delayed-inode.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include <linux/iversion.h>
  21. #include "delayed-inode.h"
  22. #include "disk-io.h"
  23. #include "transaction.h"
  24. #include "ctree.h"
  25. #define BTRFS_DELAYED_WRITEBACK 512
  26. #define BTRFS_DELAYED_BACKGROUND 128
  27. #define BTRFS_DELAYED_BATCH 16
  28. static struct kmem_cache *delayed_node_cache;
  29. int __init btrfs_delayed_inode_init(void)
  30. {
  31. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  32. sizeof(struct btrfs_delayed_node),
  33. 0,
  34. SLAB_MEM_SPREAD,
  35. NULL);
  36. if (!delayed_node_cache)
  37. return -ENOMEM;
  38. return 0;
  39. }
  40. void btrfs_delayed_inode_exit(void)
  41. {
  42. kmem_cache_destroy(delayed_node_cache);
  43. }
  44. static inline void btrfs_init_delayed_node(
  45. struct btrfs_delayed_node *delayed_node,
  46. struct btrfs_root *root, u64 inode_id)
  47. {
  48. delayed_node->root = root;
  49. delayed_node->inode_id = inode_id;
  50. refcount_set(&delayed_node->refs, 0);
  51. delayed_node->ins_root = RB_ROOT;
  52. delayed_node->del_root = RB_ROOT;
  53. mutex_init(&delayed_node->mutex);
  54. INIT_LIST_HEAD(&delayed_node->n_list);
  55. INIT_LIST_HEAD(&delayed_node->p_list);
  56. }
  57. static inline int btrfs_is_continuous_delayed_item(
  58. struct btrfs_delayed_item *item1,
  59. struct btrfs_delayed_item *item2)
  60. {
  61. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  62. item1->key.objectid == item2->key.objectid &&
  63. item1->key.type == item2->key.type &&
  64. item1->key.offset + 1 == item2->key.offset)
  65. return 1;
  66. return 0;
  67. }
  68. static struct btrfs_delayed_node *btrfs_get_delayed_node(
  69. struct btrfs_inode *btrfs_inode)
  70. {
  71. struct btrfs_root *root = btrfs_inode->root;
  72. u64 ino = btrfs_ino(btrfs_inode);
  73. struct btrfs_delayed_node *node;
  74. node = READ_ONCE(btrfs_inode->delayed_node);
  75. if (node) {
  76. refcount_inc(&node->refs);
  77. return node;
  78. }
  79. spin_lock(&root->inode_lock);
  80. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  81. if (node) {
  82. if (btrfs_inode->delayed_node) {
  83. refcount_inc(&node->refs); /* can be accessed */
  84. BUG_ON(btrfs_inode->delayed_node != node);
  85. spin_unlock(&root->inode_lock);
  86. return node;
  87. }
  88. btrfs_inode->delayed_node = node;
  89. /* can be accessed and cached in the inode */
  90. refcount_add(2, &node->refs);
  91. spin_unlock(&root->inode_lock);
  92. return node;
  93. }
  94. spin_unlock(&root->inode_lock);
  95. return NULL;
  96. }
  97. /* Will return either the node or PTR_ERR(-ENOMEM) */
  98. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  99. struct btrfs_inode *btrfs_inode)
  100. {
  101. struct btrfs_delayed_node *node;
  102. struct btrfs_root *root = btrfs_inode->root;
  103. u64 ino = btrfs_ino(btrfs_inode);
  104. int ret;
  105. again:
  106. node = btrfs_get_delayed_node(btrfs_inode);
  107. if (node)
  108. return node;
  109. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  110. if (!node)
  111. return ERR_PTR(-ENOMEM);
  112. btrfs_init_delayed_node(node, root, ino);
  113. /* cached in the btrfs inode and can be accessed */
  114. refcount_set(&node->refs, 2);
  115. ret = radix_tree_preload(GFP_NOFS);
  116. if (ret) {
  117. kmem_cache_free(delayed_node_cache, node);
  118. return ERR_PTR(ret);
  119. }
  120. spin_lock(&root->inode_lock);
  121. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  122. if (ret == -EEXIST) {
  123. spin_unlock(&root->inode_lock);
  124. kmem_cache_free(delayed_node_cache, node);
  125. radix_tree_preload_end();
  126. goto again;
  127. }
  128. btrfs_inode->delayed_node = node;
  129. spin_unlock(&root->inode_lock);
  130. radix_tree_preload_end();
  131. return node;
  132. }
  133. /*
  134. * Call it when holding delayed_node->mutex
  135. *
  136. * If mod = 1, add this node into the prepared list.
  137. */
  138. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  139. struct btrfs_delayed_node *node,
  140. int mod)
  141. {
  142. spin_lock(&root->lock);
  143. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  144. if (!list_empty(&node->p_list))
  145. list_move_tail(&node->p_list, &root->prepare_list);
  146. else if (mod)
  147. list_add_tail(&node->p_list, &root->prepare_list);
  148. } else {
  149. list_add_tail(&node->n_list, &root->node_list);
  150. list_add_tail(&node->p_list, &root->prepare_list);
  151. refcount_inc(&node->refs); /* inserted into list */
  152. root->nodes++;
  153. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  154. }
  155. spin_unlock(&root->lock);
  156. }
  157. /* Call it when holding delayed_node->mutex */
  158. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  159. struct btrfs_delayed_node *node)
  160. {
  161. spin_lock(&root->lock);
  162. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  163. root->nodes--;
  164. refcount_dec(&node->refs); /* not in the list */
  165. list_del_init(&node->n_list);
  166. if (!list_empty(&node->p_list))
  167. list_del_init(&node->p_list);
  168. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  169. }
  170. spin_unlock(&root->lock);
  171. }
  172. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  173. struct btrfs_delayed_root *delayed_root)
  174. {
  175. struct list_head *p;
  176. struct btrfs_delayed_node *node = NULL;
  177. spin_lock(&delayed_root->lock);
  178. if (list_empty(&delayed_root->node_list))
  179. goto out;
  180. p = delayed_root->node_list.next;
  181. node = list_entry(p, struct btrfs_delayed_node, n_list);
  182. refcount_inc(&node->refs);
  183. out:
  184. spin_unlock(&delayed_root->lock);
  185. return node;
  186. }
  187. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  188. struct btrfs_delayed_node *node)
  189. {
  190. struct btrfs_delayed_root *delayed_root;
  191. struct list_head *p;
  192. struct btrfs_delayed_node *next = NULL;
  193. delayed_root = node->root->fs_info->delayed_root;
  194. spin_lock(&delayed_root->lock);
  195. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  196. /* not in the list */
  197. if (list_empty(&delayed_root->node_list))
  198. goto out;
  199. p = delayed_root->node_list.next;
  200. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  201. goto out;
  202. else
  203. p = node->n_list.next;
  204. next = list_entry(p, struct btrfs_delayed_node, n_list);
  205. refcount_inc(&next->refs);
  206. out:
  207. spin_unlock(&delayed_root->lock);
  208. return next;
  209. }
  210. static void __btrfs_release_delayed_node(
  211. struct btrfs_delayed_node *delayed_node,
  212. int mod)
  213. {
  214. struct btrfs_delayed_root *delayed_root;
  215. if (!delayed_node)
  216. return;
  217. delayed_root = delayed_node->root->fs_info->delayed_root;
  218. mutex_lock(&delayed_node->mutex);
  219. if (delayed_node->count)
  220. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  221. else
  222. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  223. mutex_unlock(&delayed_node->mutex);
  224. if (refcount_dec_and_test(&delayed_node->refs)) {
  225. bool free = false;
  226. struct btrfs_root *root = delayed_node->root;
  227. spin_lock(&root->inode_lock);
  228. if (refcount_read(&delayed_node->refs) == 0) {
  229. radix_tree_delete(&root->delayed_nodes_tree,
  230. delayed_node->inode_id);
  231. free = true;
  232. }
  233. spin_unlock(&root->inode_lock);
  234. if (free)
  235. kmem_cache_free(delayed_node_cache, delayed_node);
  236. }
  237. }
  238. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  239. {
  240. __btrfs_release_delayed_node(node, 0);
  241. }
  242. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  243. struct btrfs_delayed_root *delayed_root)
  244. {
  245. struct list_head *p;
  246. struct btrfs_delayed_node *node = NULL;
  247. spin_lock(&delayed_root->lock);
  248. if (list_empty(&delayed_root->prepare_list))
  249. goto out;
  250. p = delayed_root->prepare_list.next;
  251. list_del_init(p);
  252. node = list_entry(p, struct btrfs_delayed_node, p_list);
  253. refcount_inc(&node->refs);
  254. out:
  255. spin_unlock(&delayed_root->lock);
  256. return node;
  257. }
  258. static inline void btrfs_release_prepared_delayed_node(
  259. struct btrfs_delayed_node *node)
  260. {
  261. __btrfs_release_delayed_node(node, 1);
  262. }
  263. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  264. {
  265. struct btrfs_delayed_item *item;
  266. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  267. if (item) {
  268. item->data_len = data_len;
  269. item->ins_or_del = 0;
  270. item->bytes_reserved = 0;
  271. item->delayed_node = NULL;
  272. refcount_set(&item->refs, 1);
  273. }
  274. return item;
  275. }
  276. /*
  277. * __btrfs_lookup_delayed_item - look up the delayed item by key
  278. * @delayed_node: pointer to the delayed node
  279. * @key: the key to look up
  280. * @prev: used to store the prev item if the right item isn't found
  281. * @next: used to store the next item if the right item isn't found
  282. *
  283. * Note: if we don't find the right item, we will return the prev item and
  284. * the next item.
  285. */
  286. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  287. struct rb_root *root,
  288. struct btrfs_key *key,
  289. struct btrfs_delayed_item **prev,
  290. struct btrfs_delayed_item **next)
  291. {
  292. struct rb_node *node, *prev_node = NULL;
  293. struct btrfs_delayed_item *delayed_item = NULL;
  294. int ret = 0;
  295. node = root->rb_node;
  296. while (node) {
  297. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  298. rb_node);
  299. prev_node = node;
  300. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  301. if (ret < 0)
  302. node = node->rb_right;
  303. else if (ret > 0)
  304. node = node->rb_left;
  305. else
  306. return delayed_item;
  307. }
  308. if (prev) {
  309. if (!prev_node)
  310. *prev = NULL;
  311. else if (ret < 0)
  312. *prev = delayed_item;
  313. else if ((node = rb_prev(prev_node)) != NULL) {
  314. *prev = rb_entry(node, struct btrfs_delayed_item,
  315. rb_node);
  316. } else
  317. *prev = NULL;
  318. }
  319. if (next) {
  320. if (!prev_node)
  321. *next = NULL;
  322. else if (ret > 0)
  323. *next = delayed_item;
  324. else if ((node = rb_next(prev_node)) != NULL) {
  325. *next = rb_entry(node, struct btrfs_delayed_item,
  326. rb_node);
  327. } else
  328. *next = NULL;
  329. }
  330. return NULL;
  331. }
  332. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  333. struct btrfs_delayed_node *delayed_node,
  334. struct btrfs_key *key)
  335. {
  336. return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  337. NULL, NULL);
  338. }
  339. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_delayed_item *ins,
  341. int action)
  342. {
  343. struct rb_node **p, *node;
  344. struct rb_node *parent_node = NULL;
  345. struct rb_root *root;
  346. struct btrfs_delayed_item *item;
  347. int cmp;
  348. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  349. root = &delayed_node->ins_root;
  350. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  351. root = &delayed_node->del_root;
  352. else
  353. BUG();
  354. p = &root->rb_node;
  355. node = &ins->rb_node;
  356. while (*p) {
  357. parent_node = *p;
  358. item = rb_entry(parent_node, struct btrfs_delayed_item,
  359. rb_node);
  360. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  361. if (cmp < 0)
  362. p = &(*p)->rb_right;
  363. else if (cmp > 0)
  364. p = &(*p)->rb_left;
  365. else
  366. return -EEXIST;
  367. }
  368. rb_link_node(node, parent_node, p);
  369. rb_insert_color(node, root);
  370. ins->delayed_node = delayed_node;
  371. ins->ins_or_del = action;
  372. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  373. action == BTRFS_DELAYED_INSERTION_ITEM &&
  374. ins->key.offset >= delayed_node->index_cnt)
  375. delayed_node->index_cnt = ins->key.offset + 1;
  376. delayed_node->count++;
  377. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  378. return 0;
  379. }
  380. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  381. struct btrfs_delayed_item *item)
  382. {
  383. return __btrfs_add_delayed_item(node, item,
  384. BTRFS_DELAYED_INSERTION_ITEM);
  385. }
  386. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  387. struct btrfs_delayed_item *item)
  388. {
  389. return __btrfs_add_delayed_item(node, item,
  390. BTRFS_DELAYED_DELETION_ITEM);
  391. }
  392. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  393. {
  394. int seq = atomic_inc_return(&delayed_root->items_seq);
  395. /*
  396. * atomic_dec_return implies a barrier for waitqueue_active
  397. */
  398. if ((atomic_dec_return(&delayed_root->items) <
  399. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  400. waitqueue_active(&delayed_root->wait))
  401. wake_up(&delayed_root->wait);
  402. }
  403. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  404. {
  405. struct rb_root *root;
  406. struct btrfs_delayed_root *delayed_root;
  407. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  408. BUG_ON(!delayed_root);
  409. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  410. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  411. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  412. root = &delayed_item->delayed_node->ins_root;
  413. else
  414. root = &delayed_item->delayed_node->del_root;
  415. rb_erase(&delayed_item->rb_node, root);
  416. delayed_item->delayed_node->count--;
  417. finish_one_item(delayed_root);
  418. }
  419. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  420. {
  421. if (item) {
  422. __btrfs_remove_delayed_item(item);
  423. if (refcount_dec_and_test(&item->refs))
  424. kfree(item);
  425. }
  426. }
  427. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  428. struct btrfs_delayed_node *delayed_node)
  429. {
  430. struct rb_node *p;
  431. struct btrfs_delayed_item *item = NULL;
  432. p = rb_first(&delayed_node->ins_root);
  433. if (p)
  434. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  435. return item;
  436. }
  437. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  438. struct btrfs_delayed_node *delayed_node)
  439. {
  440. struct rb_node *p;
  441. struct btrfs_delayed_item *item = NULL;
  442. p = rb_first(&delayed_node->del_root);
  443. if (p)
  444. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  445. return item;
  446. }
  447. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  448. struct btrfs_delayed_item *item)
  449. {
  450. struct rb_node *p;
  451. struct btrfs_delayed_item *next = NULL;
  452. p = rb_next(&item->rb_node);
  453. if (p)
  454. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  455. return next;
  456. }
  457. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  458. struct btrfs_fs_info *fs_info,
  459. struct btrfs_delayed_item *item)
  460. {
  461. struct btrfs_block_rsv *src_rsv;
  462. struct btrfs_block_rsv *dst_rsv;
  463. u64 num_bytes;
  464. int ret;
  465. if (!trans->bytes_reserved)
  466. return 0;
  467. src_rsv = trans->block_rsv;
  468. dst_rsv = &fs_info->delayed_block_rsv;
  469. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  470. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  471. if (!ret) {
  472. trace_btrfs_space_reservation(fs_info, "delayed_item",
  473. item->key.objectid,
  474. num_bytes, 1);
  475. item->bytes_reserved = num_bytes;
  476. }
  477. return ret;
  478. }
  479. static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
  480. struct btrfs_delayed_item *item)
  481. {
  482. struct btrfs_block_rsv *rsv;
  483. if (!item->bytes_reserved)
  484. return;
  485. rsv = &fs_info->delayed_block_rsv;
  486. trace_btrfs_space_reservation(fs_info, "delayed_item",
  487. item->key.objectid, item->bytes_reserved,
  488. 0);
  489. btrfs_block_rsv_release(fs_info, rsv,
  490. item->bytes_reserved);
  491. }
  492. static int btrfs_delayed_inode_reserve_metadata(
  493. struct btrfs_trans_handle *trans,
  494. struct btrfs_root *root,
  495. struct btrfs_inode *inode,
  496. struct btrfs_delayed_node *node)
  497. {
  498. struct btrfs_fs_info *fs_info = root->fs_info;
  499. struct btrfs_block_rsv *src_rsv;
  500. struct btrfs_block_rsv *dst_rsv;
  501. u64 num_bytes;
  502. int ret;
  503. src_rsv = trans->block_rsv;
  504. dst_rsv = &fs_info->delayed_block_rsv;
  505. num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
  506. /*
  507. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  508. * which doesn't reserve space for speed. This is a problem since we
  509. * still need to reserve space for this update, so try to reserve the
  510. * space.
  511. *
  512. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  513. * we always reserve enough to update the inode item.
  514. */
  515. if (!src_rsv || (!trans->bytes_reserved &&
  516. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  517. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  518. BTRFS_RESERVE_NO_FLUSH);
  519. /*
  520. * Since we're under a transaction reserve_metadata_bytes could
  521. * try to commit the transaction which will make it return
  522. * EAGAIN to make us stop the transaction we have, so return
  523. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  524. */
  525. if (ret == -EAGAIN)
  526. ret = -ENOSPC;
  527. if (!ret) {
  528. node->bytes_reserved = num_bytes;
  529. trace_btrfs_space_reservation(fs_info,
  530. "delayed_inode",
  531. btrfs_ino(inode),
  532. num_bytes, 1);
  533. }
  534. return ret;
  535. }
  536. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
  537. if (!ret) {
  538. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  539. btrfs_ino(inode), num_bytes, 1);
  540. node->bytes_reserved = num_bytes;
  541. }
  542. return ret;
  543. }
  544. static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
  545. struct btrfs_delayed_node *node)
  546. {
  547. struct btrfs_block_rsv *rsv;
  548. if (!node->bytes_reserved)
  549. return;
  550. rsv = &fs_info->delayed_block_rsv;
  551. trace_btrfs_space_reservation(fs_info, "delayed_inode",
  552. node->inode_id, node->bytes_reserved, 0);
  553. btrfs_block_rsv_release(fs_info, rsv,
  554. node->bytes_reserved);
  555. node->bytes_reserved = 0;
  556. }
  557. /*
  558. * This helper will insert some continuous items into the same leaf according
  559. * to the free space of the leaf.
  560. */
  561. static int btrfs_batch_insert_items(struct btrfs_root *root,
  562. struct btrfs_path *path,
  563. struct btrfs_delayed_item *item)
  564. {
  565. struct btrfs_fs_info *fs_info = root->fs_info;
  566. struct btrfs_delayed_item *curr, *next;
  567. int free_space;
  568. int total_data_size = 0, total_size = 0;
  569. struct extent_buffer *leaf;
  570. char *data_ptr;
  571. struct btrfs_key *keys;
  572. u32 *data_size;
  573. struct list_head head;
  574. int slot;
  575. int nitems;
  576. int i;
  577. int ret = 0;
  578. BUG_ON(!path->nodes[0]);
  579. leaf = path->nodes[0];
  580. free_space = btrfs_leaf_free_space(fs_info, leaf);
  581. INIT_LIST_HEAD(&head);
  582. next = item;
  583. nitems = 0;
  584. /*
  585. * count the number of the continuous items that we can insert in batch
  586. */
  587. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  588. free_space) {
  589. total_data_size += next->data_len;
  590. total_size += next->data_len + sizeof(struct btrfs_item);
  591. list_add_tail(&next->tree_list, &head);
  592. nitems++;
  593. curr = next;
  594. next = __btrfs_next_delayed_item(curr);
  595. if (!next)
  596. break;
  597. if (!btrfs_is_continuous_delayed_item(curr, next))
  598. break;
  599. }
  600. if (!nitems) {
  601. ret = 0;
  602. goto out;
  603. }
  604. /*
  605. * we need allocate some memory space, but it might cause the task
  606. * to sleep, so we set all locked nodes in the path to blocking locks
  607. * first.
  608. */
  609. btrfs_set_path_blocking(path);
  610. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  611. if (!keys) {
  612. ret = -ENOMEM;
  613. goto out;
  614. }
  615. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  616. if (!data_size) {
  617. ret = -ENOMEM;
  618. goto error;
  619. }
  620. /* get keys of all the delayed items */
  621. i = 0;
  622. list_for_each_entry(next, &head, tree_list) {
  623. keys[i] = next->key;
  624. data_size[i] = next->data_len;
  625. i++;
  626. }
  627. /* reset all the locked nodes in the patch to spinning locks. */
  628. btrfs_clear_path_blocking(path, NULL, 0);
  629. /* insert the keys of the items */
  630. setup_items_for_insert(root, path, keys, data_size,
  631. total_data_size, total_size, nitems);
  632. /* insert the dir index items */
  633. slot = path->slots[0];
  634. list_for_each_entry_safe(curr, next, &head, tree_list) {
  635. data_ptr = btrfs_item_ptr(leaf, slot, char);
  636. write_extent_buffer(leaf, &curr->data,
  637. (unsigned long)data_ptr,
  638. curr->data_len);
  639. slot++;
  640. btrfs_delayed_item_release_metadata(fs_info, curr);
  641. list_del(&curr->tree_list);
  642. btrfs_release_delayed_item(curr);
  643. }
  644. error:
  645. kfree(data_size);
  646. kfree(keys);
  647. out:
  648. return ret;
  649. }
  650. /*
  651. * This helper can just do simple insertion that needn't extend item for new
  652. * data, such as directory name index insertion, inode insertion.
  653. */
  654. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  655. struct btrfs_root *root,
  656. struct btrfs_path *path,
  657. struct btrfs_delayed_item *delayed_item)
  658. {
  659. struct btrfs_fs_info *fs_info = root->fs_info;
  660. struct extent_buffer *leaf;
  661. char *ptr;
  662. int ret;
  663. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  664. delayed_item->data_len);
  665. if (ret < 0 && ret != -EEXIST)
  666. return ret;
  667. leaf = path->nodes[0];
  668. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  669. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  670. delayed_item->data_len);
  671. btrfs_mark_buffer_dirty(leaf);
  672. btrfs_delayed_item_release_metadata(fs_info, delayed_item);
  673. return 0;
  674. }
  675. /*
  676. * we insert an item first, then if there are some continuous items, we try
  677. * to insert those items into the same leaf.
  678. */
  679. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  680. struct btrfs_path *path,
  681. struct btrfs_root *root,
  682. struct btrfs_delayed_node *node)
  683. {
  684. struct btrfs_delayed_item *curr, *prev;
  685. int ret = 0;
  686. do_again:
  687. mutex_lock(&node->mutex);
  688. curr = __btrfs_first_delayed_insertion_item(node);
  689. if (!curr)
  690. goto insert_end;
  691. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  692. if (ret < 0) {
  693. btrfs_release_path(path);
  694. goto insert_end;
  695. }
  696. prev = curr;
  697. curr = __btrfs_next_delayed_item(prev);
  698. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  699. /* insert the continuous items into the same leaf */
  700. path->slots[0]++;
  701. btrfs_batch_insert_items(root, path, curr);
  702. }
  703. btrfs_release_delayed_item(prev);
  704. btrfs_mark_buffer_dirty(path->nodes[0]);
  705. btrfs_release_path(path);
  706. mutex_unlock(&node->mutex);
  707. goto do_again;
  708. insert_end:
  709. mutex_unlock(&node->mutex);
  710. return ret;
  711. }
  712. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  713. struct btrfs_root *root,
  714. struct btrfs_path *path,
  715. struct btrfs_delayed_item *item)
  716. {
  717. struct btrfs_fs_info *fs_info = root->fs_info;
  718. struct btrfs_delayed_item *curr, *next;
  719. struct extent_buffer *leaf;
  720. struct btrfs_key key;
  721. struct list_head head;
  722. int nitems, i, last_item;
  723. int ret = 0;
  724. BUG_ON(!path->nodes[0]);
  725. leaf = path->nodes[0];
  726. i = path->slots[0];
  727. last_item = btrfs_header_nritems(leaf) - 1;
  728. if (i > last_item)
  729. return -ENOENT; /* FIXME: Is errno suitable? */
  730. next = item;
  731. INIT_LIST_HEAD(&head);
  732. btrfs_item_key_to_cpu(leaf, &key, i);
  733. nitems = 0;
  734. /*
  735. * count the number of the dir index items that we can delete in batch
  736. */
  737. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  738. list_add_tail(&next->tree_list, &head);
  739. nitems++;
  740. curr = next;
  741. next = __btrfs_next_delayed_item(curr);
  742. if (!next)
  743. break;
  744. if (!btrfs_is_continuous_delayed_item(curr, next))
  745. break;
  746. i++;
  747. if (i > last_item)
  748. break;
  749. btrfs_item_key_to_cpu(leaf, &key, i);
  750. }
  751. if (!nitems)
  752. return 0;
  753. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  754. if (ret)
  755. goto out;
  756. list_for_each_entry_safe(curr, next, &head, tree_list) {
  757. btrfs_delayed_item_release_metadata(fs_info, curr);
  758. list_del(&curr->tree_list);
  759. btrfs_release_delayed_item(curr);
  760. }
  761. out:
  762. return ret;
  763. }
  764. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  765. struct btrfs_path *path,
  766. struct btrfs_root *root,
  767. struct btrfs_delayed_node *node)
  768. {
  769. struct btrfs_delayed_item *curr, *prev;
  770. int ret = 0;
  771. do_again:
  772. mutex_lock(&node->mutex);
  773. curr = __btrfs_first_delayed_deletion_item(node);
  774. if (!curr)
  775. goto delete_fail;
  776. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  777. if (ret < 0)
  778. goto delete_fail;
  779. else if (ret > 0) {
  780. /*
  781. * can't find the item which the node points to, so this node
  782. * is invalid, just drop it.
  783. */
  784. prev = curr;
  785. curr = __btrfs_next_delayed_item(prev);
  786. btrfs_release_delayed_item(prev);
  787. ret = 0;
  788. btrfs_release_path(path);
  789. if (curr) {
  790. mutex_unlock(&node->mutex);
  791. goto do_again;
  792. } else
  793. goto delete_fail;
  794. }
  795. btrfs_batch_delete_items(trans, root, path, curr);
  796. btrfs_release_path(path);
  797. mutex_unlock(&node->mutex);
  798. goto do_again;
  799. delete_fail:
  800. btrfs_release_path(path);
  801. mutex_unlock(&node->mutex);
  802. return ret;
  803. }
  804. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  805. {
  806. struct btrfs_delayed_root *delayed_root;
  807. if (delayed_node &&
  808. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  809. BUG_ON(!delayed_node->root);
  810. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  811. delayed_node->count--;
  812. delayed_root = delayed_node->root->fs_info->delayed_root;
  813. finish_one_item(delayed_root);
  814. }
  815. }
  816. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  817. {
  818. struct btrfs_delayed_root *delayed_root;
  819. ASSERT(delayed_node->root);
  820. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  821. delayed_node->count--;
  822. delayed_root = delayed_node->root->fs_info->delayed_root;
  823. finish_one_item(delayed_root);
  824. }
  825. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  826. struct btrfs_root *root,
  827. struct btrfs_path *path,
  828. struct btrfs_delayed_node *node)
  829. {
  830. struct btrfs_fs_info *fs_info = root->fs_info;
  831. struct btrfs_key key;
  832. struct btrfs_inode_item *inode_item;
  833. struct extent_buffer *leaf;
  834. int mod;
  835. int ret;
  836. key.objectid = node->inode_id;
  837. key.type = BTRFS_INODE_ITEM_KEY;
  838. key.offset = 0;
  839. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  840. mod = -1;
  841. else
  842. mod = 1;
  843. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  844. if (ret > 0) {
  845. btrfs_release_path(path);
  846. return -ENOENT;
  847. } else if (ret < 0) {
  848. return ret;
  849. }
  850. leaf = path->nodes[0];
  851. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  852. struct btrfs_inode_item);
  853. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  854. sizeof(struct btrfs_inode_item));
  855. btrfs_mark_buffer_dirty(leaf);
  856. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  857. goto no_iref;
  858. path->slots[0]++;
  859. if (path->slots[0] >= btrfs_header_nritems(leaf))
  860. goto search;
  861. again:
  862. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  863. if (key.objectid != node->inode_id)
  864. goto out;
  865. if (key.type != BTRFS_INODE_REF_KEY &&
  866. key.type != BTRFS_INODE_EXTREF_KEY)
  867. goto out;
  868. /*
  869. * Delayed iref deletion is for the inode who has only one link,
  870. * so there is only one iref. The case that several irefs are
  871. * in the same item doesn't exist.
  872. */
  873. btrfs_del_item(trans, root, path);
  874. out:
  875. btrfs_release_delayed_iref(node);
  876. no_iref:
  877. btrfs_release_path(path);
  878. err_out:
  879. btrfs_delayed_inode_release_metadata(fs_info, node);
  880. btrfs_release_delayed_inode(node);
  881. return ret;
  882. search:
  883. btrfs_release_path(path);
  884. key.type = BTRFS_INODE_EXTREF_KEY;
  885. key.offset = -1;
  886. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  887. if (ret < 0)
  888. goto err_out;
  889. ASSERT(ret);
  890. ret = 0;
  891. leaf = path->nodes[0];
  892. path->slots[0]--;
  893. goto again;
  894. }
  895. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  896. struct btrfs_root *root,
  897. struct btrfs_path *path,
  898. struct btrfs_delayed_node *node)
  899. {
  900. int ret;
  901. mutex_lock(&node->mutex);
  902. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  903. mutex_unlock(&node->mutex);
  904. return 0;
  905. }
  906. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  907. mutex_unlock(&node->mutex);
  908. return ret;
  909. }
  910. static inline int
  911. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  912. struct btrfs_path *path,
  913. struct btrfs_delayed_node *node)
  914. {
  915. int ret;
  916. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  917. if (ret)
  918. return ret;
  919. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  920. if (ret)
  921. return ret;
  922. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  923. return ret;
  924. }
  925. /*
  926. * Called when committing the transaction.
  927. * Returns 0 on success.
  928. * Returns < 0 on error and returns with an aborted transaction with any
  929. * outstanding delayed items cleaned up.
  930. */
  931. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  932. struct btrfs_fs_info *fs_info, int nr)
  933. {
  934. struct btrfs_delayed_root *delayed_root;
  935. struct btrfs_delayed_node *curr_node, *prev_node;
  936. struct btrfs_path *path;
  937. struct btrfs_block_rsv *block_rsv;
  938. int ret = 0;
  939. bool count = (nr > 0);
  940. if (trans->aborted)
  941. return -EIO;
  942. path = btrfs_alloc_path();
  943. if (!path)
  944. return -ENOMEM;
  945. path->leave_spinning = 1;
  946. block_rsv = trans->block_rsv;
  947. trans->block_rsv = &fs_info->delayed_block_rsv;
  948. delayed_root = fs_info->delayed_root;
  949. curr_node = btrfs_first_delayed_node(delayed_root);
  950. while (curr_node && (!count || (count && nr--))) {
  951. ret = __btrfs_commit_inode_delayed_items(trans, path,
  952. curr_node);
  953. if (ret) {
  954. btrfs_release_delayed_node(curr_node);
  955. curr_node = NULL;
  956. btrfs_abort_transaction(trans, ret);
  957. break;
  958. }
  959. prev_node = curr_node;
  960. curr_node = btrfs_next_delayed_node(curr_node);
  961. btrfs_release_delayed_node(prev_node);
  962. }
  963. if (curr_node)
  964. btrfs_release_delayed_node(curr_node);
  965. btrfs_free_path(path);
  966. trans->block_rsv = block_rsv;
  967. return ret;
  968. }
  969. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  970. struct btrfs_fs_info *fs_info)
  971. {
  972. return __btrfs_run_delayed_items(trans, fs_info, -1);
  973. }
  974. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  975. struct btrfs_fs_info *fs_info, int nr)
  976. {
  977. return __btrfs_run_delayed_items(trans, fs_info, nr);
  978. }
  979. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  980. struct btrfs_inode *inode)
  981. {
  982. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  983. struct btrfs_path *path;
  984. struct btrfs_block_rsv *block_rsv;
  985. int ret;
  986. if (!delayed_node)
  987. return 0;
  988. mutex_lock(&delayed_node->mutex);
  989. if (!delayed_node->count) {
  990. mutex_unlock(&delayed_node->mutex);
  991. btrfs_release_delayed_node(delayed_node);
  992. return 0;
  993. }
  994. mutex_unlock(&delayed_node->mutex);
  995. path = btrfs_alloc_path();
  996. if (!path) {
  997. btrfs_release_delayed_node(delayed_node);
  998. return -ENOMEM;
  999. }
  1000. path->leave_spinning = 1;
  1001. block_rsv = trans->block_rsv;
  1002. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1003. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1004. btrfs_release_delayed_node(delayed_node);
  1005. btrfs_free_path(path);
  1006. trans->block_rsv = block_rsv;
  1007. return ret;
  1008. }
  1009. int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
  1010. {
  1011. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1012. struct btrfs_trans_handle *trans;
  1013. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1014. struct btrfs_path *path;
  1015. struct btrfs_block_rsv *block_rsv;
  1016. int ret;
  1017. if (!delayed_node)
  1018. return 0;
  1019. mutex_lock(&delayed_node->mutex);
  1020. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1021. mutex_unlock(&delayed_node->mutex);
  1022. btrfs_release_delayed_node(delayed_node);
  1023. return 0;
  1024. }
  1025. mutex_unlock(&delayed_node->mutex);
  1026. trans = btrfs_join_transaction(delayed_node->root);
  1027. if (IS_ERR(trans)) {
  1028. ret = PTR_ERR(trans);
  1029. goto out;
  1030. }
  1031. path = btrfs_alloc_path();
  1032. if (!path) {
  1033. ret = -ENOMEM;
  1034. goto trans_out;
  1035. }
  1036. path->leave_spinning = 1;
  1037. block_rsv = trans->block_rsv;
  1038. trans->block_rsv = &fs_info->delayed_block_rsv;
  1039. mutex_lock(&delayed_node->mutex);
  1040. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1041. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1042. path, delayed_node);
  1043. else
  1044. ret = 0;
  1045. mutex_unlock(&delayed_node->mutex);
  1046. btrfs_free_path(path);
  1047. trans->block_rsv = block_rsv;
  1048. trans_out:
  1049. btrfs_end_transaction(trans);
  1050. btrfs_btree_balance_dirty(fs_info);
  1051. out:
  1052. btrfs_release_delayed_node(delayed_node);
  1053. return ret;
  1054. }
  1055. void btrfs_remove_delayed_node(struct btrfs_inode *inode)
  1056. {
  1057. struct btrfs_delayed_node *delayed_node;
  1058. delayed_node = READ_ONCE(inode->delayed_node);
  1059. if (!delayed_node)
  1060. return;
  1061. inode->delayed_node = NULL;
  1062. btrfs_release_delayed_node(delayed_node);
  1063. }
  1064. struct btrfs_async_delayed_work {
  1065. struct btrfs_delayed_root *delayed_root;
  1066. int nr;
  1067. struct btrfs_work work;
  1068. };
  1069. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1070. {
  1071. struct btrfs_async_delayed_work *async_work;
  1072. struct btrfs_delayed_root *delayed_root;
  1073. struct btrfs_trans_handle *trans;
  1074. struct btrfs_path *path;
  1075. struct btrfs_delayed_node *delayed_node = NULL;
  1076. struct btrfs_root *root;
  1077. struct btrfs_block_rsv *block_rsv;
  1078. int total_done = 0;
  1079. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1080. delayed_root = async_work->delayed_root;
  1081. path = btrfs_alloc_path();
  1082. if (!path)
  1083. goto out;
  1084. again:
  1085. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1086. goto free_path;
  1087. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1088. if (!delayed_node)
  1089. goto free_path;
  1090. path->leave_spinning = 1;
  1091. root = delayed_node->root;
  1092. trans = btrfs_join_transaction(root);
  1093. if (IS_ERR(trans))
  1094. goto release_path;
  1095. block_rsv = trans->block_rsv;
  1096. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1097. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1098. trans->block_rsv = block_rsv;
  1099. btrfs_end_transaction(trans);
  1100. btrfs_btree_balance_dirty_nodelay(root->fs_info);
  1101. release_path:
  1102. btrfs_release_path(path);
  1103. total_done++;
  1104. btrfs_release_prepared_delayed_node(delayed_node);
  1105. if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
  1106. total_done < async_work->nr)
  1107. goto again;
  1108. free_path:
  1109. btrfs_free_path(path);
  1110. out:
  1111. wake_up(&delayed_root->wait);
  1112. kfree(async_work);
  1113. }
  1114. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1115. struct btrfs_fs_info *fs_info, int nr)
  1116. {
  1117. struct btrfs_async_delayed_work *async_work;
  1118. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
  1119. btrfs_workqueue_normal_congested(fs_info->delayed_workers))
  1120. return 0;
  1121. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1122. if (!async_work)
  1123. return -ENOMEM;
  1124. async_work->delayed_root = delayed_root;
  1125. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1126. btrfs_async_run_delayed_root, NULL, NULL);
  1127. async_work->nr = nr;
  1128. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1129. return 0;
  1130. }
  1131. void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
  1132. {
  1133. WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
  1134. }
  1135. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1136. {
  1137. int val = atomic_read(&delayed_root->items_seq);
  1138. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1139. return 1;
  1140. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1141. return 1;
  1142. return 0;
  1143. }
  1144. void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
  1145. {
  1146. struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
  1147. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1148. return;
  1149. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1150. int seq;
  1151. int ret;
  1152. seq = atomic_read(&delayed_root->items_seq);
  1153. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1154. if (ret)
  1155. return;
  1156. wait_event_interruptible(delayed_root->wait,
  1157. could_end_wait(delayed_root, seq));
  1158. return;
  1159. }
  1160. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1161. }
  1162. /* Will return 0 or -ENOMEM */
  1163. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1164. struct btrfs_fs_info *fs_info,
  1165. const char *name, int name_len,
  1166. struct btrfs_inode *dir,
  1167. struct btrfs_disk_key *disk_key, u8 type,
  1168. u64 index)
  1169. {
  1170. struct btrfs_delayed_node *delayed_node;
  1171. struct btrfs_delayed_item *delayed_item;
  1172. struct btrfs_dir_item *dir_item;
  1173. int ret;
  1174. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1175. if (IS_ERR(delayed_node))
  1176. return PTR_ERR(delayed_node);
  1177. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1178. if (!delayed_item) {
  1179. ret = -ENOMEM;
  1180. goto release_node;
  1181. }
  1182. delayed_item->key.objectid = btrfs_ino(dir);
  1183. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1184. delayed_item->key.offset = index;
  1185. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1186. dir_item->location = *disk_key;
  1187. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1188. btrfs_set_stack_dir_data_len(dir_item, 0);
  1189. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1190. btrfs_set_stack_dir_type(dir_item, type);
  1191. memcpy((char *)(dir_item + 1), name, name_len);
  1192. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
  1193. /*
  1194. * we have reserved enough space when we start a new transaction,
  1195. * so reserving metadata failure is impossible
  1196. */
  1197. BUG_ON(ret);
  1198. mutex_lock(&delayed_node->mutex);
  1199. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1200. if (unlikely(ret)) {
  1201. btrfs_err(fs_info,
  1202. "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1203. name_len, name, delayed_node->root->objectid,
  1204. delayed_node->inode_id, ret);
  1205. BUG();
  1206. }
  1207. mutex_unlock(&delayed_node->mutex);
  1208. release_node:
  1209. btrfs_release_delayed_node(delayed_node);
  1210. return ret;
  1211. }
  1212. static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
  1213. struct btrfs_delayed_node *node,
  1214. struct btrfs_key *key)
  1215. {
  1216. struct btrfs_delayed_item *item;
  1217. mutex_lock(&node->mutex);
  1218. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1219. if (!item) {
  1220. mutex_unlock(&node->mutex);
  1221. return 1;
  1222. }
  1223. btrfs_delayed_item_release_metadata(fs_info, item);
  1224. btrfs_release_delayed_item(item);
  1225. mutex_unlock(&node->mutex);
  1226. return 0;
  1227. }
  1228. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1229. struct btrfs_fs_info *fs_info,
  1230. struct btrfs_inode *dir, u64 index)
  1231. {
  1232. struct btrfs_delayed_node *node;
  1233. struct btrfs_delayed_item *item;
  1234. struct btrfs_key item_key;
  1235. int ret;
  1236. node = btrfs_get_or_create_delayed_node(dir);
  1237. if (IS_ERR(node))
  1238. return PTR_ERR(node);
  1239. item_key.objectid = btrfs_ino(dir);
  1240. item_key.type = BTRFS_DIR_INDEX_KEY;
  1241. item_key.offset = index;
  1242. ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
  1243. if (!ret)
  1244. goto end;
  1245. item = btrfs_alloc_delayed_item(0);
  1246. if (!item) {
  1247. ret = -ENOMEM;
  1248. goto end;
  1249. }
  1250. item->key = item_key;
  1251. ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
  1252. /*
  1253. * we have reserved enough space when we start a new transaction,
  1254. * so reserving metadata failure is impossible.
  1255. */
  1256. BUG_ON(ret);
  1257. mutex_lock(&node->mutex);
  1258. ret = __btrfs_add_delayed_deletion_item(node, item);
  1259. if (unlikely(ret)) {
  1260. btrfs_err(fs_info,
  1261. "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
  1262. index, node->root->objectid, node->inode_id, ret);
  1263. BUG();
  1264. }
  1265. mutex_unlock(&node->mutex);
  1266. end:
  1267. btrfs_release_delayed_node(node);
  1268. return ret;
  1269. }
  1270. int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
  1271. {
  1272. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1273. if (!delayed_node)
  1274. return -ENOENT;
  1275. /*
  1276. * Since we have held i_mutex of this directory, it is impossible that
  1277. * a new directory index is added into the delayed node and index_cnt
  1278. * is updated now. So we needn't lock the delayed node.
  1279. */
  1280. if (!delayed_node->index_cnt) {
  1281. btrfs_release_delayed_node(delayed_node);
  1282. return -EINVAL;
  1283. }
  1284. inode->index_cnt = delayed_node->index_cnt;
  1285. btrfs_release_delayed_node(delayed_node);
  1286. return 0;
  1287. }
  1288. bool btrfs_readdir_get_delayed_items(struct inode *inode,
  1289. struct list_head *ins_list,
  1290. struct list_head *del_list)
  1291. {
  1292. struct btrfs_delayed_node *delayed_node;
  1293. struct btrfs_delayed_item *item;
  1294. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1295. if (!delayed_node)
  1296. return false;
  1297. /*
  1298. * We can only do one readdir with delayed items at a time because of
  1299. * item->readdir_list.
  1300. */
  1301. inode_unlock_shared(inode);
  1302. inode_lock(inode);
  1303. mutex_lock(&delayed_node->mutex);
  1304. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1305. while (item) {
  1306. refcount_inc(&item->refs);
  1307. list_add_tail(&item->readdir_list, ins_list);
  1308. item = __btrfs_next_delayed_item(item);
  1309. }
  1310. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1311. while (item) {
  1312. refcount_inc(&item->refs);
  1313. list_add_tail(&item->readdir_list, del_list);
  1314. item = __btrfs_next_delayed_item(item);
  1315. }
  1316. mutex_unlock(&delayed_node->mutex);
  1317. /*
  1318. * This delayed node is still cached in the btrfs inode, so refs
  1319. * must be > 1 now, and we needn't check it is going to be freed
  1320. * or not.
  1321. *
  1322. * Besides that, this function is used to read dir, we do not
  1323. * insert/delete delayed items in this period. So we also needn't
  1324. * requeue or dequeue this delayed node.
  1325. */
  1326. refcount_dec(&delayed_node->refs);
  1327. return true;
  1328. }
  1329. void btrfs_readdir_put_delayed_items(struct inode *inode,
  1330. struct list_head *ins_list,
  1331. struct list_head *del_list)
  1332. {
  1333. struct btrfs_delayed_item *curr, *next;
  1334. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1335. list_del(&curr->readdir_list);
  1336. if (refcount_dec_and_test(&curr->refs))
  1337. kfree(curr);
  1338. }
  1339. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1340. list_del(&curr->readdir_list);
  1341. if (refcount_dec_and_test(&curr->refs))
  1342. kfree(curr);
  1343. }
  1344. /*
  1345. * The VFS is going to do up_read(), so we need to downgrade back to a
  1346. * read lock.
  1347. */
  1348. downgrade_write(&inode->i_rwsem);
  1349. }
  1350. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1351. u64 index)
  1352. {
  1353. struct btrfs_delayed_item *curr, *next;
  1354. int ret;
  1355. if (list_empty(del_list))
  1356. return 0;
  1357. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1358. if (curr->key.offset > index)
  1359. break;
  1360. list_del(&curr->readdir_list);
  1361. ret = (curr->key.offset == index);
  1362. if (refcount_dec_and_test(&curr->refs))
  1363. kfree(curr);
  1364. if (ret)
  1365. return 1;
  1366. else
  1367. continue;
  1368. }
  1369. return 0;
  1370. }
  1371. /*
  1372. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1373. *
  1374. */
  1375. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1376. struct list_head *ins_list)
  1377. {
  1378. struct btrfs_dir_item *di;
  1379. struct btrfs_delayed_item *curr, *next;
  1380. struct btrfs_key location;
  1381. char *name;
  1382. int name_len;
  1383. int over = 0;
  1384. unsigned char d_type;
  1385. if (list_empty(ins_list))
  1386. return 0;
  1387. /*
  1388. * Changing the data of the delayed item is impossible. So
  1389. * we needn't lock them. And we have held i_mutex of the
  1390. * directory, nobody can delete any directory indexes now.
  1391. */
  1392. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1393. list_del(&curr->readdir_list);
  1394. if (curr->key.offset < ctx->pos) {
  1395. if (refcount_dec_and_test(&curr->refs))
  1396. kfree(curr);
  1397. continue;
  1398. }
  1399. ctx->pos = curr->key.offset;
  1400. di = (struct btrfs_dir_item *)curr->data;
  1401. name = (char *)(di + 1);
  1402. name_len = btrfs_stack_dir_name_len(di);
  1403. d_type = btrfs_filetype_table[di->type];
  1404. btrfs_disk_key_to_cpu(&location, &di->location);
  1405. over = !dir_emit(ctx, name, name_len,
  1406. location.objectid, d_type);
  1407. if (refcount_dec_and_test(&curr->refs))
  1408. kfree(curr);
  1409. if (over)
  1410. return 1;
  1411. ctx->pos++;
  1412. }
  1413. return 0;
  1414. }
  1415. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1416. struct btrfs_inode_item *inode_item,
  1417. struct inode *inode)
  1418. {
  1419. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1420. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1421. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1422. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1423. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1424. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1425. btrfs_set_stack_inode_generation(inode_item,
  1426. BTRFS_I(inode)->generation);
  1427. btrfs_set_stack_inode_sequence(inode_item,
  1428. inode_peek_iversion(inode));
  1429. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1430. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1431. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1432. btrfs_set_stack_inode_block_group(inode_item, 0);
  1433. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1434. inode->i_atime.tv_sec);
  1435. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1436. inode->i_atime.tv_nsec);
  1437. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1438. inode->i_mtime.tv_sec);
  1439. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1440. inode->i_mtime.tv_nsec);
  1441. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1442. inode->i_ctime.tv_sec);
  1443. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1444. inode->i_ctime.tv_nsec);
  1445. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1446. BTRFS_I(inode)->i_otime.tv_sec);
  1447. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1448. BTRFS_I(inode)->i_otime.tv_nsec);
  1449. }
  1450. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1451. {
  1452. struct btrfs_delayed_node *delayed_node;
  1453. struct btrfs_inode_item *inode_item;
  1454. delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
  1455. if (!delayed_node)
  1456. return -ENOENT;
  1457. mutex_lock(&delayed_node->mutex);
  1458. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1459. mutex_unlock(&delayed_node->mutex);
  1460. btrfs_release_delayed_node(delayed_node);
  1461. return -ENOENT;
  1462. }
  1463. inode_item = &delayed_node->inode_item;
  1464. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1465. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1466. btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
  1467. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1468. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1469. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1470. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1471. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1472. inode_set_iversion_queried(inode,
  1473. btrfs_stack_inode_sequence(inode_item));
  1474. inode->i_rdev = 0;
  1475. *rdev = btrfs_stack_inode_rdev(inode_item);
  1476. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1477. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1478. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1479. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1480. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1481. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1482. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1483. BTRFS_I(inode)->i_otime.tv_sec =
  1484. btrfs_stack_timespec_sec(&inode_item->otime);
  1485. BTRFS_I(inode)->i_otime.tv_nsec =
  1486. btrfs_stack_timespec_nsec(&inode_item->otime);
  1487. inode->i_generation = BTRFS_I(inode)->generation;
  1488. BTRFS_I(inode)->index_cnt = (u64)-1;
  1489. mutex_unlock(&delayed_node->mutex);
  1490. btrfs_release_delayed_node(delayed_node);
  1491. return 0;
  1492. }
  1493. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1494. struct btrfs_root *root, struct inode *inode)
  1495. {
  1496. struct btrfs_delayed_node *delayed_node;
  1497. int ret = 0;
  1498. delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
  1499. if (IS_ERR(delayed_node))
  1500. return PTR_ERR(delayed_node);
  1501. mutex_lock(&delayed_node->mutex);
  1502. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1503. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1504. goto release_node;
  1505. }
  1506. ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
  1507. delayed_node);
  1508. if (ret)
  1509. goto release_node;
  1510. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1511. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1512. delayed_node->count++;
  1513. atomic_inc(&root->fs_info->delayed_root->items);
  1514. release_node:
  1515. mutex_unlock(&delayed_node->mutex);
  1516. btrfs_release_delayed_node(delayed_node);
  1517. return ret;
  1518. }
  1519. int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
  1520. {
  1521. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  1522. struct btrfs_delayed_node *delayed_node;
  1523. /*
  1524. * we don't do delayed inode updates during log recovery because it
  1525. * leads to enospc problems. This means we also can't do
  1526. * delayed inode refs
  1527. */
  1528. if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
  1529. return -EAGAIN;
  1530. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1531. if (IS_ERR(delayed_node))
  1532. return PTR_ERR(delayed_node);
  1533. /*
  1534. * We don't reserve space for inode ref deletion is because:
  1535. * - We ONLY do async inode ref deletion for the inode who has only
  1536. * one link(i_nlink == 1), it means there is only one inode ref.
  1537. * And in most case, the inode ref and the inode item are in the
  1538. * same leaf, and we will deal with them at the same time.
  1539. * Since we are sure we will reserve the space for the inode item,
  1540. * it is unnecessary to reserve space for inode ref deletion.
  1541. * - If the inode ref and the inode item are not in the same leaf,
  1542. * We also needn't worry about enospc problem, because we reserve
  1543. * much more space for the inode update than it needs.
  1544. * - At the worst, we can steal some space from the global reservation.
  1545. * It is very rare.
  1546. */
  1547. mutex_lock(&delayed_node->mutex);
  1548. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1549. goto release_node;
  1550. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1551. delayed_node->count++;
  1552. atomic_inc(&fs_info->delayed_root->items);
  1553. release_node:
  1554. mutex_unlock(&delayed_node->mutex);
  1555. btrfs_release_delayed_node(delayed_node);
  1556. return 0;
  1557. }
  1558. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1559. {
  1560. struct btrfs_root *root = delayed_node->root;
  1561. struct btrfs_fs_info *fs_info = root->fs_info;
  1562. struct btrfs_delayed_item *curr_item, *prev_item;
  1563. mutex_lock(&delayed_node->mutex);
  1564. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1565. while (curr_item) {
  1566. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1567. prev_item = curr_item;
  1568. curr_item = __btrfs_next_delayed_item(prev_item);
  1569. btrfs_release_delayed_item(prev_item);
  1570. }
  1571. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1572. while (curr_item) {
  1573. btrfs_delayed_item_release_metadata(fs_info, curr_item);
  1574. prev_item = curr_item;
  1575. curr_item = __btrfs_next_delayed_item(prev_item);
  1576. btrfs_release_delayed_item(prev_item);
  1577. }
  1578. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1579. btrfs_release_delayed_iref(delayed_node);
  1580. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1581. btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
  1582. btrfs_release_delayed_inode(delayed_node);
  1583. }
  1584. mutex_unlock(&delayed_node->mutex);
  1585. }
  1586. void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
  1587. {
  1588. struct btrfs_delayed_node *delayed_node;
  1589. delayed_node = btrfs_get_delayed_node(inode);
  1590. if (!delayed_node)
  1591. return;
  1592. __btrfs_kill_delayed_node(delayed_node);
  1593. btrfs_release_delayed_node(delayed_node);
  1594. }
  1595. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1596. {
  1597. u64 inode_id = 0;
  1598. struct btrfs_delayed_node *delayed_nodes[8];
  1599. int i, n;
  1600. while (1) {
  1601. spin_lock(&root->inode_lock);
  1602. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1603. (void **)delayed_nodes, inode_id,
  1604. ARRAY_SIZE(delayed_nodes));
  1605. if (!n) {
  1606. spin_unlock(&root->inode_lock);
  1607. break;
  1608. }
  1609. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1610. for (i = 0; i < n; i++)
  1611. refcount_inc(&delayed_nodes[i]->refs);
  1612. spin_unlock(&root->inode_lock);
  1613. for (i = 0; i < n; i++) {
  1614. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1615. btrfs_release_delayed_node(delayed_nodes[i]);
  1616. }
  1617. }
  1618. }
  1619. void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
  1620. {
  1621. struct btrfs_delayed_node *curr_node, *prev_node;
  1622. curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
  1623. while (curr_node) {
  1624. __btrfs_kill_delayed_node(curr_node);
  1625. prev_node = curr_node;
  1626. curr_node = btrfs_next_delayed_node(curr_node);
  1627. btrfs_release_delayed_node(prev_node);
  1628. }
  1629. }