i915_gem.c 133 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282
  1. /*
  2. * Copyright © 2008-2015 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include <drm/drmP.h>
  28. #include <drm/drm_vma_manager.h>
  29. #include <drm/i915_drm.h>
  30. #include "i915_drv.h"
  31. #include "i915_vgpu.h"
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. #include <linux/shmem_fs.h>
  35. #include <linux/slab.h>
  36. #include <linux/swap.h>
  37. #include <linux/pci.h>
  38. #include <linux/dma-buf.h>
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  41. static __must_check int
  42. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  43. bool readonly);
  44. static void
  45. i915_gem_object_retire(struct drm_i915_gem_object *obj);
  46. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  47. struct drm_i915_gem_object *obj);
  48. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  49. struct drm_i915_fence_reg *fence,
  50. bool enable);
  51. static bool cpu_cache_is_coherent(struct drm_device *dev,
  52. enum i915_cache_level level)
  53. {
  54. return HAS_LLC(dev) || level != I915_CACHE_NONE;
  55. }
  56. static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  57. {
  58. if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  59. return true;
  60. return obj->pin_display;
  61. }
  62. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  63. {
  64. if (obj->tiling_mode)
  65. i915_gem_release_mmap(obj);
  66. /* As we do not have an associated fence register, we will force
  67. * a tiling change if we ever need to acquire one.
  68. */
  69. obj->fence_dirty = false;
  70. obj->fence_reg = I915_FENCE_REG_NONE;
  71. }
  72. /* some bookkeeping */
  73. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  74. size_t size)
  75. {
  76. spin_lock(&dev_priv->mm.object_stat_lock);
  77. dev_priv->mm.object_count++;
  78. dev_priv->mm.object_memory += size;
  79. spin_unlock(&dev_priv->mm.object_stat_lock);
  80. }
  81. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  82. size_t size)
  83. {
  84. spin_lock(&dev_priv->mm.object_stat_lock);
  85. dev_priv->mm.object_count--;
  86. dev_priv->mm.object_memory -= size;
  87. spin_unlock(&dev_priv->mm.object_stat_lock);
  88. }
  89. static int
  90. i915_gem_wait_for_error(struct i915_gpu_error *error)
  91. {
  92. int ret;
  93. #define EXIT_COND (!i915_reset_in_progress(error) || \
  94. i915_terminally_wedged(error))
  95. if (EXIT_COND)
  96. return 0;
  97. /*
  98. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  99. * userspace. If it takes that long something really bad is going on and
  100. * we should simply try to bail out and fail as gracefully as possible.
  101. */
  102. ret = wait_event_interruptible_timeout(error->reset_queue,
  103. EXIT_COND,
  104. 10*HZ);
  105. if (ret == 0) {
  106. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  107. return -EIO;
  108. } else if (ret < 0) {
  109. return ret;
  110. }
  111. #undef EXIT_COND
  112. return 0;
  113. }
  114. int i915_mutex_lock_interruptible(struct drm_device *dev)
  115. {
  116. struct drm_i915_private *dev_priv = dev->dev_private;
  117. int ret;
  118. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  119. if (ret)
  120. return ret;
  121. ret = mutex_lock_interruptible(&dev->struct_mutex);
  122. if (ret)
  123. return ret;
  124. WARN_ON(i915_verify_lists(dev));
  125. return 0;
  126. }
  127. int
  128. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  129. struct drm_file *file)
  130. {
  131. struct drm_i915_private *dev_priv = dev->dev_private;
  132. struct drm_i915_gem_get_aperture *args = data;
  133. struct drm_i915_gem_object *obj;
  134. size_t pinned;
  135. pinned = 0;
  136. mutex_lock(&dev->struct_mutex);
  137. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  138. if (i915_gem_obj_is_pinned(obj))
  139. pinned += i915_gem_obj_ggtt_size(obj);
  140. mutex_unlock(&dev->struct_mutex);
  141. args->aper_size = dev_priv->gtt.base.total;
  142. args->aper_available_size = args->aper_size - pinned;
  143. return 0;
  144. }
  145. static int
  146. i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
  147. {
  148. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  149. char *vaddr = obj->phys_handle->vaddr;
  150. struct sg_table *st;
  151. struct scatterlist *sg;
  152. int i;
  153. if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
  154. return -EINVAL;
  155. for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
  156. struct page *page;
  157. char *src;
  158. page = shmem_read_mapping_page(mapping, i);
  159. if (IS_ERR(page))
  160. return PTR_ERR(page);
  161. src = kmap_atomic(page);
  162. memcpy(vaddr, src, PAGE_SIZE);
  163. drm_clflush_virt_range(vaddr, PAGE_SIZE);
  164. kunmap_atomic(src);
  165. page_cache_release(page);
  166. vaddr += PAGE_SIZE;
  167. }
  168. i915_gem_chipset_flush(obj->base.dev);
  169. st = kmalloc(sizeof(*st), GFP_KERNEL);
  170. if (st == NULL)
  171. return -ENOMEM;
  172. if (sg_alloc_table(st, 1, GFP_KERNEL)) {
  173. kfree(st);
  174. return -ENOMEM;
  175. }
  176. sg = st->sgl;
  177. sg->offset = 0;
  178. sg->length = obj->base.size;
  179. sg_dma_address(sg) = obj->phys_handle->busaddr;
  180. sg_dma_len(sg) = obj->base.size;
  181. obj->pages = st;
  182. obj->has_dma_mapping = true;
  183. return 0;
  184. }
  185. static void
  186. i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
  187. {
  188. int ret;
  189. BUG_ON(obj->madv == __I915_MADV_PURGED);
  190. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  191. if (ret) {
  192. /* In the event of a disaster, abandon all caches and
  193. * hope for the best.
  194. */
  195. WARN_ON(ret != -EIO);
  196. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  197. }
  198. if (obj->madv == I915_MADV_DONTNEED)
  199. obj->dirty = 0;
  200. if (obj->dirty) {
  201. struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
  202. char *vaddr = obj->phys_handle->vaddr;
  203. int i;
  204. for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
  205. struct page *page;
  206. char *dst;
  207. page = shmem_read_mapping_page(mapping, i);
  208. if (IS_ERR(page))
  209. continue;
  210. dst = kmap_atomic(page);
  211. drm_clflush_virt_range(vaddr, PAGE_SIZE);
  212. memcpy(dst, vaddr, PAGE_SIZE);
  213. kunmap_atomic(dst);
  214. set_page_dirty(page);
  215. if (obj->madv == I915_MADV_WILLNEED)
  216. mark_page_accessed(page);
  217. page_cache_release(page);
  218. vaddr += PAGE_SIZE;
  219. }
  220. obj->dirty = 0;
  221. }
  222. sg_free_table(obj->pages);
  223. kfree(obj->pages);
  224. obj->has_dma_mapping = false;
  225. }
  226. static void
  227. i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
  228. {
  229. drm_pci_free(obj->base.dev, obj->phys_handle);
  230. }
  231. static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
  232. .get_pages = i915_gem_object_get_pages_phys,
  233. .put_pages = i915_gem_object_put_pages_phys,
  234. .release = i915_gem_object_release_phys,
  235. };
  236. static int
  237. drop_pages(struct drm_i915_gem_object *obj)
  238. {
  239. struct i915_vma *vma, *next;
  240. int ret;
  241. drm_gem_object_reference(&obj->base);
  242. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
  243. if (i915_vma_unbind(vma))
  244. break;
  245. ret = i915_gem_object_put_pages(obj);
  246. drm_gem_object_unreference(&obj->base);
  247. return ret;
  248. }
  249. int
  250. i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
  251. int align)
  252. {
  253. drm_dma_handle_t *phys;
  254. int ret;
  255. if (obj->phys_handle) {
  256. if ((unsigned long)obj->phys_handle->vaddr & (align -1))
  257. return -EBUSY;
  258. return 0;
  259. }
  260. if (obj->madv != I915_MADV_WILLNEED)
  261. return -EFAULT;
  262. if (obj->base.filp == NULL)
  263. return -EINVAL;
  264. ret = drop_pages(obj);
  265. if (ret)
  266. return ret;
  267. /* create a new object */
  268. phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
  269. if (!phys)
  270. return -ENOMEM;
  271. obj->phys_handle = phys;
  272. obj->ops = &i915_gem_phys_ops;
  273. return i915_gem_object_get_pages(obj);
  274. }
  275. static int
  276. i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
  277. struct drm_i915_gem_pwrite *args,
  278. struct drm_file *file_priv)
  279. {
  280. struct drm_device *dev = obj->base.dev;
  281. void *vaddr = obj->phys_handle->vaddr + args->offset;
  282. char __user *user_data = to_user_ptr(args->data_ptr);
  283. int ret = 0;
  284. /* We manually control the domain here and pretend that it
  285. * remains coherent i.e. in the GTT domain, like shmem_pwrite.
  286. */
  287. ret = i915_gem_object_wait_rendering(obj, false);
  288. if (ret)
  289. return ret;
  290. intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
  291. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  292. unsigned long unwritten;
  293. /* The physical object once assigned is fixed for the lifetime
  294. * of the obj, so we can safely drop the lock and continue
  295. * to access vaddr.
  296. */
  297. mutex_unlock(&dev->struct_mutex);
  298. unwritten = copy_from_user(vaddr, user_data, args->size);
  299. mutex_lock(&dev->struct_mutex);
  300. if (unwritten) {
  301. ret = -EFAULT;
  302. goto out;
  303. }
  304. }
  305. drm_clflush_virt_range(vaddr, args->size);
  306. i915_gem_chipset_flush(dev);
  307. out:
  308. intel_fb_obj_flush(obj, false);
  309. return ret;
  310. }
  311. void *i915_gem_object_alloc(struct drm_device *dev)
  312. {
  313. struct drm_i915_private *dev_priv = dev->dev_private;
  314. return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
  315. }
  316. void i915_gem_object_free(struct drm_i915_gem_object *obj)
  317. {
  318. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  319. kmem_cache_free(dev_priv->objects, obj);
  320. }
  321. static int
  322. i915_gem_create(struct drm_file *file,
  323. struct drm_device *dev,
  324. uint64_t size,
  325. uint32_t *handle_p)
  326. {
  327. struct drm_i915_gem_object *obj;
  328. int ret;
  329. u32 handle;
  330. size = roundup(size, PAGE_SIZE);
  331. if (size == 0)
  332. return -EINVAL;
  333. /* Allocate the new object */
  334. obj = i915_gem_alloc_object(dev, size);
  335. if (obj == NULL)
  336. return -ENOMEM;
  337. ret = drm_gem_handle_create(file, &obj->base, &handle);
  338. /* drop reference from allocate - handle holds it now */
  339. drm_gem_object_unreference_unlocked(&obj->base);
  340. if (ret)
  341. return ret;
  342. *handle_p = handle;
  343. return 0;
  344. }
  345. int
  346. i915_gem_dumb_create(struct drm_file *file,
  347. struct drm_device *dev,
  348. struct drm_mode_create_dumb *args)
  349. {
  350. /* have to work out size/pitch and return them */
  351. args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
  352. args->size = args->pitch * args->height;
  353. return i915_gem_create(file, dev,
  354. args->size, &args->handle);
  355. }
  356. /**
  357. * Creates a new mm object and returns a handle to it.
  358. */
  359. int
  360. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  361. struct drm_file *file)
  362. {
  363. struct drm_i915_gem_create *args = data;
  364. return i915_gem_create(file, dev,
  365. args->size, &args->handle);
  366. }
  367. static inline int
  368. __copy_to_user_swizzled(char __user *cpu_vaddr,
  369. const char *gpu_vaddr, int gpu_offset,
  370. int length)
  371. {
  372. int ret, cpu_offset = 0;
  373. while (length > 0) {
  374. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  375. int this_length = min(cacheline_end - gpu_offset, length);
  376. int swizzled_gpu_offset = gpu_offset ^ 64;
  377. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  378. gpu_vaddr + swizzled_gpu_offset,
  379. this_length);
  380. if (ret)
  381. return ret + length;
  382. cpu_offset += this_length;
  383. gpu_offset += this_length;
  384. length -= this_length;
  385. }
  386. return 0;
  387. }
  388. static inline int
  389. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  390. const char __user *cpu_vaddr,
  391. int length)
  392. {
  393. int ret, cpu_offset = 0;
  394. while (length > 0) {
  395. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  396. int this_length = min(cacheline_end - gpu_offset, length);
  397. int swizzled_gpu_offset = gpu_offset ^ 64;
  398. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  399. cpu_vaddr + cpu_offset,
  400. this_length);
  401. if (ret)
  402. return ret + length;
  403. cpu_offset += this_length;
  404. gpu_offset += this_length;
  405. length -= this_length;
  406. }
  407. return 0;
  408. }
  409. /*
  410. * Pins the specified object's pages and synchronizes the object with
  411. * GPU accesses. Sets needs_clflush to non-zero if the caller should
  412. * flush the object from the CPU cache.
  413. */
  414. int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
  415. int *needs_clflush)
  416. {
  417. int ret;
  418. *needs_clflush = 0;
  419. if (!obj->base.filp)
  420. return -EINVAL;
  421. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  422. /* If we're not in the cpu read domain, set ourself into the gtt
  423. * read domain and manually flush cachelines (if required). This
  424. * optimizes for the case when the gpu will dirty the data
  425. * anyway again before the next pread happens. */
  426. *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
  427. obj->cache_level);
  428. ret = i915_gem_object_wait_rendering(obj, true);
  429. if (ret)
  430. return ret;
  431. i915_gem_object_retire(obj);
  432. }
  433. ret = i915_gem_object_get_pages(obj);
  434. if (ret)
  435. return ret;
  436. i915_gem_object_pin_pages(obj);
  437. return ret;
  438. }
  439. /* Per-page copy function for the shmem pread fastpath.
  440. * Flushes invalid cachelines before reading the target if
  441. * needs_clflush is set. */
  442. static int
  443. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  444. char __user *user_data,
  445. bool page_do_bit17_swizzling, bool needs_clflush)
  446. {
  447. char *vaddr;
  448. int ret;
  449. if (unlikely(page_do_bit17_swizzling))
  450. return -EINVAL;
  451. vaddr = kmap_atomic(page);
  452. if (needs_clflush)
  453. drm_clflush_virt_range(vaddr + shmem_page_offset,
  454. page_length);
  455. ret = __copy_to_user_inatomic(user_data,
  456. vaddr + shmem_page_offset,
  457. page_length);
  458. kunmap_atomic(vaddr);
  459. return ret ? -EFAULT : 0;
  460. }
  461. static void
  462. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  463. bool swizzled)
  464. {
  465. if (unlikely(swizzled)) {
  466. unsigned long start = (unsigned long) addr;
  467. unsigned long end = (unsigned long) addr + length;
  468. /* For swizzling simply ensure that we always flush both
  469. * channels. Lame, but simple and it works. Swizzled
  470. * pwrite/pread is far from a hotpath - current userspace
  471. * doesn't use it at all. */
  472. start = round_down(start, 128);
  473. end = round_up(end, 128);
  474. drm_clflush_virt_range((void *)start, end - start);
  475. } else {
  476. drm_clflush_virt_range(addr, length);
  477. }
  478. }
  479. /* Only difference to the fast-path function is that this can handle bit17
  480. * and uses non-atomic copy and kmap functions. */
  481. static int
  482. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  483. char __user *user_data,
  484. bool page_do_bit17_swizzling, bool needs_clflush)
  485. {
  486. char *vaddr;
  487. int ret;
  488. vaddr = kmap(page);
  489. if (needs_clflush)
  490. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  491. page_length,
  492. page_do_bit17_swizzling);
  493. if (page_do_bit17_swizzling)
  494. ret = __copy_to_user_swizzled(user_data,
  495. vaddr, shmem_page_offset,
  496. page_length);
  497. else
  498. ret = __copy_to_user(user_data,
  499. vaddr + shmem_page_offset,
  500. page_length);
  501. kunmap(page);
  502. return ret ? - EFAULT : 0;
  503. }
  504. static int
  505. i915_gem_shmem_pread(struct drm_device *dev,
  506. struct drm_i915_gem_object *obj,
  507. struct drm_i915_gem_pread *args,
  508. struct drm_file *file)
  509. {
  510. char __user *user_data;
  511. ssize_t remain;
  512. loff_t offset;
  513. int shmem_page_offset, page_length, ret = 0;
  514. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  515. int prefaulted = 0;
  516. int needs_clflush = 0;
  517. struct sg_page_iter sg_iter;
  518. user_data = to_user_ptr(args->data_ptr);
  519. remain = args->size;
  520. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  521. ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
  522. if (ret)
  523. return ret;
  524. offset = args->offset;
  525. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  526. offset >> PAGE_SHIFT) {
  527. struct page *page = sg_page_iter_page(&sg_iter);
  528. if (remain <= 0)
  529. break;
  530. /* Operation in this page
  531. *
  532. * shmem_page_offset = offset within page in shmem file
  533. * page_length = bytes to copy for this page
  534. */
  535. shmem_page_offset = offset_in_page(offset);
  536. page_length = remain;
  537. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  538. page_length = PAGE_SIZE - shmem_page_offset;
  539. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  540. (page_to_phys(page) & (1 << 17)) != 0;
  541. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  542. user_data, page_do_bit17_swizzling,
  543. needs_clflush);
  544. if (ret == 0)
  545. goto next_page;
  546. mutex_unlock(&dev->struct_mutex);
  547. if (likely(!i915.prefault_disable) && !prefaulted) {
  548. ret = fault_in_multipages_writeable(user_data, remain);
  549. /* Userspace is tricking us, but we've already clobbered
  550. * its pages with the prefault and promised to write the
  551. * data up to the first fault. Hence ignore any errors
  552. * and just continue. */
  553. (void)ret;
  554. prefaulted = 1;
  555. }
  556. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  557. user_data, page_do_bit17_swizzling,
  558. needs_clflush);
  559. mutex_lock(&dev->struct_mutex);
  560. if (ret)
  561. goto out;
  562. next_page:
  563. remain -= page_length;
  564. user_data += page_length;
  565. offset += page_length;
  566. }
  567. out:
  568. i915_gem_object_unpin_pages(obj);
  569. return ret;
  570. }
  571. /**
  572. * Reads data from the object referenced by handle.
  573. *
  574. * On error, the contents of *data are undefined.
  575. */
  576. int
  577. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  578. struct drm_file *file)
  579. {
  580. struct drm_i915_gem_pread *args = data;
  581. struct drm_i915_gem_object *obj;
  582. int ret = 0;
  583. if (args->size == 0)
  584. return 0;
  585. if (!access_ok(VERIFY_WRITE,
  586. to_user_ptr(args->data_ptr),
  587. args->size))
  588. return -EFAULT;
  589. ret = i915_mutex_lock_interruptible(dev);
  590. if (ret)
  591. return ret;
  592. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  593. if (&obj->base == NULL) {
  594. ret = -ENOENT;
  595. goto unlock;
  596. }
  597. /* Bounds check source. */
  598. if (args->offset > obj->base.size ||
  599. args->size > obj->base.size - args->offset) {
  600. ret = -EINVAL;
  601. goto out;
  602. }
  603. /* prime objects have no backing filp to GEM pread/pwrite
  604. * pages from.
  605. */
  606. if (!obj->base.filp) {
  607. ret = -EINVAL;
  608. goto out;
  609. }
  610. trace_i915_gem_object_pread(obj, args->offset, args->size);
  611. ret = i915_gem_shmem_pread(dev, obj, args, file);
  612. out:
  613. drm_gem_object_unreference(&obj->base);
  614. unlock:
  615. mutex_unlock(&dev->struct_mutex);
  616. return ret;
  617. }
  618. /* This is the fast write path which cannot handle
  619. * page faults in the source data
  620. */
  621. static inline int
  622. fast_user_write(struct io_mapping *mapping,
  623. loff_t page_base, int page_offset,
  624. char __user *user_data,
  625. int length)
  626. {
  627. void __iomem *vaddr_atomic;
  628. void *vaddr;
  629. unsigned long unwritten;
  630. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  631. /* We can use the cpu mem copy function because this is X86. */
  632. vaddr = (void __force*)vaddr_atomic + page_offset;
  633. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  634. user_data, length);
  635. io_mapping_unmap_atomic(vaddr_atomic);
  636. return unwritten;
  637. }
  638. /**
  639. * This is the fast pwrite path, where we copy the data directly from the
  640. * user into the GTT, uncached.
  641. */
  642. static int
  643. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  644. struct drm_i915_gem_object *obj,
  645. struct drm_i915_gem_pwrite *args,
  646. struct drm_file *file)
  647. {
  648. struct drm_i915_private *dev_priv = dev->dev_private;
  649. ssize_t remain;
  650. loff_t offset, page_base;
  651. char __user *user_data;
  652. int page_offset, page_length, ret;
  653. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
  654. if (ret)
  655. goto out;
  656. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  657. if (ret)
  658. goto out_unpin;
  659. ret = i915_gem_object_put_fence(obj);
  660. if (ret)
  661. goto out_unpin;
  662. user_data = to_user_ptr(args->data_ptr);
  663. remain = args->size;
  664. offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
  665. intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
  666. while (remain > 0) {
  667. /* Operation in this page
  668. *
  669. * page_base = page offset within aperture
  670. * page_offset = offset within page
  671. * page_length = bytes to copy for this page
  672. */
  673. page_base = offset & PAGE_MASK;
  674. page_offset = offset_in_page(offset);
  675. page_length = remain;
  676. if ((page_offset + remain) > PAGE_SIZE)
  677. page_length = PAGE_SIZE - page_offset;
  678. /* If we get a fault while copying data, then (presumably) our
  679. * source page isn't available. Return the error and we'll
  680. * retry in the slow path.
  681. */
  682. if (fast_user_write(dev_priv->gtt.mappable, page_base,
  683. page_offset, user_data, page_length)) {
  684. ret = -EFAULT;
  685. goto out_flush;
  686. }
  687. remain -= page_length;
  688. user_data += page_length;
  689. offset += page_length;
  690. }
  691. out_flush:
  692. intel_fb_obj_flush(obj, false);
  693. out_unpin:
  694. i915_gem_object_ggtt_unpin(obj);
  695. out:
  696. return ret;
  697. }
  698. /* Per-page copy function for the shmem pwrite fastpath.
  699. * Flushes invalid cachelines before writing to the target if
  700. * needs_clflush_before is set and flushes out any written cachelines after
  701. * writing if needs_clflush is set. */
  702. static int
  703. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  704. char __user *user_data,
  705. bool page_do_bit17_swizzling,
  706. bool needs_clflush_before,
  707. bool needs_clflush_after)
  708. {
  709. char *vaddr;
  710. int ret;
  711. if (unlikely(page_do_bit17_swizzling))
  712. return -EINVAL;
  713. vaddr = kmap_atomic(page);
  714. if (needs_clflush_before)
  715. drm_clflush_virt_range(vaddr + shmem_page_offset,
  716. page_length);
  717. ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
  718. user_data, page_length);
  719. if (needs_clflush_after)
  720. drm_clflush_virt_range(vaddr + shmem_page_offset,
  721. page_length);
  722. kunmap_atomic(vaddr);
  723. return ret ? -EFAULT : 0;
  724. }
  725. /* Only difference to the fast-path function is that this can handle bit17
  726. * and uses non-atomic copy and kmap functions. */
  727. static int
  728. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  729. char __user *user_data,
  730. bool page_do_bit17_swizzling,
  731. bool needs_clflush_before,
  732. bool needs_clflush_after)
  733. {
  734. char *vaddr;
  735. int ret;
  736. vaddr = kmap(page);
  737. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  738. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  739. page_length,
  740. page_do_bit17_swizzling);
  741. if (page_do_bit17_swizzling)
  742. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  743. user_data,
  744. page_length);
  745. else
  746. ret = __copy_from_user(vaddr + shmem_page_offset,
  747. user_data,
  748. page_length);
  749. if (needs_clflush_after)
  750. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  751. page_length,
  752. page_do_bit17_swizzling);
  753. kunmap(page);
  754. return ret ? -EFAULT : 0;
  755. }
  756. static int
  757. i915_gem_shmem_pwrite(struct drm_device *dev,
  758. struct drm_i915_gem_object *obj,
  759. struct drm_i915_gem_pwrite *args,
  760. struct drm_file *file)
  761. {
  762. ssize_t remain;
  763. loff_t offset;
  764. char __user *user_data;
  765. int shmem_page_offset, page_length, ret = 0;
  766. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  767. int hit_slowpath = 0;
  768. int needs_clflush_after = 0;
  769. int needs_clflush_before = 0;
  770. struct sg_page_iter sg_iter;
  771. user_data = to_user_ptr(args->data_ptr);
  772. remain = args->size;
  773. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  774. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  775. /* If we're not in the cpu write domain, set ourself into the gtt
  776. * write domain and manually flush cachelines (if required). This
  777. * optimizes for the case when the gpu will use the data
  778. * right away and we therefore have to clflush anyway. */
  779. needs_clflush_after = cpu_write_needs_clflush(obj);
  780. ret = i915_gem_object_wait_rendering(obj, false);
  781. if (ret)
  782. return ret;
  783. i915_gem_object_retire(obj);
  784. }
  785. /* Same trick applies to invalidate partially written cachelines read
  786. * before writing. */
  787. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
  788. needs_clflush_before =
  789. !cpu_cache_is_coherent(dev, obj->cache_level);
  790. ret = i915_gem_object_get_pages(obj);
  791. if (ret)
  792. return ret;
  793. intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
  794. i915_gem_object_pin_pages(obj);
  795. offset = args->offset;
  796. obj->dirty = 1;
  797. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
  798. offset >> PAGE_SHIFT) {
  799. struct page *page = sg_page_iter_page(&sg_iter);
  800. int partial_cacheline_write;
  801. if (remain <= 0)
  802. break;
  803. /* Operation in this page
  804. *
  805. * shmem_page_offset = offset within page in shmem file
  806. * page_length = bytes to copy for this page
  807. */
  808. shmem_page_offset = offset_in_page(offset);
  809. page_length = remain;
  810. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  811. page_length = PAGE_SIZE - shmem_page_offset;
  812. /* If we don't overwrite a cacheline completely we need to be
  813. * careful to have up-to-date data by first clflushing. Don't
  814. * overcomplicate things and flush the entire patch. */
  815. partial_cacheline_write = needs_clflush_before &&
  816. ((shmem_page_offset | page_length)
  817. & (boot_cpu_data.x86_clflush_size - 1));
  818. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  819. (page_to_phys(page) & (1 << 17)) != 0;
  820. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  821. user_data, page_do_bit17_swizzling,
  822. partial_cacheline_write,
  823. needs_clflush_after);
  824. if (ret == 0)
  825. goto next_page;
  826. hit_slowpath = 1;
  827. mutex_unlock(&dev->struct_mutex);
  828. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  829. user_data, page_do_bit17_swizzling,
  830. partial_cacheline_write,
  831. needs_clflush_after);
  832. mutex_lock(&dev->struct_mutex);
  833. if (ret)
  834. goto out;
  835. next_page:
  836. remain -= page_length;
  837. user_data += page_length;
  838. offset += page_length;
  839. }
  840. out:
  841. i915_gem_object_unpin_pages(obj);
  842. if (hit_slowpath) {
  843. /*
  844. * Fixup: Flush cpu caches in case we didn't flush the dirty
  845. * cachelines in-line while writing and the object moved
  846. * out of the cpu write domain while we've dropped the lock.
  847. */
  848. if (!needs_clflush_after &&
  849. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  850. if (i915_gem_clflush_object(obj, obj->pin_display))
  851. i915_gem_chipset_flush(dev);
  852. }
  853. }
  854. if (needs_clflush_after)
  855. i915_gem_chipset_flush(dev);
  856. intel_fb_obj_flush(obj, false);
  857. return ret;
  858. }
  859. /**
  860. * Writes data to the object referenced by handle.
  861. *
  862. * On error, the contents of the buffer that were to be modified are undefined.
  863. */
  864. int
  865. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  866. struct drm_file *file)
  867. {
  868. struct drm_i915_private *dev_priv = dev->dev_private;
  869. struct drm_i915_gem_pwrite *args = data;
  870. struct drm_i915_gem_object *obj;
  871. int ret;
  872. if (args->size == 0)
  873. return 0;
  874. if (!access_ok(VERIFY_READ,
  875. to_user_ptr(args->data_ptr),
  876. args->size))
  877. return -EFAULT;
  878. if (likely(!i915.prefault_disable)) {
  879. ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
  880. args->size);
  881. if (ret)
  882. return -EFAULT;
  883. }
  884. intel_runtime_pm_get(dev_priv);
  885. ret = i915_mutex_lock_interruptible(dev);
  886. if (ret)
  887. goto put_rpm;
  888. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  889. if (&obj->base == NULL) {
  890. ret = -ENOENT;
  891. goto unlock;
  892. }
  893. /* Bounds check destination. */
  894. if (args->offset > obj->base.size ||
  895. args->size > obj->base.size - args->offset) {
  896. ret = -EINVAL;
  897. goto out;
  898. }
  899. /* prime objects have no backing filp to GEM pread/pwrite
  900. * pages from.
  901. */
  902. if (!obj->base.filp) {
  903. ret = -EINVAL;
  904. goto out;
  905. }
  906. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  907. ret = -EFAULT;
  908. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  909. * it would end up going through the fenced access, and we'll get
  910. * different detiling behavior between reading and writing.
  911. * pread/pwrite currently are reading and writing from the CPU
  912. * perspective, requiring manual detiling by the client.
  913. */
  914. if (obj->tiling_mode == I915_TILING_NONE &&
  915. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  916. cpu_write_needs_clflush(obj)) {
  917. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  918. /* Note that the gtt paths might fail with non-page-backed user
  919. * pointers (e.g. gtt mappings when moving data between
  920. * textures). Fallback to the shmem path in that case. */
  921. }
  922. if (ret == -EFAULT || ret == -ENOSPC) {
  923. if (obj->phys_handle)
  924. ret = i915_gem_phys_pwrite(obj, args, file);
  925. else
  926. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  927. }
  928. out:
  929. drm_gem_object_unreference(&obj->base);
  930. unlock:
  931. mutex_unlock(&dev->struct_mutex);
  932. put_rpm:
  933. intel_runtime_pm_put(dev_priv);
  934. return ret;
  935. }
  936. int
  937. i915_gem_check_wedge(struct i915_gpu_error *error,
  938. bool interruptible)
  939. {
  940. if (i915_reset_in_progress(error)) {
  941. /* Non-interruptible callers can't handle -EAGAIN, hence return
  942. * -EIO unconditionally for these. */
  943. if (!interruptible)
  944. return -EIO;
  945. /* Recovery complete, but the reset failed ... */
  946. if (i915_terminally_wedged(error))
  947. return -EIO;
  948. /*
  949. * Check if GPU Reset is in progress - we need intel_ring_begin
  950. * to work properly to reinit the hw state while the gpu is
  951. * still marked as reset-in-progress. Handle this with a flag.
  952. */
  953. if (!error->reload_in_reset)
  954. return -EAGAIN;
  955. }
  956. return 0;
  957. }
  958. /*
  959. * Compare arbitrary request against outstanding lazy request. Emit on match.
  960. */
  961. int
  962. i915_gem_check_olr(struct drm_i915_gem_request *req)
  963. {
  964. int ret;
  965. WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
  966. ret = 0;
  967. if (req == req->ring->outstanding_lazy_request)
  968. ret = i915_add_request(req->ring);
  969. return ret;
  970. }
  971. static void fake_irq(unsigned long data)
  972. {
  973. wake_up_process((struct task_struct *)data);
  974. }
  975. static bool missed_irq(struct drm_i915_private *dev_priv,
  976. struct intel_engine_cs *ring)
  977. {
  978. return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
  979. }
  980. static int __i915_spin_request(struct drm_i915_gem_request *rq)
  981. {
  982. unsigned long timeout;
  983. if (i915_gem_request_get_ring(rq)->irq_refcount)
  984. return -EBUSY;
  985. timeout = jiffies + 1;
  986. while (!need_resched()) {
  987. if (i915_gem_request_completed(rq, true))
  988. return 0;
  989. if (time_after_eq(jiffies, timeout))
  990. break;
  991. cpu_relax_lowlatency();
  992. }
  993. if (i915_gem_request_completed(rq, false))
  994. return 0;
  995. return -EAGAIN;
  996. }
  997. /**
  998. * __i915_wait_request - wait until execution of request has finished
  999. * @req: duh!
  1000. * @reset_counter: reset sequence associated with the given request
  1001. * @interruptible: do an interruptible wait (normally yes)
  1002. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  1003. *
  1004. * Note: It is of utmost importance that the passed in seqno and reset_counter
  1005. * values have been read by the caller in an smp safe manner. Where read-side
  1006. * locks are involved, it is sufficient to read the reset_counter before
  1007. * unlocking the lock that protects the seqno. For lockless tricks, the
  1008. * reset_counter _must_ be read before, and an appropriate smp_rmb must be
  1009. * inserted.
  1010. *
  1011. * Returns 0 if the request was found within the alloted time. Else returns the
  1012. * errno with remaining time filled in timeout argument.
  1013. */
  1014. int __i915_wait_request(struct drm_i915_gem_request *req,
  1015. unsigned reset_counter,
  1016. bool interruptible,
  1017. s64 *timeout,
  1018. struct drm_i915_file_private *file_priv)
  1019. {
  1020. struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
  1021. struct drm_device *dev = ring->dev;
  1022. struct drm_i915_private *dev_priv = dev->dev_private;
  1023. const bool irq_test_in_progress =
  1024. ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
  1025. DEFINE_WAIT(wait);
  1026. unsigned long timeout_expire;
  1027. s64 before, now;
  1028. int ret;
  1029. WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
  1030. if (i915_gem_request_completed(req, true))
  1031. return 0;
  1032. timeout_expire = timeout ?
  1033. jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
  1034. if (INTEL_INFO(dev)->gen >= 6)
  1035. gen6_rps_boost(dev_priv, file_priv);
  1036. /* Record current time in case interrupted by signal, or wedged */
  1037. trace_i915_gem_request_wait_begin(req);
  1038. before = ktime_get_raw_ns();
  1039. /* Optimistic spin for the next jiffie before touching IRQs */
  1040. ret = __i915_spin_request(req);
  1041. if (ret == 0)
  1042. goto out;
  1043. if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
  1044. ret = -ENODEV;
  1045. goto out;
  1046. }
  1047. for (;;) {
  1048. struct timer_list timer;
  1049. prepare_to_wait(&ring->irq_queue, &wait,
  1050. interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
  1051. /* We need to check whether any gpu reset happened in between
  1052. * the caller grabbing the seqno and now ... */
  1053. if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
  1054. /* ... but upgrade the -EAGAIN to an -EIO if the gpu
  1055. * is truely gone. */
  1056. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  1057. if (ret == 0)
  1058. ret = -EAGAIN;
  1059. break;
  1060. }
  1061. if (i915_gem_request_completed(req, false)) {
  1062. ret = 0;
  1063. break;
  1064. }
  1065. if (interruptible && signal_pending(current)) {
  1066. ret = -ERESTARTSYS;
  1067. break;
  1068. }
  1069. if (timeout && time_after_eq(jiffies, timeout_expire)) {
  1070. ret = -ETIME;
  1071. break;
  1072. }
  1073. timer.function = NULL;
  1074. if (timeout || missed_irq(dev_priv, ring)) {
  1075. unsigned long expire;
  1076. setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
  1077. expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
  1078. mod_timer(&timer, expire);
  1079. }
  1080. io_schedule();
  1081. if (timer.function) {
  1082. del_singleshot_timer_sync(&timer);
  1083. destroy_timer_on_stack(&timer);
  1084. }
  1085. }
  1086. if (!irq_test_in_progress)
  1087. ring->irq_put(ring);
  1088. finish_wait(&ring->irq_queue, &wait);
  1089. out:
  1090. now = ktime_get_raw_ns();
  1091. trace_i915_gem_request_wait_end(req);
  1092. if (timeout) {
  1093. s64 tres = *timeout - (now - before);
  1094. *timeout = tres < 0 ? 0 : tres;
  1095. /*
  1096. * Apparently ktime isn't accurate enough and occasionally has a
  1097. * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
  1098. * things up to make the test happy. We allow up to 1 jiffy.
  1099. *
  1100. * This is a regrssion from the timespec->ktime conversion.
  1101. */
  1102. if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
  1103. *timeout = 0;
  1104. }
  1105. return ret;
  1106. }
  1107. /**
  1108. * Waits for a request to be signaled, and cleans up the
  1109. * request and object lists appropriately for that event.
  1110. */
  1111. int
  1112. i915_wait_request(struct drm_i915_gem_request *req)
  1113. {
  1114. struct drm_device *dev;
  1115. struct drm_i915_private *dev_priv;
  1116. bool interruptible;
  1117. unsigned reset_counter;
  1118. int ret;
  1119. BUG_ON(req == NULL);
  1120. dev = req->ring->dev;
  1121. dev_priv = dev->dev_private;
  1122. interruptible = dev_priv->mm.interruptible;
  1123. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1124. ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
  1125. if (ret)
  1126. return ret;
  1127. ret = i915_gem_check_olr(req);
  1128. if (ret)
  1129. return ret;
  1130. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1131. i915_gem_request_reference(req);
  1132. ret = __i915_wait_request(req, reset_counter,
  1133. interruptible, NULL, NULL);
  1134. i915_gem_request_unreference(req);
  1135. return ret;
  1136. }
  1137. static int
  1138. i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
  1139. {
  1140. if (!obj->active)
  1141. return 0;
  1142. /* Manually manage the write flush as we may have not yet
  1143. * retired the buffer.
  1144. *
  1145. * Note that the last_write_req is always the earlier of
  1146. * the two (read/write) requests, so if we haved successfully waited,
  1147. * we know we have passed the last write.
  1148. */
  1149. i915_gem_request_assign(&obj->last_write_req, NULL);
  1150. return 0;
  1151. }
  1152. /**
  1153. * Ensures that all rendering to the object has completed and the object is
  1154. * safe to unbind from the GTT or access from the CPU.
  1155. */
  1156. static __must_check int
  1157. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  1158. bool readonly)
  1159. {
  1160. struct drm_i915_gem_request *req;
  1161. int ret;
  1162. req = readonly ? obj->last_write_req : obj->last_read_req;
  1163. if (!req)
  1164. return 0;
  1165. ret = i915_wait_request(req);
  1166. if (ret)
  1167. return ret;
  1168. return i915_gem_object_wait_rendering__tail(obj);
  1169. }
  1170. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  1171. * as the object state may change during this call.
  1172. */
  1173. static __must_check int
  1174. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  1175. struct drm_i915_file_private *file_priv,
  1176. bool readonly)
  1177. {
  1178. struct drm_i915_gem_request *req;
  1179. struct drm_device *dev = obj->base.dev;
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. unsigned reset_counter;
  1182. int ret;
  1183. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  1184. BUG_ON(!dev_priv->mm.interruptible);
  1185. req = readonly ? obj->last_write_req : obj->last_read_req;
  1186. if (!req)
  1187. return 0;
  1188. ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
  1189. if (ret)
  1190. return ret;
  1191. ret = i915_gem_check_olr(req);
  1192. if (ret)
  1193. return ret;
  1194. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  1195. i915_gem_request_reference(req);
  1196. mutex_unlock(&dev->struct_mutex);
  1197. ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
  1198. mutex_lock(&dev->struct_mutex);
  1199. i915_gem_request_unreference(req);
  1200. if (ret)
  1201. return ret;
  1202. return i915_gem_object_wait_rendering__tail(obj);
  1203. }
  1204. /**
  1205. * Called when user space prepares to use an object with the CPU, either
  1206. * through the mmap ioctl's mapping or a GTT mapping.
  1207. */
  1208. int
  1209. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1210. struct drm_file *file)
  1211. {
  1212. struct drm_i915_gem_set_domain *args = data;
  1213. struct drm_i915_gem_object *obj;
  1214. uint32_t read_domains = args->read_domains;
  1215. uint32_t write_domain = args->write_domain;
  1216. int ret;
  1217. /* Only handle setting domains to types used by the CPU. */
  1218. if (write_domain & I915_GEM_GPU_DOMAINS)
  1219. return -EINVAL;
  1220. if (read_domains & I915_GEM_GPU_DOMAINS)
  1221. return -EINVAL;
  1222. /* Having something in the write domain implies it's in the read
  1223. * domain, and only that read domain. Enforce that in the request.
  1224. */
  1225. if (write_domain != 0 && read_domains != write_domain)
  1226. return -EINVAL;
  1227. ret = i915_mutex_lock_interruptible(dev);
  1228. if (ret)
  1229. return ret;
  1230. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1231. if (&obj->base == NULL) {
  1232. ret = -ENOENT;
  1233. goto unlock;
  1234. }
  1235. /* Try to flush the object off the GPU without holding the lock.
  1236. * We will repeat the flush holding the lock in the normal manner
  1237. * to catch cases where we are gazumped.
  1238. */
  1239. ret = i915_gem_object_wait_rendering__nonblocking(obj,
  1240. file->driver_priv,
  1241. !write_domain);
  1242. if (ret)
  1243. goto unref;
  1244. if (read_domains & I915_GEM_DOMAIN_GTT)
  1245. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1246. else
  1247. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1248. unref:
  1249. drm_gem_object_unreference(&obj->base);
  1250. unlock:
  1251. mutex_unlock(&dev->struct_mutex);
  1252. return ret;
  1253. }
  1254. /**
  1255. * Called when user space has done writes to this buffer
  1256. */
  1257. int
  1258. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1259. struct drm_file *file)
  1260. {
  1261. struct drm_i915_gem_sw_finish *args = data;
  1262. struct drm_i915_gem_object *obj;
  1263. int ret = 0;
  1264. ret = i915_mutex_lock_interruptible(dev);
  1265. if (ret)
  1266. return ret;
  1267. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1268. if (&obj->base == NULL) {
  1269. ret = -ENOENT;
  1270. goto unlock;
  1271. }
  1272. /* Pinned buffers may be scanout, so flush the cache */
  1273. if (obj->pin_display)
  1274. i915_gem_object_flush_cpu_write_domain(obj);
  1275. drm_gem_object_unreference(&obj->base);
  1276. unlock:
  1277. mutex_unlock(&dev->struct_mutex);
  1278. return ret;
  1279. }
  1280. /**
  1281. * Maps the contents of an object, returning the address it is mapped
  1282. * into.
  1283. *
  1284. * While the mapping holds a reference on the contents of the object, it doesn't
  1285. * imply a ref on the object itself.
  1286. *
  1287. * IMPORTANT:
  1288. *
  1289. * DRM driver writers who look a this function as an example for how to do GEM
  1290. * mmap support, please don't implement mmap support like here. The modern way
  1291. * to implement DRM mmap support is with an mmap offset ioctl (like
  1292. * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
  1293. * That way debug tooling like valgrind will understand what's going on, hiding
  1294. * the mmap call in a driver private ioctl will break that. The i915 driver only
  1295. * does cpu mmaps this way because we didn't know better.
  1296. */
  1297. int
  1298. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1299. struct drm_file *file)
  1300. {
  1301. struct drm_i915_gem_mmap *args = data;
  1302. struct drm_gem_object *obj;
  1303. unsigned long addr;
  1304. if (args->flags & ~(I915_MMAP_WC))
  1305. return -EINVAL;
  1306. if (args->flags & I915_MMAP_WC && !cpu_has_pat)
  1307. return -ENODEV;
  1308. obj = drm_gem_object_lookup(dev, file, args->handle);
  1309. if (obj == NULL)
  1310. return -ENOENT;
  1311. /* prime objects have no backing filp to GEM mmap
  1312. * pages from.
  1313. */
  1314. if (!obj->filp) {
  1315. drm_gem_object_unreference_unlocked(obj);
  1316. return -EINVAL;
  1317. }
  1318. addr = vm_mmap(obj->filp, 0, args->size,
  1319. PROT_READ | PROT_WRITE, MAP_SHARED,
  1320. args->offset);
  1321. if (args->flags & I915_MMAP_WC) {
  1322. struct mm_struct *mm = current->mm;
  1323. struct vm_area_struct *vma;
  1324. down_write(&mm->mmap_sem);
  1325. vma = find_vma(mm, addr);
  1326. if (vma)
  1327. vma->vm_page_prot =
  1328. pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
  1329. else
  1330. addr = -ENOMEM;
  1331. up_write(&mm->mmap_sem);
  1332. }
  1333. drm_gem_object_unreference_unlocked(obj);
  1334. if (IS_ERR((void *)addr))
  1335. return addr;
  1336. args->addr_ptr = (uint64_t) addr;
  1337. return 0;
  1338. }
  1339. /**
  1340. * i915_gem_fault - fault a page into the GTT
  1341. * vma: VMA in question
  1342. * vmf: fault info
  1343. *
  1344. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1345. * from userspace. The fault handler takes care of binding the object to
  1346. * the GTT (if needed), allocating and programming a fence register (again,
  1347. * only if needed based on whether the old reg is still valid or the object
  1348. * is tiled) and inserting a new PTE into the faulting process.
  1349. *
  1350. * Note that the faulting process may involve evicting existing objects
  1351. * from the GTT and/or fence registers to make room. So performance may
  1352. * suffer if the GTT working set is large or there are few fence registers
  1353. * left.
  1354. */
  1355. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1356. {
  1357. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1358. struct drm_device *dev = obj->base.dev;
  1359. struct drm_i915_private *dev_priv = dev->dev_private;
  1360. struct i915_ggtt_view view = i915_ggtt_view_normal;
  1361. pgoff_t page_offset;
  1362. unsigned long pfn;
  1363. int ret = 0;
  1364. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1365. intel_runtime_pm_get(dev_priv);
  1366. /* We don't use vmf->pgoff since that has the fake offset */
  1367. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1368. PAGE_SHIFT;
  1369. ret = i915_mutex_lock_interruptible(dev);
  1370. if (ret)
  1371. goto out;
  1372. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1373. /* Try to flush the object off the GPU first without holding the lock.
  1374. * Upon reacquiring the lock, we will perform our sanity checks and then
  1375. * repeat the flush holding the lock in the normal manner to catch cases
  1376. * where we are gazumped.
  1377. */
  1378. ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
  1379. if (ret)
  1380. goto unlock;
  1381. /* Access to snoopable pages through the GTT is incoherent. */
  1382. if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
  1383. ret = -EFAULT;
  1384. goto unlock;
  1385. }
  1386. /* Use a partial view if the object is bigger than the aperture. */
  1387. if (obj->base.size >= dev_priv->gtt.mappable_end) {
  1388. static const unsigned int chunk_size = 256; // 1 MiB
  1389. memset(&view, 0, sizeof(view));
  1390. view.type = I915_GGTT_VIEW_PARTIAL;
  1391. view.params.partial.offset = rounddown(page_offset, chunk_size);
  1392. view.params.partial.size =
  1393. min_t(unsigned int,
  1394. chunk_size,
  1395. (vma->vm_end - vma->vm_start)/PAGE_SIZE -
  1396. view.params.partial.offset);
  1397. }
  1398. /* Now pin it into the GTT if needed */
  1399. ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
  1400. if (ret)
  1401. goto unlock;
  1402. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1403. if (ret)
  1404. goto unpin;
  1405. ret = i915_gem_object_get_fence(obj);
  1406. if (ret)
  1407. goto unpin;
  1408. /* Finally, remap it using the new GTT offset */
  1409. pfn = dev_priv->gtt.mappable_base +
  1410. i915_gem_obj_ggtt_offset_view(obj, &view);
  1411. pfn >>= PAGE_SHIFT;
  1412. if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
  1413. /* Overriding existing pages in partial view does not cause
  1414. * us any trouble as TLBs are still valid because the fault
  1415. * is due to userspace losing part of the mapping or never
  1416. * having accessed it before (at this partials' range).
  1417. */
  1418. unsigned long base = vma->vm_start +
  1419. (view.params.partial.offset << PAGE_SHIFT);
  1420. unsigned int i;
  1421. for (i = 0; i < view.params.partial.size; i++) {
  1422. ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
  1423. if (ret)
  1424. break;
  1425. }
  1426. obj->fault_mappable = true;
  1427. } else {
  1428. if (!obj->fault_mappable) {
  1429. unsigned long size = min_t(unsigned long,
  1430. vma->vm_end - vma->vm_start,
  1431. obj->base.size);
  1432. int i;
  1433. for (i = 0; i < size >> PAGE_SHIFT; i++) {
  1434. ret = vm_insert_pfn(vma,
  1435. (unsigned long)vma->vm_start + i * PAGE_SIZE,
  1436. pfn + i);
  1437. if (ret)
  1438. break;
  1439. }
  1440. obj->fault_mappable = true;
  1441. } else
  1442. ret = vm_insert_pfn(vma,
  1443. (unsigned long)vmf->virtual_address,
  1444. pfn + page_offset);
  1445. }
  1446. unpin:
  1447. i915_gem_object_ggtt_unpin_view(obj, &view);
  1448. unlock:
  1449. mutex_unlock(&dev->struct_mutex);
  1450. out:
  1451. switch (ret) {
  1452. case -EIO:
  1453. /*
  1454. * We eat errors when the gpu is terminally wedged to avoid
  1455. * userspace unduly crashing (gl has no provisions for mmaps to
  1456. * fail). But any other -EIO isn't ours (e.g. swap in failure)
  1457. * and so needs to be reported.
  1458. */
  1459. if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
  1460. ret = VM_FAULT_SIGBUS;
  1461. break;
  1462. }
  1463. case -EAGAIN:
  1464. /*
  1465. * EAGAIN means the gpu is hung and we'll wait for the error
  1466. * handler to reset everything when re-faulting in
  1467. * i915_mutex_lock_interruptible.
  1468. */
  1469. case 0:
  1470. case -ERESTARTSYS:
  1471. case -EINTR:
  1472. case -EBUSY:
  1473. /*
  1474. * EBUSY is ok: this just means that another thread
  1475. * already did the job.
  1476. */
  1477. ret = VM_FAULT_NOPAGE;
  1478. break;
  1479. case -ENOMEM:
  1480. ret = VM_FAULT_OOM;
  1481. break;
  1482. case -ENOSPC:
  1483. case -EFAULT:
  1484. ret = VM_FAULT_SIGBUS;
  1485. break;
  1486. default:
  1487. WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
  1488. ret = VM_FAULT_SIGBUS;
  1489. break;
  1490. }
  1491. intel_runtime_pm_put(dev_priv);
  1492. return ret;
  1493. }
  1494. /**
  1495. * i915_gem_release_mmap - remove physical page mappings
  1496. * @obj: obj in question
  1497. *
  1498. * Preserve the reservation of the mmapping with the DRM core code, but
  1499. * relinquish ownership of the pages back to the system.
  1500. *
  1501. * It is vital that we remove the page mapping if we have mapped a tiled
  1502. * object through the GTT and then lose the fence register due to
  1503. * resource pressure. Similarly if the object has been moved out of the
  1504. * aperture, than pages mapped into userspace must be revoked. Removing the
  1505. * mapping will then trigger a page fault on the next user access, allowing
  1506. * fixup by i915_gem_fault().
  1507. */
  1508. void
  1509. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1510. {
  1511. if (!obj->fault_mappable)
  1512. return;
  1513. drm_vma_node_unmap(&obj->base.vma_node,
  1514. obj->base.dev->anon_inode->i_mapping);
  1515. obj->fault_mappable = false;
  1516. }
  1517. void
  1518. i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
  1519. {
  1520. struct drm_i915_gem_object *obj;
  1521. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
  1522. i915_gem_release_mmap(obj);
  1523. }
  1524. uint32_t
  1525. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1526. {
  1527. uint32_t gtt_size;
  1528. if (INTEL_INFO(dev)->gen >= 4 ||
  1529. tiling_mode == I915_TILING_NONE)
  1530. return size;
  1531. /* Previous chips need a power-of-two fence region when tiling */
  1532. if (INTEL_INFO(dev)->gen == 3)
  1533. gtt_size = 1024*1024;
  1534. else
  1535. gtt_size = 512*1024;
  1536. while (gtt_size < size)
  1537. gtt_size <<= 1;
  1538. return gtt_size;
  1539. }
  1540. /**
  1541. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1542. * @obj: object to check
  1543. *
  1544. * Return the required GTT alignment for an object, taking into account
  1545. * potential fence register mapping.
  1546. */
  1547. uint32_t
  1548. i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
  1549. int tiling_mode, bool fenced)
  1550. {
  1551. /*
  1552. * Minimum alignment is 4k (GTT page size), but might be greater
  1553. * if a fence register is needed for the object.
  1554. */
  1555. if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
  1556. tiling_mode == I915_TILING_NONE)
  1557. return 4096;
  1558. /*
  1559. * Previous chips need to be aligned to the size of the smallest
  1560. * fence register that can contain the object.
  1561. */
  1562. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1563. }
  1564. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1565. {
  1566. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1567. int ret;
  1568. if (drm_vma_node_has_offset(&obj->base.vma_node))
  1569. return 0;
  1570. dev_priv->mm.shrinker_no_lock_stealing = true;
  1571. ret = drm_gem_create_mmap_offset(&obj->base);
  1572. if (ret != -ENOSPC)
  1573. goto out;
  1574. /* Badly fragmented mmap space? The only way we can recover
  1575. * space is by destroying unwanted objects. We can't randomly release
  1576. * mmap_offsets as userspace expects them to be persistent for the
  1577. * lifetime of the objects. The closest we can is to release the
  1578. * offsets on purgeable objects by truncating it and marking it purged,
  1579. * which prevents userspace from ever using that object again.
  1580. */
  1581. i915_gem_shrink(dev_priv,
  1582. obj->base.size >> PAGE_SHIFT,
  1583. I915_SHRINK_BOUND |
  1584. I915_SHRINK_UNBOUND |
  1585. I915_SHRINK_PURGEABLE);
  1586. ret = drm_gem_create_mmap_offset(&obj->base);
  1587. if (ret != -ENOSPC)
  1588. goto out;
  1589. i915_gem_shrink_all(dev_priv);
  1590. ret = drm_gem_create_mmap_offset(&obj->base);
  1591. out:
  1592. dev_priv->mm.shrinker_no_lock_stealing = false;
  1593. return ret;
  1594. }
  1595. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1596. {
  1597. drm_gem_free_mmap_offset(&obj->base);
  1598. }
  1599. int
  1600. i915_gem_mmap_gtt(struct drm_file *file,
  1601. struct drm_device *dev,
  1602. uint32_t handle,
  1603. uint64_t *offset)
  1604. {
  1605. struct drm_i915_private *dev_priv = dev->dev_private;
  1606. struct drm_i915_gem_object *obj;
  1607. int ret;
  1608. ret = i915_mutex_lock_interruptible(dev);
  1609. if (ret)
  1610. return ret;
  1611. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1612. if (&obj->base == NULL) {
  1613. ret = -ENOENT;
  1614. goto unlock;
  1615. }
  1616. if (obj->madv != I915_MADV_WILLNEED) {
  1617. DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
  1618. ret = -EFAULT;
  1619. goto out;
  1620. }
  1621. ret = i915_gem_object_create_mmap_offset(obj);
  1622. if (ret)
  1623. goto out;
  1624. *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
  1625. out:
  1626. drm_gem_object_unreference(&obj->base);
  1627. unlock:
  1628. mutex_unlock(&dev->struct_mutex);
  1629. return ret;
  1630. }
  1631. /**
  1632. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1633. * @dev: DRM device
  1634. * @data: GTT mapping ioctl data
  1635. * @file: GEM object info
  1636. *
  1637. * Simply returns the fake offset to userspace so it can mmap it.
  1638. * The mmap call will end up in drm_gem_mmap(), which will set things
  1639. * up so we can get faults in the handler above.
  1640. *
  1641. * The fault handler will take care of binding the object into the GTT
  1642. * (since it may have been evicted to make room for something), allocating
  1643. * a fence register, and mapping the appropriate aperture address into
  1644. * userspace.
  1645. */
  1646. int
  1647. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1648. struct drm_file *file)
  1649. {
  1650. struct drm_i915_gem_mmap_gtt *args = data;
  1651. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1652. }
  1653. /* Immediately discard the backing storage */
  1654. static void
  1655. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1656. {
  1657. i915_gem_object_free_mmap_offset(obj);
  1658. if (obj->base.filp == NULL)
  1659. return;
  1660. /* Our goal here is to return as much of the memory as
  1661. * is possible back to the system as we are called from OOM.
  1662. * To do this we must instruct the shmfs to drop all of its
  1663. * backing pages, *now*.
  1664. */
  1665. shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
  1666. obj->madv = __I915_MADV_PURGED;
  1667. }
  1668. /* Try to discard unwanted pages */
  1669. static void
  1670. i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
  1671. {
  1672. struct address_space *mapping;
  1673. switch (obj->madv) {
  1674. case I915_MADV_DONTNEED:
  1675. i915_gem_object_truncate(obj);
  1676. case __I915_MADV_PURGED:
  1677. return;
  1678. }
  1679. if (obj->base.filp == NULL)
  1680. return;
  1681. mapping = file_inode(obj->base.filp)->i_mapping,
  1682. invalidate_mapping_pages(mapping, 0, (loff_t)-1);
  1683. }
  1684. static void
  1685. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1686. {
  1687. struct sg_page_iter sg_iter;
  1688. int ret;
  1689. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1690. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1691. if (ret) {
  1692. /* In the event of a disaster, abandon all caches and
  1693. * hope for the best.
  1694. */
  1695. WARN_ON(ret != -EIO);
  1696. i915_gem_clflush_object(obj, true);
  1697. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1698. }
  1699. if (i915_gem_object_needs_bit17_swizzle(obj))
  1700. i915_gem_object_save_bit_17_swizzle(obj);
  1701. if (obj->madv == I915_MADV_DONTNEED)
  1702. obj->dirty = 0;
  1703. for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
  1704. struct page *page = sg_page_iter_page(&sg_iter);
  1705. if (obj->dirty)
  1706. set_page_dirty(page);
  1707. if (obj->madv == I915_MADV_WILLNEED)
  1708. mark_page_accessed(page);
  1709. page_cache_release(page);
  1710. }
  1711. obj->dirty = 0;
  1712. sg_free_table(obj->pages);
  1713. kfree(obj->pages);
  1714. }
  1715. int
  1716. i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
  1717. {
  1718. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1719. if (obj->pages == NULL)
  1720. return 0;
  1721. if (obj->pages_pin_count)
  1722. return -EBUSY;
  1723. BUG_ON(i915_gem_obj_bound_any(obj));
  1724. /* ->put_pages might need to allocate memory for the bit17 swizzle
  1725. * array, hence protect them from being reaped by removing them from gtt
  1726. * lists early. */
  1727. list_del(&obj->global_list);
  1728. ops->put_pages(obj);
  1729. obj->pages = NULL;
  1730. i915_gem_object_invalidate(obj);
  1731. return 0;
  1732. }
  1733. static int
  1734. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1735. {
  1736. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1737. int page_count, i;
  1738. struct address_space *mapping;
  1739. struct sg_table *st;
  1740. struct scatterlist *sg;
  1741. struct sg_page_iter sg_iter;
  1742. struct page *page;
  1743. unsigned long last_pfn = 0; /* suppress gcc warning */
  1744. gfp_t gfp;
  1745. /* Assert that the object is not currently in any GPU domain. As it
  1746. * wasn't in the GTT, there shouldn't be any way it could have been in
  1747. * a GPU cache
  1748. */
  1749. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1750. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1751. st = kmalloc(sizeof(*st), GFP_KERNEL);
  1752. if (st == NULL)
  1753. return -ENOMEM;
  1754. page_count = obj->base.size / PAGE_SIZE;
  1755. if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
  1756. kfree(st);
  1757. return -ENOMEM;
  1758. }
  1759. /* Get the list of pages out of our struct file. They'll be pinned
  1760. * at this point until we release them.
  1761. *
  1762. * Fail silently without starting the shrinker
  1763. */
  1764. mapping = file_inode(obj->base.filp)->i_mapping;
  1765. gfp = mapping_gfp_mask(mapping);
  1766. gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
  1767. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1768. sg = st->sgl;
  1769. st->nents = 0;
  1770. for (i = 0; i < page_count; i++) {
  1771. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1772. if (IS_ERR(page)) {
  1773. i915_gem_shrink(dev_priv,
  1774. page_count,
  1775. I915_SHRINK_BOUND |
  1776. I915_SHRINK_UNBOUND |
  1777. I915_SHRINK_PURGEABLE);
  1778. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1779. }
  1780. if (IS_ERR(page)) {
  1781. /* We've tried hard to allocate the memory by reaping
  1782. * our own buffer, now let the real VM do its job and
  1783. * go down in flames if truly OOM.
  1784. */
  1785. i915_gem_shrink_all(dev_priv);
  1786. page = shmem_read_mapping_page(mapping, i);
  1787. if (IS_ERR(page))
  1788. goto err_pages;
  1789. }
  1790. #ifdef CONFIG_SWIOTLB
  1791. if (swiotlb_nr_tbl()) {
  1792. st->nents++;
  1793. sg_set_page(sg, page, PAGE_SIZE, 0);
  1794. sg = sg_next(sg);
  1795. continue;
  1796. }
  1797. #endif
  1798. if (!i || page_to_pfn(page) != last_pfn + 1) {
  1799. if (i)
  1800. sg = sg_next(sg);
  1801. st->nents++;
  1802. sg_set_page(sg, page, PAGE_SIZE, 0);
  1803. } else {
  1804. sg->length += PAGE_SIZE;
  1805. }
  1806. last_pfn = page_to_pfn(page);
  1807. /* Check that the i965g/gm workaround works. */
  1808. WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
  1809. }
  1810. #ifdef CONFIG_SWIOTLB
  1811. if (!swiotlb_nr_tbl())
  1812. #endif
  1813. sg_mark_end(sg);
  1814. obj->pages = st;
  1815. if (i915_gem_object_needs_bit17_swizzle(obj))
  1816. i915_gem_object_do_bit_17_swizzle(obj);
  1817. if (obj->tiling_mode != I915_TILING_NONE &&
  1818. dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1819. i915_gem_object_pin_pages(obj);
  1820. return 0;
  1821. err_pages:
  1822. sg_mark_end(sg);
  1823. for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
  1824. page_cache_release(sg_page_iter_page(&sg_iter));
  1825. sg_free_table(st);
  1826. kfree(st);
  1827. /* shmemfs first checks if there is enough memory to allocate the page
  1828. * and reports ENOSPC should there be insufficient, along with the usual
  1829. * ENOMEM for a genuine allocation failure.
  1830. *
  1831. * We use ENOSPC in our driver to mean that we have run out of aperture
  1832. * space and so want to translate the error from shmemfs back to our
  1833. * usual understanding of ENOMEM.
  1834. */
  1835. if (PTR_ERR(page) == -ENOSPC)
  1836. return -ENOMEM;
  1837. else
  1838. return PTR_ERR(page);
  1839. }
  1840. /* Ensure that the associated pages are gathered from the backing storage
  1841. * and pinned into our object. i915_gem_object_get_pages() may be called
  1842. * multiple times before they are released by a single call to
  1843. * i915_gem_object_put_pages() - once the pages are no longer referenced
  1844. * either as a result of memory pressure (reaping pages under the shrinker)
  1845. * or as the object is itself released.
  1846. */
  1847. int
  1848. i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
  1849. {
  1850. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1851. const struct drm_i915_gem_object_ops *ops = obj->ops;
  1852. int ret;
  1853. if (obj->pages)
  1854. return 0;
  1855. if (obj->madv != I915_MADV_WILLNEED) {
  1856. DRM_DEBUG("Attempting to obtain a purgeable object\n");
  1857. return -EFAULT;
  1858. }
  1859. BUG_ON(obj->pages_pin_count);
  1860. ret = ops->get_pages(obj);
  1861. if (ret)
  1862. return ret;
  1863. list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  1864. obj->get_page.sg = obj->pages->sgl;
  1865. obj->get_page.last = 0;
  1866. return 0;
  1867. }
  1868. static void
  1869. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1870. struct intel_engine_cs *ring)
  1871. {
  1872. struct drm_i915_gem_request *req;
  1873. struct intel_engine_cs *old_ring;
  1874. BUG_ON(ring == NULL);
  1875. req = intel_ring_get_request(ring);
  1876. old_ring = i915_gem_request_get_ring(obj->last_read_req);
  1877. if (old_ring != ring && obj->last_write_req) {
  1878. /* Keep the request relative to the current ring */
  1879. i915_gem_request_assign(&obj->last_write_req, req);
  1880. }
  1881. /* Add a reference if we're newly entering the active list. */
  1882. if (!obj->active) {
  1883. drm_gem_object_reference(&obj->base);
  1884. obj->active = 1;
  1885. }
  1886. list_move_tail(&obj->ring_list, &ring->active_list);
  1887. i915_gem_request_assign(&obj->last_read_req, req);
  1888. }
  1889. void i915_vma_move_to_active(struct i915_vma *vma,
  1890. struct intel_engine_cs *ring)
  1891. {
  1892. list_move_tail(&vma->mm_list, &vma->vm->active_list);
  1893. return i915_gem_object_move_to_active(vma->obj, ring);
  1894. }
  1895. static void
  1896. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1897. {
  1898. struct i915_vma *vma;
  1899. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1900. BUG_ON(!obj->active);
  1901. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  1902. if (!list_empty(&vma->mm_list))
  1903. list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
  1904. }
  1905. intel_fb_obj_flush(obj, true);
  1906. list_del_init(&obj->ring_list);
  1907. i915_gem_request_assign(&obj->last_read_req, NULL);
  1908. i915_gem_request_assign(&obj->last_write_req, NULL);
  1909. obj->base.write_domain = 0;
  1910. i915_gem_request_assign(&obj->last_fenced_req, NULL);
  1911. obj->active = 0;
  1912. drm_gem_object_unreference(&obj->base);
  1913. WARN_ON(i915_verify_lists(dev));
  1914. }
  1915. static void
  1916. i915_gem_object_retire(struct drm_i915_gem_object *obj)
  1917. {
  1918. if (obj->last_read_req == NULL)
  1919. return;
  1920. if (i915_gem_request_completed(obj->last_read_req, true))
  1921. i915_gem_object_move_to_inactive(obj);
  1922. }
  1923. static int
  1924. i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
  1925. {
  1926. struct drm_i915_private *dev_priv = dev->dev_private;
  1927. struct intel_engine_cs *ring;
  1928. int ret, i, j;
  1929. /* Carefully retire all requests without writing to the rings */
  1930. for_each_ring(ring, dev_priv, i) {
  1931. ret = intel_ring_idle(ring);
  1932. if (ret)
  1933. return ret;
  1934. }
  1935. i915_gem_retire_requests(dev);
  1936. /* Finally reset hw state */
  1937. for_each_ring(ring, dev_priv, i) {
  1938. intel_ring_init_seqno(ring, seqno);
  1939. for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
  1940. ring->semaphore.sync_seqno[j] = 0;
  1941. }
  1942. return 0;
  1943. }
  1944. int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
  1945. {
  1946. struct drm_i915_private *dev_priv = dev->dev_private;
  1947. int ret;
  1948. if (seqno == 0)
  1949. return -EINVAL;
  1950. /* HWS page needs to be set less than what we
  1951. * will inject to ring
  1952. */
  1953. ret = i915_gem_init_seqno(dev, seqno - 1);
  1954. if (ret)
  1955. return ret;
  1956. /* Carefully set the last_seqno value so that wrap
  1957. * detection still works
  1958. */
  1959. dev_priv->next_seqno = seqno;
  1960. dev_priv->last_seqno = seqno - 1;
  1961. if (dev_priv->last_seqno == 0)
  1962. dev_priv->last_seqno--;
  1963. return 0;
  1964. }
  1965. int
  1966. i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
  1967. {
  1968. struct drm_i915_private *dev_priv = dev->dev_private;
  1969. /* reserve 0 for non-seqno */
  1970. if (dev_priv->next_seqno == 0) {
  1971. int ret = i915_gem_init_seqno(dev, 0);
  1972. if (ret)
  1973. return ret;
  1974. dev_priv->next_seqno = 1;
  1975. }
  1976. *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
  1977. return 0;
  1978. }
  1979. int __i915_add_request(struct intel_engine_cs *ring,
  1980. struct drm_file *file,
  1981. struct drm_i915_gem_object *obj)
  1982. {
  1983. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1984. struct drm_i915_gem_request *request;
  1985. struct intel_ringbuffer *ringbuf;
  1986. u32 request_start;
  1987. int ret;
  1988. request = ring->outstanding_lazy_request;
  1989. if (WARN_ON(request == NULL))
  1990. return -ENOMEM;
  1991. if (i915.enable_execlists) {
  1992. ringbuf = request->ctx->engine[ring->id].ringbuf;
  1993. } else
  1994. ringbuf = ring->buffer;
  1995. request_start = intel_ring_get_tail(ringbuf);
  1996. /*
  1997. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1998. * after having emitted the batchbuffer command. Hence we need to fix
  1999. * things up similar to emitting the lazy request. The difference here
  2000. * is that the flush _must_ happen before the next request, no matter
  2001. * what.
  2002. */
  2003. if (i915.enable_execlists) {
  2004. ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
  2005. if (ret)
  2006. return ret;
  2007. } else {
  2008. ret = intel_ring_flush_all_caches(ring);
  2009. if (ret)
  2010. return ret;
  2011. }
  2012. /* Record the position of the start of the request so that
  2013. * should we detect the updated seqno part-way through the
  2014. * GPU processing the request, we never over-estimate the
  2015. * position of the head.
  2016. */
  2017. request->postfix = intel_ring_get_tail(ringbuf);
  2018. if (i915.enable_execlists) {
  2019. ret = ring->emit_request(ringbuf, request);
  2020. if (ret)
  2021. return ret;
  2022. } else {
  2023. ret = ring->add_request(ring);
  2024. if (ret)
  2025. return ret;
  2026. request->tail = intel_ring_get_tail(ringbuf);
  2027. }
  2028. request->head = request_start;
  2029. /* Whilst this request exists, batch_obj will be on the
  2030. * active_list, and so will hold the active reference. Only when this
  2031. * request is retired will the the batch_obj be moved onto the
  2032. * inactive_list and lose its active reference. Hence we do not need
  2033. * to explicitly hold another reference here.
  2034. */
  2035. request->batch_obj = obj;
  2036. if (!i915.enable_execlists) {
  2037. /* Hold a reference to the current context so that we can inspect
  2038. * it later in case a hangcheck error event fires.
  2039. */
  2040. request->ctx = ring->last_context;
  2041. if (request->ctx)
  2042. i915_gem_context_reference(request->ctx);
  2043. }
  2044. request->emitted_jiffies = jiffies;
  2045. list_add_tail(&request->list, &ring->request_list);
  2046. request->file_priv = NULL;
  2047. if (file) {
  2048. struct drm_i915_file_private *file_priv = file->driver_priv;
  2049. spin_lock(&file_priv->mm.lock);
  2050. request->file_priv = file_priv;
  2051. list_add_tail(&request->client_list,
  2052. &file_priv->mm.request_list);
  2053. spin_unlock(&file_priv->mm.lock);
  2054. request->pid = get_pid(task_pid(current));
  2055. }
  2056. trace_i915_gem_request_add(request);
  2057. ring->outstanding_lazy_request = NULL;
  2058. i915_queue_hangcheck(ring->dev);
  2059. queue_delayed_work(dev_priv->wq,
  2060. &dev_priv->mm.retire_work,
  2061. round_jiffies_up_relative(HZ));
  2062. intel_mark_busy(dev_priv->dev);
  2063. return 0;
  2064. }
  2065. static inline void
  2066. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  2067. {
  2068. struct drm_i915_file_private *file_priv = request->file_priv;
  2069. if (!file_priv)
  2070. return;
  2071. spin_lock(&file_priv->mm.lock);
  2072. list_del(&request->client_list);
  2073. request->file_priv = NULL;
  2074. spin_unlock(&file_priv->mm.lock);
  2075. }
  2076. static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
  2077. const struct intel_context *ctx)
  2078. {
  2079. unsigned long elapsed;
  2080. elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
  2081. if (ctx->hang_stats.banned)
  2082. return true;
  2083. if (ctx->hang_stats.ban_period_seconds &&
  2084. elapsed <= ctx->hang_stats.ban_period_seconds) {
  2085. if (!i915_gem_context_is_default(ctx)) {
  2086. DRM_DEBUG("context hanging too fast, banning!\n");
  2087. return true;
  2088. } else if (i915_stop_ring_allow_ban(dev_priv)) {
  2089. if (i915_stop_ring_allow_warn(dev_priv))
  2090. DRM_ERROR("gpu hanging too fast, banning!\n");
  2091. return true;
  2092. }
  2093. }
  2094. return false;
  2095. }
  2096. static void i915_set_reset_status(struct drm_i915_private *dev_priv,
  2097. struct intel_context *ctx,
  2098. const bool guilty)
  2099. {
  2100. struct i915_ctx_hang_stats *hs;
  2101. if (WARN_ON(!ctx))
  2102. return;
  2103. hs = &ctx->hang_stats;
  2104. if (guilty) {
  2105. hs->banned = i915_context_is_banned(dev_priv, ctx);
  2106. hs->batch_active++;
  2107. hs->guilty_ts = get_seconds();
  2108. } else {
  2109. hs->batch_pending++;
  2110. }
  2111. }
  2112. static void i915_gem_free_request(struct drm_i915_gem_request *request)
  2113. {
  2114. list_del(&request->list);
  2115. i915_gem_request_remove_from_client(request);
  2116. put_pid(request->pid);
  2117. i915_gem_request_unreference(request);
  2118. }
  2119. void i915_gem_request_free(struct kref *req_ref)
  2120. {
  2121. struct drm_i915_gem_request *req = container_of(req_ref,
  2122. typeof(*req), ref);
  2123. struct intel_context *ctx = req->ctx;
  2124. if (ctx) {
  2125. if (i915.enable_execlists) {
  2126. struct intel_engine_cs *ring = req->ring;
  2127. if (ctx != ring->default_context)
  2128. intel_lr_context_unpin(ring, ctx);
  2129. }
  2130. i915_gem_context_unreference(ctx);
  2131. }
  2132. kmem_cache_free(req->i915->requests, req);
  2133. }
  2134. int i915_gem_request_alloc(struct intel_engine_cs *ring,
  2135. struct intel_context *ctx)
  2136. {
  2137. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  2138. struct drm_i915_gem_request *rq;
  2139. int ret;
  2140. if (ring->outstanding_lazy_request)
  2141. return 0;
  2142. rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
  2143. if (rq == NULL)
  2144. return -ENOMEM;
  2145. kref_init(&rq->ref);
  2146. rq->i915 = dev_priv;
  2147. ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
  2148. if (ret) {
  2149. kfree(rq);
  2150. return ret;
  2151. }
  2152. rq->ring = ring;
  2153. if (i915.enable_execlists)
  2154. ret = intel_logical_ring_alloc_request_extras(rq, ctx);
  2155. else
  2156. ret = intel_ring_alloc_request_extras(rq);
  2157. if (ret) {
  2158. kfree(rq);
  2159. return ret;
  2160. }
  2161. ring->outstanding_lazy_request = rq;
  2162. return 0;
  2163. }
  2164. struct drm_i915_gem_request *
  2165. i915_gem_find_active_request(struct intel_engine_cs *ring)
  2166. {
  2167. struct drm_i915_gem_request *request;
  2168. list_for_each_entry(request, &ring->request_list, list) {
  2169. if (i915_gem_request_completed(request, false))
  2170. continue;
  2171. return request;
  2172. }
  2173. return NULL;
  2174. }
  2175. static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
  2176. struct intel_engine_cs *ring)
  2177. {
  2178. struct drm_i915_gem_request *request;
  2179. bool ring_hung;
  2180. request = i915_gem_find_active_request(ring);
  2181. if (request == NULL)
  2182. return;
  2183. ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
  2184. i915_set_reset_status(dev_priv, request->ctx, ring_hung);
  2185. list_for_each_entry_continue(request, &ring->request_list, list)
  2186. i915_set_reset_status(dev_priv, request->ctx, false);
  2187. }
  2188. static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
  2189. struct intel_engine_cs *ring)
  2190. {
  2191. while (!list_empty(&ring->active_list)) {
  2192. struct drm_i915_gem_object *obj;
  2193. obj = list_first_entry(&ring->active_list,
  2194. struct drm_i915_gem_object,
  2195. ring_list);
  2196. i915_gem_object_move_to_inactive(obj);
  2197. }
  2198. /*
  2199. * Clear the execlists queue up before freeing the requests, as those
  2200. * are the ones that keep the context and ringbuffer backing objects
  2201. * pinned in place.
  2202. */
  2203. while (!list_empty(&ring->execlist_queue)) {
  2204. struct drm_i915_gem_request *submit_req;
  2205. submit_req = list_first_entry(&ring->execlist_queue,
  2206. struct drm_i915_gem_request,
  2207. execlist_link);
  2208. list_del(&submit_req->execlist_link);
  2209. if (submit_req->ctx != ring->default_context)
  2210. intel_lr_context_unpin(ring, submit_req->ctx);
  2211. i915_gem_request_unreference(submit_req);
  2212. }
  2213. /*
  2214. * We must free the requests after all the corresponding objects have
  2215. * been moved off active lists. Which is the same order as the normal
  2216. * retire_requests function does. This is important if object hold
  2217. * implicit references on things like e.g. ppgtt address spaces through
  2218. * the request.
  2219. */
  2220. while (!list_empty(&ring->request_list)) {
  2221. struct drm_i915_gem_request *request;
  2222. request = list_first_entry(&ring->request_list,
  2223. struct drm_i915_gem_request,
  2224. list);
  2225. i915_gem_free_request(request);
  2226. }
  2227. /* This may not have been flushed before the reset, so clean it now */
  2228. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  2229. }
  2230. void i915_gem_restore_fences(struct drm_device *dev)
  2231. {
  2232. struct drm_i915_private *dev_priv = dev->dev_private;
  2233. int i;
  2234. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  2235. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  2236. /*
  2237. * Commit delayed tiling changes if we have an object still
  2238. * attached to the fence, otherwise just clear the fence.
  2239. */
  2240. if (reg->obj) {
  2241. i915_gem_object_update_fence(reg->obj, reg,
  2242. reg->obj->tiling_mode);
  2243. } else {
  2244. i915_gem_write_fence(dev, i, NULL);
  2245. }
  2246. }
  2247. }
  2248. void i915_gem_reset(struct drm_device *dev)
  2249. {
  2250. struct drm_i915_private *dev_priv = dev->dev_private;
  2251. struct intel_engine_cs *ring;
  2252. int i;
  2253. /*
  2254. * Before we free the objects from the requests, we need to inspect
  2255. * them for finding the guilty party. As the requests only borrow
  2256. * their reference to the objects, the inspection must be done first.
  2257. */
  2258. for_each_ring(ring, dev_priv, i)
  2259. i915_gem_reset_ring_status(dev_priv, ring);
  2260. for_each_ring(ring, dev_priv, i)
  2261. i915_gem_reset_ring_cleanup(dev_priv, ring);
  2262. i915_gem_context_reset(dev);
  2263. i915_gem_restore_fences(dev);
  2264. }
  2265. /**
  2266. * This function clears the request list as sequence numbers are passed.
  2267. */
  2268. void
  2269. i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
  2270. {
  2271. if (list_empty(&ring->request_list))
  2272. return;
  2273. WARN_ON(i915_verify_lists(ring->dev));
  2274. /* Retire requests first as we use it above for the early return.
  2275. * If we retire requests last, we may use a later seqno and so clear
  2276. * the requests lists without clearing the active list, leading to
  2277. * confusion.
  2278. */
  2279. while (!list_empty(&ring->request_list)) {
  2280. struct drm_i915_gem_request *request;
  2281. request = list_first_entry(&ring->request_list,
  2282. struct drm_i915_gem_request,
  2283. list);
  2284. if (!i915_gem_request_completed(request, true))
  2285. break;
  2286. trace_i915_gem_request_retire(request);
  2287. /* We know the GPU must have read the request to have
  2288. * sent us the seqno + interrupt, so use the position
  2289. * of tail of the request to update the last known position
  2290. * of the GPU head.
  2291. */
  2292. request->ringbuf->last_retired_head = request->postfix;
  2293. i915_gem_free_request(request);
  2294. }
  2295. /* Move any buffers on the active list that are no longer referenced
  2296. * by the ringbuffer to the flushing/inactive lists as appropriate,
  2297. * before we free the context associated with the requests.
  2298. */
  2299. while (!list_empty(&ring->active_list)) {
  2300. struct drm_i915_gem_object *obj;
  2301. obj = list_first_entry(&ring->active_list,
  2302. struct drm_i915_gem_object,
  2303. ring_list);
  2304. if (!i915_gem_request_completed(obj->last_read_req, true))
  2305. break;
  2306. i915_gem_object_move_to_inactive(obj);
  2307. }
  2308. if (unlikely(ring->trace_irq_req &&
  2309. i915_gem_request_completed(ring->trace_irq_req, true))) {
  2310. ring->irq_put(ring);
  2311. i915_gem_request_assign(&ring->trace_irq_req, NULL);
  2312. }
  2313. WARN_ON(i915_verify_lists(ring->dev));
  2314. }
  2315. bool
  2316. i915_gem_retire_requests(struct drm_device *dev)
  2317. {
  2318. struct drm_i915_private *dev_priv = dev->dev_private;
  2319. struct intel_engine_cs *ring;
  2320. bool idle = true;
  2321. int i;
  2322. for_each_ring(ring, dev_priv, i) {
  2323. i915_gem_retire_requests_ring(ring);
  2324. idle &= list_empty(&ring->request_list);
  2325. if (i915.enable_execlists) {
  2326. unsigned long flags;
  2327. spin_lock_irqsave(&ring->execlist_lock, flags);
  2328. idle &= list_empty(&ring->execlist_queue);
  2329. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  2330. intel_execlists_retire_requests(ring);
  2331. }
  2332. }
  2333. if (idle)
  2334. mod_delayed_work(dev_priv->wq,
  2335. &dev_priv->mm.idle_work,
  2336. msecs_to_jiffies(100));
  2337. return idle;
  2338. }
  2339. static void
  2340. i915_gem_retire_work_handler(struct work_struct *work)
  2341. {
  2342. struct drm_i915_private *dev_priv =
  2343. container_of(work, typeof(*dev_priv), mm.retire_work.work);
  2344. struct drm_device *dev = dev_priv->dev;
  2345. bool idle;
  2346. /* Come back later if the device is busy... */
  2347. idle = false;
  2348. if (mutex_trylock(&dev->struct_mutex)) {
  2349. idle = i915_gem_retire_requests(dev);
  2350. mutex_unlock(&dev->struct_mutex);
  2351. }
  2352. if (!idle)
  2353. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
  2354. round_jiffies_up_relative(HZ));
  2355. }
  2356. static void
  2357. i915_gem_idle_work_handler(struct work_struct *work)
  2358. {
  2359. struct drm_i915_private *dev_priv =
  2360. container_of(work, typeof(*dev_priv), mm.idle_work.work);
  2361. struct drm_device *dev = dev_priv->dev;
  2362. struct intel_engine_cs *ring;
  2363. int i;
  2364. for_each_ring(ring, dev_priv, i)
  2365. if (!list_empty(&ring->request_list))
  2366. return;
  2367. intel_mark_idle(dev);
  2368. if (mutex_trylock(&dev->struct_mutex)) {
  2369. struct intel_engine_cs *ring;
  2370. int i;
  2371. for_each_ring(ring, dev_priv, i)
  2372. i915_gem_batch_pool_fini(&ring->batch_pool);
  2373. mutex_unlock(&dev->struct_mutex);
  2374. }
  2375. }
  2376. /**
  2377. * Ensures that an object will eventually get non-busy by flushing any required
  2378. * write domains, emitting any outstanding lazy request and retiring and
  2379. * completed requests.
  2380. */
  2381. static int
  2382. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  2383. {
  2384. struct intel_engine_cs *ring;
  2385. int ret;
  2386. if (obj->active) {
  2387. ring = i915_gem_request_get_ring(obj->last_read_req);
  2388. ret = i915_gem_check_olr(obj->last_read_req);
  2389. if (ret)
  2390. return ret;
  2391. i915_gem_retire_requests_ring(ring);
  2392. }
  2393. return 0;
  2394. }
  2395. /**
  2396. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  2397. * @DRM_IOCTL_ARGS: standard ioctl arguments
  2398. *
  2399. * Returns 0 if successful, else an error is returned with the remaining time in
  2400. * the timeout parameter.
  2401. * -ETIME: object is still busy after timeout
  2402. * -ERESTARTSYS: signal interrupted the wait
  2403. * -ENONENT: object doesn't exist
  2404. * Also possible, but rare:
  2405. * -EAGAIN: GPU wedged
  2406. * -ENOMEM: damn
  2407. * -ENODEV: Internal IRQ fail
  2408. * -E?: The add request failed
  2409. *
  2410. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  2411. * non-zero timeout parameter the wait ioctl will wait for the given number of
  2412. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  2413. * without holding struct_mutex the object may become re-busied before this
  2414. * function completes. A similar but shorter * race condition exists in the busy
  2415. * ioctl
  2416. */
  2417. int
  2418. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  2419. {
  2420. struct drm_i915_private *dev_priv = dev->dev_private;
  2421. struct drm_i915_gem_wait *args = data;
  2422. struct drm_i915_gem_object *obj;
  2423. struct drm_i915_gem_request *req;
  2424. unsigned reset_counter;
  2425. int ret = 0;
  2426. if (args->flags != 0)
  2427. return -EINVAL;
  2428. ret = i915_mutex_lock_interruptible(dev);
  2429. if (ret)
  2430. return ret;
  2431. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  2432. if (&obj->base == NULL) {
  2433. mutex_unlock(&dev->struct_mutex);
  2434. return -ENOENT;
  2435. }
  2436. /* Need to make sure the object gets inactive eventually. */
  2437. ret = i915_gem_object_flush_active(obj);
  2438. if (ret)
  2439. goto out;
  2440. if (!obj->active || !obj->last_read_req)
  2441. goto out;
  2442. req = obj->last_read_req;
  2443. /* Do this after OLR check to make sure we make forward progress polling
  2444. * on this IOCTL with a timeout == 0 (like busy ioctl)
  2445. */
  2446. if (args->timeout_ns == 0) {
  2447. ret = -ETIME;
  2448. goto out;
  2449. }
  2450. drm_gem_object_unreference(&obj->base);
  2451. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  2452. i915_gem_request_reference(req);
  2453. mutex_unlock(&dev->struct_mutex);
  2454. ret = __i915_wait_request(req, reset_counter, true,
  2455. args->timeout_ns > 0 ? &args->timeout_ns : NULL,
  2456. file->driver_priv);
  2457. i915_gem_request_unreference__unlocked(req);
  2458. return ret;
  2459. out:
  2460. drm_gem_object_unreference(&obj->base);
  2461. mutex_unlock(&dev->struct_mutex);
  2462. return ret;
  2463. }
  2464. /**
  2465. * i915_gem_object_sync - sync an object to a ring.
  2466. *
  2467. * @obj: object which may be in use on another ring.
  2468. * @to: ring we wish to use the object on. May be NULL.
  2469. *
  2470. * This code is meant to abstract object synchronization with the GPU.
  2471. * Calling with NULL implies synchronizing the object with the CPU
  2472. * rather than a particular GPU ring.
  2473. *
  2474. * Returns 0 if successful, else propagates up the lower layer error.
  2475. */
  2476. int
  2477. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  2478. struct intel_engine_cs *to)
  2479. {
  2480. struct intel_engine_cs *from;
  2481. u32 seqno;
  2482. int ret, idx;
  2483. from = i915_gem_request_get_ring(obj->last_read_req);
  2484. if (from == NULL || to == from)
  2485. return 0;
  2486. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  2487. return i915_gem_object_wait_rendering(obj, false);
  2488. idx = intel_ring_sync_index(from, to);
  2489. seqno = i915_gem_request_get_seqno(obj->last_read_req);
  2490. /* Optimization: Avoid semaphore sync when we are sure we already
  2491. * waited for an object with higher seqno */
  2492. if (seqno <= from->semaphore.sync_seqno[idx])
  2493. return 0;
  2494. ret = i915_gem_check_olr(obj->last_read_req);
  2495. if (ret)
  2496. return ret;
  2497. trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
  2498. ret = to->semaphore.sync_to(to, from, seqno);
  2499. if (!ret)
  2500. /* We use last_read_req because sync_to()
  2501. * might have just caused seqno wrap under
  2502. * the radar.
  2503. */
  2504. from->semaphore.sync_seqno[idx] =
  2505. i915_gem_request_get_seqno(obj->last_read_req);
  2506. return ret;
  2507. }
  2508. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  2509. {
  2510. u32 old_write_domain, old_read_domains;
  2511. /* Force a pagefault for domain tracking on next user access */
  2512. i915_gem_release_mmap(obj);
  2513. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  2514. return;
  2515. /* Wait for any direct GTT access to complete */
  2516. mb();
  2517. old_read_domains = obj->base.read_domains;
  2518. old_write_domain = obj->base.write_domain;
  2519. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  2520. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  2521. trace_i915_gem_object_change_domain(obj,
  2522. old_read_domains,
  2523. old_write_domain);
  2524. }
  2525. int i915_vma_unbind(struct i915_vma *vma)
  2526. {
  2527. struct drm_i915_gem_object *obj = vma->obj;
  2528. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2529. int ret;
  2530. if (list_empty(&vma->vma_link))
  2531. return 0;
  2532. if (!drm_mm_node_allocated(&vma->node)) {
  2533. i915_gem_vma_destroy(vma);
  2534. return 0;
  2535. }
  2536. if (vma->pin_count)
  2537. return -EBUSY;
  2538. BUG_ON(obj->pages == NULL);
  2539. ret = i915_gem_object_finish_gpu(obj);
  2540. if (ret)
  2541. return ret;
  2542. /* Continue on if we fail due to EIO, the GPU is hung so we
  2543. * should be safe and we need to cleanup or else we might
  2544. * cause memory corruption through use-after-free.
  2545. */
  2546. if (i915_is_ggtt(vma->vm) &&
  2547. vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
  2548. i915_gem_object_finish_gtt(obj);
  2549. /* release the fence reg _after_ flushing */
  2550. ret = i915_gem_object_put_fence(obj);
  2551. if (ret)
  2552. return ret;
  2553. }
  2554. trace_i915_vma_unbind(vma);
  2555. vma->vm->unbind_vma(vma);
  2556. vma->bound = 0;
  2557. list_del_init(&vma->mm_list);
  2558. if (i915_is_ggtt(vma->vm)) {
  2559. if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
  2560. obj->map_and_fenceable = false;
  2561. } else if (vma->ggtt_view.pages) {
  2562. sg_free_table(vma->ggtt_view.pages);
  2563. kfree(vma->ggtt_view.pages);
  2564. vma->ggtt_view.pages = NULL;
  2565. }
  2566. }
  2567. drm_mm_remove_node(&vma->node);
  2568. i915_gem_vma_destroy(vma);
  2569. /* Since the unbound list is global, only move to that list if
  2570. * no more VMAs exist. */
  2571. if (list_empty(&obj->vma_list)) {
  2572. /* Throw away the active reference before
  2573. * moving to the unbound list. */
  2574. i915_gem_object_retire(obj);
  2575. i915_gem_gtt_finish_object(obj);
  2576. list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
  2577. }
  2578. /* And finally now the object is completely decoupled from this vma,
  2579. * we can drop its hold on the backing storage and allow it to be
  2580. * reaped by the shrinker.
  2581. */
  2582. i915_gem_object_unpin_pages(obj);
  2583. return 0;
  2584. }
  2585. int i915_gpu_idle(struct drm_device *dev)
  2586. {
  2587. struct drm_i915_private *dev_priv = dev->dev_private;
  2588. struct intel_engine_cs *ring;
  2589. int ret, i;
  2590. /* Flush everything onto the inactive list. */
  2591. for_each_ring(ring, dev_priv, i) {
  2592. if (!i915.enable_execlists) {
  2593. ret = i915_switch_context(ring, ring->default_context);
  2594. if (ret)
  2595. return ret;
  2596. }
  2597. ret = intel_ring_idle(ring);
  2598. if (ret)
  2599. return ret;
  2600. }
  2601. return 0;
  2602. }
  2603. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2604. struct drm_i915_gem_object *obj)
  2605. {
  2606. struct drm_i915_private *dev_priv = dev->dev_private;
  2607. int fence_reg;
  2608. int fence_pitch_shift;
  2609. if (INTEL_INFO(dev)->gen >= 6) {
  2610. fence_reg = FENCE_REG_SANDYBRIDGE_0;
  2611. fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2612. } else {
  2613. fence_reg = FENCE_REG_965_0;
  2614. fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
  2615. }
  2616. fence_reg += reg * 8;
  2617. /* To w/a incoherency with non-atomic 64-bit register updates,
  2618. * we split the 64-bit update into two 32-bit writes. In order
  2619. * for a partial fence not to be evaluated between writes, we
  2620. * precede the update with write to turn off the fence register,
  2621. * and only enable the fence as the last step.
  2622. *
  2623. * For extra levels of paranoia, we make sure each step lands
  2624. * before applying the next step.
  2625. */
  2626. I915_WRITE(fence_reg, 0);
  2627. POSTING_READ(fence_reg);
  2628. if (obj) {
  2629. u32 size = i915_gem_obj_ggtt_size(obj);
  2630. uint64_t val;
  2631. /* Adjust fence size to match tiled area */
  2632. if (obj->tiling_mode != I915_TILING_NONE) {
  2633. uint32_t row_size = obj->stride *
  2634. (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
  2635. size = (size / row_size) * row_size;
  2636. }
  2637. val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
  2638. 0xfffff000) << 32;
  2639. val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
  2640. val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
  2641. if (obj->tiling_mode == I915_TILING_Y)
  2642. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2643. val |= I965_FENCE_REG_VALID;
  2644. I915_WRITE(fence_reg + 4, val >> 32);
  2645. POSTING_READ(fence_reg + 4);
  2646. I915_WRITE(fence_reg + 0, val);
  2647. POSTING_READ(fence_reg);
  2648. } else {
  2649. I915_WRITE(fence_reg + 4, 0);
  2650. POSTING_READ(fence_reg + 4);
  2651. }
  2652. }
  2653. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2654. struct drm_i915_gem_object *obj)
  2655. {
  2656. struct drm_i915_private *dev_priv = dev->dev_private;
  2657. u32 val;
  2658. if (obj) {
  2659. u32 size = i915_gem_obj_ggtt_size(obj);
  2660. int pitch_val;
  2661. int tile_width;
  2662. WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
  2663. (size & -size) != size ||
  2664. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2665. "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2666. i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
  2667. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2668. tile_width = 128;
  2669. else
  2670. tile_width = 512;
  2671. /* Note: pitch better be a power of two tile widths */
  2672. pitch_val = obj->stride / tile_width;
  2673. pitch_val = ffs(pitch_val) - 1;
  2674. val = i915_gem_obj_ggtt_offset(obj);
  2675. if (obj->tiling_mode == I915_TILING_Y)
  2676. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2677. val |= I915_FENCE_SIZE_BITS(size);
  2678. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2679. val |= I830_FENCE_REG_VALID;
  2680. } else
  2681. val = 0;
  2682. if (reg < 8)
  2683. reg = FENCE_REG_830_0 + reg * 4;
  2684. else
  2685. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2686. I915_WRITE(reg, val);
  2687. POSTING_READ(reg);
  2688. }
  2689. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2690. struct drm_i915_gem_object *obj)
  2691. {
  2692. struct drm_i915_private *dev_priv = dev->dev_private;
  2693. uint32_t val;
  2694. if (obj) {
  2695. u32 size = i915_gem_obj_ggtt_size(obj);
  2696. uint32_t pitch_val;
  2697. WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
  2698. (size & -size) != size ||
  2699. (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
  2700. "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
  2701. i915_gem_obj_ggtt_offset(obj), size);
  2702. pitch_val = obj->stride / 128;
  2703. pitch_val = ffs(pitch_val) - 1;
  2704. val = i915_gem_obj_ggtt_offset(obj);
  2705. if (obj->tiling_mode == I915_TILING_Y)
  2706. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2707. val |= I830_FENCE_SIZE_BITS(size);
  2708. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2709. val |= I830_FENCE_REG_VALID;
  2710. } else
  2711. val = 0;
  2712. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2713. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2714. }
  2715. inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
  2716. {
  2717. return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
  2718. }
  2719. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2720. struct drm_i915_gem_object *obj)
  2721. {
  2722. struct drm_i915_private *dev_priv = dev->dev_private;
  2723. /* Ensure that all CPU reads are completed before installing a fence
  2724. * and all writes before removing the fence.
  2725. */
  2726. if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
  2727. mb();
  2728. WARN(obj && (!obj->stride || !obj->tiling_mode),
  2729. "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
  2730. obj->stride, obj->tiling_mode);
  2731. if (IS_GEN2(dev))
  2732. i830_write_fence_reg(dev, reg, obj);
  2733. else if (IS_GEN3(dev))
  2734. i915_write_fence_reg(dev, reg, obj);
  2735. else if (INTEL_INFO(dev)->gen >= 4)
  2736. i965_write_fence_reg(dev, reg, obj);
  2737. /* And similarly be paranoid that no direct access to this region
  2738. * is reordered to before the fence is installed.
  2739. */
  2740. if (i915_gem_object_needs_mb(obj))
  2741. mb();
  2742. }
  2743. static inline int fence_number(struct drm_i915_private *dev_priv,
  2744. struct drm_i915_fence_reg *fence)
  2745. {
  2746. return fence - dev_priv->fence_regs;
  2747. }
  2748. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2749. struct drm_i915_fence_reg *fence,
  2750. bool enable)
  2751. {
  2752. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2753. int reg = fence_number(dev_priv, fence);
  2754. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2755. if (enable) {
  2756. obj->fence_reg = reg;
  2757. fence->obj = obj;
  2758. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2759. } else {
  2760. obj->fence_reg = I915_FENCE_REG_NONE;
  2761. fence->obj = NULL;
  2762. list_del_init(&fence->lru_list);
  2763. }
  2764. obj->fence_dirty = false;
  2765. }
  2766. static int
  2767. i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
  2768. {
  2769. if (obj->last_fenced_req) {
  2770. int ret = i915_wait_request(obj->last_fenced_req);
  2771. if (ret)
  2772. return ret;
  2773. i915_gem_request_assign(&obj->last_fenced_req, NULL);
  2774. }
  2775. return 0;
  2776. }
  2777. int
  2778. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2779. {
  2780. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2781. struct drm_i915_fence_reg *fence;
  2782. int ret;
  2783. ret = i915_gem_object_wait_fence(obj);
  2784. if (ret)
  2785. return ret;
  2786. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2787. return 0;
  2788. fence = &dev_priv->fence_regs[obj->fence_reg];
  2789. if (WARN_ON(fence->pin_count))
  2790. return -EBUSY;
  2791. i915_gem_object_fence_lost(obj);
  2792. i915_gem_object_update_fence(obj, fence, false);
  2793. return 0;
  2794. }
  2795. static struct drm_i915_fence_reg *
  2796. i915_find_fence_reg(struct drm_device *dev)
  2797. {
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. struct drm_i915_fence_reg *reg, *avail;
  2800. int i;
  2801. /* First try to find a free reg */
  2802. avail = NULL;
  2803. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2804. reg = &dev_priv->fence_regs[i];
  2805. if (!reg->obj)
  2806. return reg;
  2807. if (!reg->pin_count)
  2808. avail = reg;
  2809. }
  2810. if (avail == NULL)
  2811. goto deadlock;
  2812. /* None available, try to steal one or wait for a user to finish */
  2813. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2814. if (reg->pin_count)
  2815. continue;
  2816. return reg;
  2817. }
  2818. deadlock:
  2819. /* Wait for completion of pending flips which consume fences */
  2820. if (intel_has_pending_fb_unpin(dev))
  2821. return ERR_PTR(-EAGAIN);
  2822. return ERR_PTR(-EDEADLK);
  2823. }
  2824. /**
  2825. * i915_gem_object_get_fence - set up fencing for an object
  2826. * @obj: object to map through a fence reg
  2827. *
  2828. * When mapping objects through the GTT, userspace wants to be able to write
  2829. * to them without having to worry about swizzling if the object is tiled.
  2830. * This function walks the fence regs looking for a free one for @obj,
  2831. * stealing one if it can't find any.
  2832. *
  2833. * It then sets up the reg based on the object's properties: address, pitch
  2834. * and tiling format.
  2835. *
  2836. * For an untiled surface, this removes any existing fence.
  2837. */
  2838. int
  2839. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2840. {
  2841. struct drm_device *dev = obj->base.dev;
  2842. struct drm_i915_private *dev_priv = dev->dev_private;
  2843. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2844. struct drm_i915_fence_reg *reg;
  2845. int ret;
  2846. /* Have we updated the tiling parameters upon the object and so
  2847. * will need to serialise the write to the associated fence register?
  2848. */
  2849. if (obj->fence_dirty) {
  2850. ret = i915_gem_object_wait_fence(obj);
  2851. if (ret)
  2852. return ret;
  2853. }
  2854. /* Just update our place in the LRU if our fence is getting reused. */
  2855. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2856. reg = &dev_priv->fence_regs[obj->fence_reg];
  2857. if (!obj->fence_dirty) {
  2858. list_move_tail(&reg->lru_list,
  2859. &dev_priv->mm.fence_list);
  2860. return 0;
  2861. }
  2862. } else if (enable) {
  2863. if (WARN_ON(!obj->map_and_fenceable))
  2864. return -EINVAL;
  2865. reg = i915_find_fence_reg(dev);
  2866. if (IS_ERR(reg))
  2867. return PTR_ERR(reg);
  2868. if (reg->obj) {
  2869. struct drm_i915_gem_object *old = reg->obj;
  2870. ret = i915_gem_object_wait_fence(old);
  2871. if (ret)
  2872. return ret;
  2873. i915_gem_object_fence_lost(old);
  2874. }
  2875. } else
  2876. return 0;
  2877. i915_gem_object_update_fence(obj, reg, enable);
  2878. return 0;
  2879. }
  2880. static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
  2881. unsigned long cache_level)
  2882. {
  2883. struct drm_mm_node *gtt_space = &vma->node;
  2884. struct drm_mm_node *other;
  2885. /*
  2886. * On some machines we have to be careful when putting differing types
  2887. * of snoopable memory together to avoid the prefetcher crossing memory
  2888. * domains and dying. During vm initialisation, we decide whether or not
  2889. * these constraints apply and set the drm_mm.color_adjust
  2890. * appropriately.
  2891. */
  2892. if (vma->vm->mm.color_adjust == NULL)
  2893. return true;
  2894. if (!drm_mm_node_allocated(gtt_space))
  2895. return true;
  2896. if (list_empty(&gtt_space->node_list))
  2897. return true;
  2898. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2899. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2900. return false;
  2901. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2902. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2903. return false;
  2904. return true;
  2905. }
  2906. /**
  2907. * Finds free space in the GTT aperture and binds the object or a view of it
  2908. * there.
  2909. */
  2910. static struct i915_vma *
  2911. i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
  2912. struct i915_address_space *vm,
  2913. const struct i915_ggtt_view *ggtt_view,
  2914. unsigned alignment,
  2915. uint64_t flags)
  2916. {
  2917. struct drm_device *dev = obj->base.dev;
  2918. struct drm_i915_private *dev_priv = dev->dev_private;
  2919. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2920. unsigned long start =
  2921. flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
  2922. unsigned long end =
  2923. flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
  2924. struct i915_vma *vma;
  2925. int ret;
  2926. if (i915_is_ggtt(vm)) {
  2927. u32 view_size;
  2928. if (WARN_ON(!ggtt_view))
  2929. return ERR_PTR(-EINVAL);
  2930. view_size = i915_ggtt_view_size(obj, ggtt_view);
  2931. fence_size = i915_gem_get_gtt_size(dev,
  2932. view_size,
  2933. obj->tiling_mode);
  2934. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2935. view_size,
  2936. obj->tiling_mode,
  2937. true);
  2938. unfenced_alignment = i915_gem_get_gtt_alignment(dev,
  2939. view_size,
  2940. obj->tiling_mode,
  2941. false);
  2942. size = flags & PIN_MAPPABLE ? fence_size : view_size;
  2943. } else {
  2944. fence_size = i915_gem_get_gtt_size(dev,
  2945. obj->base.size,
  2946. obj->tiling_mode);
  2947. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2948. obj->base.size,
  2949. obj->tiling_mode,
  2950. true);
  2951. unfenced_alignment =
  2952. i915_gem_get_gtt_alignment(dev,
  2953. obj->base.size,
  2954. obj->tiling_mode,
  2955. false);
  2956. size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
  2957. }
  2958. if (alignment == 0)
  2959. alignment = flags & PIN_MAPPABLE ? fence_alignment :
  2960. unfenced_alignment;
  2961. if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
  2962. DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
  2963. ggtt_view ? ggtt_view->type : 0,
  2964. alignment);
  2965. return ERR_PTR(-EINVAL);
  2966. }
  2967. /* If binding the object/GGTT view requires more space than the entire
  2968. * aperture has, reject it early before evicting everything in a vain
  2969. * attempt to find space.
  2970. */
  2971. if (size > end) {
  2972. DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
  2973. ggtt_view ? ggtt_view->type : 0,
  2974. size,
  2975. flags & PIN_MAPPABLE ? "mappable" : "total",
  2976. end);
  2977. return ERR_PTR(-E2BIG);
  2978. }
  2979. ret = i915_gem_object_get_pages(obj);
  2980. if (ret)
  2981. return ERR_PTR(ret);
  2982. i915_gem_object_pin_pages(obj);
  2983. vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
  2984. i915_gem_obj_lookup_or_create_vma(obj, vm);
  2985. if (IS_ERR(vma))
  2986. goto err_unpin;
  2987. search_free:
  2988. ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
  2989. size, alignment,
  2990. obj->cache_level,
  2991. start, end,
  2992. DRM_MM_SEARCH_DEFAULT,
  2993. DRM_MM_CREATE_DEFAULT);
  2994. if (ret) {
  2995. ret = i915_gem_evict_something(dev, vm, size, alignment,
  2996. obj->cache_level,
  2997. start, end,
  2998. flags);
  2999. if (ret == 0)
  3000. goto search_free;
  3001. goto err_free_vma;
  3002. }
  3003. if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
  3004. ret = -EINVAL;
  3005. goto err_remove_node;
  3006. }
  3007. ret = i915_gem_gtt_prepare_object(obj);
  3008. if (ret)
  3009. goto err_remove_node;
  3010. trace_i915_vma_bind(vma, flags);
  3011. ret = i915_vma_bind(vma, obj->cache_level, flags);
  3012. if (ret)
  3013. goto err_finish_gtt;
  3014. list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
  3015. list_add_tail(&vma->mm_list, &vm->inactive_list);
  3016. return vma;
  3017. err_finish_gtt:
  3018. i915_gem_gtt_finish_object(obj);
  3019. err_remove_node:
  3020. drm_mm_remove_node(&vma->node);
  3021. err_free_vma:
  3022. i915_gem_vma_destroy(vma);
  3023. vma = ERR_PTR(ret);
  3024. err_unpin:
  3025. i915_gem_object_unpin_pages(obj);
  3026. return vma;
  3027. }
  3028. bool
  3029. i915_gem_clflush_object(struct drm_i915_gem_object *obj,
  3030. bool force)
  3031. {
  3032. /* If we don't have a page list set up, then we're not pinned
  3033. * to GPU, and we can ignore the cache flush because it'll happen
  3034. * again at bind time.
  3035. */
  3036. if (obj->pages == NULL)
  3037. return false;
  3038. /*
  3039. * Stolen memory is always coherent with the GPU as it is explicitly
  3040. * marked as wc by the system, or the system is cache-coherent.
  3041. */
  3042. if (obj->stolen || obj->phys_handle)
  3043. return false;
  3044. /* If the GPU is snooping the contents of the CPU cache,
  3045. * we do not need to manually clear the CPU cache lines. However,
  3046. * the caches are only snooped when the render cache is
  3047. * flushed/invalidated. As we always have to emit invalidations
  3048. * and flushes when moving into and out of the RENDER domain, correct
  3049. * snooping behaviour occurs naturally as the result of our domain
  3050. * tracking.
  3051. */
  3052. if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
  3053. obj->cache_dirty = true;
  3054. return false;
  3055. }
  3056. trace_i915_gem_object_clflush(obj);
  3057. drm_clflush_sg(obj->pages);
  3058. obj->cache_dirty = false;
  3059. return true;
  3060. }
  3061. /** Flushes the GTT write domain for the object if it's dirty. */
  3062. static void
  3063. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  3064. {
  3065. uint32_t old_write_domain;
  3066. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  3067. return;
  3068. /* No actual flushing is required for the GTT write domain. Writes
  3069. * to it immediately go to main memory as far as we know, so there's
  3070. * no chipset flush. It also doesn't land in render cache.
  3071. *
  3072. * However, we do have to enforce the order so that all writes through
  3073. * the GTT land before any writes to the device, such as updates to
  3074. * the GATT itself.
  3075. */
  3076. wmb();
  3077. old_write_domain = obj->base.write_domain;
  3078. obj->base.write_domain = 0;
  3079. intel_fb_obj_flush(obj, false);
  3080. trace_i915_gem_object_change_domain(obj,
  3081. obj->base.read_domains,
  3082. old_write_domain);
  3083. }
  3084. /** Flushes the CPU write domain for the object if it's dirty. */
  3085. static void
  3086. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  3087. {
  3088. uint32_t old_write_domain;
  3089. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  3090. return;
  3091. if (i915_gem_clflush_object(obj, obj->pin_display))
  3092. i915_gem_chipset_flush(obj->base.dev);
  3093. old_write_domain = obj->base.write_domain;
  3094. obj->base.write_domain = 0;
  3095. intel_fb_obj_flush(obj, false);
  3096. trace_i915_gem_object_change_domain(obj,
  3097. obj->base.read_domains,
  3098. old_write_domain);
  3099. }
  3100. /**
  3101. * Moves a single object to the GTT read, and possibly write domain.
  3102. *
  3103. * This function returns when the move is complete, including waiting on
  3104. * flushes to occur.
  3105. */
  3106. int
  3107. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  3108. {
  3109. uint32_t old_write_domain, old_read_domains;
  3110. struct i915_vma *vma;
  3111. int ret;
  3112. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  3113. return 0;
  3114. ret = i915_gem_object_wait_rendering(obj, !write);
  3115. if (ret)
  3116. return ret;
  3117. i915_gem_object_retire(obj);
  3118. /* Flush and acquire obj->pages so that we are coherent through
  3119. * direct access in memory with previous cached writes through
  3120. * shmemfs and that our cache domain tracking remains valid.
  3121. * For example, if the obj->filp was moved to swap without us
  3122. * being notified and releasing the pages, we would mistakenly
  3123. * continue to assume that the obj remained out of the CPU cached
  3124. * domain.
  3125. */
  3126. ret = i915_gem_object_get_pages(obj);
  3127. if (ret)
  3128. return ret;
  3129. i915_gem_object_flush_cpu_write_domain(obj);
  3130. /* Serialise direct access to this object with the barriers for
  3131. * coherent writes from the GPU, by effectively invalidating the
  3132. * GTT domain upon first access.
  3133. */
  3134. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  3135. mb();
  3136. old_write_domain = obj->base.write_domain;
  3137. old_read_domains = obj->base.read_domains;
  3138. /* It should now be out of any other write domains, and we can update
  3139. * the domain values for our changes.
  3140. */
  3141. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  3142. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3143. if (write) {
  3144. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  3145. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  3146. obj->dirty = 1;
  3147. }
  3148. if (write)
  3149. intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
  3150. trace_i915_gem_object_change_domain(obj,
  3151. old_read_domains,
  3152. old_write_domain);
  3153. /* And bump the LRU for this access */
  3154. vma = i915_gem_obj_to_ggtt(obj);
  3155. if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
  3156. list_move_tail(&vma->mm_list,
  3157. &to_i915(obj->base.dev)->gtt.base.inactive_list);
  3158. return 0;
  3159. }
  3160. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  3161. enum i915_cache_level cache_level)
  3162. {
  3163. struct drm_device *dev = obj->base.dev;
  3164. struct i915_vma *vma, *next;
  3165. int ret;
  3166. if (obj->cache_level == cache_level)
  3167. return 0;
  3168. if (i915_gem_obj_is_pinned(obj)) {
  3169. DRM_DEBUG("can not change the cache level of pinned objects\n");
  3170. return -EBUSY;
  3171. }
  3172. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3173. if (!i915_gem_valid_gtt_space(vma, cache_level)) {
  3174. ret = i915_vma_unbind(vma);
  3175. if (ret)
  3176. return ret;
  3177. }
  3178. }
  3179. if (i915_gem_obj_bound_any(obj)) {
  3180. ret = i915_gem_object_finish_gpu(obj);
  3181. if (ret)
  3182. return ret;
  3183. i915_gem_object_finish_gtt(obj);
  3184. /* Before SandyBridge, you could not use tiling or fence
  3185. * registers with snooped memory, so relinquish any fences
  3186. * currently pointing to our region in the aperture.
  3187. */
  3188. if (INTEL_INFO(dev)->gen < 6) {
  3189. ret = i915_gem_object_put_fence(obj);
  3190. if (ret)
  3191. return ret;
  3192. }
  3193. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3194. if (drm_mm_node_allocated(&vma->node)) {
  3195. ret = i915_vma_bind(vma, cache_level,
  3196. PIN_UPDATE);
  3197. if (ret)
  3198. return ret;
  3199. }
  3200. }
  3201. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3202. vma->node.color = cache_level;
  3203. obj->cache_level = cache_level;
  3204. if (obj->cache_dirty &&
  3205. obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
  3206. cpu_write_needs_clflush(obj)) {
  3207. if (i915_gem_clflush_object(obj, true))
  3208. i915_gem_chipset_flush(obj->base.dev);
  3209. }
  3210. return 0;
  3211. }
  3212. int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
  3213. struct drm_file *file)
  3214. {
  3215. struct drm_i915_gem_caching *args = data;
  3216. struct drm_i915_gem_object *obj;
  3217. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3218. if (&obj->base == NULL)
  3219. return -ENOENT;
  3220. switch (obj->cache_level) {
  3221. case I915_CACHE_LLC:
  3222. case I915_CACHE_L3_LLC:
  3223. args->caching = I915_CACHING_CACHED;
  3224. break;
  3225. case I915_CACHE_WT:
  3226. args->caching = I915_CACHING_DISPLAY;
  3227. break;
  3228. default:
  3229. args->caching = I915_CACHING_NONE;
  3230. break;
  3231. }
  3232. drm_gem_object_unreference_unlocked(&obj->base);
  3233. return 0;
  3234. }
  3235. int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
  3236. struct drm_file *file)
  3237. {
  3238. struct drm_i915_gem_caching *args = data;
  3239. struct drm_i915_gem_object *obj;
  3240. enum i915_cache_level level;
  3241. int ret;
  3242. switch (args->caching) {
  3243. case I915_CACHING_NONE:
  3244. level = I915_CACHE_NONE;
  3245. break;
  3246. case I915_CACHING_CACHED:
  3247. level = I915_CACHE_LLC;
  3248. break;
  3249. case I915_CACHING_DISPLAY:
  3250. level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
  3251. break;
  3252. default:
  3253. return -EINVAL;
  3254. }
  3255. ret = i915_mutex_lock_interruptible(dev);
  3256. if (ret)
  3257. return ret;
  3258. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3259. if (&obj->base == NULL) {
  3260. ret = -ENOENT;
  3261. goto unlock;
  3262. }
  3263. ret = i915_gem_object_set_cache_level(obj, level);
  3264. drm_gem_object_unreference(&obj->base);
  3265. unlock:
  3266. mutex_unlock(&dev->struct_mutex);
  3267. return ret;
  3268. }
  3269. /*
  3270. * Prepare buffer for display plane (scanout, cursors, etc).
  3271. * Can be called from an uninterruptible phase (modesetting) and allows
  3272. * any flushes to be pipelined (for pageflips).
  3273. */
  3274. int
  3275. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  3276. u32 alignment,
  3277. struct intel_engine_cs *pipelined,
  3278. const struct i915_ggtt_view *view)
  3279. {
  3280. u32 old_read_domains, old_write_domain;
  3281. int ret;
  3282. if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
  3283. ret = i915_gem_object_sync(obj, pipelined);
  3284. if (ret)
  3285. return ret;
  3286. }
  3287. /* Mark the pin_display early so that we account for the
  3288. * display coherency whilst setting up the cache domains.
  3289. */
  3290. obj->pin_display++;
  3291. /* The display engine is not coherent with the LLC cache on gen6. As
  3292. * a result, we make sure that the pinning that is about to occur is
  3293. * done with uncached PTEs. This is lowest common denominator for all
  3294. * chipsets.
  3295. *
  3296. * However for gen6+, we could do better by using the GFDT bit instead
  3297. * of uncaching, which would allow us to flush all the LLC-cached data
  3298. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  3299. */
  3300. ret = i915_gem_object_set_cache_level(obj,
  3301. HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
  3302. if (ret)
  3303. goto err_unpin_display;
  3304. /* As the user may map the buffer once pinned in the display plane
  3305. * (e.g. libkms for the bootup splash), we have to ensure that we
  3306. * always use map_and_fenceable for all scanout buffers.
  3307. */
  3308. ret = i915_gem_object_ggtt_pin(obj, view, alignment,
  3309. view->type == I915_GGTT_VIEW_NORMAL ?
  3310. PIN_MAPPABLE : 0);
  3311. if (ret)
  3312. goto err_unpin_display;
  3313. i915_gem_object_flush_cpu_write_domain(obj);
  3314. old_write_domain = obj->base.write_domain;
  3315. old_read_domains = obj->base.read_domains;
  3316. /* It should now be out of any other write domains, and we can update
  3317. * the domain values for our changes.
  3318. */
  3319. obj->base.write_domain = 0;
  3320. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  3321. trace_i915_gem_object_change_domain(obj,
  3322. old_read_domains,
  3323. old_write_domain);
  3324. return 0;
  3325. err_unpin_display:
  3326. obj->pin_display--;
  3327. return ret;
  3328. }
  3329. void
  3330. i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
  3331. const struct i915_ggtt_view *view)
  3332. {
  3333. if (WARN_ON(obj->pin_display == 0))
  3334. return;
  3335. i915_gem_object_ggtt_unpin_view(obj, view);
  3336. obj->pin_display--;
  3337. }
  3338. int
  3339. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  3340. {
  3341. int ret;
  3342. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  3343. return 0;
  3344. ret = i915_gem_object_wait_rendering(obj, false);
  3345. if (ret)
  3346. return ret;
  3347. /* Ensure that we invalidate the GPU's caches and TLBs. */
  3348. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  3349. return 0;
  3350. }
  3351. /**
  3352. * Moves a single object to the CPU read, and possibly write domain.
  3353. *
  3354. * This function returns when the move is complete, including waiting on
  3355. * flushes to occur.
  3356. */
  3357. int
  3358. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  3359. {
  3360. uint32_t old_write_domain, old_read_domains;
  3361. int ret;
  3362. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  3363. return 0;
  3364. ret = i915_gem_object_wait_rendering(obj, !write);
  3365. if (ret)
  3366. return ret;
  3367. i915_gem_object_retire(obj);
  3368. i915_gem_object_flush_gtt_write_domain(obj);
  3369. old_write_domain = obj->base.write_domain;
  3370. old_read_domains = obj->base.read_domains;
  3371. /* Flush the CPU cache if it's still invalid. */
  3372. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  3373. i915_gem_clflush_object(obj, false);
  3374. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  3375. }
  3376. /* It should now be out of any other write domains, and we can update
  3377. * the domain values for our changes.
  3378. */
  3379. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  3380. /* If we're writing through the CPU, then the GPU read domains will
  3381. * need to be invalidated at next use.
  3382. */
  3383. if (write) {
  3384. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3385. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3386. }
  3387. if (write)
  3388. intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
  3389. trace_i915_gem_object_change_domain(obj,
  3390. old_read_domains,
  3391. old_write_domain);
  3392. return 0;
  3393. }
  3394. /* Throttle our rendering by waiting until the ring has completed our requests
  3395. * emitted over 20 msec ago.
  3396. *
  3397. * Note that if we were to use the current jiffies each time around the loop,
  3398. * we wouldn't escape the function with any frames outstanding if the time to
  3399. * render a frame was over 20ms.
  3400. *
  3401. * This should get us reasonable parallelism between CPU and GPU but also
  3402. * relatively low latency when blocking on a particular request to finish.
  3403. */
  3404. static int
  3405. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3406. {
  3407. struct drm_i915_private *dev_priv = dev->dev_private;
  3408. struct drm_i915_file_private *file_priv = file->driver_priv;
  3409. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3410. struct drm_i915_gem_request *request, *target = NULL;
  3411. unsigned reset_counter;
  3412. int ret;
  3413. ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
  3414. if (ret)
  3415. return ret;
  3416. ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
  3417. if (ret)
  3418. return ret;
  3419. spin_lock(&file_priv->mm.lock);
  3420. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3421. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3422. break;
  3423. target = request;
  3424. }
  3425. reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  3426. if (target)
  3427. i915_gem_request_reference(target);
  3428. spin_unlock(&file_priv->mm.lock);
  3429. if (target == NULL)
  3430. return 0;
  3431. ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
  3432. if (ret == 0)
  3433. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3434. i915_gem_request_unreference__unlocked(target);
  3435. return ret;
  3436. }
  3437. static bool
  3438. i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
  3439. {
  3440. struct drm_i915_gem_object *obj = vma->obj;
  3441. if (alignment &&
  3442. vma->node.start & (alignment - 1))
  3443. return true;
  3444. if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
  3445. return true;
  3446. if (flags & PIN_OFFSET_BIAS &&
  3447. vma->node.start < (flags & PIN_OFFSET_MASK))
  3448. return true;
  3449. return false;
  3450. }
  3451. static int
  3452. i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
  3453. struct i915_address_space *vm,
  3454. const struct i915_ggtt_view *ggtt_view,
  3455. uint32_t alignment,
  3456. uint64_t flags)
  3457. {
  3458. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3459. struct i915_vma *vma;
  3460. unsigned bound;
  3461. int ret;
  3462. if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
  3463. return -ENODEV;
  3464. if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
  3465. return -EINVAL;
  3466. if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
  3467. return -EINVAL;
  3468. if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
  3469. return -EINVAL;
  3470. vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
  3471. i915_gem_obj_to_vma(obj, vm);
  3472. if (IS_ERR(vma))
  3473. return PTR_ERR(vma);
  3474. if (vma) {
  3475. if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
  3476. return -EBUSY;
  3477. if (i915_vma_misplaced(vma, alignment, flags)) {
  3478. unsigned long offset;
  3479. offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
  3480. i915_gem_obj_offset(obj, vm);
  3481. WARN(vma->pin_count,
  3482. "bo is already pinned in %s with incorrect alignment:"
  3483. " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
  3484. " obj->map_and_fenceable=%d\n",
  3485. ggtt_view ? "ggtt" : "ppgtt",
  3486. offset,
  3487. alignment,
  3488. !!(flags & PIN_MAPPABLE),
  3489. obj->map_and_fenceable);
  3490. ret = i915_vma_unbind(vma);
  3491. if (ret)
  3492. return ret;
  3493. vma = NULL;
  3494. }
  3495. }
  3496. bound = vma ? vma->bound : 0;
  3497. if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
  3498. vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
  3499. flags);
  3500. if (IS_ERR(vma))
  3501. return PTR_ERR(vma);
  3502. } else {
  3503. ret = i915_vma_bind(vma, obj->cache_level, flags);
  3504. if (ret)
  3505. return ret;
  3506. }
  3507. if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
  3508. (bound ^ vma->bound) & GLOBAL_BIND) {
  3509. bool mappable, fenceable;
  3510. u32 fence_size, fence_alignment;
  3511. fence_size = i915_gem_get_gtt_size(obj->base.dev,
  3512. obj->base.size,
  3513. obj->tiling_mode);
  3514. fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
  3515. obj->base.size,
  3516. obj->tiling_mode,
  3517. true);
  3518. fenceable = (vma->node.size == fence_size &&
  3519. (vma->node.start & (fence_alignment - 1)) == 0);
  3520. mappable = (vma->node.start + fence_size <=
  3521. dev_priv->gtt.mappable_end);
  3522. obj->map_and_fenceable = mappable && fenceable;
  3523. WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
  3524. }
  3525. vma->pin_count++;
  3526. return 0;
  3527. }
  3528. int
  3529. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  3530. struct i915_address_space *vm,
  3531. uint32_t alignment,
  3532. uint64_t flags)
  3533. {
  3534. return i915_gem_object_do_pin(obj, vm,
  3535. i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
  3536. alignment, flags);
  3537. }
  3538. int
  3539. i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
  3540. const struct i915_ggtt_view *view,
  3541. uint32_t alignment,
  3542. uint64_t flags)
  3543. {
  3544. if (WARN_ONCE(!view, "no view specified"))
  3545. return -EINVAL;
  3546. return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
  3547. alignment, flags | PIN_GLOBAL);
  3548. }
  3549. void
  3550. i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
  3551. const struct i915_ggtt_view *view)
  3552. {
  3553. struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
  3554. BUG_ON(!vma);
  3555. WARN_ON(vma->pin_count == 0);
  3556. WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
  3557. --vma->pin_count;
  3558. }
  3559. bool
  3560. i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
  3561. {
  3562. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  3563. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3564. struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
  3565. WARN_ON(!ggtt_vma ||
  3566. dev_priv->fence_regs[obj->fence_reg].pin_count >
  3567. ggtt_vma->pin_count);
  3568. dev_priv->fence_regs[obj->fence_reg].pin_count++;
  3569. return true;
  3570. } else
  3571. return false;
  3572. }
  3573. void
  3574. i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
  3575. {
  3576. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  3577. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  3578. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
  3579. dev_priv->fence_regs[obj->fence_reg].pin_count--;
  3580. }
  3581. }
  3582. int
  3583. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3584. struct drm_file *file)
  3585. {
  3586. struct drm_i915_gem_busy *args = data;
  3587. struct drm_i915_gem_object *obj;
  3588. int ret;
  3589. ret = i915_mutex_lock_interruptible(dev);
  3590. if (ret)
  3591. return ret;
  3592. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  3593. if (&obj->base == NULL) {
  3594. ret = -ENOENT;
  3595. goto unlock;
  3596. }
  3597. /* Count all active objects as busy, even if they are currently not used
  3598. * by the gpu. Users of this interface expect objects to eventually
  3599. * become non-busy without any further actions, therefore emit any
  3600. * necessary flushes here.
  3601. */
  3602. ret = i915_gem_object_flush_active(obj);
  3603. args->busy = obj->active;
  3604. if (obj->last_read_req) {
  3605. struct intel_engine_cs *ring;
  3606. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  3607. ring = i915_gem_request_get_ring(obj->last_read_req);
  3608. args->busy |= intel_ring_flag(ring) << 16;
  3609. }
  3610. drm_gem_object_unreference(&obj->base);
  3611. unlock:
  3612. mutex_unlock(&dev->struct_mutex);
  3613. return ret;
  3614. }
  3615. int
  3616. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3617. struct drm_file *file_priv)
  3618. {
  3619. return i915_gem_ring_throttle(dev, file_priv);
  3620. }
  3621. int
  3622. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3623. struct drm_file *file_priv)
  3624. {
  3625. struct drm_i915_private *dev_priv = dev->dev_private;
  3626. struct drm_i915_gem_madvise *args = data;
  3627. struct drm_i915_gem_object *obj;
  3628. int ret;
  3629. switch (args->madv) {
  3630. case I915_MADV_DONTNEED:
  3631. case I915_MADV_WILLNEED:
  3632. break;
  3633. default:
  3634. return -EINVAL;
  3635. }
  3636. ret = i915_mutex_lock_interruptible(dev);
  3637. if (ret)
  3638. return ret;
  3639. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  3640. if (&obj->base == NULL) {
  3641. ret = -ENOENT;
  3642. goto unlock;
  3643. }
  3644. if (i915_gem_obj_is_pinned(obj)) {
  3645. ret = -EINVAL;
  3646. goto out;
  3647. }
  3648. if (obj->pages &&
  3649. obj->tiling_mode != I915_TILING_NONE &&
  3650. dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
  3651. if (obj->madv == I915_MADV_WILLNEED)
  3652. i915_gem_object_unpin_pages(obj);
  3653. if (args->madv == I915_MADV_WILLNEED)
  3654. i915_gem_object_pin_pages(obj);
  3655. }
  3656. if (obj->madv != __I915_MADV_PURGED)
  3657. obj->madv = args->madv;
  3658. /* if the object is no longer attached, discard its backing storage */
  3659. if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
  3660. i915_gem_object_truncate(obj);
  3661. args->retained = obj->madv != __I915_MADV_PURGED;
  3662. out:
  3663. drm_gem_object_unreference(&obj->base);
  3664. unlock:
  3665. mutex_unlock(&dev->struct_mutex);
  3666. return ret;
  3667. }
  3668. void i915_gem_object_init(struct drm_i915_gem_object *obj,
  3669. const struct drm_i915_gem_object_ops *ops)
  3670. {
  3671. INIT_LIST_HEAD(&obj->global_list);
  3672. INIT_LIST_HEAD(&obj->ring_list);
  3673. INIT_LIST_HEAD(&obj->obj_exec_link);
  3674. INIT_LIST_HEAD(&obj->vma_list);
  3675. INIT_LIST_HEAD(&obj->batch_pool_link);
  3676. obj->ops = ops;
  3677. obj->fence_reg = I915_FENCE_REG_NONE;
  3678. obj->madv = I915_MADV_WILLNEED;
  3679. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3680. }
  3681. static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
  3682. .get_pages = i915_gem_object_get_pages_gtt,
  3683. .put_pages = i915_gem_object_put_pages_gtt,
  3684. };
  3685. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3686. size_t size)
  3687. {
  3688. struct drm_i915_gem_object *obj;
  3689. struct address_space *mapping;
  3690. gfp_t mask;
  3691. obj = i915_gem_object_alloc(dev);
  3692. if (obj == NULL)
  3693. return NULL;
  3694. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3695. i915_gem_object_free(obj);
  3696. return NULL;
  3697. }
  3698. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3699. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3700. /* 965gm cannot relocate objects above 4GiB. */
  3701. mask &= ~__GFP_HIGHMEM;
  3702. mask |= __GFP_DMA32;
  3703. }
  3704. mapping = file_inode(obj->base.filp)->i_mapping;
  3705. mapping_set_gfp_mask(mapping, mask);
  3706. i915_gem_object_init(obj, &i915_gem_object_ops);
  3707. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3708. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3709. if (HAS_LLC(dev)) {
  3710. /* On some devices, we can have the GPU use the LLC (the CPU
  3711. * cache) for about a 10% performance improvement
  3712. * compared to uncached. Graphics requests other than
  3713. * display scanout are coherent with the CPU in
  3714. * accessing this cache. This means in this mode we
  3715. * don't need to clflush on the CPU side, and on the
  3716. * GPU side we only need to flush internal caches to
  3717. * get data visible to the CPU.
  3718. *
  3719. * However, we maintain the display planes as UC, and so
  3720. * need to rebind when first used as such.
  3721. */
  3722. obj->cache_level = I915_CACHE_LLC;
  3723. } else
  3724. obj->cache_level = I915_CACHE_NONE;
  3725. trace_i915_gem_object_create(obj);
  3726. return obj;
  3727. }
  3728. static bool discard_backing_storage(struct drm_i915_gem_object *obj)
  3729. {
  3730. /* If we are the last user of the backing storage (be it shmemfs
  3731. * pages or stolen etc), we know that the pages are going to be
  3732. * immediately released. In this case, we can then skip copying
  3733. * back the contents from the GPU.
  3734. */
  3735. if (obj->madv != I915_MADV_WILLNEED)
  3736. return false;
  3737. if (obj->base.filp == NULL)
  3738. return true;
  3739. /* At first glance, this looks racy, but then again so would be
  3740. * userspace racing mmap against close. However, the first external
  3741. * reference to the filp can only be obtained through the
  3742. * i915_gem_mmap_ioctl() which safeguards us against the user
  3743. * acquiring such a reference whilst we are in the middle of
  3744. * freeing the object.
  3745. */
  3746. return atomic_long_read(&obj->base.filp->f_count) == 1;
  3747. }
  3748. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3749. {
  3750. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3751. struct drm_device *dev = obj->base.dev;
  3752. struct drm_i915_private *dev_priv = dev->dev_private;
  3753. struct i915_vma *vma, *next;
  3754. intel_runtime_pm_get(dev_priv);
  3755. trace_i915_gem_object_destroy(obj);
  3756. list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
  3757. int ret;
  3758. vma->pin_count = 0;
  3759. ret = i915_vma_unbind(vma);
  3760. if (WARN_ON(ret == -ERESTARTSYS)) {
  3761. bool was_interruptible;
  3762. was_interruptible = dev_priv->mm.interruptible;
  3763. dev_priv->mm.interruptible = false;
  3764. WARN_ON(i915_vma_unbind(vma));
  3765. dev_priv->mm.interruptible = was_interruptible;
  3766. }
  3767. }
  3768. /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
  3769. * before progressing. */
  3770. if (obj->stolen)
  3771. i915_gem_object_unpin_pages(obj);
  3772. WARN_ON(obj->frontbuffer_bits);
  3773. if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
  3774. dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
  3775. obj->tiling_mode != I915_TILING_NONE)
  3776. i915_gem_object_unpin_pages(obj);
  3777. if (WARN_ON(obj->pages_pin_count))
  3778. obj->pages_pin_count = 0;
  3779. if (discard_backing_storage(obj))
  3780. obj->madv = I915_MADV_DONTNEED;
  3781. i915_gem_object_put_pages(obj);
  3782. i915_gem_object_free_mmap_offset(obj);
  3783. BUG_ON(obj->pages);
  3784. if (obj->base.import_attach)
  3785. drm_prime_gem_destroy(&obj->base, NULL);
  3786. if (obj->ops->release)
  3787. obj->ops->release(obj);
  3788. drm_gem_object_release(&obj->base);
  3789. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3790. kfree(obj->bit_17);
  3791. i915_gem_object_free(obj);
  3792. intel_runtime_pm_put(dev_priv);
  3793. }
  3794. struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
  3795. struct i915_address_space *vm)
  3796. {
  3797. struct i915_vma *vma;
  3798. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  3799. if (i915_is_ggtt(vma->vm) &&
  3800. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  3801. continue;
  3802. if (vma->vm == vm)
  3803. return vma;
  3804. }
  3805. return NULL;
  3806. }
  3807. struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
  3808. const struct i915_ggtt_view *view)
  3809. {
  3810. struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
  3811. struct i915_vma *vma;
  3812. if (WARN_ONCE(!view, "no view specified"))
  3813. return ERR_PTR(-EINVAL);
  3814. list_for_each_entry(vma, &obj->vma_list, vma_link)
  3815. if (vma->vm == ggtt &&
  3816. i915_ggtt_view_equal(&vma->ggtt_view, view))
  3817. return vma;
  3818. return NULL;
  3819. }
  3820. void i915_gem_vma_destroy(struct i915_vma *vma)
  3821. {
  3822. struct i915_address_space *vm = NULL;
  3823. WARN_ON(vma->node.allocated);
  3824. /* Keep the vma as a placeholder in the execbuffer reservation lists */
  3825. if (!list_empty(&vma->exec_list))
  3826. return;
  3827. vm = vma->vm;
  3828. if (!i915_is_ggtt(vm))
  3829. i915_ppgtt_put(i915_vm_to_ppgtt(vm));
  3830. list_del(&vma->vma_link);
  3831. kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
  3832. }
  3833. static void
  3834. i915_gem_stop_ringbuffers(struct drm_device *dev)
  3835. {
  3836. struct drm_i915_private *dev_priv = dev->dev_private;
  3837. struct intel_engine_cs *ring;
  3838. int i;
  3839. for_each_ring(ring, dev_priv, i)
  3840. dev_priv->gt.stop_ring(ring);
  3841. }
  3842. int
  3843. i915_gem_suspend(struct drm_device *dev)
  3844. {
  3845. struct drm_i915_private *dev_priv = dev->dev_private;
  3846. int ret = 0;
  3847. mutex_lock(&dev->struct_mutex);
  3848. ret = i915_gpu_idle(dev);
  3849. if (ret)
  3850. goto err;
  3851. i915_gem_retire_requests(dev);
  3852. i915_gem_stop_ringbuffers(dev);
  3853. mutex_unlock(&dev->struct_mutex);
  3854. cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
  3855. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3856. flush_delayed_work(&dev_priv->mm.idle_work);
  3857. /* Assert that we sucessfully flushed all the work and
  3858. * reset the GPU back to its idle, low power state.
  3859. */
  3860. WARN_ON(dev_priv->mm.busy);
  3861. return 0;
  3862. err:
  3863. mutex_unlock(&dev->struct_mutex);
  3864. return ret;
  3865. }
  3866. int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
  3867. {
  3868. struct drm_device *dev = ring->dev;
  3869. struct drm_i915_private *dev_priv = dev->dev_private;
  3870. u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
  3871. u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
  3872. int i, ret;
  3873. if (!HAS_L3_DPF(dev) || !remap_info)
  3874. return 0;
  3875. ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
  3876. if (ret)
  3877. return ret;
  3878. /*
  3879. * Note: We do not worry about the concurrent register cacheline hang
  3880. * here because no other code should access these registers other than
  3881. * at initialization time.
  3882. */
  3883. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3884. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  3885. intel_ring_emit(ring, reg_base + i);
  3886. intel_ring_emit(ring, remap_info[i/4]);
  3887. }
  3888. intel_ring_advance(ring);
  3889. return ret;
  3890. }
  3891. void i915_gem_init_swizzling(struct drm_device *dev)
  3892. {
  3893. struct drm_i915_private *dev_priv = dev->dev_private;
  3894. if (INTEL_INFO(dev)->gen < 5 ||
  3895. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3896. return;
  3897. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3898. DISP_TILE_SURFACE_SWIZZLING);
  3899. if (IS_GEN5(dev))
  3900. return;
  3901. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3902. if (IS_GEN6(dev))
  3903. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3904. else if (IS_GEN7(dev))
  3905. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3906. else if (IS_GEN8(dev))
  3907. I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
  3908. else
  3909. BUG();
  3910. }
  3911. static bool
  3912. intel_enable_blt(struct drm_device *dev)
  3913. {
  3914. if (!HAS_BLT(dev))
  3915. return false;
  3916. /* The blitter was dysfunctional on early prototypes */
  3917. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3918. DRM_INFO("BLT not supported on this pre-production hardware;"
  3919. " graphics performance will be degraded.\n");
  3920. return false;
  3921. }
  3922. return true;
  3923. }
  3924. static void init_unused_ring(struct drm_device *dev, u32 base)
  3925. {
  3926. struct drm_i915_private *dev_priv = dev->dev_private;
  3927. I915_WRITE(RING_CTL(base), 0);
  3928. I915_WRITE(RING_HEAD(base), 0);
  3929. I915_WRITE(RING_TAIL(base), 0);
  3930. I915_WRITE(RING_START(base), 0);
  3931. }
  3932. static void init_unused_rings(struct drm_device *dev)
  3933. {
  3934. if (IS_I830(dev)) {
  3935. init_unused_ring(dev, PRB1_BASE);
  3936. init_unused_ring(dev, SRB0_BASE);
  3937. init_unused_ring(dev, SRB1_BASE);
  3938. init_unused_ring(dev, SRB2_BASE);
  3939. init_unused_ring(dev, SRB3_BASE);
  3940. } else if (IS_GEN2(dev)) {
  3941. init_unused_ring(dev, SRB0_BASE);
  3942. init_unused_ring(dev, SRB1_BASE);
  3943. } else if (IS_GEN3(dev)) {
  3944. init_unused_ring(dev, PRB1_BASE);
  3945. init_unused_ring(dev, PRB2_BASE);
  3946. }
  3947. }
  3948. int i915_gem_init_rings(struct drm_device *dev)
  3949. {
  3950. struct drm_i915_private *dev_priv = dev->dev_private;
  3951. int ret;
  3952. ret = intel_init_render_ring_buffer(dev);
  3953. if (ret)
  3954. return ret;
  3955. if (HAS_BSD(dev)) {
  3956. ret = intel_init_bsd_ring_buffer(dev);
  3957. if (ret)
  3958. goto cleanup_render_ring;
  3959. }
  3960. if (intel_enable_blt(dev)) {
  3961. ret = intel_init_blt_ring_buffer(dev);
  3962. if (ret)
  3963. goto cleanup_bsd_ring;
  3964. }
  3965. if (HAS_VEBOX(dev)) {
  3966. ret = intel_init_vebox_ring_buffer(dev);
  3967. if (ret)
  3968. goto cleanup_blt_ring;
  3969. }
  3970. if (HAS_BSD2(dev)) {
  3971. ret = intel_init_bsd2_ring_buffer(dev);
  3972. if (ret)
  3973. goto cleanup_vebox_ring;
  3974. }
  3975. ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
  3976. if (ret)
  3977. goto cleanup_bsd2_ring;
  3978. return 0;
  3979. cleanup_bsd2_ring:
  3980. intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
  3981. cleanup_vebox_ring:
  3982. intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
  3983. cleanup_blt_ring:
  3984. intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
  3985. cleanup_bsd_ring:
  3986. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3987. cleanup_render_ring:
  3988. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3989. return ret;
  3990. }
  3991. int
  3992. i915_gem_init_hw(struct drm_device *dev)
  3993. {
  3994. struct drm_i915_private *dev_priv = dev->dev_private;
  3995. struct intel_engine_cs *ring;
  3996. int ret, i;
  3997. if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
  3998. return -EIO;
  3999. /* Double layer security blanket, see i915_gem_init() */
  4000. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4001. if (dev_priv->ellc_size)
  4002. I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
  4003. if (IS_HASWELL(dev))
  4004. I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
  4005. LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
  4006. if (HAS_PCH_NOP(dev)) {
  4007. if (IS_IVYBRIDGE(dev)) {
  4008. u32 temp = I915_READ(GEN7_MSG_CTL);
  4009. temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
  4010. I915_WRITE(GEN7_MSG_CTL, temp);
  4011. } else if (INTEL_INFO(dev)->gen >= 7) {
  4012. u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
  4013. temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
  4014. I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
  4015. }
  4016. }
  4017. i915_gem_init_swizzling(dev);
  4018. /*
  4019. * At least 830 can leave some of the unused rings
  4020. * "active" (ie. head != tail) after resume which
  4021. * will prevent c3 entry. Makes sure all unused rings
  4022. * are totally idle.
  4023. */
  4024. init_unused_rings(dev);
  4025. for_each_ring(ring, dev_priv, i) {
  4026. ret = ring->init_hw(ring);
  4027. if (ret)
  4028. goto out;
  4029. }
  4030. for (i = 0; i < NUM_L3_SLICES(dev); i++)
  4031. i915_gem_l3_remap(&dev_priv->ring[RCS], i);
  4032. ret = i915_ppgtt_init_hw(dev);
  4033. if (ret && ret != -EIO) {
  4034. DRM_ERROR("PPGTT enable failed %d\n", ret);
  4035. i915_gem_cleanup_ringbuffer(dev);
  4036. }
  4037. ret = i915_gem_context_enable(dev_priv);
  4038. if (ret && ret != -EIO) {
  4039. DRM_ERROR("Context enable failed %d\n", ret);
  4040. i915_gem_cleanup_ringbuffer(dev);
  4041. goto out;
  4042. }
  4043. out:
  4044. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4045. return ret;
  4046. }
  4047. int i915_gem_init(struct drm_device *dev)
  4048. {
  4049. struct drm_i915_private *dev_priv = dev->dev_private;
  4050. int ret;
  4051. i915.enable_execlists = intel_sanitize_enable_execlists(dev,
  4052. i915.enable_execlists);
  4053. mutex_lock(&dev->struct_mutex);
  4054. if (IS_VALLEYVIEW(dev)) {
  4055. /* VLVA0 (potential hack), BIOS isn't actually waking us */
  4056. I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
  4057. if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
  4058. VLV_GTLC_ALLOWWAKEACK), 10))
  4059. DRM_DEBUG_DRIVER("allow wake ack timed out\n");
  4060. }
  4061. if (!i915.enable_execlists) {
  4062. dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
  4063. dev_priv->gt.init_rings = i915_gem_init_rings;
  4064. dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
  4065. dev_priv->gt.stop_ring = intel_stop_ring_buffer;
  4066. } else {
  4067. dev_priv->gt.execbuf_submit = intel_execlists_submission;
  4068. dev_priv->gt.init_rings = intel_logical_rings_init;
  4069. dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
  4070. dev_priv->gt.stop_ring = intel_logical_ring_stop;
  4071. }
  4072. /* This is just a security blanket to placate dragons.
  4073. * On some systems, we very sporadically observe that the first TLBs
  4074. * used by the CS may be stale, despite us poking the TLB reset. If
  4075. * we hold the forcewake during initialisation these problems
  4076. * just magically go away.
  4077. */
  4078. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4079. ret = i915_gem_init_userptr(dev);
  4080. if (ret)
  4081. goto out_unlock;
  4082. i915_gem_init_global_gtt(dev);
  4083. ret = i915_gem_context_init(dev);
  4084. if (ret)
  4085. goto out_unlock;
  4086. ret = dev_priv->gt.init_rings(dev);
  4087. if (ret)
  4088. goto out_unlock;
  4089. ret = i915_gem_init_hw(dev);
  4090. if (ret == -EIO) {
  4091. /* Allow ring initialisation to fail by marking the GPU as
  4092. * wedged. But we only want to do this where the GPU is angry,
  4093. * for all other failure, such as an allocation failure, bail.
  4094. */
  4095. DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
  4096. atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
  4097. ret = 0;
  4098. }
  4099. out_unlock:
  4100. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4101. mutex_unlock(&dev->struct_mutex);
  4102. return ret;
  4103. }
  4104. void
  4105. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  4106. {
  4107. struct drm_i915_private *dev_priv = dev->dev_private;
  4108. struct intel_engine_cs *ring;
  4109. int i;
  4110. for_each_ring(ring, dev_priv, i)
  4111. dev_priv->gt.cleanup_ring(ring);
  4112. }
  4113. static void
  4114. init_ring_lists(struct intel_engine_cs *ring)
  4115. {
  4116. INIT_LIST_HEAD(&ring->active_list);
  4117. INIT_LIST_HEAD(&ring->request_list);
  4118. }
  4119. void i915_init_vm(struct drm_i915_private *dev_priv,
  4120. struct i915_address_space *vm)
  4121. {
  4122. if (!i915_is_ggtt(vm))
  4123. drm_mm_init(&vm->mm, vm->start, vm->total);
  4124. vm->dev = dev_priv->dev;
  4125. INIT_LIST_HEAD(&vm->active_list);
  4126. INIT_LIST_HEAD(&vm->inactive_list);
  4127. INIT_LIST_HEAD(&vm->global_link);
  4128. list_add_tail(&vm->global_link, &dev_priv->vm_list);
  4129. }
  4130. void
  4131. i915_gem_load(struct drm_device *dev)
  4132. {
  4133. struct drm_i915_private *dev_priv = dev->dev_private;
  4134. int i;
  4135. dev_priv->objects =
  4136. kmem_cache_create("i915_gem_object",
  4137. sizeof(struct drm_i915_gem_object), 0,
  4138. SLAB_HWCACHE_ALIGN,
  4139. NULL);
  4140. dev_priv->vmas =
  4141. kmem_cache_create("i915_gem_vma",
  4142. sizeof(struct i915_vma), 0,
  4143. SLAB_HWCACHE_ALIGN,
  4144. NULL);
  4145. dev_priv->requests =
  4146. kmem_cache_create("i915_gem_request",
  4147. sizeof(struct drm_i915_gem_request), 0,
  4148. SLAB_HWCACHE_ALIGN,
  4149. NULL);
  4150. INIT_LIST_HEAD(&dev_priv->vm_list);
  4151. i915_init_vm(dev_priv, &dev_priv->gtt.base);
  4152. INIT_LIST_HEAD(&dev_priv->context_list);
  4153. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  4154. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  4155. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4156. for (i = 0; i < I915_NUM_RINGS; i++)
  4157. init_ring_lists(&dev_priv->ring[i]);
  4158. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  4159. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4160. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4161. i915_gem_retire_work_handler);
  4162. INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
  4163. i915_gem_idle_work_handler);
  4164. init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
  4165. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  4166. if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
  4167. dev_priv->num_fence_regs = 32;
  4168. else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4169. dev_priv->num_fence_regs = 16;
  4170. else
  4171. dev_priv->num_fence_regs = 8;
  4172. if (intel_vgpu_active(dev))
  4173. dev_priv->num_fence_regs =
  4174. I915_READ(vgtif_reg(avail_rs.fence_num));
  4175. /* Initialize fence registers to zero */
  4176. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4177. i915_gem_restore_fences(dev);
  4178. i915_gem_detect_bit_6_swizzle(dev);
  4179. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4180. dev_priv->mm.interruptible = true;
  4181. i915_gem_shrinker_init(dev_priv);
  4182. mutex_init(&dev_priv->fb_tracking.lock);
  4183. }
  4184. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4185. {
  4186. struct drm_i915_file_private *file_priv = file->driver_priv;
  4187. /* Clean up our request list when the client is going away, so that
  4188. * later retire_requests won't dereference our soon-to-be-gone
  4189. * file_priv.
  4190. */
  4191. spin_lock(&file_priv->mm.lock);
  4192. while (!list_empty(&file_priv->mm.request_list)) {
  4193. struct drm_i915_gem_request *request;
  4194. request = list_first_entry(&file_priv->mm.request_list,
  4195. struct drm_i915_gem_request,
  4196. client_list);
  4197. list_del(&request->client_list);
  4198. request->file_priv = NULL;
  4199. }
  4200. spin_unlock(&file_priv->mm.lock);
  4201. if (!list_empty(&file_priv->rps_boost)) {
  4202. mutex_lock(&to_i915(dev)->rps.hw_lock);
  4203. list_del(&file_priv->rps_boost);
  4204. mutex_unlock(&to_i915(dev)->rps.hw_lock);
  4205. }
  4206. }
  4207. int i915_gem_open(struct drm_device *dev, struct drm_file *file)
  4208. {
  4209. struct drm_i915_file_private *file_priv;
  4210. int ret;
  4211. DRM_DEBUG_DRIVER("\n");
  4212. file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
  4213. if (!file_priv)
  4214. return -ENOMEM;
  4215. file->driver_priv = file_priv;
  4216. file_priv->dev_priv = dev->dev_private;
  4217. file_priv->file = file;
  4218. INIT_LIST_HEAD(&file_priv->rps_boost);
  4219. spin_lock_init(&file_priv->mm.lock);
  4220. INIT_LIST_HEAD(&file_priv->mm.request_list);
  4221. ret = i915_gem_context_open(dev, file);
  4222. if (ret)
  4223. kfree(file_priv);
  4224. return ret;
  4225. }
  4226. /**
  4227. * i915_gem_track_fb - update frontbuffer tracking
  4228. * old: current GEM buffer for the frontbuffer slots
  4229. * new: new GEM buffer for the frontbuffer slots
  4230. * frontbuffer_bits: bitmask of frontbuffer slots
  4231. *
  4232. * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
  4233. * from @old and setting them in @new. Both @old and @new can be NULL.
  4234. */
  4235. void i915_gem_track_fb(struct drm_i915_gem_object *old,
  4236. struct drm_i915_gem_object *new,
  4237. unsigned frontbuffer_bits)
  4238. {
  4239. if (old) {
  4240. WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
  4241. WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
  4242. old->frontbuffer_bits &= ~frontbuffer_bits;
  4243. }
  4244. if (new) {
  4245. WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
  4246. WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
  4247. new->frontbuffer_bits |= frontbuffer_bits;
  4248. }
  4249. }
  4250. /* All the new VM stuff */
  4251. unsigned long
  4252. i915_gem_obj_offset(struct drm_i915_gem_object *o,
  4253. struct i915_address_space *vm)
  4254. {
  4255. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4256. struct i915_vma *vma;
  4257. WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
  4258. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4259. if (i915_is_ggtt(vma->vm) &&
  4260. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4261. continue;
  4262. if (vma->vm == vm)
  4263. return vma->node.start;
  4264. }
  4265. WARN(1, "%s vma for this object not found.\n",
  4266. i915_is_ggtt(vm) ? "global" : "ppgtt");
  4267. return -1;
  4268. }
  4269. unsigned long
  4270. i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
  4271. const struct i915_ggtt_view *view)
  4272. {
  4273. struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
  4274. struct i915_vma *vma;
  4275. list_for_each_entry(vma, &o->vma_list, vma_link)
  4276. if (vma->vm == ggtt &&
  4277. i915_ggtt_view_equal(&vma->ggtt_view, view))
  4278. return vma->node.start;
  4279. WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
  4280. return -1;
  4281. }
  4282. bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
  4283. struct i915_address_space *vm)
  4284. {
  4285. struct i915_vma *vma;
  4286. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4287. if (i915_is_ggtt(vma->vm) &&
  4288. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4289. continue;
  4290. if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
  4291. return true;
  4292. }
  4293. return false;
  4294. }
  4295. bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
  4296. const struct i915_ggtt_view *view)
  4297. {
  4298. struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
  4299. struct i915_vma *vma;
  4300. list_for_each_entry(vma, &o->vma_list, vma_link)
  4301. if (vma->vm == ggtt &&
  4302. i915_ggtt_view_equal(&vma->ggtt_view, view) &&
  4303. drm_mm_node_allocated(&vma->node))
  4304. return true;
  4305. return false;
  4306. }
  4307. bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
  4308. {
  4309. struct i915_vma *vma;
  4310. list_for_each_entry(vma, &o->vma_list, vma_link)
  4311. if (drm_mm_node_allocated(&vma->node))
  4312. return true;
  4313. return false;
  4314. }
  4315. unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
  4316. struct i915_address_space *vm)
  4317. {
  4318. struct drm_i915_private *dev_priv = o->base.dev->dev_private;
  4319. struct i915_vma *vma;
  4320. WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
  4321. BUG_ON(list_empty(&o->vma_list));
  4322. list_for_each_entry(vma, &o->vma_list, vma_link) {
  4323. if (i915_is_ggtt(vma->vm) &&
  4324. vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
  4325. continue;
  4326. if (vma->vm == vm)
  4327. return vma->node.size;
  4328. }
  4329. return 0;
  4330. }
  4331. bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
  4332. {
  4333. struct i915_vma *vma;
  4334. list_for_each_entry(vma, &obj->vma_list, vma_link)
  4335. if (vma->pin_count > 0)
  4336. return true;
  4337. return false;
  4338. }