intel_ringbuffer.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  35. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  36. * to give some inclination as to some of the magic values used in the various
  37. * workarounds!
  38. */
  39. #define CACHELINE_BYTES 64
  40. static inline int __ring_space(int head, int tail, int size)
  41. {
  42. int space = head - (tail + I915_RING_FREE_SPACE);
  43. if (space < 0)
  44. space += size;
  45. return space;
  46. }
  47. static inline int ring_space(struct intel_ringbuffer *ringbuf)
  48. {
  49. return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
  50. }
  51. static bool intel_ring_stopped(struct intel_engine_cs *ring)
  52. {
  53. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  54. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  55. }
  56. void __intel_ring_advance(struct intel_engine_cs *ring)
  57. {
  58. struct intel_ringbuffer *ringbuf = ring->buffer;
  59. ringbuf->tail &= ringbuf->size - 1;
  60. if (intel_ring_stopped(ring))
  61. return;
  62. ring->write_tail(ring, ringbuf->tail);
  63. }
  64. static int
  65. gen2_render_ring_flush(struct intel_engine_cs *ring,
  66. u32 invalidate_domains,
  67. u32 flush_domains)
  68. {
  69. u32 cmd;
  70. int ret;
  71. cmd = MI_FLUSH;
  72. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  73. cmd |= MI_NO_WRITE_FLUSH;
  74. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  75. cmd |= MI_READ_FLUSH;
  76. ret = intel_ring_begin(ring, 2);
  77. if (ret)
  78. return ret;
  79. intel_ring_emit(ring, cmd);
  80. intel_ring_emit(ring, MI_NOOP);
  81. intel_ring_advance(ring);
  82. return 0;
  83. }
  84. static int
  85. gen4_render_ring_flush(struct intel_engine_cs *ring,
  86. u32 invalidate_domains,
  87. u32 flush_domains)
  88. {
  89. struct drm_device *dev = ring->dev;
  90. u32 cmd;
  91. int ret;
  92. /*
  93. * read/write caches:
  94. *
  95. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  96. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  97. * also flushed at 2d versus 3d pipeline switches.
  98. *
  99. * read-only caches:
  100. *
  101. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  102. * MI_READ_FLUSH is set, and is always flushed on 965.
  103. *
  104. * I915_GEM_DOMAIN_COMMAND may not exist?
  105. *
  106. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  107. * invalidated when MI_EXE_FLUSH is set.
  108. *
  109. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  110. * invalidated with every MI_FLUSH.
  111. *
  112. * TLBs:
  113. *
  114. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  115. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  116. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  117. * are flushed at any MI_FLUSH.
  118. */
  119. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  120. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  121. cmd &= ~MI_NO_WRITE_FLUSH;
  122. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  123. cmd |= MI_EXE_FLUSH;
  124. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  125. (IS_G4X(dev) || IS_GEN5(dev)))
  126. cmd |= MI_INVALIDATE_ISP;
  127. ret = intel_ring_begin(ring, 2);
  128. if (ret)
  129. return ret;
  130. intel_ring_emit(ring, cmd);
  131. intel_ring_emit(ring, MI_NOOP);
  132. intel_ring_advance(ring);
  133. return 0;
  134. }
  135. /**
  136. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  137. * implementing two workarounds on gen6. From section 1.4.7.1
  138. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  139. *
  140. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  141. * produced by non-pipelined state commands), software needs to first
  142. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  143. * 0.
  144. *
  145. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  146. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  147. *
  148. * And the workaround for these two requires this workaround first:
  149. *
  150. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  151. * BEFORE the pipe-control with a post-sync op and no write-cache
  152. * flushes.
  153. *
  154. * And this last workaround is tricky because of the requirements on
  155. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  156. * volume 2 part 1:
  157. *
  158. * "1 of the following must also be set:
  159. * - Render Target Cache Flush Enable ([12] of DW1)
  160. * - Depth Cache Flush Enable ([0] of DW1)
  161. * - Stall at Pixel Scoreboard ([1] of DW1)
  162. * - Depth Stall ([13] of DW1)
  163. * - Post-Sync Operation ([13] of DW1)
  164. * - Notify Enable ([8] of DW1)"
  165. *
  166. * The cache flushes require the workaround flush that triggered this
  167. * one, so we can't use it. Depth stall would trigger the same.
  168. * Post-sync nonzero is what triggered this second workaround, so we
  169. * can't use that one either. Notify enable is IRQs, which aren't
  170. * really our business. That leaves only stall at scoreboard.
  171. */
  172. static int
  173. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  174. {
  175. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  176. int ret;
  177. ret = intel_ring_begin(ring, 6);
  178. if (ret)
  179. return ret;
  180. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  181. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  182. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  183. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  184. intel_ring_emit(ring, 0); /* low dword */
  185. intel_ring_emit(ring, 0); /* high dword */
  186. intel_ring_emit(ring, MI_NOOP);
  187. intel_ring_advance(ring);
  188. ret = intel_ring_begin(ring, 6);
  189. if (ret)
  190. return ret;
  191. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  192. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  193. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  194. intel_ring_emit(ring, 0);
  195. intel_ring_emit(ring, 0);
  196. intel_ring_emit(ring, MI_NOOP);
  197. intel_ring_advance(ring);
  198. return 0;
  199. }
  200. static int
  201. gen6_render_ring_flush(struct intel_engine_cs *ring,
  202. u32 invalidate_domains, u32 flush_domains)
  203. {
  204. u32 flags = 0;
  205. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  206. int ret;
  207. /* Force SNB workarounds for PIPE_CONTROL flushes */
  208. ret = intel_emit_post_sync_nonzero_flush(ring);
  209. if (ret)
  210. return ret;
  211. /* Just flush everything. Experiments have shown that reducing the
  212. * number of bits based on the write domains has little performance
  213. * impact.
  214. */
  215. if (flush_domains) {
  216. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  217. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  218. /*
  219. * Ensure that any following seqno writes only happen
  220. * when the render cache is indeed flushed.
  221. */
  222. flags |= PIPE_CONTROL_CS_STALL;
  223. }
  224. if (invalidate_domains) {
  225. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  226. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  227. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  230. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  231. /*
  232. * TLB invalidate requires a post-sync write.
  233. */
  234. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  235. }
  236. ret = intel_ring_begin(ring, 4);
  237. if (ret)
  238. return ret;
  239. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  240. intel_ring_emit(ring, flags);
  241. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int
  247. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  248. {
  249. int ret;
  250. ret = intel_ring_begin(ring, 4);
  251. if (ret)
  252. return ret;
  253. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  254. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  255. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  256. intel_ring_emit(ring, 0);
  257. intel_ring_emit(ring, 0);
  258. intel_ring_advance(ring);
  259. return 0;
  260. }
  261. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  262. {
  263. int ret;
  264. if (!ring->fbc_dirty)
  265. return 0;
  266. ret = intel_ring_begin(ring, 6);
  267. if (ret)
  268. return ret;
  269. /* WaFbcNukeOn3DBlt:ivb/hsw */
  270. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  271. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  272. intel_ring_emit(ring, value);
  273. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  274. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  275. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  276. intel_ring_advance(ring);
  277. ring->fbc_dirty = false;
  278. return 0;
  279. }
  280. static int
  281. gen7_render_ring_flush(struct intel_engine_cs *ring,
  282. u32 invalidate_domains, u32 flush_domains)
  283. {
  284. u32 flags = 0;
  285. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  286. int ret;
  287. /*
  288. * Ensure that any following seqno writes only happen when the render
  289. * cache is indeed flushed.
  290. *
  291. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  292. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  293. * don't try to be clever and just set it unconditionally.
  294. */
  295. flags |= PIPE_CONTROL_CS_STALL;
  296. /* Just flush everything. Experiments have shown that reducing the
  297. * number of bits based on the write domains has little performance
  298. * impact.
  299. */
  300. if (flush_domains) {
  301. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  302. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  303. }
  304. if (invalidate_domains) {
  305. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  306. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  310. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  311. /*
  312. * TLB invalidate requires a post-sync write.
  313. */
  314. flags |= PIPE_CONTROL_QW_WRITE;
  315. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  316. /* Workaround: we must issue a pipe_control with CS-stall bit
  317. * set before a pipe_control command that has the state cache
  318. * invalidate bit set. */
  319. gen7_render_ring_cs_stall_wa(ring);
  320. }
  321. ret = intel_ring_begin(ring, 4);
  322. if (ret)
  323. return ret;
  324. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  325. intel_ring_emit(ring, flags);
  326. intel_ring_emit(ring, scratch_addr);
  327. intel_ring_emit(ring, 0);
  328. intel_ring_advance(ring);
  329. if (!invalidate_domains && flush_domains)
  330. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  331. return 0;
  332. }
  333. static int
  334. gen8_render_ring_flush(struct intel_engine_cs *ring,
  335. u32 invalidate_domains, u32 flush_domains)
  336. {
  337. u32 flags = 0;
  338. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  339. int ret;
  340. flags |= PIPE_CONTROL_CS_STALL;
  341. if (flush_domains) {
  342. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  343. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  344. }
  345. if (invalidate_domains) {
  346. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  347. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  348. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  349. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  350. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  351. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  352. flags |= PIPE_CONTROL_QW_WRITE;
  353. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  354. }
  355. ret = intel_ring_begin(ring, 6);
  356. if (ret)
  357. return ret;
  358. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  359. intel_ring_emit(ring, flags);
  360. intel_ring_emit(ring, scratch_addr);
  361. intel_ring_emit(ring, 0);
  362. intel_ring_emit(ring, 0);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_advance(ring);
  365. return 0;
  366. }
  367. static void ring_write_tail(struct intel_engine_cs *ring,
  368. u32 value)
  369. {
  370. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  371. I915_WRITE_TAIL(ring, value);
  372. }
  373. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  374. {
  375. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  376. u64 acthd;
  377. if (INTEL_INFO(ring->dev)->gen >= 8)
  378. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  379. RING_ACTHD_UDW(ring->mmio_base));
  380. else if (INTEL_INFO(ring->dev)->gen >= 4)
  381. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  382. else
  383. acthd = I915_READ(ACTHD);
  384. return acthd;
  385. }
  386. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  387. {
  388. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  389. u32 addr;
  390. addr = dev_priv->status_page_dmah->busaddr;
  391. if (INTEL_INFO(ring->dev)->gen >= 4)
  392. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  393. I915_WRITE(HWS_PGA, addr);
  394. }
  395. static bool stop_ring(struct intel_engine_cs *ring)
  396. {
  397. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  398. if (!IS_GEN2(ring->dev)) {
  399. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  400. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  401. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  402. return false;
  403. }
  404. }
  405. I915_WRITE_CTL(ring, 0);
  406. I915_WRITE_HEAD(ring, 0);
  407. ring->write_tail(ring, 0);
  408. if (!IS_GEN2(ring->dev)) {
  409. (void)I915_READ_CTL(ring);
  410. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  411. }
  412. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  413. }
  414. static int init_ring_common(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = dev->dev_private;
  418. struct intel_ringbuffer *ringbuf = ring->buffer;
  419. struct drm_i915_gem_object *obj = ringbuf->obj;
  420. int ret = 0;
  421. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  422. if (!stop_ring(ring)) {
  423. /* G45 ring initialization often fails to reset head to zero */
  424. DRM_DEBUG_KMS("%s head not reset to zero "
  425. "ctl %08x head %08x tail %08x start %08x\n",
  426. ring->name,
  427. I915_READ_CTL(ring),
  428. I915_READ_HEAD(ring),
  429. I915_READ_TAIL(ring),
  430. I915_READ_START(ring));
  431. if (!stop_ring(ring)) {
  432. DRM_ERROR("failed to set %s head to zero "
  433. "ctl %08x head %08x tail %08x start %08x\n",
  434. ring->name,
  435. I915_READ_CTL(ring),
  436. I915_READ_HEAD(ring),
  437. I915_READ_TAIL(ring),
  438. I915_READ_START(ring));
  439. ret = -EIO;
  440. goto out;
  441. }
  442. }
  443. if (I915_NEED_GFX_HWS(dev))
  444. intel_ring_setup_status_page(ring);
  445. else
  446. ring_setup_phys_status_page(ring);
  447. /* Initialize the ring. This must happen _after_ we've cleared the ring
  448. * registers with the above sequence (the readback of the HEAD registers
  449. * also enforces ordering), otherwise the hw might lose the new ring
  450. * register values. */
  451. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  452. I915_WRITE_CTL(ring,
  453. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  454. | RING_VALID);
  455. /* If the head is still not zero, the ring is dead */
  456. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  457. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  458. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  459. DRM_ERROR("%s initialization failed "
  460. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  461. ring->name,
  462. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  463. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  464. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  465. ret = -EIO;
  466. goto out;
  467. }
  468. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  469. i915_kernel_lost_context(ring->dev);
  470. else {
  471. ringbuf->head = I915_READ_HEAD(ring);
  472. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  473. ringbuf->space = ring_space(ringbuf);
  474. ringbuf->last_retired_head = -1;
  475. }
  476. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  477. out:
  478. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  479. return ret;
  480. }
  481. static int
  482. init_pipe_control(struct intel_engine_cs *ring)
  483. {
  484. int ret;
  485. if (ring->scratch.obj)
  486. return 0;
  487. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  488. if (ring->scratch.obj == NULL) {
  489. DRM_ERROR("Failed to allocate seqno page\n");
  490. ret = -ENOMEM;
  491. goto err;
  492. }
  493. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  494. if (ret)
  495. goto err_unref;
  496. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  497. if (ret)
  498. goto err_unref;
  499. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  500. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  501. if (ring->scratch.cpu_page == NULL) {
  502. ret = -ENOMEM;
  503. goto err_unpin;
  504. }
  505. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  506. ring->name, ring->scratch.gtt_offset);
  507. return 0;
  508. err_unpin:
  509. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  510. err_unref:
  511. drm_gem_object_unreference(&ring->scratch.obj->base);
  512. err:
  513. return ret;
  514. }
  515. static int init_render_ring(struct intel_engine_cs *ring)
  516. {
  517. struct drm_device *dev = ring->dev;
  518. struct drm_i915_private *dev_priv = dev->dev_private;
  519. int ret = init_ring_common(ring);
  520. if (ret)
  521. return ret;
  522. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  523. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  524. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  525. /* We need to disable the AsyncFlip performance optimisations in order
  526. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  527. * programmed to '1' on all products.
  528. *
  529. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  530. */
  531. if (INTEL_INFO(dev)->gen >= 6)
  532. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  533. /* Required for the hardware to program scanline values for waiting */
  534. /* WaEnableFlushTlbInvalidationMode:snb */
  535. if (INTEL_INFO(dev)->gen == 6)
  536. I915_WRITE(GFX_MODE,
  537. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  538. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  539. if (IS_GEN7(dev))
  540. I915_WRITE(GFX_MODE_GEN7,
  541. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  542. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  543. if (INTEL_INFO(dev)->gen >= 5) {
  544. ret = init_pipe_control(ring);
  545. if (ret)
  546. return ret;
  547. }
  548. if (IS_GEN6(dev)) {
  549. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  550. * "If this bit is set, STCunit will have LRA as replacement
  551. * policy. [...] This bit must be reset. LRA replacement
  552. * policy is not supported."
  553. */
  554. I915_WRITE(CACHE_MODE_0,
  555. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  556. }
  557. if (INTEL_INFO(dev)->gen >= 6)
  558. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  559. if (HAS_L3_DPF(dev))
  560. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  561. return ret;
  562. }
  563. static void render_ring_cleanup(struct intel_engine_cs *ring)
  564. {
  565. struct drm_device *dev = ring->dev;
  566. struct drm_i915_private *dev_priv = dev->dev_private;
  567. if (dev_priv->semaphore_obj) {
  568. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  569. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  570. dev_priv->semaphore_obj = NULL;
  571. }
  572. if (ring->scratch.obj == NULL)
  573. return;
  574. if (INTEL_INFO(dev)->gen >= 5) {
  575. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  576. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  577. }
  578. drm_gem_object_unreference(&ring->scratch.obj->base);
  579. ring->scratch.obj = NULL;
  580. }
  581. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  582. unsigned int num_dwords)
  583. {
  584. #define MBOX_UPDATE_DWORDS 8
  585. struct drm_device *dev = signaller->dev;
  586. struct drm_i915_private *dev_priv = dev->dev_private;
  587. struct intel_engine_cs *waiter;
  588. int i, ret, num_rings;
  589. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  590. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  591. #undef MBOX_UPDATE_DWORDS
  592. ret = intel_ring_begin(signaller, num_dwords);
  593. if (ret)
  594. return ret;
  595. for_each_ring(waiter, dev_priv, i) {
  596. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  597. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  598. continue;
  599. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  600. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  601. PIPE_CONTROL_QW_WRITE |
  602. PIPE_CONTROL_FLUSH_ENABLE);
  603. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  604. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  605. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  606. intel_ring_emit(signaller, 0);
  607. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  608. MI_SEMAPHORE_TARGET(waiter->id));
  609. intel_ring_emit(signaller, 0);
  610. }
  611. return 0;
  612. }
  613. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  614. unsigned int num_dwords)
  615. {
  616. #define MBOX_UPDATE_DWORDS 6
  617. struct drm_device *dev = signaller->dev;
  618. struct drm_i915_private *dev_priv = dev->dev_private;
  619. struct intel_engine_cs *waiter;
  620. int i, ret, num_rings;
  621. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  622. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  623. #undef MBOX_UPDATE_DWORDS
  624. ret = intel_ring_begin(signaller, num_dwords);
  625. if (ret)
  626. return ret;
  627. for_each_ring(waiter, dev_priv, i) {
  628. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  629. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  630. continue;
  631. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  632. MI_FLUSH_DW_OP_STOREDW);
  633. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  634. MI_FLUSH_DW_USE_GTT);
  635. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  636. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  637. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  638. MI_SEMAPHORE_TARGET(waiter->id));
  639. intel_ring_emit(signaller, 0);
  640. }
  641. return 0;
  642. }
  643. static int gen6_signal(struct intel_engine_cs *signaller,
  644. unsigned int num_dwords)
  645. {
  646. struct drm_device *dev = signaller->dev;
  647. struct drm_i915_private *dev_priv = dev->dev_private;
  648. struct intel_engine_cs *useless;
  649. int i, ret, num_rings;
  650. #define MBOX_UPDATE_DWORDS 3
  651. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  652. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  653. #undef MBOX_UPDATE_DWORDS
  654. ret = intel_ring_begin(signaller, num_dwords);
  655. if (ret)
  656. return ret;
  657. for_each_ring(useless, dev_priv, i) {
  658. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  659. if (mbox_reg != GEN6_NOSYNC) {
  660. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  661. intel_ring_emit(signaller, mbox_reg);
  662. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  663. }
  664. }
  665. /* If num_dwords was rounded, make sure the tail pointer is correct */
  666. if (num_rings % 2 == 0)
  667. intel_ring_emit(signaller, MI_NOOP);
  668. return 0;
  669. }
  670. /**
  671. * gen6_add_request - Update the semaphore mailbox registers
  672. *
  673. * @ring - ring that is adding a request
  674. * @seqno - return seqno stuck into the ring
  675. *
  676. * Update the mailbox registers in the *other* rings with the current seqno.
  677. * This acts like a signal in the canonical semaphore.
  678. */
  679. static int
  680. gen6_add_request(struct intel_engine_cs *ring)
  681. {
  682. int ret;
  683. if (ring->semaphore.signal)
  684. ret = ring->semaphore.signal(ring, 4);
  685. else
  686. ret = intel_ring_begin(ring, 4);
  687. if (ret)
  688. return ret;
  689. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  690. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  691. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  692. intel_ring_emit(ring, MI_USER_INTERRUPT);
  693. __intel_ring_advance(ring);
  694. return 0;
  695. }
  696. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  697. u32 seqno)
  698. {
  699. struct drm_i915_private *dev_priv = dev->dev_private;
  700. return dev_priv->last_seqno < seqno;
  701. }
  702. /**
  703. * intel_ring_sync - sync the waiter to the signaller on seqno
  704. *
  705. * @waiter - ring that is waiting
  706. * @signaller - ring which has, or will signal
  707. * @seqno - seqno which the waiter will block on
  708. */
  709. static int
  710. gen8_ring_sync(struct intel_engine_cs *waiter,
  711. struct intel_engine_cs *signaller,
  712. u32 seqno)
  713. {
  714. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  715. int ret;
  716. ret = intel_ring_begin(waiter, 4);
  717. if (ret)
  718. return ret;
  719. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  720. MI_SEMAPHORE_GLOBAL_GTT |
  721. MI_SEMAPHORE_POLL |
  722. MI_SEMAPHORE_SAD_GTE_SDD);
  723. intel_ring_emit(waiter, seqno);
  724. intel_ring_emit(waiter,
  725. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  726. intel_ring_emit(waiter,
  727. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  728. intel_ring_advance(waiter);
  729. return 0;
  730. }
  731. static int
  732. gen6_ring_sync(struct intel_engine_cs *waiter,
  733. struct intel_engine_cs *signaller,
  734. u32 seqno)
  735. {
  736. u32 dw1 = MI_SEMAPHORE_MBOX |
  737. MI_SEMAPHORE_COMPARE |
  738. MI_SEMAPHORE_REGISTER;
  739. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  740. int ret;
  741. /* Throughout all of the GEM code, seqno passed implies our current
  742. * seqno is >= the last seqno executed. However for hardware the
  743. * comparison is strictly greater than.
  744. */
  745. seqno -= 1;
  746. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  747. ret = intel_ring_begin(waiter, 4);
  748. if (ret)
  749. return ret;
  750. /* If seqno wrap happened, omit the wait with no-ops */
  751. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  752. intel_ring_emit(waiter, dw1 | wait_mbox);
  753. intel_ring_emit(waiter, seqno);
  754. intel_ring_emit(waiter, 0);
  755. intel_ring_emit(waiter, MI_NOOP);
  756. } else {
  757. intel_ring_emit(waiter, MI_NOOP);
  758. intel_ring_emit(waiter, MI_NOOP);
  759. intel_ring_emit(waiter, MI_NOOP);
  760. intel_ring_emit(waiter, MI_NOOP);
  761. }
  762. intel_ring_advance(waiter);
  763. return 0;
  764. }
  765. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  766. do { \
  767. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  768. PIPE_CONTROL_DEPTH_STALL); \
  769. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  770. intel_ring_emit(ring__, 0); \
  771. intel_ring_emit(ring__, 0); \
  772. } while (0)
  773. static int
  774. pc_render_add_request(struct intel_engine_cs *ring)
  775. {
  776. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  777. int ret;
  778. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  779. * incoherent with writes to memory, i.e. completely fubar,
  780. * so we need to use PIPE_NOTIFY instead.
  781. *
  782. * However, we also need to workaround the qword write
  783. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  784. * memory before requesting an interrupt.
  785. */
  786. ret = intel_ring_begin(ring, 32);
  787. if (ret)
  788. return ret;
  789. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  790. PIPE_CONTROL_WRITE_FLUSH |
  791. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  792. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  793. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  794. intel_ring_emit(ring, 0);
  795. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  796. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  797. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  798. scratch_addr += 2 * CACHELINE_BYTES;
  799. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  800. scratch_addr += 2 * CACHELINE_BYTES;
  801. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  802. scratch_addr += 2 * CACHELINE_BYTES;
  803. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  804. scratch_addr += 2 * CACHELINE_BYTES;
  805. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  806. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  807. PIPE_CONTROL_WRITE_FLUSH |
  808. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  809. PIPE_CONTROL_NOTIFY);
  810. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  811. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  812. intel_ring_emit(ring, 0);
  813. __intel_ring_advance(ring);
  814. return 0;
  815. }
  816. static u32
  817. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  818. {
  819. /* Workaround to force correct ordering between irq and seqno writes on
  820. * ivb (and maybe also on snb) by reading from a CS register (like
  821. * ACTHD) before reading the status page. */
  822. if (!lazy_coherency) {
  823. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  824. POSTING_READ(RING_ACTHD(ring->mmio_base));
  825. }
  826. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  827. }
  828. static u32
  829. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  830. {
  831. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  832. }
  833. static void
  834. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  835. {
  836. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  837. }
  838. static u32
  839. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  840. {
  841. return ring->scratch.cpu_page[0];
  842. }
  843. static void
  844. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  845. {
  846. ring->scratch.cpu_page[0] = seqno;
  847. }
  848. static bool
  849. gen5_ring_get_irq(struct intel_engine_cs *ring)
  850. {
  851. struct drm_device *dev = ring->dev;
  852. struct drm_i915_private *dev_priv = dev->dev_private;
  853. unsigned long flags;
  854. if (!dev->irq_enabled)
  855. return false;
  856. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  857. if (ring->irq_refcount++ == 0)
  858. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  859. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  860. return true;
  861. }
  862. static void
  863. gen5_ring_put_irq(struct intel_engine_cs *ring)
  864. {
  865. struct drm_device *dev = ring->dev;
  866. struct drm_i915_private *dev_priv = dev->dev_private;
  867. unsigned long flags;
  868. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  869. if (--ring->irq_refcount == 0)
  870. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  871. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  872. }
  873. static bool
  874. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  875. {
  876. struct drm_device *dev = ring->dev;
  877. struct drm_i915_private *dev_priv = dev->dev_private;
  878. unsigned long flags;
  879. if (!dev->irq_enabled)
  880. return false;
  881. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  882. if (ring->irq_refcount++ == 0) {
  883. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  884. I915_WRITE(IMR, dev_priv->irq_mask);
  885. POSTING_READ(IMR);
  886. }
  887. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  888. return true;
  889. }
  890. static void
  891. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  892. {
  893. struct drm_device *dev = ring->dev;
  894. struct drm_i915_private *dev_priv = dev->dev_private;
  895. unsigned long flags;
  896. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  897. if (--ring->irq_refcount == 0) {
  898. dev_priv->irq_mask |= ring->irq_enable_mask;
  899. I915_WRITE(IMR, dev_priv->irq_mask);
  900. POSTING_READ(IMR);
  901. }
  902. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  903. }
  904. static bool
  905. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  906. {
  907. struct drm_device *dev = ring->dev;
  908. struct drm_i915_private *dev_priv = dev->dev_private;
  909. unsigned long flags;
  910. if (!dev->irq_enabled)
  911. return false;
  912. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  913. if (ring->irq_refcount++ == 0) {
  914. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  915. I915_WRITE16(IMR, dev_priv->irq_mask);
  916. POSTING_READ16(IMR);
  917. }
  918. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  919. return true;
  920. }
  921. static void
  922. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  923. {
  924. struct drm_device *dev = ring->dev;
  925. struct drm_i915_private *dev_priv = dev->dev_private;
  926. unsigned long flags;
  927. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  928. if (--ring->irq_refcount == 0) {
  929. dev_priv->irq_mask |= ring->irq_enable_mask;
  930. I915_WRITE16(IMR, dev_priv->irq_mask);
  931. POSTING_READ16(IMR);
  932. }
  933. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  934. }
  935. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  936. {
  937. struct drm_device *dev = ring->dev;
  938. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  939. u32 mmio = 0;
  940. /* The ring status page addresses are no longer next to the rest of
  941. * the ring registers as of gen7.
  942. */
  943. if (IS_GEN7(dev)) {
  944. switch (ring->id) {
  945. case RCS:
  946. mmio = RENDER_HWS_PGA_GEN7;
  947. break;
  948. case BCS:
  949. mmio = BLT_HWS_PGA_GEN7;
  950. break;
  951. /*
  952. * VCS2 actually doesn't exist on Gen7. Only shut up
  953. * gcc switch check warning
  954. */
  955. case VCS2:
  956. case VCS:
  957. mmio = BSD_HWS_PGA_GEN7;
  958. break;
  959. case VECS:
  960. mmio = VEBOX_HWS_PGA_GEN7;
  961. break;
  962. }
  963. } else if (IS_GEN6(ring->dev)) {
  964. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  965. } else {
  966. /* XXX: gen8 returns to sanity */
  967. mmio = RING_HWS_PGA(ring->mmio_base);
  968. }
  969. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  970. POSTING_READ(mmio);
  971. /*
  972. * Flush the TLB for this page
  973. *
  974. * FIXME: These two bits have disappeared on gen8, so a question
  975. * arises: do we still need this and if so how should we go about
  976. * invalidating the TLB?
  977. */
  978. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  979. u32 reg = RING_INSTPM(ring->mmio_base);
  980. /* ring should be idle before issuing a sync flush*/
  981. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  982. I915_WRITE(reg,
  983. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  984. INSTPM_SYNC_FLUSH));
  985. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  986. 1000))
  987. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  988. ring->name);
  989. }
  990. }
  991. static int
  992. bsd_ring_flush(struct intel_engine_cs *ring,
  993. u32 invalidate_domains,
  994. u32 flush_domains)
  995. {
  996. int ret;
  997. ret = intel_ring_begin(ring, 2);
  998. if (ret)
  999. return ret;
  1000. intel_ring_emit(ring, MI_FLUSH);
  1001. intel_ring_emit(ring, MI_NOOP);
  1002. intel_ring_advance(ring);
  1003. return 0;
  1004. }
  1005. static int
  1006. i9xx_add_request(struct intel_engine_cs *ring)
  1007. {
  1008. int ret;
  1009. ret = intel_ring_begin(ring, 4);
  1010. if (ret)
  1011. return ret;
  1012. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1013. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1014. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1015. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1016. __intel_ring_advance(ring);
  1017. return 0;
  1018. }
  1019. static bool
  1020. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1021. {
  1022. struct drm_device *dev = ring->dev;
  1023. struct drm_i915_private *dev_priv = dev->dev_private;
  1024. unsigned long flags;
  1025. if (!dev->irq_enabled)
  1026. return false;
  1027. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1028. if (ring->irq_refcount++ == 0) {
  1029. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1030. I915_WRITE_IMR(ring,
  1031. ~(ring->irq_enable_mask |
  1032. GT_PARITY_ERROR(dev)));
  1033. else
  1034. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1035. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1036. }
  1037. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1038. return true;
  1039. }
  1040. static void
  1041. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1042. {
  1043. struct drm_device *dev = ring->dev;
  1044. struct drm_i915_private *dev_priv = dev->dev_private;
  1045. unsigned long flags;
  1046. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1047. if (--ring->irq_refcount == 0) {
  1048. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1049. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1050. else
  1051. I915_WRITE_IMR(ring, ~0);
  1052. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1053. }
  1054. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1055. }
  1056. static bool
  1057. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1058. {
  1059. struct drm_device *dev = ring->dev;
  1060. struct drm_i915_private *dev_priv = dev->dev_private;
  1061. unsigned long flags;
  1062. if (!dev->irq_enabled)
  1063. return false;
  1064. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1065. if (ring->irq_refcount++ == 0) {
  1066. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1067. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1068. }
  1069. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1070. return true;
  1071. }
  1072. static void
  1073. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1074. {
  1075. struct drm_device *dev = ring->dev;
  1076. struct drm_i915_private *dev_priv = dev->dev_private;
  1077. unsigned long flags;
  1078. if (!dev->irq_enabled)
  1079. return;
  1080. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1081. if (--ring->irq_refcount == 0) {
  1082. I915_WRITE_IMR(ring, ~0);
  1083. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1084. }
  1085. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1086. }
  1087. static bool
  1088. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1089. {
  1090. struct drm_device *dev = ring->dev;
  1091. struct drm_i915_private *dev_priv = dev->dev_private;
  1092. unsigned long flags;
  1093. if (!dev->irq_enabled)
  1094. return false;
  1095. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1096. if (ring->irq_refcount++ == 0) {
  1097. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1098. I915_WRITE_IMR(ring,
  1099. ~(ring->irq_enable_mask |
  1100. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1101. } else {
  1102. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1103. }
  1104. POSTING_READ(RING_IMR(ring->mmio_base));
  1105. }
  1106. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1107. return true;
  1108. }
  1109. static void
  1110. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1111. {
  1112. struct drm_device *dev = ring->dev;
  1113. struct drm_i915_private *dev_priv = dev->dev_private;
  1114. unsigned long flags;
  1115. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1116. if (--ring->irq_refcount == 0) {
  1117. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1118. I915_WRITE_IMR(ring,
  1119. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1120. } else {
  1121. I915_WRITE_IMR(ring, ~0);
  1122. }
  1123. POSTING_READ(RING_IMR(ring->mmio_base));
  1124. }
  1125. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1126. }
  1127. static int
  1128. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1129. u64 offset, u32 length,
  1130. unsigned flags)
  1131. {
  1132. int ret;
  1133. ret = intel_ring_begin(ring, 2);
  1134. if (ret)
  1135. return ret;
  1136. intel_ring_emit(ring,
  1137. MI_BATCH_BUFFER_START |
  1138. MI_BATCH_GTT |
  1139. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1140. intel_ring_emit(ring, offset);
  1141. intel_ring_advance(ring);
  1142. return 0;
  1143. }
  1144. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1145. #define I830_BATCH_LIMIT (256*1024)
  1146. static int
  1147. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1148. u64 offset, u32 len,
  1149. unsigned flags)
  1150. {
  1151. int ret;
  1152. if (flags & I915_DISPATCH_PINNED) {
  1153. ret = intel_ring_begin(ring, 4);
  1154. if (ret)
  1155. return ret;
  1156. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1157. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1158. intel_ring_emit(ring, offset + len - 8);
  1159. intel_ring_emit(ring, MI_NOOP);
  1160. intel_ring_advance(ring);
  1161. } else {
  1162. u32 cs_offset = ring->scratch.gtt_offset;
  1163. if (len > I830_BATCH_LIMIT)
  1164. return -ENOSPC;
  1165. ret = intel_ring_begin(ring, 9+3);
  1166. if (ret)
  1167. return ret;
  1168. /* Blit the batch (which has now all relocs applied) to the stable batch
  1169. * scratch bo area (so that the CS never stumbles over its tlb
  1170. * invalidation bug) ... */
  1171. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1172. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1173. XY_SRC_COPY_BLT_WRITE_RGB);
  1174. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1175. intel_ring_emit(ring, 0);
  1176. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1177. intel_ring_emit(ring, cs_offset);
  1178. intel_ring_emit(ring, 0);
  1179. intel_ring_emit(ring, 4096);
  1180. intel_ring_emit(ring, offset);
  1181. intel_ring_emit(ring, MI_FLUSH);
  1182. /* ... and execute it. */
  1183. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1184. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1185. intel_ring_emit(ring, cs_offset + len - 8);
  1186. intel_ring_advance(ring);
  1187. }
  1188. return 0;
  1189. }
  1190. static int
  1191. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1192. u64 offset, u32 len,
  1193. unsigned flags)
  1194. {
  1195. int ret;
  1196. ret = intel_ring_begin(ring, 2);
  1197. if (ret)
  1198. return ret;
  1199. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1200. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1201. intel_ring_advance(ring);
  1202. return 0;
  1203. }
  1204. static void cleanup_status_page(struct intel_engine_cs *ring)
  1205. {
  1206. struct drm_i915_gem_object *obj;
  1207. obj = ring->status_page.obj;
  1208. if (obj == NULL)
  1209. return;
  1210. kunmap(sg_page(obj->pages->sgl));
  1211. i915_gem_object_ggtt_unpin(obj);
  1212. drm_gem_object_unreference(&obj->base);
  1213. ring->status_page.obj = NULL;
  1214. }
  1215. static int init_status_page(struct intel_engine_cs *ring)
  1216. {
  1217. struct drm_i915_gem_object *obj;
  1218. if ((obj = ring->status_page.obj) == NULL) {
  1219. unsigned flags;
  1220. int ret;
  1221. obj = i915_gem_alloc_object(ring->dev, 4096);
  1222. if (obj == NULL) {
  1223. DRM_ERROR("Failed to allocate status page\n");
  1224. return -ENOMEM;
  1225. }
  1226. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1227. if (ret)
  1228. goto err_unref;
  1229. flags = 0;
  1230. if (!HAS_LLC(ring->dev))
  1231. /* On g33, we cannot place HWS above 256MiB, so
  1232. * restrict its pinning to the low mappable arena.
  1233. * Though this restriction is not documented for
  1234. * gen4, gen5, or byt, they also behave similarly
  1235. * and hang if the HWS is placed at the top of the
  1236. * GTT. To generalise, it appears that all !llc
  1237. * platforms have issues with us placing the HWS
  1238. * above the mappable region (even though we never
  1239. * actualy map it).
  1240. */
  1241. flags |= PIN_MAPPABLE;
  1242. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1243. if (ret) {
  1244. err_unref:
  1245. drm_gem_object_unreference(&obj->base);
  1246. return ret;
  1247. }
  1248. ring->status_page.obj = obj;
  1249. }
  1250. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1251. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1252. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1253. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1254. ring->name, ring->status_page.gfx_addr);
  1255. return 0;
  1256. }
  1257. static int init_phys_status_page(struct intel_engine_cs *ring)
  1258. {
  1259. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1260. if (!dev_priv->status_page_dmah) {
  1261. dev_priv->status_page_dmah =
  1262. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1263. if (!dev_priv->status_page_dmah)
  1264. return -ENOMEM;
  1265. }
  1266. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1267. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1268. return 0;
  1269. }
  1270. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1271. {
  1272. if (!ringbuf->obj)
  1273. return;
  1274. iounmap(ringbuf->virtual_start);
  1275. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1276. drm_gem_object_unreference(&ringbuf->obj->base);
  1277. ringbuf->obj = NULL;
  1278. }
  1279. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1280. struct intel_ringbuffer *ringbuf)
  1281. {
  1282. struct drm_i915_private *dev_priv = to_i915(dev);
  1283. struct drm_i915_gem_object *obj;
  1284. int ret;
  1285. if (ringbuf->obj)
  1286. return 0;
  1287. obj = NULL;
  1288. if (!HAS_LLC(dev))
  1289. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1290. if (obj == NULL)
  1291. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1292. if (obj == NULL)
  1293. return -ENOMEM;
  1294. /* mark ring buffers as read-only from GPU side by default */
  1295. obj->gt_ro = 1;
  1296. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1297. if (ret)
  1298. goto err_unref;
  1299. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1300. if (ret)
  1301. goto err_unpin;
  1302. ringbuf->virtual_start =
  1303. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1304. ringbuf->size);
  1305. if (ringbuf->virtual_start == NULL) {
  1306. ret = -EINVAL;
  1307. goto err_unpin;
  1308. }
  1309. ringbuf->obj = obj;
  1310. return 0;
  1311. err_unpin:
  1312. i915_gem_object_ggtt_unpin(obj);
  1313. err_unref:
  1314. drm_gem_object_unreference(&obj->base);
  1315. return ret;
  1316. }
  1317. static int intel_init_ring_buffer(struct drm_device *dev,
  1318. struct intel_engine_cs *ring)
  1319. {
  1320. struct intel_ringbuffer *ringbuf = ring->buffer;
  1321. int ret;
  1322. if (ringbuf == NULL) {
  1323. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1324. if (!ringbuf)
  1325. return -ENOMEM;
  1326. ring->buffer = ringbuf;
  1327. }
  1328. ring->dev = dev;
  1329. INIT_LIST_HEAD(&ring->active_list);
  1330. INIT_LIST_HEAD(&ring->request_list);
  1331. ringbuf->size = 32 * PAGE_SIZE;
  1332. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1333. init_waitqueue_head(&ring->irq_queue);
  1334. if (I915_NEED_GFX_HWS(dev)) {
  1335. ret = init_status_page(ring);
  1336. if (ret)
  1337. goto error;
  1338. } else {
  1339. BUG_ON(ring->id != RCS);
  1340. ret = init_phys_status_page(ring);
  1341. if (ret)
  1342. goto error;
  1343. }
  1344. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1345. if (ret) {
  1346. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1347. goto error;
  1348. }
  1349. /* Workaround an erratum on the i830 which causes a hang if
  1350. * the TAIL pointer points to within the last 2 cachelines
  1351. * of the buffer.
  1352. */
  1353. ringbuf->effective_size = ringbuf->size;
  1354. if (IS_I830(dev) || IS_845G(dev))
  1355. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1356. ret = i915_cmd_parser_init_ring(ring);
  1357. if (ret)
  1358. goto error;
  1359. ret = ring->init(ring);
  1360. if (ret)
  1361. goto error;
  1362. return 0;
  1363. error:
  1364. kfree(ringbuf);
  1365. ring->buffer = NULL;
  1366. return ret;
  1367. }
  1368. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1369. {
  1370. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1371. struct intel_ringbuffer *ringbuf = ring->buffer;
  1372. if (!intel_ring_initialized(ring))
  1373. return;
  1374. intel_stop_ring_buffer(ring);
  1375. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1376. intel_destroy_ringbuffer_obj(ringbuf);
  1377. ring->preallocated_lazy_request = NULL;
  1378. ring->outstanding_lazy_seqno = 0;
  1379. if (ring->cleanup)
  1380. ring->cleanup(ring);
  1381. cleanup_status_page(ring);
  1382. i915_cmd_parser_fini_ring(ring);
  1383. kfree(ringbuf);
  1384. ring->buffer = NULL;
  1385. }
  1386. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1387. {
  1388. struct intel_ringbuffer *ringbuf = ring->buffer;
  1389. struct drm_i915_gem_request *request;
  1390. u32 seqno = 0;
  1391. int ret;
  1392. if (ringbuf->last_retired_head != -1) {
  1393. ringbuf->head = ringbuf->last_retired_head;
  1394. ringbuf->last_retired_head = -1;
  1395. ringbuf->space = ring_space(ringbuf);
  1396. if (ringbuf->space >= n)
  1397. return 0;
  1398. }
  1399. list_for_each_entry(request, &ring->request_list, list) {
  1400. if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
  1401. seqno = request->seqno;
  1402. break;
  1403. }
  1404. }
  1405. if (seqno == 0)
  1406. return -ENOSPC;
  1407. ret = i915_wait_seqno(ring, seqno);
  1408. if (ret)
  1409. return ret;
  1410. i915_gem_retire_requests_ring(ring);
  1411. ringbuf->head = ringbuf->last_retired_head;
  1412. ringbuf->last_retired_head = -1;
  1413. ringbuf->space = ring_space(ringbuf);
  1414. return 0;
  1415. }
  1416. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1417. {
  1418. struct drm_device *dev = ring->dev;
  1419. struct drm_i915_private *dev_priv = dev->dev_private;
  1420. struct intel_ringbuffer *ringbuf = ring->buffer;
  1421. unsigned long end;
  1422. int ret;
  1423. ret = intel_ring_wait_request(ring, n);
  1424. if (ret != -ENOSPC)
  1425. return ret;
  1426. /* force the tail write in case we have been skipping them */
  1427. __intel_ring_advance(ring);
  1428. /* With GEM the hangcheck timer should kick us out of the loop,
  1429. * leaving it early runs the risk of corrupting GEM state (due
  1430. * to running on almost untested codepaths). But on resume
  1431. * timers don't work yet, so prevent a complete hang in that
  1432. * case by choosing an insanely large timeout. */
  1433. end = jiffies + 60 * HZ;
  1434. trace_i915_ring_wait_begin(ring);
  1435. do {
  1436. ringbuf->head = I915_READ_HEAD(ring);
  1437. ringbuf->space = ring_space(ringbuf);
  1438. if (ringbuf->space >= n) {
  1439. ret = 0;
  1440. break;
  1441. }
  1442. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1443. dev->primary->master) {
  1444. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1445. if (master_priv->sarea_priv)
  1446. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1447. }
  1448. msleep(1);
  1449. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1450. ret = -ERESTARTSYS;
  1451. break;
  1452. }
  1453. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1454. dev_priv->mm.interruptible);
  1455. if (ret)
  1456. break;
  1457. if (time_after(jiffies, end)) {
  1458. ret = -EBUSY;
  1459. break;
  1460. }
  1461. } while (1);
  1462. trace_i915_ring_wait_end(ring);
  1463. return ret;
  1464. }
  1465. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1466. {
  1467. uint32_t __iomem *virt;
  1468. struct intel_ringbuffer *ringbuf = ring->buffer;
  1469. int rem = ringbuf->size - ringbuf->tail;
  1470. if (ringbuf->space < rem) {
  1471. int ret = ring_wait_for_space(ring, rem);
  1472. if (ret)
  1473. return ret;
  1474. }
  1475. virt = ringbuf->virtual_start + ringbuf->tail;
  1476. rem /= 4;
  1477. while (rem--)
  1478. iowrite32(MI_NOOP, virt++);
  1479. ringbuf->tail = 0;
  1480. ringbuf->space = ring_space(ringbuf);
  1481. return 0;
  1482. }
  1483. int intel_ring_idle(struct intel_engine_cs *ring)
  1484. {
  1485. u32 seqno;
  1486. int ret;
  1487. /* We need to add any requests required to flush the objects and ring */
  1488. if (ring->outstanding_lazy_seqno) {
  1489. ret = i915_add_request(ring, NULL);
  1490. if (ret)
  1491. return ret;
  1492. }
  1493. /* Wait upon the last request to be completed */
  1494. if (list_empty(&ring->request_list))
  1495. return 0;
  1496. seqno = list_entry(ring->request_list.prev,
  1497. struct drm_i915_gem_request,
  1498. list)->seqno;
  1499. return i915_wait_seqno(ring, seqno);
  1500. }
  1501. static int
  1502. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1503. {
  1504. if (ring->outstanding_lazy_seqno)
  1505. return 0;
  1506. if (ring->preallocated_lazy_request == NULL) {
  1507. struct drm_i915_gem_request *request;
  1508. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1509. if (request == NULL)
  1510. return -ENOMEM;
  1511. ring->preallocated_lazy_request = request;
  1512. }
  1513. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1514. }
  1515. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1516. int bytes)
  1517. {
  1518. struct intel_ringbuffer *ringbuf = ring->buffer;
  1519. int ret;
  1520. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1521. ret = intel_wrap_ring_buffer(ring);
  1522. if (unlikely(ret))
  1523. return ret;
  1524. }
  1525. if (unlikely(ringbuf->space < bytes)) {
  1526. ret = ring_wait_for_space(ring, bytes);
  1527. if (unlikely(ret))
  1528. return ret;
  1529. }
  1530. return 0;
  1531. }
  1532. int intel_ring_begin(struct intel_engine_cs *ring,
  1533. int num_dwords)
  1534. {
  1535. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1536. int ret;
  1537. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1538. dev_priv->mm.interruptible);
  1539. if (ret)
  1540. return ret;
  1541. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1542. if (ret)
  1543. return ret;
  1544. /* Preallocate the olr before touching the ring */
  1545. ret = intel_ring_alloc_seqno(ring);
  1546. if (ret)
  1547. return ret;
  1548. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1549. return 0;
  1550. }
  1551. /* Align the ring tail to a cacheline boundary */
  1552. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1553. {
  1554. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1555. int ret;
  1556. if (num_dwords == 0)
  1557. return 0;
  1558. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1559. ret = intel_ring_begin(ring, num_dwords);
  1560. if (ret)
  1561. return ret;
  1562. while (num_dwords--)
  1563. intel_ring_emit(ring, MI_NOOP);
  1564. intel_ring_advance(ring);
  1565. return 0;
  1566. }
  1567. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1568. {
  1569. struct drm_device *dev = ring->dev;
  1570. struct drm_i915_private *dev_priv = dev->dev_private;
  1571. BUG_ON(ring->outstanding_lazy_seqno);
  1572. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1573. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1574. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1575. if (HAS_VEBOX(dev))
  1576. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1577. }
  1578. ring->set_seqno(ring, seqno);
  1579. ring->hangcheck.seqno = seqno;
  1580. }
  1581. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1582. u32 value)
  1583. {
  1584. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1585. /* Every tail move must follow the sequence below */
  1586. /* Disable notification that the ring is IDLE. The GT
  1587. * will then assume that it is busy and bring it out of rc6.
  1588. */
  1589. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1590. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1591. /* Clear the context id. Here be magic! */
  1592. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1593. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1594. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1595. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1596. 50))
  1597. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1598. /* Now that the ring is fully powered up, update the tail */
  1599. I915_WRITE_TAIL(ring, value);
  1600. POSTING_READ(RING_TAIL(ring->mmio_base));
  1601. /* Let the ring send IDLE messages to the GT again,
  1602. * and so let it sleep to conserve power when idle.
  1603. */
  1604. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1605. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1606. }
  1607. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1608. u32 invalidate, u32 flush)
  1609. {
  1610. uint32_t cmd;
  1611. int ret;
  1612. ret = intel_ring_begin(ring, 4);
  1613. if (ret)
  1614. return ret;
  1615. cmd = MI_FLUSH_DW;
  1616. if (INTEL_INFO(ring->dev)->gen >= 8)
  1617. cmd += 1;
  1618. /*
  1619. * Bspec vol 1c.5 - video engine command streamer:
  1620. * "If ENABLED, all TLBs will be invalidated once the flush
  1621. * operation is complete. This bit is only valid when the
  1622. * Post-Sync Operation field is a value of 1h or 3h."
  1623. */
  1624. if (invalidate & I915_GEM_GPU_DOMAINS)
  1625. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1626. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1627. intel_ring_emit(ring, cmd);
  1628. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1629. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1630. intel_ring_emit(ring, 0); /* upper addr */
  1631. intel_ring_emit(ring, 0); /* value */
  1632. } else {
  1633. intel_ring_emit(ring, 0);
  1634. intel_ring_emit(ring, MI_NOOP);
  1635. }
  1636. intel_ring_advance(ring);
  1637. return 0;
  1638. }
  1639. static int
  1640. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1641. u64 offset, u32 len,
  1642. unsigned flags)
  1643. {
  1644. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1645. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1646. !(flags & I915_DISPATCH_SECURE);
  1647. int ret;
  1648. ret = intel_ring_begin(ring, 4);
  1649. if (ret)
  1650. return ret;
  1651. /* FIXME(BDW): Address space and security selectors. */
  1652. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1653. intel_ring_emit(ring, lower_32_bits(offset));
  1654. intel_ring_emit(ring, upper_32_bits(offset));
  1655. intel_ring_emit(ring, MI_NOOP);
  1656. intel_ring_advance(ring);
  1657. return 0;
  1658. }
  1659. static int
  1660. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1661. u64 offset, u32 len,
  1662. unsigned flags)
  1663. {
  1664. int ret;
  1665. ret = intel_ring_begin(ring, 2);
  1666. if (ret)
  1667. return ret;
  1668. intel_ring_emit(ring,
  1669. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1670. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1671. /* bit0-7 is the length on GEN6+ */
  1672. intel_ring_emit(ring, offset);
  1673. intel_ring_advance(ring);
  1674. return 0;
  1675. }
  1676. static int
  1677. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1678. u64 offset, u32 len,
  1679. unsigned flags)
  1680. {
  1681. int ret;
  1682. ret = intel_ring_begin(ring, 2);
  1683. if (ret)
  1684. return ret;
  1685. intel_ring_emit(ring,
  1686. MI_BATCH_BUFFER_START |
  1687. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1688. /* bit0-7 is the length on GEN6+ */
  1689. intel_ring_emit(ring, offset);
  1690. intel_ring_advance(ring);
  1691. return 0;
  1692. }
  1693. /* Blitter support (SandyBridge+) */
  1694. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1695. u32 invalidate, u32 flush)
  1696. {
  1697. struct drm_device *dev = ring->dev;
  1698. uint32_t cmd;
  1699. int ret;
  1700. ret = intel_ring_begin(ring, 4);
  1701. if (ret)
  1702. return ret;
  1703. cmd = MI_FLUSH_DW;
  1704. if (INTEL_INFO(ring->dev)->gen >= 8)
  1705. cmd += 1;
  1706. /*
  1707. * Bspec vol 1c.3 - blitter engine command streamer:
  1708. * "If ENABLED, all TLBs will be invalidated once the flush
  1709. * operation is complete. This bit is only valid when the
  1710. * Post-Sync Operation field is a value of 1h or 3h."
  1711. */
  1712. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1713. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1714. MI_FLUSH_DW_OP_STOREDW;
  1715. intel_ring_emit(ring, cmd);
  1716. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1717. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1718. intel_ring_emit(ring, 0); /* upper addr */
  1719. intel_ring_emit(ring, 0); /* value */
  1720. } else {
  1721. intel_ring_emit(ring, 0);
  1722. intel_ring_emit(ring, MI_NOOP);
  1723. }
  1724. intel_ring_advance(ring);
  1725. if (IS_GEN7(dev) && !invalidate && flush)
  1726. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1727. return 0;
  1728. }
  1729. int intel_init_render_ring_buffer(struct drm_device *dev)
  1730. {
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1733. struct drm_i915_gem_object *obj;
  1734. int ret;
  1735. ring->name = "render ring";
  1736. ring->id = RCS;
  1737. ring->mmio_base = RENDER_RING_BASE;
  1738. if (INTEL_INFO(dev)->gen >= 8) {
  1739. if (i915_semaphore_is_enabled(dev)) {
  1740. obj = i915_gem_alloc_object(dev, 4096);
  1741. if (obj == NULL) {
  1742. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1743. i915.semaphores = 0;
  1744. } else {
  1745. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1746. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1747. if (ret != 0) {
  1748. drm_gem_object_unreference(&obj->base);
  1749. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1750. i915.semaphores = 0;
  1751. } else
  1752. dev_priv->semaphore_obj = obj;
  1753. }
  1754. }
  1755. ring->add_request = gen6_add_request;
  1756. ring->flush = gen8_render_ring_flush;
  1757. ring->irq_get = gen8_ring_get_irq;
  1758. ring->irq_put = gen8_ring_put_irq;
  1759. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1760. ring->get_seqno = gen6_ring_get_seqno;
  1761. ring->set_seqno = ring_set_seqno;
  1762. if (i915_semaphore_is_enabled(dev)) {
  1763. WARN_ON(!dev_priv->semaphore_obj);
  1764. ring->semaphore.sync_to = gen8_ring_sync;
  1765. ring->semaphore.signal = gen8_rcs_signal;
  1766. GEN8_RING_SEMAPHORE_INIT;
  1767. }
  1768. } else if (INTEL_INFO(dev)->gen >= 6) {
  1769. ring->add_request = gen6_add_request;
  1770. ring->flush = gen7_render_ring_flush;
  1771. if (INTEL_INFO(dev)->gen == 6)
  1772. ring->flush = gen6_render_ring_flush;
  1773. ring->irq_get = gen6_ring_get_irq;
  1774. ring->irq_put = gen6_ring_put_irq;
  1775. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1776. ring->get_seqno = gen6_ring_get_seqno;
  1777. ring->set_seqno = ring_set_seqno;
  1778. if (i915_semaphore_is_enabled(dev)) {
  1779. ring->semaphore.sync_to = gen6_ring_sync;
  1780. ring->semaphore.signal = gen6_signal;
  1781. /*
  1782. * The current semaphore is only applied on pre-gen8
  1783. * platform. And there is no VCS2 ring on the pre-gen8
  1784. * platform. So the semaphore between RCS and VCS2 is
  1785. * initialized as INVALID. Gen8 will initialize the
  1786. * sema between VCS2 and RCS later.
  1787. */
  1788. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1789. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1790. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1791. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1792. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1793. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1794. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1795. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1796. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1797. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1798. }
  1799. } else if (IS_GEN5(dev)) {
  1800. ring->add_request = pc_render_add_request;
  1801. ring->flush = gen4_render_ring_flush;
  1802. ring->get_seqno = pc_render_get_seqno;
  1803. ring->set_seqno = pc_render_set_seqno;
  1804. ring->irq_get = gen5_ring_get_irq;
  1805. ring->irq_put = gen5_ring_put_irq;
  1806. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1807. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1808. } else {
  1809. ring->add_request = i9xx_add_request;
  1810. if (INTEL_INFO(dev)->gen < 4)
  1811. ring->flush = gen2_render_ring_flush;
  1812. else
  1813. ring->flush = gen4_render_ring_flush;
  1814. ring->get_seqno = ring_get_seqno;
  1815. ring->set_seqno = ring_set_seqno;
  1816. if (IS_GEN2(dev)) {
  1817. ring->irq_get = i8xx_ring_get_irq;
  1818. ring->irq_put = i8xx_ring_put_irq;
  1819. } else {
  1820. ring->irq_get = i9xx_ring_get_irq;
  1821. ring->irq_put = i9xx_ring_put_irq;
  1822. }
  1823. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1824. }
  1825. ring->write_tail = ring_write_tail;
  1826. if (IS_HASWELL(dev))
  1827. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1828. else if (IS_GEN8(dev))
  1829. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1830. else if (INTEL_INFO(dev)->gen >= 6)
  1831. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1832. else if (INTEL_INFO(dev)->gen >= 4)
  1833. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1834. else if (IS_I830(dev) || IS_845G(dev))
  1835. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1836. else
  1837. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1838. ring->init = init_render_ring;
  1839. ring->cleanup = render_ring_cleanup;
  1840. /* Workaround batchbuffer to combat CS tlb bug. */
  1841. if (HAS_BROKEN_CS_TLB(dev)) {
  1842. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1843. if (obj == NULL) {
  1844. DRM_ERROR("Failed to allocate batch bo\n");
  1845. return -ENOMEM;
  1846. }
  1847. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1848. if (ret != 0) {
  1849. drm_gem_object_unreference(&obj->base);
  1850. DRM_ERROR("Failed to ping batch bo\n");
  1851. return ret;
  1852. }
  1853. ring->scratch.obj = obj;
  1854. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1855. }
  1856. return intel_init_ring_buffer(dev, ring);
  1857. }
  1858. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1859. {
  1860. struct drm_i915_private *dev_priv = dev->dev_private;
  1861. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1862. struct intel_ringbuffer *ringbuf = ring->buffer;
  1863. int ret;
  1864. if (ringbuf == NULL) {
  1865. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1866. if (!ringbuf)
  1867. return -ENOMEM;
  1868. ring->buffer = ringbuf;
  1869. }
  1870. ring->name = "render ring";
  1871. ring->id = RCS;
  1872. ring->mmio_base = RENDER_RING_BASE;
  1873. if (INTEL_INFO(dev)->gen >= 6) {
  1874. /* non-kms not supported on gen6+ */
  1875. ret = -ENODEV;
  1876. goto err_ringbuf;
  1877. }
  1878. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1879. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1880. * the special gen5 functions. */
  1881. ring->add_request = i9xx_add_request;
  1882. if (INTEL_INFO(dev)->gen < 4)
  1883. ring->flush = gen2_render_ring_flush;
  1884. else
  1885. ring->flush = gen4_render_ring_flush;
  1886. ring->get_seqno = ring_get_seqno;
  1887. ring->set_seqno = ring_set_seqno;
  1888. if (IS_GEN2(dev)) {
  1889. ring->irq_get = i8xx_ring_get_irq;
  1890. ring->irq_put = i8xx_ring_put_irq;
  1891. } else {
  1892. ring->irq_get = i9xx_ring_get_irq;
  1893. ring->irq_put = i9xx_ring_put_irq;
  1894. }
  1895. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1896. ring->write_tail = ring_write_tail;
  1897. if (INTEL_INFO(dev)->gen >= 4)
  1898. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1899. else if (IS_I830(dev) || IS_845G(dev))
  1900. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1901. else
  1902. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1903. ring->init = init_render_ring;
  1904. ring->cleanup = render_ring_cleanup;
  1905. ring->dev = dev;
  1906. INIT_LIST_HEAD(&ring->active_list);
  1907. INIT_LIST_HEAD(&ring->request_list);
  1908. ringbuf->size = size;
  1909. ringbuf->effective_size = ringbuf->size;
  1910. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1911. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1912. ringbuf->virtual_start = ioremap_wc(start, size);
  1913. if (ringbuf->virtual_start == NULL) {
  1914. DRM_ERROR("can not ioremap virtual address for"
  1915. " ring buffer\n");
  1916. ret = -ENOMEM;
  1917. goto err_ringbuf;
  1918. }
  1919. if (!I915_NEED_GFX_HWS(dev)) {
  1920. ret = init_phys_status_page(ring);
  1921. if (ret)
  1922. goto err_vstart;
  1923. }
  1924. return 0;
  1925. err_vstart:
  1926. iounmap(ringbuf->virtual_start);
  1927. err_ringbuf:
  1928. kfree(ringbuf);
  1929. ring->buffer = NULL;
  1930. return ret;
  1931. }
  1932. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1933. {
  1934. struct drm_i915_private *dev_priv = dev->dev_private;
  1935. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1936. ring->name = "bsd ring";
  1937. ring->id = VCS;
  1938. ring->write_tail = ring_write_tail;
  1939. if (INTEL_INFO(dev)->gen >= 6) {
  1940. ring->mmio_base = GEN6_BSD_RING_BASE;
  1941. /* gen6 bsd needs a special wa for tail updates */
  1942. if (IS_GEN6(dev))
  1943. ring->write_tail = gen6_bsd_ring_write_tail;
  1944. ring->flush = gen6_bsd_ring_flush;
  1945. ring->add_request = gen6_add_request;
  1946. ring->get_seqno = gen6_ring_get_seqno;
  1947. ring->set_seqno = ring_set_seqno;
  1948. if (INTEL_INFO(dev)->gen >= 8) {
  1949. ring->irq_enable_mask =
  1950. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1951. ring->irq_get = gen8_ring_get_irq;
  1952. ring->irq_put = gen8_ring_put_irq;
  1953. ring->dispatch_execbuffer =
  1954. gen8_ring_dispatch_execbuffer;
  1955. if (i915_semaphore_is_enabled(dev)) {
  1956. ring->semaphore.sync_to = gen8_ring_sync;
  1957. ring->semaphore.signal = gen8_xcs_signal;
  1958. GEN8_RING_SEMAPHORE_INIT;
  1959. }
  1960. } else {
  1961. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1962. ring->irq_get = gen6_ring_get_irq;
  1963. ring->irq_put = gen6_ring_put_irq;
  1964. ring->dispatch_execbuffer =
  1965. gen6_ring_dispatch_execbuffer;
  1966. if (i915_semaphore_is_enabled(dev)) {
  1967. ring->semaphore.sync_to = gen6_ring_sync;
  1968. ring->semaphore.signal = gen6_signal;
  1969. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  1970. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1971. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  1972. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1973. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1974. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  1975. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1976. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  1977. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  1978. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1979. }
  1980. }
  1981. } else {
  1982. ring->mmio_base = BSD_RING_BASE;
  1983. ring->flush = bsd_ring_flush;
  1984. ring->add_request = i9xx_add_request;
  1985. ring->get_seqno = ring_get_seqno;
  1986. ring->set_seqno = ring_set_seqno;
  1987. if (IS_GEN5(dev)) {
  1988. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1989. ring->irq_get = gen5_ring_get_irq;
  1990. ring->irq_put = gen5_ring_put_irq;
  1991. } else {
  1992. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1993. ring->irq_get = i9xx_ring_get_irq;
  1994. ring->irq_put = i9xx_ring_put_irq;
  1995. }
  1996. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1997. }
  1998. ring->init = init_ring_common;
  1999. return intel_init_ring_buffer(dev, ring);
  2000. }
  2001. /**
  2002. * Initialize the second BSD ring for Broadwell GT3.
  2003. * It is noted that this only exists on Broadwell GT3.
  2004. */
  2005. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2006. {
  2007. struct drm_i915_private *dev_priv = dev->dev_private;
  2008. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2009. if ((INTEL_INFO(dev)->gen != 8)) {
  2010. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2011. return -EINVAL;
  2012. }
  2013. ring->name = "bsd2 ring";
  2014. ring->id = VCS2;
  2015. ring->write_tail = ring_write_tail;
  2016. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2017. ring->flush = gen6_bsd_ring_flush;
  2018. ring->add_request = gen6_add_request;
  2019. ring->get_seqno = gen6_ring_get_seqno;
  2020. ring->set_seqno = ring_set_seqno;
  2021. ring->irq_enable_mask =
  2022. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2023. ring->irq_get = gen8_ring_get_irq;
  2024. ring->irq_put = gen8_ring_put_irq;
  2025. ring->dispatch_execbuffer =
  2026. gen8_ring_dispatch_execbuffer;
  2027. if (i915_semaphore_is_enabled(dev)) {
  2028. ring->semaphore.sync_to = gen8_ring_sync;
  2029. ring->semaphore.signal = gen8_xcs_signal;
  2030. GEN8_RING_SEMAPHORE_INIT;
  2031. }
  2032. ring->init = init_ring_common;
  2033. return intel_init_ring_buffer(dev, ring);
  2034. }
  2035. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2036. {
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2039. ring->name = "blitter ring";
  2040. ring->id = BCS;
  2041. ring->mmio_base = BLT_RING_BASE;
  2042. ring->write_tail = ring_write_tail;
  2043. ring->flush = gen6_ring_flush;
  2044. ring->add_request = gen6_add_request;
  2045. ring->get_seqno = gen6_ring_get_seqno;
  2046. ring->set_seqno = ring_set_seqno;
  2047. if (INTEL_INFO(dev)->gen >= 8) {
  2048. ring->irq_enable_mask =
  2049. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2050. ring->irq_get = gen8_ring_get_irq;
  2051. ring->irq_put = gen8_ring_put_irq;
  2052. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2053. if (i915_semaphore_is_enabled(dev)) {
  2054. ring->semaphore.sync_to = gen8_ring_sync;
  2055. ring->semaphore.signal = gen8_xcs_signal;
  2056. GEN8_RING_SEMAPHORE_INIT;
  2057. }
  2058. } else {
  2059. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2060. ring->irq_get = gen6_ring_get_irq;
  2061. ring->irq_put = gen6_ring_put_irq;
  2062. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2063. if (i915_semaphore_is_enabled(dev)) {
  2064. ring->semaphore.signal = gen6_signal;
  2065. ring->semaphore.sync_to = gen6_ring_sync;
  2066. /*
  2067. * The current semaphore is only applied on pre-gen8
  2068. * platform. And there is no VCS2 ring on the pre-gen8
  2069. * platform. So the semaphore between BCS and VCS2 is
  2070. * initialized as INVALID. Gen8 will initialize the
  2071. * sema between BCS and VCS2 later.
  2072. */
  2073. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2074. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2075. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2076. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2077. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2078. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2079. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2080. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2081. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2082. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2083. }
  2084. }
  2085. ring->init = init_ring_common;
  2086. return intel_init_ring_buffer(dev, ring);
  2087. }
  2088. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2089. {
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2092. ring->name = "video enhancement ring";
  2093. ring->id = VECS;
  2094. ring->mmio_base = VEBOX_RING_BASE;
  2095. ring->write_tail = ring_write_tail;
  2096. ring->flush = gen6_ring_flush;
  2097. ring->add_request = gen6_add_request;
  2098. ring->get_seqno = gen6_ring_get_seqno;
  2099. ring->set_seqno = ring_set_seqno;
  2100. if (INTEL_INFO(dev)->gen >= 8) {
  2101. ring->irq_enable_mask =
  2102. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2103. ring->irq_get = gen8_ring_get_irq;
  2104. ring->irq_put = gen8_ring_put_irq;
  2105. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2106. if (i915_semaphore_is_enabled(dev)) {
  2107. ring->semaphore.sync_to = gen8_ring_sync;
  2108. ring->semaphore.signal = gen8_xcs_signal;
  2109. GEN8_RING_SEMAPHORE_INIT;
  2110. }
  2111. } else {
  2112. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2113. ring->irq_get = hsw_vebox_get_irq;
  2114. ring->irq_put = hsw_vebox_put_irq;
  2115. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2116. if (i915_semaphore_is_enabled(dev)) {
  2117. ring->semaphore.sync_to = gen6_ring_sync;
  2118. ring->semaphore.signal = gen6_signal;
  2119. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2120. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2121. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2122. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2123. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2124. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2125. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2126. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2127. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2128. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2129. }
  2130. }
  2131. ring->init = init_ring_common;
  2132. return intel_init_ring_buffer(dev, ring);
  2133. }
  2134. int
  2135. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2136. {
  2137. int ret;
  2138. if (!ring->gpu_caches_dirty)
  2139. return 0;
  2140. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2141. if (ret)
  2142. return ret;
  2143. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2144. ring->gpu_caches_dirty = false;
  2145. return 0;
  2146. }
  2147. int
  2148. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2149. {
  2150. uint32_t flush_domains;
  2151. int ret;
  2152. flush_domains = 0;
  2153. if (ring->gpu_caches_dirty)
  2154. flush_domains = I915_GEM_GPU_DOMAINS;
  2155. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2156. if (ret)
  2157. return ret;
  2158. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2159. ring->gpu_caches_dirty = false;
  2160. return 0;
  2161. }
  2162. void
  2163. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2164. {
  2165. int ret;
  2166. if (!intel_ring_initialized(ring))
  2167. return;
  2168. ret = intel_ring_idle(ring);
  2169. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2170. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2171. ring->name, ret);
  2172. stop_ring(ring);
  2173. }