md.c 233 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #include "md-cluster.h"
  48. #ifndef MODULE
  49. static void autostart_arrays(int part);
  50. #endif
  51. /* pers_list is a list of registered personalities protected
  52. * by pers_lock.
  53. * pers_lock does extra service to protect accesses to
  54. * mddev->thread when the mutex cannot be held.
  55. */
  56. static LIST_HEAD(pers_list);
  57. static DEFINE_SPINLOCK(pers_lock);
  58. struct md_cluster_operations *md_cluster_ops;
  59. EXPORT_SYMBOL(md_cluster_ops);
  60. struct module *md_cluster_mod;
  61. EXPORT_SYMBOL(md_cluster_mod);
  62. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  63. static struct workqueue_struct *md_wq;
  64. static struct workqueue_struct *md_misc_wq;
  65. static int remove_and_add_spares(struct mddev *mddev,
  66. struct md_rdev *this);
  67. static void mddev_detach(struct mddev *mddev);
  68. /*
  69. * Default number of read corrections we'll attempt on an rdev
  70. * before ejecting it from the array. We divide the read error
  71. * count by 2 for every hour elapsed between read errors.
  72. */
  73. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  74. /*
  75. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  76. * is 1000 KB/sec, so the extra system load does not show up that much.
  77. * Increase it if you want to have more _guaranteed_ speed. Note that
  78. * the RAID driver will use the maximum available bandwidth if the IO
  79. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  80. * speed limit - in case reconstruction slows down your system despite
  81. * idle IO detection.
  82. *
  83. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  84. * or /sys/block/mdX/md/sync_speed_{min,max}
  85. */
  86. static int sysctl_speed_limit_min = 1000;
  87. static int sysctl_speed_limit_max = 200000;
  88. static inline int speed_min(struct mddev *mddev)
  89. {
  90. return mddev->sync_speed_min ?
  91. mddev->sync_speed_min : sysctl_speed_limit_min;
  92. }
  93. static inline int speed_max(struct mddev *mddev)
  94. {
  95. return mddev->sync_speed_max ?
  96. mddev->sync_speed_max : sysctl_speed_limit_max;
  97. }
  98. static struct ctl_table_header *raid_table_header;
  99. static struct ctl_table raid_table[] = {
  100. {
  101. .procname = "speed_limit_min",
  102. .data = &sysctl_speed_limit_min,
  103. .maxlen = sizeof(int),
  104. .mode = S_IRUGO|S_IWUSR,
  105. .proc_handler = proc_dointvec,
  106. },
  107. {
  108. .procname = "speed_limit_max",
  109. .data = &sysctl_speed_limit_max,
  110. .maxlen = sizeof(int),
  111. .mode = S_IRUGO|S_IWUSR,
  112. .proc_handler = proc_dointvec,
  113. },
  114. { }
  115. };
  116. static struct ctl_table raid_dir_table[] = {
  117. {
  118. .procname = "raid",
  119. .maxlen = 0,
  120. .mode = S_IRUGO|S_IXUGO,
  121. .child = raid_table,
  122. },
  123. { }
  124. };
  125. static struct ctl_table raid_root_table[] = {
  126. {
  127. .procname = "dev",
  128. .maxlen = 0,
  129. .mode = 0555,
  130. .child = raid_dir_table,
  131. },
  132. { }
  133. };
  134. static const struct block_device_operations md_fops;
  135. static int start_readonly;
  136. /* bio_clone_mddev
  137. * like bio_clone, but with a local bio set
  138. */
  139. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  140. struct mddev *mddev)
  141. {
  142. struct bio *b;
  143. if (!mddev || !mddev->bio_set)
  144. return bio_alloc(gfp_mask, nr_iovecs);
  145. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  146. if (!b)
  147. return NULL;
  148. return b;
  149. }
  150. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  151. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  152. struct mddev *mddev)
  153. {
  154. if (!mddev || !mddev->bio_set)
  155. return bio_clone(bio, gfp_mask);
  156. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  157. }
  158. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  159. /*
  160. * We have a system wide 'event count' that is incremented
  161. * on any 'interesting' event, and readers of /proc/mdstat
  162. * can use 'poll' or 'select' to find out when the event
  163. * count increases.
  164. *
  165. * Events are:
  166. * start array, stop array, error, add device, remove device,
  167. * start build, activate spare
  168. */
  169. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  170. static atomic_t md_event_count;
  171. void md_new_event(struct mddev *mddev)
  172. {
  173. atomic_inc(&md_event_count);
  174. wake_up(&md_event_waiters);
  175. }
  176. EXPORT_SYMBOL_GPL(md_new_event);
  177. /* Alternate version that can be called from interrupts
  178. * when calling sysfs_notify isn't needed.
  179. */
  180. static void md_new_event_inintr(struct mddev *mddev)
  181. {
  182. atomic_inc(&md_event_count);
  183. wake_up(&md_event_waiters);
  184. }
  185. /*
  186. * Enables to iterate over all existing md arrays
  187. * all_mddevs_lock protects this list.
  188. */
  189. static LIST_HEAD(all_mddevs);
  190. static DEFINE_SPINLOCK(all_mddevs_lock);
  191. /*
  192. * iterates through all used mddevs in the system.
  193. * We take care to grab the all_mddevs_lock whenever navigating
  194. * the list, and to always hold a refcount when unlocked.
  195. * Any code which breaks out of this loop while own
  196. * a reference to the current mddev and must mddev_put it.
  197. */
  198. #define for_each_mddev(_mddev,_tmp) \
  199. \
  200. for (({ spin_lock(&all_mddevs_lock); \
  201. _tmp = all_mddevs.next; \
  202. _mddev = NULL;}); \
  203. ({ if (_tmp != &all_mddevs) \
  204. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  205. spin_unlock(&all_mddevs_lock); \
  206. if (_mddev) mddev_put(_mddev); \
  207. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  208. _tmp != &all_mddevs;}); \
  209. ({ spin_lock(&all_mddevs_lock); \
  210. _tmp = _tmp->next;}) \
  211. )
  212. /* Rather than calling directly into the personality make_request function,
  213. * IO requests come here first so that we can check if the device is
  214. * being suspended pending a reconfiguration.
  215. * We hold a refcount over the call to ->make_request. By the time that
  216. * call has finished, the bio has been linked into some internal structure
  217. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  218. */
  219. static void md_make_request(struct request_queue *q, struct bio *bio)
  220. {
  221. const int rw = bio_data_dir(bio);
  222. struct mddev *mddev = q->queuedata;
  223. unsigned int sectors;
  224. int cpu;
  225. blk_queue_split(q, &bio, q->bio_split);
  226. if (mddev == NULL || mddev->pers == NULL
  227. || !mddev->ready) {
  228. bio_io_error(bio);
  229. return;
  230. }
  231. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  232. if (bio_sectors(bio) != 0)
  233. bio->bi_error = -EROFS;
  234. bio_endio(bio);
  235. return;
  236. }
  237. smp_rmb(); /* Ensure implications of 'active' are visible */
  238. rcu_read_lock();
  239. if (mddev->suspended) {
  240. DEFINE_WAIT(__wait);
  241. for (;;) {
  242. prepare_to_wait(&mddev->sb_wait, &__wait,
  243. TASK_UNINTERRUPTIBLE);
  244. if (!mddev->suspended)
  245. break;
  246. rcu_read_unlock();
  247. schedule();
  248. rcu_read_lock();
  249. }
  250. finish_wait(&mddev->sb_wait, &__wait);
  251. }
  252. atomic_inc(&mddev->active_io);
  253. rcu_read_unlock();
  254. /*
  255. * save the sectors now since our bio can
  256. * go away inside make_request
  257. */
  258. sectors = bio_sectors(bio);
  259. mddev->pers->make_request(mddev, bio);
  260. cpu = part_stat_lock();
  261. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  262. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  263. part_stat_unlock();
  264. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  265. wake_up(&mddev->sb_wait);
  266. }
  267. /* mddev_suspend makes sure no new requests are submitted
  268. * to the device, and that any requests that have been submitted
  269. * are completely handled.
  270. * Once mddev_detach() is called and completes, the module will be
  271. * completely unused.
  272. */
  273. void mddev_suspend(struct mddev *mddev)
  274. {
  275. BUG_ON(mddev->suspended);
  276. mddev->suspended = 1;
  277. synchronize_rcu();
  278. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  279. mddev->pers->quiesce(mddev, 1);
  280. del_timer_sync(&mddev->safemode_timer);
  281. }
  282. EXPORT_SYMBOL_GPL(mddev_suspend);
  283. void mddev_resume(struct mddev *mddev)
  284. {
  285. mddev->suspended = 0;
  286. wake_up(&mddev->sb_wait);
  287. mddev->pers->quiesce(mddev, 0);
  288. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  289. md_wakeup_thread(mddev->thread);
  290. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  291. }
  292. EXPORT_SYMBOL_GPL(mddev_resume);
  293. int mddev_congested(struct mddev *mddev, int bits)
  294. {
  295. struct md_personality *pers = mddev->pers;
  296. int ret = 0;
  297. rcu_read_lock();
  298. if (mddev->suspended)
  299. ret = 1;
  300. else if (pers && pers->congested)
  301. ret = pers->congested(mddev, bits);
  302. rcu_read_unlock();
  303. return ret;
  304. }
  305. EXPORT_SYMBOL_GPL(mddev_congested);
  306. static int md_congested(void *data, int bits)
  307. {
  308. struct mddev *mddev = data;
  309. return mddev_congested(mddev, bits);
  310. }
  311. /*
  312. * Generic flush handling for md
  313. */
  314. static void md_end_flush(struct bio *bio)
  315. {
  316. struct md_rdev *rdev = bio->bi_private;
  317. struct mddev *mddev = rdev->mddev;
  318. rdev_dec_pending(rdev, mddev);
  319. if (atomic_dec_and_test(&mddev->flush_pending)) {
  320. /* The pre-request flush has finished */
  321. queue_work(md_wq, &mddev->flush_work);
  322. }
  323. bio_put(bio);
  324. }
  325. static void md_submit_flush_data(struct work_struct *ws);
  326. static void submit_flushes(struct work_struct *ws)
  327. {
  328. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  329. struct md_rdev *rdev;
  330. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  331. atomic_set(&mddev->flush_pending, 1);
  332. rcu_read_lock();
  333. rdev_for_each_rcu(rdev, mddev)
  334. if (rdev->raid_disk >= 0 &&
  335. !test_bit(Faulty, &rdev->flags)) {
  336. /* Take two references, one is dropped
  337. * when request finishes, one after
  338. * we reclaim rcu_read_lock
  339. */
  340. struct bio *bi;
  341. atomic_inc(&rdev->nr_pending);
  342. atomic_inc(&rdev->nr_pending);
  343. rcu_read_unlock();
  344. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  345. bi->bi_end_io = md_end_flush;
  346. bi->bi_private = rdev;
  347. bi->bi_bdev = rdev->bdev;
  348. atomic_inc(&mddev->flush_pending);
  349. submit_bio(WRITE_FLUSH, bi);
  350. rcu_read_lock();
  351. rdev_dec_pending(rdev, mddev);
  352. }
  353. rcu_read_unlock();
  354. if (atomic_dec_and_test(&mddev->flush_pending))
  355. queue_work(md_wq, &mddev->flush_work);
  356. }
  357. static void md_submit_flush_data(struct work_struct *ws)
  358. {
  359. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  360. struct bio *bio = mddev->flush_bio;
  361. if (bio->bi_iter.bi_size == 0)
  362. /* an empty barrier - all done */
  363. bio_endio(bio);
  364. else {
  365. bio->bi_rw &= ~REQ_FLUSH;
  366. mddev->pers->make_request(mddev, bio);
  367. }
  368. mddev->flush_bio = NULL;
  369. wake_up(&mddev->sb_wait);
  370. }
  371. void md_flush_request(struct mddev *mddev, struct bio *bio)
  372. {
  373. spin_lock_irq(&mddev->lock);
  374. wait_event_lock_irq(mddev->sb_wait,
  375. !mddev->flush_bio,
  376. mddev->lock);
  377. mddev->flush_bio = bio;
  378. spin_unlock_irq(&mddev->lock);
  379. INIT_WORK(&mddev->flush_work, submit_flushes);
  380. queue_work(md_wq, &mddev->flush_work);
  381. }
  382. EXPORT_SYMBOL(md_flush_request);
  383. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  384. {
  385. struct mddev *mddev = cb->data;
  386. md_wakeup_thread(mddev->thread);
  387. kfree(cb);
  388. }
  389. EXPORT_SYMBOL(md_unplug);
  390. static inline struct mddev *mddev_get(struct mddev *mddev)
  391. {
  392. atomic_inc(&mddev->active);
  393. return mddev;
  394. }
  395. static void mddev_delayed_delete(struct work_struct *ws);
  396. static void mddev_put(struct mddev *mddev)
  397. {
  398. struct bio_set *bs = NULL;
  399. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  400. return;
  401. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  402. mddev->ctime == 0 && !mddev->hold_active) {
  403. /* Array is not configured at all, and not held active,
  404. * so destroy it */
  405. list_del_init(&mddev->all_mddevs);
  406. bs = mddev->bio_set;
  407. mddev->bio_set = NULL;
  408. if (mddev->gendisk) {
  409. /* We did a probe so need to clean up. Call
  410. * queue_work inside the spinlock so that
  411. * flush_workqueue() after mddev_find will
  412. * succeed in waiting for the work to be done.
  413. */
  414. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  415. queue_work(md_misc_wq, &mddev->del_work);
  416. } else
  417. kfree(mddev);
  418. }
  419. spin_unlock(&all_mddevs_lock);
  420. if (bs)
  421. bioset_free(bs);
  422. }
  423. static void md_safemode_timeout(unsigned long data);
  424. void mddev_init(struct mddev *mddev)
  425. {
  426. mutex_init(&mddev->open_mutex);
  427. mutex_init(&mddev->reconfig_mutex);
  428. mutex_init(&mddev->bitmap_info.mutex);
  429. INIT_LIST_HEAD(&mddev->disks);
  430. INIT_LIST_HEAD(&mddev->all_mddevs);
  431. setup_timer(&mddev->safemode_timer, md_safemode_timeout,
  432. (unsigned long) mddev);
  433. atomic_set(&mddev->active, 1);
  434. atomic_set(&mddev->openers, 0);
  435. atomic_set(&mddev->active_io, 0);
  436. spin_lock_init(&mddev->lock);
  437. atomic_set(&mddev->flush_pending, 0);
  438. init_waitqueue_head(&mddev->sb_wait);
  439. init_waitqueue_head(&mddev->recovery_wait);
  440. mddev->reshape_position = MaxSector;
  441. mddev->reshape_backwards = 0;
  442. mddev->last_sync_action = "none";
  443. mddev->resync_min = 0;
  444. mddev->resync_max = MaxSector;
  445. mddev->level = LEVEL_NONE;
  446. }
  447. EXPORT_SYMBOL_GPL(mddev_init);
  448. static struct mddev *mddev_find(dev_t unit)
  449. {
  450. struct mddev *mddev, *new = NULL;
  451. if (unit && MAJOR(unit) != MD_MAJOR)
  452. unit &= ~((1<<MdpMinorShift)-1);
  453. retry:
  454. spin_lock(&all_mddevs_lock);
  455. if (unit) {
  456. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  457. if (mddev->unit == unit) {
  458. mddev_get(mddev);
  459. spin_unlock(&all_mddevs_lock);
  460. kfree(new);
  461. return mddev;
  462. }
  463. if (new) {
  464. list_add(&new->all_mddevs, &all_mddevs);
  465. spin_unlock(&all_mddevs_lock);
  466. new->hold_active = UNTIL_IOCTL;
  467. return new;
  468. }
  469. } else if (new) {
  470. /* find an unused unit number */
  471. static int next_minor = 512;
  472. int start = next_minor;
  473. int is_free = 0;
  474. int dev = 0;
  475. while (!is_free) {
  476. dev = MKDEV(MD_MAJOR, next_minor);
  477. next_minor++;
  478. if (next_minor > MINORMASK)
  479. next_minor = 0;
  480. if (next_minor == start) {
  481. /* Oh dear, all in use. */
  482. spin_unlock(&all_mddevs_lock);
  483. kfree(new);
  484. return NULL;
  485. }
  486. is_free = 1;
  487. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  488. if (mddev->unit == dev) {
  489. is_free = 0;
  490. break;
  491. }
  492. }
  493. new->unit = dev;
  494. new->md_minor = MINOR(dev);
  495. new->hold_active = UNTIL_STOP;
  496. list_add(&new->all_mddevs, &all_mddevs);
  497. spin_unlock(&all_mddevs_lock);
  498. return new;
  499. }
  500. spin_unlock(&all_mddevs_lock);
  501. new = kzalloc(sizeof(*new), GFP_KERNEL);
  502. if (!new)
  503. return NULL;
  504. new->unit = unit;
  505. if (MAJOR(unit) == MD_MAJOR)
  506. new->md_minor = MINOR(unit);
  507. else
  508. new->md_minor = MINOR(unit) >> MdpMinorShift;
  509. mddev_init(new);
  510. goto retry;
  511. }
  512. static struct attribute_group md_redundancy_group;
  513. void mddev_unlock(struct mddev *mddev)
  514. {
  515. if (mddev->to_remove) {
  516. /* These cannot be removed under reconfig_mutex as
  517. * an access to the files will try to take reconfig_mutex
  518. * while holding the file unremovable, which leads to
  519. * a deadlock.
  520. * So hold set sysfs_active while the remove in happeing,
  521. * and anything else which might set ->to_remove or my
  522. * otherwise change the sysfs namespace will fail with
  523. * -EBUSY if sysfs_active is still set.
  524. * We set sysfs_active under reconfig_mutex and elsewhere
  525. * test it under the same mutex to ensure its correct value
  526. * is seen.
  527. */
  528. struct attribute_group *to_remove = mddev->to_remove;
  529. mddev->to_remove = NULL;
  530. mddev->sysfs_active = 1;
  531. mutex_unlock(&mddev->reconfig_mutex);
  532. if (mddev->kobj.sd) {
  533. if (to_remove != &md_redundancy_group)
  534. sysfs_remove_group(&mddev->kobj, to_remove);
  535. if (mddev->pers == NULL ||
  536. mddev->pers->sync_request == NULL) {
  537. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  538. if (mddev->sysfs_action)
  539. sysfs_put(mddev->sysfs_action);
  540. mddev->sysfs_action = NULL;
  541. }
  542. }
  543. mddev->sysfs_active = 0;
  544. } else
  545. mutex_unlock(&mddev->reconfig_mutex);
  546. /* As we've dropped the mutex we need a spinlock to
  547. * make sure the thread doesn't disappear
  548. */
  549. spin_lock(&pers_lock);
  550. md_wakeup_thread(mddev->thread);
  551. spin_unlock(&pers_lock);
  552. }
  553. EXPORT_SYMBOL_GPL(mddev_unlock);
  554. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  555. {
  556. struct md_rdev *rdev;
  557. rdev_for_each_rcu(rdev, mddev)
  558. if (rdev->desc_nr == nr)
  559. return rdev;
  560. return NULL;
  561. }
  562. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  563. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  564. {
  565. struct md_rdev *rdev;
  566. rdev_for_each(rdev, mddev)
  567. if (rdev->bdev->bd_dev == dev)
  568. return rdev;
  569. return NULL;
  570. }
  571. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  572. {
  573. struct md_rdev *rdev;
  574. rdev_for_each_rcu(rdev, mddev)
  575. if (rdev->bdev->bd_dev == dev)
  576. return rdev;
  577. return NULL;
  578. }
  579. static struct md_personality *find_pers(int level, char *clevel)
  580. {
  581. struct md_personality *pers;
  582. list_for_each_entry(pers, &pers_list, list) {
  583. if (level != LEVEL_NONE && pers->level == level)
  584. return pers;
  585. if (strcmp(pers->name, clevel)==0)
  586. return pers;
  587. }
  588. return NULL;
  589. }
  590. /* return the offset of the super block in 512byte sectors */
  591. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  592. {
  593. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  594. return MD_NEW_SIZE_SECTORS(num_sectors);
  595. }
  596. static int alloc_disk_sb(struct md_rdev *rdev)
  597. {
  598. rdev->sb_page = alloc_page(GFP_KERNEL);
  599. if (!rdev->sb_page) {
  600. printk(KERN_ALERT "md: out of memory.\n");
  601. return -ENOMEM;
  602. }
  603. return 0;
  604. }
  605. void md_rdev_clear(struct md_rdev *rdev)
  606. {
  607. if (rdev->sb_page) {
  608. put_page(rdev->sb_page);
  609. rdev->sb_loaded = 0;
  610. rdev->sb_page = NULL;
  611. rdev->sb_start = 0;
  612. rdev->sectors = 0;
  613. }
  614. if (rdev->bb_page) {
  615. put_page(rdev->bb_page);
  616. rdev->bb_page = NULL;
  617. }
  618. kfree(rdev->badblocks.page);
  619. rdev->badblocks.page = NULL;
  620. }
  621. EXPORT_SYMBOL_GPL(md_rdev_clear);
  622. static void super_written(struct bio *bio)
  623. {
  624. struct md_rdev *rdev = bio->bi_private;
  625. struct mddev *mddev = rdev->mddev;
  626. if (bio->bi_error) {
  627. printk("md: super_written gets error=%d\n", bio->bi_error);
  628. md_error(mddev, rdev);
  629. }
  630. if (atomic_dec_and_test(&mddev->pending_writes))
  631. wake_up(&mddev->sb_wait);
  632. bio_put(bio);
  633. }
  634. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  635. sector_t sector, int size, struct page *page)
  636. {
  637. /* write first size bytes of page to sector of rdev
  638. * Increment mddev->pending_writes before returning
  639. * and decrement it on completion, waking up sb_wait
  640. * if zero is reached.
  641. * If an error occurred, call md_error
  642. */
  643. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  644. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  645. bio->bi_iter.bi_sector = sector;
  646. bio_add_page(bio, page, size, 0);
  647. bio->bi_private = rdev;
  648. bio->bi_end_io = super_written;
  649. atomic_inc(&mddev->pending_writes);
  650. submit_bio(WRITE_FLUSH_FUA, bio);
  651. }
  652. void md_super_wait(struct mddev *mddev)
  653. {
  654. /* wait for all superblock writes that were scheduled to complete */
  655. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  656. }
  657. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  658. struct page *page, int rw, bool metadata_op)
  659. {
  660. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  661. int ret;
  662. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  663. rdev->meta_bdev : rdev->bdev;
  664. if (metadata_op)
  665. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  666. else if (rdev->mddev->reshape_position != MaxSector &&
  667. (rdev->mddev->reshape_backwards ==
  668. (sector >= rdev->mddev->reshape_position)))
  669. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  670. else
  671. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  672. bio_add_page(bio, page, size, 0);
  673. submit_bio_wait(rw, bio);
  674. ret = !bio->bi_error;
  675. bio_put(bio);
  676. return ret;
  677. }
  678. EXPORT_SYMBOL_GPL(sync_page_io);
  679. static int read_disk_sb(struct md_rdev *rdev, int size)
  680. {
  681. char b[BDEVNAME_SIZE];
  682. if (rdev->sb_loaded)
  683. return 0;
  684. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  685. goto fail;
  686. rdev->sb_loaded = 1;
  687. return 0;
  688. fail:
  689. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  690. bdevname(rdev->bdev,b));
  691. return -EINVAL;
  692. }
  693. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  694. {
  695. return sb1->set_uuid0 == sb2->set_uuid0 &&
  696. sb1->set_uuid1 == sb2->set_uuid1 &&
  697. sb1->set_uuid2 == sb2->set_uuid2 &&
  698. sb1->set_uuid3 == sb2->set_uuid3;
  699. }
  700. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  701. {
  702. int ret;
  703. mdp_super_t *tmp1, *tmp2;
  704. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  705. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  706. if (!tmp1 || !tmp2) {
  707. ret = 0;
  708. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  709. goto abort;
  710. }
  711. *tmp1 = *sb1;
  712. *tmp2 = *sb2;
  713. /*
  714. * nr_disks is not constant
  715. */
  716. tmp1->nr_disks = 0;
  717. tmp2->nr_disks = 0;
  718. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  719. abort:
  720. kfree(tmp1);
  721. kfree(tmp2);
  722. return ret;
  723. }
  724. static u32 md_csum_fold(u32 csum)
  725. {
  726. csum = (csum & 0xffff) + (csum >> 16);
  727. return (csum & 0xffff) + (csum >> 16);
  728. }
  729. static unsigned int calc_sb_csum(mdp_super_t *sb)
  730. {
  731. u64 newcsum = 0;
  732. u32 *sb32 = (u32*)sb;
  733. int i;
  734. unsigned int disk_csum, csum;
  735. disk_csum = sb->sb_csum;
  736. sb->sb_csum = 0;
  737. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  738. newcsum += sb32[i];
  739. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  740. #ifdef CONFIG_ALPHA
  741. /* This used to use csum_partial, which was wrong for several
  742. * reasons including that different results are returned on
  743. * different architectures. It isn't critical that we get exactly
  744. * the same return value as before (we always csum_fold before
  745. * testing, and that removes any differences). However as we
  746. * know that csum_partial always returned a 16bit value on
  747. * alphas, do a fold to maximise conformity to previous behaviour.
  748. */
  749. sb->sb_csum = md_csum_fold(disk_csum);
  750. #else
  751. sb->sb_csum = disk_csum;
  752. #endif
  753. return csum;
  754. }
  755. /*
  756. * Handle superblock details.
  757. * We want to be able to handle multiple superblock formats
  758. * so we have a common interface to them all, and an array of
  759. * different handlers.
  760. * We rely on user-space to write the initial superblock, and support
  761. * reading and updating of superblocks.
  762. * Interface methods are:
  763. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  764. * loads and validates a superblock on dev.
  765. * if refdev != NULL, compare superblocks on both devices
  766. * Return:
  767. * 0 - dev has a superblock that is compatible with refdev
  768. * 1 - dev has a superblock that is compatible and newer than refdev
  769. * so dev should be used as the refdev in future
  770. * -EINVAL superblock incompatible or invalid
  771. * -othererror e.g. -EIO
  772. *
  773. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  774. * Verify that dev is acceptable into mddev.
  775. * The first time, mddev->raid_disks will be 0, and data from
  776. * dev should be merged in. Subsequent calls check that dev
  777. * is new enough. Return 0 or -EINVAL
  778. *
  779. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  780. * Update the superblock for rdev with data in mddev
  781. * This does not write to disc.
  782. *
  783. */
  784. struct super_type {
  785. char *name;
  786. struct module *owner;
  787. int (*load_super)(struct md_rdev *rdev,
  788. struct md_rdev *refdev,
  789. int minor_version);
  790. int (*validate_super)(struct mddev *mddev,
  791. struct md_rdev *rdev);
  792. void (*sync_super)(struct mddev *mddev,
  793. struct md_rdev *rdev);
  794. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  795. sector_t num_sectors);
  796. int (*allow_new_offset)(struct md_rdev *rdev,
  797. unsigned long long new_offset);
  798. };
  799. /*
  800. * Check that the given mddev has no bitmap.
  801. *
  802. * This function is called from the run method of all personalities that do not
  803. * support bitmaps. It prints an error message and returns non-zero if mddev
  804. * has a bitmap. Otherwise, it returns 0.
  805. *
  806. */
  807. int md_check_no_bitmap(struct mddev *mddev)
  808. {
  809. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  810. return 0;
  811. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  812. mdname(mddev), mddev->pers->name);
  813. return 1;
  814. }
  815. EXPORT_SYMBOL(md_check_no_bitmap);
  816. /*
  817. * load_super for 0.90.0
  818. */
  819. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  820. {
  821. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  822. mdp_super_t *sb;
  823. int ret;
  824. /*
  825. * Calculate the position of the superblock (512byte sectors),
  826. * it's at the end of the disk.
  827. *
  828. * It also happens to be a multiple of 4Kb.
  829. */
  830. rdev->sb_start = calc_dev_sboffset(rdev);
  831. ret = read_disk_sb(rdev, MD_SB_BYTES);
  832. if (ret) return ret;
  833. ret = -EINVAL;
  834. bdevname(rdev->bdev, b);
  835. sb = page_address(rdev->sb_page);
  836. if (sb->md_magic != MD_SB_MAGIC) {
  837. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  838. b);
  839. goto abort;
  840. }
  841. if (sb->major_version != 0 ||
  842. sb->minor_version < 90 ||
  843. sb->minor_version > 91) {
  844. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  845. sb->major_version, sb->minor_version,
  846. b);
  847. goto abort;
  848. }
  849. if (sb->raid_disks <= 0)
  850. goto abort;
  851. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  852. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  853. b);
  854. goto abort;
  855. }
  856. rdev->preferred_minor = sb->md_minor;
  857. rdev->data_offset = 0;
  858. rdev->new_data_offset = 0;
  859. rdev->sb_size = MD_SB_BYTES;
  860. rdev->badblocks.shift = -1;
  861. if (sb->level == LEVEL_MULTIPATH)
  862. rdev->desc_nr = -1;
  863. else
  864. rdev->desc_nr = sb->this_disk.number;
  865. if (!refdev) {
  866. ret = 1;
  867. } else {
  868. __u64 ev1, ev2;
  869. mdp_super_t *refsb = page_address(refdev->sb_page);
  870. if (!uuid_equal(refsb, sb)) {
  871. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  872. b, bdevname(refdev->bdev,b2));
  873. goto abort;
  874. }
  875. if (!sb_equal(refsb, sb)) {
  876. printk(KERN_WARNING "md: %s has same UUID"
  877. " but different superblock to %s\n",
  878. b, bdevname(refdev->bdev, b2));
  879. goto abort;
  880. }
  881. ev1 = md_event(sb);
  882. ev2 = md_event(refsb);
  883. if (ev1 > ev2)
  884. ret = 1;
  885. else
  886. ret = 0;
  887. }
  888. rdev->sectors = rdev->sb_start;
  889. /* Limit to 4TB as metadata cannot record more than that.
  890. * (not needed for Linear and RAID0 as metadata doesn't
  891. * record this size)
  892. */
  893. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  894. rdev->sectors = (2ULL << 32) - 2;
  895. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  896. /* "this cannot possibly happen" ... */
  897. ret = -EINVAL;
  898. abort:
  899. return ret;
  900. }
  901. /*
  902. * validate_super for 0.90.0
  903. */
  904. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  905. {
  906. mdp_disk_t *desc;
  907. mdp_super_t *sb = page_address(rdev->sb_page);
  908. __u64 ev1 = md_event(sb);
  909. rdev->raid_disk = -1;
  910. clear_bit(Faulty, &rdev->flags);
  911. clear_bit(In_sync, &rdev->flags);
  912. clear_bit(Bitmap_sync, &rdev->flags);
  913. clear_bit(WriteMostly, &rdev->flags);
  914. if (mddev->raid_disks == 0) {
  915. mddev->major_version = 0;
  916. mddev->minor_version = sb->minor_version;
  917. mddev->patch_version = sb->patch_version;
  918. mddev->external = 0;
  919. mddev->chunk_sectors = sb->chunk_size >> 9;
  920. mddev->ctime = sb->ctime;
  921. mddev->utime = sb->utime;
  922. mddev->level = sb->level;
  923. mddev->clevel[0] = 0;
  924. mddev->layout = sb->layout;
  925. mddev->raid_disks = sb->raid_disks;
  926. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  927. mddev->events = ev1;
  928. mddev->bitmap_info.offset = 0;
  929. mddev->bitmap_info.space = 0;
  930. /* bitmap can use 60 K after the 4K superblocks */
  931. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  932. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  933. mddev->reshape_backwards = 0;
  934. if (mddev->minor_version >= 91) {
  935. mddev->reshape_position = sb->reshape_position;
  936. mddev->delta_disks = sb->delta_disks;
  937. mddev->new_level = sb->new_level;
  938. mddev->new_layout = sb->new_layout;
  939. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  940. if (mddev->delta_disks < 0)
  941. mddev->reshape_backwards = 1;
  942. } else {
  943. mddev->reshape_position = MaxSector;
  944. mddev->delta_disks = 0;
  945. mddev->new_level = mddev->level;
  946. mddev->new_layout = mddev->layout;
  947. mddev->new_chunk_sectors = mddev->chunk_sectors;
  948. }
  949. if (sb->state & (1<<MD_SB_CLEAN))
  950. mddev->recovery_cp = MaxSector;
  951. else {
  952. if (sb->events_hi == sb->cp_events_hi &&
  953. sb->events_lo == sb->cp_events_lo) {
  954. mddev->recovery_cp = sb->recovery_cp;
  955. } else
  956. mddev->recovery_cp = 0;
  957. }
  958. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  959. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  960. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  961. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  962. mddev->max_disks = MD_SB_DISKS;
  963. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  964. mddev->bitmap_info.file == NULL) {
  965. mddev->bitmap_info.offset =
  966. mddev->bitmap_info.default_offset;
  967. mddev->bitmap_info.space =
  968. mddev->bitmap_info.default_space;
  969. }
  970. } else if (mddev->pers == NULL) {
  971. /* Insist on good event counter while assembling, except
  972. * for spares (which don't need an event count) */
  973. ++ev1;
  974. if (sb->disks[rdev->desc_nr].state & (
  975. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  976. if (ev1 < mddev->events)
  977. return -EINVAL;
  978. } else if (mddev->bitmap) {
  979. /* if adding to array with a bitmap, then we can accept an
  980. * older device ... but not too old.
  981. */
  982. if (ev1 < mddev->bitmap->events_cleared)
  983. return 0;
  984. if (ev1 < mddev->events)
  985. set_bit(Bitmap_sync, &rdev->flags);
  986. } else {
  987. if (ev1 < mddev->events)
  988. /* just a hot-add of a new device, leave raid_disk at -1 */
  989. return 0;
  990. }
  991. if (mddev->level != LEVEL_MULTIPATH) {
  992. desc = sb->disks + rdev->desc_nr;
  993. if (desc->state & (1<<MD_DISK_FAULTY))
  994. set_bit(Faulty, &rdev->flags);
  995. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  996. desc->raid_disk < mddev->raid_disks */) {
  997. set_bit(In_sync, &rdev->flags);
  998. rdev->raid_disk = desc->raid_disk;
  999. rdev->saved_raid_disk = desc->raid_disk;
  1000. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1001. /* active but not in sync implies recovery up to
  1002. * reshape position. We don't know exactly where
  1003. * that is, so set to zero for now */
  1004. if (mddev->minor_version >= 91) {
  1005. rdev->recovery_offset = 0;
  1006. rdev->raid_disk = desc->raid_disk;
  1007. }
  1008. }
  1009. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1010. set_bit(WriteMostly, &rdev->flags);
  1011. } else /* MULTIPATH are always insync */
  1012. set_bit(In_sync, &rdev->flags);
  1013. return 0;
  1014. }
  1015. /*
  1016. * sync_super for 0.90.0
  1017. */
  1018. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1019. {
  1020. mdp_super_t *sb;
  1021. struct md_rdev *rdev2;
  1022. int next_spare = mddev->raid_disks;
  1023. /* make rdev->sb match mddev data..
  1024. *
  1025. * 1/ zero out disks
  1026. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1027. * 3/ any empty disks < next_spare become removed
  1028. *
  1029. * disks[0] gets initialised to REMOVED because
  1030. * we cannot be sure from other fields if it has
  1031. * been initialised or not.
  1032. */
  1033. int i;
  1034. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1035. rdev->sb_size = MD_SB_BYTES;
  1036. sb = page_address(rdev->sb_page);
  1037. memset(sb, 0, sizeof(*sb));
  1038. sb->md_magic = MD_SB_MAGIC;
  1039. sb->major_version = mddev->major_version;
  1040. sb->patch_version = mddev->patch_version;
  1041. sb->gvalid_words = 0; /* ignored */
  1042. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1043. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1044. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1045. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1046. sb->ctime = mddev->ctime;
  1047. sb->level = mddev->level;
  1048. sb->size = mddev->dev_sectors / 2;
  1049. sb->raid_disks = mddev->raid_disks;
  1050. sb->md_minor = mddev->md_minor;
  1051. sb->not_persistent = 0;
  1052. sb->utime = mddev->utime;
  1053. sb->state = 0;
  1054. sb->events_hi = (mddev->events>>32);
  1055. sb->events_lo = (u32)mddev->events;
  1056. if (mddev->reshape_position == MaxSector)
  1057. sb->minor_version = 90;
  1058. else {
  1059. sb->minor_version = 91;
  1060. sb->reshape_position = mddev->reshape_position;
  1061. sb->new_level = mddev->new_level;
  1062. sb->delta_disks = mddev->delta_disks;
  1063. sb->new_layout = mddev->new_layout;
  1064. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1065. }
  1066. mddev->minor_version = sb->minor_version;
  1067. if (mddev->in_sync)
  1068. {
  1069. sb->recovery_cp = mddev->recovery_cp;
  1070. sb->cp_events_hi = (mddev->events>>32);
  1071. sb->cp_events_lo = (u32)mddev->events;
  1072. if (mddev->recovery_cp == MaxSector)
  1073. sb->state = (1<< MD_SB_CLEAN);
  1074. } else
  1075. sb->recovery_cp = 0;
  1076. sb->layout = mddev->layout;
  1077. sb->chunk_size = mddev->chunk_sectors << 9;
  1078. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1079. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1080. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1081. rdev_for_each(rdev2, mddev) {
  1082. mdp_disk_t *d;
  1083. int desc_nr;
  1084. int is_active = test_bit(In_sync, &rdev2->flags);
  1085. if (rdev2->raid_disk >= 0 &&
  1086. sb->minor_version >= 91)
  1087. /* we have nowhere to store the recovery_offset,
  1088. * but if it is not below the reshape_position,
  1089. * we can piggy-back on that.
  1090. */
  1091. is_active = 1;
  1092. if (rdev2->raid_disk < 0 ||
  1093. test_bit(Faulty, &rdev2->flags))
  1094. is_active = 0;
  1095. if (is_active)
  1096. desc_nr = rdev2->raid_disk;
  1097. else
  1098. desc_nr = next_spare++;
  1099. rdev2->desc_nr = desc_nr;
  1100. d = &sb->disks[rdev2->desc_nr];
  1101. nr_disks++;
  1102. d->number = rdev2->desc_nr;
  1103. d->major = MAJOR(rdev2->bdev->bd_dev);
  1104. d->minor = MINOR(rdev2->bdev->bd_dev);
  1105. if (is_active)
  1106. d->raid_disk = rdev2->raid_disk;
  1107. else
  1108. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1109. if (test_bit(Faulty, &rdev2->flags))
  1110. d->state = (1<<MD_DISK_FAULTY);
  1111. else if (is_active) {
  1112. d->state = (1<<MD_DISK_ACTIVE);
  1113. if (test_bit(In_sync, &rdev2->flags))
  1114. d->state |= (1<<MD_DISK_SYNC);
  1115. active++;
  1116. working++;
  1117. } else {
  1118. d->state = 0;
  1119. spare++;
  1120. working++;
  1121. }
  1122. if (test_bit(WriteMostly, &rdev2->flags))
  1123. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1124. }
  1125. /* now set the "removed" and "faulty" bits on any missing devices */
  1126. for (i=0 ; i < mddev->raid_disks ; i++) {
  1127. mdp_disk_t *d = &sb->disks[i];
  1128. if (d->state == 0 && d->number == 0) {
  1129. d->number = i;
  1130. d->raid_disk = i;
  1131. d->state = (1<<MD_DISK_REMOVED);
  1132. d->state |= (1<<MD_DISK_FAULTY);
  1133. failed++;
  1134. }
  1135. }
  1136. sb->nr_disks = nr_disks;
  1137. sb->active_disks = active;
  1138. sb->working_disks = working;
  1139. sb->failed_disks = failed;
  1140. sb->spare_disks = spare;
  1141. sb->this_disk = sb->disks[rdev->desc_nr];
  1142. sb->sb_csum = calc_sb_csum(sb);
  1143. }
  1144. /*
  1145. * rdev_size_change for 0.90.0
  1146. */
  1147. static unsigned long long
  1148. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1149. {
  1150. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1151. return 0; /* component must fit device */
  1152. if (rdev->mddev->bitmap_info.offset)
  1153. return 0; /* can't move bitmap */
  1154. rdev->sb_start = calc_dev_sboffset(rdev);
  1155. if (!num_sectors || num_sectors > rdev->sb_start)
  1156. num_sectors = rdev->sb_start;
  1157. /* Limit to 4TB as metadata cannot record more than that.
  1158. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1159. */
  1160. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1161. num_sectors = (2ULL << 32) - 2;
  1162. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1163. rdev->sb_page);
  1164. md_super_wait(rdev->mddev);
  1165. return num_sectors;
  1166. }
  1167. static int
  1168. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1169. {
  1170. /* non-zero offset changes not possible with v0.90 */
  1171. return new_offset == 0;
  1172. }
  1173. /*
  1174. * version 1 superblock
  1175. */
  1176. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1177. {
  1178. __le32 disk_csum;
  1179. u32 csum;
  1180. unsigned long long newcsum;
  1181. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1182. __le32 *isuper = (__le32*)sb;
  1183. disk_csum = sb->sb_csum;
  1184. sb->sb_csum = 0;
  1185. newcsum = 0;
  1186. for (; size >= 4; size -= 4)
  1187. newcsum += le32_to_cpu(*isuper++);
  1188. if (size == 2)
  1189. newcsum += le16_to_cpu(*(__le16*) isuper);
  1190. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1191. sb->sb_csum = disk_csum;
  1192. return cpu_to_le32(csum);
  1193. }
  1194. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1195. int acknowledged);
  1196. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1197. {
  1198. struct mdp_superblock_1 *sb;
  1199. int ret;
  1200. sector_t sb_start;
  1201. sector_t sectors;
  1202. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1203. int bmask;
  1204. /*
  1205. * Calculate the position of the superblock in 512byte sectors.
  1206. * It is always aligned to a 4K boundary and
  1207. * depeding on minor_version, it can be:
  1208. * 0: At least 8K, but less than 12K, from end of device
  1209. * 1: At start of device
  1210. * 2: 4K from start of device.
  1211. */
  1212. switch(minor_version) {
  1213. case 0:
  1214. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1215. sb_start -= 8*2;
  1216. sb_start &= ~(sector_t)(4*2-1);
  1217. break;
  1218. case 1:
  1219. sb_start = 0;
  1220. break;
  1221. case 2:
  1222. sb_start = 8;
  1223. break;
  1224. default:
  1225. return -EINVAL;
  1226. }
  1227. rdev->sb_start = sb_start;
  1228. /* superblock is rarely larger than 1K, but it can be larger,
  1229. * and it is safe to read 4k, so we do that
  1230. */
  1231. ret = read_disk_sb(rdev, 4096);
  1232. if (ret) return ret;
  1233. sb = page_address(rdev->sb_page);
  1234. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1235. sb->major_version != cpu_to_le32(1) ||
  1236. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1237. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1238. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1239. return -EINVAL;
  1240. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1241. printk("md: invalid superblock checksum on %s\n",
  1242. bdevname(rdev->bdev,b));
  1243. return -EINVAL;
  1244. }
  1245. if (le64_to_cpu(sb->data_size) < 10) {
  1246. printk("md: data_size too small on %s\n",
  1247. bdevname(rdev->bdev,b));
  1248. return -EINVAL;
  1249. }
  1250. if (sb->pad0 ||
  1251. sb->pad3[0] ||
  1252. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1253. /* Some padding is non-zero, might be a new feature */
  1254. return -EINVAL;
  1255. rdev->preferred_minor = 0xffff;
  1256. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1257. rdev->new_data_offset = rdev->data_offset;
  1258. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1259. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1260. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1261. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1262. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1263. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1264. if (rdev->sb_size & bmask)
  1265. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1266. if (minor_version
  1267. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1268. return -EINVAL;
  1269. if (minor_version
  1270. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1271. return -EINVAL;
  1272. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1273. rdev->desc_nr = -1;
  1274. else
  1275. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1276. if (!rdev->bb_page) {
  1277. rdev->bb_page = alloc_page(GFP_KERNEL);
  1278. if (!rdev->bb_page)
  1279. return -ENOMEM;
  1280. }
  1281. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1282. rdev->badblocks.count == 0) {
  1283. /* need to load the bad block list.
  1284. * Currently we limit it to one page.
  1285. */
  1286. s32 offset;
  1287. sector_t bb_sector;
  1288. u64 *bbp;
  1289. int i;
  1290. int sectors = le16_to_cpu(sb->bblog_size);
  1291. if (sectors > (PAGE_SIZE / 512))
  1292. return -EINVAL;
  1293. offset = le32_to_cpu(sb->bblog_offset);
  1294. if (offset == 0)
  1295. return -EINVAL;
  1296. bb_sector = (long long)offset;
  1297. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1298. rdev->bb_page, READ, true))
  1299. return -EIO;
  1300. bbp = (u64 *)page_address(rdev->bb_page);
  1301. rdev->badblocks.shift = sb->bblog_shift;
  1302. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1303. u64 bb = le64_to_cpu(*bbp);
  1304. int count = bb & (0x3ff);
  1305. u64 sector = bb >> 10;
  1306. sector <<= sb->bblog_shift;
  1307. count <<= sb->bblog_shift;
  1308. if (bb + 1 == 0)
  1309. break;
  1310. if (md_set_badblocks(&rdev->badblocks,
  1311. sector, count, 1) == 0)
  1312. return -EINVAL;
  1313. }
  1314. } else if (sb->bblog_offset != 0)
  1315. rdev->badblocks.shift = 0;
  1316. if (!refdev) {
  1317. ret = 1;
  1318. } else {
  1319. __u64 ev1, ev2;
  1320. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1321. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1322. sb->level != refsb->level ||
  1323. sb->layout != refsb->layout ||
  1324. sb->chunksize != refsb->chunksize) {
  1325. printk(KERN_WARNING "md: %s has strangely different"
  1326. " superblock to %s\n",
  1327. bdevname(rdev->bdev,b),
  1328. bdevname(refdev->bdev,b2));
  1329. return -EINVAL;
  1330. }
  1331. ev1 = le64_to_cpu(sb->events);
  1332. ev2 = le64_to_cpu(refsb->events);
  1333. if (ev1 > ev2)
  1334. ret = 1;
  1335. else
  1336. ret = 0;
  1337. }
  1338. if (minor_version) {
  1339. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1340. sectors -= rdev->data_offset;
  1341. } else
  1342. sectors = rdev->sb_start;
  1343. if (sectors < le64_to_cpu(sb->data_size))
  1344. return -EINVAL;
  1345. rdev->sectors = le64_to_cpu(sb->data_size);
  1346. return ret;
  1347. }
  1348. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1349. {
  1350. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1351. __u64 ev1 = le64_to_cpu(sb->events);
  1352. rdev->raid_disk = -1;
  1353. clear_bit(Faulty, &rdev->flags);
  1354. clear_bit(In_sync, &rdev->flags);
  1355. clear_bit(Bitmap_sync, &rdev->flags);
  1356. clear_bit(WriteMostly, &rdev->flags);
  1357. if (mddev->raid_disks == 0) {
  1358. mddev->major_version = 1;
  1359. mddev->patch_version = 0;
  1360. mddev->external = 0;
  1361. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1362. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1363. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1364. mddev->level = le32_to_cpu(sb->level);
  1365. mddev->clevel[0] = 0;
  1366. mddev->layout = le32_to_cpu(sb->layout);
  1367. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1368. mddev->dev_sectors = le64_to_cpu(sb->size);
  1369. mddev->events = ev1;
  1370. mddev->bitmap_info.offset = 0;
  1371. mddev->bitmap_info.space = 0;
  1372. /* Default location for bitmap is 1K after superblock
  1373. * using 3K - total of 4K
  1374. */
  1375. mddev->bitmap_info.default_offset = 1024 >> 9;
  1376. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1377. mddev->reshape_backwards = 0;
  1378. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1379. memcpy(mddev->uuid, sb->set_uuid, 16);
  1380. mddev->max_disks = (4096-256)/2;
  1381. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1382. mddev->bitmap_info.file == NULL) {
  1383. mddev->bitmap_info.offset =
  1384. (__s32)le32_to_cpu(sb->bitmap_offset);
  1385. /* Metadata doesn't record how much space is available.
  1386. * For 1.0, we assume we can use up to the superblock
  1387. * if before, else to 4K beyond superblock.
  1388. * For others, assume no change is possible.
  1389. */
  1390. if (mddev->minor_version > 0)
  1391. mddev->bitmap_info.space = 0;
  1392. else if (mddev->bitmap_info.offset > 0)
  1393. mddev->bitmap_info.space =
  1394. 8 - mddev->bitmap_info.offset;
  1395. else
  1396. mddev->bitmap_info.space =
  1397. -mddev->bitmap_info.offset;
  1398. }
  1399. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1400. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1401. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1402. mddev->new_level = le32_to_cpu(sb->new_level);
  1403. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1404. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1405. if (mddev->delta_disks < 0 ||
  1406. (mddev->delta_disks == 0 &&
  1407. (le32_to_cpu(sb->feature_map)
  1408. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1409. mddev->reshape_backwards = 1;
  1410. } else {
  1411. mddev->reshape_position = MaxSector;
  1412. mddev->delta_disks = 0;
  1413. mddev->new_level = mddev->level;
  1414. mddev->new_layout = mddev->layout;
  1415. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1416. }
  1417. } else if (mddev->pers == NULL) {
  1418. /* Insist of good event counter while assembling, except for
  1419. * spares (which don't need an event count) */
  1420. ++ev1;
  1421. if (rdev->desc_nr >= 0 &&
  1422. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1423. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1424. if (ev1 < mddev->events)
  1425. return -EINVAL;
  1426. } else if (mddev->bitmap) {
  1427. /* If adding to array with a bitmap, then we can accept an
  1428. * older device, but not too old.
  1429. */
  1430. if (ev1 < mddev->bitmap->events_cleared)
  1431. return 0;
  1432. if (ev1 < mddev->events)
  1433. set_bit(Bitmap_sync, &rdev->flags);
  1434. } else {
  1435. if (ev1 < mddev->events)
  1436. /* just a hot-add of a new device, leave raid_disk at -1 */
  1437. return 0;
  1438. }
  1439. if (mddev->level != LEVEL_MULTIPATH) {
  1440. int role;
  1441. if (rdev->desc_nr < 0 ||
  1442. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1443. role = 0xffff;
  1444. rdev->desc_nr = -1;
  1445. } else
  1446. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1447. switch(role) {
  1448. case 0xffff: /* spare */
  1449. break;
  1450. case 0xfffe: /* faulty */
  1451. set_bit(Faulty, &rdev->flags);
  1452. break;
  1453. default:
  1454. rdev->saved_raid_disk = role;
  1455. if ((le32_to_cpu(sb->feature_map) &
  1456. MD_FEATURE_RECOVERY_OFFSET)) {
  1457. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1458. if (!(le32_to_cpu(sb->feature_map) &
  1459. MD_FEATURE_RECOVERY_BITMAP))
  1460. rdev->saved_raid_disk = -1;
  1461. } else
  1462. set_bit(In_sync, &rdev->flags);
  1463. rdev->raid_disk = role;
  1464. break;
  1465. }
  1466. if (sb->devflags & WriteMostly1)
  1467. set_bit(WriteMostly, &rdev->flags);
  1468. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1469. set_bit(Replacement, &rdev->flags);
  1470. } else /* MULTIPATH are always insync */
  1471. set_bit(In_sync, &rdev->flags);
  1472. return 0;
  1473. }
  1474. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1475. {
  1476. struct mdp_superblock_1 *sb;
  1477. struct md_rdev *rdev2;
  1478. int max_dev, i;
  1479. /* make rdev->sb match mddev and rdev data. */
  1480. sb = page_address(rdev->sb_page);
  1481. sb->feature_map = 0;
  1482. sb->pad0 = 0;
  1483. sb->recovery_offset = cpu_to_le64(0);
  1484. memset(sb->pad3, 0, sizeof(sb->pad3));
  1485. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1486. sb->events = cpu_to_le64(mddev->events);
  1487. if (mddev->in_sync)
  1488. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1489. else
  1490. sb->resync_offset = cpu_to_le64(0);
  1491. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1492. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1493. sb->size = cpu_to_le64(mddev->dev_sectors);
  1494. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1495. sb->level = cpu_to_le32(mddev->level);
  1496. sb->layout = cpu_to_le32(mddev->layout);
  1497. if (test_bit(WriteMostly, &rdev->flags))
  1498. sb->devflags |= WriteMostly1;
  1499. else
  1500. sb->devflags &= ~WriteMostly1;
  1501. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1502. sb->data_size = cpu_to_le64(rdev->sectors);
  1503. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1504. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1505. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1506. }
  1507. if (rdev->raid_disk >= 0 &&
  1508. !test_bit(In_sync, &rdev->flags)) {
  1509. sb->feature_map |=
  1510. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1511. sb->recovery_offset =
  1512. cpu_to_le64(rdev->recovery_offset);
  1513. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1514. sb->feature_map |=
  1515. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1516. }
  1517. if (test_bit(Replacement, &rdev->flags))
  1518. sb->feature_map |=
  1519. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1520. if (mddev->reshape_position != MaxSector) {
  1521. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1522. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1523. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1524. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1525. sb->new_level = cpu_to_le32(mddev->new_level);
  1526. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1527. if (mddev->delta_disks == 0 &&
  1528. mddev->reshape_backwards)
  1529. sb->feature_map
  1530. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1531. if (rdev->new_data_offset != rdev->data_offset) {
  1532. sb->feature_map
  1533. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1534. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1535. - rdev->data_offset));
  1536. }
  1537. }
  1538. if (rdev->badblocks.count == 0)
  1539. /* Nothing to do for bad blocks*/ ;
  1540. else if (sb->bblog_offset == 0)
  1541. /* Cannot record bad blocks on this device */
  1542. md_error(mddev, rdev);
  1543. else {
  1544. struct badblocks *bb = &rdev->badblocks;
  1545. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1546. u64 *p = bb->page;
  1547. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1548. if (bb->changed) {
  1549. unsigned seq;
  1550. retry:
  1551. seq = read_seqbegin(&bb->lock);
  1552. memset(bbp, 0xff, PAGE_SIZE);
  1553. for (i = 0 ; i < bb->count ; i++) {
  1554. u64 internal_bb = p[i];
  1555. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1556. | BB_LEN(internal_bb));
  1557. bbp[i] = cpu_to_le64(store_bb);
  1558. }
  1559. bb->changed = 0;
  1560. if (read_seqretry(&bb->lock, seq))
  1561. goto retry;
  1562. bb->sector = (rdev->sb_start +
  1563. (int)le32_to_cpu(sb->bblog_offset));
  1564. bb->size = le16_to_cpu(sb->bblog_size);
  1565. }
  1566. }
  1567. max_dev = 0;
  1568. rdev_for_each(rdev2, mddev)
  1569. if (rdev2->desc_nr+1 > max_dev)
  1570. max_dev = rdev2->desc_nr+1;
  1571. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1572. int bmask;
  1573. sb->max_dev = cpu_to_le32(max_dev);
  1574. rdev->sb_size = max_dev * 2 + 256;
  1575. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1576. if (rdev->sb_size & bmask)
  1577. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1578. } else
  1579. max_dev = le32_to_cpu(sb->max_dev);
  1580. for (i=0; i<max_dev;i++)
  1581. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1582. rdev_for_each(rdev2, mddev) {
  1583. i = rdev2->desc_nr;
  1584. if (test_bit(Faulty, &rdev2->flags))
  1585. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1586. else if (test_bit(In_sync, &rdev2->flags))
  1587. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1588. else if (rdev2->raid_disk >= 0)
  1589. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1590. else
  1591. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1592. }
  1593. sb->sb_csum = calc_sb_1_csum(sb);
  1594. }
  1595. static unsigned long long
  1596. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1597. {
  1598. struct mdp_superblock_1 *sb;
  1599. sector_t max_sectors;
  1600. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1601. return 0; /* component must fit device */
  1602. if (rdev->data_offset != rdev->new_data_offset)
  1603. return 0; /* too confusing */
  1604. if (rdev->sb_start < rdev->data_offset) {
  1605. /* minor versions 1 and 2; superblock before data */
  1606. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1607. max_sectors -= rdev->data_offset;
  1608. if (!num_sectors || num_sectors > max_sectors)
  1609. num_sectors = max_sectors;
  1610. } else if (rdev->mddev->bitmap_info.offset) {
  1611. /* minor version 0 with bitmap we can't move */
  1612. return 0;
  1613. } else {
  1614. /* minor version 0; superblock after data */
  1615. sector_t sb_start;
  1616. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1617. sb_start &= ~(sector_t)(4*2 - 1);
  1618. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1619. if (!num_sectors || num_sectors > max_sectors)
  1620. num_sectors = max_sectors;
  1621. rdev->sb_start = sb_start;
  1622. }
  1623. sb = page_address(rdev->sb_page);
  1624. sb->data_size = cpu_to_le64(num_sectors);
  1625. sb->super_offset = rdev->sb_start;
  1626. sb->sb_csum = calc_sb_1_csum(sb);
  1627. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1628. rdev->sb_page);
  1629. md_super_wait(rdev->mddev);
  1630. return num_sectors;
  1631. }
  1632. static int
  1633. super_1_allow_new_offset(struct md_rdev *rdev,
  1634. unsigned long long new_offset)
  1635. {
  1636. /* All necessary checks on new >= old have been done */
  1637. struct bitmap *bitmap;
  1638. if (new_offset >= rdev->data_offset)
  1639. return 1;
  1640. /* with 1.0 metadata, there is no metadata to tread on
  1641. * so we can always move back */
  1642. if (rdev->mddev->minor_version == 0)
  1643. return 1;
  1644. /* otherwise we must be sure not to step on
  1645. * any metadata, so stay:
  1646. * 36K beyond start of superblock
  1647. * beyond end of badblocks
  1648. * beyond write-intent bitmap
  1649. */
  1650. if (rdev->sb_start + (32+4)*2 > new_offset)
  1651. return 0;
  1652. bitmap = rdev->mddev->bitmap;
  1653. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1654. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1655. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1656. return 0;
  1657. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1658. return 0;
  1659. return 1;
  1660. }
  1661. static struct super_type super_types[] = {
  1662. [0] = {
  1663. .name = "0.90.0",
  1664. .owner = THIS_MODULE,
  1665. .load_super = super_90_load,
  1666. .validate_super = super_90_validate,
  1667. .sync_super = super_90_sync,
  1668. .rdev_size_change = super_90_rdev_size_change,
  1669. .allow_new_offset = super_90_allow_new_offset,
  1670. },
  1671. [1] = {
  1672. .name = "md-1",
  1673. .owner = THIS_MODULE,
  1674. .load_super = super_1_load,
  1675. .validate_super = super_1_validate,
  1676. .sync_super = super_1_sync,
  1677. .rdev_size_change = super_1_rdev_size_change,
  1678. .allow_new_offset = super_1_allow_new_offset,
  1679. },
  1680. };
  1681. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1682. {
  1683. if (mddev->sync_super) {
  1684. mddev->sync_super(mddev, rdev);
  1685. return;
  1686. }
  1687. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1688. super_types[mddev->major_version].sync_super(mddev, rdev);
  1689. }
  1690. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1691. {
  1692. struct md_rdev *rdev, *rdev2;
  1693. rcu_read_lock();
  1694. rdev_for_each_rcu(rdev, mddev1)
  1695. rdev_for_each_rcu(rdev2, mddev2)
  1696. if (rdev->bdev->bd_contains ==
  1697. rdev2->bdev->bd_contains) {
  1698. rcu_read_unlock();
  1699. return 1;
  1700. }
  1701. rcu_read_unlock();
  1702. return 0;
  1703. }
  1704. static LIST_HEAD(pending_raid_disks);
  1705. /*
  1706. * Try to register data integrity profile for an mddev
  1707. *
  1708. * This is called when an array is started and after a disk has been kicked
  1709. * from the array. It only succeeds if all working and active component devices
  1710. * are integrity capable with matching profiles.
  1711. */
  1712. int md_integrity_register(struct mddev *mddev)
  1713. {
  1714. struct md_rdev *rdev, *reference = NULL;
  1715. if (list_empty(&mddev->disks))
  1716. return 0; /* nothing to do */
  1717. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1718. return 0; /* shouldn't register, or already is */
  1719. rdev_for_each(rdev, mddev) {
  1720. /* skip spares and non-functional disks */
  1721. if (test_bit(Faulty, &rdev->flags))
  1722. continue;
  1723. if (rdev->raid_disk < 0)
  1724. continue;
  1725. if (!reference) {
  1726. /* Use the first rdev as the reference */
  1727. reference = rdev;
  1728. continue;
  1729. }
  1730. /* does this rdev's profile match the reference profile? */
  1731. if (blk_integrity_compare(reference->bdev->bd_disk,
  1732. rdev->bdev->bd_disk) < 0)
  1733. return -EINVAL;
  1734. }
  1735. if (!reference || !bdev_get_integrity(reference->bdev))
  1736. return 0;
  1737. /*
  1738. * All component devices are integrity capable and have matching
  1739. * profiles, register the common profile for the md device.
  1740. */
  1741. blk_integrity_register(mddev->gendisk,
  1742. bdev_get_integrity(reference->bdev));
  1743. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1744. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1745. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1746. mdname(mddev));
  1747. return -EINVAL;
  1748. }
  1749. return 0;
  1750. }
  1751. EXPORT_SYMBOL(md_integrity_register);
  1752. /* Disable data integrity if non-capable/non-matching disk is being added */
  1753. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1754. {
  1755. struct blk_integrity *bi_rdev;
  1756. struct blk_integrity *bi_mddev;
  1757. if (!mddev->gendisk)
  1758. return;
  1759. bi_rdev = bdev_get_integrity(rdev->bdev);
  1760. bi_mddev = blk_get_integrity(mddev->gendisk);
  1761. if (!bi_mddev) /* nothing to do */
  1762. return;
  1763. if (rdev->raid_disk < 0) /* skip spares */
  1764. return;
  1765. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1766. rdev->bdev->bd_disk) >= 0)
  1767. return;
  1768. WARN_ON_ONCE(!mddev->suspended);
  1769. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1770. blk_integrity_unregister(mddev->gendisk);
  1771. }
  1772. EXPORT_SYMBOL(md_integrity_add_rdev);
  1773. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1774. {
  1775. char b[BDEVNAME_SIZE];
  1776. struct kobject *ko;
  1777. int err;
  1778. /* prevent duplicates */
  1779. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1780. return -EEXIST;
  1781. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1782. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1783. rdev->sectors < mddev->dev_sectors)) {
  1784. if (mddev->pers) {
  1785. /* Cannot change size, so fail
  1786. * If mddev->level <= 0, then we don't care
  1787. * about aligning sizes (e.g. linear)
  1788. */
  1789. if (mddev->level > 0)
  1790. return -ENOSPC;
  1791. } else
  1792. mddev->dev_sectors = rdev->sectors;
  1793. }
  1794. /* Verify rdev->desc_nr is unique.
  1795. * If it is -1, assign a free number, else
  1796. * check number is not in use
  1797. */
  1798. rcu_read_lock();
  1799. if (rdev->desc_nr < 0) {
  1800. int choice = 0;
  1801. if (mddev->pers)
  1802. choice = mddev->raid_disks;
  1803. while (md_find_rdev_nr_rcu(mddev, choice))
  1804. choice++;
  1805. rdev->desc_nr = choice;
  1806. } else {
  1807. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1808. rcu_read_unlock();
  1809. return -EBUSY;
  1810. }
  1811. }
  1812. rcu_read_unlock();
  1813. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1814. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1815. mdname(mddev), mddev->max_disks);
  1816. return -EBUSY;
  1817. }
  1818. bdevname(rdev->bdev,b);
  1819. strreplace(b, '/', '!');
  1820. rdev->mddev = mddev;
  1821. printk(KERN_INFO "md: bind<%s>\n", b);
  1822. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1823. goto fail;
  1824. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1825. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1826. /* failure here is OK */;
  1827. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1828. list_add_rcu(&rdev->same_set, &mddev->disks);
  1829. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1830. /* May as well allow recovery to be retried once */
  1831. mddev->recovery_disabled++;
  1832. return 0;
  1833. fail:
  1834. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1835. b, mdname(mddev));
  1836. return err;
  1837. }
  1838. static void md_delayed_delete(struct work_struct *ws)
  1839. {
  1840. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1841. kobject_del(&rdev->kobj);
  1842. kobject_put(&rdev->kobj);
  1843. }
  1844. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1845. {
  1846. char b[BDEVNAME_SIZE];
  1847. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1848. list_del_rcu(&rdev->same_set);
  1849. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1850. rdev->mddev = NULL;
  1851. sysfs_remove_link(&rdev->kobj, "block");
  1852. sysfs_put(rdev->sysfs_state);
  1853. rdev->sysfs_state = NULL;
  1854. rdev->badblocks.count = 0;
  1855. /* We need to delay this, otherwise we can deadlock when
  1856. * writing to 'remove' to "dev/state". We also need
  1857. * to delay it due to rcu usage.
  1858. */
  1859. synchronize_rcu();
  1860. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1861. kobject_get(&rdev->kobj);
  1862. queue_work(md_misc_wq, &rdev->del_work);
  1863. }
  1864. /*
  1865. * prevent the device from being mounted, repartitioned or
  1866. * otherwise reused by a RAID array (or any other kernel
  1867. * subsystem), by bd_claiming the device.
  1868. */
  1869. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1870. {
  1871. int err = 0;
  1872. struct block_device *bdev;
  1873. char b[BDEVNAME_SIZE];
  1874. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1875. shared ? (struct md_rdev *)lock_rdev : rdev);
  1876. if (IS_ERR(bdev)) {
  1877. printk(KERN_ERR "md: could not open %s.\n",
  1878. __bdevname(dev, b));
  1879. return PTR_ERR(bdev);
  1880. }
  1881. rdev->bdev = bdev;
  1882. return err;
  1883. }
  1884. static void unlock_rdev(struct md_rdev *rdev)
  1885. {
  1886. struct block_device *bdev = rdev->bdev;
  1887. rdev->bdev = NULL;
  1888. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1889. }
  1890. void md_autodetect_dev(dev_t dev);
  1891. static void export_rdev(struct md_rdev *rdev)
  1892. {
  1893. char b[BDEVNAME_SIZE];
  1894. printk(KERN_INFO "md: export_rdev(%s)\n",
  1895. bdevname(rdev->bdev,b));
  1896. md_rdev_clear(rdev);
  1897. #ifndef MODULE
  1898. if (test_bit(AutoDetected, &rdev->flags))
  1899. md_autodetect_dev(rdev->bdev->bd_dev);
  1900. #endif
  1901. unlock_rdev(rdev);
  1902. kobject_put(&rdev->kobj);
  1903. }
  1904. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1905. {
  1906. unbind_rdev_from_array(rdev);
  1907. export_rdev(rdev);
  1908. }
  1909. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1910. static void export_array(struct mddev *mddev)
  1911. {
  1912. struct md_rdev *rdev;
  1913. while (!list_empty(&mddev->disks)) {
  1914. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1915. same_set);
  1916. md_kick_rdev_from_array(rdev);
  1917. }
  1918. mddev->raid_disks = 0;
  1919. mddev->major_version = 0;
  1920. }
  1921. static void sync_sbs(struct mddev *mddev, int nospares)
  1922. {
  1923. /* Update each superblock (in-memory image), but
  1924. * if we are allowed to, skip spares which already
  1925. * have the right event counter, or have one earlier
  1926. * (which would mean they aren't being marked as dirty
  1927. * with the rest of the array)
  1928. */
  1929. struct md_rdev *rdev;
  1930. rdev_for_each(rdev, mddev) {
  1931. if (rdev->sb_events == mddev->events ||
  1932. (nospares &&
  1933. rdev->raid_disk < 0 &&
  1934. rdev->sb_events+1 == mddev->events)) {
  1935. /* Don't update this superblock */
  1936. rdev->sb_loaded = 2;
  1937. } else {
  1938. sync_super(mddev, rdev);
  1939. rdev->sb_loaded = 1;
  1940. }
  1941. }
  1942. }
  1943. void md_update_sb(struct mddev *mddev, int force_change)
  1944. {
  1945. struct md_rdev *rdev;
  1946. int sync_req;
  1947. int nospares = 0;
  1948. int any_badblocks_changed = 0;
  1949. if (mddev->ro) {
  1950. if (force_change)
  1951. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  1952. return;
  1953. }
  1954. repeat:
  1955. /* First make sure individual recovery_offsets are correct */
  1956. rdev_for_each(rdev, mddev) {
  1957. if (rdev->raid_disk >= 0 &&
  1958. mddev->delta_disks >= 0 &&
  1959. !test_bit(In_sync, &rdev->flags) &&
  1960. mddev->curr_resync_completed > rdev->recovery_offset)
  1961. rdev->recovery_offset = mddev->curr_resync_completed;
  1962. }
  1963. if (!mddev->persistent) {
  1964. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  1965. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  1966. if (!mddev->external) {
  1967. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1968. rdev_for_each(rdev, mddev) {
  1969. if (rdev->badblocks.changed) {
  1970. rdev->badblocks.changed = 0;
  1971. md_ack_all_badblocks(&rdev->badblocks);
  1972. md_error(mddev, rdev);
  1973. }
  1974. clear_bit(Blocked, &rdev->flags);
  1975. clear_bit(BlockedBadBlocks, &rdev->flags);
  1976. wake_up(&rdev->blocked_wait);
  1977. }
  1978. }
  1979. wake_up(&mddev->sb_wait);
  1980. return;
  1981. }
  1982. spin_lock(&mddev->lock);
  1983. mddev->utime = get_seconds();
  1984. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1985. force_change = 1;
  1986. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1987. /* just a clean<-> dirty transition, possibly leave spares alone,
  1988. * though if events isn't the right even/odd, we will have to do
  1989. * spares after all
  1990. */
  1991. nospares = 1;
  1992. if (force_change)
  1993. nospares = 0;
  1994. if (mddev->degraded)
  1995. /* If the array is degraded, then skipping spares is both
  1996. * dangerous and fairly pointless.
  1997. * Dangerous because a device that was removed from the array
  1998. * might have a event_count that still looks up-to-date,
  1999. * so it can be re-added without a resync.
  2000. * Pointless because if there are any spares to skip,
  2001. * then a recovery will happen and soon that array won't
  2002. * be degraded any more and the spare can go back to sleep then.
  2003. */
  2004. nospares = 0;
  2005. sync_req = mddev->in_sync;
  2006. /* If this is just a dirty<->clean transition, and the array is clean
  2007. * and 'events' is odd, we can roll back to the previous clean state */
  2008. if (nospares
  2009. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2010. && mddev->can_decrease_events
  2011. && mddev->events != 1) {
  2012. mddev->events--;
  2013. mddev->can_decrease_events = 0;
  2014. } else {
  2015. /* otherwise we have to go forward and ... */
  2016. mddev->events ++;
  2017. mddev->can_decrease_events = nospares;
  2018. }
  2019. /*
  2020. * This 64-bit counter should never wrap.
  2021. * Either we are in around ~1 trillion A.C., assuming
  2022. * 1 reboot per second, or we have a bug...
  2023. */
  2024. WARN_ON(mddev->events == 0);
  2025. rdev_for_each(rdev, mddev) {
  2026. if (rdev->badblocks.changed)
  2027. any_badblocks_changed++;
  2028. if (test_bit(Faulty, &rdev->flags))
  2029. set_bit(FaultRecorded, &rdev->flags);
  2030. }
  2031. sync_sbs(mddev, nospares);
  2032. spin_unlock(&mddev->lock);
  2033. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2034. mdname(mddev), mddev->in_sync);
  2035. bitmap_update_sb(mddev->bitmap);
  2036. rdev_for_each(rdev, mddev) {
  2037. char b[BDEVNAME_SIZE];
  2038. if (rdev->sb_loaded != 1)
  2039. continue; /* no noise on spare devices */
  2040. if (!test_bit(Faulty, &rdev->flags)) {
  2041. md_super_write(mddev,rdev,
  2042. rdev->sb_start, rdev->sb_size,
  2043. rdev->sb_page);
  2044. pr_debug("md: (write) %s's sb offset: %llu\n",
  2045. bdevname(rdev->bdev, b),
  2046. (unsigned long long)rdev->sb_start);
  2047. rdev->sb_events = mddev->events;
  2048. if (rdev->badblocks.size) {
  2049. md_super_write(mddev, rdev,
  2050. rdev->badblocks.sector,
  2051. rdev->badblocks.size << 9,
  2052. rdev->bb_page);
  2053. rdev->badblocks.size = 0;
  2054. }
  2055. } else
  2056. pr_debug("md: %s (skipping faulty)\n",
  2057. bdevname(rdev->bdev, b));
  2058. if (mddev->level == LEVEL_MULTIPATH)
  2059. /* only need to write one superblock... */
  2060. break;
  2061. }
  2062. md_super_wait(mddev);
  2063. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2064. spin_lock(&mddev->lock);
  2065. if (mddev->in_sync != sync_req ||
  2066. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2067. /* have to write it out again */
  2068. spin_unlock(&mddev->lock);
  2069. goto repeat;
  2070. }
  2071. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2072. spin_unlock(&mddev->lock);
  2073. wake_up(&mddev->sb_wait);
  2074. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2075. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2076. rdev_for_each(rdev, mddev) {
  2077. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2078. clear_bit(Blocked, &rdev->flags);
  2079. if (any_badblocks_changed)
  2080. md_ack_all_badblocks(&rdev->badblocks);
  2081. clear_bit(BlockedBadBlocks, &rdev->flags);
  2082. wake_up(&rdev->blocked_wait);
  2083. }
  2084. }
  2085. EXPORT_SYMBOL(md_update_sb);
  2086. static int add_bound_rdev(struct md_rdev *rdev)
  2087. {
  2088. struct mddev *mddev = rdev->mddev;
  2089. int err = 0;
  2090. if (!mddev->pers->hot_remove_disk) {
  2091. /* If there is hot_add_disk but no hot_remove_disk
  2092. * then added disks for geometry changes,
  2093. * and should be added immediately.
  2094. */
  2095. super_types[mddev->major_version].
  2096. validate_super(mddev, rdev);
  2097. err = mddev->pers->hot_add_disk(mddev, rdev);
  2098. if (err) {
  2099. unbind_rdev_from_array(rdev);
  2100. export_rdev(rdev);
  2101. return err;
  2102. }
  2103. }
  2104. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2105. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2106. if (mddev->degraded)
  2107. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2108. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2109. md_new_event(mddev);
  2110. md_wakeup_thread(mddev->thread);
  2111. return 0;
  2112. }
  2113. /* words written to sysfs files may, or may not, be \n terminated.
  2114. * We want to accept with case. For this we use cmd_match.
  2115. */
  2116. static int cmd_match(const char *cmd, const char *str)
  2117. {
  2118. /* See if cmd, written into a sysfs file, matches
  2119. * str. They must either be the same, or cmd can
  2120. * have a trailing newline
  2121. */
  2122. while (*cmd && *str && *cmd == *str) {
  2123. cmd++;
  2124. str++;
  2125. }
  2126. if (*cmd == '\n')
  2127. cmd++;
  2128. if (*str || *cmd)
  2129. return 0;
  2130. return 1;
  2131. }
  2132. struct rdev_sysfs_entry {
  2133. struct attribute attr;
  2134. ssize_t (*show)(struct md_rdev *, char *);
  2135. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2136. };
  2137. static ssize_t
  2138. state_show(struct md_rdev *rdev, char *page)
  2139. {
  2140. char *sep = "";
  2141. size_t len = 0;
  2142. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2143. if (test_bit(Faulty, &flags) ||
  2144. rdev->badblocks.unacked_exist) {
  2145. len+= sprintf(page+len, "%sfaulty",sep);
  2146. sep = ",";
  2147. }
  2148. if (test_bit(In_sync, &flags)) {
  2149. len += sprintf(page+len, "%sin_sync",sep);
  2150. sep = ",";
  2151. }
  2152. if (test_bit(WriteMostly, &flags)) {
  2153. len += sprintf(page+len, "%swrite_mostly",sep);
  2154. sep = ",";
  2155. }
  2156. if (test_bit(Blocked, &flags) ||
  2157. (rdev->badblocks.unacked_exist
  2158. && !test_bit(Faulty, &flags))) {
  2159. len += sprintf(page+len, "%sblocked", sep);
  2160. sep = ",";
  2161. }
  2162. if (!test_bit(Faulty, &flags) &&
  2163. !test_bit(In_sync, &flags)) {
  2164. len += sprintf(page+len, "%sspare", sep);
  2165. sep = ",";
  2166. }
  2167. if (test_bit(WriteErrorSeen, &flags)) {
  2168. len += sprintf(page+len, "%swrite_error", sep);
  2169. sep = ",";
  2170. }
  2171. if (test_bit(WantReplacement, &flags)) {
  2172. len += sprintf(page+len, "%swant_replacement", sep);
  2173. sep = ",";
  2174. }
  2175. if (test_bit(Replacement, &flags)) {
  2176. len += sprintf(page+len, "%sreplacement", sep);
  2177. sep = ",";
  2178. }
  2179. return len+sprintf(page+len, "\n");
  2180. }
  2181. static ssize_t
  2182. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2183. {
  2184. /* can write
  2185. * faulty - simulates an error
  2186. * remove - disconnects the device
  2187. * writemostly - sets write_mostly
  2188. * -writemostly - clears write_mostly
  2189. * blocked - sets the Blocked flags
  2190. * -blocked - clears the Blocked and possibly simulates an error
  2191. * insync - sets Insync providing device isn't active
  2192. * -insync - clear Insync for a device with a slot assigned,
  2193. * so that it gets rebuilt based on bitmap
  2194. * write_error - sets WriteErrorSeen
  2195. * -write_error - clears WriteErrorSeen
  2196. */
  2197. int err = -EINVAL;
  2198. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2199. md_error(rdev->mddev, rdev);
  2200. if (test_bit(Faulty, &rdev->flags))
  2201. err = 0;
  2202. else
  2203. err = -EBUSY;
  2204. } else if (cmd_match(buf, "remove")) {
  2205. if (rdev->raid_disk >= 0)
  2206. err = -EBUSY;
  2207. else {
  2208. struct mddev *mddev = rdev->mddev;
  2209. if (mddev_is_clustered(mddev))
  2210. md_cluster_ops->remove_disk(mddev, rdev);
  2211. md_kick_rdev_from_array(rdev);
  2212. if (mddev_is_clustered(mddev))
  2213. md_cluster_ops->metadata_update_start(mddev);
  2214. if (mddev->pers)
  2215. md_update_sb(mddev, 1);
  2216. md_new_event(mddev);
  2217. if (mddev_is_clustered(mddev))
  2218. md_cluster_ops->metadata_update_finish(mddev);
  2219. err = 0;
  2220. }
  2221. } else if (cmd_match(buf, "writemostly")) {
  2222. set_bit(WriteMostly, &rdev->flags);
  2223. err = 0;
  2224. } else if (cmd_match(buf, "-writemostly")) {
  2225. clear_bit(WriteMostly, &rdev->flags);
  2226. err = 0;
  2227. } else if (cmd_match(buf, "blocked")) {
  2228. set_bit(Blocked, &rdev->flags);
  2229. err = 0;
  2230. } else if (cmd_match(buf, "-blocked")) {
  2231. if (!test_bit(Faulty, &rdev->flags) &&
  2232. rdev->badblocks.unacked_exist) {
  2233. /* metadata handler doesn't understand badblocks,
  2234. * so we need to fail the device
  2235. */
  2236. md_error(rdev->mddev, rdev);
  2237. }
  2238. clear_bit(Blocked, &rdev->flags);
  2239. clear_bit(BlockedBadBlocks, &rdev->flags);
  2240. wake_up(&rdev->blocked_wait);
  2241. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2242. md_wakeup_thread(rdev->mddev->thread);
  2243. err = 0;
  2244. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2245. set_bit(In_sync, &rdev->flags);
  2246. err = 0;
  2247. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
  2248. if (rdev->mddev->pers == NULL) {
  2249. clear_bit(In_sync, &rdev->flags);
  2250. rdev->saved_raid_disk = rdev->raid_disk;
  2251. rdev->raid_disk = -1;
  2252. err = 0;
  2253. }
  2254. } else if (cmd_match(buf, "write_error")) {
  2255. set_bit(WriteErrorSeen, &rdev->flags);
  2256. err = 0;
  2257. } else if (cmd_match(buf, "-write_error")) {
  2258. clear_bit(WriteErrorSeen, &rdev->flags);
  2259. err = 0;
  2260. } else if (cmd_match(buf, "want_replacement")) {
  2261. /* Any non-spare device that is not a replacement can
  2262. * become want_replacement at any time, but we then need to
  2263. * check if recovery is needed.
  2264. */
  2265. if (rdev->raid_disk >= 0 &&
  2266. !test_bit(Replacement, &rdev->flags))
  2267. set_bit(WantReplacement, &rdev->flags);
  2268. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2269. md_wakeup_thread(rdev->mddev->thread);
  2270. err = 0;
  2271. } else if (cmd_match(buf, "-want_replacement")) {
  2272. /* Clearing 'want_replacement' is always allowed.
  2273. * Once replacements starts it is too late though.
  2274. */
  2275. err = 0;
  2276. clear_bit(WantReplacement, &rdev->flags);
  2277. } else if (cmd_match(buf, "replacement")) {
  2278. /* Can only set a device as a replacement when array has not
  2279. * yet been started. Once running, replacement is automatic
  2280. * from spares, or by assigning 'slot'.
  2281. */
  2282. if (rdev->mddev->pers)
  2283. err = -EBUSY;
  2284. else {
  2285. set_bit(Replacement, &rdev->flags);
  2286. err = 0;
  2287. }
  2288. } else if (cmd_match(buf, "-replacement")) {
  2289. /* Similarly, can only clear Replacement before start */
  2290. if (rdev->mddev->pers)
  2291. err = -EBUSY;
  2292. else {
  2293. clear_bit(Replacement, &rdev->flags);
  2294. err = 0;
  2295. }
  2296. } else if (cmd_match(buf, "re-add")) {
  2297. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
  2298. /* clear_bit is performed _after_ all the devices
  2299. * have their local Faulty bit cleared. If any writes
  2300. * happen in the meantime in the local node, they
  2301. * will land in the local bitmap, which will be synced
  2302. * by this node eventually
  2303. */
  2304. if (!mddev_is_clustered(rdev->mddev) ||
  2305. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2306. clear_bit(Faulty, &rdev->flags);
  2307. err = add_bound_rdev(rdev);
  2308. }
  2309. } else
  2310. err = -EBUSY;
  2311. }
  2312. if (!err)
  2313. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2314. return err ? err : len;
  2315. }
  2316. static struct rdev_sysfs_entry rdev_state =
  2317. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2318. static ssize_t
  2319. errors_show(struct md_rdev *rdev, char *page)
  2320. {
  2321. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2322. }
  2323. static ssize_t
  2324. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2325. {
  2326. unsigned int n;
  2327. int rv;
  2328. rv = kstrtouint(buf, 10, &n);
  2329. if (rv < 0)
  2330. return rv;
  2331. atomic_set(&rdev->corrected_errors, n);
  2332. return len;
  2333. }
  2334. static struct rdev_sysfs_entry rdev_errors =
  2335. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2336. static ssize_t
  2337. slot_show(struct md_rdev *rdev, char *page)
  2338. {
  2339. if (rdev->raid_disk < 0)
  2340. return sprintf(page, "none\n");
  2341. else
  2342. return sprintf(page, "%d\n", rdev->raid_disk);
  2343. }
  2344. static ssize_t
  2345. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2346. {
  2347. int slot;
  2348. int err;
  2349. if (strncmp(buf, "none", 4)==0)
  2350. slot = -1;
  2351. else {
  2352. err = kstrtouint(buf, 10, (unsigned int *)&slot);
  2353. if (err < 0)
  2354. return err;
  2355. }
  2356. if (rdev->mddev->pers && slot == -1) {
  2357. /* Setting 'slot' on an active array requires also
  2358. * updating the 'rd%d' link, and communicating
  2359. * with the personality with ->hot_*_disk.
  2360. * For now we only support removing
  2361. * failed/spare devices. This normally happens automatically,
  2362. * but not when the metadata is externally managed.
  2363. */
  2364. if (rdev->raid_disk == -1)
  2365. return -EEXIST;
  2366. /* personality does all needed checks */
  2367. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2368. return -EINVAL;
  2369. clear_bit(Blocked, &rdev->flags);
  2370. remove_and_add_spares(rdev->mddev, rdev);
  2371. if (rdev->raid_disk >= 0)
  2372. return -EBUSY;
  2373. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2374. md_wakeup_thread(rdev->mddev->thread);
  2375. } else if (rdev->mddev->pers) {
  2376. /* Activating a spare .. or possibly reactivating
  2377. * if we ever get bitmaps working here.
  2378. */
  2379. if (rdev->raid_disk != -1)
  2380. return -EBUSY;
  2381. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2382. return -EBUSY;
  2383. if (rdev->mddev->pers->hot_add_disk == NULL)
  2384. return -EINVAL;
  2385. if (slot >= rdev->mddev->raid_disks &&
  2386. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2387. return -ENOSPC;
  2388. rdev->raid_disk = slot;
  2389. if (test_bit(In_sync, &rdev->flags))
  2390. rdev->saved_raid_disk = slot;
  2391. else
  2392. rdev->saved_raid_disk = -1;
  2393. clear_bit(In_sync, &rdev->flags);
  2394. clear_bit(Bitmap_sync, &rdev->flags);
  2395. err = rdev->mddev->pers->
  2396. hot_add_disk(rdev->mddev, rdev);
  2397. if (err) {
  2398. rdev->raid_disk = -1;
  2399. return err;
  2400. } else
  2401. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2402. if (sysfs_link_rdev(rdev->mddev, rdev))
  2403. /* failure here is OK */;
  2404. /* don't wakeup anyone, leave that to userspace. */
  2405. } else {
  2406. if (slot >= rdev->mddev->raid_disks &&
  2407. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2408. return -ENOSPC;
  2409. rdev->raid_disk = slot;
  2410. /* assume it is working */
  2411. clear_bit(Faulty, &rdev->flags);
  2412. clear_bit(WriteMostly, &rdev->flags);
  2413. set_bit(In_sync, &rdev->flags);
  2414. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2415. }
  2416. return len;
  2417. }
  2418. static struct rdev_sysfs_entry rdev_slot =
  2419. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2420. static ssize_t
  2421. offset_show(struct md_rdev *rdev, char *page)
  2422. {
  2423. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2424. }
  2425. static ssize_t
  2426. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2427. {
  2428. unsigned long long offset;
  2429. if (kstrtoull(buf, 10, &offset) < 0)
  2430. return -EINVAL;
  2431. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2432. return -EBUSY;
  2433. if (rdev->sectors && rdev->mddev->external)
  2434. /* Must set offset before size, so overlap checks
  2435. * can be sane */
  2436. return -EBUSY;
  2437. rdev->data_offset = offset;
  2438. rdev->new_data_offset = offset;
  2439. return len;
  2440. }
  2441. static struct rdev_sysfs_entry rdev_offset =
  2442. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2443. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2444. {
  2445. return sprintf(page, "%llu\n",
  2446. (unsigned long long)rdev->new_data_offset);
  2447. }
  2448. static ssize_t new_offset_store(struct md_rdev *rdev,
  2449. const char *buf, size_t len)
  2450. {
  2451. unsigned long long new_offset;
  2452. struct mddev *mddev = rdev->mddev;
  2453. if (kstrtoull(buf, 10, &new_offset) < 0)
  2454. return -EINVAL;
  2455. if (mddev->sync_thread ||
  2456. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2457. return -EBUSY;
  2458. if (new_offset == rdev->data_offset)
  2459. /* reset is always permitted */
  2460. ;
  2461. else if (new_offset > rdev->data_offset) {
  2462. /* must not push array size beyond rdev_sectors */
  2463. if (new_offset - rdev->data_offset
  2464. + mddev->dev_sectors > rdev->sectors)
  2465. return -E2BIG;
  2466. }
  2467. /* Metadata worries about other space details. */
  2468. /* decreasing the offset is inconsistent with a backwards
  2469. * reshape.
  2470. */
  2471. if (new_offset < rdev->data_offset &&
  2472. mddev->reshape_backwards)
  2473. return -EINVAL;
  2474. /* Increasing offset is inconsistent with forwards
  2475. * reshape. reshape_direction should be set to
  2476. * 'backwards' first.
  2477. */
  2478. if (new_offset > rdev->data_offset &&
  2479. !mddev->reshape_backwards)
  2480. return -EINVAL;
  2481. if (mddev->pers && mddev->persistent &&
  2482. !super_types[mddev->major_version]
  2483. .allow_new_offset(rdev, new_offset))
  2484. return -E2BIG;
  2485. rdev->new_data_offset = new_offset;
  2486. if (new_offset > rdev->data_offset)
  2487. mddev->reshape_backwards = 1;
  2488. else if (new_offset < rdev->data_offset)
  2489. mddev->reshape_backwards = 0;
  2490. return len;
  2491. }
  2492. static struct rdev_sysfs_entry rdev_new_offset =
  2493. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2494. static ssize_t
  2495. rdev_size_show(struct md_rdev *rdev, char *page)
  2496. {
  2497. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2498. }
  2499. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2500. {
  2501. /* check if two start/length pairs overlap */
  2502. if (s1+l1 <= s2)
  2503. return 0;
  2504. if (s2+l2 <= s1)
  2505. return 0;
  2506. return 1;
  2507. }
  2508. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2509. {
  2510. unsigned long long blocks;
  2511. sector_t new;
  2512. if (kstrtoull(buf, 10, &blocks) < 0)
  2513. return -EINVAL;
  2514. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2515. return -EINVAL; /* sector conversion overflow */
  2516. new = blocks * 2;
  2517. if (new != blocks * 2)
  2518. return -EINVAL; /* unsigned long long to sector_t overflow */
  2519. *sectors = new;
  2520. return 0;
  2521. }
  2522. static ssize_t
  2523. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2524. {
  2525. struct mddev *my_mddev = rdev->mddev;
  2526. sector_t oldsectors = rdev->sectors;
  2527. sector_t sectors;
  2528. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2529. return -EINVAL;
  2530. if (rdev->data_offset != rdev->new_data_offset)
  2531. return -EINVAL; /* too confusing */
  2532. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2533. if (my_mddev->persistent) {
  2534. sectors = super_types[my_mddev->major_version].
  2535. rdev_size_change(rdev, sectors);
  2536. if (!sectors)
  2537. return -EBUSY;
  2538. } else if (!sectors)
  2539. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2540. rdev->data_offset;
  2541. if (!my_mddev->pers->resize)
  2542. /* Cannot change size for RAID0 or Linear etc */
  2543. return -EINVAL;
  2544. }
  2545. if (sectors < my_mddev->dev_sectors)
  2546. return -EINVAL; /* component must fit device */
  2547. rdev->sectors = sectors;
  2548. if (sectors > oldsectors && my_mddev->external) {
  2549. /* Need to check that all other rdevs with the same
  2550. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2551. * the rdev lists safely.
  2552. * This check does not provide a hard guarantee, it
  2553. * just helps avoid dangerous mistakes.
  2554. */
  2555. struct mddev *mddev;
  2556. int overlap = 0;
  2557. struct list_head *tmp;
  2558. rcu_read_lock();
  2559. for_each_mddev(mddev, tmp) {
  2560. struct md_rdev *rdev2;
  2561. rdev_for_each(rdev2, mddev)
  2562. if (rdev->bdev == rdev2->bdev &&
  2563. rdev != rdev2 &&
  2564. overlaps(rdev->data_offset, rdev->sectors,
  2565. rdev2->data_offset,
  2566. rdev2->sectors)) {
  2567. overlap = 1;
  2568. break;
  2569. }
  2570. if (overlap) {
  2571. mddev_put(mddev);
  2572. break;
  2573. }
  2574. }
  2575. rcu_read_unlock();
  2576. if (overlap) {
  2577. /* Someone else could have slipped in a size
  2578. * change here, but doing so is just silly.
  2579. * We put oldsectors back because we *know* it is
  2580. * safe, and trust userspace not to race with
  2581. * itself
  2582. */
  2583. rdev->sectors = oldsectors;
  2584. return -EBUSY;
  2585. }
  2586. }
  2587. return len;
  2588. }
  2589. static struct rdev_sysfs_entry rdev_size =
  2590. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2591. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2592. {
  2593. unsigned long long recovery_start = rdev->recovery_offset;
  2594. if (test_bit(In_sync, &rdev->flags) ||
  2595. recovery_start == MaxSector)
  2596. return sprintf(page, "none\n");
  2597. return sprintf(page, "%llu\n", recovery_start);
  2598. }
  2599. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2600. {
  2601. unsigned long long recovery_start;
  2602. if (cmd_match(buf, "none"))
  2603. recovery_start = MaxSector;
  2604. else if (kstrtoull(buf, 10, &recovery_start))
  2605. return -EINVAL;
  2606. if (rdev->mddev->pers &&
  2607. rdev->raid_disk >= 0)
  2608. return -EBUSY;
  2609. rdev->recovery_offset = recovery_start;
  2610. if (recovery_start == MaxSector)
  2611. set_bit(In_sync, &rdev->flags);
  2612. else
  2613. clear_bit(In_sync, &rdev->flags);
  2614. return len;
  2615. }
  2616. static struct rdev_sysfs_entry rdev_recovery_start =
  2617. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2618. static ssize_t
  2619. badblocks_show(struct badblocks *bb, char *page, int unack);
  2620. static ssize_t
  2621. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2622. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2623. {
  2624. return badblocks_show(&rdev->badblocks, page, 0);
  2625. }
  2626. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2627. {
  2628. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2629. /* Maybe that ack was all we needed */
  2630. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2631. wake_up(&rdev->blocked_wait);
  2632. return rv;
  2633. }
  2634. static struct rdev_sysfs_entry rdev_bad_blocks =
  2635. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2636. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2637. {
  2638. return badblocks_show(&rdev->badblocks, page, 1);
  2639. }
  2640. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2641. {
  2642. return badblocks_store(&rdev->badblocks, page, len, 1);
  2643. }
  2644. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2645. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2646. static struct attribute *rdev_default_attrs[] = {
  2647. &rdev_state.attr,
  2648. &rdev_errors.attr,
  2649. &rdev_slot.attr,
  2650. &rdev_offset.attr,
  2651. &rdev_new_offset.attr,
  2652. &rdev_size.attr,
  2653. &rdev_recovery_start.attr,
  2654. &rdev_bad_blocks.attr,
  2655. &rdev_unack_bad_blocks.attr,
  2656. NULL,
  2657. };
  2658. static ssize_t
  2659. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2660. {
  2661. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2662. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2663. if (!entry->show)
  2664. return -EIO;
  2665. if (!rdev->mddev)
  2666. return -EBUSY;
  2667. return entry->show(rdev, page);
  2668. }
  2669. static ssize_t
  2670. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2671. const char *page, size_t length)
  2672. {
  2673. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2674. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2675. ssize_t rv;
  2676. struct mddev *mddev = rdev->mddev;
  2677. if (!entry->store)
  2678. return -EIO;
  2679. if (!capable(CAP_SYS_ADMIN))
  2680. return -EACCES;
  2681. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2682. if (!rv) {
  2683. if (rdev->mddev == NULL)
  2684. rv = -EBUSY;
  2685. else
  2686. rv = entry->store(rdev, page, length);
  2687. mddev_unlock(mddev);
  2688. }
  2689. return rv;
  2690. }
  2691. static void rdev_free(struct kobject *ko)
  2692. {
  2693. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2694. kfree(rdev);
  2695. }
  2696. static const struct sysfs_ops rdev_sysfs_ops = {
  2697. .show = rdev_attr_show,
  2698. .store = rdev_attr_store,
  2699. };
  2700. static struct kobj_type rdev_ktype = {
  2701. .release = rdev_free,
  2702. .sysfs_ops = &rdev_sysfs_ops,
  2703. .default_attrs = rdev_default_attrs,
  2704. };
  2705. int md_rdev_init(struct md_rdev *rdev)
  2706. {
  2707. rdev->desc_nr = -1;
  2708. rdev->saved_raid_disk = -1;
  2709. rdev->raid_disk = -1;
  2710. rdev->flags = 0;
  2711. rdev->data_offset = 0;
  2712. rdev->new_data_offset = 0;
  2713. rdev->sb_events = 0;
  2714. rdev->last_read_error.tv_sec = 0;
  2715. rdev->last_read_error.tv_nsec = 0;
  2716. rdev->sb_loaded = 0;
  2717. rdev->bb_page = NULL;
  2718. atomic_set(&rdev->nr_pending, 0);
  2719. atomic_set(&rdev->read_errors, 0);
  2720. atomic_set(&rdev->corrected_errors, 0);
  2721. INIT_LIST_HEAD(&rdev->same_set);
  2722. init_waitqueue_head(&rdev->blocked_wait);
  2723. /* Add space to store bad block list.
  2724. * This reserves the space even on arrays where it cannot
  2725. * be used - I wonder if that matters
  2726. */
  2727. rdev->badblocks.count = 0;
  2728. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2729. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2730. seqlock_init(&rdev->badblocks.lock);
  2731. if (rdev->badblocks.page == NULL)
  2732. return -ENOMEM;
  2733. return 0;
  2734. }
  2735. EXPORT_SYMBOL_GPL(md_rdev_init);
  2736. /*
  2737. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2738. *
  2739. * mark the device faulty if:
  2740. *
  2741. * - the device is nonexistent (zero size)
  2742. * - the device has no valid superblock
  2743. *
  2744. * a faulty rdev _never_ has rdev->sb set.
  2745. */
  2746. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2747. {
  2748. char b[BDEVNAME_SIZE];
  2749. int err;
  2750. struct md_rdev *rdev;
  2751. sector_t size;
  2752. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2753. if (!rdev) {
  2754. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2755. return ERR_PTR(-ENOMEM);
  2756. }
  2757. err = md_rdev_init(rdev);
  2758. if (err)
  2759. goto abort_free;
  2760. err = alloc_disk_sb(rdev);
  2761. if (err)
  2762. goto abort_free;
  2763. err = lock_rdev(rdev, newdev, super_format == -2);
  2764. if (err)
  2765. goto abort_free;
  2766. kobject_init(&rdev->kobj, &rdev_ktype);
  2767. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2768. if (!size) {
  2769. printk(KERN_WARNING
  2770. "md: %s has zero or unknown size, marking faulty!\n",
  2771. bdevname(rdev->bdev,b));
  2772. err = -EINVAL;
  2773. goto abort_free;
  2774. }
  2775. if (super_format >= 0) {
  2776. err = super_types[super_format].
  2777. load_super(rdev, NULL, super_minor);
  2778. if (err == -EINVAL) {
  2779. printk(KERN_WARNING
  2780. "md: %s does not have a valid v%d.%d "
  2781. "superblock, not importing!\n",
  2782. bdevname(rdev->bdev,b),
  2783. super_format, super_minor);
  2784. goto abort_free;
  2785. }
  2786. if (err < 0) {
  2787. printk(KERN_WARNING
  2788. "md: could not read %s's sb, not importing!\n",
  2789. bdevname(rdev->bdev,b));
  2790. goto abort_free;
  2791. }
  2792. }
  2793. return rdev;
  2794. abort_free:
  2795. if (rdev->bdev)
  2796. unlock_rdev(rdev);
  2797. md_rdev_clear(rdev);
  2798. kfree(rdev);
  2799. return ERR_PTR(err);
  2800. }
  2801. /*
  2802. * Check a full RAID array for plausibility
  2803. */
  2804. static void analyze_sbs(struct mddev *mddev)
  2805. {
  2806. int i;
  2807. struct md_rdev *rdev, *freshest, *tmp;
  2808. char b[BDEVNAME_SIZE];
  2809. freshest = NULL;
  2810. rdev_for_each_safe(rdev, tmp, mddev)
  2811. switch (super_types[mddev->major_version].
  2812. load_super(rdev, freshest, mddev->minor_version)) {
  2813. case 1:
  2814. freshest = rdev;
  2815. break;
  2816. case 0:
  2817. break;
  2818. default:
  2819. printk( KERN_ERR \
  2820. "md: fatal superblock inconsistency in %s"
  2821. " -- removing from array\n",
  2822. bdevname(rdev->bdev,b));
  2823. md_kick_rdev_from_array(rdev);
  2824. }
  2825. super_types[mddev->major_version].
  2826. validate_super(mddev, freshest);
  2827. i = 0;
  2828. rdev_for_each_safe(rdev, tmp, mddev) {
  2829. if (mddev->max_disks &&
  2830. (rdev->desc_nr >= mddev->max_disks ||
  2831. i > mddev->max_disks)) {
  2832. printk(KERN_WARNING
  2833. "md: %s: %s: only %d devices permitted\n",
  2834. mdname(mddev), bdevname(rdev->bdev, b),
  2835. mddev->max_disks);
  2836. md_kick_rdev_from_array(rdev);
  2837. continue;
  2838. }
  2839. if (rdev != freshest) {
  2840. if (super_types[mddev->major_version].
  2841. validate_super(mddev, rdev)) {
  2842. printk(KERN_WARNING "md: kicking non-fresh %s"
  2843. " from array!\n",
  2844. bdevname(rdev->bdev,b));
  2845. md_kick_rdev_from_array(rdev);
  2846. continue;
  2847. }
  2848. /* No device should have a Candidate flag
  2849. * when reading devices
  2850. */
  2851. if (test_bit(Candidate, &rdev->flags)) {
  2852. pr_info("md: kicking Cluster Candidate %s from array!\n",
  2853. bdevname(rdev->bdev, b));
  2854. md_kick_rdev_from_array(rdev);
  2855. }
  2856. }
  2857. if (mddev->level == LEVEL_MULTIPATH) {
  2858. rdev->desc_nr = i++;
  2859. rdev->raid_disk = rdev->desc_nr;
  2860. set_bit(In_sync, &rdev->flags);
  2861. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2862. rdev->raid_disk = -1;
  2863. clear_bit(In_sync, &rdev->flags);
  2864. }
  2865. }
  2866. }
  2867. /* Read a fixed-point number.
  2868. * Numbers in sysfs attributes should be in "standard" units where
  2869. * possible, so time should be in seconds.
  2870. * However we internally use a a much smaller unit such as
  2871. * milliseconds or jiffies.
  2872. * This function takes a decimal number with a possible fractional
  2873. * component, and produces an integer which is the result of
  2874. * multiplying that number by 10^'scale'.
  2875. * all without any floating-point arithmetic.
  2876. */
  2877. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2878. {
  2879. unsigned long result = 0;
  2880. long decimals = -1;
  2881. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2882. if (*cp == '.')
  2883. decimals = 0;
  2884. else if (decimals < scale) {
  2885. unsigned int value;
  2886. value = *cp - '0';
  2887. result = result * 10 + value;
  2888. if (decimals >= 0)
  2889. decimals++;
  2890. }
  2891. cp++;
  2892. }
  2893. if (*cp == '\n')
  2894. cp++;
  2895. if (*cp)
  2896. return -EINVAL;
  2897. if (decimals < 0)
  2898. decimals = 0;
  2899. while (decimals < scale) {
  2900. result *= 10;
  2901. decimals ++;
  2902. }
  2903. *res = result;
  2904. return 0;
  2905. }
  2906. static ssize_t
  2907. safe_delay_show(struct mddev *mddev, char *page)
  2908. {
  2909. int msec = (mddev->safemode_delay*1000)/HZ;
  2910. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2911. }
  2912. static ssize_t
  2913. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  2914. {
  2915. unsigned long msec;
  2916. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2917. return -EINVAL;
  2918. if (msec == 0)
  2919. mddev->safemode_delay = 0;
  2920. else {
  2921. unsigned long old_delay = mddev->safemode_delay;
  2922. unsigned long new_delay = (msec*HZ)/1000;
  2923. if (new_delay == 0)
  2924. new_delay = 1;
  2925. mddev->safemode_delay = new_delay;
  2926. if (new_delay < old_delay || old_delay == 0)
  2927. mod_timer(&mddev->safemode_timer, jiffies+1);
  2928. }
  2929. return len;
  2930. }
  2931. static struct md_sysfs_entry md_safe_delay =
  2932. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2933. static ssize_t
  2934. level_show(struct mddev *mddev, char *page)
  2935. {
  2936. struct md_personality *p;
  2937. int ret;
  2938. spin_lock(&mddev->lock);
  2939. p = mddev->pers;
  2940. if (p)
  2941. ret = sprintf(page, "%s\n", p->name);
  2942. else if (mddev->clevel[0])
  2943. ret = sprintf(page, "%s\n", mddev->clevel);
  2944. else if (mddev->level != LEVEL_NONE)
  2945. ret = sprintf(page, "%d\n", mddev->level);
  2946. else
  2947. ret = 0;
  2948. spin_unlock(&mddev->lock);
  2949. return ret;
  2950. }
  2951. static ssize_t
  2952. level_store(struct mddev *mddev, const char *buf, size_t len)
  2953. {
  2954. char clevel[16];
  2955. ssize_t rv;
  2956. size_t slen = len;
  2957. struct md_personality *pers, *oldpers;
  2958. long level;
  2959. void *priv, *oldpriv;
  2960. struct md_rdev *rdev;
  2961. if (slen == 0 || slen >= sizeof(clevel))
  2962. return -EINVAL;
  2963. rv = mddev_lock(mddev);
  2964. if (rv)
  2965. return rv;
  2966. if (mddev->pers == NULL) {
  2967. strncpy(mddev->clevel, buf, slen);
  2968. if (mddev->clevel[slen-1] == '\n')
  2969. slen--;
  2970. mddev->clevel[slen] = 0;
  2971. mddev->level = LEVEL_NONE;
  2972. rv = len;
  2973. goto out_unlock;
  2974. }
  2975. rv = -EROFS;
  2976. if (mddev->ro)
  2977. goto out_unlock;
  2978. /* request to change the personality. Need to ensure:
  2979. * - array is not engaged in resync/recovery/reshape
  2980. * - old personality can be suspended
  2981. * - new personality will access other array.
  2982. */
  2983. rv = -EBUSY;
  2984. if (mddev->sync_thread ||
  2985. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2986. mddev->reshape_position != MaxSector ||
  2987. mddev->sysfs_active)
  2988. goto out_unlock;
  2989. rv = -EINVAL;
  2990. if (!mddev->pers->quiesce) {
  2991. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2992. mdname(mddev), mddev->pers->name);
  2993. goto out_unlock;
  2994. }
  2995. /* Now find the new personality */
  2996. strncpy(clevel, buf, slen);
  2997. if (clevel[slen-1] == '\n')
  2998. slen--;
  2999. clevel[slen] = 0;
  3000. if (kstrtol(clevel, 10, &level))
  3001. level = LEVEL_NONE;
  3002. if (request_module("md-%s", clevel) != 0)
  3003. request_module("md-level-%s", clevel);
  3004. spin_lock(&pers_lock);
  3005. pers = find_pers(level, clevel);
  3006. if (!pers || !try_module_get(pers->owner)) {
  3007. spin_unlock(&pers_lock);
  3008. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3009. rv = -EINVAL;
  3010. goto out_unlock;
  3011. }
  3012. spin_unlock(&pers_lock);
  3013. if (pers == mddev->pers) {
  3014. /* Nothing to do! */
  3015. module_put(pers->owner);
  3016. rv = len;
  3017. goto out_unlock;
  3018. }
  3019. if (!pers->takeover) {
  3020. module_put(pers->owner);
  3021. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3022. mdname(mddev), clevel);
  3023. rv = -EINVAL;
  3024. goto out_unlock;
  3025. }
  3026. rdev_for_each(rdev, mddev)
  3027. rdev->new_raid_disk = rdev->raid_disk;
  3028. /* ->takeover must set new_* and/or delta_disks
  3029. * if it succeeds, and may set them when it fails.
  3030. */
  3031. priv = pers->takeover(mddev);
  3032. if (IS_ERR(priv)) {
  3033. mddev->new_level = mddev->level;
  3034. mddev->new_layout = mddev->layout;
  3035. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3036. mddev->raid_disks -= mddev->delta_disks;
  3037. mddev->delta_disks = 0;
  3038. mddev->reshape_backwards = 0;
  3039. module_put(pers->owner);
  3040. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3041. mdname(mddev), clevel);
  3042. rv = PTR_ERR(priv);
  3043. goto out_unlock;
  3044. }
  3045. /* Looks like we have a winner */
  3046. mddev_suspend(mddev);
  3047. mddev_detach(mddev);
  3048. spin_lock(&mddev->lock);
  3049. oldpers = mddev->pers;
  3050. oldpriv = mddev->private;
  3051. mddev->pers = pers;
  3052. mddev->private = priv;
  3053. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3054. mddev->level = mddev->new_level;
  3055. mddev->layout = mddev->new_layout;
  3056. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3057. mddev->delta_disks = 0;
  3058. mddev->reshape_backwards = 0;
  3059. mddev->degraded = 0;
  3060. spin_unlock(&mddev->lock);
  3061. if (oldpers->sync_request == NULL &&
  3062. mddev->external) {
  3063. /* We are converting from a no-redundancy array
  3064. * to a redundancy array and metadata is managed
  3065. * externally so we need to be sure that writes
  3066. * won't block due to a need to transition
  3067. * clean->dirty
  3068. * until external management is started.
  3069. */
  3070. mddev->in_sync = 0;
  3071. mddev->safemode_delay = 0;
  3072. mddev->safemode = 0;
  3073. }
  3074. oldpers->free(mddev, oldpriv);
  3075. if (oldpers->sync_request == NULL &&
  3076. pers->sync_request != NULL) {
  3077. /* need to add the md_redundancy_group */
  3078. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3079. printk(KERN_WARNING
  3080. "md: cannot register extra attributes for %s\n",
  3081. mdname(mddev));
  3082. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3083. }
  3084. if (oldpers->sync_request != NULL &&
  3085. pers->sync_request == NULL) {
  3086. /* need to remove the md_redundancy_group */
  3087. if (mddev->to_remove == NULL)
  3088. mddev->to_remove = &md_redundancy_group;
  3089. }
  3090. rdev_for_each(rdev, mddev) {
  3091. if (rdev->raid_disk < 0)
  3092. continue;
  3093. if (rdev->new_raid_disk >= mddev->raid_disks)
  3094. rdev->new_raid_disk = -1;
  3095. if (rdev->new_raid_disk == rdev->raid_disk)
  3096. continue;
  3097. sysfs_unlink_rdev(mddev, rdev);
  3098. }
  3099. rdev_for_each(rdev, mddev) {
  3100. if (rdev->raid_disk < 0)
  3101. continue;
  3102. if (rdev->new_raid_disk == rdev->raid_disk)
  3103. continue;
  3104. rdev->raid_disk = rdev->new_raid_disk;
  3105. if (rdev->raid_disk < 0)
  3106. clear_bit(In_sync, &rdev->flags);
  3107. else {
  3108. if (sysfs_link_rdev(mddev, rdev))
  3109. printk(KERN_WARNING "md: cannot register rd%d"
  3110. " for %s after level change\n",
  3111. rdev->raid_disk, mdname(mddev));
  3112. }
  3113. }
  3114. if (pers->sync_request == NULL) {
  3115. /* this is now an array without redundancy, so
  3116. * it must always be in_sync
  3117. */
  3118. mddev->in_sync = 1;
  3119. del_timer_sync(&mddev->safemode_timer);
  3120. }
  3121. blk_set_stacking_limits(&mddev->queue->limits);
  3122. pers->run(mddev);
  3123. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3124. mddev_resume(mddev);
  3125. if (!mddev->thread)
  3126. md_update_sb(mddev, 1);
  3127. sysfs_notify(&mddev->kobj, NULL, "level");
  3128. md_new_event(mddev);
  3129. rv = len;
  3130. out_unlock:
  3131. mddev_unlock(mddev);
  3132. return rv;
  3133. }
  3134. static struct md_sysfs_entry md_level =
  3135. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3136. static ssize_t
  3137. layout_show(struct mddev *mddev, char *page)
  3138. {
  3139. /* just a number, not meaningful for all levels */
  3140. if (mddev->reshape_position != MaxSector &&
  3141. mddev->layout != mddev->new_layout)
  3142. return sprintf(page, "%d (%d)\n",
  3143. mddev->new_layout, mddev->layout);
  3144. return sprintf(page, "%d\n", mddev->layout);
  3145. }
  3146. static ssize_t
  3147. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3148. {
  3149. unsigned int n;
  3150. int err;
  3151. err = kstrtouint(buf, 10, &n);
  3152. if (err < 0)
  3153. return err;
  3154. err = mddev_lock(mddev);
  3155. if (err)
  3156. return err;
  3157. if (mddev->pers) {
  3158. if (mddev->pers->check_reshape == NULL)
  3159. err = -EBUSY;
  3160. else if (mddev->ro)
  3161. err = -EROFS;
  3162. else {
  3163. mddev->new_layout = n;
  3164. err = mddev->pers->check_reshape(mddev);
  3165. if (err)
  3166. mddev->new_layout = mddev->layout;
  3167. }
  3168. } else {
  3169. mddev->new_layout = n;
  3170. if (mddev->reshape_position == MaxSector)
  3171. mddev->layout = n;
  3172. }
  3173. mddev_unlock(mddev);
  3174. return err ?: len;
  3175. }
  3176. static struct md_sysfs_entry md_layout =
  3177. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3178. static ssize_t
  3179. raid_disks_show(struct mddev *mddev, char *page)
  3180. {
  3181. if (mddev->raid_disks == 0)
  3182. return 0;
  3183. if (mddev->reshape_position != MaxSector &&
  3184. mddev->delta_disks != 0)
  3185. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3186. mddev->raid_disks - mddev->delta_disks);
  3187. return sprintf(page, "%d\n", mddev->raid_disks);
  3188. }
  3189. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3190. static ssize_t
  3191. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3192. {
  3193. unsigned int n;
  3194. int err;
  3195. err = kstrtouint(buf, 10, &n);
  3196. if (err < 0)
  3197. return err;
  3198. err = mddev_lock(mddev);
  3199. if (err)
  3200. return err;
  3201. if (mddev->pers)
  3202. err = update_raid_disks(mddev, n);
  3203. else if (mddev->reshape_position != MaxSector) {
  3204. struct md_rdev *rdev;
  3205. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3206. err = -EINVAL;
  3207. rdev_for_each(rdev, mddev) {
  3208. if (olddisks < n &&
  3209. rdev->data_offset < rdev->new_data_offset)
  3210. goto out_unlock;
  3211. if (olddisks > n &&
  3212. rdev->data_offset > rdev->new_data_offset)
  3213. goto out_unlock;
  3214. }
  3215. err = 0;
  3216. mddev->delta_disks = n - olddisks;
  3217. mddev->raid_disks = n;
  3218. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3219. } else
  3220. mddev->raid_disks = n;
  3221. out_unlock:
  3222. mddev_unlock(mddev);
  3223. return err ? err : len;
  3224. }
  3225. static struct md_sysfs_entry md_raid_disks =
  3226. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3227. static ssize_t
  3228. chunk_size_show(struct mddev *mddev, char *page)
  3229. {
  3230. if (mddev->reshape_position != MaxSector &&
  3231. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3232. return sprintf(page, "%d (%d)\n",
  3233. mddev->new_chunk_sectors << 9,
  3234. mddev->chunk_sectors << 9);
  3235. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3236. }
  3237. static ssize_t
  3238. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3239. {
  3240. unsigned long n;
  3241. int err;
  3242. err = kstrtoul(buf, 10, &n);
  3243. if (err < 0)
  3244. return err;
  3245. err = mddev_lock(mddev);
  3246. if (err)
  3247. return err;
  3248. if (mddev->pers) {
  3249. if (mddev->pers->check_reshape == NULL)
  3250. err = -EBUSY;
  3251. else if (mddev->ro)
  3252. err = -EROFS;
  3253. else {
  3254. mddev->new_chunk_sectors = n >> 9;
  3255. err = mddev->pers->check_reshape(mddev);
  3256. if (err)
  3257. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3258. }
  3259. } else {
  3260. mddev->new_chunk_sectors = n >> 9;
  3261. if (mddev->reshape_position == MaxSector)
  3262. mddev->chunk_sectors = n >> 9;
  3263. }
  3264. mddev_unlock(mddev);
  3265. return err ?: len;
  3266. }
  3267. static struct md_sysfs_entry md_chunk_size =
  3268. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3269. static ssize_t
  3270. resync_start_show(struct mddev *mddev, char *page)
  3271. {
  3272. if (mddev->recovery_cp == MaxSector)
  3273. return sprintf(page, "none\n");
  3274. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3275. }
  3276. static ssize_t
  3277. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3278. {
  3279. unsigned long long n;
  3280. int err;
  3281. if (cmd_match(buf, "none"))
  3282. n = MaxSector;
  3283. else {
  3284. err = kstrtoull(buf, 10, &n);
  3285. if (err < 0)
  3286. return err;
  3287. if (n != (sector_t)n)
  3288. return -EINVAL;
  3289. }
  3290. err = mddev_lock(mddev);
  3291. if (err)
  3292. return err;
  3293. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3294. err = -EBUSY;
  3295. if (!err) {
  3296. mddev->recovery_cp = n;
  3297. if (mddev->pers)
  3298. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3299. }
  3300. mddev_unlock(mddev);
  3301. return err ?: len;
  3302. }
  3303. static struct md_sysfs_entry md_resync_start =
  3304. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3305. resync_start_show, resync_start_store);
  3306. /*
  3307. * The array state can be:
  3308. *
  3309. * clear
  3310. * No devices, no size, no level
  3311. * Equivalent to STOP_ARRAY ioctl
  3312. * inactive
  3313. * May have some settings, but array is not active
  3314. * all IO results in error
  3315. * When written, doesn't tear down array, but just stops it
  3316. * suspended (not supported yet)
  3317. * All IO requests will block. The array can be reconfigured.
  3318. * Writing this, if accepted, will block until array is quiescent
  3319. * readonly
  3320. * no resync can happen. no superblocks get written.
  3321. * write requests fail
  3322. * read-auto
  3323. * like readonly, but behaves like 'clean' on a write request.
  3324. *
  3325. * clean - no pending writes, but otherwise active.
  3326. * When written to inactive array, starts without resync
  3327. * If a write request arrives then
  3328. * if metadata is known, mark 'dirty' and switch to 'active'.
  3329. * if not known, block and switch to write-pending
  3330. * If written to an active array that has pending writes, then fails.
  3331. * active
  3332. * fully active: IO and resync can be happening.
  3333. * When written to inactive array, starts with resync
  3334. *
  3335. * write-pending
  3336. * clean, but writes are blocked waiting for 'active' to be written.
  3337. *
  3338. * active-idle
  3339. * like active, but no writes have been seen for a while (100msec).
  3340. *
  3341. */
  3342. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3343. write_pending, active_idle, bad_word};
  3344. static char *array_states[] = {
  3345. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3346. "write-pending", "active-idle", NULL };
  3347. static int match_word(const char *word, char **list)
  3348. {
  3349. int n;
  3350. for (n=0; list[n]; n++)
  3351. if (cmd_match(word, list[n]))
  3352. break;
  3353. return n;
  3354. }
  3355. static ssize_t
  3356. array_state_show(struct mddev *mddev, char *page)
  3357. {
  3358. enum array_state st = inactive;
  3359. if (mddev->pers)
  3360. switch(mddev->ro) {
  3361. case 1:
  3362. st = readonly;
  3363. break;
  3364. case 2:
  3365. st = read_auto;
  3366. break;
  3367. case 0:
  3368. if (mddev->in_sync)
  3369. st = clean;
  3370. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3371. st = write_pending;
  3372. else if (mddev->safemode)
  3373. st = active_idle;
  3374. else
  3375. st = active;
  3376. }
  3377. else {
  3378. if (list_empty(&mddev->disks) &&
  3379. mddev->raid_disks == 0 &&
  3380. mddev->dev_sectors == 0)
  3381. st = clear;
  3382. else
  3383. st = inactive;
  3384. }
  3385. return sprintf(page, "%s\n", array_states[st]);
  3386. }
  3387. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3388. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3389. static int do_md_run(struct mddev *mddev);
  3390. static int restart_array(struct mddev *mddev);
  3391. static ssize_t
  3392. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3393. {
  3394. int err;
  3395. enum array_state st = match_word(buf, array_states);
  3396. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3397. /* don't take reconfig_mutex when toggling between
  3398. * clean and active
  3399. */
  3400. spin_lock(&mddev->lock);
  3401. if (st == active) {
  3402. restart_array(mddev);
  3403. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3404. wake_up(&mddev->sb_wait);
  3405. err = 0;
  3406. } else /* st == clean */ {
  3407. restart_array(mddev);
  3408. if (atomic_read(&mddev->writes_pending) == 0) {
  3409. if (mddev->in_sync == 0) {
  3410. mddev->in_sync = 1;
  3411. if (mddev->safemode == 1)
  3412. mddev->safemode = 0;
  3413. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3414. }
  3415. err = 0;
  3416. } else
  3417. err = -EBUSY;
  3418. }
  3419. spin_unlock(&mddev->lock);
  3420. return err ?: len;
  3421. }
  3422. err = mddev_lock(mddev);
  3423. if (err)
  3424. return err;
  3425. err = -EINVAL;
  3426. switch(st) {
  3427. case bad_word:
  3428. break;
  3429. case clear:
  3430. /* stopping an active array */
  3431. err = do_md_stop(mddev, 0, NULL);
  3432. break;
  3433. case inactive:
  3434. /* stopping an active array */
  3435. if (mddev->pers)
  3436. err = do_md_stop(mddev, 2, NULL);
  3437. else
  3438. err = 0; /* already inactive */
  3439. break;
  3440. case suspended:
  3441. break; /* not supported yet */
  3442. case readonly:
  3443. if (mddev->pers)
  3444. err = md_set_readonly(mddev, NULL);
  3445. else {
  3446. mddev->ro = 1;
  3447. set_disk_ro(mddev->gendisk, 1);
  3448. err = do_md_run(mddev);
  3449. }
  3450. break;
  3451. case read_auto:
  3452. if (mddev->pers) {
  3453. if (mddev->ro == 0)
  3454. err = md_set_readonly(mddev, NULL);
  3455. else if (mddev->ro == 1)
  3456. err = restart_array(mddev);
  3457. if (err == 0) {
  3458. mddev->ro = 2;
  3459. set_disk_ro(mddev->gendisk, 0);
  3460. }
  3461. } else {
  3462. mddev->ro = 2;
  3463. err = do_md_run(mddev);
  3464. }
  3465. break;
  3466. case clean:
  3467. if (mddev->pers) {
  3468. restart_array(mddev);
  3469. spin_lock(&mddev->lock);
  3470. if (atomic_read(&mddev->writes_pending) == 0) {
  3471. if (mddev->in_sync == 0) {
  3472. mddev->in_sync = 1;
  3473. if (mddev->safemode == 1)
  3474. mddev->safemode = 0;
  3475. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3476. }
  3477. err = 0;
  3478. } else
  3479. err = -EBUSY;
  3480. spin_unlock(&mddev->lock);
  3481. } else
  3482. err = -EINVAL;
  3483. break;
  3484. case active:
  3485. if (mddev->pers) {
  3486. restart_array(mddev);
  3487. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3488. wake_up(&mddev->sb_wait);
  3489. err = 0;
  3490. } else {
  3491. mddev->ro = 0;
  3492. set_disk_ro(mddev->gendisk, 0);
  3493. err = do_md_run(mddev);
  3494. }
  3495. break;
  3496. case write_pending:
  3497. case active_idle:
  3498. /* these cannot be set */
  3499. break;
  3500. }
  3501. if (!err) {
  3502. if (mddev->hold_active == UNTIL_IOCTL)
  3503. mddev->hold_active = 0;
  3504. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3505. }
  3506. mddev_unlock(mddev);
  3507. return err ?: len;
  3508. }
  3509. static struct md_sysfs_entry md_array_state =
  3510. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3511. static ssize_t
  3512. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3513. return sprintf(page, "%d\n",
  3514. atomic_read(&mddev->max_corr_read_errors));
  3515. }
  3516. static ssize_t
  3517. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3518. {
  3519. unsigned int n;
  3520. int rv;
  3521. rv = kstrtouint(buf, 10, &n);
  3522. if (rv < 0)
  3523. return rv;
  3524. atomic_set(&mddev->max_corr_read_errors, n);
  3525. return len;
  3526. }
  3527. static struct md_sysfs_entry max_corr_read_errors =
  3528. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3529. max_corrected_read_errors_store);
  3530. static ssize_t
  3531. null_show(struct mddev *mddev, char *page)
  3532. {
  3533. return -EINVAL;
  3534. }
  3535. static ssize_t
  3536. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3537. {
  3538. /* buf must be %d:%d\n? giving major and minor numbers */
  3539. /* The new device is added to the array.
  3540. * If the array has a persistent superblock, we read the
  3541. * superblock to initialise info and check validity.
  3542. * Otherwise, only checking done is that in bind_rdev_to_array,
  3543. * which mainly checks size.
  3544. */
  3545. char *e;
  3546. int major = simple_strtoul(buf, &e, 10);
  3547. int minor;
  3548. dev_t dev;
  3549. struct md_rdev *rdev;
  3550. int err;
  3551. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3552. return -EINVAL;
  3553. minor = simple_strtoul(e+1, &e, 10);
  3554. if (*e && *e != '\n')
  3555. return -EINVAL;
  3556. dev = MKDEV(major, minor);
  3557. if (major != MAJOR(dev) ||
  3558. minor != MINOR(dev))
  3559. return -EOVERFLOW;
  3560. flush_workqueue(md_misc_wq);
  3561. err = mddev_lock(mddev);
  3562. if (err)
  3563. return err;
  3564. if (mddev->persistent) {
  3565. rdev = md_import_device(dev, mddev->major_version,
  3566. mddev->minor_version);
  3567. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3568. struct md_rdev *rdev0
  3569. = list_entry(mddev->disks.next,
  3570. struct md_rdev, same_set);
  3571. err = super_types[mddev->major_version]
  3572. .load_super(rdev, rdev0, mddev->minor_version);
  3573. if (err < 0)
  3574. goto out;
  3575. }
  3576. } else if (mddev->external)
  3577. rdev = md_import_device(dev, -2, -1);
  3578. else
  3579. rdev = md_import_device(dev, -1, -1);
  3580. if (IS_ERR(rdev)) {
  3581. mddev_unlock(mddev);
  3582. return PTR_ERR(rdev);
  3583. }
  3584. err = bind_rdev_to_array(rdev, mddev);
  3585. out:
  3586. if (err)
  3587. export_rdev(rdev);
  3588. mddev_unlock(mddev);
  3589. return err ? err : len;
  3590. }
  3591. static struct md_sysfs_entry md_new_device =
  3592. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3593. static ssize_t
  3594. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3595. {
  3596. char *end;
  3597. unsigned long chunk, end_chunk;
  3598. int err;
  3599. err = mddev_lock(mddev);
  3600. if (err)
  3601. return err;
  3602. if (!mddev->bitmap)
  3603. goto out;
  3604. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3605. while (*buf) {
  3606. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3607. if (buf == end) break;
  3608. if (*end == '-') { /* range */
  3609. buf = end + 1;
  3610. end_chunk = simple_strtoul(buf, &end, 0);
  3611. if (buf == end) break;
  3612. }
  3613. if (*end && !isspace(*end)) break;
  3614. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3615. buf = skip_spaces(end);
  3616. }
  3617. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3618. out:
  3619. mddev_unlock(mddev);
  3620. return len;
  3621. }
  3622. static struct md_sysfs_entry md_bitmap =
  3623. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3624. static ssize_t
  3625. size_show(struct mddev *mddev, char *page)
  3626. {
  3627. return sprintf(page, "%llu\n",
  3628. (unsigned long long)mddev->dev_sectors / 2);
  3629. }
  3630. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3631. static ssize_t
  3632. size_store(struct mddev *mddev, const char *buf, size_t len)
  3633. {
  3634. /* If array is inactive, we can reduce the component size, but
  3635. * not increase it (except from 0).
  3636. * If array is active, we can try an on-line resize
  3637. */
  3638. sector_t sectors;
  3639. int err = strict_blocks_to_sectors(buf, &sectors);
  3640. if (err < 0)
  3641. return err;
  3642. err = mddev_lock(mddev);
  3643. if (err)
  3644. return err;
  3645. if (mddev->pers) {
  3646. if (mddev_is_clustered(mddev))
  3647. md_cluster_ops->metadata_update_start(mddev);
  3648. err = update_size(mddev, sectors);
  3649. md_update_sb(mddev, 1);
  3650. if (mddev_is_clustered(mddev))
  3651. md_cluster_ops->metadata_update_finish(mddev);
  3652. } else {
  3653. if (mddev->dev_sectors == 0 ||
  3654. mddev->dev_sectors > sectors)
  3655. mddev->dev_sectors = sectors;
  3656. else
  3657. err = -ENOSPC;
  3658. }
  3659. mddev_unlock(mddev);
  3660. return err ? err : len;
  3661. }
  3662. static struct md_sysfs_entry md_size =
  3663. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3664. /* Metadata version.
  3665. * This is one of
  3666. * 'none' for arrays with no metadata (good luck...)
  3667. * 'external' for arrays with externally managed metadata,
  3668. * or N.M for internally known formats
  3669. */
  3670. static ssize_t
  3671. metadata_show(struct mddev *mddev, char *page)
  3672. {
  3673. if (mddev->persistent)
  3674. return sprintf(page, "%d.%d\n",
  3675. mddev->major_version, mddev->minor_version);
  3676. else if (mddev->external)
  3677. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3678. else
  3679. return sprintf(page, "none\n");
  3680. }
  3681. static ssize_t
  3682. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3683. {
  3684. int major, minor;
  3685. char *e;
  3686. int err;
  3687. /* Changing the details of 'external' metadata is
  3688. * always permitted. Otherwise there must be
  3689. * no devices attached to the array.
  3690. */
  3691. err = mddev_lock(mddev);
  3692. if (err)
  3693. return err;
  3694. err = -EBUSY;
  3695. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3696. ;
  3697. else if (!list_empty(&mddev->disks))
  3698. goto out_unlock;
  3699. err = 0;
  3700. if (cmd_match(buf, "none")) {
  3701. mddev->persistent = 0;
  3702. mddev->external = 0;
  3703. mddev->major_version = 0;
  3704. mddev->minor_version = 90;
  3705. goto out_unlock;
  3706. }
  3707. if (strncmp(buf, "external:", 9) == 0) {
  3708. size_t namelen = len-9;
  3709. if (namelen >= sizeof(mddev->metadata_type))
  3710. namelen = sizeof(mddev->metadata_type)-1;
  3711. strncpy(mddev->metadata_type, buf+9, namelen);
  3712. mddev->metadata_type[namelen] = 0;
  3713. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3714. mddev->metadata_type[--namelen] = 0;
  3715. mddev->persistent = 0;
  3716. mddev->external = 1;
  3717. mddev->major_version = 0;
  3718. mddev->minor_version = 90;
  3719. goto out_unlock;
  3720. }
  3721. major = simple_strtoul(buf, &e, 10);
  3722. err = -EINVAL;
  3723. if (e==buf || *e != '.')
  3724. goto out_unlock;
  3725. buf = e+1;
  3726. minor = simple_strtoul(buf, &e, 10);
  3727. if (e==buf || (*e && *e != '\n') )
  3728. goto out_unlock;
  3729. err = -ENOENT;
  3730. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3731. goto out_unlock;
  3732. mddev->major_version = major;
  3733. mddev->minor_version = minor;
  3734. mddev->persistent = 1;
  3735. mddev->external = 0;
  3736. err = 0;
  3737. out_unlock:
  3738. mddev_unlock(mddev);
  3739. return err ?: len;
  3740. }
  3741. static struct md_sysfs_entry md_metadata =
  3742. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3743. static ssize_t
  3744. action_show(struct mddev *mddev, char *page)
  3745. {
  3746. char *type = "idle";
  3747. unsigned long recovery = mddev->recovery;
  3748. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3749. type = "frozen";
  3750. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3751. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3752. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3753. type = "reshape";
  3754. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3755. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3756. type = "resync";
  3757. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3758. type = "check";
  3759. else
  3760. type = "repair";
  3761. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3762. type = "recover";
  3763. else if (mddev->reshape_position != MaxSector)
  3764. type = "reshape";
  3765. }
  3766. return sprintf(page, "%s\n", type);
  3767. }
  3768. static ssize_t
  3769. action_store(struct mddev *mddev, const char *page, size_t len)
  3770. {
  3771. if (!mddev->pers || !mddev->pers->sync_request)
  3772. return -EINVAL;
  3773. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3774. if (cmd_match(page, "frozen"))
  3775. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3776. else
  3777. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3778. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3779. mddev_lock(mddev) == 0) {
  3780. flush_workqueue(md_misc_wq);
  3781. if (mddev->sync_thread) {
  3782. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3783. md_reap_sync_thread(mddev);
  3784. }
  3785. mddev_unlock(mddev);
  3786. }
  3787. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3788. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3789. return -EBUSY;
  3790. else if (cmd_match(page, "resync"))
  3791. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3792. else if (cmd_match(page, "recover")) {
  3793. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3794. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3795. } else if (cmd_match(page, "reshape")) {
  3796. int err;
  3797. if (mddev->pers->start_reshape == NULL)
  3798. return -EINVAL;
  3799. err = mddev_lock(mddev);
  3800. if (!err) {
  3801. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3802. err = mddev->pers->start_reshape(mddev);
  3803. mddev_unlock(mddev);
  3804. }
  3805. if (err)
  3806. return err;
  3807. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3808. } else {
  3809. if (cmd_match(page, "check"))
  3810. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3811. else if (!cmd_match(page, "repair"))
  3812. return -EINVAL;
  3813. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3814. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3815. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3816. }
  3817. if (mddev->ro == 2) {
  3818. /* A write to sync_action is enough to justify
  3819. * canceling read-auto mode
  3820. */
  3821. mddev->ro = 0;
  3822. md_wakeup_thread(mddev->sync_thread);
  3823. }
  3824. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3825. md_wakeup_thread(mddev->thread);
  3826. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3827. return len;
  3828. }
  3829. static struct md_sysfs_entry md_scan_mode =
  3830. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3831. static ssize_t
  3832. last_sync_action_show(struct mddev *mddev, char *page)
  3833. {
  3834. return sprintf(page, "%s\n", mddev->last_sync_action);
  3835. }
  3836. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3837. static ssize_t
  3838. mismatch_cnt_show(struct mddev *mddev, char *page)
  3839. {
  3840. return sprintf(page, "%llu\n",
  3841. (unsigned long long)
  3842. atomic64_read(&mddev->resync_mismatches));
  3843. }
  3844. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3845. static ssize_t
  3846. sync_min_show(struct mddev *mddev, char *page)
  3847. {
  3848. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3849. mddev->sync_speed_min ? "local": "system");
  3850. }
  3851. static ssize_t
  3852. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3853. {
  3854. unsigned int min;
  3855. int rv;
  3856. if (strncmp(buf, "system", 6)==0) {
  3857. min = 0;
  3858. } else {
  3859. rv = kstrtouint(buf, 10, &min);
  3860. if (rv < 0)
  3861. return rv;
  3862. if (min == 0)
  3863. return -EINVAL;
  3864. }
  3865. mddev->sync_speed_min = min;
  3866. return len;
  3867. }
  3868. static struct md_sysfs_entry md_sync_min =
  3869. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3870. static ssize_t
  3871. sync_max_show(struct mddev *mddev, char *page)
  3872. {
  3873. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3874. mddev->sync_speed_max ? "local": "system");
  3875. }
  3876. static ssize_t
  3877. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3878. {
  3879. unsigned int max;
  3880. int rv;
  3881. if (strncmp(buf, "system", 6)==0) {
  3882. max = 0;
  3883. } else {
  3884. rv = kstrtouint(buf, 10, &max);
  3885. if (rv < 0)
  3886. return rv;
  3887. if (max == 0)
  3888. return -EINVAL;
  3889. }
  3890. mddev->sync_speed_max = max;
  3891. return len;
  3892. }
  3893. static struct md_sysfs_entry md_sync_max =
  3894. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3895. static ssize_t
  3896. degraded_show(struct mddev *mddev, char *page)
  3897. {
  3898. return sprintf(page, "%d\n", mddev->degraded);
  3899. }
  3900. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3901. static ssize_t
  3902. sync_force_parallel_show(struct mddev *mddev, char *page)
  3903. {
  3904. return sprintf(page, "%d\n", mddev->parallel_resync);
  3905. }
  3906. static ssize_t
  3907. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3908. {
  3909. long n;
  3910. if (kstrtol(buf, 10, &n))
  3911. return -EINVAL;
  3912. if (n != 0 && n != 1)
  3913. return -EINVAL;
  3914. mddev->parallel_resync = n;
  3915. if (mddev->sync_thread)
  3916. wake_up(&resync_wait);
  3917. return len;
  3918. }
  3919. /* force parallel resync, even with shared block devices */
  3920. static struct md_sysfs_entry md_sync_force_parallel =
  3921. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3922. sync_force_parallel_show, sync_force_parallel_store);
  3923. static ssize_t
  3924. sync_speed_show(struct mddev *mddev, char *page)
  3925. {
  3926. unsigned long resync, dt, db;
  3927. if (mddev->curr_resync == 0)
  3928. return sprintf(page, "none\n");
  3929. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3930. dt = (jiffies - mddev->resync_mark) / HZ;
  3931. if (!dt) dt++;
  3932. db = resync - mddev->resync_mark_cnt;
  3933. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3934. }
  3935. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3936. static ssize_t
  3937. sync_completed_show(struct mddev *mddev, char *page)
  3938. {
  3939. unsigned long long max_sectors, resync;
  3940. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3941. return sprintf(page, "none\n");
  3942. if (mddev->curr_resync == 1 ||
  3943. mddev->curr_resync == 2)
  3944. return sprintf(page, "delayed\n");
  3945. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3946. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3947. max_sectors = mddev->resync_max_sectors;
  3948. else
  3949. max_sectors = mddev->dev_sectors;
  3950. resync = mddev->curr_resync_completed;
  3951. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3952. }
  3953. static struct md_sysfs_entry md_sync_completed =
  3954. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  3955. static ssize_t
  3956. min_sync_show(struct mddev *mddev, char *page)
  3957. {
  3958. return sprintf(page, "%llu\n",
  3959. (unsigned long long)mddev->resync_min);
  3960. }
  3961. static ssize_t
  3962. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3963. {
  3964. unsigned long long min;
  3965. int err;
  3966. if (kstrtoull(buf, 10, &min))
  3967. return -EINVAL;
  3968. spin_lock(&mddev->lock);
  3969. err = -EINVAL;
  3970. if (min > mddev->resync_max)
  3971. goto out_unlock;
  3972. err = -EBUSY;
  3973. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3974. goto out_unlock;
  3975. /* Round down to multiple of 4K for safety */
  3976. mddev->resync_min = round_down(min, 8);
  3977. err = 0;
  3978. out_unlock:
  3979. spin_unlock(&mddev->lock);
  3980. return err ?: len;
  3981. }
  3982. static struct md_sysfs_entry md_min_sync =
  3983. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3984. static ssize_t
  3985. max_sync_show(struct mddev *mddev, char *page)
  3986. {
  3987. if (mddev->resync_max == MaxSector)
  3988. return sprintf(page, "max\n");
  3989. else
  3990. return sprintf(page, "%llu\n",
  3991. (unsigned long long)mddev->resync_max);
  3992. }
  3993. static ssize_t
  3994. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3995. {
  3996. int err;
  3997. spin_lock(&mddev->lock);
  3998. if (strncmp(buf, "max", 3) == 0)
  3999. mddev->resync_max = MaxSector;
  4000. else {
  4001. unsigned long long max;
  4002. int chunk;
  4003. err = -EINVAL;
  4004. if (kstrtoull(buf, 10, &max))
  4005. goto out_unlock;
  4006. if (max < mddev->resync_min)
  4007. goto out_unlock;
  4008. err = -EBUSY;
  4009. if (max < mddev->resync_max &&
  4010. mddev->ro == 0 &&
  4011. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4012. goto out_unlock;
  4013. /* Must be a multiple of chunk_size */
  4014. chunk = mddev->chunk_sectors;
  4015. if (chunk) {
  4016. sector_t temp = max;
  4017. err = -EINVAL;
  4018. if (sector_div(temp, chunk))
  4019. goto out_unlock;
  4020. }
  4021. mddev->resync_max = max;
  4022. }
  4023. wake_up(&mddev->recovery_wait);
  4024. err = 0;
  4025. out_unlock:
  4026. spin_unlock(&mddev->lock);
  4027. return err ?: len;
  4028. }
  4029. static struct md_sysfs_entry md_max_sync =
  4030. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4031. static ssize_t
  4032. suspend_lo_show(struct mddev *mddev, char *page)
  4033. {
  4034. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4035. }
  4036. static ssize_t
  4037. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4038. {
  4039. unsigned long long old, new;
  4040. int err;
  4041. err = kstrtoull(buf, 10, &new);
  4042. if (err < 0)
  4043. return err;
  4044. if (new != (sector_t)new)
  4045. return -EINVAL;
  4046. err = mddev_lock(mddev);
  4047. if (err)
  4048. return err;
  4049. err = -EINVAL;
  4050. if (mddev->pers == NULL ||
  4051. mddev->pers->quiesce == NULL)
  4052. goto unlock;
  4053. old = mddev->suspend_lo;
  4054. mddev->suspend_lo = new;
  4055. if (new >= old)
  4056. /* Shrinking suspended region */
  4057. mddev->pers->quiesce(mddev, 2);
  4058. else {
  4059. /* Expanding suspended region - need to wait */
  4060. mddev->pers->quiesce(mddev, 1);
  4061. mddev->pers->quiesce(mddev, 0);
  4062. }
  4063. err = 0;
  4064. unlock:
  4065. mddev_unlock(mddev);
  4066. return err ?: len;
  4067. }
  4068. static struct md_sysfs_entry md_suspend_lo =
  4069. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4070. static ssize_t
  4071. suspend_hi_show(struct mddev *mddev, char *page)
  4072. {
  4073. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4074. }
  4075. static ssize_t
  4076. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4077. {
  4078. unsigned long long old, new;
  4079. int err;
  4080. err = kstrtoull(buf, 10, &new);
  4081. if (err < 0)
  4082. return err;
  4083. if (new != (sector_t)new)
  4084. return -EINVAL;
  4085. err = mddev_lock(mddev);
  4086. if (err)
  4087. return err;
  4088. err = -EINVAL;
  4089. if (mddev->pers == NULL ||
  4090. mddev->pers->quiesce == NULL)
  4091. goto unlock;
  4092. old = mddev->suspend_hi;
  4093. mddev->suspend_hi = new;
  4094. if (new <= old)
  4095. /* Shrinking suspended region */
  4096. mddev->pers->quiesce(mddev, 2);
  4097. else {
  4098. /* Expanding suspended region - need to wait */
  4099. mddev->pers->quiesce(mddev, 1);
  4100. mddev->pers->quiesce(mddev, 0);
  4101. }
  4102. err = 0;
  4103. unlock:
  4104. mddev_unlock(mddev);
  4105. return err ?: len;
  4106. }
  4107. static struct md_sysfs_entry md_suspend_hi =
  4108. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4109. static ssize_t
  4110. reshape_position_show(struct mddev *mddev, char *page)
  4111. {
  4112. if (mddev->reshape_position != MaxSector)
  4113. return sprintf(page, "%llu\n",
  4114. (unsigned long long)mddev->reshape_position);
  4115. strcpy(page, "none\n");
  4116. return 5;
  4117. }
  4118. static ssize_t
  4119. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4120. {
  4121. struct md_rdev *rdev;
  4122. unsigned long long new;
  4123. int err;
  4124. err = kstrtoull(buf, 10, &new);
  4125. if (err < 0)
  4126. return err;
  4127. if (new != (sector_t)new)
  4128. return -EINVAL;
  4129. err = mddev_lock(mddev);
  4130. if (err)
  4131. return err;
  4132. err = -EBUSY;
  4133. if (mddev->pers)
  4134. goto unlock;
  4135. mddev->reshape_position = new;
  4136. mddev->delta_disks = 0;
  4137. mddev->reshape_backwards = 0;
  4138. mddev->new_level = mddev->level;
  4139. mddev->new_layout = mddev->layout;
  4140. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4141. rdev_for_each(rdev, mddev)
  4142. rdev->new_data_offset = rdev->data_offset;
  4143. err = 0;
  4144. unlock:
  4145. mddev_unlock(mddev);
  4146. return err ?: len;
  4147. }
  4148. static struct md_sysfs_entry md_reshape_position =
  4149. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4150. reshape_position_store);
  4151. static ssize_t
  4152. reshape_direction_show(struct mddev *mddev, char *page)
  4153. {
  4154. return sprintf(page, "%s\n",
  4155. mddev->reshape_backwards ? "backwards" : "forwards");
  4156. }
  4157. static ssize_t
  4158. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4159. {
  4160. int backwards = 0;
  4161. int err;
  4162. if (cmd_match(buf, "forwards"))
  4163. backwards = 0;
  4164. else if (cmd_match(buf, "backwards"))
  4165. backwards = 1;
  4166. else
  4167. return -EINVAL;
  4168. if (mddev->reshape_backwards == backwards)
  4169. return len;
  4170. err = mddev_lock(mddev);
  4171. if (err)
  4172. return err;
  4173. /* check if we are allowed to change */
  4174. if (mddev->delta_disks)
  4175. err = -EBUSY;
  4176. else if (mddev->persistent &&
  4177. mddev->major_version == 0)
  4178. err = -EINVAL;
  4179. else
  4180. mddev->reshape_backwards = backwards;
  4181. mddev_unlock(mddev);
  4182. return err ?: len;
  4183. }
  4184. static struct md_sysfs_entry md_reshape_direction =
  4185. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4186. reshape_direction_store);
  4187. static ssize_t
  4188. array_size_show(struct mddev *mddev, char *page)
  4189. {
  4190. if (mddev->external_size)
  4191. return sprintf(page, "%llu\n",
  4192. (unsigned long long)mddev->array_sectors/2);
  4193. else
  4194. return sprintf(page, "default\n");
  4195. }
  4196. static ssize_t
  4197. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4198. {
  4199. sector_t sectors;
  4200. int err;
  4201. err = mddev_lock(mddev);
  4202. if (err)
  4203. return err;
  4204. if (strncmp(buf, "default", 7) == 0) {
  4205. if (mddev->pers)
  4206. sectors = mddev->pers->size(mddev, 0, 0);
  4207. else
  4208. sectors = mddev->array_sectors;
  4209. mddev->external_size = 0;
  4210. } else {
  4211. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4212. err = -EINVAL;
  4213. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4214. err = -E2BIG;
  4215. else
  4216. mddev->external_size = 1;
  4217. }
  4218. if (!err) {
  4219. mddev->array_sectors = sectors;
  4220. if (mddev->pers) {
  4221. set_capacity(mddev->gendisk, mddev->array_sectors);
  4222. revalidate_disk(mddev->gendisk);
  4223. }
  4224. }
  4225. mddev_unlock(mddev);
  4226. return err ?: len;
  4227. }
  4228. static struct md_sysfs_entry md_array_size =
  4229. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4230. array_size_store);
  4231. static struct attribute *md_default_attrs[] = {
  4232. &md_level.attr,
  4233. &md_layout.attr,
  4234. &md_raid_disks.attr,
  4235. &md_chunk_size.attr,
  4236. &md_size.attr,
  4237. &md_resync_start.attr,
  4238. &md_metadata.attr,
  4239. &md_new_device.attr,
  4240. &md_safe_delay.attr,
  4241. &md_array_state.attr,
  4242. &md_reshape_position.attr,
  4243. &md_reshape_direction.attr,
  4244. &md_array_size.attr,
  4245. &max_corr_read_errors.attr,
  4246. NULL,
  4247. };
  4248. static struct attribute *md_redundancy_attrs[] = {
  4249. &md_scan_mode.attr,
  4250. &md_last_scan_mode.attr,
  4251. &md_mismatches.attr,
  4252. &md_sync_min.attr,
  4253. &md_sync_max.attr,
  4254. &md_sync_speed.attr,
  4255. &md_sync_force_parallel.attr,
  4256. &md_sync_completed.attr,
  4257. &md_min_sync.attr,
  4258. &md_max_sync.attr,
  4259. &md_suspend_lo.attr,
  4260. &md_suspend_hi.attr,
  4261. &md_bitmap.attr,
  4262. &md_degraded.attr,
  4263. NULL,
  4264. };
  4265. static struct attribute_group md_redundancy_group = {
  4266. .name = NULL,
  4267. .attrs = md_redundancy_attrs,
  4268. };
  4269. static ssize_t
  4270. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4271. {
  4272. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4273. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4274. ssize_t rv;
  4275. if (!entry->show)
  4276. return -EIO;
  4277. spin_lock(&all_mddevs_lock);
  4278. if (list_empty(&mddev->all_mddevs)) {
  4279. spin_unlock(&all_mddevs_lock);
  4280. return -EBUSY;
  4281. }
  4282. mddev_get(mddev);
  4283. spin_unlock(&all_mddevs_lock);
  4284. rv = entry->show(mddev, page);
  4285. mddev_put(mddev);
  4286. return rv;
  4287. }
  4288. static ssize_t
  4289. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4290. const char *page, size_t length)
  4291. {
  4292. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4293. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4294. ssize_t rv;
  4295. if (!entry->store)
  4296. return -EIO;
  4297. if (!capable(CAP_SYS_ADMIN))
  4298. return -EACCES;
  4299. spin_lock(&all_mddevs_lock);
  4300. if (list_empty(&mddev->all_mddevs)) {
  4301. spin_unlock(&all_mddevs_lock);
  4302. return -EBUSY;
  4303. }
  4304. mddev_get(mddev);
  4305. spin_unlock(&all_mddevs_lock);
  4306. rv = entry->store(mddev, page, length);
  4307. mddev_put(mddev);
  4308. return rv;
  4309. }
  4310. static void md_free(struct kobject *ko)
  4311. {
  4312. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4313. if (mddev->sysfs_state)
  4314. sysfs_put(mddev->sysfs_state);
  4315. if (mddev->queue)
  4316. blk_cleanup_queue(mddev->queue);
  4317. if (mddev->gendisk) {
  4318. del_gendisk(mddev->gendisk);
  4319. put_disk(mddev->gendisk);
  4320. }
  4321. kfree(mddev);
  4322. }
  4323. static const struct sysfs_ops md_sysfs_ops = {
  4324. .show = md_attr_show,
  4325. .store = md_attr_store,
  4326. };
  4327. static struct kobj_type md_ktype = {
  4328. .release = md_free,
  4329. .sysfs_ops = &md_sysfs_ops,
  4330. .default_attrs = md_default_attrs,
  4331. };
  4332. int mdp_major = 0;
  4333. static void mddev_delayed_delete(struct work_struct *ws)
  4334. {
  4335. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4336. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4337. kobject_del(&mddev->kobj);
  4338. kobject_put(&mddev->kobj);
  4339. }
  4340. static int md_alloc(dev_t dev, char *name)
  4341. {
  4342. static DEFINE_MUTEX(disks_mutex);
  4343. struct mddev *mddev = mddev_find(dev);
  4344. struct gendisk *disk;
  4345. int partitioned;
  4346. int shift;
  4347. int unit;
  4348. int error;
  4349. if (!mddev)
  4350. return -ENODEV;
  4351. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4352. shift = partitioned ? MdpMinorShift : 0;
  4353. unit = MINOR(mddev->unit) >> shift;
  4354. /* wait for any previous instance of this device to be
  4355. * completely removed (mddev_delayed_delete).
  4356. */
  4357. flush_workqueue(md_misc_wq);
  4358. mutex_lock(&disks_mutex);
  4359. error = -EEXIST;
  4360. if (mddev->gendisk)
  4361. goto abort;
  4362. if (name) {
  4363. /* Need to ensure that 'name' is not a duplicate.
  4364. */
  4365. struct mddev *mddev2;
  4366. spin_lock(&all_mddevs_lock);
  4367. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4368. if (mddev2->gendisk &&
  4369. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4370. spin_unlock(&all_mddevs_lock);
  4371. goto abort;
  4372. }
  4373. spin_unlock(&all_mddevs_lock);
  4374. }
  4375. error = -ENOMEM;
  4376. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4377. if (!mddev->queue)
  4378. goto abort;
  4379. mddev->queue->queuedata = mddev;
  4380. blk_queue_make_request(mddev->queue, md_make_request);
  4381. blk_set_stacking_limits(&mddev->queue->limits);
  4382. disk = alloc_disk(1 << shift);
  4383. if (!disk) {
  4384. blk_cleanup_queue(mddev->queue);
  4385. mddev->queue = NULL;
  4386. goto abort;
  4387. }
  4388. disk->major = MAJOR(mddev->unit);
  4389. disk->first_minor = unit << shift;
  4390. if (name)
  4391. strcpy(disk->disk_name, name);
  4392. else if (partitioned)
  4393. sprintf(disk->disk_name, "md_d%d", unit);
  4394. else
  4395. sprintf(disk->disk_name, "md%d", unit);
  4396. disk->fops = &md_fops;
  4397. disk->private_data = mddev;
  4398. disk->queue = mddev->queue;
  4399. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4400. /* Allow extended partitions. This makes the
  4401. * 'mdp' device redundant, but we can't really
  4402. * remove it now.
  4403. */
  4404. disk->flags |= GENHD_FL_EXT_DEVT;
  4405. mddev->gendisk = disk;
  4406. /* As soon as we call add_disk(), another thread could get
  4407. * through to md_open, so make sure it doesn't get too far
  4408. */
  4409. mutex_lock(&mddev->open_mutex);
  4410. add_disk(disk);
  4411. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4412. &disk_to_dev(disk)->kobj, "%s", "md");
  4413. if (error) {
  4414. /* This isn't possible, but as kobject_init_and_add is marked
  4415. * __must_check, we must do something with the result
  4416. */
  4417. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4418. disk->disk_name);
  4419. error = 0;
  4420. }
  4421. if (mddev->kobj.sd &&
  4422. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4423. printk(KERN_DEBUG "pointless warning\n");
  4424. mutex_unlock(&mddev->open_mutex);
  4425. abort:
  4426. mutex_unlock(&disks_mutex);
  4427. if (!error && mddev->kobj.sd) {
  4428. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4429. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4430. }
  4431. mddev_put(mddev);
  4432. return error;
  4433. }
  4434. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4435. {
  4436. md_alloc(dev, NULL);
  4437. return NULL;
  4438. }
  4439. static int add_named_array(const char *val, struct kernel_param *kp)
  4440. {
  4441. /* val must be "md_*" where * is not all digits.
  4442. * We allocate an array with a large free minor number, and
  4443. * set the name to val. val must not already be an active name.
  4444. */
  4445. int len = strlen(val);
  4446. char buf[DISK_NAME_LEN];
  4447. while (len && val[len-1] == '\n')
  4448. len--;
  4449. if (len >= DISK_NAME_LEN)
  4450. return -E2BIG;
  4451. strlcpy(buf, val, len+1);
  4452. if (strncmp(buf, "md_", 3) != 0)
  4453. return -EINVAL;
  4454. return md_alloc(0, buf);
  4455. }
  4456. static void md_safemode_timeout(unsigned long data)
  4457. {
  4458. struct mddev *mddev = (struct mddev *) data;
  4459. if (!atomic_read(&mddev->writes_pending)) {
  4460. mddev->safemode = 1;
  4461. if (mddev->external)
  4462. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4463. }
  4464. md_wakeup_thread(mddev->thread);
  4465. }
  4466. static int start_dirty_degraded;
  4467. int md_run(struct mddev *mddev)
  4468. {
  4469. int err;
  4470. struct md_rdev *rdev;
  4471. struct md_personality *pers;
  4472. if (list_empty(&mddev->disks))
  4473. /* cannot run an array with no devices.. */
  4474. return -EINVAL;
  4475. if (mddev->pers)
  4476. return -EBUSY;
  4477. /* Cannot run until previous stop completes properly */
  4478. if (mddev->sysfs_active)
  4479. return -EBUSY;
  4480. /*
  4481. * Analyze all RAID superblock(s)
  4482. */
  4483. if (!mddev->raid_disks) {
  4484. if (!mddev->persistent)
  4485. return -EINVAL;
  4486. analyze_sbs(mddev);
  4487. }
  4488. if (mddev->level != LEVEL_NONE)
  4489. request_module("md-level-%d", mddev->level);
  4490. else if (mddev->clevel[0])
  4491. request_module("md-%s", mddev->clevel);
  4492. /*
  4493. * Drop all container device buffers, from now on
  4494. * the only valid external interface is through the md
  4495. * device.
  4496. */
  4497. rdev_for_each(rdev, mddev) {
  4498. if (test_bit(Faulty, &rdev->flags))
  4499. continue;
  4500. sync_blockdev(rdev->bdev);
  4501. invalidate_bdev(rdev->bdev);
  4502. /* perform some consistency tests on the device.
  4503. * We don't want the data to overlap the metadata,
  4504. * Internal Bitmap issues have been handled elsewhere.
  4505. */
  4506. if (rdev->meta_bdev) {
  4507. /* Nothing to check */;
  4508. } else if (rdev->data_offset < rdev->sb_start) {
  4509. if (mddev->dev_sectors &&
  4510. rdev->data_offset + mddev->dev_sectors
  4511. > rdev->sb_start) {
  4512. printk("md: %s: data overlaps metadata\n",
  4513. mdname(mddev));
  4514. return -EINVAL;
  4515. }
  4516. } else {
  4517. if (rdev->sb_start + rdev->sb_size/512
  4518. > rdev->data_offset) {
  4519. printk("md: %s: metadata overlaps data\n",
  4520. mdname(mddev));
  4521. return -EINVAL;
  4522. }
  4523. }
  4524. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4525. }
  4526. if (mddev->bio_set == NULL)
  4527. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4528. spin_lock(&pers_lock);
  4529. pers = find_pers(mddev->level, mddev->clevel);
  4530. if (!pers || !try_module_get(pers->owner)) {
  4531. spin_unlock(&pers_lock);
  4532. if (mddev->level != LEVEL_NONE)
  4533. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4534. mddev->level);
  4535. else
  4536. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4537. mddev->clevel);
  4538. return -EINVAL;
  4539. }
  4540. spin_unlock(&pers_lock);
  4541. if (mddev->level != pers->level) {
  4542. mddev->level = pers->level;
  4543. mddev->new_level = pers->level;
  4544. }
  4545. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4546. if (mddev->reshape_position != MaxSector &&
  4547. pers->start_reshape == NULL) {
  4548. /* This personality cannot handle reshaping... */
  4549. module_put(pers->owner);
  4550. return -EINVAL;
  4551. }
  4552. if (pers->sync_request) {
  4553. /* Warn if this is a potentially silly
  4554. * configuration.
  4555. */
  4556. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4557. struct md_rdev *rdev2;
  4558. int warned = 0;
  4559. rdev_for_each(rdev, mddev)
  4560. rdev_for_each(rdev2, mddev) {
  4561. if (rdev < rdev2 &&
  4562. rdev->bdev->bd_contains ==
  4563. rdev2->bdev->bd_contains) {
  4564. printk(KERN_WARNING
  4565. "%s: WARNING: %s appears to be"
  4566. " on the same physical disk as"
  4567. " %s.\n",
  4568. mdname(mddev),
  4569. bdevname(rdev->bdev,b),
  4570. bdevname(rdev2->bdev,b2));
  4571. warned = 1;
  4572. }
  4573. }
  4574. if (warned)
  4575. printk(KERN_WARNING
  4576. "True protection against single-disk"
  4577. " failure might be compromised.\n");
  4578. }
  4579. mddev->recovery = 0;
  4580. /* may be over-ridden by personality */
  4581. mddev->resync_max_sectors = mddev->dev_sectors;
  4582. mddev->ok_start_degraded = start_dirty_degraded;
  4583. if (start_readonly && mddev->ro == 0)
  4584. mddev->ro = 2; /* read-only, but switch on first write */
  4585. err = pers->run(mddev);
  4586. if (err)
  4587. printk(KERN_ERR "md: pers->run() failed ...\n");
  4588. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4589. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4590. " but 'external_size' not in effect?\n", __func__);
  4591. printk(KERN_ERR
  4592. "md: invalid array_size %llu > default size %llu\n",
  4593. (unsigned long long)mddev->array_sectors / 2,
  4594. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4595. err = -EINVAL;
  4596. }
  4597. if (err == 0 && pers->sync_request &&
  4598. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4599. struct bitmap *bitmap;
  4600. bitmap = bitmap_create(mddev, -1);
  4601. if (IS_ERR(bitmap)) {
  4602. err = PTR_ERR(bitmap);
  4603. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4604. mdname(mddev), err);
  4605. } else
  4606. mddev->bitmap = bitmap;
  4607. }
  4608. if (err) {
  4609. mddev_detach(mddev);
  4610. if (mddev->private)
  4611. pers->free(mddev, mddev->private);
  4612. mddev->private = NULL;
  4613. module_put(pers->owner);
  4614. bitmap_destroy(mddev);
  4615. return err;
  4616. }
  4617. if (mddev->queue) {
  4618. mddev->queue->backing_dev_info.congested_data = mddev;
  4619. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4620. }
  4621. if (pers->sync_request) {
  4622. if (mddev->kobj.sd &&
  4623. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4624. printk(KERN_WARNING
  4625. "md: cannot register extra attributes for %s\n",
  4626. mdname(mddev));
  4627. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4628. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4629. mddev->ro = 0;
  4630. atomic_set(&mddev->writes_pending,0);
  4631. atomic_set(&mddev->max_corr_read_errors,
  4632. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4633. mddev->safemode = 0;
  4634. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4635. mddev->in_sync = 1;
  4636. smp_wmb();
  4637. spin_lock(&mddev->lock);
  4638. mddev->pers = pers;
  4639. mddev->ready = 1;
  4640. spin_unlock(&mddev->lock);
  4641. rdev_for_each(rdev, mddev)
  4642. if (rdev->raid_disk >= 0)
  4643. if (sysfs_link_rdev(mddev, rdev))
  4644. /* failure here is OK */;
  4645. if (mddev->degraded && !mddev->ro)
  4646. /* This ensures that recovering status is reported immediately
  4647. * via sysfs - until a lack of spares is confirmed.
  4648. */
  4649. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4650. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4651. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4652. md_update_sb(mddev, 0);
  4653. md_new_event(mddev);
  4654. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4655. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4656. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4657. return 0;
  4658. }
  4659. EXPORT_SYMBOL_GPL(md_run);
  4660. static int do_md_run(struct mddev *mddev)
  4661. {
  4662. int err;
  4663. err = md_run(mddev);
  4664. if (err)
  4665. goto out;
  4666. err = bitmap_load(mddev);
  4667. if (err) {
  4668. bitmap_destroy(mddev);
  4669. goto out;
  4670. }
  4671. md_wakeup_thread(mddev->thread);
  4672. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4673. set_capacity(mddev->gendisk, mddev->array_sectors);
  4674. revalidate_disk(mddev->gendisk);
  4675. mddev->changed = 1;
  4676. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4677. out:
  4678. return err;
  4679. }
  4680. static int restart_array(struct mddev *mddev)
  4681. {
  4682. struct gendisk *disk = mddev->gendisk;
  4683. /* Complain if it has no devices */
  4684. if (list_empty(&mddev->disks))
  4685. return -ENXIO;
  4686. if (!mddev->pers)
  4687. return -EINVAL;
  4688. if (!mddev->ro)
  4689. return -EBUSY;
  4690. mddev->safemode = 0;
  4691. mddev->ro = 0;
  4692. set_disk_ro(disk, 0);
  4693. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4694. mdname(mddev));
  4695. /* Kick recovery or resync if necessary */
  4696. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4697. md_wakeup_thread(mddev->thread);
  4698. md_wakeup_thread(mddev->sync_thread);
  4699. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4700. return 0;
  4701. }
  4702. static void md_clean(struct mddev *mddev)
  4703. {
  4704. mddev->array_sectors = 0;
  4705. mddev->external_size = 0;
  4706. mddev->dev_sectors = 0;
  4707. mddev->raid_disks = 0;
  4708. mddev->recovery_cp = 0;
  4709. mddev->resync_min = 0;
  4710. mddev->resync_max = MaxSector;
  4711. mddev->reshape_position = MaxSector;
  4712. mddev->external = 0;
  4713. mddev->persistent = 0;
  4714. mddev->level = LEVEL_NONE;
  4715. mddev->clevel[0] = 0;
  4716. mddev->flags = 0;
  4717. mddev->ro = 0;
  4718. mddev->metadata_type[0] = 0;
  4719. mddev->chunk_sectors = 0;
  4720. mddev->ctime = mddev->utime = 0;
  4721. mddev->layout = 0;
  4722. mddev->max_disks = 0;
  4723. mddev->events = 0;
  4724. mddev->can_decrease_events = 0;
  4725. mddev->delta_disks = 0;
  4726. mddev->reshape_backwards = 0;
  4727. mddev->new_level = LEVEL_NONE;
  4728. mddev->new_layout = 0;
  4729. mddev->new_chunk_sectors = 0;
  4730. mddev->curr_resync = 0;
  4731. atomic64_set(&mddev->resync_mismatches, 0);
  4732. mddev->suspend_lo = mddev->suspend_hi = 0;
  4733. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4734. mddev->recovery = 0;
  4735. mddev->in_sync = 0;
  4736. mddev->changed = 0;
  4737. mddev->degraded = 0;
  4738. mddev->safemode = 0;
  4739. mddev->private = NULL;
  4740. mddev->bitmap_info.offset = 0;
  4741. mddev->bitmap_info.default_offset = 0;
  4742. mddev->bitmap_info.default_space = 0;
  4743. mddev->bitmap_info.chunksize = 0;
  4744. mddev->bitmap_info.daemon_sleep = 0;
  4745. mddev->bitmap_info.max_write_behind = 0;
  4746. }
  4747. static void __md_stop_writes(struct mddev *mddev)
  4748. {
  4749. if (mddev_is_clustered(mddev))
  4750. md_cluster_ops->metadata_update_start(mddev);
  4751. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4752. flush_workqueue(md_misc_wq);
  4753. if (mddev->sync_thread) {
  4754. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4755. md_reap_sync_thread(mddev);
  4756. }
  4757. del_timer_sync(&mddev->safemode_timer);
  4758. bitmap_flush(mddev);
  4759. md_super_wait(mddev);
  4760. if (mddev->ro == 0 &&
  4761. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4762. /* mark array as shutdown cleanly */
  4763. mddev->in_sync = 1;
  4764. md_update_sb(mddev, 1);
  4765. }
  4766. if (mddev_is_clustered(mddev))
  4767. md_cluster_ops->metadata_update_finish(mddev);
  4768. }
  4769. void md_stop_writes(struct mddev *mddev)
  4770. {
  4771. mddev_lock_nointr(mddev);
  4772. __md_stop_writes(mddev);
  4773. mddev_unlock(mddev);
  4774. }
  4775. EXPORT_SYMBOL_GPL(md_stop_writes);
  4776. static void mddev_detach(struct mddev *mddev)
  4777. {
  4778. struct bitmap *bitmap = mddev->bitmap;
  4779. /* wait for behind writes to complete */
  4780. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4781. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4782. mdname(mddev));
  4783. /* need to kick something here to make sure I/O goes? */
  4784. wait_event(bitmap->behind_wait,
  4785. atomic_read(&bitmap->behind_writes) == 0);
  4786. }
  4787. if (mddev->pers && mddev->pers->quiesce) {
  4788. mddev->pers->quiesce(mddev, 1);
  4789. mddev->pers->quiesce(mddev, 0);
  4790. }
  4791. md_unregister_thread(&mddev->thread);
  4792. if (mddev->queue)
  4793. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4794. }
  4795. static void __md_stop(struct mddev *mddev)
  4796. {
  4797. struct md_personality *pers = mddev->pers;
  4798. mddev_detach(mddev);
  4799. /* Ensure ->event_work is done */
  4800. flush_workqueue(md_misc_wq);
  4801. spin_lock(&mddev->lock);
  4802. mddev->ready = 0;
  4803. mddev->pers = NULL;
  4804. spin_unlock(&mddev->lock);
  4805. pers->free(mddev, mddev->private);
  4806. mddev->private = NULL;
  4807. if (pers->sync_request && mddev->to_remove == NULL)
  4808. mddev->to_remove = &md_redundancy_group;
  4809. module_put(pers->owner);
  4810. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4811. }
  4812. void md_stop(struct mddev *mddev)
  4813. {
  4814. /* stop the array and free an attached data structures.
  4815. * This is called from dm-raid
  4816. */
  4817. __md_stop(mddev);
  4818. bitmap_destroy(mddev);
  4819. if (mddev->bio_set)
  4820. bioset_free(mddev->bio_set);
  4821. }
  4822. EXPORT_SYMBOL_GPL(md_stop);
  4823. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4824. {
  4825. int err = 0;
  4826. int did_freeze = 0;
  4827. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4828. did_freeze = 1;
  4829. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4830. md_wakeup_thread(mddev->thread);
  4831. }
  4832. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4833. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4834. if (mddev->sync_thread)
  4835. /* Thread might be blocked waiting for metadata update
  4836. * which will now never happen */
  4837. wake_up_process(mddev->sync_thread->tsk);
  4838. if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
  4839. return -EBUSY;
  4840. mddev_unlock(mddev);
  4841. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4842. &mddev->recovery));
  4843. wait_event(mddev->sb_wait,
  4844. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  4845. mddev_lock_nointr(mddev);
  4846. mutex_lock(&mddev->open_mutex);
  4847. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4848. mddev->sync_thread ||
  4849. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4850. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4851. printk("md: %s still in use.\n",mdname(mddev));
  4852. if (did_freeze) {
  4853. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4854. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4855. md_wakeup_thread(mddev->thread);
  4856. }
  4857. err = -EBUSY;
  4858. goto out;
  4859. }
  4860. if (mddev->pers) {
  4861. __md_stop_writes(mddev);
  4862. err = -ENXIO;
  4863. if (mddev->ro==1)
  4864. goto out;
  4865. mddev->ro = 1;
  4866. set_disk_ro(mddev->gendisk, 1);
  4867. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4868. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4869. md_wakeup_thread(mddev->thread);
  4870. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4871. err = 0;
  4872. }
  4873. out:
  4874. mutex_unlock(&mddev->open_mutex);
  4875. return err;
  4876. }
  4877. /* mode:
  4878. * 0 - completely stop and dis-assemble array
  4879. * 2 - stop but do not disassemble array
  4880. */
  4881. static int do_md_stop(struct mddev *mddev, int mode,
  4882. struct block_device *bdev)
  4883. {
  4884. struct gendisk *disk = mddev->gendisk;
  4885. struct md_rdev *rdev;
  4886. int did_freeze = 0;
  4887. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4888. did_freeze = 1;
  4889. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4890. md_wakeup_thread(mddev->thread);
  4891. }
  4892. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4893. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4894. if (mddev->sync_thread)
  4895. /* Thread might be blocked waiting for metadata update
  4896. * which will now never happen */
  4897. wake_up_process(mddev->sync_thread->tsk);
  4898. mddev_unlock(mddev);
  4899. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  4900. !test_bit(MD_RECOVERY_RUNNING,
  4901. &mddev->recovery)));
  4902. mddev_lock_nointr(mddev);
  4903. mutex_lock(&mddev->open_mutex);
  4904. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4905. mddev->sysfs_active ||
  4906. mddev->sync_thread ||
  4907. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4908. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4909. printk("md: %s still in use.\n",mdname(mddev));
  4910. mutex_unlock(&mddev->open_mutex);
  4911. if (did_freeze) {
  4912. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4913. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4914. md_wakeup_thread(mddev->thread);
  4915. }
  4916. return -EBUSY;
  4917. }
  4918. if (mddev->pers) {
  4919. if (mddev->ro)
  4920. set_disk_ro(disk, 0);
  4921. __md_stop_writes(mddev);
  4922. __md_stop(mddev);
  4923. mddev->queue->backing_dev_info.congested_fn = NULL;
  4924. /* tell userspace to handle 'inactive' */
  4925. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4926. rdev_for_each(rdev, mddev)
  4927. if (rdev->raid_disk >= 0)
  4928. sysfs_unlink_rdev(mddev, rdev);
  4929. set_capacity(disk, 0);
  4930. mutex_unlock(&mddev->open_mutex);
  4931. mddev->changed = 1;
  4932. revalidate_disk(disk);
  4933. if (mddev->ro)
  4934. mddev->ro = 0;
  4935. } else
  4936. mutex_unlock(&mddev->open_mutex);
  4937. /*
  4938. * Free resources if final stop
  4939. */
  4940. if (mode == 0) {
  4941. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4942. bitmap_destroy(mddev);
  4943. if (mddev->bitmap_info.file) {
  4944. struct file *f = mddev->bitmap_info.file;
  4945. spin_lock(&mddev->lock);
  4946. mddev->bitmap_info.file = NULL;
  4947. spin_unlock(&mddev->lock);
  4948. fput(f);
  4949. }
  4950. mddev->bitmap_info.offset = 0;
  4951. export_array(mddev);
  4952. md_clean(mddev);
  4953. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4954. if (mddev->hold_active == UNTIL_STOP)
  4955. mddev->hold_active = 0;
  4956. }
  4957. md_new_event(mddev);
  4958. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4959. return 0;
  4960. }
  4961. #ifndef MODULE
  4962. static void autorun_array(struct mddev *mddev)
  4963. {
  4964. struct md_rdev *rdev;
  4965. int err;
  4966. if (list_empty(&mddev->disks))
  4967. return;
  4968. printk(KERN_INFO "md: running: ");
  4969. rdev_for_each(rdev, mddev) {
  4970. char b[BDEVNAME_SIZE];
  4971. printk("<%s>", bdevname(rdev->bdev,b));
  4972. }
  4973. printk("\n");
  4974. err = do_md_run(mddev);
  4975. if (err) {
  4976. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4977. do_md_stop(mddev, 0, NULL);
  4978. }
  4979. }
  4980. /*
  4981. * lets try to run arrays based on all disks that have arrived
  4982. * until now. (those are in pending_raid_disks)
  4983. *
  4984. * the method: pick the first pending disk, collect all disks with
  4985. * the same UUID, remove all from the pending list and put them into
  4986. * the 'same_array' list. Then order this list based on superblock
  4987. * update time (freshest comes first), kick out 'old' disks and
  4988. * compare superblocks. If everything's fine then run it.
  4989. *
  4990. * If "unit" is allocated, then bump its reference count
  4991. */
  4992. static void autorun_devices(int part)
  4993. {
  4994. struct md_rdev *rdev0, *rdev, *tmp;
  4995. struct mddev *mddev;
  4996. char b[BDEVNAME_SIZE];
  4997. printk(KERN_INFO "md: autorun ...\n");
  4998. while (!list_empty(&pending_raid_disks)) {
  4999. int unit;
  5000. dev_t dev;
  5001. LIST_HEAD(candidates);
  5002. rdev0 = list_entry(pending_raid_disks.next,
  5003. struct md_rdev, same_set);
  5004. printk(KERN_INFO "md: considering %s ...\n",
  5005. bdevname(rdev0->bdev,b));
  5006. INIT_LIST_HEAD(&candidates);
  5007. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5008. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5009. printk(KERN_INFO "md: adding %s ...\n",
  5010. bdevname(rdev->bdev,b));
  5011. list_move(&rdev->same_set, &candidates);
  5012. }
  5013. /*
  5014. * now we have a set of devices, with all of them having
  5015. * mostly sane superblocks. It's time to allocate the
  5016. * mddev.
  5017. */
  5018. if (part) {
  5019. dev = MKDEV(mdp_major,
  5020. rdev0->preferred_minor << MdpMinorShift);
  5021. unit = MINOR(dev) >> MdpMinorShift;
  5022. } else {
  5023. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5024. unit = MINOR(dev);
  5025. }
  5026. if (rdev0->preferred_minor != unit) {
  5027. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5028. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5029. break;
  5030. }
  5031. md_probe(dev, NULL, NULL);
  5032. mddev = mddev_find(dev);
  5033. if (!mddev || !mddev->gendisk) {
  5034. if (mddev)
  5035. mddev_put(mddev);
  5036. printk(KERN_ERR
  5037. "md: cannot allocate memory for md drive.\n");
  5038. break;
  5039. }
  5040. if (mddev_lock(mddev))
  5041. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5042. mdname(mddev));
  5043. else if (mddev->raid_disks || mddev->major_version
  5044. || !list_empty(&mddev->disks)) {
  5045. printk(KERN_WARNING
  5046. "md: %s already running, cannot run %s\n",
  5047. mdname(mddev), bdevname(rdev0->bdev,b));
  5048. mddev_unlock(mddev);
  5049. } else {
  5050. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5051. mddev->persistent = 1;
  5052. rdev_for_each_list(rdev, tmp, &candidates) {
  5053. list_del_init(&rdev->same_set);
  5054. if (bind_rdev_to_array(rdev, mddev))
  5055. export_rdev(rdev);
  5056. }
  5057. autorun_array(mddev);
  5058. mddev_unlock(mddev);
  5059. }
  5060. /* on success, candidates will be empty, on error
  5061. * it won't...
  5062. */
  5063. rdev_for_each_list(rdev, tmp, &candidates) {
  5064. list_del_init(&rdev->same_set);
  5065. export_rdev(rdev);
  5066. }
  5067. mddev_put(mddev);
  5068. }
  5069. printk(KERN_INFO "md: ... autorun DONE.\n");
  5070. }
  5071. #endif /* !MODULE */
  5072. static int get_version(void __user *arg)
  5073. {
  5074. mdu_version_t ver;
  5075. ver.major = MD_MAJOR_VERSION;
  5076. ver.minor = MD_MINOR_VERSION;
  5077. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5078. if (copy_to_user(arg, &ver, sizeof(ver)))
  5079. return -EFAULT;
  5080. return 0;
  5081. }
  5082. static int get_array_info(struct mddev *mddev, void __user *arg)
  5083. {
  5084. mdu_array_info_t info;
  5085. int nr,working,insync,failed,spare;
  5086. struct md_rdev *rdev;
  5087. nr = working = insync = failed = spare = 0;
  5088. rcu_read_lock();
  5089. rdev_for_each_rcu(rdev, mddev) {
  5090. nr++;
  5091. if (test_bit(Faulty, &rdev->flags))
  5092. failed++;
  5093. else {
  5094. working++;
  5095. if (test_bit(In_sync, &rdev->flags))
  5096. insync++;
  5097. else
  5098. spare++;
  5099. }
  5100. }
  5101. rcu_read_unlock();
  5102. info.major_version = mddev->major_version;
  5103. info.minor_version = mddev->minor_version;
  5104. info.patch_version = MD_PATCHLEVEL_VERSION;
  5105. info.ctime = mddev->ctime;
  5106. info.level = mddev->level;
  5107. info.size = mddev->dev_sectors / 2;
  5108. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5109. info.size = -1;
  5110. info.nr_disks = nr;
  5111. info.raid_disks = mddev->raid_disks;
  5112. info.md_minor = mddev->md_minor;
  5113. info.not_persistent= !mddev->persistent;
  5114. info.utime = mddev->utime;
  5115. info.state = 0;
  5116. if (mddev->in_sync)
  5117. info.state = (1<<MD_SB_CLEAN);
  5118. if (mddev->bitmap && mddev->bitmap_info.offset)
  5119. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5120. if (mddev_is_clustered(mddev))
  5121. info.state |= (1<<MD_SB_CLUSTERED);
  5122. info.active_disks = insync;
  5123. info.working_disks = working;
  5124. info.failed_disks = failed;
  5125. info.spare_disks = spare;
  5126. info.layout = mddev->layout;
  5127. info.chunk_size = mddev->chunk_sectors << 9;
  5128. if (copy_to_user(arg, &info, sizeof(info)))
  5129. return -EFAULT;
  5130. return 0;
  5131. }
  5132. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5133. {
  5134. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5135. char *ptr;
  5136. int err;
  5137. file = kzalloc(sizeof(*file), GFP_NOIO);
  5138. if (!file)
  5139. return -ENOMEM;
  5140. err = 0;
  5141. spin_lock(&mddev->lock);
  5142. /* bitmap enabled */
  5143. if (mddev->bitmap_info.file) {
  5144. ptr = file_path(mddev->bitmap_info.file, file->pathname,
  5145. sizeof(file->pathname));
  5146. if (IS_ERR(ptr))
  5147. err = PTR_ERR(ptr);
  5148. else
  5149. memmove(file->pathname, ptr,
  5150. sizeof(file->pathname)-(ptr-file->pathname));
  5151. }
  5152. spin_unlock(&mddev->lock);
  5153. if (err == 0 &&
  5154. copy_to_user(arg, file, sizeof(*file)))
  5155. err = -EFAULT;
  5156. kfree(file);
  5157. return err;
  5158. }
  5159. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5160. {
  5161. mdu_disk_info_t info;
  5162. struct md_rdev *rdev;
  5163. if (copy_from_user(&info, arg, sizeof(info)))
  5164. return -EFAULT;
  5165. rcu_read_lock();
  5166. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5167. if (rdev) {
  5168. info.major = MAJOR(rdev->bdev->bd_dev);
  5169. info.minor = MINOR(rdev->bdev->bd_dev);
  5170. info.raid_disk = rdev->raid_disk;
  5171. info.state = 0;
  5172. if (test_bit(Faulty, &rdev->flags))
  5173. info.state |= (1<<MD_DISK_FAULTY);
  5174. else if (test_bit(In_sync, &rdev->flags)) {
  5175. info.state |= (1<<MD_DISK_ACTIVE);
  5176. info.state |= (1<<MD_DISK_SYNC);
  5177. }
  5178. if (test_bit(WriteMostly, &rdev->flags))
  5179. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5180. } else {
  5181. info.major = info.minor = 0;
  5182. info.raid_disk = -1;
  5183. info.state = (1<<MD_DISK_REMOVED);
  5184. }
  5185. rcu_read_unlock();
  5186. if (copy_to_user(arg, &info, sizeof(info)))
  5187. return -EFAULT;
  5188. return 0;
  5189. }
  5190. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5191. {
  5192. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5193. struct md_rdev *rdev;
  5194. dev_t dev = MKDEV(info->major,info->minor);
  5195. if (mddev_is_clustered(mddev) &&
  5196. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5197. pr_err("%s: Cannot add to clustered mddev.\n",
  5198. mdname(mddev));
  5199. return -EINVAL;
  5200. }
  5201. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5202. return -EOVERFLOW;
  5203. if (!mddev->raid_disks) {
  5204. int err;
  5205. /* expecting a device which has a superblock */
  5206. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5207. if (IS_ERR(rdev)) {
  5208. printk(KERN_WARNING
  5209. "md: md_import_device returned %ld\n",
  5210. PTR_ERR(rdev));
  5211. return PTR_ERR(rdev);
  5212. }
  5213. if (!list_empty(&mddev->disks)) {
  5214. struct md_rdev *rdev0
  5215. = list_entry(mddev->disks.next,
  5216. struct md_rdev, same_set);
  5217. err = super_types[mddev->major_version]
  5218. .load_super(rdev, rdev0, mddev->minor_version);
  5219. if (err < 0) {
  5220. printk(KERN_WARNING
  5221. "md: %s has different UUID to %s\n",
  5222. bdevname(rdev->bdev,b),
  5223. bdevname(rdev0->bdev,b2));
  5224. export_rdev(rdev);
  5225. return -EINVAL;
  5226. }
  5227. }
  5228. err = bind_rdev_to_array(rdev, mddev);
  5229. if (err)
  5230. export_rdev(rdev);
  5231. return err;
  5232. }
  5233. /*
  5234. * add_new_disk can be used once the array is assembled
  5235. * to add "hot spares". They must already have a superblock
  5236. * written
  5237. */
  5238. if (mddev->pers) {
  5239. int err;
  5240. if (!mddev->pers->hot_add_disk) {
  5241. printk(KERN_WARNING
  5242. "%s: personality does not support diskops!\n",
  5243. mdname(mddev));
  5244. return -EINVAL;
  5245. }
  5246. if (mddev->persistent)
  5247. rdev = md_import_device(dev, mddev->major_version,
  5248. mddev->minor_version);
  5249. else
  5250. rdev = md_import_device(dev, -1, -1);
  5251. if (IS_ERR(rdev)) {
  5252. printk(KERN_WARNING
  5253. "md: md_import_device returned %ld\n",
  5254. PTR_ERR(rdev));
  5255. return PTR_ERR(rdev);
  5256. }
  5257. /* set saved_raid_disk if appropriate */
  5258. if (!mddev->persistent) {
  5259. if (info->state & (1<<MD_DISK_SYNC) &&
  5260. info->raid_disk < mddev->raid_disks) {
  5261. rdev->raid_disk = info->raid_disk;
  5262. set_bit(In_sync, &rdev->flags);
  5263. clear_bit(Bitmap_sync, &rdev->flags);
  5264. } else
  5265. rdev->raid_disk = -1;
  5266. rdev->saved_raid_disk = rdev->raid_disk;
  5267. } else
  5268. super_types[mddev->major_version].
  5269. validate_super(mddev, rdev);
  5270. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5271. rdev->raid_disk != info->raid_disk) {
  5272. /* This was a hot-add request, but events doesn't
  5273. * match, so reject it.
  5274. */
  5275. export_rdev(rdev);
  5276. return -EINVAL;
  5277. }
  5278. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5279. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5280. set_bit(WriteMostly, &rdev->flags);
  5281. else
  5282. clear_bit(WriteMostly, &rdev->flags);
  5283. /*
  5284. * check whether the device shows up in other nodes
  5285. */
  5286. if (mddev_is_clustered(mddev)) {
  5287. if (info->state & (1 << MD_DISK_CANDIDATE)) {
  5288. /* Through --cluster-confirm */
  5289. set_bit(Candidate, &rdev->flags);
  5290. err = md_cluster_ops->new_disk_ack(mddev, true);
  5291. if (err) {
  5292. export_rdev(rdev);
  5293. return err;
  5294. }
  5295. } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5296. /* --add initiated by this node */
  5297. err = md_cluster_ops->add_new_disk_start(mddev, rdev);
  5298. if (err) {
  5299. md_cluster_ops->add_new_disk_finish(mddev);
  5300. export_rdev(rdev);
  5301. return err;
  5302. }
  5303. }
  5304. }
  5305. rdev->raid_disk = -1;
  5306. err = bind_rdev_to_array(rdev, mddev);
  5307. if (err)
  5308. export_rdev(rdev);
  5309. else
  5310. err = add_bound_rdev(rdev);
  5311. if (mddev_is_clustered(mddev) &&
  5312. (info->state & (1 << MD_DISK_CLUSTER_ADD)))
  5313. md_cluster_ops->add_new_disk_finish(mddev);
  5314. return err;
  5315. }
  5316. /* otherwise, add_new_disk is only allowed
  5317. * for major_version==0 superblocks
  5318. */
  5319. if (mddev->major_version != 0) {
  5320. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5321. mdname(mddev));
  5322. return -EINVAL;
  5323. }
  5324. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5325. int err;
  5326. rdev = md_import_device(dev, -1, 0);
  5327. if (IS_ERR(rdev)) {
  5328. printk(KERN_WARNING
  5329. "md: error, md_import_device() returned %ld\n",
  5330. PTR_ERR(rdev));
  5331. return PTR_ERR(rdev);
  5332. }
  5333. rdev->desc_nr = info->number;
  5334. if (info->raid_disk < mddev->raid_disks)
  5335. rdev->raid_disk = info->raid_disk;
  5336. else
  5337. rdev->raid_disk = -1;
  5338. if (rdev->raid_disk < mddev->raid_disks)
  5339. if (info->state & (1<<MD_DISK_SYNC))
  5340. set_bit(In_sync, &rdev->flags);
  5341. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5342. set_bit(WriteMostly, &rdev->flags);
  5343. if (!mddev->persistent) {
  5344. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5345. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5346. } else
  5347. rdev->sb_start = calc_dev_sboffset(rdev);
  5348. rdev->sectors = rdev->sb_start;
  5349. err = bind_rdev_to_array(rdev, mddev);
  5350. if (err) {
  5351. export_rdev(rdev);
  5352. return err;
  5353. }
  5354. }
  5355. return 0;
  5356. }
  5357. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5358. {
  5359. char b[BDEVNAME_SIZE];
  5360. struct md_rdev *rdev;
  5361. rdev = find_rdev(mddev, dev);
  5362. if (!rdev)
  5363. return -ENXIO;
  5364. if (mddev_is_clustered(mddev))
  5365. md_cluster_ops->metadata_update_start(mddev);
  5366. clear_bit(Blocked, &rdev->flags);
  5367. remove_and_add_spares(mddev, rdev);
  5368. if (rdev->raid_disk >= 0)
  5369. goto busy;
  5370. if (mddev_is_clustered(mddev))
  5371. md_cluster_ops->remove_disk(mddev, rdev);
  5372. md_kick_rdev_from_array(rdev);
  5373. md_update_sb(mddev, 1);
  5374. md_new_event(mddev);
  5375. if (mddev_is_clustered(mddev))
  5376. md_cluster_ops->metadata_update_finish(mddev);
  5377. return 0;
  5378. busy:
  5379. if (mddev_is_clustered(mddev))
  5380. md_cluster_ops->metadata_update_cancel(mddev);
  5381. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5382. bdevname(rdev->bdev,b), mdname(mddev));
  5383. return -EBUSY;
  5384. }
  5385. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5386. {
  5387. char b[BDEVNAME_SIZE];
  5388. int err;
  5389. struct md_rdev *rdev;
  5390. if (!mddev->pers)
  5391. return -ENODEV;
  5392. if (mddev->major_version != 0) {
  5393. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5394. " version-0 superblocks.\n",
  5395. mdname(mddev));
  5396. return -EINVAL;
  5397. }
  5398. if (!mddev->pers->hot_add_disk) {
  5399. printk(KERN_WARNING
  5400. "%s: personality does not support diskops!\n",
  5401. mdname(mddev));
  5402. return -EINVAL;
  5403. }
  5404. rdev = md_import_device(dev, -1, 0);
  5405. if (IS_ERR(rdev)) {
  5406. printk(KERN_WARNING
  5407. "md: error, md_import_device() returned %ld\n",
  5408. PTR_ERR(rdev));
  5409. return -EINVAL;
  5410. }
  5411. if (mddev->persistent)
  5412. rdev->sb_start = calc_dev_sboffset(rdev);
  5413. else
  5414. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5415. rdev->sectors = rdev->sb_start;
  5416. if (test_bit(Faulty, &rdev->flags)) {
  5417. printk(KERN_WARNING
  5418. "md: can not hot-add faulty %s disk to %s!\n",
  5419. bdevname(rdev->bdev,b), mdname(mddev));
  5420. err = -EINVAL;
  5421. goto abort_export;
  5422. }
  5423. if (mddev_is_clustered(mddev))
  5424. md_cluster_ops->metadata_update_start(mddev);
  5425. clear_bit(In_sync, &rdev->flags);
  5426. rdev->desc_nr = -1;
  5427. rdev->saved_raid_disk = -1;
  5428. err = bind_rdev_to_array(rdev, mddev);
  5429. if (err)
  5430. goto abort_clustered;
  5431. /*
  5432. * The rest should better be atomic, we can have disk failures
  5433. * noticed in interrupt contexts ...
  5434. */
  5435. rdev->raid_disk = -1;
  5436. md_update_sb(mddev, 1);
  5437. if (mddev_is_clustered(mddev))
  5438. md_cluster_ops->metadata_update_finish(mddev);
  5439. /*
  5440. * Kick recovery, maybe this spare has to be added to the
  5441. * array immediately.
  5442. */
  5443. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5444. md_wakeup_thread(mddev->thread);
  5445. md_new_event(mddev);
  5446. return 0;
  5447. abort_clustered:
  5448. if (mddev_is_clustered(mddev))
  5449. md_cluster_ops->metadata_update_cancel(mddev);
  5450. abort_export:
  5451. export_rdev(rdev);
  5452. return err;
  5453. }
  5454. static int set_bitmap_file(struct mddev *mddev, int fd)
  5455. {
  5456. int err = 0;
  5457. if (mddev->pers) {
  5458. if (!mddev->pers->quiesce || !mddev->thread)
  5459. return -EBUSY;
  5460. if (mddev->recovery || mddev->sync_thread)
  5461. return -EBUSY;
  5462. /* we should be able to change the bitmap.. */
  5463. }
  5464. if (fd >= 0) {
  5465. struct inode *inode;
  5466. struct file *f;
  5467. if (mddev->bitmap || mddev->bitmap_info.file)
  5468. return -EEXIST; /* cannot add when bitmap is present */
  5469. f = fget(fd);
  5470. if (f == NULL) {
  5471. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5472. mdname(mddev));
  5473. return -EBADF;
  5474. }
  5475. inode = f->f_mapping->host;
  5476. if (!S_ISREG(inode->i_mode)) {
  5477. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5478. mdname(mddev));
  5479. err = -EBADF;
  5480. } else if (!(f->f_mode & FMODE_WRITE)) {
  5481. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5482. mdname(mddev));
  5483. err = -EBADF;
  5484. } else if (atomic_read(&inode->i_writecount) != 1) {
  5485. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5486. mdname(mddev));
  5487. err = -EBUSY;
  5488. }
  5489. if (err) {
  5490. fput(f);
  5491. return err;
  5492. }
  5493. mddev->bitmap_info.file = f;
  5494. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5495. } else if (mddev->bitmap == NULL)
  5496. return -ENOENT; /* cannot remove what isn't there */
  5497. err = 0;
  5498. if (mddev->pers) {
  5499. mddev->pers->quiesce(mddev, 1);
  5500. if (fd >= 0) {
  5501. struct bitmap *bitmap;
  5502. bitmap = bitmap_create(mddev, -1);
  5503. if (!IS_ERR(bitmap)) {
  5504. mddev->bitmap = bitmap;
  5505. err = bitmap_load(mddev);
  5506. } else
  5507. err = PTR_ERR(bitmap);
  5508. }
  5509. if (fd < 0 || err) {
  5510. bitmap_destroy(mddev);
  5511. fd = -1; /* make sure to put the file */
  5512. }
  5513. mddev->pers->quiesce(mddev, 0);
  5514. }
  5515. if (fd < 0) {
  5516. struct file *f = mddev->bitmap_info.file;
  5517. if (f) {
  5518. spin_lock(&mddev->lock);
  5519. mddev->bitmap_info.file = NULL;
  5520. spin_unlock(&mddev->lock);
  5521. fput(f);
  5522. }
  5523. }
  5524. return err;
  5525. }
  5526. /*
  5527. * set_array_info is used two different ways
  5528. * The original usage is when creating a new array.
  5529. * In this usage, raid_disks is > 0 and it together with
  5530. * level, size, not_persistent,layout,chunksize determine the
  5531. * shape of the array.
  5532. * This will always create an array with a type-0.90.0 superblock.
  5533. * The newer usage is when assembling an array.
  5534. * In this case raid_disks will be 0, and the major_version field is
  5535. * use to determine which style super-blocks are to be found on the devices.
  5536. * The minor and patch _version numbers are also kept incase the
  5537. * super_block handler wishes to interpret them.
  5538. */
  5539. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5540. {
  5541. if (info->raid_disks == 0) {
  5542. /* just setting version number for superblock loading */
  5543. if (info->major_version < 0 ||
  5544. info->major_version >= ARRAY_SIZE(super_types) ||
  5545. super_types[info->major_version].name == NULL) {
  5546. /* maybe try to auto-load a module? */
  5547. printk(KERN_INFO
  5548. "md: superblock version %d not known\n",
  5549. info->major_version);
  5550. return -EINVAL;
  5551. }
  5552. mddev->major_version = info->major_version;
  5553. mddev->minor_version = info->minor_version;
  5554. mddev->patch_version = info->patch_version;
  5555. mddev->persistent = !info->not_persistent;
  5556. /* ensure mddev_put doesn't delete this now that there
  5557. * is some minimal configuration.
  5558. */
  5559. mddev->ctime = get_seconds();
  5560. return 0;
  5561. }
  5562. mddev->major_version = MD_MAJOR_VERSION;
  5563. mddev->minor_version = MD_MINOR_VERSION;
  5564. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5565. mddev->ctime = get_seconds();
  5566. mddev->level = info->level;
  5567. mddev->clevel[0] = 0;
  5568. mddev->dev_sectors = 2 * (sector_t)info->size;
  5569. mddev->raid_disks = info->raid_disks;
  5570. /* don't set md_minor, it is determined by which /dev/md* was
  5571. * openned
  5572. */
  5573. if (info->state & (1<<MD_SB_CLEAN))
  5574. mddev->recovery_cp = MaxSector;
  5575. else
  5576. mddev->recovery_cp = 0;
  5577. mddev->persistent = ! info->not_persistent;
  5578. mddev->external = 0;
  5579. mddev->layout = info->layout;
  5580. mddev->chunk_sectors = info->chunk_size >> 9;
  5581. mddev->max_disks = MD_SB_DISKS;
  5582. if (mddev->persistent)
  5583. mddev->flags = 0;
  5584. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5585. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5586. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5587. mddev->bitmap_info.offset = 0;
  5588. mddev->reshape_position = MaxSector;
  5589. /*
  5590. * Generate a 128 bit UUID
  5591. */
  5592. get_random_bytes(mddev->uuid, 16);
  5593. mddev->new_level = mddev->level;
  5594. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5595. mddev->new_layout = mddev->layout;
  5596. mddev->delta_disks = 0;
  5597. mddev->reshape_backwards = 0;
  5598. return 0;
  5599. }
  5600. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5601. {
  5602. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5603. if (mddev->external_size)
  5604. return;
  5605. mddev->array_sectors = array_sectors;
  5606. }
  5607. EXPORT_SYMBOL(md_set_array_sectors);
  5608. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5609. {
  5610. struct md_rdev *rdev;
  5611. int rv;
  5612. int fit = (num_sectors == 0);
  5613. if (mddev->pers->resize == NULL)
  5614. return -EINVAL;
  5615. /* The "num_sectors" is the number of sectors of each device that
  5616. * is used. This can only make sense for arrays with redundancy.
  5617. * linear and raid0 always use whatever space is available. We can only
  5618. * consider changing this number if no resync or reconstruction is
  5619. * happening, and if the new size is acceptable. It must fit before the
  5620. * sb_start or, if that is <data_offset, it must fit before the size
  5621. * of each device. If num_sectors is zero, we find the largest size
  5622. * that fits.
  5623. */
  5624. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5625. mddev->sync_thread)
  5626. return -EBUSY;
  5627. if (mddev->ro)
  5628. return -EROFS;
  5629. rdev_for_each(rdev, mddev) {
  5630. sector_t avail = rdev->sectors;
  5631. if (fit && (num_sectors == 0 || num_sectors > avail))
  5632. num_sectors = avail;
  5633. if (avail < num_sectors)
  5634. return -ENOSPC;
  5635. }
  5636. rv = mddev->pers->resize(mddev, num_sectors);
  5637. if (!rv)
  5638. revalidate_disk(mddev->gendisk);
  5639. return rv;
  5640. }
  5641. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5642. {
  5643. int rv;
  5644. struct md_rdev *rdev;
  5645. /* change the number of raid disks */
  5646. if (mddev->pers->check_reshape == NULL)
  5647. return -EINVAL;
  5648. if (mddev->ro)
  5649. return -EROFS;
  5650. if (raid_disks <= 0 ||
  5651. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5652. return -EINVAL;
  5653. if (mddev->sync_thread ||
  5654. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5655. mddev->reshape_position != MaxSector)
  5656. return -EBUSY;
  5657. rdev_for_each(rdev, mddev) {
  5658. if (mddev->raid_disks < raid_disks &&
  5659. rdev->data_offset < rdev->new_data_offset)
  5660. return -EINVAL;
  5661. if (mddev->raid_disks > raid_disks &&
  5662. rdev->data_offset > rdev->new_data_offset)
  5663. return -EINVAL;
  5664. }
  5665. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5666. if (mddev->delta_disks < 0)
  5667. mddev->reshape_backwards = 1;
  5668. else if (mddev->delta_disks > 0)
  5669. mddev->reshape_backwards = 0;
  5670. rv = mddev->pers->check_reshape(mddev);
  5671. if (rv < 0) {
  5672. mddev->delta_disks = 0;
  5673. mddev->reshape_backwards = 0;
  5674. }
  5675. return rv;
  5676. }
  5677. /*
  5678. * update_array_info is used to change the configuration of an
  5679. * on-line array.
  5680. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5681. * fields in the info are checked against the array.
  5682. * Any differences that cannot be handled will cause an error.
  5683. * Normally, only one change can be managed at a time.
  5684. */
  5685. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5686. {
  5687. int rv = 0;
  5688. int cnt = 0;
  5689. int state = 0;
  5690. /* calculate expected state,ignoring low bits */
  5691. if (mddev->bitmap && mddev->bitmap_info.offset)
  5692. state |= (1 << MD_SB_BITMAP_PRESENT);
  5693. if (mddev->major_version != info->major_version ||
  5694. mddev->minor_version != info->minor_version ||
  5695. /* mddev->patch_version != info->patch_version || */
  5696. mddev->ctime != info->ctime ||
  5697. mddev->level != info->level ||
  5698. /* mddev->layout != info->layout || */
  5699. mddev->persistent != !info->not_persistent ||
  5700. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5701. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5702. ((state^info->state) & 0xfffffe00)
  5703. )
  5704. return -EINVAL;
  5705. /* Check there is only one change */
  5706. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5707. cnt++;
  5708. if (mddev->raid_disks != info->raid_disks)
  5709. cnt++;
  5710. if (mddev->layout != info->layout)
  5711. cnt++;
  5712. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5713. cnt++;
  5714. if (cnt == 0)
  5715. return 0;
  5716. if (cnt > 1)
  5717. return -EINVAL;
  5718. if (mddev->layout != info->layout) {
  5719. /* Change layout
  5720. * we don't need to do anything at the md level, the
  5721. * personality will take care of it all.
  5722. */
  5723. if (mddev->pers->check_reshape == NULL)
  5724. return -EINVAL;
  5725. else {
  5726. mddev->new_layout = info->layout;
  5727. rv = mddev->pers->check_reshape(mddev);
  5728. if (rv)
  5729. mddev->new_layout = mddev->layout;
  5730. return rv;
  5731. }
  5732. }
  5733. if (mddev_is_clustered(mddev))
  5734. md_cluster_ops->metadata_update_start(mddev);
  5735. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5736. rv = update_size(mddev, (sector_t)info->size * 2);
  5737. if (mddev->raid_disks != info->raid_disks)
  5738. rv = update_raid_disks(mddev, info->raid_disks);
  5739. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5740. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5741. rv = -EINVAL;
  5742. goto err;
  5743. }
  5744. if (mddev->recovery || mddev->sync_thread) {
  5745. rv = -EBUSY;
  5746. goto err;
  5747. }
  5748. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5749. struct bitmap *bitmap;
  5750. /* add the bitmap */
  5751. if (mddev->bitmap) {
  5752. rv = -EEXIST;
  5753. goto err;
  5754. }
  5755. if (mddev->bitmap_info.default_offset == 0) {
  5756. rv = -EINVAL;
  5757. goto err;
  5758. }
  5759. mddev->bitmap_info.offset =
  5760. mddev->bitmap_info.default_offset;
  5761. mddev->bitmap_info.space =
  5762. mddev->bitmap_info.default_space;
  5763. mddev->pers->quiesce(mddev, 1);
  5764. bitmap = bitmap_create(mddev, -1);
  5765. if (!IS_ERR(bitmap)) {
  5766. mddev->bitmap = bitmap;
  5767. rv = bitmap_load(mddev);
  5768. } else
  5769. rv = PTR_ERR(bitmap);
  5770. if (rv)
  5771. bitmap_destroy(mddev);
  5772. mddev->pers->quiesce(mddev, 0);
  5773. } else {
  5774. /* remove the bitmap */
  5775. if (!mddev->bitmap) {
  5776. rv = -ENOENT;
  5777. goto err;
  5778. }
  5779. if (mddev->bitmap->storage.file) {
  5780. rv = -EINVAL;
  5781. goto err;
  5782. }
  5783. mddev->pers->quiesce(mddev, 1);
  5784. bitmap_destroy(mddev);
  5785. mddev->pers->quiesce(mddev, 0);
  5786. mddev->bitmap_info.offset = 0;
  5787. }
  5788. }
  5789. md_update_sb(mddev, 1);
  5790. if (mddev_is_clustered(mddev))
  5791. md_cluster_ops->metadata_update_finish(mddev);
  5792. return rv;
  5793. err:
  5794. if (mddev_is_clustered(mddev))
  5795. md_cluster_ops->metadata_update_cancel(mddev);
  5796. return rv;
  5797. }
  5798. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5799. {
  5800. struct md_rdev *rdev;
  5801. int err = 0;
  5802. if (mddev->pers == NULL)
  5803. return -ENODEV;
  5804. rcu_read_lock();
  5805. rdev = find_rdev_rcu(mddev, dev);
  5806. if (!rdev)
  5807. err = -ENODEV;
  5808. else {
  5809. md_error(mddev, rdev);
  5810. if (!test_bit(Faulty, &rdev->flags))
  5811. err = -EBUSY;
  5812. }
  5813. rcu_read_unlock();
  5814. return err;
  5815. }
  5816. /*
  5817. * We have a problem here : there is no easy way to give a CHS
  5818. * virtual geometry. We currently pretend that we have a 2 heads
  5819. * 4 sectors (with a BIG number of cylinders...). This drives
  5820. * dosfs just mad... ;-)
  5821. */
  5822. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5823. {
  5824. struct mddev *mddev = bdev->bd_disk->private_data;
  5825. geo->heads = 2;
  5826. geo->sectors = 4;
  5827. geo->cylinders = mddev->array_sectors / 8;
  5828. return 0;
  5829. }
  5830. static inline bool md_ioctl_valid(unsigned int cmd)
  5831. {
  5832. switch (cmd) {
  5833. case ADD_NEW_DISK:
  5834. case BLKROSET:
  5835. case GET_ARRAY_INFO:
  5836. case GET_BITMAP_FILE:
  5837. case GET_DISK_INFO:
  5838. case HOT_ADD_DISK:
  5839. case HOT_REMOVE_DISK:
  5840. case RAID_AUTORUN:
  5841. case RAID_VERSION:
  5842. case RESTART_ARRAY_RW:
  5843. case RUN_ARRAY:
  5844. case SET_ARRAY_INFO:
  5845. case SET_BITMAP_FILE:
  5846. case SET_DISK_FAULTY:
  5847. case STOP_ARRAY:
  5848. case STOP_ARRAY_RO:
  5849. case CLUSTERED_DISK_NACK:
  5850. return true;
  5851. default:
  5852. return false;
  5853. }
  5854. }
  5855. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5856. unsigned int cmd, unsigned long arg)
  5857. {
  5858. int err = 0;
  5859. void __user *argp = (void __user *)arg;
  5860. struct mddev *mddev = NULL;
  5861. int ro;
  5862. if (!md_ioctl_valid(cmd))
  5863. return -ENOTTY;
  5864. switch (cmd) {
  5865. case RAID_VERSION:
  5866. case GET_ARRAY_INFO:
  5867. case GET_DISK_INFO:
  5868. break;
  5869. default:
  5870. if (!capable(CAP_SYS_ADMIN))
  5871. return -EACCES;
  5872. }
  5873. /*
  5874. * Commands dealing with the RAID driver but not any
  5875. * particular array:
  5876. */
  5877. switch (cmd) {
  5878. case RAID_VERSION:
  5879. err = get_version(argp);
  5880. goto out;
  5881. #ifndef MODULE
  5882. case RAID_AUTORUN:
  5883. err = 0;
  5884. autostart_arrays(arg);
  5885. goto out;
  5886. #endif
  5887. default:;
  5888. }
  5889. /*
  5890. * Commands creating/starting a new array:
  5891. */
  5892. mddev = bdev->bd_disk->private_data;
  5893. if (!mddev) {
  5894. BUG();
  5895. goto out;
  5896. }
  5897. /* Some actions do not requires the mutex */
  5898. switch (cmd) {
  5899. case GET_ARRAY_INFO:
  5900. if (!mddev->raid_disks && !mddev->external)
  5901. err = -ENODEV;
  5902. else
  5903. err = get_array_info(mddev, argp);
  5904. goto out;
  5905. case GET_DISK_INFO:
  5906. if (!mddev->raid_disks && !mddev->external)
  5907. err = -ENODEV;
  5908. else
  5909. err = get_disk_info(mddev, argp);
  5910. goto out;
  5911. case SET_DISK_FAULTY:
  5912. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5913. goto out;
  5914. case GET_BITMAP_FILE:
  5915. err = get_bitmap_file(mddev, argp);
  5916. goto out;
  5917. }
  5918. if (cmd == ADD_NEW_DISK)
  5919. /* need to ensure md_delayed_delete() has completed */
  5920. flush_workqueue(md_misc_wq);
  5921. if (cmd == HOT_REMOVE_DISK)
  5922. /* need to ensure recovery thread has run */
  5923. wait_event_interruptible_timeout(mddev->sb_wait,
  5924. !test_bit(MD_RECOVERY_NEEDED,
  5925. &mddev->flags),
  5926. msecs_to_jiffies(5000));
  5927. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5928. /* Need to flush page cache, and ensure no-one else opens
  5929. * and writes
  5930. */
  5931. mutex_lock(&mddev->open_mutex);
  5932. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  5933. mutex_unlock(&mddev->open_mutex);
  5934. err = -EBUSY;
  5935. goto out;
  5936. }
  5937. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5938. mutex_unlock(&mddev->open_mutex);
  5939. sync_blockdev(bdev);
  5940. }
  5941. err = mddev_lock(mddev);
  5942. if (err) {
  5943. printk(KERN_INFO
  5944. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5945. err, cmd);
  5946. goto out;
  5947. }
  5948. if (cmd == SET_ARRAY_INFO) {
  5949. mdu_array_info_t info;
  5950. if (!arg)
  5951. memset(&info, 0, sizeof(info));
  5952. else if (copy_from_user(&info, argp, sizeof(info))) {
  5953. err = -EFAULT;
  5954. goto unlock;
  5955. }
  5956. if (mddev->pers) {
  5957. err = update_array_info(mddev, &info);
  5958. if (err) {
  5959. printk(KERN_WARNING "md: couldn't update"
  5960. " array info. %d\n", err);
  5961. goto unlock;
  5962. }
  5963. goto unlock;
  5964. }
  5965. if (!list_empty(&mddev->disks)) {
  5966. printk(KERN_WARNING
  5967. "md: array %s already has disks!\n",
  5968. mdname(mddev));
  5969. err = -EBUSY;
  5970. goto unlock;
  5971. }
  5972. if (mddev->raid_disks) {
  5973. printk(KERN_WARNING
  5974. "md: array %s already initialised!\n",
  5975. mdname(mddev));
  5976. err = -EBUSY;
  5977. goto unlock;
  5978. }
  5979. err = set_array_info(mddev, &info);
  5980. if (err) {
  5981. printk(KERN_WARNING "md: couldn't set"
  5982. " array info. %d\n", err);
  5983. goto unlock;
  5984. }
  5985. goto unlock;
  5986. }
  5987. /*
  5988. * Commands querying/configuring an existing array:
  5989. */
  5990. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5991. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5992. if ((!mddev->raid_disks && !mddev->external)
  5993. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5994. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5995. && cmd != GET_BITMAP_FILE) {
  5996. err = -ENODEV;
  5997. goto unlock;
  5998. }
  5999. /*
  6000. * Commands even a read-only array can execute:
  6001. */
  6002. switch (cmd) {
  6003. case RESTART_ARRAY_RW:
  6004. err = restart_array(mddev);
  6005. goto unlock;
  6006. case STOP_ARRAY:
  6007. err = do_md_stop(mddev, 0, bdev);
  6008. goto unlock;
  6009. case STOP_ARRAY_RO:
  6010. err = md_set_readonly(mddev, bdev);
  6011. goto unlock;
  6012. case HOT_REMOVE_DISK:
  6013. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6014. goto unlock;
  6015. case ADD_NEW_DISK:
  6016. /* We can support ADD_NEW_DISK on read-only arrays
  6017. * on if we are re-adding a preexisting device.
  6018. * So require mddev->pers and MD_DISK_SYNC.
  6019. */
  6020. if (mddev->pers) {
  6021. mdu_disk_info_t info;
  6022. if (copy_from_user(&info, argp, sizeof(info)))
  6023. err = -EFAULT;
  6024. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6025. /* Need to clear read-only for this */
  6026. break;
  6027. else
  6028. err = add_new_disk(mddev, &info);
  6029. goto unlock;
  6030. }
  6031. break;
  6032. case BLKROSET:
  6033. if (get_user(ro, (int __user *)(arg))) {
  6034. err = -EFAULT;
  6035. goto unlock;
  6036. }
  6037. err = -EINVAL;
  6038. /* if the bdev is going readonly the value of mddev->ro
  6039. * does not matter, no writes are coming
  6040. */
  6041. if (ro)
  6042. goto unlock;
  6043. /* are we are already prepared for writes? */
  6044. if (mddev->ro != 1)
  6045. goto unlock;
  6046. /* transitioning to readauto need only happen for
  6047. * arrays that call md_write_start
  6048. */
  6049. if (mddev->pers) {
  6050. err = restart_array(mddev);
  6051. if (err == 0) {
  6052. mddev->ro = 2;
  6053. set_disk_ro(mddev->gendisk, 0);
  6054. }
  6055. }
  6056. goto unlock;
  6057. }
  6058. /*
  6059. * The remaining ioctls are changing the state of the
  6060. * superblock, so we do not allow them on read-only arrays.
  6061. */
  6062. if (mddev->ro && mddev->pers) {
  6063. if (mddev->ro == 2) {
  6064. mddev->ro = 0;
  6065. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6066. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6067. /* mddev_unlock will wake thread */
  6068. /* If a device failed while we were read-only, we
  6069. * need to make sure the metadata is updated now.
  6070. */
  6071. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6072. mddev_unlock(mddev);
  6073. wait_event(mddev->sb_wait,
  6074. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6075. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6076. mddev_lock_nointr(mddev);
  6077. }
  6078. } else {
  6079. err = -EROFS;
  6080. goto unlock;
  6081. }
  6082. }
  6083. switch (cmd) {
  6084. case ADD_NEW_DISK:
  6085. {
  6086. mdu_disk_info_t info;
  6087. if (copy_from_user(&info, argp, sizeof(info)))
  6088. err = -EFAULT;
  6089. else
  6090. err = add_new_disk(mddev, &info);
  6091. goto unlock;
  6092. }
  6093. case CLUSTERED_DISK_NACK:
  6094. if (mddev_is_clustered(mddev))
  6095. md_cluster_ops->new_disk_ack(mddev, false);
  6096. else
  6097. err = -EINVAL;
  6098. goto unlock;
  6099. case HOT_ADD_DISK:
  6100. err = hot_add_disk(mddev, new_decode_dev(arg));
  6101. goto unlock;
  6102. case RUN_ARRAY:
  6103. err = do_md_run(mddev);
  6104. goto unlock;
  6105. case SET_BITMAP_FILE:
  6106. err = set_bitmap_file(mddev, (int)arg);
  6107. goto unlock;
  6108. default:
  6109. err = -EINVAL;
  6110. goto unlock;
  6111. }
  6112. unlock:
  6113. if (mddev->hold_active == UNTIL_IOCTL &&
  6114. err != -EINVAL)
  6115. mddev->hold_active = 0;
  6116. mddev_unlock(mddev);
  6117. out:
  6118. return err;
  6119. }
  6120. #ifdef CONFIG_COMPAT
  6121. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6122. unsigned int cmd, unsigned long arg)
  6123. {
  6124. switch (cmd) {
  6125. case HOT_REMOVE_DISK:
  6126. case HOT_ADD_DISK:
  6127. case SET_DISK_FAULTY:
  6128. case SET_BITMAP_FILE:
  6129. /* These take in integer arg, do not convert */
  6130. break;
  6131. default:
  6132. arg = (unsigned long)compat_ptr(arg);
  6133. break;
  6134. }
  6135. return md_ioctl(bdev, mode, cmd, arg);
  6136. }
  6137. #endif /* CONFIG_COMPAT */
  6138. static int md_open(struct block_device *bdev, fmode_t mode)
  6139. {
  6140. /*
  6141. * Succeed if we can lock the mddev, which confirms that
  6142. * it isn't being stopped right now.
  6143. */
  6144. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6145. int err;
  6146. if (!mddev)
  6147. return -ENODEV;
  6148. if (mddev->gendisk != bdev->bd_disk) {
  6149. /* we are racing with mddev_put which is discarding this
  6150. * bd_disk.
  6151. */
  6152. mddev_put(mddev);
  6153. /* Wait until bdev->bd_disk is definitely gone */
  6154. flush_workqueue(md_misc_wq);
  6155. /* Then retry the open from the top */
  6156. return -ERESTARTSYS;
  6157. }
  6158. BUG_ON(mddev != bdev->bd_disk->private_data);
  6159. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6160. goto out;
  6161. err = 0;
  6162. atomic_inc(&mddev->openers);
  6163. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6164. mutex_unlock(&mddev->open_mutex);
  6165. check_disk_change(bdev);
  6166. out:
  6167. return err;
  6168. }
  6169. static void md_release(struct gendisk *disk, fmode_t mode)
  6170. {
  6171. struct mddev *mddev = disk->private_data;
  6172. BUG_ON(!mddev);
  6173. atomic_dec(&mddev->openers);
  6174. mddev_put(mddev);
  6175. }
  6176. static int md_media_changed(struct gendisk *disk)
  6177. {
  6178. struct mddev *mddev = disk->private_data;
  6179. return mddev->changed;
  6180. }
  6181. static int md_revalidate(struct gendisk *disk)
  6182. {
  6183. struct mddev *mddev = disk->private_data;
  6184. mddev->changed = 0;
  6185. return 0;
  6186. }
  6187. static const struct block_device_operations md_fops =
  6188. {
  6189. .owner = THIS_MODULE,
  6190. .open = md_open,
  6191. .release = md_release,
  6192. .ioctl = md_ioctl,
  6193. #ifdef CONFIG_COMPAT
  6194. .compat_ioctl = md_compat_ioctl,
  6195. #endif
  6196. .getgeo = md_getgeo,
  6197. .media_changed = md_media_changed,
  6198. .revalidate_disk= md_revalidate,
  6199. };
  6200. static int md_thread(void *arg)
  6201. {
  6202. struct md_thread *thread = arg;
  6203. /*
  6204. * md_thread is a 'system-thread', it's priority should be very
  6205. * high. We avoid resource deadlocks individually in each
  6206. * raid personality. (RAID5 does preallocation) We also use RR and
  6207. * the very same RT priority as kswapd, thus we will never get
  6208. * into a priority inversion deadlock.
  6209. *
  6210. * we definitely have to have equal or higher priority than
  6211. * bdflush, otherwise bdflush will deadlock if there are too
  6212. * many dirty RAID5 blocks.
  6213. */
  6214. allow_signal(SIGKILL);
  6215. while (!kthread_should_stop()) {
  6216. /* We need to wait INTERRUPTIBLE so that
  6217. * we don't add to the load-average.
  6218. * That means we need to be sure no signals are
  6219. * pending
  6220. */
  6221. if (signal_pending(current))
  6222. flush_signals(current);
  6223. wait_event_interruptible_timeout
  6224. (thread->wqueue,
  6225. test_bit(THREAD_WAKEUP, &thread->flags)
  6226. || kthread_should_stop(),
  6227. thread->timeout);
  6228. clear_bit(THREAD_WAKEUP, &thread->flags);
  6229. if (!kthread_should_stop())
  6230. thread->run(thread);
  6231. }
  6232. return 0;
  6233. }
  6234. void md_wakeup_thread(struct md_thread *thread)
  6235. {
  6236. if (thread) {
  6237. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6238. set_bit(THREAD_WAKEUP, &thread->flags);
  6239. wake_up(&thread->wqueue);
  6240. }
  6241. }
  6242. EXPORT_SYMBOL(md_wakeup_thread);
  6243. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6244. struct mddev *mddev, const char *name)
  6245. {
  6246. struct md_thread *thread;
  6247. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6248. if (!thread)
  6249. return NULL;
  6250. init_waitqueue_head(&thread->wqueue);
  6251. thread->run = run;
  6252. thread->mddev = mddev;
  6253. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6254. thread->tsk = kthread_run(md_thread, thread,
  6255. "%s_%s",
  6256. mdname(thread->mddev),
  6257. name);
  6258. if (IS_ERR(thread->tsk)) {
  6259. kfree(thread);
  6260. return NULL;
  6261. }
  6262. return thread;
  6263. }
  6264. EXPORT_SYMBOL(md_register_thread);
  6265. void md_unregister_thread(struct md_thread **threadp)
  6266. {
  6267. struct md_thread *thread = *threadp;
  6268. if (!thread)
  6269. return;
  6270. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6271. /* Locking ensures that mddev_unlock does not wake_up a
  6272. * non-existent thread
  6273. */
  6274. spin_lock(&pers_lock);
  6275. *threadp = NULL;
  6276. spin_unlock(&pers_lock);
  6277. kthread_stop(thread->tsk);
  6278. kfree(thread);
  6279. }
  6280. EXPORT_SYMBOL(md_unregister_thread);
  6281. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6282. {
  6283. if (!rdev || test_bit(Faulty, &rdev->flags))
  6284. return;
  6285. if (!mddev->pers || !mddev->pers->error_handler)
  6286. return;
  6287. mddev->pers->error_handler(mddev,rdev);
  6288. if (mddev->degraded)
  6289. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6290. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6291. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6292. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6293. md_wakeup_thread(mddev->thread);
  6294. if (mddev->event_work.func)
  6295. queue_work(md_misc_wq, &mddev->event_work);
  6296. md_new_event_inintr(mddev);
  6297. }
  6298. EXPORT_SYMBOL(md_error);
  6299. /* seq_file implementation /proc/mdstat */
  6300. static void status_unused(struct seq_file *seq)
  6301. {
  6302. int i = 0;
  6303. struct md_rdev *rdev;
  6304. seq_printf(seq, "unused devices: ");
  6305. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6306. char b[BDEVNAME_SIZE];
  6307. i++;
  6308. seq_printf(seq, "%s ",
  6309. bdevname(rdev->bdev,b));
  6310. }
  6311. if (!i)
  6312. seq_printf(seq, "<none>");
  6313. seq_printf(seq, "\n");
  6314. }
  6315. static int status_resync(struct seq_file *seq, struct mddev *mddev)
  6316. {
  6317. sector_t max_sectors, resync, res;
  6318. unsigned long dt, db;
  6319. sector_t rt;
  6320. int scale;
  6321. unsigned int per_milli;
  6322. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6323. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6324. max_sectors = mddev->resync_max_sectors;
  6325. else
  6326. max_sectors = mddev->dev_sectors;
  6327. resync = mddev->curr_resync;
  6328. if (resync <= 3) {
  6329. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6330. /* Still cleaning up */
  6331. resync = max_sectors;
  6332. } else
  6333. resync -= atomic_read(&mddev->recovery_active);
  6334. if (resync == 0) {
  6335. if (mddev->recovery_cp < MaxSector) {
  6336. seq_printf(seq, "\tresync=PENDING");
  6337. return 1;
  6338. }
  6339. return 0;
  6340. }
  6341. if (resync < 3) {
  6342. seq_printf(seq, "\tresync=DELAYED");
  6343. return 1;
  6344. }
  6345. WARN_ON(max_sectors == 0);
  6346. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6347. * in a sector_t, and (max_sectors>>scale) will fit in a
  6348. * u32, as those are the requirements for sector_div.
  6349. * Thus 'scale' must be at least 10
  6350. */
  6351. scale = 10;
  6352. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6353. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6354. scale++;
  6355. }
  6356. res = (resync>>scale)*1000;
  6357. sector_div(res, (u32)((max_sectors>>scale)+1));
  6358. per_milli = res;
  6359. {
  6360. int i, x = per_milli/50, y = 20-x;
  6361. seq_printf(seq, "[");
  6362. for (i = 0; i < x; i++)
  6363. seq_printf(seq, "=");
  6364. seq_printf(seq, ">");
  6365. for (i = 0; i < y; i++)
  6366. seq_printf(seq, ".");
  6367. seq_printf(seq, "] ");
  6368. }
  6369. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6370. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6371. "reshape" :
  6372. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6373. "check" :
  6374. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6375. "resync" : "recovery"))),
  6376. per_milli/10, per_milli % 10,
  6377. (unsigned long long) resync/2,
  6378. (unsigned long long) max_sectors/2);
  6379. /*
  6380. * dt: time from mark until now
  6381. * db: blocks written from mark until now
  6382. * rt: remaining time
  6383. *
  6384. * rt is a sector_t, so could be 32bit or 64bit.
  6385. * So we divide before multiply in case it is 32bit and close
  6386. * to the limit.
  6387. * We scale the divisor (db) by 32 to avoid losing precision
  6388. * near the end of resync when the number of remaining sectors
  6389. * is close to 'db'.
  6390. * We then divide rt by 32 after multiplying by db to compensate.
  6391. * The '+1' avoids division by zero if db is very small.
  6392. */
  6393. dt = ((jiffies - mddev->resync_mark) / HZ);
  6394. if (!dt) dt++;
  6395. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6396. - mddev->resync_mark_cnt;
  6397. rt = max_sectors - resync; /* number of remaining sectors */
  6398. sector_div(rt, db/32+1);
  6399. rt *= dt;
  6400. rt >>= 5;
  6401. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6402. ((unsigned long)rt % 60)/6);
  6403. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6404. return 1;
  6405. }
  6406. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6407. {
  6408. struct list_head *tmp;
  6409. loff_t l = *pos;
  6410. struct mddev *mddev;
  6411. if (l >= 0x10000)
  6412. return NULL;
  6413. if (!l--)
  6414. /* header */
  6415. return (void*)1;
  6416. spin_lock(&all_mddevs_lock);
  6417. list_for_each(tmp,&all_mddevs)
  6418. if (!l--) {
  6419. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6420. mddev_get(mddev);
  6421. spin_unlock(&all_mddevs_lock);
  6422. return mddev;
  6423. }
  6424. spin_unlock(&all_mddevs_lock);
  6425. if (!l--)
  6426. return (void*)2;/* tail */
  6427. return NULL;
  6428. }
  6429. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6430. {
  6431. struct list_head *tmp;
  6432. struct mddev *next_mddev, *mddev = v;
  6433. ++*pos;
  6434. if (v == (void*)2)
  6435. return NULL;
  6436. spin_lock(&all_mddevs_lock);
  6437. if (v == (void*)1)
  6438. tmp = all_mddevs.next;
  6439. else
  6440. tmp = mddev->all_mddevs.next;
  6441. if (tmp != &all_mddevs)
  6442. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6443. else {
  6444. next_mddev = (void*)2;
  6445. *pos = 0x10000;
  6446. }
  6447. spin_unlock(&all_mddevs_lock);
  6448. if (v != (void*)1)
  6449. mddev_put(mddev);
  6450. return next_mddev;
  6451. }
  6452. static void md_seq_stop(struct seq_file *seq, void *v)
  6453. {
  6454. struct mddev *mddev = v;
  6455. if (mddev && v != (void*)1 && v != (void*)2)
  6456. mddev_put(mddev);
  6457. }
  6458. static int md_seq_show(struct seq_file *seq, void *v)
  6459. {
  6460. struct mddev *mddev = v;
  6461. sector_t sectors;
  6462. struct md_rdev *rdev;
  6463. if (v == (void*)1) {
  6464. struct md_personality *pers;
  6465. seq_printf(seq, "Personalities : ");
  6466. spin_lock(&pers_lock);
  6467. list_for_each_entry(pers, &pers_list, list)
  6468. seq_printf(seq, "[%s] ", pers->name);
  6469. spin_unlock(&pers_lock);
  6470. seq_printf(seq, "\n");
  6471. seq->poll_event = atomic_read(&md_event_count);
  6472. return 0;
  6473. }
  6474. if (v == (void*)2) {
  6475. status_unused(seq);
  6476. return 0;
  6477. }
  6478. spin_lock(&mddev->lock);
  6479. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6480. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6481. mddev->pers ? "" : "in");
  6482. if (mddev->pers) {
  6483. if (mddev->ro==1)
  6484. seq_printf(seq, " (read-only)");
  6485. if (mddev->ro==2)
  6486. seq_printf(seq, " (auto-read-only)");
  6487. seq_printf(seq, " %s", mddev->pers->name);
  6488. }
  6489. sectors = 0;
  6490. rcu_read_lock();
  6491. rdev_for_each_rcu(rdev, mddev) {
  6492. char b[BDEVNAME_SIZE];
  6493. seq_printf(seq, " %s[%d]",
  6494. bdevname(rdev->bdev,b), rdev->desc_nr);
  6495. if (test_bit(WriteMostly, &rdev->flags))
  6496. seq_printf(seq, "(W)");
  6497. if (test_bit(Faulty, &rdev->flags)) {
  6498. seq_printf(seq, "(F)");
  6499. continue;
  6500. }
  6501. if (rdev->raid_disk < 0)
  6502. seq_printf(seq, "(S)"); /* spare */
  6503. if (test_bit(Replacement, &rdev->flags))
  6504. seq_printf(seq, "(R)");
  6505. sectors += rdev->sectors;
  6506. }
  6507. rcu_read_unlock();
  6508. if (!list_empty(&mddev->disks)) {
  6509. if (mddev->pers)
  6510. seq_printf(seq, "\n %llu blocks",
  6511. (unsigned long long)
  6512. mddev->array_sectors / 2);
  6513. else
  6514. seq_printf(seq, "\n %llu blocks",
  6515. (unsigned long long)sectors / 2);
  6516. }
  6517. if (mddev->persistent) {
  6518. if (mddev->major_version != 0 ||
  6519. mddev->minor_version != 90) {
  6520. seq_printf(seq," super %d.%d",
  6521. mddev->major_version,
  6522. mddev->minor_version);
  6523. }
  6524. } else if (mddev->external)
  6525. seq_printf(seq, " super external:%s",
  6526. mddev->metadata_type);
  6527. else
  6528. seq_printf(seq, " super non-persistent");
  6529. if (mddev->pers) {
  6530. mddev->pers->status(seq, mddev);
  6531. seq_printf(seq, "\n ");
  6532. if (mddev->pers->sync_request) {
  6533. if (status_resync(seq, mddev))
  6534. seq_printf(seq, "\n ");
  6535. }
  6536. } else
  6537. seq_printf(seq, "\n ");
  6538. bitmap_status(seq, mddev->bitmap);
  6539. seq_printf(seq, "\n");
  6540. }
  6541. spin_unlock(&mddev->lock);
  6542. return 0;
  6543. }
  6544. static const struct seq_operations md_seq_ops = {
  6545. .start = md_seq_start,
  6546. .next = md_seq_next,
  6547. .stop = md_seq_stop,
  6548. .show = md_seq_show,
  6549. };
  6550. static int md_seq_open(struct inode *inode, struct file *file)
  6551. {
  6552. struct seq_file *seq;
  6553. int error;
  6554. error = seq_open(file, &md_seq_ops);
  6555. if (error)
  6556. return error;
  6557. seq = file->private_data;
  6558. seq->poll_event = atomic_read(&md_event_count);
  6559. return error;
  6560. }
  6561. static int md_unloading;
  6562. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6563. {
  6564. struct seq_file *seq = filp->private_data;
  6565. int mask;
  6566. if (md_unloading)
  6567. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6568. poll_wait(filp, &md_event_waiters, wait);
  6569. /* always allow read */
  6570. mask = POLLIN | POLLRDNORM;
  6571. if (seq->poll_event != atomic_read(&md_event_count))
  6572. mask |= POLLERR | POLLPRI;
  6573. return mask;
  6574. }
  6575. static const struct file_operations md_seq_fops = {
  6576. .owner = THIS_MODULE,
  6577. .open = md_seq_open,
  6578. .read = seq_read,
  6579. .llseek = seq_lseek,
  6580. .release = seq_release_private,
  6581. .poll = mdstat_poll,
  6582. };
  6583. int register_md_personality(struct md_personality *p)
  6584. {
  6585. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6586. p->name, p->level);
  6587. spin_lock(&pers_lock);
  6588. list_add_tail(&p->list, &pers_list);
  6589. spin_unlock(&pers_lock);
  6590. return 0;
  6591. }
  6592. EXPORT_SYMBOL(register_md_personality);
  6593. int unregister_md_personality(struct md_personality *p)
  6594. {
  6595. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6596. spin_lock(&pers_lock);
  6597. list_del_init(&p->list);
  6598. spin_unlock(&pers_lock);
  6599. return 0;
  6600. }
  6601. EXPORT_SYMBOL(unregister_md_personality);
  6602. int register_md_cluster_operations(struct md_cluster_operations *ops,
  6603. struct module *module)
  6604. {
  6605. int ret = 0;
  6606. spin_lock(&pers_lock);
  6607. if (md_cluster_ops != NULL)
  6608. ret = -EALREADY;
  6609. else {
  6610. md_cluster_ops = ops;
  6611. md_cluster_mod = module;
  6612. }
  6613. spin_unlock(&pers_lock);
  6614. return ret;
  6615. }
  6616. EXPORT_SYMBOL(register_md_cluster_operations);
  6617. int unregister_md_cluster_operations(void)
  6618. {
  6619. spin_lock(&pers_lock);
  6620. md_cluster_ops = NULL;
  6621. spin_unlock(&pers_lock);
  6622. return 0;
  6623. }
  6624. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6625. int md_setup_cluster(struct mddev *mddev, int nodes)
  6626. {
  6627. int err;
  6628. err = request_module("md-cluster");
  6629. if (err) {
  6630. pr_err("md-cluster module not found.\n");
  6631. return -ENOENT;
  6632. }
  6633. spin_lock(&pers_lock);
  6634. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6635. spin_unlock(&pers_lock);
  6636. return -ENOENT;
  6637. }
  6638. spin_unlock(&pers_lock);
  6639. return md_cluster_ops->join(mddev, nodes);
  6640. }
  6641. void md_cluster_stop(struct mddev *mddev)
  6642. {
  6643. if (!md_cluster_ops)
  6644. return;
  6645. md_cluster_ops->leave(mddev);
  6646. module_put(md_cluster_mod);
  6647. }
  6648. static int is_mddev_idle(struct mddev *mddev, int init)
  6649. {
  6650. struct md_rdev *rdev;
  6651. int idle;
  6652. int curr_events;
  6653. idle = 1;
  6654. rcu_read_lock();
  6655. rdev_for_each_rcu(rdev, mddev) {
  6656. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6657. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6658. (int)part_stat_read(&disk->part0, sectors[1]) -
  6659. atomic_read(&disk->sync_io);
  6660. /* sync IO will cause sync_io to increase before the disk_stats
  6661. * as sync_io is counted when a request starts, and
  6662. * disk_stats is counted when it completes.
  6663. * So resync activity will cause curr_events to be smaller than
  6664. * when there was no such activity.
  6665. * non-sync IO will cause disk_stat to increase without
  6666. * increasing sync_io so curr_events will (eventually)
  6667. * be larger than it was before. Once it becomes
  6668. * substantially larger, the test below will cause
  6669. * the array to appear non-idle, and resync will slow
  6670. * down.
  6671. * If there is a lot of outstanding resync activity when
  6672. * we set last_event to curr_events, then all that activity
  6673. * completing might cause the array to appear non-idle
  6674. * and resync will be slowed down even though there might
  6675. * not have been non-resync activity. This will only
  6676. * happen once though. 'last_events' will soon reflect
  6677. * the state where there is little or no outstanding
  6678. * resync requests, and further resync activity will
  6679. * always make curr_events less than last_events.
  6680. *
  6681. */
  6682. if (init || curr_events - rdev->last_events > 64) {
  6683. rdev->last_events = curr_events;
  6684. idle = 0;
  6685. }
  6686. }
  6687. rcu_read_unlock();
  6688. return idle;
  6689. }
  6690. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6691. {
  6692. /* another "blocks" (512byte) blocks have been synced */
  6693. atomic_sub(blocks, &mddev->recovery_active);
  6694. wake_up(&mddev->recovery_wait);
  6695. if (!ok) {
  6696. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6697. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6698. md_wakeup_thread(mddev->thread);
  6699. // stop recovery, signal do_sync ....
  6700. }
  6701. }
  6702. EXPORT_SYMBOL(md_done_sync);
  6703. /* md_write_start(mddev, bi)
  6704. * If we need to update some array metadata (e.g. 'active' flag
  6705. * in superblock) before writing, schedule a superblock update
  6706. * and wait for it to complete.
  6707. */
  6708. void md_write_start(struct mddev *mddev, struct bio *bi)
  6709. {
  6710. int did_change = 0;
  6711. if (bio_data_dir(bi) != WRITE)
  6712. return;
  6713. BUG_ON(mddev->ro == 1);
  6714. if (mddev->ro == 2) {
  6715. /* need to switch to read/write */
  6716. mddev->ro = 0;
  6717. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6718. md_wakeup_thread(mddev->thread);
  6719. md_wakeup_thread(mddev->sync_thread);
  6720. did_change = 1;
  6721. }
  6722. atomic_inc(&mddev->writes_pending);
  6723. if (mddev->safemode == 1)
  6724. mddev->safemode = 0;
  6725. if (mddev->in_sync) {
  6726. spin_lock(&mddev->lock);
  6727. if (mddev->in_sync) {
  6728. mddev->in_sync = 0;
  6729. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6730. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6731. md_wakeup_thread(mddev->thread);
  6732. did_change = 1;
  6733. }
  6734. spin_unlock(&mddev->lock);
  6735. }
  6736. if (did_change)
  6737. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6738. wait_event(mddev->sb_wait,
  6739. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6740. }
  6741. EXPORT_SYMBOL(md_write_start);
  6742. void md_write_end(struct mddev *mddev)
  6743. {
  6744. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6745. if (mddev->safemode == 2)
  6746. md_wakeup_thread(mddev->thread);
  6747. else if (mddev->safemode_delay)
  6748. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6749. }
  6750. }
  6751. EXPORT_SYMBOL(md_write_end);
  6752. /* md_allow_write(mddev)
  6753. * Calling this ensures that the array is marked 'active' so that writes
  6754. * may proceed without blocking. It is important to call this before
  6755. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6756. * Must be called with mddev_lock held.
  6757. *
  6758. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6759. * is dropped, so return -EAGAIN after notifying userspace.
  6760. */
  6761. int md_allow_write(struct mddev *mddev)
  6762. {
  6763. if (!mddev->pers)
  6764. return 0;
  6765. if (mddev->ro)
  6766. return 0;
  6767. if (!mddev->pers->sync_request)
  6768. return 0;
  6769. spin_lock(&mddev->lock);
  6770. if (mddev->in_sync) {
  6771. mddev->in_sync = 0;
  6772. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6773. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6774. if (mddev->safemode_delay &&
  6775. mddev->safemode == 0)
  6776. mddev->safemode = 1;
  6777. spin_unlock(&mddev->lock);
  6778. if (mddev_is_clustered(mddev))
  6779. md_cluster_ops->metadata_update_start(mddev);
  6780. md_update_sb(mddev, 0);
  6781. if (mddev_is_clustered(mddev))
  6782. md_cluster_ops->metadata_update_finish(mddev);
  6783. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6784. } else
  6785. spin_unlock(&mddev->lock);
  6786. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6787. return -EAGAIN;
  6788. else
  6789. return 0;
  6790. }
  6791. EXPORT_SYMBOL_GPL(md_allow_write);
  6792. #define SYNC_MARKS 10
  6793. #define SYNC_MARK_STEP (3*HZ)
  6794. #define UPDATE_FREQUENCY (5*60*HZ)
  6795. void md_do_sync(struct md_thread *thread)
  6796. {
  6797. struct mddev *mddev = thread->mddev;
  6798. struct mddev *mddev2;
  6799. unsigned int currspeed = 0,
  6800. window;
  6801. sector_t max_sectors,j, io_sectors, recovery_done;
  6802. unsigned long mark[SYNC_MARKS];
  6803. unsigned long update_time;
  6804. sector_t mark_cnt[SYNC_MARKS];
  6805. int last_mark,m;
  6806. struct list_head *tmp;
  6807. sector_t last_check;
  6808. int skipped = 0;
  6809. struct md_rdev *rdev;
  6810. char *desc, *action = NULL;
  6811. struct blk_plug plug;
  6812. /* just incase thread restarts... */
  6813. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6814. return;
  6815. if (mddev->ro) {/* never try to sync a read-only array */
  6816. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6817. return;
  6818. }
  6819. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6820. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6821. desc = "data-check";
  6822. action = "check";
  6823. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6824. desc = "requested-resync";
  6825. action = "repair";
  6826. } else
  6827. desc = "resync";
  6828. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6829. desc = "reshape";
  6830. else
  6831. desc = "recovery";
  6832. mddev->last_sync_action = action ?: desc;
  6833. /* we overload curr_resync somewhat here.
  6834. * 0 == not engaged in resync at all
  6835. * 2 == checking that there is no conflict with another sync
  6836. * 1 == like 2, but have yielded to allow conflicting resync to
  6837. * commense
  6838. * other == active in resync - this many blocks
  6839. *
  6840. * Before starting a resync we must have set curr_resync to
  6841. * 2, and then checked that every "conflicting" array has curr_resync
  6842. * less than ours. When we find one that is the same or higher
  6843. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6844. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6845. * This will mean we have to start checking from the beginning again.
  6846. *
  6847. */
  6848. do {
  6849. mddev->curr_resync = 2;
  6850. try_again:
  6851. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6852. goto skip;
  6853. for_each_mddev(mddev2, tmp) {
  6854. if (mddev2 == mddev)
  6855. continue;
  6856. if (!mddev->parallel_resync
  6857. && mddev2->curr_resync
  6858. && match_mddev_units(mddev, mddev2)) {
  6859. DEFINE_WAIT(wq);
  6860. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6861. /* arbitrarily yield */
  6862. mddev->curr_resync = 1;
  6863. wake_up(&resync_wait);
  6864. }
  6865. if (mddev > mddev2 && mddev->curr_resync == 1)
  6866. /* no need to wait here, we can wait the next
  6867. * time 'round when curr_resync == 2
  6868. */
  6869. continue;
  6870. /* We need to wait 'interruptible' so as not to
  6871. * contribute to the load average, and not to
  6872. * be caught by 'softlockup'
  6873. */
  6874. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6875. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6876. mddev2->curr_resync >= mddev->curr_resync) {
  6877. printk(KERN_INFO "md: delaying %s of %s"
  6878. " until %s has finished (they"
  6879. " share one or more physical units)\n",
  6880. desc, mdname(mddev), mdname(mddev2));
  6881. mddev_put(mddev2);
  6882. if (signal_pending(current))
  6883. flush_signals(current);
  6884. schedule();
  6885. finish_wait(&resync_wait, &wq);
  6886. goto try_again;
  6887. }
  6888. finish_wait(&resync_wait, &wq);
  6889. }
  6890. }
  6891. } while (mddev->curr_resync < 2);
  6892. j = 0;
  6893. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6894. /* resync follows the size requested by the personality,
  6895. * which defaults to physical size, but can be virtual size
  6896. */
  6897. max_sectors = mddev->resync_max_sectors;
  6898. atomic64_set(&mddev->resync_mismatches, 0);
  6899. /* we don't use the checkpoint if there's a bitmap */
  6900. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6901. j = mddev->resync_min;
  6902. else if (!mddev->bitmap)
  6903. j = mddev->recovery_cp;
  6904. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6905. max_sectors = mddev->resync_max_sectors;
  6906. else {
  6907. /* recovery follows the physical size of devices */
  6908. max_sectors = mddev->dev_sectors;
  6909. j = MaxSector;
  6910. rcu_read_lock();
  6911. rdev_for_each_rcu(rdev, mddev)
  6912. if (rdev->raid_disk >= 0 &&
  6913. !test_bit(Faulty, &rdev->flags) &&
  6914. !test_bit(In_sync, &rdev->flags) &&
  6915. rdev->recovery_offset < j)
  6916. j = rdev->recovery_offset;
  6917. rcu_read_unlock();
  6918. /* If there is a bitmap, we need to make sure all
  6919. * writes that started before we added a spare
  6920. * complete before we start doing a recovery.
  6921. * Otherwise the write might complete and (via
  6922. * bitmap_endwrite) set a bit in the bitmap after the
  6923. * recovery has checked that bit and skipped that
  6924. * region.
  6925. */
  6926. if (mddev->bitmap) {
  6927. mddev->pers->quiesce(mddev, 1);
  6928. mddev->pers->quiesce(mddev, 0);
  6929. }
  6930. }
  6931. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6932. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6933. " %d KB/sec/disk.\n", speed_min(mddev));
  6934. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6935. "(but not more than %d KB/sec) for %s.\n",
  6936. speed_max(mddev), desc);
  6937. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6938. io_sectors = 0;
  6939. for (m = 0; m < SYNC_MARKS; m++) {
  6940. mark[m] = jiffies;
  6941. mark_cnt[m] = io_sectors;
  6942. }
  6943. last_mark = 0;
  6944. mddev->resync_mark = mark[last_mark];
  6945. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6946. /*
  6947. * Tune reconstruction:
  6948. */
  6949. window = 32*(PAGE_SIZE/512);
  6950. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6951. window/2, (unsigned long long)max_sectors/2);
  6952. atomic_set(&mddev->recovery_active, 0);
  6953. last_check = 0;
  6954. if (j>2) {
  6955. printk(KERN_INFO
  6956. "md: resuming %s of %s from checkpoint.\n",
  6957. desc, mdname(mddev));
  6958. mddev->curr_resync = j;
  6959. } else
  6960. mddev->curr_resync = 3; /* no longer delayed */
  6961. mddev->curr_resync_completed = j;
  6962. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6963. md_new_event(mddev);
  6964. update_time = jiffies;
  6965. if (mddev_is_clustered(mddev))
  6966. md_cluster_ops->resync_start(mddev, j, max_sectors);
  6967. blk_start_plug(&plug);
  6968. while (j < max_sectors) {
  6969. sector_t sectors;
  6970. skipped = 0;
  6971. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6972. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6973. (mddev->curr_resync - mddev->curr_resync_completed)
  6974. > (max_sectors >> 4)) ||
  6975. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6976. (j - mddev->curr_resync_completed)*2
  6977. >= mddev->resync_max - mddev->curr_resync_completed ||
  6978. mddev->curr_resync_completed > mddev->resync_max
  6979. )) {
  6980. /* time to update curr_resync_completed */
  6981. wait_event(mddev->recovery_wait,
  6982. atomic_read(&mddev->recovery_active) == 0);
  6983. mddev->curr_resync_completed = j;
  6984. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6985. j > mddev->recovery_cp)
  6986. mddev->recovery_cp = j;
  6987. update_time = jiffies;
  6988. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6989. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6990. }
  6991. while (j >= mddev->resync_max &&
  6992. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6993. /* As this condition is controlled by user-space,
  6994. * we can block indefinitely, so use '_interruptible'
  6995. * to avoid triggering warnings.
  6996. */
  6997. flush_signals(current); /* just in case */
  6998. wait_event_interruptible(mddev->recovery_wait,
  6999. mddev->resync_max > j
  7000. || test_bit(MD_RECOVERY_INTR,
  7001. &mddev->recovery));
  7002. }
  7003. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7004. break;
  7005. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  7006. if (sectors == 0) {
  7007. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7008. break;
  7009. }
  7010. if (!skipped) { /* actual IO requested */
  7011. io_sectors += sectors;
  7012. atomic_add(sectors, &mddev->recovery_active);
  7013. }
  7014. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7015. break;
  7016. j += sectors;
  7017. if (j > max_sectors)
  7018. /* when skipping, extra large numbers can be returned. */
  7019. j = max_sectors;
  7020. if (j > 2)
  7021. mddev->curr_resync = j;
  7022. if (mddev_is_clustered(mddev))
  7023. md_cluster_ops->resync_info_update(mddev, j, max_sectors);
  7024. mddev->curr_mark_cnt = io_sectors;
  7025. if (last_check == 0)
  7026. /* this is the earliest that rebuild will be
  7027. * visible in /proc/mdstat
  7028. */
  7029. md_new_event(mddev);
  7030. if (last_check + window > io_sectors || j == max_sectors)
  7031. continue;
  7032. last_check = io_sectors;
  7033. repeat:
  7034. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7035. /* step marks */
  7036. int next = (last_mark+1) % SYNC_MARKS;
  7037. mddev->resync_mark = mark[next];
  7038. mddev->resync_mark_cnt = mark_cnt[next];
  7039. mark[next] = jiffies;
  7040. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7041. last_mark = next;
  7042. }
  7043. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7044. break;
  7045. /*
  7046. * this loop exits only if either when we are slower than
  7047. * the 'hard' speed limit, or the system was IO-idle for
  7048. * a jiffy.
  7049. * the system might be non-idle CPU-wise, but we only care
  7050. * about not overloading the IO subsystem. (things like an
  7051. * e2fsck being done on the RAID array should execute fast)
  7052. */
  7053. cond_resched();
  7054. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7055. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7056. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7057. if (currspeed > speed_min(mddev)) {
  7058. if (currspeed > speed_max(mddev)) {
  7059. msleep(500);
  7060. goto repeat;
  7061. }
  7062. if (!is_mddev_idle(mddev, 0)) {
  7063. /*
  7064. * Give other IO more of a chance.
  7065. * The faster the devices, the less we wait.
  7066. */
  7067. wait_event(mddev->recovery_wait,
  7068. !atomic_read(&mddev->recovery_active));
  7069. }
  7070. }
  7071. }
  7072. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7073. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7074. ? "interrupted" : "done");
  7075. /*
  7076. * this also signals 'finished resyncing' to md_stop
  7077. */
  7078. blk_finish_plug(&plug);
  7079. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7080. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7081. !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7082. mddev->curr_resync > 2) {
  7083. mddev->curr_resync_completed = mddev->curr_resync;
  7084. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7085. }
  7086. /* tell personality that we are finished */
  7087. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7088. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7089. mddev->curr_resync > 2) {
  7090. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7091. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7092. if (mddev->curr_resync >= mddev->recovery_cp) {
  7093. printk(KERN_INFO
  7094. "md: checkpointing %s of %s.\n",
  7095. desc, mdname(mddev));
  7096. if (test_bit(MD_RECOVERY_ERROR,
  7097. &mddev->recovery))
  7098. mddev->recovery_cp =
  7099. mddev->curr_resync_completed;
  7100. else
  7101. mddev->recovery_cp =
  7102. mddev->curr_resync;
  7103. }
  7104. } else
  7105. mddev->recovery_cp = MaxSector;
  7106. } else {
  7107. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7108. mddev->curr_resync = MaxSector;
  7109. rcu_read_lock();
  7110. rdev_for_each_rcu(rdev, mddev)
  7111. if (rdev->raid_disk >= 0 &&
  7112. mddev->delta_disks >= 0 &&
  7113. !test_bit(Faulty, &rdev->flags) &&
  7114. !test_bit(In_sync, &rdev->flags) &&
  7115. rdev->recovery_offset < mddev->curr_resync)
  7116. rdev->recovery_offset = mddev->curr_resync;
  7117. rcu_read_unlock();
  7118. }
  7119. }
  7120. skip:
  7121. if (mddev_is_clustered(mddev))
  7122. md_cluster_ops->resync_finish(mddev);
  7123. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7124. spin_lock(&mddev->lock);
  7125. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7126. /* We completed so min/max setting can be forgotten if used. */
  7127. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7128. mddev->resync_min = 0;
  7129. mddev->resync_max = MaxSector;
  7130. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7131. mddev->resync_min = mddev->curr_resync_completed;
  7132. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7133. mddev->curr_resync = 0;
  7134. spin_unlock(&mddev->lock);
  7135. wake_up(&resync_wait);
  7136. md_wakeup_thread(mddev->thread);
  7137. return;
  7138. }
  7139. EXPORT_SYMBOL_GPL(md_do_sync);
  7140. static int remove_and_add_spares(struct mddev *mddev,
  7141. struct md_rdev *this)
  7142. {
  7143. struct md_rdev *rdev;
  7144. int spares = 0;
  7145. int removed = 0;
  7146. rdev_for_each(rdev, mddev)
  7147. if ((this == NULL || rdev == this) &&
  7148. rdev->raid_disk >= 0 &&
  7149. !test_bit(Blocked, &rdev->flags) &&
  7150. (test_bit(Faulty, &rdev->flags) ||
  7151. ! test_bit(In_sync, &rdev->flags)) &&
  7152. atomic_read(&rdev->nr_pending)==0) {
  7153. if (mddev->pers->hot_remove_disk(
  7154. mddev, rdev) == 0) {
  7155. sysfs_unlink_rdev(mddev, rdev);
  7156. rdev->raid_disk = -1;
  7157. removed++;
  7158. }
  7159. }
  7160. if (removed && mddev->kobj.sd)
  7161. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7162. if (this)
  7163. goto no_add;
  7164. rdev_for_each(rdev, mddev) {
  7165. if (rdev->raid_disk >= 0 &&
  7166. !test_bit(In_sync, &rdev->flags) &&
  7167. !test_bit(Faulty, &rdev->flags))
  7168. spares++;
  7169. if (rdev->raid_disk >= 0)
  7170. continue;
  7171. if (test_bit(Faulty, &rdev->flags))
  7172. continue;
  7173. if (mddev->ro &&
  7174. ! (rdev->saved_raid_disk >= 0 &&
  7175. !test_bit(Bitmap_sync, &rdev->flags)))
  7176. continue;
  7177. if (rdev->saved_raid_disk < 0)
  7178. rdev->recovery_offset = 0;
  7179. if (mddev->pers->
  7180. hot_add_disk(mddev, rdev) == 0) {
  7181. if (sysfs_link_rdev(mddev, rdev))
  7182. /* failure here is OK */;
  7183. spares++;
  7184. md_new_event(mddev);
  7185. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7186. }
  7187. }
  7188. no_add:
  7189. if (removed)
  7190. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7191. return spares;
  7192. }
  7193. static void md_start_sync(struct work_struct *ws)
  7194. {
  7195. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7196. mddev->sync_thread = md_register_thread(md_do_sync,
  7197. mddev,
  7198. "resync");
  7199. if (!mddev->sync_thread) {
  7200. printk(KERN_ERR "%s: could not start resync"
  7201. " thread...\n",
  7202. mdname(mddev));
  7203. /* leave the spares where they are, it shouldn't hurt */
  7204. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7205. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7206. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7207. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7208. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7209. wake_up(&resync_wait);
  7210. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7211. &mddev->recovery))
  7212. if (mddev->sysfs_action)
  7213. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7214. } else
  7215. md_wakeup_thread(mddev->sync_thread);
  7216. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7217. md_new_event(mddev);
  7218. }
  7219. /*
  7220. * This routine is regularly called by all per-raid-array threads to
  7221. * deal with generic issues like resync and super-block update.
  7222. * Raid personalities that don't have a thread (linear/raid0) do not
  7223. * need this as they never do any recovery or update the superblock.
  7224. *
  7225. * It does not do any resync itself, but rather "forks" off other threads
  7226. * to do that as needed.
  7227. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7228. * "->recovery" and create a thread at ->sync_thread.
  7229. * When the thread finishes it sets MD_RECOVERY_DONE
  7230. * and wakeups up this thread which will reap the thread and finish up.
  7231. * This thread also removes any faulty devices (with nr_pending == 0).
  7232. *
  7233. * The overall approach is:
  7234. * 1/ if the superblock needs updating, update it.
  7235. * 2/ If a recovery thread is running, don't do anything else.
  7236. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7237. * 4/ If there are any faulty devices, remove them.
  7238. * 5/ If array is degraded, try to add spares devices
  7239. * 6/ If array has spares or is not in-sync, start a resync thread.
  7240. */
  7241. void md_check_recovery(struct mddev *mddev)
  7242. {
  7243. if (mddev->suspended)
  7244. return;
  7245. if (mddev->bitmap)
  7246. bitmap_daemon_work(mddev);
  7247. if (signal_pending(current)) {
  7248. if (mddev->pers->sync_request && !mddev->external) {
  7249. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7250. mdname(mddev));
  7251. mddev->safemode = 2;
  7252. }
  7253. flush_signals(current);
  7254. }
  7255. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7256. return;
  7257. if ( ! (
  7258. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7259. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7260. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7261. (mddev->external == 0 && mddev->safemode == 1) ||
  7262. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7263. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7264. ))
  7265. return;
  7266. if (mddev_trylock(mddev)) {
  7267. int spares = 0;
  7268. if (mddev->ro) {
  7269. struct md_rdev *rdev;
  7270. if (!mddev->external && mddev->in_sync)
  7271. /* 'Blocked' flag not needed as failed devices
  7272. * will be recorded if array switched to read/write.
  7273. * Leaving it set will prevent the device
  7274. * from being removed.
  7275. */
  7276. rdev_for_each(rdev, mddev)
  7277. clear_bit(Blocked, &rdev->flags);
  7278. /* On a read-only array we can:
  7279. * - remove failed devices
  7280. * - add already-in_sync devices if the array itself
  7281. * is in-sync.
  7282. * As we only add devices that are already in-sync,
  7283. * we can activate the spares immediately.
  7284. */
  7285. remove_and_add_spares(mddev, NULL);
  7286. /* There is no thread, but we need to call
  7287. * ->spare_active and clear saved_raid_disk
  7288. */
  7289. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7290. md_reap_sync_thread(mddev);
  7291. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7292. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7293. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  7294. goto unlock;
  7295. }
  7296. if (!mddev->external) {
  7297. int did_change = 0;
  7298. spin_lock(&mddev->lock);
  7299. if (mddev->safemode &&
  7300. !atomic_read(&mddev->writes_pending) &&
  7301. !mddev->in_sync &&
  7302. mddev->recovery_cp == MaxSector) {
  7303. mddev->in_sync = 1;
  7304. did_change = 1;
  7305. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7306. }
  7307. if (mddev->safemode == 1)
  7308. mddev->safemode = 0;
  7309. spin_unlock(&mddev->lock);
  7310. if (did_change)
  7311. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7312. }
  7313. if (mddev->flags & MD_UPDATE_SB_FLAGS) {
  7314. if (mddev_is_clustered(mddev))
  7315. md_cluster_ops->metadata_update_start(mddev);
  7316. md_update_sb(mddev, 0);
  7317. if (mddev_is_clustered(mddev))
  7318. md_cluster_ops->metadata_update_finish(mddev);
  7319. }
  7320. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7321. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7322. /* resync/recovery still happening */
  7323. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7324. goto unlock;
  7325. }
  7326. if (mddev->sync_thread) {
  7327. md_reap_sync_thread(mddev);
  7328. goto unlock;
  7329. }
  7330. /* Set RUNNING before clearing NEEDED to avoid
  7331. * any transients in the value of "sync_action".
  7332. */
  7333. mddev->curr_resync_completed = 0;
  7334. spin_lock(&mddev->lock);
  7335. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7336. spin_unlock(&mddev->lock);
  7337. /* Clear some bits that don't mean anything, but
  7338. * might be left set
  7339. */
  7340. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7341. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7342. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7343. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7344. goto not_running;
  7345. /* no recovery is running.
  7346. * remove any failed drives, then
  7347. * add spares if possible.
  7348. * Spares are also removed and re-added, to allow
  7349. * the personality to fail the re-add.
  7350. */
  7351. if (mddev->reshape_position != MaxSector) {
  7352. if (mddev->pers->check_reshape == NULL ||
  7353. mddev->pers->check_reshape(mddev) != 0)
  7354. /* Cannot proceed */
  7355. goto not_running;
  7356. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7357. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7358. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7359. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7360. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7361. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7362. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7363. } else if (mddev->recovery_cp < MaxSector) {
  7364. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7365. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7366. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7367. /* nothing to be done ... */
  7368. goto not_running;
  7369. if (mddev->pers->sync_request) {
  7370. if (spares) {
  7371. /* We are adding a device or devices to an array
  7372. * which has the bitmap stored on all devices.
  7373. * So make sure all bitmap pages get written
  7374. */
  7375. bitmap_write_all(mddev->bitmap);
  7376. }
  7377. INIT_WORK(&mddev->del_work, md_start_sync);
  7378. queue_work(md_misc_wq, &mddev->del_work);
  7379. goto unlock;
  7380. }
  7381. not_running:
  7382. if (!mddev->sync_thread) {
  7383. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7384. wake_up(&resync_wait);
  7385. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7386. &mddev->recovery))
  7387. if (mddev->sysfs_action)
  7388. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7389. }
  7390. unlock:
  7391. wake_up(&mddev->sb_wait);
  7392. mddev_unlock(mddev);
  7393. }
  7394. }
  7395. EXPORT_SYMBOL(md_check_recovery);
  7396. void md_reap_sync_thread(struct mddev *mddev)
  7397. {
  7398. struct md_rdev *rdev;
  7399. /* resync has finished, collect result */
  7400. md_unregister_thread(&mddev->sync_thread);
  7401. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7402. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7403. /* success...*/
  7404. /* activate any spares */
  7405. if (mddev->pers->spare_active(mddev)) {
  7406. sysfs_notify(&mddev->kobj, NULL,
  7407. "degraded");
  7408. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7409. }
  7410. }
  7411. if (mddev_is_clustered(mddev))
  7412. md_cluster_ops->metadata_update_start(mddev);
  7413. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7414. mddev->pers->finish_reshape)
  7415. mddev->pers->finish_reshape(mddev);
  7416. /* If array is no-longer degraded, then any saved_raid_disk
  7417. * information must be scrapped.
  7418. */
  7419. if (!mddev->degraded)
  7420. rdev_for_each(rdev, mddev)
  7421. rdev->saved_raid_disk = -1;
  7422. md_update_sb(mddev, 1);
  7423. if (mddev_is_clustered(mddev))
  7424. md_cluster_ops->metadata_update_finish(mddev);
  7425. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7426. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7427. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7428. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7429. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7430. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7431. wake_up(&resync_wait);
  7432. /* flag recovery needed just to double check */
  7433. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7434. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7435. md_new_event(mddev);
  7436. if (mddev->event_work.func)
  7437. queue_work(md_misc_wq, &mddev->event_work);
  7438. }
  7439. EXPORT_SYMBOL(md_reap_sync_thread);
  7440. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7441. {
  7442. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7443. wait_event_timeout(rdev->blocked_wait,
  7444. !test_bit(Blocked, &rdev->flags) &&
  7445. !test_bit(BlockedBadBlocks, &rdev->flags),
  7446. msecs_to_jiffies(5000));
  7447. rdev_dec_pending(rdev, mddev);
  7448. }
  7449. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7450. void md_finish_reshape(struct mddev *mddev)
  7451. {
  7452. /* called be personality module when reshape completes. */
  7453. struct md_rdev *rdev;
  7454. rdev_for_each(rdev, mddev) {
  7455. if (rdev->data_offset > rdev->new_data_offset)
  7456. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7457. else
  7458. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7459. rdev->data_offset = rdev->new_data_offset;
  7460. }
  7461. }
  7462. EXPORT_SYMBOL(md_finish_reshape);
  7463. /* Bad block management.
  7464. * We can record which blocks on each device are 'bad' and so just
  7465. * fail those blocks, or that stripe, rather than the whole device.
  7466. * Entries in the bad-block table are 64bits wide. This comprises:
  7467. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7468. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7469. * A 'shift' can be set so that larger blocks are tracked and
  7470. * consequently larger devices can be covered.
  7471. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7472. *
  7473. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7474. * might need to retry if it is very unlucky.
  7475. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7476. * so we use the write_seqlock_irq variant.
  7477. *
  7478. * When looking for a bad block we specify a range and want to
  7479. * know if any block in the range is bad. So we binary-search
  7480. * to the last range that starts at-or-before the given endpoint,
  7481. * (or "before the sector after the target range")
  7482. * then see if it ends after the given start.
  7483. * We return
  7484. * 0 if there are no known bad blocks in the range
  7485. * 1 if there are known bad block which are all acknowledged
  7486. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7487. * plus the start/length of the first bad section we overlap.
  7488. */
  7489. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7490. sector_t *first_bad, int *bad_sectors)
  7491. {
  7492. int hi;
  7493. int lo;
  7494. u64 *p = bb->page;
  7495. int rv;
  7496. sector_t target = s + sectors;
  7497. unsigned seq;
  7498. if (bb->shift > 0) {
  7499. /* round the start down, and the end up */
  7500. s >>= bb->shift;
  7501. target += (1<<bb->shift) - 1;
  7502. target >>= bb->shift;
  7503. sectors = target - s;
  7504. }
  7505. /* 'target' is now the first block after the bad range */
  7506. retry:
  7507. seq = read_seqbegin(&bb->lock);
  7508. lo = 0;
  7509. rv = 0;
  7510. hi = bb->count;
  7511. /* Binary search between lo and hi for 'target'
  7512. * i.e. for the last range that starts before 'target'
  7513. */
  7514. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7515. * are known not to be the last range before target.
  7516. * VARIANT: hi-lo is the number of possible
  7517. * ranges, and decreases until it reaches 1
  7518. */
  7519. while (hi - lo > 1) {
  7520. int mid = (lo + hi) / 2;
  7521. sector_t a = BB_OFFSET(p[mid]);
  7522. if (a < target)
  7523. /* This could still be the one, earlier ranges
  7524. * could not. */
  7525. lo = mid;
  7526. else
  7527. /* This and later ranges are definitely out. */
  7528. hi = mid;
  7529. }
  7530. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7531. if (hi > lo) {
  7532. /* need to check all range that end after 's' to see if
  7533. * any are unacknowledged.
  7534. */
  7535. while (lo >= 0 &&
  7536. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7537. if (BB_OFFSET(p[lo]) < target) {
  7538. /* starts before the end, and finishes after
  7539. * the start, so they must overlap
  7540. */
  7541. if (rv != -1 && BB_ACK(p[lo]))
  7542. rv = 1;
  7543. else
  7544. rv = -1;
  7545. *first_bad = BB_OFFSET(p[lo]);
  7546. *bad_sectors = BB_LEN(p[lo]);
  7547. }
  7548. lo--;
  7549. }
  7550. }
  7551. if (read_seqretry(&bb->lock, seq))
  7552. goto retry;
  7553. return rv;
  7554. }
  7555. EXPORT_SYMBOL_GPL(md_is_badblock);
  7556. /*
  7557. * Add a range of bad blocks to the table.
  7558. * This might extend the table, or might contract it
  7559. * if two adjacent ranges can be merged.
  7560. * We binary-search to find the 'insertion' point, then
  7561. * decide how best to handle it.
  7562. */
  7563. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7564. int acknowledged)
  7565. {
  7566. u64 *p;
  7567. int lo, hi;
  7568. int rv = 1;
  7569. unsigned long flags;
  7570. if (bb->shift < 0)
  7571. /* badblocks are disabled */
  7572. return 0;
  7573. if (bb->shift) {
  7574. /* round the start down, and the end up */
  7575. sector_t next = s + sectors;
  7576. s >>= bb->shift;
  7577. next += (1<<bb->shift) - 1;
  7578. next >>= bb->shift;
  7579. sectors = next - s;
  7580. }
  7581. write_seqlock_irqsave(&bb->lock, flags);
  7582. p = bb->page;
  7583. lo = 0;
  7584. hi = bb->count;
  7585. /* Find the last range that starts at-or-before 's' */
  7586. while (hi - lo > 1) {
  7587. int mid = (lo + hi) / 2;
  7588. sector_t a = BB_OFFSET(p[mid]);
  7589. if (a <= s)
  7590. lo = mid;
  7591. else
  7592. hi = mid;
  7593. }
  7594. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7595. hi = lo;
  7596. if (hi > lo) {
  7597. /* we found a range that might merge with the start
  7598. * of our new range
  7599. */
  7600. sector_t a = BB_OFFSET(p[lo]);
  7601. sector_t e = a + BB_LEN(p[lo]);
  7602. int ack = BB_ACK(p[lo]);
  7603. if (e >= s) {
  7604. /* Yes, we can merge with a previous range */
  7605. if (s == a && s + sectors >= e)
  7606. /* new range covers old */
  7607. ack = acknowledged;
  7608. else
  7609. ack = ack && acknowledged;
  7610. if (e < s + sectors)
  7611. e = s + sectors;
  7612. if (e - a <= BB_MAX_LEN) {
  7613. p[lo] = BB_MAKE(a, e-a, ack);
  7614. s = e;
  7615. } else {
  7616. /* does not all fit in one range,
  7617. * make p[lo] maximal
  7618. */
  7619. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7620. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7621. s = a + BB_MAX_LEN;
  7622. }
  7623. sectors = e - s;
  7624. }
  7625. }
  7626. if (sectors && hi < bb->count) {
  7627. /* 'hi' points to the first range that starts after 's'.
  7628. * Maybe we can merge with the start of that range */
  7629. sector_t a = BB_OFFSET(p[hi]);
  7630. sector_t e = a + BB_LEN(p[hi]);
  7631. int ack = BB_ACK(p[hi]);
  7632. if (a <= s + sectors) {
  7633. /* merging is possible */
  7634. if (e <= s + sectors) {
  7635. /* full overlap */
  7636. e = s + sectors;
  7637. ack = acknowledged;
  7638. } else
  7639. ack = ack && acknowledged;
  7640. a = s;
  7641. if (e - a <= BB_MAX_LEN) {
  7642. p[hi] = BB_MAKE(a, e-a, ack);
  7643. s = e;
  7644. } else {
  7645. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7646. s = a + BB_MAX_LEN;
  7647. }
  7648. sectors = e - s;
  7649. lo = hi;
  7650. hi++;
  7651. }
  7652. }
  7653. if (sectors == 0 && hi < bb->count) {
  7654. /* we might be able to combine lo and hi */
  7655. /* Note: 's' is at the end of 'lo' */
  7656. sector_t a = BB_OFFSET(p[hi]);
  7657. int lolen = BB_LEN(p[lo]);
  7658. int hilen = BB_LEN(p[hi]);
  7659. int newlen = lolen + hilen - (s - a);
  7660. if (s >= a && newlen < BB_MAX_LEN) {
  7661. /* yes, we can combine them */
  7662. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7663. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7664. memmove(p + hi, p + hi + 1,
  7665. (bb->count - hi - 1) * 8);
  7666. bb->count--;
  7667. }
  7668. }
  7669. while (sectors) {
  7670. /* didn't merge (it all).
  7671. * Need to add a range just before 'hi' */
  7672. if (bb->count >= MD_MAX_BADBLOCKS) {
  7673. /* No room for more */
  7674. rv = 0;
  7675. break;
  7676. } else {
  7677. int this_sectors = sectors;
  7678. memmove(p + hi + 1, p + hi,
  7679. (bb->count - hi) * 8);
  7680. bb->count++;
  7681. if (this_sectors > BB_MAX_LEN)
  7682. this_sectors = BB_MAX_LEN;
  7683. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7684. sectors -= this_sectors;
  7685. s += this_sectors;
  7686. }
  7687. }
  7688. bb->changed = 1;
  7689. if (!acknowledged)
  7690. bb->unacked_exist = 1;
  7691. write_sequnlock_irqrestore(&bb->lock, flags);
  7692. return rv;
  7693. }
  7694. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7695. int is_new)
  7696. {
  7697. int rv;
  7698. if (is_new)
  7699. s += rdev->new_data_offset;
  7700. else
  7701. s += rdev->data_offset;
  7702. rv = md_set_badblocks(&rdev->badblocks,
  7703. s, sectors, 0);
  7704. if (rv) {
  7705. /* Make sure they get written out promptly */
  7706. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7707. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7708. set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
  7709. md_wakeup_thread(rdev->mddev->thread);
  7710. }
  7711. return rv;
  7712. }
  7713. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7714. /*
  7715. * Remove a range of bad blocks from the table.
  7716. * This may involve extending the table if we spilt a region,
  7717. * but it must not fail. So if the table becomes full, we just
  7718. * drop the remove request.
  7719. */
  7720. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7721. {
  7722. u64 *p;
  7723. int lo, hi;
  7724. sector_t target = s + sectors;
  7725. int rv = 0;
  7726. if (bb->shift > 0) {
  7727. /* When clearing we round the start up and the end down.
  7728. * This should not matter as the shift should align with
  7729. * the block size and no rounding should ever be needed.
  7730. * However it is better the think a block is bad when it
  7731. * isn't than to think a block is not bad when it is.
  7732. */
  7733. s += (1<<bb->shift) - 1;
  7734. s >>= bb->shift;
  7735. target >>= bb->shift;
  7736. sectors = target - s;
  7737. }
  7738. write_seqlock_irq(&bb->lock);
  7739. p = bb->page;
  7740. lo = 0;
  7741. hi = bb->count;
  7742. /* Find the last range that starts before 'target' */
  7743. while (hi - lo > 1) {
  7744. int mid = (lo + hi) / 2;
  7745. sector_t a = BB_OFFSET(p[mid]);
  7746. if (a < target)
  7747. lo = mid;
  7748. else
  7749. hi = mid;
  7750. }
  7751. if (hi > lo) {
  7752. /* p[lo] is the last range that could overlap the
  7753. * current range. Earlier ranges could also overlap,
  7754. * but only this one can overlap the end of the range.
  7755. */
  7756. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7757. /* Partial overlap, leave the tail of this range */
  7758. int ack = BB_ACK(p[lo]);
  7759. sector_t a = BB_OFFSET(p[lo]);
  7760. sector_t end = a + BB_LEN(p[lo]);
  7761. if (a < s) {
  7762. /* we need to split this range */
  7763. if (bb->count >= MD_MAX_BADBLOCKS) {
  7764. rv = -ENOSPC;
  7765. goto out;
  7766. }
  7767. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7768. bb->count++;
  7769. p[lo] = BB_MAKE(a, s-a, ack);
  7770. lo++;
  7771. }
  7772. p[lo] = BB_MAKE(target, end - target, ack);
  7773. /* there is no longer an overlap */
  7774. hi = lo;
  7775. lo--;
  7776. }
  7777. while (lo >= 0 &&
  7778. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7779. /* This range does overlap */
  7780. if (BB_OFFSET(p[lo]) < s) {
  7781. /* Keep the early parts of this range. */
  7782. int ack = BB_ACK(p[lo]);
  7783. sector_t start = BB_OFFSET(p[lo]);
  7784. p[lo] = BB_MAKE(start, s - start, ack);
  7785. /* now low doesn't overlap, so.. */
  7786. break;
  7787. }
  7788. lo--;
  7789. }
  7790. /* 'lo' is strictly before, 'hi' is strictly after,
  7791. * anything between needs to be discarded
  7792. */
  7793. if (hi - lo > 1) {
  7794. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7795. bb->count -= (hi - lo - 1);
  7796. }
  7797. }
  7798. bb->changed = 1;
  7799. out:
  7800. write_sequnlock_irq(&bb->lock);
  7801. return rv;
  7802. }
  7803. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7804. int is_new)
  7805. {
  7806. if (is_new)
  7807. s += rdev->new_data_offset;
  7808. else
  7809. s += rdev->data_offset;
  7810. return md_clear_badblocks(&rdev->badblocks,
  7811. s, sectors);
  7812. }
  7813. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7814. /*
  7815. * Acknowledge all bad blocks in a list.
  7816. * This only succeeds if ->changed is clear. It is used by
  7817. * in-kernel metadata updates
  7818. */
  7819. void md_ack_all_badblocks(struct badblocks *bb)
  7820. {
  7821. if (bb->page == NULL || bb->changed)
  7822. /* no point even trying */
  7823. return;
  7824. write_seqlock_irq(&bb->lock);
  7825. if (bb->changed == 0 && bb->unacked_exist) {
  7826. u64 *p = bb->page;
  7827. int i;
  7828. for (i = 0; i < bb->count ; i++) {
  7829. if (!BB_ACK(p[i])) {
  7830. sector_t start = BB_OFFSET(p[i]);
  7831. int len = BB_LEN(p[i]);
  7832. p[i] = BB_MAKE(start, len, 1);
  7833. }
  7834. }
  7835. bb->unacked_exist = 0;
  7836. }
  7837. write_sequnlock_irq(&bb->lock);
  7838. }
  7839. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7840. /* sysfs access to bad-blocks list.
  7841. * We present two files.
  7842. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7843. * are recorded as bad. The list is truncated to fit within
  7844. * the one-page limit of sysfs.
  7845. * Writing "sector length" to this file adds an acknowledged
  7846. * bad block list.
  7847. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7848. * been acknowledged. Writing to this file adds bad blocks
  7849. * without acknowledging them. This is largely for testing.
  7850. */
  7851. static ssize_t
  7852. badblocks_show(struct badblocks *bb, char *page, int unack)
  7853. {
  7854. size_t len;
  7855. int i;
  7856. u64 *p = bb->page;
  7857. unsigned seq;
  7858. if (bb->shift < 0)
  7859. return 0;
  7860. retry:
  7861. seq = read_seqbegin(&bb->lock);
  7862. len = 0;
  7863. i = 0;
  7864. while (len < PAGE_SIZE && i < bb->count) {
  7865. sector_t s = BB_OFFSET(p[i]);
  7866. unsigned int length = BB_LEN(p[i]);
  7867. int ack = BB_ACK(p[i]);
  7868. i++;
  7869. if (unack && ack)
  7870. continue;
  7871. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7872. (unsigned long long)s << bb->shift,
  7873. length << bb->shift);
  7874. }
  7875. if (unack && len == 0)
  7876. bb->unacked_exist = 0;
  7877. if (read_seqretry(&bb->lock, seq))
  7878. goto retry;
  7879. return len;
  7880. }
  7881. #define DO_DEBUG 1
  7882. static ssize_t
  7883. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7884. {
  7885. unsigned long long sector;
  7886. int length;
  7887. char newline;
  7888. #ifdef DO_DEBUG
  7889. /* Allow clearing via sysfs *only* for testing/debugging.
  7890. * Normally only a successful write may clear a badblock
  7891. */
  7892. int clear = 0;
  7893. if (page[0] == '-') {
  7894. clear = 1;
  7895. page++;
  7896. }
  7897. #endif /* DO_DEBUG */
  7898. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7899. case 3:
  7900. if (newline != '\n')
  7901. return -EINVAL;
  7902. case 2:
  7903. if (length <= 0)
  7904. return -EINVAL;
  7905. break;
  7906. default:
  7907. return -EINVAL;
  7908. }
  7909. #ifdef DO_DEBUG
  7910. if (clear) {
  7911. md_clear_badblocks(bb, sector, length);
  7912. return len;
  7913. }
  7914. #endif /* DO_DEBUG */
  7915. if (md_set_badblocks(bb, sector, length, !unack))
  7916. return len;
  7917. else
  7918. return -ENOSPC;
  7919. }
  7920. static int md_notify_reboot(struct notifier_block *this,
  7921. unsigned long code, void *x)
  7922. {
  7923. struct list_head *tmp;
  7924. struct mddev *mddev;
  7925. int need_delay = 0;
  7926. for_each_mddev(mddev, tmp) {
  7927. if (mddev_trylock(mddev)) {
  7928. if (mddev->pers)
  7929. __md_stop_writes(mddev);
  7930. if (mddev->persistent)
  7931. mddev->safemode = 2;
  7932. mddev_unlock(mddev);
  7933. }
  7934. need_delay = 1;
  7935. }
  7936. /*
  7937. * certain more exotic SCSI devices are known to be
  7938. * volatile wrt too early system reboots. While the
  7939. * right place to handle this issue is the given
  7940. * driver, we do want to have a safe RAID driver ...
  7941. */
  7942. if (need_delay)
  7943. mdelay(1000*1);
  7944. return NOTIFY_DONE;
  7945. }
  7946. static struct notifier_block md_notifier = {
  7947. .notifier_call = md_notify_reboot,
  7948. .next = NULL,
  7949. .priority = INT_MAX, /* before any real devices */
  7950. };
  7951. static void md_geninit(void)
  7952. {
  7953. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7954. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7955. }
  7956. static int __init md_init(void)
  7957. {
  7958. int ret = -ENOMEM;
  7959. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7960. if (!md_wq)
  7961. goto err_wq;
  7962. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7963. if (!md_misc_wq)
  7964. goto err_misc_wq;
  7965. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7966. goto err_md;
  7967. if ((ret = register_blkdev(0, "mdp")) < 0)
  7968. goto err_mdp;
  7969. mdp_major = ret;
  7970. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7971. md_probe, NULL, NULL);
  7972. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7973. md_probe, NULL, NULL);
  7974. register_reboot_notifier(&md_notifier);
  7975. raid_table_header = register_sysctl_table(raid_root_table);
  7976. md_geninit();
  7977. return 0;
  7978. err_mdp:
  7979. unregister_blkdev(MD_MAJOR, "md");
  7980. err_md:
  7981. destroy_workqueue(md_misc_wq);
  7982. err_misc_wq:
  7983. destroy_workqueue(md_wq);
  7984. err_wq:
  7985. return ret;
  7986. }
  7987. void md_reload_sb(struct mddev *mddev)
  7988. {
  7989. struct md_rdev *rdev, *tmp;
  7990. rdev_for_each_safe(rdev, tmp, mddev) {
  7991. rdev->sb_loaded = 0;
  7992. ClearPageUptodate(rdev->sb_page);
  7993. }
  7994. mddev->raid_disks = 0;
  7995. analyze_sbs(mddev);
  7996. rdev_for_each_safe(rdev, tmp, mddev) {
  7997. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  7998. /* since we don't write to faulty devices, we figure out if the
  7999. * disk is faulty by comparing events
  8000. */
  8001. if (mddev->events > sb->events)
  8002. set_bit(Faulty, &rdev->flags);
  8003. }
  8004. }
  8005. EXPORT_SYMBOL(md_reload_sb);
  8006. #ifndef MODULE
  8007. /*
  8008. * Searches all registered partitions for autorun RAID arrays
  8009. * at boot time.
  8010. */
  8011. static LIST_HEAD(all_detected_devices);
  8012. struct detected_devices_node {
  8013. struct list_head list;
  8014. dev_t dev;
  8015. };
  8016. void md_autodetect_dev(dev_t dev)
  8017. {
  8018. struct detected_devices_node *node_detected_dev;
  8019. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  8020. if (node_detected_dev) {
  8021. node_detected_dev->dev = dev;
  8022. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  8023. } else {
  8024. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  8025. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  8026. }
  8027. }
  8028. static void autostart_arrays(int part)
  8029. {
  8030. struct md_rdev *rdev;
  8031. struct detected_devices_node *node_detected_dev;
  8032. dev_t dev;
  8033. int i_scanned, i_passed;
  8034. i_scanned = 0;
  8035. i_passed = 0;
  8036. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  8037. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  8038. i_scanned++;
  8039. node_detected_dev = list_entry(all_detected_devices.next,
  8040. struct detected_devices_node, list);
  8041. list_del(&node_detected_dev->list);
  8042. dev = node_detected_dev->dev;
  8043. kfree(node_detected_dev);
  8044. rdev = md_import_device(dev,0, 90);
  8045. if (IS_ERR(rdev))
  8046. continue;
  8047. if (test_bit(Faulty, &rdev->flags))
  8048. continue;
  8049. set_bit(AutoDetected, &rdev->flags);
  8050. list_add(&rdev->same_set, &pending_raid_disks);
  8051. i_passed++;
  8052. }
  8053. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  8054. i_scanned, i_passed);
  8055. autorun_devices(part);
  8056. }
  8057. #endif /* !MODULE */
  8058. static __exit void md_exit(void)
  8059. {
  8060. struct mddev *mddev;
  8061. struct list_head *tmp;
  8062. int delay = 1;
  8063. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  8064. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  8065. unregister_blkdev(MD_MAJOR,"md");
  8066. unregister_blkdev(mdp_major, "mdp");
  8067. unregister_reboot_notifier(&md_notifier);
  8068. unregister_sysctl_table(raid_table_header);
  8069. /* We cannot unload the modules while some process is
  8070. * waiting for us in select() or poll() - wake them up
  8071. */
  8072. md_unloading = 1;
  8073. while (waitqueue_active(&md_event_waiters)) {
  8074. /* not safe to leave yet */
  8075. wake_up(&md_event_waiters);
  8076. msleep(delay);
  8077. delay += delay;
  8078. }
  8079. remove_proc_entry("mdstat", NULL);
  8080. for_each_mddev(mddev, tmp) {
  8081. export_array(mddev);
  8082. mddev->hold_active = 0;
  8083. }
  8084. destroy_workqueue(md_misc_wq);
  8085. destroy_workqueue(md_wq);
  8086. }
  8087. subsys_initcall(md_init);
  8088. module_exit(md_exit)
  8089. static int get_ro(char *buffer, struct kernel_param *kp)
  8090. {
  8091. return sprintf(buffer, "%d", start_readonly);
  8092. }
  8093. static int set_ro(const char *val, struct kernel_param *kp)
  8094. {
  8095. return kstrtouint(val, 10, (unsigned int *)&start_readonly);
  8096. }
  8097. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  8098. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  8099. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  8100. MODULE_LICENSE("GPL");
  8101. MODULE_DESCRIPTION("MD RAID framework");
  8102. MODULE_ALIAS("md");
  8103. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);