object referenced by handle.
  728. *
  729. * On error, the contents of the buffer that were to be modified are undefined.
  730. */
  731. int
  732. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  733. struct drm_file *file)
  734. {
  735. struct drm_i915_gem_pwrite *args = data;
  736. struct drm_i915_gem_object *obj;
  737. int ret;
  738. if (args->size == 0)
  739. return 0;
  740. if (!access_ok(VERIFY_READ,
  741. to_user_ptr(args->data_ptr),
  742. args->size))
  743. return -EFAULT;
  744. if (likely(!i915.prefault_disable)) {
  745. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  746. args->size);
  747. if (ret)
  748. return -EFAULT;
  749. }
  750. ret = i915_mutex_lock_interruptible(dev);
  751. if (ret)
  752. return ret;
  753. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  754. if (&obj->base == NULL) {
  755. ret = -ENOENT;
  756. goto unlock;
  757. }
  758. /* Bounds check destination. */
  759. if (args->offset > obj->base.size ||
  760. args->size > obj->base.size - args->offset) {
  761. ret = -EINVAL;
  762. goto out;
  763. }
  764. /* prime objects have no backing filp to GEM pread/pwrite
  765. * pages from.
  766. */
  767. if (!obj->base.filp) {
  768. ret = -EINVAL;
  769. goto out;
  770. }
  771. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  772. ret = -EFAULT;
  773. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  774. * it would end up going through the fenced access, and we'll get
  775. * different detiling behavior between reading and writing.
  776. * pread/pwrite currently are reading and writing from the CPU
  777. * perspective, requiring manual detiling by the client.
  778. */
  779. if (obj->phys_obj) {
  780. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  781. goto out;
  782. }
  783. if (obj->tiling_mode == I915_TILING_NONE &&
  784. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  785. cpu_write_needs_clflush(obj)) {
  786. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  787. /* Note that the gtt paths might fail with non-page-backed user
  788. * pointers (e.g. gtt mappings when moving data between
  789. * textures). Fallback to the shmem path in that case. */
  790. }
  791. if (ret == -EFAULT || ret == -ENOSPC)
  792. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  793. out:
  794. drm_gem_object_unreference(&obj->base);
  795. unlock:
  796. mutex_unlock(&dev->struct_mutex);
  797. return ret;
  798. }
  799. int
  800. i915_gem_check_wedge(struct i915_gpu_error *error,
  801. bool interruptible)
  802. {
  803. if (i915_reset_in_progress(error)) {
  804. /* Non-interruptible callers can't handle -EAGAIN, hence return
  805. * -EIO unconditionally for these. */
  806. if (!interruptible)
  807. return -EIO;
  808. /* Recovery complete, but the reset failed ... */
  809. if (i915_terminally_wedged(error))
  810. return -EIO;
  811. return -EAGAIN;
  812. }
  813. return 0;
  814. }
  815. /*
  816. * Compare seqno against outstanding lazy request. Emit a request if they are
  817. * equal.
  818. */
  819. static int
  820. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  821. {
  822. int ret;
  823. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  824. ret = 0;
  825. if (seqno == ring->outstanding_lazy_seqno)
  826. ret = i915_add_request(ring, NULL);
  827. return ret;
  828. }
  829. static void fake_irq(unsigned long data)
  830. {
  831. wake_up_process((struct task_struct *)data);
  832. }
  833. static bool missed_irq(struct drm_i915_private *dev_priv,
  834. struct intel_ring_buffer *ring)
  835. {
  836. return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
  837. }
  838. static bool can_wait_boost(struct drm_i915_file_private *file_priv)
  839. {
  840. if (file_priv == NULL)
  841. return true;
  842. return !atomic_xchg(&file_priv->rps_wait_boost, true);
  843. }
  844. /**
  845. * __wait_seqno - wait until execution of seqno has finished
  846. * @ring: the ring expected to report seqno
  847. * @seqno: duh!
  848. * @reset_counter: reset sequence associated with the given seqno
  849. * @interruptible: do an interruptible wait (normally yes)
  850. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  851. *
  852. * Note: It is of utmost importance that the passed in seqno and reset_counter
  853. * values have been read by the caller in an smp safe manner. Where read-side
  854. * locks are involved, it is sufficient to read the reset_counter before
  855. * unlocking the lock that protects the seqno. For lockless tricks, the
  856. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  857. * inserted.
  858. *
  859. * Returns 0 if the seqno was found within the alloted time. Else returns the
  860. * errno with remaining time filled in timeout argument.
  861. */
  862. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  863. unsigned reset_counter,
  864. bool interruptible,
  865. struct timespec *timeout,
  866. struct drm_i915_file_private *file_priv)
  867. {
  868. struct drm_device *dev = ring->dev;
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. const bool irq_test_in_progress =
  871. ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
  872. struct timespec before, now;
  873. DEFINE_WAIT(wait);
  874. unsigned long timeout_expire;
  875. int ret;
  876. WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
  877. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  878. return 0;
  879. timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
  880. if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
  881. gen6_rps_boost(dev_priv);
  882. if (file_priv)
  883. mod_delayed_work(dev_priv->wq,
  884. &file_priv->mm.idle_work,
  885. msecs_to_jiffies(100));
  886. }
  887. if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
  888. return -ENODEV;
  889. /* Record current time in case interrupted by signal, or wedged */
  890. trace_i915_gem_request_wait_begin(ring, seqno);
  891. getrawmonotonic(&before);
  892. for (;;) {
  893. struct timer_list timer;
  894. prepare_to_wait(&ring->irq_queue, &wait,
  895. interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  896. /* We need to check whether any gpu reset happened in between
  897. * the caller grabbing the seqno and now ... */
  898. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
  899. /* ... but upgrade the -EAGAIN to an -EIO if the gpu
  900. * is truely gone. */
  901. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  902. if (ret == 0)
  903. ret = -EAGAIN;
  904. break;
  905. }
  906. if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
  907. ret = 0;
  908. break;
  909. }
  910. if (interruptible && signal_pending(current)) {
  911. ret = -ERESTARTSYS;
  912. break;
  913. }
  914. if (timeout && time_after_eq(jiffies, timeout_expire)) {
  915. ret = -ETIME;
  916. break;
  917. }
  918. timer.function = NULL;
  919. if (timeout || missed_irq(dev_priv, ring)) {
  920. unsigned long expire;
  921. setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
  922. expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
  923. mod_timer(&timer, expire);
  924. }
  925. io_schedule();
  926. if (timer.function) {
  927. del_singleshot_timer_sync(&timer);
  928. destroy_timer_on_stack(&timer);
  929. }
  930. }
  931. getrawmonotonic(&now);
  932. trace_i915_gem_request_wait_end(ring, seqno);
  933. if (!irq_test_in_progress)
  934. ring->irq_put(ring);
  935. finish_wait(&ring->irq_queue, &wait);
  936. if (timeout) {
  937. struct timespec sleep_time = timespec_sub(now, before);
  938. *timeout = timespec_sub(*timeout, sleep_time);
  939. if (!timespec_valid(timeout)) /* i.e. negative time remains */
  940. set_normalized_timespec(timeout, 0, 0);
  941. }
  942. return ret;
  943. }
  944. /**
  945. * Waits for a sequence number to be signaled, and cleans up the
  946. * request and object lists appropriately for that event.
  947. */
  948. int
  949. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  950. {
  951. struct drm_device *dev = ring->dev;
  952. struct drm_i915_private *dev_priv = dev->dev_private;
  953. bool interruptible = dev_priv->mm.interruptible;
  954. int ret;
  955. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  956. BUG_ON(seqno == 0);
  957. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  958. if (ret)
  959. return ret;
  960. ret = i915_gem_check_olr(ring, seqno);
  961. if (ret)
  962. return ret;
  963. return __wait_seqno(ring, seqno,
  964. atomic_read(&dev_priv->gpu_error.reset_counter),
  965. interruptible, NULL, NULL);
  966. }
  967. static int
  968. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
  969. struct intel_ring_buffer *ring)
  970. {
  971. if (!obj->active)
  972. return 0;
  973. /* Manually manage the write flush as we may have not yet
  974. * retired the buffer.
  975. *
  976. * Note that the last_write_seqno is always the earlier of
  977. * the two (read/write) seqno, so if we haved successfully waited,
  978. * we know we have passed the last write.
  979. */
  980. obj->last_write_seqno = 0;
  981. return 0;
  982. }
  983. /**
  984. * Ensures that all rendering to the object has completed and the object is
  985. * safe to unbind from the GTT or access from the CPU.
  986. */
  987. static __must_check int
  988. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  989. bool readonly)
  990. {
  991. struct intel_ring_buffer *ring = obj->ring;
  992. u32 seqno;
  993. int ret;
  994. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  995. if (seqno == 0)
  996. return 0;
  997. ret = i915_wait_seqno(ring, seqno);
  998. if (ret)
  999. return ret;
  1000. return i915_gem_object_wait_rendering__tail(obj, ring);
  1001. }
  1002. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  1003. * as the object state may change during this call.
  1004. */
  1005. static __must_check int
  1006. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  1007. struct drm_i915_file_private *file_priv,
  1008. bool readonly)
  1009. {
  1010. struct drm_device *dev = obj->base.dev;
  1011. struct drm_i915_private *dev_priv = dev->dev_private;
  1012. struct intel_ring_buffer *ring = obj->ring;
  1013. unsigned reset_counter;
  1014. u32 seqno;
  1015. int ret;
  1016. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1017. BUG_ON(!dev_priv->mm.interruptible);
  1018. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  1019. if (seqno == 0)
  1020. return 0;
  1021. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  1022. if (ret)
  1023. return ret;
  1024. ret = i915_gem_check_olr(ring, seqno);
  1025. if (ret)
  1026. return ret;
  1027. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1028. mutex_unlock(&dev->struct_mutex);
  1029. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
  1030. mutex_lock(&dev->struct_mutex);
  1031. if (ret)
  1032. return ret;
  1033. return i915_gem_object_wait_rendering__tail(obj, ring);
  1034. }
  1035. /**
  1036. * Called when user space prepares to use an object with the CPU, either
  1037. * through the mmap ioctl's mapping or a GTT mapping.
  1038. */
  1039. int
  1040. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1041. struct drm_file *file)
  1042. {
  1043. struct drm_i915_gem_set_domain *args = data;
  1044. struct drm_i915_gem_object *obj;
  1045. uint32_t read_domains = args->read_domains;
  1046. uint32_t write_domain = args->write_domain;
  1047. int ret;
  1048. /* Only handle setting domains to types used by the CPU. */
  1049. if (write_domain & I915_GEM_GPU_DOMAINS)
  1050. return -EINVAL;
  1051. if (read_domains & I915_GEM_GPU_DOMAINS)
  1052. return -EINVAL;
  1053. /* Having something in the write domain implies it's in the read
  1054. * domain, and only that read domain. Enforce that in the request.
  1055. */
  1056. if (write_domain != 0 && read_domains != write_domain)
  1057. return -EINVAL;
  1058. ret = i915_mutex_lock_interruptible(dev);
  1059. if (ret)
  1060. return ret;
  1061. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1062. if (&obj->base == NULL) {
  1063. ret = -ENOENT;
  1064. goto unlock;
  1065. }
  1066. /* Try to flush the object off the GPU without holding the lock.
  1067. * We will repeat the flush holding the lock in the normal manner
  1068. * to catch cases where we are gazumped.
  1069. */
  1070. ret = i915_gem_object_wait_rendering__nonblocking(obj,
  1071. file->driver_priv,
  1072. !write_domain);
  1073. if (ret)
  1074. goto unref;
  1075. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1076. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1077. /* Silently promote "you're not bound, there was nothing to do"
  1078. * to success, since the client was just asking us to
  1079. * make sure everything was done.
  1080. */
  1081. if (ret == -EINVAL)
  1082. ret = 0;
  1083. } else {
  1084. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1085. }
  1086. unref:
  1087. drm_gem_object_unreference(&obj->base);
  1088. unlock:
  1089. mutex_unlock(&dev->struct_mutex);
  1090. return ret;
  1091. }
  1092. /**
  1093. * Called when user space has done writes to this buffer
  1094. */
  1095. int
  1096. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1097. struct drm_file *file)
  1098. {
  1099. struct drm_i915_gem_sw_finish *args = data;
  1100. struct drm_i915_gem_object *obj;
  1101. int ret = 0;
  1102. ret = i915_mutex_lock_interruptible(dev);
  1103. if (ret)
  1104. return ret;
  1105. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1106. if (&obj->base == NULL) {
  1107. ret = -ENOENT;
  1108. goto unlock;
  1109. }
  1110. /* Pinned buffers may be scanout, so flush the cache */
  1111. if (obj->pin_display)
  1112. i915_gem_object_flush_cpu_write_domain(obj, true);
  1113. drm_gem_object_unreference(&obj->base);
  1114. unlock:
  1115. mutex_unlock(&dev->struct_mutex);
  1116. return ret;
  1117. }
  1118. /**
  1119. * Maps the contents of an object, returning the address it is mapped
  1120. * into.
  1121. *
  1122. * While the mapping holds a reference on the contents of the object, it doesn't
  1123. * imply a ref on the object itself.
  1124. */
  1125. int
  1126. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1127. struct drm_file *file)
  1128. {
  1129. struct drm_i915_gem_mmap *args = data;
  1130. struct drm_gem_object *obj;
  1131. unsigned long addr;
  1132. obj = drm_gem_object_lookup(dev, file, args->handle);
  1133. if (obj == NULL)
  1134. return -ENOENT;
  1135. /* prime objects have no backing filp to GEM mmap
  1136. * pages from.
  1137. */
  1138. if (!obj->filp) {
  1139. drm_gem_object_unreference_unlocked(obj);
  1140. return -EINVAL;
  1141. }
  1142. addr = vm_mmap(obj->filp, 0, args->size,
  1143. PROT_READ | PROT_WRITE, MAP_SHARED,
  1144. args->offset);
  1145. drm_gem_object_unreference_unlocked(obj);
  1146. if (IS_ERR((void *)addr))
  1147. return addr;
  1148. args->addr_ptr = (uint64_t) addr;
  1149. return 0;
  1150. }
  1151. /**
  1152. * i915_gem_fault - fault a page into the GTT
  1153. * vma: VMA in question
  1154. * vmf: fault info
  1155. *
  1156. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1157. * from userspace. The fault handler takes care of binding the object to
  1158. * the GTT (if needed), allocating and programming a fence register (again,
  1159. * only if needed based on whether the old reg is still valid or the object
  1160. * is tiled) and inserting a new PTE into the faulting process.
  1161. *
  1162. * Note that the faulting process may involve evicting existing objects
  1163. * from the GTT and/or fence registers to make room. So performance may
  1164. * suffer if the GTT working set is large or there are few fence registers
  1165. * left.
  1166. */
  1167. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1168. {
  1169. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1170. struct drm_device *dev = obj->base.dev;
  1171. struct drm_i915_private *dev_priv = dev->dev_private;
  1172. pgoff_t page_offset;
  1173. unsigned long pfn;
  1174. int ret = 0;
  1175. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1176. intel_runtime_pm_get(dev_priv);
  1177. /* We don't use vmf->pgoff since that has the fake offset */
  1178. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1179. PAGE_SHIFT;
  1180. ret = i915_mutex_lock_interruptible(dev);
  1181. if (ret)
  1182. goto out;
  1183. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1184. /* Try to flush the object off the GPU first without holding the lock.
  1185. * Upon reacquiring the lock, we will perform our sanity checks and then
  1186. * repeat the flush holding the lock in the normal manner to catch cases
  1187. * where we are gazumped.
  1188. */
  1189. ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
  1190. if (ret)
  1191. goto unlock;
  1192. /* Access to snoopable pages through the GTT is incoherent. */
  1193. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1194. ret = -EINVAL;
  1195. goto unlock;
  1196. }
  1197. /* Now bind it into the GTT if needed */
  1198. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
  1199. if (ret)
  1200. goto unlock;
  1201. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1202. if (ret)
  1203. goto unpin;
  1204. ret = i915_gem_object_get_fence(obj);
  1205. if (ret)
  1206. goto unpin;
  1207. obj->fault_mappable = true;
  1208. pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
  1209. pfn >>= PAGE_SHIFT;
  1210. pfn += page_offset;
  1211. /* Finally, remap it using the new GTT offset */
  1212. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1213. unpin:
  1214. i915_gem_object_ggtt_unpin(obj);
  1215. unlock:
  1216. mutex_unlock(&dev->struct_mutex);
  1217. out:
  1218. switch (ret) {
  1219. case -EIO:
  1220. /* If this -EIO is due to a gpu hang, give the reset code a
  1221. * chance to clean up the mess. Otherwise return the proper
  1222. * SIGBUS. */
  1223. if (i915_terminally_wedged(&dev_priv->gpu_error)) {
  1224. ret = VM_FAULT_SIGBUS;
  1225. break;
  1226. }
  1227. case -EAGAIN:
  1228. /*
  1229. * EAGAIN means the gpu is hung and we'll wait for the error
  1230. * handler to reset everything when re-faulting in
  1231. * i915_mutex_lock_interruptible.
  1232. */
  1233. case 0:
  1234. case -ERESTARTSYS:
  1235. case -EINTR:
  1236. case -EBUSY:
  1237. /*
  1238. * EBUSY is ok: this just means that another thread
  1239. * already did the job.
  1240. */
  1241. ret = VM_FAULT_NOPAGE;
  1242. break;
  1243. case -ENOMEM:
  1244. ret = VM_FAULT_OOM;
  1245. break;
  1246. case -ENOSPC:
  1247. case -EFAULT:
  1248. ret = VM_FAULT_SIGBUS;
  1249. break;
  1250. default:
  1251. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1252. ret = VM_FAULT_SIGBUS;
  1253. break;
  1254. }
  1255. intel_runtime_pm_put(dev_priv);
  1256. return ret;
  1257. }
  1258. void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
  1259. {
  1260. struct i915_vma *vma;
  1261. /*
  1262. * Only the global gtt is relevant for gtt memory mappings, so restrict
  1263. * list traversal to objects bound into the global address space. Note
  1264. * that the active list should be empty, but better safe than sorry.
  1265. */
  1266. WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
  1267. list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
  1268. i915_gem_release_mmap(vma->obj);
  1269. list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
  1270. i915_gem_release_mmap(vma->obj);
  1271. }
  1272. /**
  1273. * i915_gem_release_mmap - remove physical page mappings
  1274. * @obj: obj in question
  1275. *
  1276. * Preserve the reservation of the mmapping with the DRM core code, but
  1277. * relinquish ownership of the pages back to the system.
  1278. *
  1279. * It is vital that we remove the page mapping if we have mapped a tiled
  1280. * object through the GTT and then lose the fence register due to
  1281. * resource pressure. Similarly if the object has been moved out of the
  1282. * aperture, than pages mapped into userspace must be revoked. Removing the
  1283. * mapping will then trigger a page fault on the next user access, allowing
  1284. * fixup by i915_gem_fault().
  1285. */
  1286. void
  1287. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1288. {
  1289. if (!obj->fault_mappable)
  1290. return;
  1291. drm_vma_node_unmap(&obj->base.vma_node,
  1292. obj->base.dev->anon_inode->i_mapping);
  1293. obj->fault_mappable = false;
  1294. }
  1295. uint32_t
  1296. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1297. {
  1298. uint32_t gtt_size;
  1299. if (INTEL_INFO(dev)->gen >= 4 ||
  1300. tiling_mode == I915_TILING_NONE)
  1301. return size;
  1302. /* Previous chips need a power-of-two fence region when tiling */
  1303. if (INTEL_INFO(dev)->gen == 3)
  1304. gtt_size = 1024*1024;
  1305. else
  1306. gtt_size = 512*1024;
  1307. while (gtt_size < size)
  1308. gtt_size <<= 1;
  1309. return gtt_size;
  1310. }
  1311. /**
  1312. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1313. * @obj: object to check
  1314. *
  1315. * Return the required GTT alignment for an object, taking into account
  1316. * potential fence register mapping.
  1317. */
  1318. uint32_t
  1319. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1320. int tiling_mode, bool fenced)
  1321. {
  1322. /*
  1323. * Minimum alignment is 4k (GTT page size), but might be greater
  1324. * if a fence register is needed for the object.
  1325. */
  1326. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1327. tiling_mode == I915_TILING_NONE)
  1328. return 4096;
  1329. /*
  1330. * Previous chips need to be aligned to the size of the smallest
  1331. * fence register that can contain the object.
  1332. */
  1333. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1334. }
  1335. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1336. {
  1337. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1338. int ret;
  1339. if (drm_vma_node_has_offset(&obj->base.vma_node))
  1340. return 0;
  1341. dev_priv->mm.shrinker_no_lock_stealing = true;
  1342. ret = drm_gem_create_mmap_offset(&obj->base);
  1343. if (ret != -ENOSPC)
  1344. goto out;
  1345. /* Badly fragmented mmap space? The only way we can recover
  1346. * space is by destroying unwanted objects. We can't randomly release
  1347. * mmap_offsets as userspace expects them to be persistent for the
  1348. * lifetime of the objects. The closest we can is to release the
  1349. * offsets on purgeable objects by truncating it and marking it purged,
  1350. * which prevents userspace from ever using that object again.
  1351. */
  1352. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1353. ret = drm_gem_create_mmap_offset(&obj->base);
  1354. if (ret != -ENOSPC)
  1355. goto out;
  1356. i915_gem_shrink_all(dev_priv);
  1357. ret = drm_gem_create_mmap_offset(&obj->base);
  1358. out:
  1359. dev_priv->mm.shrinker_no_lock_stealing = false;
  1360. return ret;
  1361. }
  1362. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1363. {
  1364. drm_gem_free_mmap_offset(&obj->base);
  1365. }
  1366. int
  1367. i915_gem_mmap_gtt(struct drm_file *file,
  1368. struct drm_device *dev,
  1369. uint32_t handle,
  1370. uint64_t *offset)
  1371. {
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. struct drm_i915_gem_object *obj;
  1374. int ret;
  1375. ret = i915_mutex_lock_interruptible(dev);
  1376. if (ret)
  1377. return ret;
  1378. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1379. if (&obj->base == NULL) {
  1380. ret = -ENOENT;
  1381. goto unlock;
  1382. }
  1383. if (obj->base.size > dev_priv->gtt.mappable_end) {
  1384. ret = -E2BIG;
  1385. goto out;
  1386. }
  1387. if (obj->madv != I915_MADV_WILLNEED) {
  1388. DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
  1389. ret = -EFAULT;
  1390. goto out;
  1391. }
  1392. ret = i915_gem_object_create_mmap_offset(obj);
  1393. if (ret)
  1394. goto out;
  1395. *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
  1396. out:
  1397. drm_gem_object_unreference(&obj->base);
  1398. unlock:
  1399. mutex_unlock(&dev->struct_mutex);
  1400. return ret;
  1401. }
  1402. /**
  1403. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1404. * @dev: DRM device
  1405. * @data: GTT mapping ioctl data
  1406. * @file: GEM object info
  1407. *
  1408. * Simply returns the fake offset to userspace so it can mmap it.
  1409. * The mmap call will end up in drm_gem_mmap(), which will set things
  1410. * up so we can get faults in the handler above.
  1411. *
  1412. * The fault handler will take care of binding the object into the GTT
  1413. * (since it may have been evicted to make room for something), allocating
  1414. * a fence register, and mapping the appropriate aperture address into
  1415. * userspace.
  1416. */
  1417. int
  1418. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1419. struct drm_file *file)
  1420. {
  1421. struct drm_i915_gem_mmap_gtt *args = data;
  1422. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1423. }
  1424. /* Immediately discard the backing storage */
  1425. static void
  1426. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1427. {
  1428. struct inode *inode;
  1429. i915_gem_object_free_mmap_offset(obj);
  1430. if (obj->base.filp == NULL)
  1431. return;
  1432. /* Our goal here is to return as much of the memory as
  1433. * is possible back to the system as we are called from OOM.
  1434. * To do this we must instruct the shmfs to drop all of its
  1435. * backing pages, *now*.
  1436. */
  1437. inode = file_inode(obj->base.filp);
  1438. shmem_truncate_range(inode, 0, (loff_t)-1);
  1439. obj->madv = __I915_MADV_PURGED;
  1440. }
  1441. static inline int
  1442. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1443. {
  1444. return obj->madv == I915_MADV_DONTNEED;
  1445. }
  1446. static void
  1447. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1448. {
  1449. struct sg_page_iter sg_iter;
  1450. int ret;
  1451. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1452. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1453. if (ret) {
  1454. /* In the event of a disaster, abandon all caches and
  1455. * hope for the best.
  1456. */
  1457. WARN_ON(ret != -EIO);
  1458. i915_gem_clflush_object(obj, true);
  1459. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1460. }
  1461. if (i915_gem_object_needs_bit17_swizzle(obj))
  1462. i915_gem_object_save_bit_17_swizzle(obj);
  1463. if (obj->madv == I915_MADV_DONTNEED)
  1464. obj->dirty = 0;
  1465. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1466. struct page *page = sg_page_iter_page(&sg_iter);
  1467. if (obj->dirty)
  1468. set_page_dirty(page);
  1469. if (obj->madv == I915_MADV_WILLNEED)
  1470. mark_page_accessed(page);
  1471. page_cache_release(page);
  1472. }
  1473. obj->dirty = 0;
  1474. sg_free_table(obj->pages);
  1475. kfree(obj->pages);
  1476. }
  1477. int
  1478. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1479. {
  1480. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1481. if (obj->pages == NULL)
  1482. return 0;
  1483. if (obj->pages_pin_count)
  1484. return -EBUSY;
  1485. BUG_ON(i915_gem_obj_bound_any(obj));
  1486. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1487. * array, hence protect them from being reaped by removing them from gtt
  1488. * lists early. */
  1489. list_del(&obj->global_list);
  1490. ops->put_pages(obj);
  1491. obj->pages = NULL;
  1492. if (i915_gem_object_is_purgeable(obj))
  1493. i915_gem_object_truncate(obj);
  1494. return 0;
  1495. }
  1496. static unsigned long
  1497. __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
  1498. bool purgeable_only)
  1499. {
  1500. struct list_head still_in_list;
  1501. struct drm_i915_gem_object *obj;
  1502. unsigned long count = 0;
  1503. /*
  1504. * As we may completely rewrite the (un)bound list whilst unbinding
  1505. * (due to retiring requests) we have to strictly process only
  1506. * one element of the list at the time, and recheck the list
  1507. * on every iteration.
  1508. *
  1509. * In particular, we must hold a reference whilst removing the
  1510. * object as we may end up waiting for and/or retiring the objects.
  1511. * This might release the final reference (held by the active list)
  1512. * and result in the object being freed from under us. This is
  1513. * similar to the precautions the eviction code must take whilst
  1514. * removing objects.
  1515. *
  1516. * Also note that although these lists do not hold a reference to
  1517. * the object we can safely grab one here: The final object
  1518. * unreferencing and the bound_list are both protected by the
  1519. * dev->struct_mutex and so we won't ever be able to observe an
  1520. * object on the bound_list with a reference count equals 0.
  1521. */
  1522. INIT_LIST_HEAD(&still_in_list);
  1523. while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
  1524. obj = list_first_entry(&dev_priv->mm.unbound_list,
  1525. typeof(*obj), global_list);
  1526. list_move_tail(&obj->global_list, &still_in_list);
  1527. if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
  1528. continue;
  1529. drm_gem_object_reference(&obj->base);
  1530. if (i915_gem_object_put_pages(obj) == 0)
  1531. count += obj->base.size >> PAGE_SHIFT;
  1532. drm_gem_object_unreference(&obj->base);
  1533. }
  1534. list_splice(&still_in_list, &dev_priv->mm.unbound_list);
  1535. INIT_LIST_HEAD(&still_in_list);
  1536. while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
  1537. struct i915_vma *vma, *v;
  1538. obj = list_first_entry(&dev_priv->mm.bound_list,
  1539. typeof(*obj), global_list);
  1540. list_move_tail(&obj->global_list, &still_in_list);
  1541. if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
  1542. continue;
  1543. drm_gem_object_reference(&obj->base);
  1544. list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
  1545. if (i915_vma_unbind(vma))
  1546. break;
  1547. if (i915_gem_object_put_pages(obj) == 0)
  1548. count += obj->base.size >> PAGE_SHIFT;
  1549. drm_gem_object_unreference(&obj->base);
  1550. }
  1551. list_splice(&still_in_list, &dev_priv->mm.bound_list);
  1552. return count;
  1553. }
  1554. static unsigned long
  1555. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1556. {
  1557. return __i915_gem_shrink(dev_priv, target, true);
  1558. }
  1559. static unsigned long
  1560. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1561. {
  1562. i915_gem_evict_everything(dev_priv->dev);
  1563. return __i915_gem_shrink(dev_priv, LONG_MAX, false);
  1564. }
  1565. static int
  1566. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1567. {
  1568. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1569. int page_count, i;
  1570. struct address_space *mapping;
  1571. struct sg_table *st;
  1572. struct scatterlist *sg;
  1573. struct sg_page_iter sg_iter;
  1574. struct page *page;
  1575. unsigned long last_pfn = 0; /* suppress gcc warning */
  1576. gfp_t gfp;
  1577. /* Assert that the object is not currently in any GPU domain. As it
  1578. * wasn't in the GTT, there shouldn't be any way it could have been in
  1579. * a GPU cache
  1580. */
  1581. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1582. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1583. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1584. if (st == NULL)
  1585. return -ENOMEM;
  1586. page_count = obj->base.size / PAGE_SIZE;
  1587. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1588. kfree(st);
  1589. return -ENOMEM;
  1590. }
  1591. /* Get the list of pages out of our struct file. They'll be pinned
  1592. * at this point until we release them.
  1593. *
  1594. * Fail silently without starting the shrinker
  1595. */
  1596. mapping = file_inode(obj->base.filp)->i_mapping;
  1597. gfp = mapping_gfp_mask(mapping);
  1598. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1599. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1600. sg = st->sgl;
  1601. st->nents = 0;
  1602. for (i = 0; i < page_count; i++) {
  1603. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1604. if (IS_ERR(page)) {
  1605. i915_gem_purge(dev_priv, page_count);
  1606. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1607. }
  1608. if (IS_ERR(page)) {
  1609. /* We've tried hard to allocate the memory by reaping
  1610. * our own buffer, now let the real VM do its job and
  1611. * go down in flames if truly OOM.
  1612. */
  1613. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
  1614. gfp |= __GFP_IO | __GFP_WAIT;
  1615. i915_gem_shrink_all(dev_priv);
  1616. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1617. if (IS_ERR(page))
  1618. goto err_pages;
  1619. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1620. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1621. }
  1622. #ifdef CONFIG_SWIOTLB
  1623. if (swiotlb_nr_tbl()) {
  1624. st->nents++;
  1625. sg_set_page(sg, page, PAGE_SIZE, 0);
  1626. sg = sg_next(sg);
  1627. continue;
  1628. }
  1629. #endif
  1630. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1631. if (i)
  1632. sg = sg_next(sg);
  1633. st->nents++;
  1634. sg_set_page(sg, page, PAGE_SIZE, 0);
  1635. } else {
  1636. sg->length += PAGE_SIZE;
  1637. }
  1638. last_pfn = page_to_pfn(page);
  1639. /* Check that the i965g/gm workaround works. */
  1640. WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
  1641. }
  1642. #ifdef CONFIG_SWIOTLB
  1643. if (!swiotlb_nr_tbl())
  1644. #endif
  1645. sg_mark_end(sg);
  1646. obj->pages = st;
  1647. if (i915_gem_object_needs_bit17_swizzle(obj))
  1648. i915_gem_object_do_bit_17_swizzle(obj);
  1649. return 0;
  1650. err_pages:
  1651. sg_mark_end(sg);
  1652. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1653. page_cache_release(sg_page_iter_page(&sg_iter));
  1654. sg_free_table(st);
  1655. kfree(st);
  1656. return PTR_ERR(page);
  1657. }
  1658. /* Ensure that the associated pages are gathered from the backing storage
  1659. * and pinned into our object. i915_gem_object_get_pages() may be called
  1660. * multiple times before they are released by a single call to
  1661. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1662. * either as a result of memory pressure (reaping pages under the shrinker)
  1663. * or as the object is itself released.
  1664. */
  1665. int
  1666. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1667. {
  1668. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1669. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1670. int ret;
  1671. if (obj->pages)
  1672. return 0;
  1673. if (obj->madv != I915_MADV_WILLNEED) {
  1674. DRM_DEBUG("Attempting to obtain a purgeable object\n");
  1675. return -EFAULT;
  1676. }
  1677. BUG_ON(obj->pages_pin_count);
  1678. ret = ops->get_pages(obj);
  1679. if (ret)
  1680. return ret;
  1681. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1682. return 0;
  1683. }
  1684. static void
  1685. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1686. struct intel_ring_buffer *ring)
  1687. {
  1688. struct drm_device *dev = obj->base.dev;
  1689. struct drm_i915_private *dev_priv = dev->dev_private;
  1690. u32 seqno = intel_ring_get_seqno(ring);
  1691. BUG_ON(ring == NULL);
  1692. if (obj->ring != ring && obj->last_write_seqno) {
  1693. /* Keep the seqno relative to the current ring */
  1694. obj->last_write_seqno = seqno;
  1695. }
  1696. obj->ring = ring;
  1697. /* Add a reference if we're newly entering the active list. */
  1698. if (!obj->active) {
  1699. drm_gem_object_reference(&obj->base);
  1700. obj->active = 1;
  1701. }
  1702. list_move_tail(&obj->ring_list, &ring->active_list);
  1703. obj->last_read_seqno = seqno;
  1704. if (obj->fenced_gpu_access) {
  1705. obj->last_fenced_seqno = seqno;
  1706. /* Bump MRU to take account of the delayed flush */
  1707. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1708. struct drm_i915_fence_reg *reg;
  1709. reg = &dev_priv->fence_regs[obj->fence_reg];
  1710. list_move_tail(&reg->lru_list,
  1711. &dev_priv->mm.fence_list);
  1712. }
  1713. }
  1714. }
  1715. void i915_vma_move_to_active(struct i915_vma *vma,
  1716. struct intel_ring_buffer *ring)
  1717. {
  1718. list_move_tail(&vma->mm_list, &vma->vm->active_list);
  1719. return i915_gem_object_move_to_active(vma->obj, ring);
  1720. }
  1721. static void
  1722. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1723. {
  1724. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1725. struct i915_address_space *vm;
  1726. struct i915_vma *vma;
  1727. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1728. BUG_ON(!obj->active);
  1729. list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
  1730. vma = i915_gem_obj_to_vma(obj, vm);
  1731. if (vma && !list_empty(&vma->mm_list))
  1732. list_move_tail(&vma->mm_list, &vm->inactive_list);
  1733. }
  1734. list_del_init(&obj->ring_list);
  1735. obj->ring = NULL;
  1736. obj->last_read_seqno = 0;
  1737. obj->last_write_seqno = 0;
  1738. obj->base.write_domain = 0;
  1739. obj->last_fenced_seqno = 0;
  1740. obj->fenced_gpu_access = false;
  1741. obj->active = 0;
  1742. drm_gem_object_unreference(&obj->base);
  1743. WARN_ON(i915_verify_lists(dev));
  1744. }
  1745. static void
  1746. i915_gem_object_retire(struct drm_i915_gem_object *obj)
  1747. {
  1748. struct intel_ring_buffer *ring = obj->ring;
  1749. if (ring == NULL)
  1750. return;
  1751. if (i915_seqno_passed(ring->get_seqno(ring, true),
  1752. obj->last_read_seqno))
  1753. i915_gem_object_move_to_inactive(obj);
  1754. }
  1755. static int
  1756. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1757. {
  1758. struct drm_i915_private *dev_priv = dev->dev_private;
  1759. struct intel_ring_buffer *ring;
  1760. int ret, i, j;
  1761. /* Carefully retire all requests without writing to the rings */
  1762. for_each_ring(ring, dev_priv, i) {
  1763. ret = intel_ring_idle(ring);
  1764. if (ret)
  1765. return ret;
  1766. }
  1767. i915_gem_retire_requests(dev);
  1768. /* Finally reset hw state */
  1769. for_each_ring(ring, dev_priv, i) {
  1770. intel_ring_init_seqno(ring, seqno);
  1771. for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
  1772. ring->sync_seqno[j] = 0;
  1773. }
  1774. return 0;
  1775. }
  1776. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1777. {
  1778. struct drm_i915_private *dev_priv = dev->dev_private;
  1779. int ret;
  1780. if (seqno == 0)
  1781. return -EINVAL;
  1782. /* HWS page needs to be set less than what we
  1783. * will inject to ring
  1784. */
  1785. ret = i915_gem_init_seqno(dev, seqno - 1);
  1786. if (ret)
  1787. return ret;
  1788. /* Carefully set the last_seqno value so that wrap
  1789. * detection still works
  1790. */
  1791. dev_priv->next_seqno = seqno;
  1792. dev_priv->last_seqno = seqno - 1;
  1793. if (dev_priv->last_seqno == 0)
  1794. dev_priv->last_seqno--;
  1795. return 0;
  1796. }
  1797. int
  1798. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1799. {
  1800. struct drm_i915_private *dev_priv = dev->dev_private;
  1801. /* reserve 0 for non-seqno */
  1802. if (dev_priv->next_seqno == 0) {
  1803. int ret = i915_gem_init_seqno(dev, 0);
  1804. if (ret)
  1805. return ret;
  1806. dev_priv->next_seqno = 1;
  1807. }
  1808. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1809. return 0;
  1810. }
  1811. int __i915_add_request(struct intel_ring_buffer *ring,
  1812. struct drm_file *file,
  1813. struct drm_i915_gem_object *obj,
  1814. u32 *out_seqno)
  1815. {
  1816. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1817. struct drm_i915_gem_request *request;
  1818. u32 request_ring_position, request_start;
  1819. int ret;
  1820. request_start = intel_ring_get_tail(ring);
  1821. /*
  1822. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1823. * after having emitted the batchbuffer command. Hence we need to fix
  1824. * things up similar to emitting the lazy request. The difference here
  1825. * is that the flush _must_ happen before the next request, no matter
  1826. * what.
  1827. */
  1828. ret = intel_ring_flush_all_caches(ring);
  1829. if (ret)
  1830. return ret;
  1831. request = ring->preallocated_lazy_request;
  1832. if (WARN_ON(request == NULL))
  1833. return -ENOMEM;
  1834. /* Record the position of the start of the request so that
  1835. * should we detect the updated seqno part-way through the
  1836. * GPU processing the request, we never over-estimate the
  1837. * position of the head.
  1838. */
  1839. request_ring_position = intel_ring_get_tail(ring);
  1840. ret = ring->add_request(ring);
  1841. if (ret)
  1842. return ret;
  1843. request->seqno = intel_ring_get_seqno(ring);
  1844. request->ring = ring;
  1845. request->head = request_start;
  1846. request->tail = request_ring_position;
  1847. /* Whilst this request exists, batch_obj will be on the
  1848. * active_list, and so will hold the active reference. Only when this
  1849. * request is retired will the the batch_obj be moved onto the
  1850. * inactive_list and lose its active reference. Hence we do not need
  1851. * to explicitly hold another reference here.
  1852. */
  1853. request->batch_obj = obj;
  1854. /* Hold a reference to the current context so that we can inspect
  1855. * it later in case a hangcheck error event fires.
  1856. */
  1857. request->ctx = ring->last_context;
  1858. if (request->ctx)
  1859. i915_gem_context_reference(request->ctx);
  1860. request->emitted_jiffies = jiffies;
  1861. list_add_tail(&request->list, &ring->request_list);
  1862. request->file_priv = NULL;
  1863. if (file) {
  1864. struct drm_i915_file_private *file_priv = file->driver_priv;
  1865. spin_lock(&file_priv->mm.lock);
  1866. request->file_priv = file_priv;
  1867. list_add_tail(&request->client_list,
  1868. &file_priv->mm.request_list);
  1869. spin_unlock(&file_priv->mm.lock);
  1870. }
  1871. trace_i915_gem_request_add(ring, request->seqno);
  1872. ring->outstanding_lazy_seqno = 0;
  1873. ring->preallocated_lazy_request = NULL;
  1874. if (!dev_priv->ums.mm_suspended) {
  1875. i915_queue_hangcheck(ring->dev);
  1876. cancel_delayed_work_sync(&dev_priv->mm.idle_work);
  1877. queue_delayed_work(dev_priv->wq,
  1878. &dev_priv->mm.retire_work,
  1879. round_jiffies_up_relative(HZ));
  1880. intel_mark_busy(dev_priv->dev);
  1881. }
  1882. if (out_seqno)
  1883. *out_seqno = request->seqno;
  1884. return 0;
  1885. }
  1886. static inline void
  1887. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1888. {
  1889. struct drm_i915_file_private *file_priv = request->file_priv;
  1890. if (!file_priv)
  1891. return;
  1892. spin_lock(&file_priv->mm.lock);
  1893. list_del(&request->client_list);
  1894. request->file_priv = NULL;
  1895. spin_unlock(&file_priv->mm.lock);
  1896. }
  1897. static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
  1898. const struct i915_hw_context *ctx)
  1899. {
  1900. unsigned long elapsed;
  1901. elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
  1902. if (ctx->hang_stats.banned)
  1903. return true;
  1904. if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
  1905. if (!i915_gem_context_is_default(ctx)) {
  1906. DRM_DEBUG("context hanging too fast, banning!\n");
  1907. return true;
  1908. } else if (i915_stop_ring_allow_ban(dev_priv)) {
  1909. if (i915_stop_ring_allow_warn(dev_priv))
  1910. DRM_ERROR("gpu hanging too fast, banning!\n");
  1911. return true;
  1912. }
  1913. }
  1914. return false;
  1915. }
  1916. static void i915_set_reset_status(struct drm_i915_private *dev_priv,
  1917. struct i915_hw_context *ctx,
  1918. const bool guilty)
  1919. {
  1920. struct i915_ctx_hang_stats *hs;
  1921. if (WARN_ON(!ctx))
  1922. return;
  1923. hs = &ctx->hang_stats;
  1924. if (guilty) {
  1925. hs->banned = i915_context_is_banned(dev_priv, ctx);
  1926. hs->batch_active++;
  1927. hs->guilty_ts = get_seconds();
  1928. } else {
  1929. hs->batch_pending++;
  1930. }
  1931. }
  1932. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  1933. {
  1934. list_del(&request->list);
  1935. i915_gem_request_remove_from_client(request);
  1936. if (request->ctx)
  1937. i915_gem_context_unreference(request->ctx);
  1938. kfree(request);
  1939. }
  1940. struct drm_i915_gem_request *
  1941. i915_gem_find_active_request(struct intel_ring_buffer *ring)
  1942. {
  1943. struct drm_i915_gem_request *request;
  1944. u32 completed_seqno;
  1945. completed_seqno = ring->get_seqno(ring, false);
  1946. list_for_each_entry(request, &ring->request_list, list) {
  1947. if (i915_seqno_passed(completed_seqno, request->seqno))
  1948. continue;
  1949. return request;
  1950. }
  1951. return NULL;
  1952. }
  1953. static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
  1954. struct intel_ring_buffer *ring)
  1955. {
  1956. struct drm_i915_gem_request *request;
  1957. bool ring_hung;
  1958. request = i915_gem_find_active_request(ring);
  1959. if (request == NULL)
  1960. return;
  1961. ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
  1962. i915_set_reset_status(dev_priv, request->ctx, ring_hung);
  1963. list_for_each_entry_continue(request, &ring->request_list, list)
  1964. i915_set_reset_status(dev_priv, request->ctx, false);
  1965. }
  1966. static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
  1967. struct intel_ring_buffer *ring)
  1968. {
  1969. while (!list_empty(&ring->active_list)) {
  1970. struct drm_i915_gem_object *obj;
  1971. obj = list_first_entry(&ring->active_list,
  1972. struct drm_i915_gem_object,
  1973. ring_list);
  1974. i915_gem_object_move_to_inactive(obj);
  1975. }
  1976. /*
  1977. * We must free the requests after all the corresponding objects have
  1978. * been moved off active lists. Which is the same order as the normal
  1979. * retire_requests function does. This is important if object hold
  1980. * implicit references on things like e.g. ppgtt address spaces through
  1981. * the request.
  1982. */
  1983. while (!list_empty(&ring->request_list)) {
  1984. struct drm_i915_gem_request *request;
  1985. request = list_first_entry(&ring->request_list,
  1986. struct drm_i915_gem_request,
  1987. list);
  1988. i915_gem_free_request(request);
  1989. }
  1990. /* These may not have been flush before the reset, do so now */
  1991. kfree(ring->preallocated_lazy_request);
  1992. ring->preallocated_lazy_request = NULL;
  1993. ring->outstanding_lazy_seqno = 0;
  1994. }
  1995. void i915_gem_restore_fences(struct drm_device *dev)
  1996. {
  1997. struct drm_i915_private *dev_priv = dev->dev_private;
  1998. int i;
  1999. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  2000. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  2001. /*
  2002. * Commit delayed tiling changes if we have an object still
  2003. * attached to the fence, otherwise just clear the fence.
  2004. */
  2005. if (reg->obj) {
  2006. i915_gem_object_update_fence(reg->obj, reg,
  2007. reg->obj->tiling_mode);
  2008. } else {
  2009. i915_gem_write_fence(dev, i, NULL);
  2010. }
  2011. }
  2012. }
  2013. void i915_gem_reset(struct drm_device *dev)
  2014. {
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. struct intel_ring_buffer *ring;
  2017. int i;
  2018. /*
  2019. * Before we free the objects from the requests, we need to inspect
  2020. * them for finding the guilty party. As the requests only borrow
  2021. * their reference to the objects, the inspection must be done first.
  2022. */
  2023. for_each_ring(ring, dev_priv, i)
  2024. i915_gem_reset_ring_status(dev_priv, ring);
  2025. for_each_ring(ring, dev_priv, i)
  2026. i915_gem_reset_ring_cleanup(dev_priv, ring);
  2027. i915_gem_context_reset(dev);
  2028. i915_gem_restore_fences(dev);
  2029. }
  2030. /**
  2031. * This function clears the request list as sequence numbers are passed.
  2032. */
  2033. static void
  2034. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  2035. {
  2036. uint32_t seqno;
  2037. if (list_empty(&ring->request_list))
  2038. return;
  2039. WARN_ON(i915_verify_lists(ring->dev));
  2040. seqno = ring->get_seqno(ring, true);
  2041. /* Move any buffers on the active list that are no longer referenced
  2042. * by the ringbuffer to the flushing/inactive lists as appropriate,
  2043. * before we free the context associated with the requests.
  2044. */
  2045. while (!list_empty(&ring->active_list)) {
  2046. struct drm_i915_gem_object *obj;
  2047. obj = list_first_entry(&ring->active_list,
  2048. struct drm_i915_gem_object,
  2049. ring_list);
  2050. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  2051. break;
  2052. i915_gem_object_move_to_inactive(obj);
  2053. }
  2054. while (!list_empty(&ring->request_list)) {
  2055. struct drm_i915_gem_request *request;
  2056. request = list_first_entry(&ring->request_list,
  2057. struct drm_i915_gem_request,
  2058. list);
  2059. if (!i915_seqno_passed(seqno, request->seqno))
  2060. break;
  2061. trace_i915_gem_request_retire(ring, request->seqno);
  2062. /* We know the GPU must have read the request to have
  2063. * sent us the seqno + interrupt, so use the position
  2064. * of tail of the request to update the last known position
  2065. * of the GPU head.
  2066. */
  2067. ring->last_retired_head = request->tail;
  2068. i915_gem_free_request(request);
  2069. }
  2070. if (unlikely(ring->trace_irq_seqno &&
  2071. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  2072. ring->irq_put(ring);
  2073. ring->trace_irq_seqno = 0;
  2074. }
  2075. WARN_ON(i915_verify_lists(ring->dev));
  2076. }
  2077. bool
  2078. i915_gem_retire_requests(struct drm_device *dev)
  2079. {
  2080. struct drm_i915_private *dev_priv = dev->dev_private;
  2081. struct intel_ring_buffer *ring;
  2082. bool idle = true;
  2083. int i;
  2084. for_each_ring(ring, dev_priv, i) {
  2085. i915_gem_retire_requests_ring(ring);
  2086. idle &= list_empty(&ring->request_list);
  2087. }
  2088. if (idle)
  2089. mod_delayed_work(dev_priv->wq,
  2090. &dev_priv->mm.idle_work,
  2091. msecs_to_jiffies(100));
  2092. return idle;
  2093. }
  2094. static void
  2095. i915_gem_retire_work_handler(struct work_struct *work)
  2096. {
  2097. struct drm_i915_private *dev_priv =
  2098. container_of(work, typeof(*dev_priv), mm.retire_work.work);
  2099. struct drm_device *dev = dev_priv->dev;
  2100. bool idle;
  2101. /* Come back later if the device is busy... */
  2102. idle = false;
  2103. if (mutex_trylock(&dev->struct_mutex)) {
  2104. idle = i915_gem_retire_requests(dev);
  2105. mutex_unlock(&dev->struct_mutex);
  2106. }
  2107. if (!idle)
  2108. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2109. round_jiffies_up_relative(HZ));
  2110. }
  2111. static void
  2112. i915_gem_idle_work_handler(struct work_struct *work)
  2113. {
  2114. struct drm_i915_private *dev_priv =
  2115. container_of(work, typeof(*dev_priv), mm.idle_work.work);
  2116. intel_mark_idle(dev_priv->dev);
  2117. }
  2118. /**
  2119. * Ensures that an object will eventually get non-busy by flushing any required
  2120. * write domains, emitting any outstanding lazy request and retiring and
  2121. * completed requests.
  2122. */
  2123. static int
  2124. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2125. {
  2126. int ret;
  2127. if (obj->active) {
  2128. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  2129. if (ret)
  2130. return ret;
  2131. i915_gem_retire_requests_ring(obj->ring);
  2132. }
  2133. return 0;
  2134. }
  2135. /**
  2136. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2137. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2138. *
  2139. * Returns 0 if successful, else an error is returned with the remaining time in
  2140. * the timeout parameter.
  2141. * -ETIME: object is still busy after timeout
  2142. * -ERESTARTSYS: signal interrupted the wait
  2143. * -ENONENT: object doesn't exist
  2144. * Also possible, but rare:
  2145. * -EAGAIN: GPU wedged
  2146. * -ENOMEM: damn
  2147. * -ENODEV: Internal IRQ fail
  2148. * -E?: The add request failed
  2149. *
  2150. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2151. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2152. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2153. * without holding struct_mutex the object may become re-busied before this
  2154. * function completes. A similar but shorter * race condition exists in the busy
  2155. * ioctl
  2156. */
  2157. int
  2158. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2159. {
  2160. struct drm_i915_private *dev_priv = dev->dev_private;
  2161. struct drm_i915_gem_wait *args = data;
  2162. struct drm_i915_gem_object *obj;
  2163. struct intel_ring_buffer *ring = NULL;
  2164. struct timespec timeout_stack, *timeout = NULL;
  2165. unsigned reset_counter;
  2166. u32 seqno = 0;
  2167. int ret = 0;
  2168. if (args->timeout_ns >= 0) {
  2169. timeout_stack = ns_to_timespec(args->timeout_ns);
  2170. timeout = &timeout_stack;
  2171. }
  2172. ret = i915_mutex_lock_interruptible(dev);
  2173. if (ret)
  2174. return ret;
  2175. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2176. if (&obj->base == NULL) {
  2177. mutex_unlock(&dev->struct_mutex);
  2178. return -ENOENT;
  2179. }
  2180. /* Need to make sure the object gets inactive eventually. */
  2181. ret = i915_gem_object_flush_active(obj);
  2182. if (ret)
  2183. goto out;
  2184. if (obj->active) {
  2185. seqno = obj->last_read_seqno;
  2186. ring = obj->ring;
  2187. }
  2188. if (seqno == 0)
  2189. goto out;
  2190. /* Do this after OLR check to make sure we make forward progress polling
  2191. * on this IOCTL with a 0 timeout (like busy ioctl)
  2192. */
  2193. if (!args->timeout_ns) {
  2194. ret = -ETIME;
  2195. goto out;
  2196. }
  2197. drm_gem_object_unreference(&obj->base);
  2198. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2199. mutex_unlock(&dev->struct_mutex);
  2200. ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
  2201. if (timeout)
  2202. args->timeout_ns = timespec_to_ns(timeout);
  2203. return ret;
  2204. out:
  2205. drm_gem_object_unreference(&obj->base);
  2206. mutex_unlock(&dev->struct_mutex);
  2207. return ret;
  2208. }
  2209. /**
  2210. * i915_gem_object_sync - sync an object to a ring.
  2211. *
  2212. * @obj: object which may be in use on another ring.
  2213. * @to: ring we wish to use the object on. May be NULL.
  2214. *
  2215. * This code is meant to abstract object synchronization with the GPU.
  2216. * Calling with NULL implies synchronizing the object with the CPU
  2217. * rather than a particular GPU ring.
  2218. *
  2219. * Returns 0 if successful, else propagates up the lower layer error.
  2220. */
  2221. int
  2222. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2223. struct intel_ring_buffer *to)
  2224. {
  2225. struct intel_ring_buffer *from = obj->ring;
  2226. u32 seqno;
  2227. int ret, idx;
  2228. if (from == NULL || to == from)
  2229. return 0;
  2230. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2231. return i915_gem_object_wait_rendering(obj, false);
  2232. idx = intel_ring_sync_index(from, to);
  2233. seqno = obj->last_read_seqno;
  2234. if (seqno <= from->sync_seqno[idx])
  2235. return 0;
  2236. ret = i915_gem_check_olr(obj->ring, seqno);
  2237. if (ret)
  2238. return ret;
  2239. trace_i915_gem_ring_sync_to(from, to, seqno);
  2240. ret = to->sync_to(to, from, seqno);
  2241. if (!ret)
  2242. /* We use last_read_seqno because sync_to()
  2243. * might have just caused seqno wrap under
  2244. * the radar.
  2245. */
  2246. from->sync_seqno[idx] = obj->last_read_seqno;
  2247. return ret;
  2248. }
  2249. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2250. {
  2251. u32 old_write_domain, old_read_domains;
  2252. /* Force a pagefault for domain tracking on next user access */
  2253. i915_gem_release_mmap(obj);
  2254. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2255. return;
  2256. /* Wait for any direct GTT access to complete */
  2257. mb();
  2258. old_read_domains = obj->base.read_domains;
  2259. old_write_domain = obj->base.write_domain;
  2260. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2261. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2262. trace_i915_gem_object_change_domain(obj,
  2263. old_read_domains,
  2264. old_write_domain);
  2265. }
  2266. int i915_vma_unbind(struct i915_vma *vma)
  2267. {
  2268. struct drm_i915_gem_object *obj = vma->obj;
  2269. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2270. int ret;
  2271. if (list_empty(&vma->vma_link))
  2272. return 0;
  2273. if (!drm_mm_node_allocated(&vma->node)) {
  2274. i915_gem_vma_destroy(vma);
  2275. return 0;
  2276. }
  2277. if (vma->pin_count)
  2278. return -EBUSY;
  2279. BUG_ON(obj->pages == NULL);
  2280. ret = i915_gem_object_finish_gpu(obj);
  2281. if (ret)
  2282. return ret;
  2283. /* Continue on if we fail due to EIO, the GPU is hung so we
  2284. * should be safe and we need to cleanup or else we might
  2285. * cause memory corruption through use-after-free.
  2286. */
  2287. i915_gem_object_finish_gtt(obj);
  2288. /* release the fence reg _after_ flushing */
  2289. ret = i915_gem_object_put_fence(obj);
  2290. if (ret)
  2291. return ret;
  2292. trace_i915_vma_unbind(vma);
  2293. vma->unbind_vma(vma);
  2294. i915_gem_gtt_finish_object(obj);
  2295. list_del_init(&vma->mm_list);
  2296. /* Avoid an unnecessary call to unbind on rebind. */
  2297. if (i915_is_ggtt(vma->vm))
  2298. obj->map_and_fenceable = true;
  2299. drm_mm_remove_node(&vma->node);
  2300. i915_gem_vma_destroy(vma);
  2301. /* Since the unbound list is global, only move to that list if
  2302. * no more VMAs exist. */
  2303. if (list_empty(&obj->vma_list))
  2304. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2305. /* And finally now the object is completely decoupled from this vma,
  2306. * we can drop its hold on the backing storage and allow it to be
  2307. * reaped by the shrinker.
  2308. */
  2309. i915_gem_object_unpin_pages(obj);
  2310. return 0;
  2311. }
  2312. int i915_gpu_idle(struct drm_device *dev)
  2313. {
  2314. struct drm_i915_private *dev_priv = dev->dev_private;
  2315. struct intel_ring_buffer *ring;
  2316. int ret, i;
  2317. /* Flush everything onto the inactive list. */
  2318. for_each_ring(ring, dev_priv, i) {
  2319. ret = i915_switch_context(ring, ring->default_context);
  2320. if (ret)
  2321. return ret;
  2322. ret = intel_ring_idle(ring);
  2323. if (ret)
  2324. return ret;
  2325. }
  2326. return 0;
  2327. }
  2328. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2329. struct drm_i915_gem_object *obj)
  2330. {
  2331. struct drm_i915_private *dev_priv = dev->dev_private;
  2332. int fence_reg;
  2333. int fence_pitch_shift;
  2334. if (INTEL_INFO(dev)->gen >= 6) {
  2335. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2336. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2337. } else {
  2338. fence_reg = FENCE_REG_965_0;
  2339. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2340. }
  2341. fence_reg += reg * 8;
  2342. /* To w/a incoherency with non-atomic 64-bit register updates,
  2343. * we split the 64-bit update into two 32-bit writes. In order
  2344. * for a partial fence not to be evaluated between writes, we
  2345. * precede the update with write to turn off the fence register,
  2346. * and only enable the fence as the last step.
  2347. *
  2348. * For extra levels of paranoia, we make sure each step lands
  2349. * before applying the next step.
  2350. */
  2351. I915_WRITE(fence_reg, 0);
  2352. POSTING_READ(fence_reg);
  2353. if (obj) {
  2354. u32 size = i915_gem_obj_ggtt_size(obj);
  2355. uint64_t val;
  2356. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2357. 0xfffff000) << 32;
  2358. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2359. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2360. if (obj->tiling_mode == I915_TILING_Y)
  2361. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2362. val |= I965_FENCE_REG_VALID;
  2363. I915_WRITE(fence_reg + 4, val >> 32);
  2364. POSTING_READ(fence_reg + 4);
  2365. I915_WRITE(fence_reg + 0, val);
  2366. POSTING_READ(fence_reg);
  2367. } else {
  2368. I915_WRITE(fence_reg + 4, 0);
  2369. POSTING_READ(fence_reg + 4);
  2370. }
  2371. }
  2372. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2373. struct drm_i915_gem_object *obj)
  2374. {
  2375. struct drm_i915_private *dev_priv = dev->dev_private;
  2376. u32 val;
  2377. if (obj) {
  2378. u32 size = i915_gem_obj_ggtt_size(obj);
  2379. int pitch_val;
  2380. int tile_width;
  2381. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2382. (size & -size) != size ||
  2383. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2384. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2385. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2386. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2387. tile_width = 128;
  2388. else
  2389. tile_width = 512;
  2390. /* Note: pitch better be a power of two tile widths */
  2391. pitch_val = obj->stride / tile_width;
  2392. pitch_val = ffs(pitch_val) - 1;
  2393. val = i915_gem_obj_ggtt_offset(obj);
  2394. if (obj->tiling_mode == I915_TILING_Y)
  2395. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2396. val |= I915_FENCE_SIZE_BITS(size);
  2397. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2398. val |= I830_FENCE_REG_VALID;
  2399. } else
  2400. val = 0;
  2401. if (reg < 8)
  2402. reg = FENCE_REG_830_0 + reg * 4;
  2403. else
  2404. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2405. I915_WRITE(reg, val);
  2406. POSTING_READ(reg);
  2407. }
  2408. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2409. struct drm_i915_gem_object *obj)
  2410. {
  2411. struct drm_i915_private *dev_priv = dev->dev_private;
  2412. uint32_t val;
  2413. if (obj) {
  2414. u32 size = i915_gem_obj_ggtt_size(obj);
  2415. uint32_t pitch_val;
  2416. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2417. (size & -size) != size ||
  2418. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2419. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2420. i915_gem_obj_ggtt_offset(obj), size);
  2421. pitch_val = obj->stride / 128;
  2422. pitch_val = ffs(pitch_val) - 1;
  2423. val = i915_gem_obj_ggtt_offset(obj);
  2424. if (obj->tiling_mode == I915_TILING_Y)
  2425. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2426. val |= I830_FENCE_SIZE_BITS(size);
  2427. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2428. val |= I830_FENCE_REG_VALID;
  2429. } else
  2430. val = 0;
  2431. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2432. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2433. }
  2434. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2435. {
  2436. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2437. }
  2438. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2439. struct drm_i915_gem_object *obj)
  2440. {
  2441. struct drm_i915_private *dev_priv = dev->dev_private;
  2442. /* Ensure that all CPU reads are completed before installing a fence
  2443. * and all writes before removing the fence.
  2444. */
  2445. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2446. mb();
  2447. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2448. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2449. obj->stride, obj->tiling_mode);
  2450. switch (INTEL_INFO(dev)->gen) {
  2451. case 8:
  2452. case 7:
  2453. case 6:
  2454. case 5:
  2455. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2456. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2457. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2458. default: BUG();
  2459. }
  2460. /* And similarly be paranoid that no direct access to this region
  2461. * is reordered to before the fence is installed.
  2462. */
  2463. if (i915_gem_object_needs_mb(obj))
  2464. mb();
  2465. }
  2466. static inline int fence_number(struct drm_i915_private *dev_priv,
  2467. struct drm_i915_fence_reg *fence)
  2468. {
  2469. return fence - dev_priv->fence_regs;
  2470. }
  2471. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2472. struct drm_i915_fence_reg *fence,
  2473. bool enable)
  2474. {
  2475. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2476. int reg = fence_number(dev_priv, fence);
  2477. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2478. if (enable) {
  2479. obj->fence_reg = reg;
  2480. fence->obj = obj;
  2481. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2482. } else {
  2483. obj->fence_reg = I915_FENCE_REG_NONE;
  2484. fence->obj = NULL;
  2485. list_del_init(&fence->lru_list);
  2486. }
  2487. obj->fence_dirty = false;
  2488. }
  2489. static int
  2490. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2491. {
  2492. if (obj->last_fenced_seqno) {
  2493. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2494. if (ret)
  2495. return ret;
  2496. obj->last_fenced_seqno = 0;
  2497. }
  2498. obj->fenced_gpu_access = false;
  2499. return 0;
  2500. }
  2501. int
  2502. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2503. {
  2504. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2505. struct drm_i915_fence_reg *fence;
  2506. int ret;
  2507. ret = i915_gem_object_wait_fence(obj);
  2508. if (ret)
  2509. return ret;
  2510. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2511. return 0;
  2512. fence = &dev_priv->fence_regs[obj->fence_reg];
  2513. i915_gem_object_fence_lost(obj);
  2514. i915_gem_object_update_fence(obj, fence, false);
  2515. return 0;
  2516. }
  2517. static struct drm_i915_fence_reg *
  2518. i915_find_fence_reg(struct drm_device *dev)
  2519. {
  2520. struct drm_i915_private *dev_priv = dev->dev_private;
  2521. struct drm_i915_fence_reg *reg, *avail;
  2522. int i;
  2523. /* First try to find a free reg */
  2524. avail = NULL;
  2525. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2526. reg = &dev_priv->fence_regs[i];
  2527. if (!reg->obj)
  2528. return reg;
  2529. if (!reg->pin_count)
  2530. avail = reg;
  2531. }
  2532. if (avail == NULL)
  2533. goto deadlock;
  2534. /* None available, try to steal one or wait for a user to finish */
  2535. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2536. if (reg->pin_count)
  2537. continue;
  2538. return reg;
  2539. }
  2540. deadlock:
  2541. /* Wait for completion of pending flips which consume fences */
  2542. if (intel_has_pending_fb_unpin(dev))
  2543. return ERR_PTR(-EAGAIN);
  2544. return ERR_PTR(-EDEADLK);
  2545. }
  2546. /**
  2547. * i915_gem_object_get_fence - set up fencing for an object
  2548. * @obj: object to map through a fence reg
  2549. *
  2550. * When mapping objects through the GTT, userspace wants to be able to write
  2551. * to them without having to worry about swizzling if the object is tiled.
  2552. * This function walks the fence regs looking for a free one for @obj,
  2553. * stealing one if it can't find any.
  2554. *
  2555. * It then sets up the reg based on the object's properties: address, pitch
  2556. * and tiling format.
  2557. *
  2558. * For an untiled surface, this removes any existing fence.
  2559. */
  2560. int
  2561. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2562. {
  2563. struct drm_device *dev = obj->base.dev;
  2564. struct drm_i915_private *dev_priv = dev->dev_private;
  2565. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2566. struct drm_i915_fence_reg *reg;
  2567. int ret;
  2568. /* Have we updated the tiling parameters upon the object and so
  2569. * will need to serialise the write to the associated fence register?
  2570. */
  2571. if (obj->fence_dirty) {
  2572. ret = i915_gem_object_wait_fence(obj);
  2573. if (ret)
  2574. return ret;
  2575. }
  2576. /* Just update our place in the LRU if our fence is getting reused. */
  2577. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2578. reg = &dev_priv->fence_regs[obj->fence_reg];
  2579. if (!obj->fence_dirty) {
  2580. list_move_tail(&reg->lru_list,
  2581. &dev_priv->mm.fence_list);
  2582. return 0;
  2583. }
  2584. } else if (enable) {
  2585. reg = i915_find_fence_reg(dev);
  2586. if (IS_ERR(reg))
  2587. return PTR_ERR(reg);
  2588. if (reg->obj) {
  2589. struct drm_i915_gem_object *old = reg->obj;
  2590. ret = i915_gem_object_wait_fence(old);
  2591. if (ret)
  2592. return ret;
  2593. i915_gem_object_fence_lost(old);
  2594. }
  2595. } else
  2596. return 0;
  2597. i915_gem_object_update_fence(obj, reg, enable);
  2598. return 0;
  2599. }
  2600. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2601. struct drm_mm_node *gtt_space,
  2602. unsigned long cache_level)
  2603. {
  2604. struct drm_mm_node *other;
  2605. /* On non-LLC machines we have to be careful when putting differing
  2606. * types of snoopable memory together to avoid the prefetcher
  2607. * crossing memory domains and dying.
  2608. */
  2609. if (HAS_LLC(dev))
  2610. return true;
  2611. if (!drm_mm_node_allocated(gtt_space))
  2612. return true;
  2613. if (list_empty(&gtt_space->node_list))
  2614. return true;
  2615. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2616. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2617. return false;
  2618. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2619. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2620. return false;
  2621. return true;
  2622. }
  2623. static void i915_gem_verify_gtt(struct drm_device *dev)
  2624. {
  2625. #if WATCH_GTT
  2626. struct drm_i915_private *dev_priv = dev->dev_private;
  2627. struct drm_i915_gem_object *obj;
  2628. int err = 0;
  2629. list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
  2630. if (obj->gtt_space == NULL) {
  2631. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2632. err++;
  2633. continue;
  2634. }
  2635. if (obj->cache_level != obj->gtt_space->color) {
  2636. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2637. i915_gem_obj_ggtt_offset(obj),
  2638. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2639. obj->cache_level,
  2640. obj->gtt_space->color);
  2641. err++;
  2642. continue;
  2643. }
  2644. if (!i915_gem_valid_gtt_space(dev,
  2645. obj->gtt_space,
  2646. obj->cache_level)) {
  2647. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2648. i915_gem_obj_ggtt_offset(obj),
  2649. i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
  2650. obj->cache_level);
  2651. err++;
  2652. continue;
  2653. }
  2654. }
  2655. WARN_ON(err);
  2656. #endif
  2657. }
  2658. /**
  2659. * Finds free space in the GTT aperture and binds the object there.
  2660. */
  2661. static struct i915_vma *
  2662. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  2663. struct i915_address_space *vm,
  2664. unsigned alignment,
  2665. unsigned flags)
  2666. {
  2667. struct drm_device *dev = obj->base.dev;
  2668. struct drm_i915_private *dev_priv = dev->dev_private;
  2669. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2670. size_t gtt_max =
  2671. flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
  2672. struct i915_vma *vma;
  2673. int ret;
  2674. fence_size = i915_gem_get_gtt_size(dev,
  2675. obj->base.size,
  2676. obj->tiling_mode);
  2677. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2678. obj->base.size,
  2679. obj->tiling_mode, true);
  2680. unfenced_alignment =
  2681. i915_gem_get_gtt_alignment(dev,
  2682. obj->base.size,
  2683. obj->tiling_mode, false);
  2684. if (alignment == 0)
  2685. alignment = flags & PIN_MAPPABLE ? fence_alignment :
  2686. unfenced_alignment;
  2687. if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
  2688. DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
  2689. return ERR_PTR(-EINVAL);
  2690. }
  2691. size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
  2692. /* If the object is bigger than the entire aperture, reject it early
  2693. * before evicting everything in a vain attempt to find space.
  2694. */
  2695. if (obj->base.size > gtt_max) {
  2696. DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
  2697. obj->base.size,
  2698. flags & PIN_MAPPABLE ? "mappable" : "total",
  2699. gtt_max);
  2700. return ERR_PTR(-E2BIG);
  2701. }
  2702. ret = i915_gem_object_get_pages(obj);
  2703. if (ret)
  2704. return ERR_PTR(ret);
  2705. i915_gem_object_pin_pages(obj);
  2706. vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
  2707. if (IS_ERR(vma))
  2708. goto err_unpin;
  2709. search_free:
  2710. ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
  2711. size, alignment,
  2712. obj->cache_level, 0, gtt_max,
  2713. DRM_MM_SEARCH_DEFAULT,
  2714. DRM_MM_CREATE_DEFAULT);
  2715. if (ret) {
  2716. ret = i915_gem_evict_something(dev, vm, size, alignment,
  2717. obj->cache_level, flags);
  2718. if (ret == 0)
  2719. goto search_free;
  2720. goto err_free_vma;
  2721. }
  2722. if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
  2723. obj->cache_level))) {
  2724. ret = -EINVAL;
  2725. goto err_remove_node;
  2726. }
  2727. ret = i915_gem_gtt_prepare_object(obj);
  2728. if (ret)
  2729. goto err_remove_node;
  2730. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  2731. list_add_tail(&vma->mm_list, &vm->inactive_list);
  2732. if (i915_is_ggtt(vm)) {
  2733. bool mappable, fenceable;
  2734. fenceable = (vma->node.size == fence_size &&
  2735. (vma->node.start & (fence_alignment - 1)) == 0);
  2736. mappable = (vma->node.start + obj->base.size <=
  2737. dev_priv->gtt.mappable_end);
  2738. obj->map_and_fenceable = mappable && fenceable;
  2739. }
  2740. WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
  2741. trace_i915_vma_bind(vma, flags);
  2742. vma->bind_vma(vma, obj->cache_level,
  2743. flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
  2744. i915_gem_verify_gtt(dev);
  2745. return vma;
  2746. err_remove_node:
  2747. drm_mm_remove_node(&vma->node);
  2748. err_free_vma:
  2749. i915_gem_vma_destroy(vma);
  2750. vma = ERR_PTR(ret);
  2751. err_unpin:
  2752. i915_gem_object_unpin_pages(obj);
  2753. return vma;
  2754. }
  2755. bool
  2756. i915_gem_clflush_object(struct drm_i915_gem_object *obj,
  2757. bool force)
  2758. {
  2759. /* If we don't have a page list set up, then we're not pinned
  2760. * to GPU, and we can ignore the cache flush because it'll happen
  2761. * again at bind time.
  2762. */
  2763. if (obj->pages == NULL)
  2764. return false;
  2765. /*
  2766. * Stolen memory is always coherent with the GPU as it is explicitly
  2767. * marked as wc by the system, or the system is cache-coherent.
  2768. */
  2769. if (obj->stolen)
  2770. return false;
  2771. /* If the GPU is snooping the contents of the CPU cache,
  2772. * we do not need to manually clear the CPU cache lines. However,
  2773. * the caches are only snooped when the render cache is
  2774. * flushed/invalidated. As we always have to emit invalidations
  2775. * and flushes when moving into and out of the RENDER domain, correct
  2776. * snooping behaviour occurs naturally as the result of our domain
  2777. * tracking.
  2778. */
  2779. if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  2780. return false;
  2781. trace_i915_gem_object_clflush(obj);
  2782. drm_clflush_sg(obj->pages);
  2783. return true;
  2784. }
  2785. /** Flushes the GTT write domain for the object if it's dirty. */
  2786. static void
  2787. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2788. {
  2789. uint32_t old_write_domain;
  2790. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2791. return;
  2792. /* No actual flushing is required for the GTT write domain. Writes
  2793. * to it immediately go to main memory as far as we know, so there's
  2794. * no chipset flush. It also doesn't land in render cache.
  2795. *
  2796. * However, we do have to enforce the order so that all writes through
  2797. * the GTT land before any writes to the device, such as updates to
  2798. * the GATT itself.
  2799. */
  2800. wmb();
  2801. old_write_domain = obj->base.write_domain;
  2802. obj->base.write_domain = 0;
  2803. trace_i915_gem_object_change_domain(obj,
  2804. obj->base.read_domains,
  2805. old_write_domain);
  2806. }
  2807. /** Flushes the CPU write domain for the object if it's dirty. */
  2808. static void
  2809. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  2810. bool force)
  2811. {
  2812. uint32_t old_write_domain;
  2813. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2814. return;
  2815. if (i915_gem_clflush_object(obj, force))
  2816. i915_gem_chipset_flush(obj->base.dev);
  2817. old_write_domain = obj->base.write_domain;
  2818. obj->base.write_domain = 0;
  2819. trace_i915_gem_object_change_domain(obj,
  2820. obj->base.read_domains,
  2821. old_write_domain);
  2822. }
  2823. /**
  2824. * Moves a single object to the GTT read, and possibly write domain.
  2825. *
  2826. * This function returns when the move is complete, including waiting on
  2827. * flushes to occur.
  2828. */
  2829. int
  2830. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2831. {
  2832. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2833. uint32_t old_write_domain, old_read_domains;
  2834. int ret;
  2835. /* Not valid to be called on unbound objects. */
  2836. if (!i915_gem_obj_bound_any(obj))
  2837. return -EINVAL;
  2838. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2839. return 0;
  2840. ret = i915_gem_object_wait_rendering(obj, !write);
  2841. if (ret)
  2842. return ret;
  2843. i915_gem_object_retire(obj);
  2844. i915_gem_object_flush_cpu_write_domain(obj, false);
  2845. /* Serialise direct access to this object with the barriers for
  2846. * coherent writes from the GPU, by effectively invalidating the
  2847. * GTT domain upon first access.
  2848. */
  2849. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2850. mb();
  2851. old_write_domain = obj->base.write_domain;
  2852. old_read_domains = obj->base.read_domains;
  2853. /* It should now be out of any other write domains, and we can update
  2854. * the domain values for our changes.
  2855. */
  2856. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2857. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2858. if (write) {
  2859. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2860. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2861. obj->dirty = 1;
  2862. }
  2863. trace_i915_gem_object_change_domain(obj,
  2864. old_read_domains,
  2865. old_write_domain);
  2866. /* And bump the LRU for this access */
  2867. if (i915_gem_object_is_inactive(obj)) {
  2868. struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
  2869. if (vma)
  2870. list_move_tail(&vma->mm_list,
  2871. &dev_priv->gtt.base.inactive_list);
  2872. }
  2873. return 0;
  2874. }
  2875. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2876. enum i915_cache_level cache_level)
  2877. {
  2878. struct drm_device *dev = obj->base.dev;
  2879. struct i915_vma *vma, *next;
  2880. int ret;
  2881. if (obj->cache_level == cache_level)
  2882. return 0;
  2883. if (i915_gem_obj_is_pinned(obj)) {
  2884. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2885. return -EBUSY;
  2886. }
  2887. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  2888. if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
  2889. ret = i915_vma_unbind(vma);
  2890. if (ret)
  2891. return ret;
  2892. }
  2893. }
  2894. if (i915_gem_obj_bound_any(obj)) {
  2895. ret = i915_gem_object_finish_gpu(obj);
  2896. if (ret)
  2897. return ret;
  2898. i915_gem_object_finish_gtt(obj);
  2899. /* Before SandyBridge, you could not use tiling or fence
  2900. * registers with snooped memory, so relinquish any fences
  2901. * currently pointing to our region in the aperture.
  2902. */
  2903. if (INTEL_INFO(dev)->gen < 6) {
  2904. ret = i915_gem_object_put_fence(obj);
  2905. if (ret)
  2906. return ret;
  2907. }
  2908. list_for_each_entry(vma, &obj->vma_list, vma_link)
  2909. if (drm_mm_node_allocated(&vma->node))
  2910. vma->bind_vma(vma, cache_level,
  2911. obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
  2912. }
  2913. list_for_each_entry(vma, &obj->vma_list, vma_link)
  2914. vma->node.color = cache_level;
  2915. obj->cache_level = cache_level;
  2916. if (cpu_write_needs_clflush(obj)) {
  2917. u32 old_read_domains, old_write_domain;
  2918. /* If we're coming from LLC cached, then we haven't
  2919. * actually been tracking whether the data is in the
  2920. * CPU cache or not, since we only allow one bit set
  2921. * in obj->write_domain and have been skipping the clflushes.
  2922. * Just set it to the CPU cache for now.
  2923. */
  2924. i915_gem_object_retire(obj);
  2925. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2926. old_read_domains = obj->base.read_domains;
  2927. old_write_domain = obj->base.write_domain;
  2928. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2929. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2930. trace_i915_gem_object_change_domain(obj,
  2931. old_read_domains,
  2932. old_write_domain);
  2933. }
  2934. i915_gem_verify_gtt(dev);
  2935. return 0;
  2936. }
  2937. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  2938. struct drm_file *file)
  2939. {
  2940. struct drm_i915_gem_caching *args = data;
  2941. struct drm_i915_gem_object *obj;
  2942. int ret;
  2943. ret = i915_mutex_lock_interruptible(dev);
  2944. if (ret)
  2945. return ret;
  2946. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2947. if (&obj->base == NULL) {
  2948. ret = -ENOENT;
  2949. goto unlock;
  2950. }
  2951. switch (obj->cache_level) {
  2952. case I915_CACHE_LLC:
  2953. case I915_CACHE_L3_LLC:
  2954. args->caching = I915_CACHING_CACHED;
  2955. break;
  2956. case I915_CACHE_WT:
  2957. args->caching = I915_CACHING_DISPLAY;
  2958. break;
  2959. default:
  2960. args->caching = I915_CACHING_NONE;
  2961. break;
  2962. }
  2963. drm_gem_object_unreference(&obj->base);
  2964. unlock:
  2965. mutex_unlock(&dev->struct_mutex);
  2966. return ret;
  2967. }
  2968. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  2969. struct drm_file *file)
  2970. {
  2971. struct drm_i915_gem_caching *args = data;
  2972. struct drm_i915_gem_object *obj;
  2973. enum i915_cache_level level;
  2974. int ret;
  2975. switch (args->caching) {
  2976. case I915_CACHING_NONE:
  2977. level = I915_CACHE_NONE;
  2978. break;
  2979. case I915_CACHING_CACHED:
  2980. level = I915_CACHE_LLC;
  2981. break;
  2982. case I915_CACHING_DISPLAY:
  2983. level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
  2984. break;
  2985. default:
  2986. return -EINVAL;
  2987. }
  2988. ret = i915_mutex_lock_interruptible(dev);
  2989. if (ret)
  2990. return ret;
  2991. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2992. if (&obj->base == NULL) {
  2993. ret = -ENOENT;
  2994. goto unlock;
  2995. }
  2996. ret = i915_gem_object_set_cache_level(obj, level);
  2997. drm_gem_object_unreference(&obj->base);
  2998. unlock:
  2999. mutex_unlock(&dev->struct_mutex);
  3000. return ret;
  3001. }
  3002. static bool is_pin_display(struct drm_i915_gem_object *obj)
  3003. {
  3004. /* There are 3 sources that pin objects:
  3005. * 1. The display engine (scanouts, sprites, cursors);
  3006. * 2. Reservations for execbuffer;
  3007. * 3. The user.
  3008. *
  3009. * We can ignore reservations as we hold the struct_mutex and
  3010. * are only called outside of the reservation path. The user
  3011. * can only increment pin_count once, and so if after
  3012. * subtracting the potential reference by the user, any pin_count
  3013. * remains, it must be due to another use by the display engine.
  3014. */
  3015. return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
  3016. }
  3017. /*
  3018. * Prepare buffer for display plane (scanout, cursors, etc).
  3019. * Can be called from an uninterruptible phase (modesetting) and allows
  3020. * any flushes to be pipelined (for pageflips).
  3021. */
  3022. int
  3023. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  3024. u32 alignment,
  3025. struct intel_ring_buffer *pipelined)
  3026. {
  3027. u32 old_read_domains, old_write_domain;
  3028. int ret;
  3029. if (pipelined != obj->ring) {
  3030. ret = i915_gem_object_sync(obj, pipelined);
  3031. if (ret)
  3032. return ret;
  3033. }
  3034. /* Mark the pin_display early so that we account for the
  3035. * display coherency whilst setting up the cache domains.
  3036. */
  3037. obj->pin_display = true;
  3038. /* The display engine is not coherent with the LLC cache on gen6. As
  3039. * a result, we make sure that the pinning that is about to occur is
  3040. * done with uncached PTEs. This is lowest common denominator for all
  3041. * chipsets.
  3042. *
  3043. * However for gen6+, we could do better by using the GFDT bit instead
  3044. * of uncaching, which would allow us to flush all the LLC-cached data
  3045. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  3046. */
  3047. ret = i915_gem_object_set_cache_level(obj,
  3048. HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
  3049. if (ret)
  3050. goto err_unpin_display;
  3051. /* As the user may map the buffer once pinned in the display plane
  3052. * (e.g. libkms for the bootup splash), we have to ensure that we
  3053. * always use map_and_fenceable for all scanout buffers.
  3054. */
  3055. ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
  3056. if (ret)
  3057. goto err_unpin_display;
  3058. i915_gem_object_flush_cpu_write_domain(obj, true);
  3059. old_write_domain = obj->base.write_domain;
  3060. old_read_domains = obj->base.read_domains;
  3061. /* It should now be out of any other write domains, and we can update
  3062. * the domain values for our changes.
  3063. */
  3064. obj->base.write_domain = 0;
  3065. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3066. trace_i915_gem_object_change_domain(obj,
  3067. old_read_domains,
  3068. old_write_domain);
  3069. return 0;
  3070. err_unpin_display:
  3071. obj->pin_display = is_pin_display(obj);
  3072. return ret;
  3073. }
  3074. void
  3075. i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
  3076. {
  3077. i915_gem_object_ggtt_unpin(obj);
  3078. obj->pin_display = is_pin_display(obj);
  3079. }
  3080. int
  3081. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  3082. {
  3083. int ret;
  3084. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  3085. return 0;
  3086. ret = i915_gem_object_wait_rendering(obj, false);
  3087. if (ret)
  3088. return ret;
  3089. /* Ensure that we invalidate the GPU's caches and TLBs. */
  3090. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  3091. return 0;
  3092. }
  3093. /**
  3094. * Moves a single object to the CPU read, and possibly write domain.
  3095. *
  3096. * This function returns when the move is complete, including waiting on
  3097. * flushes to occur.
  3098. */
  3099. int
  3100. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  3101. {
  3102. uint32_t old_write_domain, old_read_domains;
  3103. int ret;
  3104. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  3105. return 0;
  3106. ret = i915_gem_object_wait_rendering(obj, !write);
  3107. if (ret)
  3108. return ret;
  3109. i915_gem_object_retire(obj);
  3110. i915_gem_object_flush_gtt_write_domain(obj);
  3111. old_write_domain = obj->base.write_domain;
  3112. old_read_domains = obj->base.read_domains;
  3113. /* Flush the CPU cache if it's still invalid. */
  3114. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  3115. i915_gem_clflush_object(obj, false);
  3116. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  3117. }
  3118. /* It should now be out of any other write domains, and we can update
  3119. * the domain values for our changes.
  3120. */
  3121. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  3122. /* If we're writing through the CPU, then the GPU read domains will
  3123. * need to be invalidated at next use.
  3124. */
  3125. if (write) {
  3126. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3127. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3128. }
  3129. trace_i915_gem_object_change_domain(obj,
  3130. old_read_domains,
  3131. old_write_domain);
  3132. return 0;
  3133. }
  3134. /* Throttle our rendering by waiting until the ring has completed our requests
  3135. * emitted over 20 msec ago.
  3136. *
  3137. * Note that if we were to use the current jiffies each time around the loop,
  3138. * we wouldn't escape the function with any frames outstanding if the time to
  3139. * render a frame was over 20ms.
  3140. *
  3141. * This should get us reasonable parallelism between CPU and GPU but also
  3142. * relatively low latency when blocking on a particular request to finish.
  3143. */
  3144. static int
  3145. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3146. {
  3147. struct drm_i915_private *dev_priv = dev->dev_private;
  3148. struct drm_i915_file_private *file_priv = file->driver_priv;
  3149. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3150. struct drm_i915_gem_request *request;
  3151. struct intel_ring_buffer *ring = NULL;
  3152. unsigned reset_counter;
  3153. u32 seqno = 0;
  3154. int ret;
  3155. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  3156. if (ret)
  3157. return ret;
  3158. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  3159. if (ret)
  3160. return ret;
  3161. spin_lock(&file_priv->mm.lock);
  3162. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3163. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3164. break;
  3165. ring = request->ring;
  3166. seqno = request->seqno;
  3167. }
  3168. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3169. spin_unlock(&file_priv->mm.lock);
  3170. if (seqno == 0)
  3171. return 0;
  3172. ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
  3173. if (ret == 0)
  3174. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3175. return ret;
  3176. }
  3177. int
  3178. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3179. struct i915_address_space *vm,
  3180. uint32_t alignment,
  3181. unsigned flags)
  3182. {
  3183. struct i915_vma *vma;
  3184. int ret;
  3185. if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
  3186. return -EINVAL;
  3187. vma = i915_gem_obj_to_vma(obj, vm);
  3188. if (vma) {
  3189. if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3190. return -EBUSY;
  3191. if ((alignment &&
  3192. vma->node.start & (alignment - 1)) ||
  3193. (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
  3194. WARN(vma->pin_count,
  3195. "bo is already pinned with incorrect alignment:"
  3196. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3197. " obj->map_and_fenceable=%d\n",
  3198. i915_gem_obj_offset(obj, vm), alignment,
  3199. flags & PIN_MAPPABLE,
  3200. obj->map_and_fenceable);
  3201. ret = i915_vma_unbind(vma);
  3202. if (ret)
  3203. return ret;
  3204. vma = NULL;
  3205. }
  3206. }
  3207. if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
  3208. vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
  3209. if (IS_ERR(vma))
  3210. return PTR_ERR(vma);
  3211. }
  3212. if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
  3213. vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
  3214. vma->pin_count++;
  3215. if (flags & PIN_MAPPABLE)
  3216. obj->pin_mappable |= true;
  3217. return 0;
  3218. }
  3219. void
  3220. i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
  3221. {
  3222. struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
  3223. BUG_ON(!vma);
  3224. BUG_ON(vma->pin_count == 0);
  3225. BUG_ON(!i915_gem_obj_ggtt_bound(obj));
  3226. if (--vma->pin_count == 0)
  3227. obj->pin_mappable = false;
  3228. }
  3229. int
  3230. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3231. struct drm_file *file)
  3232. {
  3233. struct drm_i915_gem_pin *args = data;
  3234. struct drm_i915_gem_object *obj;
  3235. int ret;
  3236. if (INTEL_INFO(dev)->gen >= 6)
  3237. return -ENODEV;
  3238. ret = i915_mutex_lock_interruptible(dev);
  3239. if (ret)
  3240. return ret;
  3241. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3242. if (&obj->base == NULL) {
  3243. ret = -ENOENT;
  3244. goto unlock;
  3245. }
  3246. if (obj->madv != I915_MADV_WILLNEED) {
  3247. DRM_DEBUG("Attempting to pin a purgeable buffer\n");
  3248. ret = -EFAULT;
  3249. goto out;
  3250. }
  3251. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  3252. DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3253. args->handle);
  3254. ret = -EINVAL;
  3255. goto out;
  3256. }
  3257. if (obj->user_pin_count == ULONG_MAX) {
  3258. ret = -EBUSY;
  3259. goto out;
  3260. }
  3261. if (obj->user_pin_count == 0) {
  3262. ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
  3263. if (ret)
  3264. goto out;
  3265. }
  3266. obj->user_pin_count++;
  3267. obj->pin_filp = file;
  3268. args->offset = i915_gem_obj_ggtt_offset(obj);
  3269. out:
  3270. drm_gem_object_unreference(&obj->base);
  3271. unlock:
  3272. mutex_unlock(&dev->struct_mutex);
  3273. return ret;
  3274. }
  3275. int
  3276. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3277. struct drm_file *file)
  3278. {
  3279. struct drm_i915_gem_pin *args = data;
  3280. struct drm_i915_gem_object *obj;
  3281. int ret;
  3282. ret = i915_mutex_lock_interruptible(dev);
  3283. if (ret)
  3284. return ret;
  3285. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3286. if (&obj->base == NULL) {
  3287. ret = -ENOENT;
  3288. goto unlock;
  3289. }
  3290. if (obj->pin_filp != file) {
  3291. DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3292. args->handle);
  3293. ret = -EINVAL;
  3294. goto out;
  3295. }
  3296. obj->user_pin_count--;
  3297. if (obj->user_pin_count == 0) {
  3298. obj->pin_filp = NULL;
  3299. i915_gem_object_ggtt_unpin(obj);
  3300. }
  3301. out:
  3302. drm_gem_object_unreference(&obj->base);
  3303. unlock:
  3304. mutex_unlock(&dev->struct_mutex);
  3305. return ret;
  3306. }
  3307. int
  3308. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3309. struct drm_file *file)
  3310. {
  3311. struct drm_i915_gem_busy *args = data;
  3312. struct drm_i915_gem_object *obj;
  3313. int ret;
  3314. ret = i915_mutex_lock_interruptible(dev);
  3315. if (ret)
  3316. return ret;
  3317. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3318. if (&obj->base == NULL) {
  3319. ret = -ENOENT;
  3320. goto unlock;
  3321. }
  3322. /* Count all active objects as busy, even if they are currently not used
  3323. * by the gpu. Users of this interface expect objects to eventually
  3324. * become non-busy without any further actions, therefore emit any
  3325. * necessary flushes here.
  3326. */
  3327. ret = i915_gem_object_flush_active(obj);
  3328. args->busy = obj->active;
  3329. if (obj->ring) {
  3330. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3331. args->busy |= intel_ring_flag(obj->ring) << 16;
  3332. }
  3333. drm_gem_object_unreference(&obj->base);
  3334. unlock:
  3335. mutex_unlock(&dev->struct_mutex);
  3336. return ret;
  3337. }
  3338. int
  3339. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3340. struct drm_file *file_priv)
  3341. {
  3342. return i915_gem_ring_throttle(dev, file_priv);
  3343. }
  3344. int
  3345. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3346. struct drm_file *file_priv)
  3347. {
  3348. struct drm_i915_gem_madvise *args = data;
  3349. struct drm_i915_gem_object *obj;
  3350. int ret;
  3351. switch (args->madv) {
  3352. case I915_MADV_DONTNEED:
  3353. case I915_MADV_WILLNEED:
  3354. break;
  3355. default:
  3356. return -EINVAL;
  3357. }
  3358. ret = i915_mutex_lock_interruptible(dev);
  3359. if (ret)
  3360. return ret;
  3361. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3362. if (&obj->base == NULL) {
  3363. ret = -ENOENT;
  3364. goto unlock;
  3365. }
  3366. if (i915_gem_obj_is_pinned(obj)) {
  3367. ret = -EINVAL;
  3368. goto out;
  3369. }
  3370. if (obj->madv != __I915_MADV_PURGED)
  3371. obj->madv = args->madv;
  3372. /* if the object is no longer attached, discard its backing storage */
  3373. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  3374. i915_gem_object_truncate(obj);
  3375. args->retained = obj->madv != __I915_MADV_PURGED;
  3376. out:
  3377. drm_gem_object_unreference(&obj->base);
  3378. unlock:
  3379. mutex_unlock(&dev->struct_mutex);
  3380. return ret;
  3381. }
  3382. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3383. const struct drm_i915_gem_object_ops *ops)
  3384. {
  3385. INIT_LIST_HEAD(&obj->global_list);
  3386. INIT_LIST_HEAD(&obj->ring_list);
  3387. INIT_LIST_HEAD(&obj->obj_exec_link);
  3388. INIT_LIST_HEAD(&obj->vma_list);
  3389. obj->ops = ops;
  3390. obj->fence_reg = I915_FENCE_REG_NONE;
  3391. obj->madv = I915_MADV_WILLNEED;
  3392. /* Avoid an unnecessary call to unbind on the first bind. */
  3393. obj->map_and_fenceable = true;
  3394. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3395. }
  3396. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3397. .get_pages = i915_gem_object_get_pages_gtt,
  3398. .put_pages = i915_gem_object_put_pages_gtt,
  3399. };
  3400. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3401. size_t size)
  3402. {
  3403. struct drm_i915_gem_object *obj;
  3404. struct address_space *mapping;
  3405. gfp_t mask;
  3406. obj = i915_gem_object_alloc(dev);
  3407. if (obj == NULL)
  3408. return NULL;
  3409. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3410. i915_gem_object_free(obj);
  3411. return NULL;
  3412. }
  3413. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3414. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3415. /* 965gm cannot relocate objects above 4GiB. */
  3416. mask &= ~__GFP_HIGHMEM;
  3417. mask |= __GFP_DMA32;
  3418. }
  3419. mapping = file_inode(obj->base.filp)->i_mapping;
  3420. mapping_set_gfp_mask(mapping, mask);
  3421. i915_gem_object_init(obj, &i915_gem_object_ops);
  3422. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3423. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3424. if (HAS_LLC(dev)) {
  3425. /* On some devices, we can have the GPU use the LLC (the CPU
  3426. * cache) for about a 10% performance improvement
  3427. * compared to uncached. Graphics requests other than
  3428. * display scanout are coherent with the CPU in
  3429. * accessing this cache. This means in this mode we
  3430. * don't need to clflush on the CPU side, and on the
  3431. * GPU side we only need to flush internal caches to
  3432. * get data visible to the CPU.
  3433. *
  3434. * However, we maintain the display planes as UC, and so
  3435. * need to rebind when first used as such.
  3436. */
  3437. obj->cache_level = I915_CACHE_LLC;
  3438. } else
  3439. obj->cache_level = I915_CACHE_NONE;
  3440. trace_i915_gem_object_create(obj);
  3441. return obj;
  3442. }
  3443. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3444. {
  3445. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3446. struct drm_device *dev = obj->base.dev;
  3447. struct drm_i915_private *dev_priv = dev->dev_private;
  3448. struct i915_vma *vma, *next;
  3449. intel_runtime_pm_get(dev_priv);
  3450. trace_i915_gem_object_destroy(obj);
  3451. if (obj->phys_obj)
  3452. i915_gem_detach_phys_object(dev, obj);
  3453. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3454. int ret;
  3455. vma->pin_count = 0;
  3456. ret = i915_vma_unbind(vma);
  3457. if (WARN_ON(ret == -ERESTARTSYS)) {
  3458. bool was_interruptible;
  3459. was_interruptible = dev_priv->mm.interruptible;
  3460. dev_priv->mm.interruptible = false;
  3461. WARN_ON(i915_vma_unbind(vma));
  3462. dev_priv->mm.interruptible = was_interruptible;
  3463. }
  3464. }
  3465. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3466. * before progressing. */
  3467. if (obj->stolen)
  3468. i915_gem_object_unpin_pages(obj);
  3469. if (WARN_ON(obj->pages_pin_count))
  3470. obj->pages_pin_count = 0;
  3471. i915_gem_object_put_pages(obj);
  3472. i915_gem_object_free_mmap_offset(obj);
  3473. i915_gem_object_release_stolen(obj);
  3474. BUG_ON(obj->pages);
  3475. if (obj->base.import_attach)
  3476. drm_prime_gem_destroy(&obj->base, NULL);
  3477. drm_gem_object_release(&obj->base);
  3478. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3479. kfree(obj->bit_17);
  3480. i915_gem_object_free(obj);
  3481. intel_runtime_pm_put(dev_priv);
  3482. }
  3483. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  3484. struct i915_address_space *vm)
  3485. {
  3486. struct i915_vma *vma;
  3487. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3488. if (vma->vm == vm)
  3489. return vma;
  3490. return NULL;
  3491. }
  3492. void i915_gem_vma_destroy(struct i915_vma *vma)
  3493. {
  3494. WARN_ON(vma->node.allocated);
  3495. /* Keep the vma as a placeholder in the execbuffer reservation lists */
  3496. if (!list_empty(&vma->exec_list))
  3497. return;
  3498. list_del(&vma->vma_link);
  3499. kfree(vma);
  3500. }
  3501. static void
  3502. i915_gem_stop_ringbuffers(struct drm_device *dev)
  3503. {
  3504. struct drm_i915_private *dev_priv = dev->dev_private;
  3505. struct intel_ring_buffer *ring;
  3506. int i;
  3507. for_each_ring(ring, dev_priv, i)
  3508. intel_stop_ring_buffer(ring);
  3509. }
  3510. int
  3511. i915_gem_suspend(struct drm_device *dev)
  3512. {
  3513. struct drm_i915_private *dev_priv = dev->dev_private;
  3514. int ret = 0;
  3515. mutex_lock(&dev->struct_mutex);
  3516. if (dev_priv->ums.mm_suspended)
  3517. goto err;
  3518. ret = i915_gpu_idle(dev);
  3519. if (ret)
  3520. goto err;
  3521. i915_gem_retire_requests(dev);
  3522. /* Under UMS, be paranoid and evict. */
  3523. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3524. i915_gem_evict_everything(dev);
  3525. i915_kernel_lost_context(dev);
  3526. i915_gem_stop_ringbuffers(dev);
  3527. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3528. * We need to replace this with a semaphore, or something.
  3529. * And not confound ums.mm_suspended!
  3530. */
  3531. dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
  3532. DRIVER_MODESET);
  3533. mutex_unlock(&dev->struct_mutex);
  3534. del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
  3535. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3536. cancel_delayed_work_sync(&dev_priv->mm.idle_work);
  3537. return 0;
  3538. err:
  3539. mutex_unlock(&dev->struct_mutex);
  3540. return ret;
  3541. }
  3542. int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
  3543. {
  3544. struct drm_device *dev = ring->dev;
  3545. struct drm_i915_private *dev_priv = dev->dev_private;
  3546. u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
  3547. u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
  3548. int i, ret;
  3549. if (!HAS_L3_DPF(dev) || !remap_info)
  3550. return 0;
  3551. ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
  3552. if (ret)
  3553. return ret;
  3554. /*
  3555. * Note: We do not worry about the concurrent register cacheline hang
  3556. * here because no other code should access these registers other than
  3557. * at initialization time.
  3558. */
  3559. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3560. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  3561. intel_ring_emit(ring, reg_base + i);
  3562. intel_ring_emit(ring, remap_info[i/4]);
  3563. }
  3564. intel_ring_advance(ring);
  3565. return ret;
  3566. }
  3567. void i915_gem_init_swizzling(struct drm_device *dev)
  3568. {
  3569. struct drm_i915_private *dev_priv = dev->dev_private;
  3570. if (INTEL_INFO(dev)->gen < 5 ||
  3571. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3572. return;
  3573. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3574. DISP_TILE_SURFACE_SWIZZLING);
  3575. if (IS_GEN5(dev))
  3576. return;
  3577. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3578. if (IS_GEN6(dev))
  3579. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3580. else if (IS_GEN7(dev))
  3581. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3582. else if (IS_GEN8(dev))
  3583. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
  3584. else
  3585. BUG();
  3586. }
  3587. static bool
  3588. intel_enable_blt(struct drm_device *dev)
  3589. {
  3590. if (!HAS_BLT(dev))
  3591. return false;
  3592. /* The blitter was dysfunctional on early prototypes */
  3593. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3594. DRM_INFO("BLT not supported on this pre-production hardware;"
  3595. " graphics performance will be degraded.\n");
  3596. return false;
  3597. }
  3598. return true;
  3599. }
  3600. static int i915_gem_init_rings(struct drm_device *dev)
  3601. {
  3602. struct drm_i915_private *dev_priv = dev->dev_private;
  3603. int ret;
  3604. ret = intel_init_render_ring_buffer(dev);
  3605. if (ret)
  3606. return ret;
  3607. if (HAS_BSD(dev)) {
  3608. ret = intel_init_bsd_ring_buffer(dev);
  3609. if (ret)
  3610. goto cleanup_render_ring;
  3611. }
  3612. if (intel_enable_blt(dev)) {
  3613. ret = intel_init_blt_ring_buffer(dev);
  3614. if (ret)
  3615. goto cleanup_bsd_ring;
  3616. }
  3617. if (HAS_VEBOX(dev)) {
  3618. ret = intel_init_vebox_ring_buffer(dev);
  3619. if (ret)
  3620. goto cleanup_blt_ring;
  3621. }
  3622. if (HAS_BSD2(dev)) {
  3623. ret = intel_init_bsd2_ring_buffer(dev);
  3624. if (ret)
  3625. goto cleanup_vebox_ring;
  3626. }
  3627. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3628. if (ret)
  3629. goto cleanup_bsd2_ring;
  3630. return 0;
  3631. cleanup_bsd2_ring:
  3632. intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
  3633. cleanup_vebox_ring:
  3634. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3635. cleanup_blt_ring:
  3636. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3637. cleanup_bsd_ring:
  3638. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3639. cleanup_render_ring:
  3640. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3641. return ret;
  3642. }
  3643. int
  3644. i915_gem_init_hw(struct drm_device *dev)
  3645. {
  3646. struct drm_i915_private *dev_priv = dev->dev_private;
  3647. int ret, i;
  3648. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3649. return -EIO;
  3650. if (dev_priv->ellc_size)
  3651. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  3652. if (IS_HASWELL(dev))
  3653. I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
  3654. LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
  3655. if (HAS_PCH_NOP(dev)) {
  3656. if (IS_IVYBRIDGE(dev)) {
  3657. u32 temp = I915_READ(GEN7_MSG_CTL);
  3658. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  3659. I915_WRITE(GEN7_MSG_CTL, temp);
  3660. } else if (INTEL_INFO(dev)->gen >= 7) {
  3661. u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
  3662. temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
  3663. I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
  3664. }
  3665. }
  3666. i915_gem_init_swizzling(dev);
  3667. ret = i915_gem_init_rings(dev);
  3668. if (ret)
  3669. return ret;
  3670. for (i = 0; i < NUM_L3_SLICES(dev); i++)
  3671. i915_gem_l3_remap(&dev_priv->ring[RCS], i);
  3672. /*
  3673. * XXX: Contexts should only be initialized once. Doing a switch to the
  3674. * default context switch however is something we'd like to do after
  3675. * reset or thaw (the latter may not actually be necessary for HW, but
  3676. * goes with our code better). Context switching requires rings (for
  3677. * the do_switch), but before enabling PPGTT. So don't move this.
  3678. */
  3679. ret = i915_gem_context_enable(dev_priv);
  3680. if (ret && ret != -EIO) {
  3681. DRM_ERROR("Context enable failed %d\n", ret);
  3682. i915_gem_cleanup_ringbuffer(dev);
  3683. }
  3684. return ret;
  3685. }
  3686. int i915_gem_init(struct drm_device *dev)
  3687. {
  3688. struct drm_i915_private *dev_priv = dev->dev_private;
  3689. int ret;
  3690. mutex_lock(&dev->struct_mutex);
  3691. if (IS_VALLEYVIEW(dev)) {
  3692. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  3693. I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
  3694. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
  3695. VLV_GTLC_ALLOWWAKEACK), 10))
  3696. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  3697. }
  3698. i915_gem_init_global_gtt(dev);
  3699. ret = i915_gem_context_init(dev);
  3700. if (ret) {
  3701. mutex_unlock(&dev->struct_mutex);
  3702. return ret;
  3703. }
  3704. ret = i915_gem_init_hw(dev);
  3705. if (ret == -EIO) {
  3706. /* Allow ring initialisation to fail by marking the GPU as
  3707. * wedged. But we only want to do this where the GPU is angry,
  3708. * for all other failure, such as an allocation failure, bail.
  3709. */
  3710. DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
  3711. atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
  3712. ret = 0;
  3713. }
  3714. mutex_unlock(&dev->struct_mutex);
  3715. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3716. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3717. dev_priv->dri1.allow_batchbuffer = 1;
  3718. return ret;
  3719. }
  3720. void
  3721. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3722. {
  3723. struct drm_i915_private *dev_priv = dev->dev_private;
  3724. struct intel_ring_buffer *ring;
  3725. int i;
  3726. for_each_ring(ring, dev_priv, i)
  3727. intel_cleanup_ring_buffer(ring);
  3728. }
  3729. int
  3730. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3731. struct drm_file *file_priv)
  3732. {
  3733. struct drm_i915_private *dev_priv = dev->dev_private;
  3734. int ret;
  3735. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3736. return 0;
  3737. if (i915_reset_in_progress(&dev_priv->gpu_error)) {
  3738. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3739. atomic_set(&dev_priv->gpu_error.reset_counter, 0);
  3740. }
  3741. mutex_lock(&dev->struct_mutex);
  3742. dev_priv->ums.mm_suspended = 0;
  3743. ret = i915_gem_init_hw(dev);
  3744. if (ret != 0) {
  3745. mutex_unlock(&dev->struct_mutex);
  3746. return ret;
  3747. }
  3748. BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
  3749. ret = drm_irq_install(dev, dev->pdev->irq);
  3750. if (ret)
  3751. goto cleanup_ringbuffer;
  3752. mutex_unlock(&dev->struct_mutex);
  3753. return 0;
  3754. cleanup_ringbuffer:
  3755. i915_gem_cleanup_ringbuffer(dev);
  3756. dev_priv->ums.mm_suspended = 1;
  3757. mutex_unlock(&dev->struct_mutex);
  3758. return ret;
  3759. }
  3760. int
  3761. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3762. struct drm_file *file_priv)
  3763. {
  3764. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3765. return 0;
  3766. mutex_lock(&dev->struct_mutex);
  3767. drm_irq_uninstall(dev);
  3768. mutex_unlock(&dev->struct_mutex);
  3769. return i915_gem_suspend(dev);
  3770. }
  3771. void
  3772. i915_gem_lastclose(struct drm_device *dev)
  3773. {
  3774. int ret;
  3775. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3776. return;
  3777. ret = i915_gem_suspend(dev);
  3778. if (ret)
  3779. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3780. }
  3781. static void
  3782. init_ring_lists(struct intel_ring_buffer *ring)
  3783. {
  3784. INIT_LIST_HEAD(&ring->active_list);
  3785. INIT_LIST_HEAD(&ring->request_list);
  3786. }
  3787. void i915_init_vm(struct drm_i915_private *dev_priv,
  3788. struct i915_address_space *vm)
  3789. {
  3790. if (!i915_is_ggtt(vm))
  3791. drm_mm_init(&vm->mm, vm->start, vm->total);
  3792. vm->dev = dev_priv->dev;
  3793. INIT_LIST_HEAD(&vm->active_list);
  3794. INIT_LIST_HEAD(&vm->inactive_list);
  3795. INIT_LIST_HEAD(&vm->global_link);
  3796. list_add_tail(&vm->global_link, &dev_priv->vm_list);
  3797. }
  3798. void
  3799. i915_gem_load(struct drm_device *dev)
  3800. {
  3801. struct drm_i915_private *dev_priv = dev->dev_private;
  3802. int i;
  3803. dev_priv->slab =
  3804. kmem_cache_create("i915_gem_object",
  3805. sizeof(struct drm_i915_gem_object), 0,
  3806. SLAB_HWCACHE_ALIGN,
  3807. NULL);
  3808. INIT_LIST_HEAD(&dev_priv->vm_list);
  3809. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  3810. INIT_LIST_HEAD(&dev_priv->context_list);
  3811. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3812. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3813. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3814. for (i = 0; i < I915_NUM_RINGS; i++)
  3815. init_ring_lists(&dev_priv->ring[i]);
  3816. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3817. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3818. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3819. i915_gem_retire_work_handler);
  3820. INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
  3821. i915_gem_idle_work_handler);
  3822. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  3823. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3824. if (IS_GEN3(dev)) {
  3825. I915_WRITE(MI_ARB_STATE,
  3826. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3827. }
  3828. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3829. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3830. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3831. dev_priv->fence_reg_start = 3;
  3832. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  3833. dev_priv->num_fence_regs = 32;
  3834. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3835. dev_priv->num_fence_regs = 16;
  3836. else
  3837. dev_priv->num_fence_regs = 8;
  3838. /* Initialize fence registers to zero */
  3839. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3840. i915_gem_restore_fences(dev);
  3841. i915_gem_detect_bit_6_swizzle(dev);
  3842. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3843. dev_priv->mm.interruptible = true;
  3844. dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
  3845. dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
  3846. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3847. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3848. }
  3849. /*
  3850. * Create a physically contiguous memory object for this object
  3851. * e.g. for cursor + overlay regs
  3852. */
  3853. static int i915_gem_init_phys_object(struct drm_device *dev,
  3854. int id, int size, int align)
  3855. {
  3856. struct drm_i915_private *dev_priv = dev->dev_private;
  3857. struct drm_i915_gem_phys_object *phys_obj;
  3858. int ret;
  3859. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3860. return 0;
  3861. phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
  3862. if (!phys_obj)
  3863. return -ENOMEM;
  3864. phys_obj->id = id;
  3865. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3866. if (!phys_obj->handle) {
  3867. ret = -ENOMEM;
  3868. goto kfree_obj;
  3869. }
  3870. #ifdef CONFIG_X86
  3871. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3872. #endif
  3873. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3874. return 0;
  3875. kfree_obj:
  3876. kfree(phys_obj);
  3877. return ret;
  3878. }
  3879. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3880. {
  3881. struct drm_i915_private *dev_priv = dev->dev_private;
  3882. struct drm_i915_gem_phys_object *phys_obj;
  3883. if (!dev_priv->mm.phys_objs[id - 1])
  3884. return;
  3885. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3886. if (phys_obj->cur_obj) {
  3887. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3888. }
  3889. #ifdef CONFIG_X86
  3890. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3891. #endif
  3892. drm_pci_free(dev, phys_obj->handle);
  3893. kfree(phys_obj);
  3894. dev_priv->mm.phys_objs[id - 1] = NULL;
  3895. }
  3896. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3897. {
  3898. int i;
  3899. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3900. i915_gem_free_phys_object(dev, i);
  3901. }
  3902. void i915_gem_detach_phys_object(struct drm_device *dev,
  3903. struct drm_i915_gem_object *obj)
  3904. {
  3905. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3906. char *vaddr;
  3907. int i;
  3908. int page_count;
  3909. if (!obj->phys_obj)
  3910. return;
  3911. vaddr = obj->phys_obj->handle->vaddr;
  3912. page_count = obj->base.size / PAGE_SIZE;
  3913. for (i = 0; i < page_count; i++) {
  3914. struct page *page = shmem_read_mapping_page(mapping, i);
  3915. if (!IS_ERR(page)) {
  3916. char *dst = kmap_atomic(page);
  3917. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3918. kunmap_atomic(dst);
  3919. drm_clflush_pages(&page, 1);
  3920. set_page_dirty(page);
  3921. mark_page_accessed(page);
  3922. page_cache_release(page);
  3923. }
  3924. }
  3925. i915_gem_chipset_flush(dev);
  3926. obj->phys_obj->cur_obj = NULL;
  3927. obj->phys_obj = NULL;
  3928. }
  3929. int
  3930. i915_gem_attach_phys_object(struct drm_device *dev,
  3931. struct drm_i915_gem_object *obj,
  3932. int id,
  3933. int align)
  3934. {
  3935. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  3936. struct drm_i915_private *dev_priv = dev->dev_private;
  3937. int ret = 0;
  3938. int page_count;
  3939. int i;
  3940. if (id > I915_MAX_PHYS_OBJECT)
  3941. return -EINVAL;
  3942. if (obj->phys_obj) {
  3943. if (obj->phys_obj->id == id)
  3944. return 0;
  3945. i915_gem_detach_phys_object(dev, obj);
  3946. }
  3947. /* create a new object */
  3948. if (!dev_priv->mm.phys_objs[id - 1]) {
  3949. ret = i915_gem_init_phys_object(dev, id,
  3950. obj->base.size, align);
  3951. if (ret) {
  3952. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3953. id, obj->base.size);
  3954. return ret;
  3955. }
  3956. }
  3957. /* bind to the object */
  3958. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3959. obj->phys_obj->cur_obj = obj;
  3960. page_count = obj->base.size / PAGE_SIZE;
  3961. for (i = 0; i < page_count; i++) {
  3962. struct page *page;
  3963. char *dst, *src;
  3964. page = shmem_read_mapping_page(mapping, i);
  3965. if (IS_ERR(page))
  3966. return PTR_ERR(page);
  3967. src = kmap_atomic(page);
  3968. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3969. memcpy(dst, src, PAGE_SIZE);
  3970. kunmap_atomic(src);
  3971. mark_page_accessed(page);
  3972. page_cache_release(page);
  3973. }
  3974. return 0;
  3975. }
  3976. static int
  3977. i915_gem_phys_pwrite(struct drm_device *dev,
  3978. struct drm_i915_gem_object *obj,
  3979. struct drm_i915_gem_pwrite *args,
  3980. struct drm_file *file_priv)
  3981. {
  3982. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3983. char __user *user_data = to_user_ptr(args->data_ptr);
  3984. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3985. unsigned long unwritten;
  3986. /* The physical object once assigned is fixed for the lifetime
  3987. * of the obj, so we can safely drop the lock and continue
  3988. * to access vaddr.
  3989. */
  3990. mutex_unlock(&dev->struct_mutex);
  3991. unwritten = copy_from_user(vaddr, user_data, args->size);
  3992. mutex_lock(&dev->struct_mutex);
  3993. if (unwritten)
  3994. return -EFAULT;
  3995. }
  3996. i915_gem_chipset_flush(dev);
  3997. return 0;
  3998. }
  3999. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4000. {
  4001. struct drm_i915_file_private *file_priv = file->driver_priv;
  4002. cancel_delayed_work_sync(&file_priv->mm.idle_work);
  4003. /* Clean up our request list when the client is going away, so that
  4004. * later retire_requests won't dereference our soon-to-be-gone
  4005. * file_priv.
  4006. */
  4007. spin_lock(&file_priv->mm.lock);
  4008. while (!list_empty(&file_priv->mm.request_list)) {
  4009. struct drm_i915_gem_request *request;
  4010. request = list_first_entry(&file_priv->mm.request_list,
  4011. struct drm_i915_gem_request,
  4012. client_list);
  4013. list_del(&request->client_list);
  4014. request->file_priv = NULL;
  4015. }
  4016. spin_unlock(&file_priv->mm.lock);
  4017. }
  4018. static void
  4019. i915_gem_file_idle_work_handler(struct work_struct *work)
  4020. {
  4021. struct drm_i915_file_private *file_priv =
  4022. container_of(work, typeof(*file_priv), mm.idle_work.work);
  4023. atomic_set(&file_priv->rps_wait_boost, false);
  4024. }
  4025. int i915_gem_open(struct drm_device *dev, struct drm_file *file)
  4026. {
  4027. struct drm_i915_file_private *file_priv;
  4028. int ret;
  4029. DRM_DEBUG_DRIVER("\n");
  4030. file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
  4031. if (!file_priv)
  4032. return -ENOMEM;
  4033. file->driver_priv = file_priv;
  4034. file_priv->dev_priv = dev->dev_private;
  4035. file_priv->file = file;
  4036. spin_lock_init(&file_priv->mm.lock);
  4037. INIT_LIST_HEAD(&file_priv->mm.request_list);
  4038. INIT_DELAYED_WORK(&file_priv->mm.idle_work,
  4039. i915_gem_file_idle_work_handler);
  4040. ret = i915_gem_context_open(dev, file);
  4041. if (ret)
  4042. kfree(file_priv);
  4043. return ret;
  4044. }
  4045. static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
  4046. {
  4047. if (!mutex_is_locked(mutex))
  4048. return false;
  4049. #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
  4050. return mutex->owner == task;
  4051. #else
  4052. /* Since UP may be pre-empted, we cannot assume that we own the lock */
  4053. return false;
  4054. #endif
  4055. }
  4056. static unsigned long
  4057. i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
  4058. {
  4059. struct drm_i915_private *dev_priv =
  4060. container_of(shrinker,
  4061. struct drm_i915_private,
  4062. mm.inactive_shrinker);
  4063. struct drm_device *dev = dev_priv->dev;
  4064. struct drm_i915_gem_object *obj;
  4065. bool unlock = true;
  4066. unsigned long count;
  4067. if (!mutex_trylock(&dev->struct_mutex)) {
  4068. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  4069. return 0;
  4070. if (dev_priv->mm.shrinker_no_lock_stealing)
  4071. return 0;
  4072. unlock = false;
  4073. }
  4074. count = 0;
  4075. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
  4076. if (obj->pages_pin_count == 0)
  4077. count += obj->base.size >> PAGE_SHIFT;
  4078. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  4079. if (obj->active)
  4080. continue;
  4081. if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
  4082. count += obj->base.size >> PAGE_SHIFT;
  4083. }
  4084. if (unlock)
  4085. mutex_unlock(&dev->struct_mutex);
  4086. return count;
  4087. }
  4088. /* All the new VM stuff */
  4089. unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
  4090. struct i915_address_space *vm)
  4091. {
  4092. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4093. struct i915_vma *vma;
  4094. if (!dev_priv->mm.aliasing_ppgtt ||
  4095. vm == &dev_priv->mm.aliasing_ppgtt->base)
  4096. vm = &dev_priv->gtt.base;
  4097. BUG_ON(list_empty(&o->vma_list));
  4098. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4099. if (vma->vm == vm)
  4100. return vma->node.start;
  4101. }
  4102. return -1;
  4103. }
  4104. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  4105. struct i915_address_space *vm)
  4106. {
  4107. struct i915_vma *vma;
  4108. list_for_each_entry(vma, &o->vma_list, vma_link)
  4109. if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
  4110. return true;
  4111. return false;
  4112. }
  4113. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  4114. {
  4115. struct i915_vma *vma;
  4116. list_for_each_entry(vma, &o->vma_list, vma_link)
  4117. if (drm_mm_node_allocated(&vma->node))
  4118. return true;
  4119. return false;
  4120. }
  4121. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  4122. struct i915_address_space *vm)
  4123. {
  4124. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4125. struct i915_vma *vma;
  4126. if (!dev_priv->mm.aliasing_ppgtt ||
  4127. vm == &dev_priv->mm.aliasing_ppgtt->base)
  4128. vm = &dev_priv->gtt.base;
  4129. BUG_ON(list_empty(&o->vma_list));
  4130. list_for_each_entry(vma, &o->vma_list, vma_link)
  4131. if (vma->vm == vm)
  4132. return vma->node.size;
  4133. return 0;
  4134. }
  4135. static unsigned long
  4136. i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
  4137. {
  4138. struct drm_i915_private *dev_priv =
  4139. container_of(shrinker,
  4140. struct drm_i915_private,
  4141. mm.inactive_shrinker);
  4142. struct drm_device *dev = dev_priv->dev;
  4143. unsigned long freed;
  4144. bool unlock = true;
  4145. if (!mutex_trylock(&dev->struct_mutex)) {
  4146. if (!mutex_is_locked_by(&dev->struct_mutex, current))
  4147. return SHRINK_STOP;
  4148. if (dev_priv->mm.shrinker_no_lock_stealing)
  4149. return SHRINK_STOP;
  4150. unlock = false;
  4151. }
  4152. freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
  4153. if (freed < sc->nr_to_scan)
  4154. freed += __i915_gem_shrink(dev_priv,
  4155. sc->nr_to_scan - freed,
  4156. false);
  4157. if (freed < sc->nr_to_scan)
  4158. freed += i915_gem_shrink_all(dev_priv);
  4159. if (unlock)
  4160. mutex_unlock(&dev->struct_mutex);
  4161. return freed;
  4162. }
  4163. struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
  4164. {
  4165. struct i915_vma *vma;
  4166. if (WARN_ON(list_empty(&obj->vma_list)))
  4167. return NULL;
  4168. vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
  4169. if (vma->vm != obj_to_ggtt(obj))
  4170. return NULL;
  4171. return vma;
  4172. }