intel_ringbuffer.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static void __intel_engine_submit(struct intel_engine_cs *engine)
  56. {
  57. struct intel_ring *ring = engine->buffer;
  58. ring->tail &= ring->size - 1;
  59. engine->write_tail(engine, ring->tail);
  60. }
  61. static int
  62. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct intel_ring *ring = req->ring;
  67. u32 cmd;
  68. int ret;
  69. cmd = MI_FLUSH;
  70. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  71. cmd |= MI_NO_WRITE_FLUSH;
  72. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  73. cmd |= MI_READ_FLUSH;
  74. ret = intel_ring_begin(req, 2);
  75. if (ret)
  76. return ret;
  77. intel_ring_emit(ring, cmd);
  78. intel_ring_emit(ring, MI_NOOP);
  79. intel_ring_advance(ring);
  80. return 0;
  81. }
  82. static int
  83. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  84. u32 invalidate_domains,
  85. u32 flush_domains)
  86. {
  87. struct intel_ring *ring = req->ring;
  88. u32 cmd;
  89. int ret;
  90. /*
  91. * read/write caches:
  92. *
  93. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  94. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  95. * also flushed at 2d versus 3d pipeline switches.
  96. *
  97. * read-only caches:
  98. *
  99. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  100. * MI_READ_FLUSH is set, and is always flushed on 965.
  101. *
  102. * I915_GEM_DOMAIN_COMMAND may not exist?
  103. *
  104. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  105. * invalidated when MI_EXE_FLUSH is set.
  106. *
  107. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  108. * invalidated with every MI_FLUSH.
  109. *
  110. * TLBs:
  111. *
  112. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  113. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  114. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  115. * are flushed at any MI_FLUSH.
  116. */
  117. cmd = MI_FLUSH;
  118. if (invalidate_domains) {
  119. cmd |= MI_EXE_FLUSH;
  120. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  121. cmd |= MI_INVALIDATE_ISP;
  122. }
  123. ret = intel_ring_begin(req, 2);
  124. if (ret)
  125. return ret;
  126. intel_ring_emit(ring, cmd);
  127. intel_ring_emit(ring, MI_NOOP);
  128. intel_ring_advance(ring);
  129. return 0;
  130. }
  131. /**
  132. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  133. * implementing two workarounds on gen6. From section 1.4.7.1
  134. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  135. *
  136. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  137. * produced by non-pipelined state commands), software needs to first
  138. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  139. * 0.
  140. *
  141. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  142. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  143. *
  144. * And the workaround for these two requires this workaround first:
  145. *
  146. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  147. * BEFORE the pipe-control with a post-sync op and no write-cache
  148. * flushes.
  149. *
  150. * And this last workaround is tricky because of the requirements on
  151. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  152. * volume 2 part 1:
  153. *
  154. * "1 of the following must also be set:
  155. * - Render Target Cache Flush Enable ([12] of DW1)
  156. * - Depth Cache Flush Enable ([0] of DW1)
  157. * - Stall at Pixel Scoreboard ([1] of DW1)
  158. * - Depth Stall ([13] of DW1)
  159. * - Post-Sync Operation ([13] of DW1)
  160. * - Notify Enable ([8] of DW1)"
  161. *
  162. * The cache flushes require the workaround flush that triggered this
  163. * one, so we can't use it. Depth stall would trigger the same.
  164. * Post-sync nonzero is what triggered this second workaround, so we
  165. * can't use that one either. Notify enable is IRQs, which aren't
  166. * really our business. That leaves only stall at scoreboard.
  167. */
  168. static int
  169. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  170. {
  171. struct intel_ring *ring = req->ring;
  172. u32 scratch_addr =
  173. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  174. int ret;
  175. ret = intel_ring_begin(req, 6);
  176. if (ret)
  177. return ret;
  178. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  179. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  180. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  181. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  182. intel_ring_emit(ring, 0); /* low dword */
  183. intel_ring_emit(ring, 0); /* high dword */
  184. intel_ring_emit(ring, MI_NOOP);
  185. intel_ring_advance(ring);
  186. ret = intel_ring_begin(req, 6);
  187. if (ret)
  188. return ret;
  189. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  190. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  192. intel_ring_emit(ring, 0);
  193. intel_ring_emit(ring, 0);
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. return 0;
  197. }
  198. static int
  199. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  200. u32 invalidate_domains, u32 flush_domains)
  201. {
  202. struct intel_ring *ring = req->ring;
  203. u32 scratch_addr =
  204. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  205. u32 flags = 0;
  206. int ret;
  207. /* Force SNB workarounds for PIPE_CONTROL flushes */
  208. ret = intel_emit_post_sync_nonzero_flush(req);
  209. if (ret)
  210. return ret;
  211. /* Just flush everything. Experiments have shown that reducing the
  212. * number of bits based on the write domains has little performance
  213. * impact.
  214. */
  215. if (flush_domains) {
  216. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  217. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  218. /*
  219. * Ensure that any following seqno writes only happen
  220. * when the render cache is indeed flushed.
  221. */
  222. flags |= PIPE_CONTROL_CS_STALL;
  223. }
  224. if (invalidate_domains) {
  225. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  226. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  227. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  230. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  231. /*
  232. * TLB invalidate requires a post-sync write.
  233. */
  234. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  235. }
  236. ret = intel_ring_begin(req, 4);
  237. if (ret)
  238. return ret;
  239. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  240. intel_ring_emit(ring, flags);
  241. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int
  247. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  248. {
  249. struct intel_ring *ring = req->ring;
  250. int ret;
  251. ret = intel_ring_begin(req, 4);
  252. if (ret)
  253. return ret;
  254. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  255. intel_ring_emit(ring,
  256. PIPE_CONTROL_CS_STALL |
  257. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  258. intel_ring_emit(ring, 0);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  265. u32 invalidate_domains, u32 flush_domains)
  266. {
  267. struct intel_ring *ring = req->ring;
  268. u32 scratch_addr =
  269. req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  270. u32 flags = 0;
  271. int ret;
  272. /*
  273. * Ensure that any following seqno writes only happen when the render
  274. * cache is indeed flushed.
  275. *
  276. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  277. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  278. * don't try to be clever and just set it unconditionally.
  279. */
  280. flags |= PIPE_CONTROL_CS_STALL;
  281. /* Just flush everything. Experiments have shown that reducing the
  282. * number of bits based on the write domains has little performance
  283. * impact.
  284. */
  285. if (flush_domains) {
  286. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  287. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  288. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  289. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  290. }
  291. if (invalidate_domains) {
  292. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  293. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  294. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  295. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  296. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  297. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  298. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  299. /*
  300. * TLB invalidate requires a post-sync write.
  301. */
  302. flags |= PIPE_CONTROL_QW_WRITE;
  303. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  304. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  305. /* Workaround: we must issue a pipe_control with CS-stall bit
  306. * set before a pipe_control command that has the state cache
  307. * invalidate bit set. */
  308. gen7_render_ring_cs_stall_wa(req);
  309. }
  310. ret = intel_ring_begin(req, 4);
  311. if (ret)
  312. return ret;
  313. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  314. intel_ring_emit(ring, flags);
  315. intel_ring_emit(ring, scratch_addr);
  316. intel_ring_emit(ring, 0);
  317. intel_ring_advance(ring);
  318. return 0;
  319. }
  320. static int
  321. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  322. u32 flags, u32 scratch_addr)
  323. {
  324. struct intel_ring *ring = req->ring;
  325. int ret;
  326. ret = intel_ring_begin(req, 6);
  327. if (ret)
  328. return ret;
  329. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  330. intel_ring_emit(ring, flags);
  331. intel_ring_emit(ring, scratch_addr);
  332. intel_ring_emit(ring, 0);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_emit(ring, 0);
  335. intel_ring_advance(ring);
  336. return 0;
  337. }
  338. static int
  339. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  340. u32 invalidate_domains, u32 flush_domains)
  341. {
  342. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  343. u32 flags = 0;
  344. int ret;
  345. flags |= PIPE_CONTROL_CS_STALL;
  346. if (flush_domains) {
  347. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  348. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  349. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  350. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  351. }
  352. if (invalidate_domains) {
  353. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  354. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  355. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  356. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  357. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  358. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  359. flags |= PIPE_CONTROL_QW_WRITE;
  360. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  361. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  362. ret = gen8_emit_pipe_control(req,
  363. PIPE_CONTROL_CS_STALL |
  364. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  365. 0);
  366. if (ret)
  367. return ret;
  368. }
  369. return gen8_emit_pipe_control(req, flags, scratch_addr);
  370. }
  371. static void ring_write_tail(struct intel_engine_cs *engine,
  372. u32 value)
  373. {
  374. struct drm_i915_private *dev_priv = engine->i915;
  375. I915_WRITE_TAIL(engine, value);
  376. }
  377. u64 intel_engine_get_active_head(struct intel_engine_cs *engine)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. u64 acthd;
  381. if (INTEL_GEN(dev_priv) >= 8)
  382. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  383. RING_ACTHD_UDW(engine->mmio_base));
  384. else if (INTEL_GEN(dev_priv) >= 4)
  385. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  386. else
  387. acthd = I915_READ(ACTHD);
  388. return acthd;
  389. }
  390. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  391. {
  392. struct drm_i915_private *dev_priv = engine->i915;
  393. u32 addr;
  394. addr = dev_priv->status_page_dmah->busaddr;
  395. if (INTEL_GEN(dev_priv) >= 4)
  396. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  397. I915_WRITE(HWS_PGA, addr);
  398. }
  399. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  400. {
  401. struct drm_i915_private *dev_priv = engine->i915;
  402. i915_reg_t mmio;
  403. /* The ring status page addresses are no longer next to the rest of
  404. * the ring registers as of gen7.
  405. */
  406. if (IS_GEN7(dev_priv)) {
  407. switch (engine->id) {
  408. case RCS:
  409. mmio = RENDER_HWS_PGA_GEN7;
  410. break;
  411. case BCS:
  412. mmio = BLT_HWS_PGA_GEN7;
  413. break;
  414. /*
  415. * VCS2 actually doesn't exist on Gen7. Only shut up
  416. * gcc switch check warning
  417. */
  418. case VCS2:
  419. case VCS:
  420. mmio = BSD_HWS_PGA_GEN7;
  421. break;
  422. case VECS:
  423. mmio = VEBOX_HWS_PGA_GEN7;
  424. break;
  425. }
  426. } else if (IS_GEN6(dev_priv)) {
  427. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  428. } else {
  429. /* XXX: gen8 returns to sanity */
  430. mmio = RING_HWS_PGA(engine->mmio_base);
  431. }
  432. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  433. POSTING_READ(mmio);
  434. /*
  435. * Flush the TLB for this page
  436. *
  437. * FIXME: These two bits have disappeared on gen8, so a question
  438. * arises: do we still need this and if so how should we go about
  439. * invalidating the TLB?
  440. */
  441. if (IS_GEN(dev_priv, 6, 7)) {
  442. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  443. /* ring should be idle before issuing a sync flush*/
  444. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  445. I915_WRITE(reg,
  446. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  447. INSTPM_SYNC_FLUSH));
  448. if (intel_wait_for_register(dev_priv,
  449. reg, INSTPM_SYNC_FLUSH, 0,
  450. 1000))
  451. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  452. engine->name);
  453. }
  454. }
  455. static bool stop_ring(struct intel_engine_cs *engine)
  456. {
  457. struct drm_i915_private *dev_priv = engine->i915;
  458. if (!IS_GEN2(dev_priv)) {
  459. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  460. if (intel_wait_for_register(dev_priv,
  461. RING_MI_MODE(engine->mmio_base),
  462. MODE_IDLE,
  463. MODE_IDLE,
  464. 1000)) {
  465. DRM_ERROR("%s : timed out trying to stop ring\n",
  466. engine->name);
  467. /* Sometimes we observe that the idle flag is not
  468. * set even though the ring is empty. So double
  469. * check before giving up.
  470. */
  471. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  472. return false;
  473. }
  474. }
  475. I915_WRITE_CTL(engine, 0);
  476. I915_WRITE_HEAD(engine, 0);
  477. engine->write_tail(engine, 0);
  478. if (!IS_GEN2(dev_priv)) {
  479. (void)I915_READ_CTL(engine);
  480. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  481. }
  482. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  483. }
  484. static int init_ring_common(struct intel_engine_cs *engine)
  485. {
  486. struct drm_i915_private *dev_priv = engine->i915;
  487. struct intel_ring *ring = engine->buffer;
  488. struct drm_i915_gem_object *obj = ring->obj;
  489. int ret = 0;
  490. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  491. if (!stop_ring(engine)) {
  492. /* G45 ring initialization often fails to reset head to zero */
  493. DRM_DEBUG_KMS("%s head not reset to zero "
  494. "ctl %08x head %08x tail %08x start %08x\n",
  495. engine->name,
  496. I915_READ_CTL(engine),
  497. I915_READ_HEAD(engine),
  498. I915_READ_TAIL(engine),
  499. I915_READ_START(engine));
  500. if (!stop_ring(engine)) {
  501. DRM_ERROR("failed to set %s head to zero "
  502. "ctl %08x head %08x tail %08x start %08x\n",
  503. engine->name,
  504. I915_READ_CTL(engine),
  505. I915_READ_HEAD(engine),
  506. I915_READ_TAIL(engine),
  507. I915_READ_START(engine));
  508. ret = -EIO;
  509. goto out;
  510. }
  511. }
  512. if (I915_NEED_GFX_HWS(dev_priv))
  513. intel_ring_setup_status_page(engine);
  514. else
  515. ring_setup_phys_status_page(engine);
  516. /* Enforce ordering by reading HEAD register back */
  517. I915_READ_HEAD(engine);
  518. /* Initialize the ring. This must happen _after_ we've cleared the ring
  519. * registers with the above sequence (the readback of the HEAD registers
  520. * also enforces ordering), otherwise the hw might lose the new ring
  521. * register values. */
  522. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  523. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  524. if (I915_READ_HEAD(engine))
  525. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  526. engine->name, I915_READ_HEAD(engine));
  527. I915_WRITE_HEAD(engine, 0);
  528. (void)I915_READ_HEAD(engine);
  529. I915_WRITE_CTL(engine,
  530. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  531. | RING_VALID);
  532. /* If the head is still not zero, the ring is dead */
  533. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  534. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  535. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  536. DRM_ERROR("%s initialization failed "
  537. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  538. engine->name,
  539. I915_READ_CTL(engine),
  540. I915_READ_CTL(engine) & RING_VALID,
  541. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  542. I915_READ_START(engine),
  543. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  544. ret = -EIO;
  545. goto out;
  546. }
  547. ring->last_retired_head = -1;
  548. ring->head = I915_READ_HEAD(engine);
  549. ring->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  550. intel_ring_update_space(ring);
  551. intel_engine_init_hangcheck(engine);
  552. out:
  553. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  554. return ret;
  555. }
  556. void intel_fini_pipe_control(struct intel_engine_cs *engine)
  557. {
  558. if (engine->scratch.obj == NULL)
  559. return;
  560. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  561. i915_gem_object_put(engine->scratch.obj);
  562. engine->scratch.obj = NULL;
  563. }
  564. int intel_init_pipe_control(struct intel_engine_cs *engine, int size)
  565. {
  566. struct drm_i915_gem_object *obj;
  567. int ret;
  568. WARN_ON(engine->scratch.obj);
  569. obj = i915_gem_object_create_stolen(&engine->i915->drm, size);
  570. if (!obj)
  571. obj = i915_gem_object_create(&engine->i915->drm, size);
  572. if (IS_ERR(obj)) {
  573. DRM_ERROR("Failed to allocate scratch page\n");
  574. ret = PTR_ERR(obj);
  575. goto err;
  576. }
  577. ret = i915_gem_obj_ggtt_pin(obj, 4096, PIN_HIGH);
  578. if (ret)
  579. goto err_unref;
  580. engine->scratch.obj = obj;
  581. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  582. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  583. engine->name, engine->scratch.gtt_offset);
  584. return 0;
  585. err_unref:
  586. i915_gem_object_put(engine->scratch.obj);
  587. err:
  588. return ret;
  589. }
  590. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  591. {
  592. struct intel_ring *ring = req->ring;
  593. struct i915_workarounds *w = &req->i915->workarounds;
  594. int ret, i;
  595. if (w->count == 0)
  596. return 0;
  597. ret = req->engine->emit_flush(req,
  598. I915_GEM_GPU_DOMAINS,
  599. I915_GEM_GPU_DOMAINS);
  600. if (ret)
  601. return ret;
  602. ret = intel_ring_begin(req, (w->count * 2 + 2));
  603. if (ret)
  604. return ret;
  605. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  606. for (i = 0; i < w->count; i++) {
  607. intel_ring_emit_reg(ring, w->reg[i].addr);
  608. intel_ring_emit(ring, w->reg[i].value);
  609. }
  610. intel_ring_emit(ring, MI_NOOP);
  611. intel_ring_advance(ring);
  612. ret = req->engine->emit_flush(req,
  613. I915_GEM_GPU_DOMAINS,
  614. I915_GEM_GPU_DOMAINS);
  615. if (ret)
  616. return ret;
  617. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  618. return 0;
  619. }
  620. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  621. {
  622. int ret;
  623. ret = intel_ring_workarounds_emit(req);
  624. if (ret != 0)
  625. return ret;
  626. ret = i915_gem_render_state_init(req);
  627. if (ret)
  628. return ret;
  629. return 0;
  630. }
  631. static int wa_add(struct drm_i915_private *dev_priv,
  632. i915_reg_t addr,
  633. const u32 mask, const u32 val)
  634. {
  635. const u32 idx = dev_priv->workarounds.count;
  636. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  637. return -ENOSPC;
  638. dev_priv->workarounds.reg[idx].addr = addr;
  639. dev_priv->workarounds.reg[idx].value = val;
  640. dev_priv->workarounds.reg[idx].mask = mask;
  641. dev_priv->workarounds.count++;
  642. return 0;
  643. }
  644. #define WA_REG(addr, mask, val) do { \
  645. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  646. if (r) \
  647. return r; \
  648. } while (0)
  649. #define WA_SET_BIT_MASKED(addr, mask) \
  650. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  651. #define WA_CLR_BIT_MASKED(addr, mask) \
  652. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  653. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  654. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  655. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  656. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  657. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  658. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  659. i915_reg_t reg)
  660. {
  661. struct drm_i915_private *dev_priv = engine->i915;
  662. struct i915_workarounds *wa = &dev_priv->workarounds;
  663. const uint32_t index = wa->hw_whitelist_count[engine->id];
  664. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  665. return -EINVAL;
  666. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  667. i915_mmio_reg_offset(reg));
  668. wa->hw_whitelist_count[engine->id]++;
  669. return 0;
  670. }
  671. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  672. {
  673. struct drm_i915_private *dev_priv = engine->i915;
  674. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  675. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  676. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  677. /* WaDisablePartialInstShootdown:bdw,chv */
  678. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  679. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  680. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  681. * workaround for for a possible hang in the unlikely event a TLB
  682. * invalidation occurs during a PSD flush.
  683. */
  684. /* WaForceEnableNonCoherent:bdw,chv */
  685. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  686. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  687. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  688. HDC_FORCE_NON_COHERENT);
  689. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  690. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  691. * polygons in the same 8x4 pixel/sample area to be processed without
  692. * stalling waiting for the earlier ones to write to Hierarchical Z
  693. * buffer."
  694. *
  695. * This optimization is off by default for BDW and CHV; turn it on.
  696. */
  697. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  698. /* Wa4x4STCOptimizationDisable:bdw,chv */
  699. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  700. /*
  701. * BSpec recommends 8x4 when MSAA is used,
  702. * however in practice 16x4 seems fastest.
  703. *
  704. * Note that PS/WM thread counts depend on the WIZ hashing
  705. * disable bit, which we don't touch here, but it's good
  706. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  707. */
  708. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  709. GEN6_WIZ_HASHING_MASK,
  710. GEN6_WIZ_HASHING_16x4);
  711. return 0;
  712. }
  713. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  714. {
  715. struct drm_i915_private *dev_priv = engine->i915;
  716. int ret;
  717. ret = gen8_init_workarounds(engine);
  718. if (ret)
  719. return ret;
  720. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  721. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  722. /* WaDisableDopClockGating:bdw */
  723. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  724. DOP_CLOCK_GATING_DISABLE);
  725. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  726. GEN8_SAMPLER_POWER_BYPASS_DIS);
  727. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  728. /* WaForceContextSaveRestoreNonCoherent:bdw */
  729. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  730. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  731. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  732. return 0;
  733. }
  734. static int chv_init_workarounds(struct intel_engine_cs *engine)
  735. {
  736. struct drm_i915_private *dev_priv = engine->i915;
  737. int ret;
  738. ret = gen8_init_workarounds(engine);
  739. if (ret)
  740. return ret;
  741. /* WaDisableThreadStallDopClockGating:chv */
  742. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  743. /* Improve HiZ throughput on CHV. */
  744. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  745. return 0;
  746. }
  747. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  748. {
  749. struct drm_i915_private *dev_priv = engine->i915;
  750. int ret;
  751. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  752. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  753. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  754. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  755. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  756. /* WaDisableKillLogic:bxt,skl,kbl */
  757. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  758. ECOCHK_DIS_TLB);
  759. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  760. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  761. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  762. FLOW_CONTROL_ENABLE |
  763. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  764. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  765. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  766. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  767. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  768. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  769. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  770. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  771. GEN9_DG_MIRROR_FIX_ENABLE);
  772. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  773. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  774. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  775. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  776. GEN9_RHWO_OPTIMIZATION_DISABLE);
  777. /*
  778. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  779. * but we do that in per ctx batchbuffer as there is an issue
  780. * with this register not getting restored on ctx restore
  781. */
  782. }
  783. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  784. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  785. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  786. GEN9_ENABLE_YV12_BUGFIX |
  787. GEN9_ENABLE_GPGPU_PREEMPTION);
  788. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  789. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  790. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  791. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  792. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  793. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  794. GEN9_CCS_TLB_PREFETCH_ENABLE);
  795. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  796. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  797. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  798. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  799. PIXEL_MASK_CAMMING_DISABLE);
  800. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  801. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  802. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  803. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  804. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  805. * both tied to WaForceContextSaveRestoreNonCoherent
  806. * in some hsds for skl. We keep the tie for all gen9. The
  807. * documentation is a bit hazy and so we want to get common behaviour,
  808. * even though there is no clear evidence we would need both on kbl/bxt.
  809. * This area has been source of system hangs so we play it safe
  810. * and mimic the skl regardless of what bspec says.
  811. *
  812. * Use Force Non-Coherent whenever executing a 3D context. This
  813. * is a workaround for a possible hang in the unlikely event
  814. * a TLB invalidation occurs during a PSD flush.
  815. */
  816. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  817. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  818. HDC_FORCE_NON_COHERENT);
  819. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  820. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  821. BDW_DISABLE_HDC_INVALIDATION);
  822. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  823. if (IS_SKYLAKE(dev_priv) ||
  824. IS_KABYLAKE(dev_priv) ||
  825. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  826. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  827. GEN8_SAMPLER_POWER_BYPASS_DIS);
  828. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  829. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  830. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  831. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  832. GEN8_LQSC_FLUSH_COHERENT_LINES));
  833. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  834. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  835. if (ret)
  836. return ret;
  837. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  838. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  839. if (ret)
  840. return ret;
  841. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  842. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  843. if (ret)
  844. return ret;
  845. return 0;
  846. }
  847. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  848. {
  849. struct drm_i915_private *dev_priv = engine->i915;
  850. u8 vals[3] = { 0, 0, 0 };
  851. unsigned int i;
  852. for (i = 0; i < 3; i++) {
  853. u8 ss;
  854. /*
  855. * Only consider slices where one, and only one, subslice has 7
  856. * EUs
  857. */
  858. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  859. continue;
  860. /*
  861. * subslice_7eu[i] != 0 (because of the check above) and
  862. * ss_max == 4 (maximum number of subslices possible per slice)
  863. *
  864. * -> 0 <= ss <= 3;
  865. */
  866. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  867. vals[i] = 3 - ss;
  868. }
  869. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  870. return 0;
  871. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  872. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  873. GEN9_IZ_HASHING_MASK(2) |
  874. GEN9_IZ_HASHING_MASK(1) |
  875. GEN9_IZ_HASHING_MASK(0),
  876. GEN9_IZ_HASHING(2, vals[2]) |
  877. GEN9_IZ_HASHING(1, vals[1]) |
  878. GEN9_IZ_HASHING(0, vals[0]));
  879. return 0;
  880. }
  881. static int skl_init_workarounds(struct intel_engine_cs *engine)
  882. {
  883. struct drm_i915_private *dev_priv = engine->i915;
  884. int ret;
  885. ret = gen9_init_workarounds(engine);
  886. if (ret)
  887. return ret;
  888. /*
  889. * Actual WA is to disable percontext preemption granularity control
  890. * until D0 which is the default case so this is equivalent to
  891. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  892. */
  893. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  894. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  895. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  896. }
  897. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  898. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  899. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  900. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  901. }
  902. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  903. * involving this register should also be added to WA batch as required.
  904. */
  905. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  906. /* WaDisableLSQCROPERFforOCL:skl */
  907. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  908. GEN8_LQSC_RO_PERF_DIS);
  909. /* WaEnableGapsTsvCreditFix:skl */
  910. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  911. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  912. GEN9_GAPS_TSV_CREDIT_DISABLE));
  913. }
  914. /* WaDisablePowerCompilerClockGating:skl */
  915. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  916. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  917. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  918. /* WaBarrierPerformanceFixDisable:skl */
  919. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  920. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  921. HDC_FENCE_DEST_SLM_DISABLE |
  922. HDC_BARRIER_PERFORMANCE_DISABLE);
  923. /* WaDisableSbeCacheDispatchPortSharing:skl */
  924. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  925. WA_SET_BIT_MASKED(
  926. GEN7_HALF_SLICE_CHICKEN1,
  927. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  928. /* WaDisableGafsUnitClkGating:skl */
  929. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  930. /* WaInPlaceDecompressionHang:skl */
  931. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  932. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  933. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  934. /* WaDisableLSQCROPERFforOCL:skl */
  935. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  936. if (ret)
  937. return ret;
  938. return skl_tune_iz_hashing(engine);
  939. }
  940. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  941. {
  942. struct drm_i915_private *dev_priv = engine->i915;
  943. int ret;
  944. ret = gen9_init_workarounds(engine);
  945. if (ret)
  946. return ret;
  947. /* WaStoreMultiplePTEenable:bxt */
  948. /* This is a requirement according to Hardware specification */
  949. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  950. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  951. /* WaSetClckGatingDisableMedia:bxt */
  952. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  953. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  954. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  955. }
  956. /* WaDisableThreadStallDopClockGating:bxt */
  957. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  958. STALL_DOP_GATING_DISABLE);
  959. /* WaDisablePooledEuLoadBalancingFix:bxt */
  960. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  961. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  962. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  963. }
  964. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  965. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  966. WA_SET_BIT_MASKED(
  967. GEN7_HALF_SLICE_CHICKEN1,
  968. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  969. }
  970. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  971. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  972. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  973. /* WaDisableLSQCROPERFforOCL:bxt */
  974. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  975. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  976. if (ret)
  977. return ret;
  978. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  979. if (ret)
  980. return ret;
  981. }
  982. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  983. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  984. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  985. L3_HIGH_PRIO_CREDITS(2));
  986. /* WaInsertDummyPushConstPs:bxt */
  987. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  988. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  989. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  990. /* WaInPlaceDecompressionHang:bxt */
  991. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  992. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  993. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  994. return 0;
  995. }
  996. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  997. {
  998. struct drm_i915_private *dev_priv = engine->i915;
  999. int ret;
  1000. ret = gen9_init_workarounds(engine);
  1001. if (ret)
  1002. return ret;
  1003. /* WaEnableGapsTsvCreditFix:kbl */
  1004. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  1005. GEN9_GAPS_TSV_CREDIT_DISABLE));
  1006. /* WaDisableDynamicCreditSharing:kbl */
  1007. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1008. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  1009. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  1010. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  1011. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1012. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1013. HDC_FENCE_DEST_SLM_DISABLE);
  1014. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1015. * involving this register should also be added to WA batch as required.
  1016. */
  1017. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1018. /* WaDisableLSQCROPERFforOCL:kbl */
  1019. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1020. GEN8_LQSC_RO_PERF_DIS);
  1021. /* WaInsertDummyPushConstPs:kbl */
  1022. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1023. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1024. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1025. /* WaDisableGafsUnitClkGating:kbl */
  1026. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1027. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1028. WA_SET_BIT_MASKED(
  1029. GEN7_HALF_SLICE_CHICKEN1,
  1030. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1031. /* WaInPlaceDecompressionHang:kbl */
  1032. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  1033. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  1034. /* WaDisableLSQCROPERFforOCL:kbl */
  1035. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1036. if (ret)
  1037. return ret;
  1038. return 0;
  1039. }
  1040. int init_workarounds_ring(struct intel_engine_cs *engine)
  1041. {
  1042. struct drm_i915_private *dev_priv = engine->i915;
  1043. WARN_ON(engine->id != RCS);
  1044. dev_priv->workarounds.count = 0;
  1045. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1046. if (IS_BROADWELL(dev_priv))
  1047. return bdw_init_workarounds(engine);
  1048. if (IS_CHERRYVIEW(dev_priv))
  1049. return chv_init_workarounds(engine);
  1050. if (IS_SKYLAKE(dev_priv))
  1051. return skl_init_workarounds(engine);
  1052. if (IS_BROXTON(dev_priv))
  1053. return bxt_init_workarounds(engine);
  1054. if (IS_KABYLAKE(dev_priv))
  1055. return kbl_init_workarounds(engine);
  1056. return 0;
  1057. }
  1058. static int init_render_ring(struct intel_engine_cs *engine)
  1059. {
  1060. struct drm_i915_private *dev_priv = engine->i915;
  1061. int ret = init_ring_common(engine);
  1062. if (ret)
  1063. return ret;
  1064. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1065. if (IS_GEN(dev_priv, 4, 6))
  1066. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1067. /* We need to disable the AsyncFlip performance optimisations in order
  1068. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1069. * programmed to '1' on all products.
  1070. *
  1071. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1072. */
  1073. if (IS_GEN(dev_priv, 6, 7))
  1074. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1075. /* Required for the hardware to program scanline values for waiting */
  1076. /* WaEnableFlushTlbInvalidationMode:snb */
  1077. if (IS_GEN6(dev_priv))
  1078. I915_WRITE(GFX_MODE,
  1079. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1080. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1081. if (IS_GEN7(dev_priv))
  1082. I915_WRITE(GFX_MODE_GEN7,
  1083. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1084. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1085. if (IS_GEN6(dev_priv)) {
  1086. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1087. * "If this bit is set, STCunit will have LRA as replacement
  1088. * policy. [...] This bit must be reset. LRA replacement
  1089. * policy is not supported."
  1090. */
  1091. I915_WRITE(CACHE_MODE_0,
  1092. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1093. }
  1094. if (IS_GEN(dev_priv, 6, 7))
  1095. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1096. if (INTEL_INFO(dev_priv)->gen >= 6)
  1097. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1098. return init_workarounds_ring(engine);
  1099. }
  1100. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1101. {
  1102. struct drm_i915_private *dev_priv = engine->i915;
  1103. if (dev_priv->semaphore_obj) {
  1104. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1105. i915_gem_object_put(dev_priv->semaphore_obj);
  1106. dev_priv->semaphore_obj = NULL;
  1107. }
  1108. intel_fini_pipe_control(engine);
  1109. }
  1110. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1111. unsigned int num_dwords)
  1112. {
  1113. #define MBOX_UPDATE_DWORDS 8
  1114. struct intel_ring *signaller = signaller_req->ring;
  1115. struct drm_i915_private *dev_priv = signaller_req->i915;
  1116. struct intel_engine_cs *waiter;
  1117. enum intel_engine_id id;
  1118. int ret, num_rings;
  1119. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1120. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1121. #undef MBOX_UPDATE_DWORDS
  1122. ret = intel_ring_begin(signaller_req, num_dwords);
  1123. if (ret)
  1124. return ret;
  1125. for_each_engine_id(waiter, dev_priv, id) {
  1126. u64 gtt_offset =
  1127. signaller_req->engine->semaphore.signal_ggtt[id];
  1128. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1129. continue;
  1130. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1131. intel_ring_emit(signaller,
  1132. PIPE_CONTROL_GLOBAL_GTT_IVB |
  1133. PIPE_CONTROL_QW_WRITE |
  1134. PIPE_CONTROL_CS_STALL);
  1135. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1136. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1137. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1138. intel_ring_emit(signaller, 0);
  1139. intel_ring_emit(signaller,
  1140. MI_SEMAPHORE_SIGNAL |
  1141. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1142. intel_ring_emit(signaller, 0);
  1143. }
  1144. return 0;
  1145. }
  1146. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1147. unsigned int num_dwords)
  1148. {
  1149. #define MBOX_UPDATE_DWORDS 6
  1150. struct intel_ring *signaller = signaller_req->ring;
  1151. struct drm_i915_private *dev_priv = signaller_req->i915;
  1152. struct intel_engine_cs *waiter;
  1153. enum intel_engine_id id;
  1154. int ret, num_rings;
  1155. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1156. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1157. #undef MBOX_UPDATE_DWORDS
  1158. ret = intel_ring_begin(signaller_req, num_dwords);
  1159. if (ret)
  1160. return ret;
  1161. for_each_engine_id(waiter, dev_priv, id) {
  1162. u64 gtt_offset =
  1163. signaller_req->engine->semaphore.signal_ggtt[id];
  1164. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1165. continue;
  1166. intel_ring_emit(signaller,
  1167. (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
  1168. intel_ring_emit(signaller,
  1169. lower_32_bits(gtt_offset) |
  1170. MI_FLUSH_DW_USE_GTT);
  1171. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1172. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1173. intel_ring_emit(signaller,
  1174. MI_SEMAPHORE_SIGNAL |
  1175. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1176. intel_ring_emit(signaller, 0);
  1177. }
  1178. return 0;
  1179. }
  1180. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1181. unsigned int num_dwords)
  1182. {
  1183. struct intel_ring *signaller = signaller_req->ring;
  1184. struct drm_i915_private *dev_priv = signaller_req->i915;
  1185. struct intel_engine_cs *useless;
  1186. enum intel_engine_id id;
  1187. int ret, num_rings;
  1188. #define MBOX_UPDATE_DWORDS 3
  1189. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1190. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1191. #undef MBOX_UPDATE_DWORDS
  1192. ret = intel_ring_begin(signaller_req, num_dwords);
  1193. if (ret)
  1194. return ret;
  1195. for_each_engine_id(useless, dev_priv, id) {
  1196. i915_reg_t mbox_reg =
  1197. signaller_req->engine->semaphore.mbox.signal[id];
  1198. if (i915_mmio_reg_valid(mbox_reg)) {
  1199. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1200. intel_ring_emit_reg(signaller, mbox_reg);
  1201. intel_ring_emit(signaller, signaller_req->fence.seqno);
  1202. }
  1203. }
  1204. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1205. if (num_rings % 2 == 0)
  1206. intel_ring_emit(signaller, MI_NOOP);
  1207. return 0;
  1208. }
  1209. /**
  1210. * gen6_add_request - Update the semaphore mailbox registers
  1211. *
  1212. * @request - request to write to the ring
  1213. *
  1214. * Update the mailbox registers in the *other* rings with the current seqno.
  1215. * This acts like a signal in the canonical semaphore.
  1216. */
  1217. static int
  1218. gen6_add_request(struct drm_i915_gem_request *req)
  1219. {
  1220. struct intel_engine_cs *engine = req->engine;
  1221. struct intel_ring *ring = req->ring;
  1222. int ret;
  1223. if (engine->semaphore.signal)
  1224. ret = engine->semaphore.signal(req, 4);
  1225. else
  1226. ret = intel_ring_begin(req, 4);
  1227. if (ret)
  1228. return ret;
  1229. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1230. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1231. intel_ring_emit(ring, req->fence.seqno);
  1232. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1233. __intel_engine_submit(engine);
  1234. return 0;
  1235. }
  1236. static int
  1237. gen8_render_add_request(struct drm_i915_gem_request *req)
  1238. {
  1239. struct intel_engine_cs *engine = req->engine;
  1240. struct intel_ring *ring = req->ring;
  1241. int ret;
  1242. if (engine->semaphore.signal)
  1243. ret = engine->semaphore.signal(req, 8);
  1244. else
  1245. ret = intel_ring_begin(req, 8);
  1246. if (ret)
  1247. return ret;
  1248. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  1249. intel_ring_emit(ring, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1250. PIPE_CONTROL_CS_STALL |
  1251. PIPE_CONTROL_QW_WRITE));
  1252. intel_ring_emit(ring, intel_hws_seqno_address(engine));
  1253. intel_ring_emit(ring, 0);
  1254. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1255. /* We're thrashing one dword of HWS. */
  1256. intel_ring_emit(ring, 0);
  1257. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1258. intel_ring_emit(ring, MI_NOOP);
  1259. __intel_engine_submit(engine);
  1260. return 0;
  1261. }
  1262. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1263. u32 seqno)
  1264. {
  1265. return dev_priv->last_seqno < seqno;
  1266. }
  1267. /**
  1268. * intel_ring_sync - sync the waiter to the signaller on seqno
  1269. *
  1270. * @waiter - ring that is waiting
  1271. * @signaller - ring which has, or will signal
  1272. * @seqno - seqno which the waiter will block on
  1273. */
  1274. static int
  1275. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1276. struct intel_engine_cs *signaller,
  1277. u32 seqno)
  1278. {
  1279. struct intel_ring *waiter = waiter_req->ring;
  1280. struct drm_i915_private *dev_priv = waiter_req->i915;
  1281. u64 offset = GEN8_WAIT_OFFSET(waiter_req->engine, signaller->id);
  1282. struct i915_hw_ppgtt *ppgtt;
  1283. int ret;
  1284. ret = intel_ring_begin(waiter_req, 4);
  1285. if (ret)
  1286. return ret;
  1287. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1288. MI_SEMAPHORE_GLOBAL_GTT |
  1289. MI_SEMAPHORE_SAD_GTE_SDD);
  1290. intel_ring_emit(waiter, seqno);
  1291. intel_ring_emit(waiter, lower_32_bits(offset));
  1292. intel_ring_emit(waiter, upper_32_bits(offset));
  1293. intel_ring_advance(waiter);
  1294. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1295. * pagetables and we must reload them before executing the batch.
  1296. * We do this on the i915_switch_context() following the wait and
  1297. * before the dispatch.
  1298. */
  1299. ppgtt = waiter_req->ctx->ppgtt;
  1300. if (ppgtt && waiter_req->engine->id != RCS)
  1301. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1302. return 0;
  1303. }
  1304. static int
  1305. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1306. struct intel_engine_cs *signaller,
  1307. u32 seqno)
  1308. {
  1309. struct intel_ring *waiter = waiter_req->ring;
  1310. u32 dw1 = MI_SEMAPHORE_MBOX |
  1311. MI_SEMAPHORE_COMPARE |
  1312. MI_SEMAPHORE_REGISTER;
  1313. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter_req->engine->id];
  1314. int ret;
  1315. /* Throughout all of the GEM code, seqno passed implies our current
  1316. * seqno is >= the last seqno executed. However for hardware the
  1317. * comparison is strictly greater than.
  1318. */
  1319. seqno -= 1;
  1320. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1321. ret = intel_ring_begin(waiter_req, 4);
  1322. if (ret)
  1323. return ret;
  1324. /* If seqno wrap happened, omit the wait with no-ops */
  1325. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1326. intel_ring_emit(waiter, dw1 | wait_mbox);
  1327. intel_ring_emit(waiter, seqno);
  1328. intel_ring_emit(waiter, 0);
  1329. intel_ring_emit(waiter, MI_NOOP);
  1330. } else {
  1331. intel_ring_emit(waiter, MI_NOOP);
  1332. intel_ring_emit(waiter, MI_NOOP);
  1333. intel_ring_emit(waiter, MI_NOOP);
  1334. intel_ring_emit(waiter, MI_NOOP);
  1335. }
  1336. intel_ring_advance(waiter);
  1337. return 0;
  1338. }
  1339. static void
  1340. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1341. {
  1342. /* MI_STORE are internally buffered by the GPU and not flushed
  1343. * either by MI_FLUSH or SyncFlush or any other combination of
  1344. * MI commands.
  1345. *
  1346. * "Only the submission of the store operation is guaranteed.
  1347. * The write result will be complete (coherent) some time later
  1348. * (this is practically a finite period but there is no guaranteed
  1349. * latency)."
  1350. *
  1351. * Empirically, we observe that we need a delay of at least 75us to
  1352. * be sure that the seqno write is visible by the CPU.
  1353. */
  1354. usleep_range(125, 250);
  1355. }
  1356. static void
  1357. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1358. {
  1359. struct drm_i915_private *dev_priv = engine->i915;
  1360. /* Workaround to force correct ordering between irq and seqno writes on
  1361. * ivb (and maybe also on snb) by reading from a CS register (like
  1362. * ACTHD) before reading the status page.
  1363. *
  1364. * Note that this effectively stalls the read by the time it takes to
  1365. * do a memory transaction, which more or less ensures that the write
  1366. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1367. * Alternatively we could delay the interrupt from the CS ring to give
  1368. * the write time to land, but that would incur a delay after every
  1369. * batch i.e. much more frequent than a delay when waiting for the
  1370. * interrupt (with the same net latency).
  1371. *
  1372. * Also note that to prevent whole machine hangs on gen7, we have to
  1373. * take the spinlock to guard against concurrent cacheline access.
  1374. */
  1375. spin_lock_irq(&dev_priv->uncore.lock);
  1376. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1377. spin_unlock_irq(&dev_priv->uncore.lock);
  1378. }
  1379. static void
  1380. gen5_irq_enable(struct intel_engine_cs *engine)
  1381. {
  1382. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1383. }
  1384. static void
  1385. gen5_irq_disable(struct intel_engine_cs *engine)
  1386. {
  1387. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1388. }
  1389. static void
  1390. i9xx_irq_enable(struct intel_engine_cs *engine)
  1391. {
  1392. struct drm_i915_private *dev_priv = engine->i915;
  1393. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1394. I915_WRITE(IMR, dev_priv->irq_mask);
  1395. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1396. }
  1397. static void
  1398. i9xx_irq_disable(struct intel_engine_cs *engine)
  1399. {
  1400. struct drm_i915_private *dev_priv = engine->i915;
  1401. dev_priv->irq_mask |= engine->irq_enable_mask;
  1402. I915_WRITE(IMR, dev_priv->irq_mask);
  1403. }
  1404. static void
  1405. i8xx_irq_enable(struct intel_engine_cs *engine)
  1406. {
  1407. struct drm_i915_private *dev_priv = engine->i915;
  1408. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1409. I915_WRITE16(IMR, dev_priv->irq_mask);
  1410. POSTING_READ16(RING_IMR(engine->mmio_base));
  1411. }
  1412. static void
  1413. i8xx_irq_disable(struct intel_engine_cs *engine)
  1414. {
  1415. struct drm_i915_private *dev_priv = engine->i915;
  1416. dev_priv->irq_mask |= engine->irq_enable_mask;
  1417. I915_WRITE16(IMR, dev_priv->irq_mask);
  1418. }
  1419. static int
  1420. bsd_ring_flush(struct drm_i915_gem_request *req,
  1421. u32 invalidate_domains,
  1422. u32 flush_domains)
  1423. {
  1424. struct intel_ring *ring = req->ring;
  1425. int ret;
  1426. ret = intel_ring_begin(req, 2);
  1427. if (ret)
  1428. return ret;
  1429. intel_ring_emit(ring, MI_FLUSH);
  1430. intel_ring_emit(ring, MI_NOOP);
  1431. intel_ring_advance(ring);
  1432. return 0;
  1433. }
  1434. static int
  1435. i9xx_add_request(struct drm_i915_gem_request *req)
  1436. {
  1437. struct intel_ring *ring = req->ring;
  1438. int ret;
  1439. ret = intel_ring_begin(req, 4);
  1440. if (ret)
  1441. return ret;
  1442. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1443. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1444. intel_ring_emit(ring, req->fence.seqno);
  1445. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1446. __intel_engine_submit(req->engine);
  1447. return 0;
  1448. }
  1449. static void
  1450. gen6_irq_enable(struct intel_engine_cs *engine)
  1451. {
  1452. struct drm_i915_private *dev_priv = engine->i915;
  1453. I915_WRITE_IMR(engine,
  1454. ~(engine->irq_enable_mask |
  1455. engine->irq_keep_mask));
  1456. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1457. }
  1458. static void
  1459. gen6_irq_disable(struct intel_engine_cs *engine)
  1460. {
  1461. struct drm_i915_private *dev_priv = engine->i915;
  1462. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1463. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1464. }
  1465. static void
  1466. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1467. {
  1468. struct drm_i915_private *dev_priv = engine->i915;
  1469. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1470. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1471. }
  1472. static void
  1473. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1474. {
  1475. struct drm_i915_private *dev_priv = engine->i915;
  1476. I915_WRITE_IMR(engine, ~0);
  1477. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1478. }
  1479. static void
  1480. gen8_irq_enable(struct intel_engine_cs *engine)
  1481. {
  1482. struct drm_i915_private *dev_priv = engine->i915;
  1483. I915_WRITE_IMR(engine,
  1484. ~(engine->irq_enable_mask |
  1485. engine->irq_keep_mask));
  1486. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1487. }
  1488. static void
  1489. gen8_irq_disable(struct intel_engine_cs *engine)
  1490. {
  1491. struct drm_i915_private *dev_priv = engine->i915;
  1492. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1493. }
  1494. static int
  1495. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1496. u64 offset, u32 length,
  1497. unsigned dispatch_flags)
  1498. {
  1499. struct intel_ring *ring = req->ring;
  1500. int ret;
  1501. ret = intel_ring_begin(req, 2);
  1502. if (ret)
  1503. return ret;
  1504. intel_ring_emit(ring,
  1505. MI_BATCH_BUFFER_START |
  1506. MI_BATCH_GTT |
  1507. (dispatch_flags & I915_DISPATCH_SECURE ?
  1508. 0 : MI_BATCH_NON_SECURE_I965));
  1509. intel_ring_emit(ring, offset);
  1510. intel_ring_advance(ring);
  1511. return 0;
  1512. }
  1513. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1514. #define I830_BATCH_LIMIT (256*1024)
  1515. #define I830_TLB_ENTRIES (2)
  1516. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1517. static int
  1518. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1519. u64 offset, u32 len,
  1520. unsigned dispatch_flags)
  1521. {
  1522. struct intel_ring *ring = req->ring;
  1523. u32 cs_offset = req->engine->scratch.gtt_offset;
  1524. int ret;
  1525. ret = intel_ring_begin(req, 6);
  1526. if (ret)
  1527. return ret;
  1528. /* Evict the invalid PTE TLBs */
  1529. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1530. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1531. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1532. intel_ring_emit(ring, cs_offset);
  1533. intel_ring_emit(ring, 0xdeadbeef);
  1534. intel_ring_emit(ring, MI_NOOP);
  1535. intel_ring_advance(ring);
  1536. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1537. if (len > I830_BATCH_LIMIT)
  1538. return -ENOSPC;
  1539. ret = intel_ring_begin(req, 6 + 2);
  1540. if (ret)
  1541. return ret;
  1542. /* Blit the batch (which has now all relocs applied) to the
  1543. * stable batch scratch bo area (so that the CS never
  1544. * stumbles over its tlb invalidation bug) ...
  1545. */
  1546. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1547. intel_ring_emit(ring,
  1548. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1549. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1550. intel_ring_emit(ring, cs_offset);
  1551. intel_ring_emit(ring, 4096);
  1552. intel_ring_emit(ring, offset);
  1553. intel_ring_emit(ring, MI_FLUSH);
  1554. intel_ring_emit(ring, MI_NOOP);
  1555. intel_ring_advance(ring);
  1556. /* ... and execute it. */
  1557. offset = cs_offset;
  1558. }
  1559. ret = intel_ring_begin(req, 2);
  1560. if (ret)
  1561. return ret;
  1562. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1563. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1564. 0 : MI_BATCH_NON_SECURE));
  1565. intel_ring_advance(ring);
  1566. return 0;
  1567. }
  1568. static int
  1569. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1570. u64 offset, u32 len,
  1571. unsigned dispatch_flags)
  1572. {
  1573. struct intel_ring *ring = req->ring;
  1574. int ret;
  1575. ret = intel_ring_begin(req, 2);
  1576. if (ret)
  1577. return ret;
  1578. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1579. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1580. 0 : MI_BATCH_NON_SECURE));
  1581. intel_ring_advance(ring);
  1582. return 0;
  1583. }
  1584. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1585. {
  1586. struct drm_i915_private *dev_priv = engine->i915;
  1587. if (!dev_priv->status_page_dmah)
  1588. return;
  1589. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1590. engine->status_page.page_addr = NULL;
  1591. }
  1592. static void cleanup_status_page(struct intel_engine_cs *engine)
  1593. {
  1594. struct drm_i915_gem_object *obj;
  1595. obj = engine->status_page.obj;
  1596. if (obj == NULL)
  1597. return;
  1598. kunmap(sg_page(obj->pages->sgl));
  1599. i915_gem_object_ggtt_unpin(obj);
  1600. i915_gem_object_put(obj);
  1601. engine->status_page.obj = NULL;
  1602. }
  1603. static int init_status_page(struct intel_engine_cs *engine)
  1604. {
  1605. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1606. if (obj == NULL) {
  1607. unsigned flags;
  1608. int ret;
  1609. obj = i915_gem_object_create(&engine->i915->drm, 4096);
  1610. if (IS_ERR(obj)) {
  1611. DRM_ERROR("Failed to allocate status page\n");
  1612. return PTR_ERR(obj);
  1613. }
  1614. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1615. if (ret)
  1616. goto err_unref;
  1617. flags = 0;
  1618. if (!HAS_LLC(engine->i915))
  1619. /* On g33, we cannot place HWS above 256MiB, so
  1620. * restrict its pinning to the low mappable arena.
  1621. * Though this restriction is not documented for
  1622. * gen4, gen5, or byt, they also behave similarly
  1623. * and hang if the HWS is placed at the top of the
  1624. * GTT. To generalise, it appears that all !llc
  1625. * platforms have issues with us placing the HWS
  1626. * above the mappable region (even though we never
  1627. * actualy map it).
  1628. */
  1629. flags |= PIN_MAPPABLE;
  1630. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1631. if (ret) {
  1632. err_unref:
  1633. i915_gem_object_put(obj);
  1634. return ret;
  1635. }
  1636. engine->status_page.obj = obj;
  1637. }
  1638. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1639. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1640. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1641. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1642. engine->name, engine->status_page.gfx_addr);
  1643. return 0;
  1644. }
  1645. static int init_phys_status_page(struct intel_engine_cs *engine)
  1646. {
  1647. struct drm_i915_private *dev_priv = engine->i915;
  1648. if (!dev_priv->status_page_dmah) {
  1649. dev_priv->status_page_dmah =
  1650. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1651. if (!dev_priv->status_page_dmah)
  1652. return -ENOMEM;
  1653. }
  1654. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1655. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1656. return 0;
  1657. }
  1658. int intel_ring_pin(struct intel_ring *ring)
  1659. {
  1660. struct drm_i915_private *dev_priv = ring->engine->i915;
  1661. struct drm_i915_gem_object *obj = ring->obj;
  1662. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1663. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1664. void *addr;
  1665. int ret;
  1666. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1667. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1668. if (ret)
  1669. return ret;
  1670. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1671. if (ret)
  1672. goto err_unpin;
  1673. addr = i915_gem_object_pin_map(obj);
  1674. if (IS_ERR(addr)) {
  1675. ret = PTR_ERR(addr);
  1676. goto err_unpin;
  1677. }
  1678. } else {
  1679. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1680. flags | PIN_MAPPABLE);
  1681. if (ret)
  1682. return ret;
  1683. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1684. if (ret)
  1685. goto err_unpin;
  1686. /* Access through the GTT requires the device to be awake. */
  1687. assert_rpm_wakelock_held(dev_priv);
  1688. addr = (void __force *)
  1689. i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1690. if (IS_ERR(addr)) {
  1691. ret = PTR_ERR(addr);
  1692. goto err_unpin;
  1693. }
  1694. }
  1695. ring->vaddr = addr;
  1696. ring->vma = i915_gem_obj_to_ggtt(obj);
  1697. return 0;
  1698. err_unpin:
  1699. i915_gem_object_ggtt_unpin(obj);
  1700. return ret;
  1701. }
  1702. void intel_ring_unpin(struct intel_ring *ring)
  1703. {
  1704. GEM_BUG_ON(!ring->vma);
  1705. GEM_BUG_ON(!ring->vaddr);
  1706. if (HAS_LLC(ring->engine->i915) && !ring->obj->stolen)
  1707. i915_gem_object_unpin_map(ring->obj);
  1708. else
  1709. i915_vma_unpin_iomap(ring->vma);
  1710. ring->vaddr = NULL;
  1711. i915_gem_object_ggtt_unpin(ring->obj);
  1712. ring->vma = NULL;
  1713. }
  1714. static void intel_destroy_ringbuffer_obj(struct intel_ring *ring)
  1715. {
  1716. i915_gem_object_put(ring->obj);
  1717. ring->obj = NULL;
  1718. }
  1719. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1720. struct intel_ring *ring)
  1721. {
  1722. struct drm_i915_gem_object *obj;
  1723. obj = NULL;
  1724. if (!HAS_LLC(dev))
  1725. obj = i915_gem_object_create_stolen(dev, ring->size);
  1726. if (obj == NULL)
  1727. obj = i915_gem_object_create(dev, ring->size);
  1728. if (IS_ERR(obj))
  1729. return PTR_ERR(obj);
  1730. /* mark ring buffers as read-only from GPU side by default */
  1731. obj->gt_ro = 1;
  1732. ring->obj = obj;
  1733. return 0;
  1734. }
  1735. struct intel_ring *
  1736. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1737. {
  1738. struct intel_ring *ring;
  1739. int ret;
  1740. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1741. if (ring == NULL) {
  1742. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1743. engine->name);
  1744. return ERR_PTR(-ENOMEM);
  1745. }
  1746. ring->engine = engine;
  1747. list_add(&ring->link, &engine->buffers);
  1748. ring->size = size;
  1749. /* Workaround an erratum on the i830 which causes a hang if
  1750. * the TAIL pointer points to within the last 2 cachelines
  1751. * of the buffer.
  1752. */
  1753. ring->effective_size = size;
  1754. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1755. ring->effective_size -= 2 * CACHELINE_BYTES;
  1756. ring->last_retired_head = -1;
  1757. intel_ring_update_space(ring);
  1758. ret = intel_alloc_ringbuffer_obj(&engine->i915->drm, ring);
  1759. if (ret) {
  1760. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1761. engine->name, ret);
  1762. list_del(&ring->link);
  1763. kfree(ring);
  1764. return ERR_PTR(ret);
  1765. }
  1766. return ring;
  1767. }
  1768. void
  1769. intel_ring_free(struct intel_ring *ring)
  1770. {
  1771. intel_destroy_ringbuffer_obj(ring);
  1772. list_del(&ring->link);
  1773. kfree(ring);
  1774. }
  1775. static int intel_ring_context_pin(struct i915_gem_context *ctx,
  1776. struct intel_engine_cs *engine)
  1777. {
  1778. struct intel_context *ce = &ctx->engine[engine->id];
  1779. int ret;
  1780. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1781. if (ce->pin_count++)
  1782. return 0;
  1783. if (ce->state) {
  1784. ret = i915_gem_obj_ggtt_pin(ce->state, ctx->ggtt_alignment, 0);
  1785. if (ret)
  1786. goto error;
  1787. }
  1788. /* The kernel context is only used as a placeholder for flushing the
  1789. * active context. It is never used for submitting user rendering and
  1790. * as such never requires the golden render context, and so we can skip
  1791. * emitting it when we switch to the kernel context. This is required
  1792. * as during eviction we cannot allocate and pin the renderstate in
  1793. * order to initialise the context.
  1794. */
  1795. if (ctx == ctx->i915->kernel_context)
  1796. ce->initialised = true;
  1797. i915_gem_context_get(ctx);
  1798. return 0;
  1799. error:
  1800. ce->pin_count = 0;
  1801. return ret;
  1802. }
  1803. static void intel_ring_context_unpin(struct i915_gem_context *ctx,
  1804. struct intel_engine_cs *engine)
  1805. {
  1806. struct intel_context *ce = &ctx->engine[engine->id];
  1807. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1808. if (--ce->pin_count)
  1809. return;
  1810. if (ce->state)
  1811. i915_gem_object_ggtt_unpin(ce->state);
  1812. i915_gem_context_put(ctx);
  1813. }
  1814. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1815. {
  1816. struct drm_i915_private *dev_priv = engine->i915;
  1817. struct intel_ring *ring;
  1818. int ret;
  1819. WARN_ON(engine->buffer);
  1820. intel_engine_setup_common(engine);
  1821. memset(engine->semaphore.sync_seqno, 0,
  1822. sizeof(engine->semaphore.sync_seqno));
  1823. ret = intel_engine_init_common(engine);
  1824. if (ret)
  1825. goto error;
  1826. /* We may need to do things with the shrinker which
  1827. * require us to immediately switch back to the default
  1828. * context. This can cause a problem as pinning the
  1829. * default context also requires GTT space which may not
  1830. * be available. To avoid this we always pin the default
  1831. * context.
  1832. */
  1833. ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
  1834. if (ret)
  1835. goto error;
  1836. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1837. if (IS_ERR(ring)) {
  1838. ret = PTR_ERR(ring);
  1839. goto error;
  1840. }
  1841. engine->buffer = ring;
  1842. if (I915_NEED_GFX_HWS(dev_priv)) {
  1843. ret = init_status_page(engine);
  1844. if (ret)
  1845. goto error;
  1846. } else {
  1847. WARN_ON(engine->id != RCS);
  1848. ret = init_phys_status_page(engine);
  1849. if (ret)
  1850. goto error;
  1851. }
  1852. ret = intel_ring_pin(ring);
  1853. if (ret) {
  1854. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1855. engine->name, ret);
  1856. intel_destroy_ringbuffer_obj(ring);
  1857. goto error;
  1858. }
  1859. return 0;
  1860. error:
  1861. intel_engine_cleanup(engine);
  1862. return ret;
  1863. }
  1864. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1865. {
  1866. struct drm_i915_private *dev_priv;
  1867. if (!intel_engine_initialized(engine))
  1868. return;
  1869. dev_priv = engine->i915;
  1870. if (engine->buffer) {
  1871. intel_engine_stop(engine);
  1872. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1873. intel_ring_unpin(engine->buffer);
  1874. intel_ring_free(engine->buffer);
  1875. engine->buffer = NULL;
  1876. }
  1877. if (engine->cleanup)
  1878. engine->cleanup(engine);
  1879. if (I915_NEED_GFX_HWS(dev_priv)) {
  1880. cleanup_status_page(engine);
  1881. } else {
  1882. WARN_ON(engine->id != RCS);
  1883. cleanup_phys_status_page(engine);
  1884. }
  1885. intel_engine_cleanup_cmd_parser(engine);
  1886. i915_gem_batch_pool_fini(&engine->batch_pool);
  1887. intel_engine_fini_breadcrumbs(engine);
  1888. intel_ring_context_unpin(dev_priv->kernel_context, engine);
  1889. engine->i915 = NULL;
  1890. }
  1891. int intel_engine_idle(struct intel_engine_cs *engine)
  1892. {
  1893. struct drm_i915_gem_request *req;
  1894. /* Wait upon the last request to be completed */
  1895. if (list_empty(&engine->request_list))
  1896. return 0;
  1897. req = list_entry(engine->request_list.prev,
  1898. struct drm_i915_gem_request,
  1899. list);
  1900. /* Make sure we do not trigger any retires */
  1901. return __i915_wait_request(req,
  1902. req->i915->mm.interruptible,
  1903. NULL, NULL);
  1904. }
  1905. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1906. {
  1907. int ret;
  1908. /* Flush enough space to reduce the likelihood of waiting after
  1909. * we start building the request - in which case we will just
  1910. * have to repeat work.
  1911. */
  1912. request->reserved_space += LEGACY_REQUEST_SIZE;
  1913. request->ring = request->engine->buffer;
  1914. ret = intel_ring_begin(request, 0);
  1915. if (ret)
  1916. return ret;
  1917. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1918. return 0;
  1919. }
  1920. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1921. {
  1922. struct intel_ring *ring = req->ring;
  1923. struct intel_engine_cs *engine = req->engine;
  1924. struct drm_i915_gem_request *target;
  1925. intel_ring_update_space(ring);
  1926. if (ring->space >= bytes)
  1927. return 0;
  1928. /*
  1929. * Space is reserved in the ringbuffer for finalising the request,
  1930. * as that cannot be allowed to fail. During request finalisation,
  1931. * reserved_space is set to 0 to stop the overallocation and the
  1932. * assumption is that then we never need to wait (which has the
  1933. * risk of failing with EINTR).
  1934. *
  1935. * See also i915_gem_request_alloc() and i915_add_request().
  1936. */
  1937. GEM_BUG_ON(!req->reserved_space);
  1938. list_for_each_entry(target, &engine->request_list, list) {
  1939. unsigned space;
  1940. /*
  1941. * The request queue is per-engine, so can contain requests
  1942. * from multiple ringbuffers. Here, we must ignore any that
  1943. * aren't from the ringbuffer we're considering.
  1944. */
  1945. if (target->ring != ring)
  1946. continue;
  1947. /* Would completion of this request free enough space? */
  1948. space = __intel_ring_space(target->postfix, ring->tail,
  1949. ring->size);
  1950. if (space >= bytes)
  1951. break;
  1952. }
  1953. if (WARN_ON(&target->list == &engine->request_list))
  1954. return -ENOSPC;
  1955. return i915_wait_request(target);
  1956. }
  1957. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1958. {
  1959. struct intel_ring *ring = req->ring;
  1960. int remain_actual = ring->size - ring->tail;
  1961. int remain_usable = ring->effective_size - ring->tail;
  1962. int bytes = num_dwords * sizeof(u32);
  1963. int total_bytes, wait_bytes;
  1964. bool need_wrap = false;
  1965. total_bytes = bytes + req->reserved_space;
  1966. if (unlikely(bytes > remain_usable)) {
  1967. /*
  1968. * Not enough space for the basic request. So need to flush
  1969. * out the remainder and then wait for base + reserved.
  1970. */
  1971. wait_bytes = remain_actual + total_bytes;
  1972. need_wrap = true;
  1973. } else if (unlikely(total_bytes > remain_usable)) {
  1974. /*
  1975. * The base request will fit but the reserved space
  1976. * falls off the end. So we don't need an immediate wrap
  1977. * and only need to effectively wait for the reserved
  1978. * size space from the start of ringbuffer.
  1979. */
  1980. wait_bytes = remain_actual + req->reserved_space;
  1981. } else {
  1982. /* No wrapping required, just waiting. */
  1983. wait_bytes = total_bytes;
  1984. }
  1985. if (wait_bytes > ring->space) {
  1986. int ret = wait_for_space(req, wait_bytes);
  1987. if (unlikely(ret))
  1988. return ret;
  1989. intel_ring_update_space(ring);
  1990. if (unlikely(ring->space < wait_bytes))
  1991. return -EAGAIN;
  1992. }
  1993. if (unlikely(need_wrap)) {
  1994. GEM_BUG_ON(remain_actual > ring->space);
  1995. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1996. /* Fill the tail with MI_NOOP */
  1997. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1998. ring->tail = 0;
  1999. ring->space -= remain_actual;
  2000. }
  2001. ring->space -= bytes;
  2002. GEM_BUG_ON(ring->space < 0);
  2003. return 0;
  2004. }
  2005. /* Align the ring tail to a cacheline boundary */
  2006. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2007. {
  2008. struct intel_ring *ring = req->ring;
  2009. int num_dwords =
  2010. (ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2011. int ret;
  2012. if (num_dwords == 0)
  2013. return 0;
  2014. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2015. ret = intel_ring_begin(req, num_dwords);
  2016. if (ret)
  2017. return ret;
  2018. while (num_dwords--)
  2019. intel_ring_emit(ring, MI_NOOP);
  2020. intel_ring_advance(ring);
  2021. return 0;
  2022. }
  2023. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2024. {
  2025. struct drm_i915_private *dev_priv = engine->i915;
  2026. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2027. * so long as the semaphore value in the register/page is greater
  2028. * than the sync value), so whenever we reset the seqno,
  2029. * so long as we reset the tracking semaphore value to 0, it will
  2030. * always be before the next request's seqno. If we don't reset
  2031. * the semaphore value, then when the seqno moves backwards all
  2032. * future waits will complete instantly (causing rendering corruption).
  2033. */
  2034. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2035. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2036. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2037. if (HAS_VEBOX(dev_priv))
  2038. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2039. }
  2040. if (dev_priv->semaphore_obj) {
  2041. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2042. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2043. void *semaphores = kmap(page);
  2044. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2045. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2046. kunmap(page);
  2047. }
  2048. memset(engine->semaphore.sync_seqno, 0,
  2049. sizeof(engine->semaphore.sync_seqno));
  2050. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  2051. if (engine->irq_seqno_barrier)
  2052. engine->irq_seqno_barrier(engine);
  2053. engine->last_submitted_seqno = seqno;
  2054. engine->hangcheck.seqno = seqno;
  2055. /* After manually advancing the seqno, fake the interrupt in case
  2056. * there are any waiters for that seqno.
  2057. */
  2058. rcu_read_lock();
  2059. intel_engine_wakeup(engine);
  2060. rcu_read_unlock();
  2061. }
  2062. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2063. u32 value)
  2064. {
  2065. struct drm_i915_private *dev_priv = engine->i915;
  2066. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  2067. /* Every tail move must follow the sequence below */
  2068. /* Disable notification that the ring is IDLE. The GT
  2069. * will then assume that it is busy and bring it out of rc6.
  2070. */
  2071. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2072. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2073. /* Clear the context id. Here be magic! */
  2074. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  2075. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2076. if (intel_wait_for_register_fw(dev_priv,
  2077. GEN6_BSD_SLEEP_PSMI_CONTROL,
  2078. GEN6_BSD_SLEEP_INDICATOR,
  2079. 0,
  2080. 50))
  2081. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2082. /* Now that the ring is fully powered up, update the tail */
  2083. I915_WRITE_FW(RING_TAIL(engine->mmio_base), value);
  2084. POSTING_READ_FW(RING_TAIL(engine->mmio_base));
  2085. /* Let the ring send IDLE messages to the GT again,
  2086. * and so let it sleep to conserve power when idle.
  2087. */
  2088. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2089. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2090. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  2091. }
  2092. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2093. u32 invalidate, u32 flush)
  2094. {
  2095. struct intel_ring *ring = req->ring;
  2096. uint32_t cmd;
  2097. int ret;
  2098. ret = intel_ring_begin(req, 4);
  2099. if (ret)
  2100. return ret;
  2101. cmd = MI_FLUSH_DW;
  2102. if (INTEL_GEN(req->i915) >= 8)
  2103. cmd += 1;
  2104. /* We always require a command barrier so that subsequent
  2105. * commands, such as breadcrumb interrupts, are strictly ordered
  2106. * wrt the contents of the write cache being flushed to memory
  2107. * (and thus being coherent from the CPU).
  2108. */
  2109. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2110. /*
  2111. * Bspec vol 1c.5 - video engine command streamer:
  2112. * "If ENABLED, all TLBs will be invalidated once the flush
  2113. * operation is complete. This bit is only valid when the
  2114. * Post-Sync Operation field is a value of 1h or 3h."
  2115. */
  2116. if (invalidate & I915_GEM_GPU_DOMAINS)
  2117. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2118. intel_ring_emit(ring, cmd);
  2119. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2120. if (INTEL_GEN(req->i915) >= 8) {
  2121. intel_ring_emit(ring, 0); /* upper addr */
  2122. intel_ring_emit(ring, 0); /* value */
  2123. } else {
  2124. intel_ring_emit(ring, 0);
  2125. intel_ring_emit(ring, MI_NOOP);
  2126. }
  2127. intel_ring_advance(ring);
  2128. return 0;
  2129. }
  2130. static int
  2131. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2132. u64 offset, u32 len,
  2133. unsigned dispatch_flags)
  2134. {
  2135. struct intel_ring *ring = req->ring;
  2136. bool ppgtt = USES_PPGTT(req->i915) &&
  2137. !(dispatch_flags & I915_DISPATCH_SECURE);
  2138. int ret;
  2139. ret = intel_ring_begin(req, 4);
  2140. if (ret)
  2141. return ret;
  2142. /* FIXME(BDW): Address space and security selectors. */
  2143. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2144. (dispatch_flags & I915_DISPATCH_RS ?
  2145. MI_BATCH_RESOURCE_STREAMER : 0));
  2146. intel_ring_emit(ring, lower_32_bits(offset));
  2147. intel_ring_emit(ring, upper_32_bits(offset));
  2148. intel_ring_emit(ring, MI_NOOP);
  2149. intel_ring_advance(ring);
  2150. return 0;
  2151. }
  2152. static int
  2153. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2154. u64 offset, u32 len,
  2155. unsigned dispatch_flags)
  2156. {
  2157. struct intel_ring *ring = req->ring;
  2158. int ret;
  2159. ret = intel_ring_begin(req, 2);
  2160. if (ret)
  2161. return ret;
  2162. intel_ring_emit(ring,
  2163. MI_BATCH_BUFFER_START |
  2164. (dispatch_flags & I915_DISPATCH_SECURE ?
  2165. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2166. (dispatch_flags & I915_DISPATCH_RS ?
  2167. MI_BATCH_RESOURCE_STREAMER : 0));
  2168. /* bit0-7 is the length on GEN6+ */
  2169. intel_ring_emit(ring, offset);
  2170. intel_ring_advance(ring);
  2171. return 0;
  2172. }
  2173. static int
  2174. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2175. u64 offset, u32 len,
  2176. unsigned dispatch_flags)
  2177. {
  2178. struct intel_ring *ring = req->ring;
  2179. int ret;
  2180. ret = intel_ring_begin(req, 2);
  2181. if (ret)
  2182. return ret;
  2183. intel_ring_emit(ring,
  2184. MI_BATCH_BUFFER_START |
  2185. (dispatch_flags & I915_DISPATCH_SECURE ?
  2186. 0 : MI_BATCH_NON_SECURE_I965));
  2187. /* bit0-7 is the length on GEN6+ */
  2188. intel_ring_emit(ring, offset);
  2189. intel_ring_advance(ring);
  2190. return 0;
  2191. }
  2192. /* Blitter support (SandyBridge+) */
  2193. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2194. u32 invalidate, u32 flush)
  2195. {
  2196. struct intel_ring *ring = req->ring;
  2197. uint32_t cmd;
  2198. int ret;
  2199. ret = intel_ring_begin(req, 4);
  2200. if (ret)
  2201. return ret;
  2202. cmd = MI_FLUSH_DW;
  2203. if (INTEL_GEN(req->i915) >= 8)
  2204. cmd += 1;
  2205. /* We always require a command barrier so that subsequent
  2206. * commands, such as breadcrumb interrupts, are strictly ordered
  2207. * wrt the contents of the write cache being flushed to memory
  2208. * (and thus being coherent from the CPU).
  2209. */
  2210. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2211. /*
  2212. * Bspec vol 1c.3 - blitter engine command streamer:
  2213. * "If ENABLED, all TLBs will be invalidated once the flush
  2214. * operation is complete. This bit is only valid when the
  2215. * Post-Sync Operation field is a value of 1h or 3h."
  2216. */
  2217. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2218. cmd |= MI_INVALIDATE_TLB;
  2219. intel_ring_emit(ring, cmd);
  2220. intel_ring_emit(ring,
  2221. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2222. if (INTEL_GEN(req->i915) >= 8) {
  2223. intel_ring_emit(ring, 0); /* upper addr */
  2224. intel_ring_emit(ring, 0); /* value */
  2225. } else {
  2226. intel_ring_emit(ring, 0);
  2227. intel_ring_emit(ring, MI_NOOP);
  2228. }
  2229. intel_ring_advance(ring);
  2230. return 0;
  2231. }
  2232. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2233. struct intel_engine_cs *engine)
  2234. {
  2235. struct drm_i915_gem_object *obj;
  2236. int ret, i;
  2237. if (!i915.semaphores)
  2238. return;
  2239. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore_obj) {
  2240. obj = i915_gem_object_create(&dev_priv->drm, 4096);
  2241. if (IS_ERR(obj)) {
  2242. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2243. i915.semaphores = 0;
  2244. } else {
  2245. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2246. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2247. if (ret != 0) {
  2248. i915_gem_object_put(obj);
  2249. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2250. i915.semaphores = 0;
  2251. } else {
  2252. dev_priv->semaphore_obj = obj;
  2253. }
  2254. }
  2255. }
  2256. if (!i915.semaphores)
  2257. return;
  2258. if (INTEL_GEN(dev_priv) >= 8) {
  2259. u64 offset = i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj);
  2260. engine->semaphore.sync_to = gen8_ring_sync;
  2261. engine->semaphore.signal = gen8_xcs_signal;
  2262. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2263. u64 ring_offset;
  2264. if (i != engine->id)
  2265. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2266. else
  2267. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2268. engine->semaphore.signal_ggtt[i] = ring_offset;
  2269. }
  2270. } else if (INTEL_GEN(dev_priv) >= 6) {
  2271. engine->semaphore.sync_to = gen6_ring_sync;
  2272. engine->semaphore.signal = gen6_signal;
  2273. /*
  2274. * The current semaphore is only applied on pre-gen8
  2275. * platform. And there is no VCS2 ring on the pre-gen8
  2276. * platform. So the semaphore between RCS and VCS2 is
  2277. * initialized as INVALID. Gen8 will initialize the
  2278. * sema between VCS2 and RCS later.
  2279. */
  2280. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2281. static const struct {
  2282. u32 wait_mbox;
  2283. i915_reg_t mbox_reg;
  2284. } sem_data[I915_NUM_ENGINES][I915_NUM_ENGINES] = {
  2285. [RCS] = {
  2286. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2287. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2288. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2289. },
  2290. [VCS] = {
  2291. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2292. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2293. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2294. },
  2295. [BCS] = {
  2296. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2297. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2298. [VECS] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2299. },
  2300. [VECS] = {
  2301. [RCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2302. [VCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2303. [BCS] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2304. },
  2305. };
  2306. u32 wait_mbox;
  2307. i915_reg_t mbox_reg;
  2308. if (i == engine->id || i == VCS2) {
  2309. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2310. mbox_reg = GEN6_NOSYNC;
  2311. } else {
  2312. wait_mbox = sem_data[engine->id][i].wait_mbox;
  2313. mbox_reg = sem_data[engine->id][i].mbox_reg;
  2314. }
  2315. engine->semaphore.mbox.wait[i] = wait_mbox;
  2316. engine->semaphore.mbox.signal[i] = mbox_reg;
  2317. }
  2318. }
  2319. }
  2320. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2321. struct intel_engine_cs *engine)
  2322. {
  2323. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2324. if (INTEL_GEN(dev_priv) >= 8) {
  2325. engine->irq_enable = gen8_irq_enable;
  2326. engine->irq_disable = gen8_irq_disable;
  2327. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2328. } else if (INTEL_GEN(dev_priv) >= 6) {
  2329. engine->irq_enable = gen6_irq_enable;
  2330. engine->irq_disable = gen6_irq_disable;
  2331. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2332. } else if (INTEL_GEN(dev_priv) >= 5) {
  2333. engine->irq_enable = gen5_irq_enable;
  2334. engine->irq_disable = gen5_irq_disable;
  2335. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2336. } else if (INTEL_GEN(dev_priv) >= 3) {
  2337. engine->irq_enable = i9xx_irq_enable;
  2338. engine->irq_disable = i9xx_irq_disable;
  2339. } else {
  2340. engine->irq_enable = i8xx_irq_enable;
  2341. engine->irq_disable = i8xx_irq_disable;
  2342. }
  2343. }
  2344. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2345. struct intel_engine_cs *engine)
  2346. {
  2347. engine->init_hw = init_ring_common;
  2348. engine->write_tail = ring_write_tail;
  2349. engine->add_request = i9xx_add_request;
  2350. if (INTEL_GEN(dev_priv) >= 6)
  2351. engine->add_request = gen6_add_request;
  2352. if (INTEL_GEN(dev_priv) >= 8)
  2353. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2354. else if (INTEL_GEN(dev_priv) >= 6)
  2355. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2356. else if (INTEL_GEN(dev_priv) >= 4)
  2357. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2358. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2359. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2360. else
  2361. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2362. intel_ring_init_irq(dev_priv, engine);
  2363. intel_ring_init_semaphores(dev_priv, engine);
  2364. }
  2365. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2366. {
  2367. struct drm_i915_private *dev_priv = engine->i915;
  2368. int ret;
  2369. intel_ring_default_vfuncs(dev_priv, engine);
  2370. if (HAS_L3_DPF(dev_priv))
  2371. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2372. if (INTEL_GEN(dev_priv) >= 8) {
  2373. engine->init_context = intel_rcs_ctx_init;
  2374. engine->add_request = gen8_render_add_request;
  2375. engine->emit_flush = gen8_render_ring_flush;
  2376. if (i915.semaphores)
  2377. engine->semaphore.signal = gen8_rcs_signal;
  2378. } else if (INTEL_GEN(dev_priv) >= 6) {
  2379. engine->init_context = intel_rcs_ctx_init;
  2380. engine->emit_flush = gen7_render_ring_flush;
  2381. if (IS_GEN6(dev_priv))
  2382. engine->emit_flush = gen6_render_ring_flush;
  2383. } else if (IS_GEN5(dev_priv)) {
  2384. engine->emit_flush = gen4_render_ring_flush;
  2385. } else {
  2386. if (INTEL_GEN(dev_priv) < 4)
  2387. engine->emit_flush = gen2_render_ring_flush;
  2388. else
  2389. engine->emit_flush = gen4_render_ring_flush;
  2390. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2391. }
  2392. if (IS_HASWELL(dev_priv))
  2393. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2394. engine->init_hw = init_render_ring;
  2395. engine->cleanup = render_ring_cleanup;
  2396. ret = intel_init_ring_buffer(engine);
  2397. if (ret)
  2398. return ret;
  2399. if (INTEL_GEN(dev_priv) >= 6) {
  2400. ret = intel_init_pipe_control(engine, 4096);
  2401. if (ret)
  2402. return ret;
  2403. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2404. ret = intel_init_pipe_control(engine, I830_WA_SIZE);
  2405. if (ret)
  2406. return ret;
  2407. }
  2408. return 0;
  2409. }
  2410. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2411. {
  2412. struct drm_i915_private *dev_priv = engine->i915;
  2413. intel_ring_default_vfuncs(dev_priv, engine);
  2414. if (INTEL_GEN(dev_priv) >= 6) {
  2415. /* gen6 bsd needs a special wa for tail updates */
  2416. if (IS_GEN6(dev_priv))
  2417. engine->write_tail = gen6_bsd_ring_write_tail;
  2418. engine->emit_flush = gen6_bsd_ring_flush;
  2419. if (INTEL_GEN(dev_priv) < 8)
  2420. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2421. } else {
  2422. engine->mmio_base = BSD_RING_BASE;
  2423. engine->emit_flush = bsd_ring_flush;
  2424. if (IS_GEN5(dev_priv))
  2425. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2426. else
  2427. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2428. }
  2429. return intel_init_ring_buffer(engine);
  2430. }
  2431. /**
  2432. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2433. */
  2434. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2435. {
  2436. struct drm_i915_private *dev_priv = engine->i915;
  2437. intel_ring_default_vfuncs(dev_priv, engine);
  2438. engine->emit_flush = gen6_bsd_ring_flush;
  2439. return intel_init_ring_buffer(engine);
  2440. }
  2441. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2442. {
  2443. struct drm_i915_private *dev_priv = engine->i915;
  2444. intel_ring_default_vfuncs(dev_priv, engine);
  2445. engine->emit_flush = gen6_ring_flush;
  2446. if (INTEL_GEN(dev_priv) < 8)
  2447. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2448. return intel_init_ring_buffer(engine);
  2449. }
  2450. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2451. {
  2452. struct drm_i915_private *dev_priv = engine->i915;
  2453. intel_ring_default_vfuncs(dev_priv, engine);
  2454. engine->emit_flush = gen6_ring_flush;
  2455. if (INTEL_GEN(dev_priv) < 8) {
  2456. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2457. engine->irq_enable = hsw_vebox_irq_enable;
  2458. engine->irq_disable = hsw_vebox_irq_disable;
  2459. }
  2460. return intel_init_ring_buffer(engine);
  2461. }
  2462. void intel_engine_stop(struct intel_engine_cs *engine)
  2463. {
  2464. int ret;
  2465. if (!intel_engine_initialized(engine))
  2466. return;
  2467. ret = intel_engine_idle(engine);
  2468. if (ret)
  2469. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2470. engine->name, ret);
  2471. stop_ring(engine);
  2472. }