hugetlbpage.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. /*
  2. * SPARC64 Huge TLB page support.
  3. *
  4. * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
  5. */
  6. #include <linux/fs.h>
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/sysctl.h>
  11. #include <asm/mman.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/tlb.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/cacheflush.h>
  17. #include <asm/mmu_context.h>
  18. /* Slightly simplified from the non-hugepage variant because by
  19. * definition we don't have to worry about any page coloring stuff
  20. */
  21. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
  22. unsigned long addr,
  23. unsigned long len,
  24. unsigned long pgoff,
  25. unsigned long flags)
  26. {
  27. struct hstate *h = hstate_file(filp);
  28. unsigned long task_size = TASK_SIZE;
  29. struct vm_unmapped_area_info info;
  30. if (test_thread_flag(TIF_32BIT))
  31. task_size = STACK_TOP32;
  32. info.flags = 0;
  33. info.length = len;
  34. info.low_limit = TASK_UNMAPPED_BASE;
  35. info.high_limit = min(task_size, VA_EXCLUDE_START);
  36. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  37. info.align_offset = 0;
  38. addr = vm_unmapped_area(&info);
  39. if ((addr & ~PAGE_MASK) && task_size > VA_EXCLUDE_END) {
  40. VM_BUG_ON(addr != -ENOMEM);
  41. info.low_limit = VA_EXCLUDE_END;
  42. info.high_limit = task_size;
  43. addr = vm_unmapped_area(&info);
  44. }
  45. return addr;
  46. }
  47. static unsigned long
  48. hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
  49. const unsigned long len,
  50. const unsigned long pgoff,
  51. const unsigned long flags)
  52. {
  53. struct hstate *h = hstate_file(filp);
  54. struct mm_struct *mm = current->mm;
  55. unsigned long addr = addr0;
  56. struct vm_unmapped_area_info info;
  57. /* This should only ever run for 32-bit processes. */
  58. BUG_ON(!test_thread_flag(TIF_32BIT));
  59. info.flags = VM_UNMAPPED_AREA_TOPDOWN;
  60. info.length = len;
  61. info.low_limit = PAGE_SIZE;
  62. info.high_limit = mm->mmap_base;
  63. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  64. info.align_offset = 0;
  65. addr = vm_unmapped_area(&info);
  66. /*
  67. * A failed mmap() very likely causes application failure,
  68. * so fall back to the bottom-up function here. This scenario
  69. * can happen with large stack limits and large mmap()
  70. * allocations.
  71. */
  72. if (addr & ~PAGE_MASK) {
  73. VM_BUG_ON(addr != -ENOMEM);
  74. info.flags = 0;
  75. info.low_limit = TASK_UNMAPPED_BASE;
  76. info.high_limit = STACK_TOP32;
  77. addr = vm_unmapped_area(&info);
  78. }
  79. return addr;
  80. }
  81. unsigned long
  82. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  83. unsigned long len, unsigned long pgoff, unsigned long flags)
  84. {
  85. struct hstate *h = hstate_file(file);
  86. struct mm_struct *mm = current->mm;
  87. struct vm_area_struct *vma;
  88. unsigned long task_size = TASK_SIZE;
  89. if (test_thread_flag(TIF_32BIT))
  90. task_size = STACK_TOP32;
  91. if (len & ~huge_page_mask(h))
  92. return -EINVAL;
  93. if (len > task_size)
  94. return -ENOMEM;
  95. if (flags & MAP_FIXED) {
  96. if (prepare_hugepage_range(file, addr, len))
  97. return -EINVAL;
  98. return addr;
  99. }
  100. if (addr) {
  101. addr = ALIGN(addr, huge_page_size(h));
  102. vma = find_vma(mm, addr);
  103. if (task_size - len >= addr &&
  104. (!vma || addr + len <= vma->vm_start))
  105. return addr;
  106. }
  107. if (mm->get_unmapped_area == arch_get_unmapped_area)
  108. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  109. pgoff, flags);
  110. else
  111. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  112. pgoff, flags);
  113. }
  114. static pte_t sun4u_hugepage_shift_to_tte(pte_t entry, unsigned int shift)
  115. {
  116. return entry;
  117. }
  118. static pte_t sun4v_hugepage_shift_to_tte(pte_t entry, unsigned int shift)
  119. {
  120. unsigned long hugepage_size = _PAGE_SZ4MB_4V;
  121. pte_val(entry) = pte_val(entry) & ~_PAGE_SZALL_4V;
  122. switch (shift) {
  123. case HPAGE_256MB_SHIFT:
  124. hugepage_size = _PAGE_SZ256MB_4V;
  125. pte_val(entry) |= _PAGE_PMD_HUGE;
  126. break;
  127. case HPAGE_SHIFT:
  128. pte_val(entry) |= _PAGE_PMD_HUGE;
  129. break;
  130. default:
  131. WARN_ONCE(1, "unsupported hugepage shift=%u\n", shift);
  132. }
  133. pte_val(entry) = pte_val(entry) | hugepage_size;
  134. return entry;
  135. }
  136. static pte_t hugepage_shift_to_tte(pte_t entry, unsigned int shift)
  137. {
  138. if (tlb_type == hypervisor)
  139. return sun4v_hugepage_shift_to_tte(entry, shift);
  140. else
  141. return sun4u_hugepage_shift_to_tte(entry, shift);
  142. }
  143. pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
  144. struct page *page, int writeable)
  145. {
  146. unsigned int shift = huge_page_shift(hstate_vma(vma));
  147. return hugepage_shift_to_tte(entry, shift);
  148. }
  149. static unsigned int sun4v_huge_tte_to_shift(pte_t entry)
  150. {
  151. unsigned long tte_szbits = pte_val(entry) & _PAGE_SZALL_4V;
  152. unsigned int shift;
  153. switch (tte_szbits) {
  154. case _PAGE_SZ256MB_4V:
  155. shift = HPAGE_256MB_SHIFT;
  156. break;
  157. case _PAGE_SZ4MB_4V:
  158. shift = REAL_HPAGE_SHIFT;
  159. break;
  160. default:
  161. shift = PAGE_SHIFT;
  162. break;
  163. }
  164. return shift;
  165. }
  166. static unsigned int sun4u_huge_tte_to_shift(pte_t entry)
  167. {
  168. unsigned long tte_szbits = pte_val(entry) & _PAGE_SZALL_4U;
  169. unsigned int shift;
  170. switch (tte_szbits) {
  171. case _PAGE_SZ256MB_4U:
  172. shift = HPAGE_256MB_SHIFT;
  173. break;
  174. case _PAGE_SZ4MB_4U:
  175. shift = REAL_HPAGE_SHIFT;
  176. break;
  177. default:
  178. shift = PAGE_SHIFT;
  179. break;
  180. }
  181. return shift;
  182. }
  183. static unsigned int huge_tte_to_shift(pte_t entry)
  184. {
  185. unsigned long shift;
  186. if (tlb_type == hypervisor)
  187. shift = sun4v_huge_tte_to_shift(entry);
  188. else
  189. shift = sun4u_huge_tte_to_shift(entry);
  190. if (shift == PAGE_SHIFT)
  191. WARN_ONCE(1, "tto_to_shift: invalid hugepage tte=0x%lx\n",
  192. pte_val(entry));
  193. return shift;
  194. }
  195. static unsigned long huge_tte_to_size(pte_t pte)
  196. {
  197. unsigned long size = 1UL << huge_tte_to_shift(pte);
  198. if (size == REAL_HPAGE_SIZE)
  199. size = HPAGE_SIZE;
  200. return size;
  201. }
  202. pte_t *huge_pte_alloc(struct mm_struct *mm,
  203. unsigned long addr, unsigned long sz)
  204. {
  205. pgd_t *pgd;
  206. pud_t *pud;
  207. pte_t *pte = NULL;
  208. pgd = pgd_offset(mm, addr);
  209. pud = pud_alloc(mm, pgd, addr);
  210. if (pud)
  211. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  212. return pte;
  213. }
  214. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  215. {
  216. pgd_t *pgd;
  217. pud_t *pud;
  218. pte_t *pte = NULL;
  219. pgd = pgd_offset(mm, addr);
  220. if (!pgd_none(*pgd)) {
  221. pud = pud_offset(pgd, addr);
  222. if (!pud_none(*pud))
  223. pte = (pte_t *)pmd_offset(pud, addr);
  224. }
  225. return pte;
  226. }
  227. void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
  228. pte_t *ptep, pte_t entry)
  229. {
  230. unsigned int i, nptes, hugepage_shift;
  231. unsigned long size;
  232. pte_t orig;
  233. size = huge_tte_to_size(entry);
  234. nptes = size >> PMD_SHIFT;
  235. if (!pte_present(*ptep) && pte_present(entry))
  236. mm->context.hugetlb_pte_count += nptes;
  237. addr &= ~(size - 1);
  238. orig = *ptep;
  239. hugepage_shift = pte_none(orig) ? PAGE_SIZE : huge_tte_to_shift(orig);
  240. for (i = 0; i < nptes; i++)
  241. ptep[i] = __pte(pte_val(entry) + (i << PMD_SHIFT));
  242. maybe_tlb_batch_add(mm, addr, ptep, orig, 0, hugepage_shift);
  243. /* An HPAGE_SIZE'ed page is composed of two REAL_HPAGE_SIZE'ed pages */
  244. if (size == HPAGE_SIZE)
  245. maybe_tlb_batch_add(mm, addr + REAL_HPAGE_SIZE, ptep, orig, 0,
  246. hugepage_shift);
  247. }
  248. pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
  249. pte_t *ptep)
  250. {
  251. unsigned int i, nptes, hugepage_shift;
  252. unsigned long size;
  253. pte_t entry;
  254. entry = *ptep;
  255. size = huge_tte_to_size(entry);
  256. nptes = size >> PMD_SHIFT;
  257. hugepage_shift = pte_none(entry) ? PAGE_SIZE : huge_tte_to_shift(entry);
  258. if (pte_present(entry))
  259. mm->context.hugetlb_pte_count -= nptes;
  260. addr &= ~(size - 1);
  261. for (i = 0; i < nptes; i++)
  262. ptep[i] = __pte(0UL);
  263. maybe_tlb_batch_add(mm, addr, ptep, entry, 0, hugepage_shift);
  264. /* An HPAGE_SIZE'ed page is composed of two REAL_HPAGE_SIZE'ed pages */
  265. if (size == HPAGE_SIZE)
  266. maybe_tlb_batch_add(mm, addr + REAL_HPAGE_SIZE, ptep, entry, 0,
  267. hugepage_shift);
  268. return entry;
  269. }
  270. int pmd_huge(pmd_t pmd)
  271. {
  272. return !pmd_none(pmd) &&
  273. (pmd_val(pmd) & (_PAGE_VALID|_PAGE_PMD_HUGE)) != _PAGE_VALID;
  274. }
  275. int pud_huge(pud_t pud)
  276. {
  277. return 0;
  278. }
  279. static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  280. unsigned long addr)
  281. {
  282. pgtable_t token = pmd_pgtable(*pmd);
  283. pmd_clear(pmd);
  284. pte_free_tlb(tlb, token, addr);
  285. atomic_long_dec(&tlb->mm->nr_ptes);
  286. }
  287. static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  288. unsigned long addr, unsigned long end,
  289. unsigned long floor, unsigned long ceiling)
  290. {
  291. pmd_t *pmd;
  292. unsigned long next;
  293. unsigned long start;
  294. start = addr;
  295. pmd = pmd_offset(pud, addr);
  296. do {
  297. next = pmd_addr_end(addr, end);
  298. if (pmd_none(*pmd))
  299. continue;
  300. if (is_hugetlb_pmd(*pmd))
  301. pmd_clear(pmd);
  302. else
  303. hugetlb_free_pte_range(tlb, pmd, addr);
  304. } while (pmd++, addr = next, addr != end);
  305. start &= PUD_MASK;
  306. if (start < floor)
  307. return;
  308. if (ceiling) {
  309. ceiling &= PUD_MASK;
  310. if (!ceiling)
  311. return;
  312. }
  313. if (end - 1 > ceiling - 1)
  314. return;
  315. pmd = pmd_offset(pud, start);
  316. pud_clear(pud);
  317. pmd_free_tlb(tlb, pmd, start);
  318. mm_dec_nr_pmds(tlb->mm);
  319. }
  320. static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  321. unsigned long addr, unsigned long end,
  322. unsigned long floor, unsigned long ceiling)
  323. {
  324. pud_t *pud;
  325. unsigned long next;
  326. unsigned long start;
  327. start = addr;
  328. pud = pud_offset(pgd, addr);
  329. do {
  330. next = pud_addr_end(addr, end);
  331. if (pud_none_or_clear_bad(pud))
  332. continue;
  333. hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
  334. ceiling);
  335. } while (pud++, addr = next, addr != end);
  336. start &= PGDIR_MASK;
  337. if (start < floor)
  338. return;
  339. if (ceiling) {
  340. ceiling &= PGDIR_MASK;
  341. if (!ceiling)
  342. return;
  343. }
  344. if (end - 1 > ceiling - 1)
  345. return;
  346. pud = pud_offset(pgd, start);
  347. pgd_clear(pgd);
  348. pud_free_tlb(tlb, pud, start);
  349. }
  350. void hugetlb_free_pgd_range(struct mmu_gather *tlb,
  351. unsigned long addr, unsigned long end,
  352. unsigned long floor, unsigned long ceiling)
  353. {
  354. pgd_t *pgd;
  355. unsigned long next;
  356. pgd = pgd_offset(tlb->mm, addr);
  357. do {
  358. next = pgd_addr_end(addr, end);
  359. if (pgd_none_or_clear_bad(pgd))
  360. continue;
  361. hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  362. } while (pgd++, addr = next, addr != end);
  363. }