intel_ringbuffer.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. /*
  320. * TLB invalidate requires a post-sync write.
  321. */
  322. flags |= PIPE_CONTROL_QW_WRITE;
  323. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  324. /* Workaround: we must issue a pipe_control with CS-stall bit
  325. * set before a pipe_control command that has the state cache
  326. * invalidate bit set. */
  327. gen7_render_ring_cs_stall_wa(ring);
  328. }
  329. ret = intel_ring_begin(ring, 4);
  330. if (ret)
  331. return ret;
  332. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  333. intel_ring_emit(ring, flags);
  334. intel_ring_emit(ring, scratch_addr);
  335. intel_ring_emit(ring, 0);
  336. intel_ring_advance(ring);
  337. if (!invalidate_domains && flush_domains)
  338. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  339. return 0;
  340. }
  341. static int
  342. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  343. u32 flags, u32 scratch_addr)
  344. {
  345. int ret;
  346. ret = intel_ring_begin(ring, 6);
  347. if (ret)
  348. return ret;
  349. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  350. intel_ring_emit(ring, flags);
  351. intel_ring_emit(ring, scratch_addr);
  352. intel_ring_emit(ring, 0);
  353. intel_ring_emit(ring, 0);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_advance(ring);
  356. return 0;
  357. }
  358. static int
  359. gen8_render_ring_flush(struct intel_engine_cs *ring,
  360. u32 invalidate_domains, u32 flush_domains)
  361. {
  362. u32 flags = 0;
  363. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  364. int ret;
  365. flags |= PIPE_CONTROL_CS_STALL;
  366. if (flush_domains) {
  367. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  368. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  369. }
  370. if (invalidate_domains) {
  371. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  372. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_QW_WRITE;
  378. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  379. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  380. ret = gen8_emit_pipe_control(ring,
  381. PIPE_CONTROL_CS_STALL |
  382. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  383. 0);
  384. if (ret)
  385. return ret;
  386. }
  387. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  388. if (ret)
  389. return ret;
  390. if (!invalidate_domains && flush_domains)
  391. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  392. return 0;
  393. }
  394. static void ring_write_tail(struct intel_engine_cs *ring,
  395. u32 value)
  396. {
  397. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  398. I915_WRITE_TAIL(ring, value);
  399. }
  400. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  401. {
  402. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  403. u64 acthd;
  404. if (INTEL_INFO(ring->dev)->gen >= 8)
  405. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  406. RING_ACTHD_UDW(ring->mmio_base));
  407. else if (INTEL_INFO(ring->dev)->gen >= 4)
  408. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  409. else
  410. acthd = I915_READ(ACTHD);
  411. return acthd;
  412. }
  413. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  414. {
  415. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  416. u32 addr;
  417. addr = dev_priv->status_page_dmah->busaddr;
  418. if (INTEL_INFO(ring->dev)->gen >= 4)
  419. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  420. I915_WRITE(HWS_PGA, addr);
  421. }
  422. static bool stop_ring(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  425. if (!IS_GEN2(ring->dev)) {
  426. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  428. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  429. /* Sometimes we observe that the idle flag is not
  430. * set even though the ring is empty. So double
  431. * check before giving up.
  432. */
  433. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  434. return false;
  435. }
  436. }
  437. I915_WRITE_CTL(ring, 0);
  438. I915_WRITE_HEAD(ring, 0);
  439. ring->write_tail(ring, 0);
  440. if (!IS_GEN2(ring->dev)) {
  441. (void)I915_READ_CTL(ring);
  442. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  443. }
  444. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  445. }
  446. static int init_ring_common(struct intel_engine_cs *ring)
  447. {
  448. struct drm_device *dev = ring->dev;
  449. struct drm_i915_private *dev_priv = dev->dev_private;
  450. struct intel_ringbuffer *ringbuf = ring->buffer;
  451. struct drm_i915_gem_object *obj = ringbuf->obj;
  452. int ret = 0;
  453. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  454. if (!stop_ring(ring)) {
  455. /* G45 ring initialization often fails to reset head to zero */
  456. DRM_DEBUG_KMS("%s head not reset to zero "
  457. "ctl %08x head %08x tail %08x start %08x\n",
  458. ring->name,
  459. I915_READ_CTL(ring),
  460. I915_READ_HEAD(ring),
  461. I915_READ_TAIL(ring),
  462. I915_READ_START(ring));
  463. if (!stop_ring(ring)) {
  464. DRM_ERROR("failed to set %s head to zero "
  465. "ctl %08x head %08x tail %08x start %08x\n",
  466. ring->name,
  467. I915_READ_CTL(ring),
  468. I915_READ_HEAD(ring),
  469. I915_READ_TAIL(ring),
  470. I915_READ_START(ring));
  471. ret = -EIO;
  472. goto out;
  473. }
  474. }
  475. if (I915_NEED_GFX_HWS(dev))
  476. intel_ring_setup_status_page(ring);
  477. else
  478. ring_setup_phys_status_page(ring);
  479. /* Enforce ordering by reading HEAD register back */
  480. I915_READ_HEAD(ring);
  481. /* Initialize the ring. This must happen _after_ we've cleared the ring
  482. * registers with the above sequence (the readback of the HEAD registers
  483. * also enforces ordering), otherwise the hw might lose the new ring
  484. * register values. */
  485. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  486. I915_WRITE_CTL(ring,
  487. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  488. | RING_VALID);
  489. /* If the head is still not zero, the ring is dead */
  490. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  491. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  492. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  493. DRM_ERROR("%s initialization failed "
  494. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  495. ring->name,
  496. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  497. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  498. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  499. ret = -EIO;
  500. goto out;
  501. }
  502. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  503. i915_kernel_lost_context(ring->dev);
  504. else {
  505. ringbuf->head = I915_READ_HEAD(ring);
  506. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  507. ringbuf->space = intel_ring_space(ringbuf);
  508. ringbuf->last_retired_head = -1;
  509. }
  510. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  511. out:
  512. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  513. return ret;
  514. }
  515. void
  516. intel_fini_pipe_control(struct intel_engine_cs *ring)
  517. {
  518. struct drm_device *dev = ring->dev;
  519. if (ring->scratch.obj == NULL)
  520. return;
  521. if (INTEL_INFO(dev)->gen >= 5) {
  522. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  523. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  524. }
  525. drm_gem_object_unreference(&ring->scratch.obj->base);
  526. ring->scratch.obj = NULL;
  527. }
  528. int
  529. intel_init_pipe_control(struct intel_engine_cs *ring)
  530. {
  531. int ret;
  532. if (ring->scratch.obj)
  533. return 0;
  534. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  535. if (ring->scratch.obj == NULL) {
  536. DRM_ERROR("Failed to allocate seqno page\n");
  537. ret = -ENOMEM;
  538. goto err;
  539. }
  540. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  541. if (ret)
  542. goto err_unref;
  543. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  544. if (ret)
  545. goto err_unref;
  546. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  547. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  548. if (ring->scratch.cpu_page == NULL) {
  549. ret = -ENOMEM;
  550. goto err_unpin;
  551. }
  552. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  553. ring->name, ring->scratch.gtt_offset);
  554. return 0;
  555. err_unpin:
  556. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  557. err_unref:
  558. drm_gem_object_unreference(&ring->scratch.obj->base);
  559. err:
  560. return ret;
  561. }
  562. static int init_render_ring(struct intel_engine_cs *ring)
  563. {
  564. struct drm_device *dev = ring->dev;
  565. struct drm_i915_private *dev_priv = dev->dev_private;
  566. int ret = init_ring_common(ring);
  567. if (ret)
  568. return ret;
  569. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  570. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  571. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  572. /* We need to disable the AsyncFlip performance optimisations in order
  573. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  574. * programmed to '1' on all products.
  575. *
  576. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  577. */
  578. if (INTEL_INFO(dev)->gen >= 6)
  579. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  580. /* Required for the hardware to program scanline values for waiting */
  581. /* WaEnableFlushTlbInvalidationMode:snb */
  582. if (INTEL_INFO(dev)->gen == 6)
  583. I915_WRITE(GFX_MODE,
  584. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  585. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  586. if (IS_GEN7(dev))
  587. I915_WRITE(GFX_MODE_GEN7,
  588. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  589. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  590. if (INTEL_INFO(dev)->gen >= 5) {
  591. ret = intel_init_pipe_control(ring);
  592. if (ret)
  593. return ret;
  594. }
  595. if (IS_GEN6(dev)) {
  596. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  597. * "If this bit is set, STCunit will have LRA as replacement
  598. * policy. [...] This bit must be reset. LRA replacement
  599. * policy is not supported."
  600. */
  601. I915_WRITE(CACHE_MODE_0,
  602. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  603. }
  604. if (INTEL_INFO(dev)->gen >= 6)
  605. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  606. if (HAS_L3_DPF(dev))
  607. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  608. return ret;
  609. }
  610. static void render_ring_cleanup(struct intel_engine_cs *ring)
  611. {
  612. struct drm_device *dev = ring->dev;
  613. struct drm_i915_private *dev_priv = dev->dev_private;
  614. if (dev_priv->semaphore_obj) {
  615. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  616. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  617. dev_priv->semaphore_obj = NULL;
  618. }
  619. intel_fini_pipe_control(ring);
  620. }
  621. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  622. unsigned int num_dwords)
  623. {
  624. #define MBOX_UPDATE_DWORDS 8
  625. struct drm_device *dev = signaller->dev;
  626. struct drm_i915_private *dev_priv = dev->dev_private;
  627. struct intel_engine_cs *waiter;
  628. int i, ret, num_rings;
  629. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  630. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  631. #undef MBOX_UPDATE_DWORDS
  632. ret = intel_ring_begin(signaller, num_dwords);
  633. if (ret)
  634. return ret;
  635. for_each_ring(waiter, dev_priv, i) {
  636. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  637. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  638. continue;
  639. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  640. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  641. PIPE_CONTROL_QW_WRITE |
  642. PIPE_CONTROL_FLUSH_ENABLE);
  643. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  644. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  645. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  646. intel_ring_emit(signaller, 0);
  647. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  648. MI_SEMAPHORE_TARGET(waiter->id));
  649. intel_ring_emit(signaller, 0);
  650. }
  651. return 0;
  652. }
  653. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  654. unsigned int num_dwords)
  655. {
  656. #define MBOX_UPDATE_DWORDS 6
  657. struct drm_device *dev = signaller->dev;
  658. struct drm_i915_private *dev_priv = dev->dev_private;
  659. struct intel_engine_cs *waiter;
  660. int i, ret, num_rings;
  661. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  662. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  663. #undef MBOX_UPDATE_DWORDS
  664. ret = intel_ring_begin(signaller, num_dwords);
  665. if (ret)
  666. return ret;
  667. for_each_ring(waiter, dev_priv, i) {
  668. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  669. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  670. continue;
  671. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  672. MI_FLUSH_DW_OP_STOREDW);
  673. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  674. MI_FLUSH_DW_USE_GTT);
  675. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  676. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  677. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  678. MI_SEMAPHORE_TARGET(waiter->id));
  679. intel_ring_emit(signaller, 0);
  680. }
  681. return 0;
  682. }
  683. static int gen6_signal(struct intel_engine_cs *signaller,
  684. unsigned int num_dwords)
  685. {
  686. struct drm_device *dev = signaller->dev;
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. struct intel_engine_cs *useless;
  689. int i, ret, num_rings;
  690. #define MBOX_UPDATE_DWORDS 3
  691. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  692. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  693. #undef MBOX_UPDATE_DWORDS
  694. ret = intel_ring_begin(signaller, num_dwords);
  695. if (ret)
  696. return ret;
  697. for_each_ring(useless, dev_priv, i) {
  698. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  699. if (mbox_reg != GEN6_NOSYNC) {
  700. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  701. intel_ring_emit(signaller, mbox_reg);
  702. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  703. }
  704. }
  705. /* If num_dwords was rounded, make sure the tail pointer is correct */
  706. if (num_rings % 2 == 0)
  707. intel_ring_emit(signaller, MI_NOOP);
  708. return 0;
  709. }
  710. /**
  711. * gen6_add_request - Update the semaphore mailbox registers
  712. *
  713. * @ring - ring that is adding a request
  714. * @seqno - return seqno stuck into the ring
  715. *
  716. * Update the mailbox registers in the *other* rings with the current seqno.
  717. * This acts like a signal in the canonical semaphore.
  718. */
  719. static int
  720. gen6_add_request(struct intel_engine_cs *ring)
  721. {
  722. int ret;
  723. if (ring->semaphore.signal)
  724. ret = ring->semaphore.signal(ring, 4);
  725. else
  726. ret = intel_ring_begin(ring, 4);
  727. if (ret)
  728. return ret;
  729. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  730. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  731. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  732. intel_ring_emit(ring, MI_USER_INTERRUPT);
  733. __intel_ring_advance(ring);
  734. return 0;
  735. }
  736. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  737. u32 seqno)
  738. {
  739. struct drm_i915_private *dev_priv = dev->dev_private;
  740. return dev_priv->last_seqno < seqno;
  741. }
  742. /**
  743. * intel_ring_sync - sync the waiter to the signaller on seqno
  744. *
  745. * @waiter - ring that is waiting
  746. * @signaller - ring which has, or will signal
  747. * @seqno - seqno which the waiter will block on
  748. */
  749. static int
  750. gen8_ring_sync(struct intel_engine_cs *waiter,
  751. struct intel_engine_cs *signaller,
  752. u32 seqno)
  753. {
  754. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  755. int ret;
  756. ret = intel_ring_begin(waiter, 4);
  757. if (ret)
  758. return ret;
  759. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  760. MI_SEMAPHORE_GLOBAL_GTT |
  761. MI_SEMAPHORE_POLL |
  762. MI_SEMAPHORE_SAD_GTE_SDD);
  763. intel_ring_emit(waiter, seqno);
  764. intel_ring_emit(waiter,
  765. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  766. intel_ring_emit(waiter,
  767. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  768. intel_ring_advance(waiter);
  769. return 0;
  770. }
  771. static int
  772. gen6_ring_sync(struct intel_engine_cs *waiter,
  773. struct intel_engine_cs *signaller,
  774. u32 seqno)
  775. {
  776. u32 dw1 = MI_SEMAPHORE_MBOX |
  777. MI_SEMAPHORE_COMPARE |
  778. MI_SEMAPHORE_REGISTER;
  779. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  780. int ret;
  781. /* Throughout all of the GEM code, seqno passed implies our current
  782. * seqno is >= the last seqno executed. However for hardware the
  783. * comparison is strictly greater than.
  784. */
  785. seqno -= 1;
  786. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  787. ret = intel_ring_begin(waiter, 4);
  788. if (ret)
  789. return ret;
  790. /* If seqno wrap happened, omit the wait with no-ops */
  791. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  792. intel_ring_emit(waiter, dw1 | wait_mbox);
  793. intel_ring_emit(waiter, seqno);
  794. intel_ring_emit(waiter, 0);
  795. intel_ring_emit(waiter, MI_NOOP);
  796. } else {
  797. intel_ring_emit(waiter, MI_NOOP);
  798. intel_ring_emit(waiter, MI_NOOP);
  799. intel_ring_emit(waiter, MI_NOOP);
  800. intel_ring_emit(waiter, MI_NOOP);
  801. }
  802. intel_ring_advance(waiter);
  803. return 0;
  804. }
  805. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  806. do { \
  807. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  808. PIPE_CONTROL_DEPTH_STALL); \
  809. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  810. intel_ring_emit(ring__, 0); \
  811. intel_ring_emit(ring__, 0); \
  812. } while (0)
  813. static int
  814. pc_render_add_request(struct intel_engine_cs *ring)
  815. {
  816. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  817. int ret;
  818. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  819. * incoherent with writes to memory, i.e. completely fubar,
  820. * so we need to use PIPE_NOTIFY instead.
  821. *
  822. * However, we also need to workaround the qword write
  823. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  824. * memory before requesting an interrupt.
  825. */
  826. ret = intel_ring_begin(ring, 32);
  827. if (ret)
  828. return ret;
  829. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  830. PIPE_CONTROL_WRITE_FLUSH |
  831. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  832. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  833. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  834. intel_ring_emit(ring, 0);
  835. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  836. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  837. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  838. scratch_addr += 2 * CACHELINE_BYTES;
  839. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  840. scratch_addr += 2 * CACHELINE_BYTES;
  841. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  842. scratch_addr += 2 * CACHELINE_BYTES;
  843. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  844. scratch_addr += 2 * CACHELINE_BYTES;
  845. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  846. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  847. PIPE_CONTROL_WRITE_FLUSH |
  848. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  849. PIPE_CONTROL_NOTIFY);
  850. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  851. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  852. intel_ring_emit(ring, 0);
  853. __intel_ring_advance(ring);
  854. return 0;
  855. }
  856. static u32
  857. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  858. {
  859. /* Workaround to force correct ordering between irq and seqno writes on
  860. * ivb (and maybe also on snb) by reading from a CS register (like
  861. * ACTHD) before reading the status page. */
  862. if (!lazy_coherency) {
  863. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  864. POSTING_READ(RING_ACTHD(ring->mmio_base));
  865. }
  866. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  867. }
  868. static u32
  869. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  870. {
  871. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  872. }
  873. static void
  874. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  875. {
  876. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  877. }
  878. static u32
  879. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  880. {
  881. return ring->scratch.cpu_page[0];
  882. }
  883. static void
  884. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  885. {
  886. ring->scratch.cpu_page[0] = seqno;
  887. }
  888. static bool
  889. gen5_ring_get_irq(struct intel_engine_cs *ring)
  890. {
  891. struct drm_device *dev = ring->dev;
  892. struct drm_i915_private *dev_priv = dev->dev_private;
  893. unsigned long flags;
  894. if (!dev->irq_enabled)
  895. return false;
  896. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  897. if (ring->irq_refcount++ == 0)
  898. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  899. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  900. return true;
  901. }
  902. static void
  903. gen5_ring_put_irq(struct intel_engine_cs *ring)
  904. {
  905. struct drm_device *dev = ring->dev;
  906. struct drm_i915_private *dev_priv = dev->dev_private;
  907. unsigned long flags;
  908. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  909. if (--ring->irq_refcount == 0)
  910. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  911. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  912. }
  913. static bool
  914. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  915. {
  916. struct drm_device *dev = ring->dev;
  917. struct drm_i915_private *dev_priv = dev->dev_private;
  918. unsigned long flags;
  919. if (!dev->irq_enabled)
  920. return false;
  921. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  922. if (ring->irq_refcount++ == 0) {
  923. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  924. I915_WRITE(IMR, dev_priv->irq_mask);
  925. POSTING_READ(IMR);
  926. }
  927. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  928. return true;
  929. }
  930. static void
  931. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  932. {
  933. struct drm_device *dev = ring->dev;
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. unsigned long flags;
  936. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  937. if (--ring->irq_refcount == 0) {
  938. dev_priv->irq_mask |= ring->irq_enable_mask;
  939. I915_WRITE(IMR, dev_priv->irq_mask);
  940. POSTING_READ(IMR);
  941. }
  942. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  943. }
  944. static bool
  945. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  946. {
  947. struct drm_device *dev = ring->dev;
  948. struct drm_i915_private *dev_priv = dev->dev_private;
  949. unsigned long flags;
  950. if (!dev->irq_enabled)
  951. return false;
  952. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  953. if (ring->irq_refcount++ == 0) {
  954. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  955. I915_WRITE16(IMR, dev_priv->irq_mask);
  956. POSTING_READ16(IMR);
  957. }
  958. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  959. return true;
  960. }
  961. static void
  962. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  963. {
  964. struct drm_device *dev = ring->dev;
  965. struct drm_i915_private *dev_priv = dev->dev_private;
  966. unsigned long flags;
  967. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  968. if (--ring->irq_refcount == 0) {
  969. dev_priv->irq_mask |= ring->irq_enable_mask;
  970. I915_WRITE16(IMR, dev_priv->irq_mask);
  971. POSTING_READ16(IMR);
  972. }
  973. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  974. }
  975. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  976. {
  977. struct drm_device *dev = ring->dev;
  978. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  979. u32 mmio = 0;
  980. /* The ring status page addresses are no longer next to the rest of
  981. * the ring registers as of gen7.
  982. */
  983. if (IS_GEN7(dev)) {
  984. switch (ring->id) {
  985. case RCS:
  986. mmio = RENDER_HWS_PGA_GEN7;
  987. break;
  988. case BCS:
  989. mmio = BLT_HWS_PGA_GEN7;
  990. break;
  991. /*
  992. * VCS2 actually doesn't exist on Gen7. Only shut up
  993. * gcc switch check warning
  994. */
  995. case VCS2:
  996. case VCS:
  997. mmio = BSD_HWS_PGA_GEN7;
  998. break;
  999. case VECS:
  1000. mmio = VEBOX_HWS_PGA_GEN7;
  1001. break;
  1002. }
  1003. } else if (IS_GEN6(ring->dev)) {
  1004. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1005. } else {
  1006. /* XXX: gen8 returns to sanity */
  1007. mmio = RING_HWS_PGA(ring->mmio_base);
  1008. }
  1009. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1010. POSTING_READ(mmio);
  1011. /*
  1012. * Flush the TLB for this page
  1013. *
  1014. * FIXME: These two bits have disappeared on gen8, so a question
  1015. * arises: do we still need this and if so how should we go about
  1016. * invalidating the TLB?
  1017. */
  1018. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1019. u32 reg = RING_INSTPM(ring->mmio_base);
  1020. /* ring should be idle before issuing a sync flush*/
  1021. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1022. I915_WRITE(reg,
  1023. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1024. INSTPM_SYNC_FLUSH));
  1025. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1026. 1000))
  1027. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1028. ring->name);
  1029. }
  1030. }
  1031. static int
  1032. bsd_ring_flush(struct intel_engine_cs *ring,
  1033. u32 invalidate_domains,
  1034. u32 flush_domains)
  1035. {
  1036. int ret;
  1037. ret = intel_ring_begin(ring, 2);
  1038. if (ret)
  1039. return ret;
  1040. intel_ring_emit(ring, MI_FLUSH);
  1041. intel_ring_emit(ring, MI_NOOP);
  1042. intel_ring_advance(ring);
  1043. return 0;
  1044. }
  1045. static int
  1046. i9xx_add_request(struct intel_engine_cs *ring)
  1047. {
  1048. int ret;
  1049. ret = intel_ring_begin(ring, 4);
  1050. if (ret)
  1051. return ret;
  1052. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1053. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1054. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1055. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1056. __intel_ring_advance(ring);
  1057. return 0;
  1058. }
  1059. static bool
  1060. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1061. {
  1062. struct drm_device *dev = ring->dev;
  1063. struct drm_i915_private *dev_priv = dev->dev_private;
  1064. unsigned long flags;
  1065. if (!dev->irq_enabled)
  1066. return false;
  1067. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1068. if (ring->irq_refcount++ == 0) {
  1069. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1070. I915_WRITE_IMR(ring,
  1071. ~(ring->irq_enable_mask |
  1072. GT_PARITY_ERROR(dev)));
  1073. else
  1074. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1075. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1076. }
  1077. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1078. return true;
  1079. }
  1080. static void
  1081. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1082. {
  1083. struct drm_device *dev = ring->dev;
  1084. struct drm_i915_private *dev_priv = dev->dev_private;
  1085. unsigned long flags;
  1086. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1087. if (--ring->irq_refcount == 0) {
  1088. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1089. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1090. else
  1091. I915_WRITE_IMR(ring, ~0);
  1092. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1093. }
  1094. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1095. }
  1096. static bool
  1097. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1098. {
  1099. struct drm_device *dev = ring->dev;
  1100. struct drm_i915_private *dev_priv = dev->dev_private;
  1101. unsigned long flags;
  1102. if (!dev->irq_enabled)
  1103. return false;
  1104. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1105. if (ring->irq_refcount++ == 0) {
  1106. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1107. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1108. }
  1109. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1110. return true;
  1111. }
  1112. static void
  1113. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1114. {
  1115. struct drm_device *dev = ring->dev;
  1116. struct drm_i915_private *dev_priv = dev->dev_private;
  1117. unsigned long flags;
  1118. if (!dev->irq_enabled)
  1119. return;
  1120. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1121. if (--ring->irq_refcount == 0) {
  1122. I915_WRITE_IMR(ring, ~0);
  1123. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1124. }
  1125. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1126. }
  1127. static bool
  1128. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1129. {
  1130. struct drm_device *dev = ring->dev;
  1131. struct drm_i915_private *dev_priv = dev->dev_private;
  1132. unsigned long flags;
  1133. if (!dev->irq_enabled)
  1134. return false;
  1135. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1136. if (ring->irq_refcount++ == 0) {
  1137. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1138. I915_WRITE_IMR(ring,
  1139. ~(ring->irq_enable_mask |
  1140. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1141. } else {
  1142. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1143. }
  1144. POSTING_READ(RING_IMR(ring->mmio_base));
  1145. }
  1146. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1147. return true;
  1148. }
  1149. static void
  1150. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1151. {
  1152. struct drm_device *dev = ring->dev;
  1153. struct drm_i915_private *dev_priv = dev->dev_private;
  1154. unsigned long flags;
  1155. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1156. if (--ring->irq_refcount == 0) {
  1157. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1158. I915_WRITE_IMR(ring,
  1159. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1160. } else {
  1161. I915_WRITE_IMR(ring, ~0);
  1162. }
  1163. POSTING_READ(RING_IMR(ring->mmio_base));
  1164. }
  1165. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1166. }
  1167. static int
  1168. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1169. u64 offset, u32 length,
  1170. unsigned flags)
  1171. {
  1172. int ret;
  1173. ret = intel_ring_begin(ring, 2);
  1174. if (ret)
  1175. return ret;
  1176. intel_ring_emit(ring,
  1177. MI_BATCH_BUFFER_START |
  1178. MI_BATCH_GTT |
  1179. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1180. intel_ring_emit(ring, offset);
  1181. intel_ring_advance(ring);
  1182. return 0;
  1183. }
  1184. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1185. #define I830_BATCH_LIMIT (256*1024)
  1186. static int
  1187. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1188. u64 offset, u32 len,
  1189. unsigned flags)
  1190. {
  1191. int ret;
  1192. if (flags & I915_DISPATCH_PINNED) {
  1193. ret = intel_ring_begin(ring, 4);
  1194. if (ret)
  1195. return ret;
  1196. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1197. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1198. intel_ring_emit(ring, offset + len - 8);
  1199. intel_ring_emit(ring, MI_NOOP);
  1200. intel_ring_advance(ring);
  1201. } else {
  1202. u32 cs_offset = ring->scratch.gtt_offset;
  1203. if (len > I830_BATCH_LIMIT)
  1204. return -ENOSPC;
  1205. ret = intel_ring_begin(ring, 9+3);
  1206. if (ret)
  1207. return ret;
  1208. /* Blit the batch (which has now all relocs applied) to the stable batch
  1209. * scratch bo area (so that the CS never stumbles over its tlb
  1210. * invalidation bug) ... */
  1211. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1212. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1213. XY_SRC_COPY_BLT_WRITE_RGB);
  1214. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1215. intel_ring_emit(ring, 0);
  1216. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1217. intel_ring_emit(ring, cs_offset);
  1218. intel_ring_emit(ring, 0);
  1219. intel_ring_emit(ring, 4096);
  1220. intel_ring_emit(ring, offset);
  1221. intel_ring_emit(ring, MI_FLUSH);
  1222. /* ... and execute it. */
  1223. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1224. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1225. intel_ring_emit(ring, cs_offset + len - 8);
  1226. intel_ring_advance(ring);
  1227. }
  1228. return 0;
  1229. }
  1230. static int
  1231. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1232. u64 offset, u32 len,
  1233. unsigned flags)
  1234. {
  1235. int ret;
  1236. ret = intel_ring_begin(ring, 2);
  1237. if (ret)
  1238. return ret;
  1239. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1240. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1241. intel_ring_advance(ring);
  1242. return 0;
  1243. }
  1244. static void cleanup_status_page(struct intel_engine_cs *ring)
  1245. {
  1246. struct drm_i915_gem_object *obj;
  1247. obj = ring->status_page.obj;
  1248. if (obj == NULL)
  1249. return;
  1250. kunmap(sg_page(obj->pages->sgl));
  1251. i915_gem_object_ggtt_unpin(obj);
  1252. drm_gem_object_unreference(&obj->base);
  1253. ring->status_page.obj = NULL;
  1254. }
  1255. static int init_status_page(struct intel_engine_cs *ring)
  1256. {
  1257. struct drm_i915_gem_object *obj;
  1258. if ((obj = ring->status_page.obj) == NULL) {
  1259. unsigned flags;
  1260. int ret;
  1261. obj = i915_gem_alloc_object(ring->dev, 4096);
  1262. if (obj == NULL) {
  1263. DRM_ERROR("Failed to allocate status page\n");
  1264. return -ENOMEM;
  1265. }
  1266. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1267. if (ret)
  1268. goto err_unref;
  1269. flags = 0;
  1270. if (!HAS_LLC(ring->dev))
  1271. /* On g33, we cannot place HWS above 256MiB, so
  1272. * restrict its pinning to the low mappable arena.
  1273. * Though this restriction is not documented for
  1274. * gen4, gen5, or byt, they also behave similarly
  1275. * and hang if the HWS is placed at the top of the
  1276. * GTT. To generalise, it appears that all !llc
  1277. * platforms have issues with us placing the HWS
  1278. * above the mappable region (even though we never
  1279. * actualy map it).
  1280. */
  1281. flags |= PIN_MAPPABLE;
  1282. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1283. if (ret) {
  1284. err_unref:
  1285. drm_gem_object_unreference(&obj->base);
  1286. return ret;
  1287. }
  1288. ring->status_page.obj = obj;
  1289. }
  1290. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1291. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1292. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1293. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1294. ring->name, ring->status_page.gfx_addr);
  1295. return 0;
  1296. }
  1297. static int init_phys_status_page(struct intel_engine_cs *ring)
  1298. {
  1299. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1300. if (!dev_priv->status_page_dmah) {
  1301. dev_priv->status_page_dmah =
  1302. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1303. if (!dev_priv->status_page_dmah)
  1304. return -ENOMEM;
  1305. }
  1306. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1307. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1308. return 0;
  1309. }
  1310. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1311. {
  1312. if (!ringbuf->obj)
  1313. return;
  1314. iounmap(ringbuf->virtual_start);
  1315. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1316. drm_gem_object_unreference(&ringbuf->obj->base);
  1317. ringbuf->obj = NULL;
  1318. }
  1319. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1320. struct intel_ringbuffer *ringbuf)
  1321. {
  1322. struct drm_i915_private *dev_priv = to_i915(dev);
  1323. struct drm_i915_gem_object *obj;
  1324. int ret;
  1325. if (ringbuf->obj)
  1326. return 0;
  1327. obj = NULL;
  1328. if (!HAS_LLC(dev))
  1329. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1330. if (obj == NULL)
  1331. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1332. if (obj == NULL)
  1333. return -ENOMEM;
  1334. /* mark ring buffers as read-only from GPU side by default */
  1335. obj->gt_ro = 1;
  1336. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1337. if (ret)
  1338. goto err_unref;
  1339. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1340. if (ret)
  1341. goto err_unpin;
  1342. ringbuf->virtual_start =
  1343. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1344. ringbuf->size);
  1345. if (ringbuf->virtual_start == NULL) {
  1346. ret = -EINVAL;
  1347. goto err_unpin;
  1348. }
  1349. ringbuf->obj = obj;
  1350. return 0;
  1351. err_unpin:
  1352. i915_gem_object_ggtt_unpin(obj);
  1353. err_unref:
  1354. drm_gem_object_unreference(&obj->base);
  1355. return ret;
  1356. }
  1357. static int intel_init_ring_buffer(struct drm_device *dev,
  1358. struct intel_engine_cs *ring)
  1359. {
  1360. struct intel_ringbuffer *ringbuf = ring->buffer;
  1361. int ret;
  1362. if (ringbuf == NULL) {
  1363. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1364. if (!ringbuf)
  1365. return -ENOMEM;
  1366. ring->buffer = ringbuf;
  1367. }
  1368. ring->dev = dev;
  1369. INIT_LIST_HEAD(&ring->active_list);
  1370. INIT_LIST_HEAD(&ring->request_list);
  1371. INIT_LIST_HEAD(&ring->execlist_queue);
  1372. ringbuf->size = 32 * PAGE_SIZE;
  1373. ringbuf->ring = ring;
  1374. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1375. init_waitqueue_head(&ring->irq_queue);
  1376. if (I915_NEED_GFX_HWS(dev)) {
  1377. ret = init_status_page(ring);
  1378. if (ret)
  1379. goto error;
  1380. } else {
  1381. BUG_ON(ring->id != RCS);
  1382. ret = init_phys_status_page(ring);
  1383. if (ret)
  1384. goto error;
  1385. }
  1386. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1387. if (ret) {
  1388. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1389. goto error;
  1390. }
  1391. /* Workaround an erratum on the i830 which causes a hang if
  1392. * the TAIL pointer points to within the last 2 cachelines
  1393. * of the buffer.
  1394. */
  1395. ringbuf->effective_size = ringbuf->size;
  1396. if (IS_I830(dev) || IS_845G(dev))
  1397. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1398. ret = i915_cmd_parser_init_ring(ring);
  1399. if (ret)
  1400. goto error;
  1401. ret = ring->init(ring);
  1402. if (ret)
  1403. goto error;
  1404. return 0;
  1405. error:
  1406. kfree(ringbuf);
  1407. ring->buffer = NULL;
  1408. return ret;
  1409. }
  1410. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1411. {
  1412. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1413. struct intel_ringbuffer *ringbuf = ring->buffer;
  1414. if (!intel_ring_initialized(ring))
  1415. return;
  1416. intel_stop_ring_buffer(ring);
  1417. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1418. intel_destroy_ringbuffer_obj(ringbuf);
  1419. ring->preallocated_lazy_request = NULL;
  1420. ring->outstanding_lazy_seqno = 0;
  1421. if (ring->cleanup)
  1422. ring->cleanup(ring);
  1423. cleanup_status_page(ring);
  1424. i915_cmd_parser_fini_ring(ring);
  1425. kfree(ringbuf);
  1426. ring->buffer = NULL;
  1427. }
  1428. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1429. {
  1430. struct intel_ringbuffer *ringbuf = ring->buffer;
  1431. struct drm_i915_gem_request *request;
  1432. u32 seqno = 0;
  1433. int ret;
  1434. if (ringbuf->last_retired_head != -1) {
  1435. ringbuf->head = ringbuf->last_retired_head;
  1436. ringbuf->last_retired_head = -1;
  1437. ringbuf->space = intel_ring_space(ringbuf);
  1438. if (ringbuf->space >= n)
  1439. return 0;
  1440. }
  1441. list_for_each_entry(request, &ring->request_list, list) {
  1442. if (__intel_ring_space(request->tail, ringbuf->tail,
  1443. ringbuf->size) >= n) {
  1444. seqno = request->seqno;
  1445. break;
  1446. }
  1447. }
  1448. if (seqno == 0)
  1449. return -ENOSPC;
  1450. ret = i915_wait_seqno(ring, seqno);
  1451. if (ret)
  1452. return ret;
  1453. i915_gem_retire_requests_ring(ring);
  1454. ringbuf->head = ringbuf->last_retired_head;
  1455. ringbuf->last_retired_head = -1;
  1456. ringbuf->space = intel_ring_space(ringbuf);
  1457. return 0;
  1458. }
  1459. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1460. {
  1461. struct drm_device *dev = ring->dev;
  1462. struct drm_i915_private *dev_priv = dev->dev_private;
  1463. struct intel_ringbuffer *ringbuf = ring->buffer;
  1464. unsigned long end;
  1465. int ret;
  1466. ret = intel_ring_wait_request(ring, n);
  1467. if (ret != -ENOSPC)
  1468. return ret;
  1469. /* force the tail write in case we have been skipping them */
  1470. __intel_ring_advance(ring);
  1471. /* With GEM the hangcheck timer should kick us out of the loop,
  1472. * leaving it early runs the risk of corrupting GEM state (due
  1473. * to running on almost untested codepaths). But on resume
  1474. * timers don't work yet, so prevent a complete hang in that
  1475. * case by choosing an insanely large timeout. */
  1476. end = jiffies + 60 * HZ;
  1477. trace_i915_ring_wait_begin(ring);
  1478. do {
  1479. ringbuf->head = I915_READ_HEAD(ring);
  1480. ringbuf->space = intel_ring_space(ringbuf);
  1481. if (ringbuf->space >= n) {
  1482. ret = 0;
  1483. break;
  1484. }
  1485. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1486. dev->primary->master) {
  1487. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1488. if (master_priv->sarea_priv)
  1489. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1490. }
  1491. msleep(1);
  1492. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1493. ret = -ERESTARTSYS;
  1494. break;
  1495. }
  1496. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1497. dev_priv->mm.interruptible);
  1498. if (ret)
  1499. break;
  1500. if (time_after(jiffies, end)) {
  1501. ret = -EBUSY;
  1502. break;
  1503. }
  1504. } while (1);
  1505. trace_i915_ring_wait_end(ring);
  1506. return ret;
  1507. }
  1508. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1509. {
  1510. uint32_t __iomem *virt;
  1511. struct intel_ringbuffer *ringbuf = ring->buffer;
  1512. int rem = ringbuf->size - ringbuf->tail;
  1513. if (ringbuf->space < rem) {
  1514. int ret = ring_wait_for_space(ring, rem);
  1515. if (ret)
  1516. return ret;
  1517. }
  1518. virt = ringbuf->virtual_start + ringbuf->tail;
  1519. rem /= 4;
  1520. while (rem--)
  1521. iowrite32(MI_NOOP, virt++);
  1522. ringbuf->tail = 0;
  1523. ringbuf->space = intel_ring_space(ringbuf);
  1524. return 0;
  1525. }
  1526. int intel_ring_idle(struct intel_engine_cs *ring)
  1527. {
  1528. u32 seqno;
  1529. int ret;
  1530. /* We need to add any requests required to flush the objects and ring */
  1531. if (ring->outstanding_lazy_seqno) {
  1532. ret = i915_add_request(ring, NULL);
  1533. if (ret)
  1534. return ret;
  1535. }
  1536. /* Wait upon the last request to be completed */
  1537. if (list_empty(&ring->request_list))
  1538. return 0;
  1539. seqno = list_entry(ring->request_list.prev,
  1540. struct drm_i915_gem_request,
  1541. list)->seqno;
  1542. return i915_wait_seqno(ring, seqno);
  1543. }
  1544. static int
  1545. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1546. {
  1547. if (ring->outstanding_lazy_seqno)
  1548. return 0;
  1549. if (ring->preallocated_lazy_request == NULL) {
  1550. struct drm_i915_gem_request *request;
  1551. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1552. if (request == NULL)
  1553. return -ENOMEM;
  1554. ring->preallocated_lazy_request = request;
  1555. }
  1556. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1557. }
  1558. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1559. int bytes)
  1560. {
  1561. struct intel_ringbuffer *ringbuf = ring->buffer;
  1562. int ret;
  1563. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1564. ret = intel_wrap_ring_buffer(ring);
  1565. if (unlikely(ret))
  1566. return ret;
  1567. }
  1568. if (unlikely(ringbuf->space < bytes)) {
  1569. ret = ring_wait_for_space(ring, bytes);
  1570. if (unlikely(ret))
  1571. return ret;
  1572. }
  1573. return 0;
  1574. }
  1575. int intel_ring_begin(struct intel_engine_cs *ring,
  1576. int num_dwords)
  1577. {
  1578. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1579. int ret;
  1580. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1581. dev_priv->mm.interruptible);
  1582. if (ret)
  1583. return ret;
  1584. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1585. if (ret)
  1586. return ret;
  1587. /* Preallocate the olr before touching the ring */
  1588. ret = intel_ring_alloc_seqno(ring);
  1589. if (ret)
  1590. return ret;
  1591. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1592. return 0;
  1593. }
  1594. /* Align the ring tail to a cacheline boundary */
  1595. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1596. {
  1597. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1598. int ret;
  1599. if (num_dwords == 0)
  1600. return 0;
  1601. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1602. ret = intel_ring_begin(ring, num_dwords);
  1603. if (ret)
  1604. return ret;
  1605. while (num_dwords--)
  1606. intel_ring_emit(ring, MI_NOOP);
  1607. intel_ring_advance(ring);
  1608. return 0;
  1609. }
  1610. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1611. {
  1612. struct drm_device *dev = ring->dev;
  1613. struct drm_i915_private *dev_priv = dev->dev_private;
  1614. BUG_ON(ring->outstanding_lazy_seqno);
  1615. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1616. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1617. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1618. if (HAS_VEBOX(dev))
  1619. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1620. }
  1621. ring->set_seqno(ring, seqno);
  1622. ring->hangcheck.seqno = seqno;
  1623. }
  1624. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1625. u32 value)
  1626. {
  1627. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1628. /* Every tail move must follow the sequence below */
  1629. /* Disable notification that the ring is IDLE. The GT
  1630. * will then assume that it is busy and bring it out of rc6.
  1631. */
  1632. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1633. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1634. /* Clear the context id. Here be magic! */
  1635. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1636. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1637. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1638. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1639. 50))
  1640. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1641. /* Now that the ring is fully powered up, update the tail */
  1642. I915_WRITE_TAIL(ring, value);
  1643. POSTING_READ(RING_TAIL(ring->mmio_base));
  1644. /* Let the ring send IDLE messages to the GT again,
  1645. * and so let it sleep to conserve power when idle.
  1646. */
  1647. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1648. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1649. }
  1650. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1651. u32 invalidate, u32 flush)
  1652. {
  1653. uint32_t cmd;
  1654. int ret;
  1655. ret = intel_ring_begin(ring, 4);
  1656. if (ret)
  1657. return ret;
  1658. cmd = MI_FLUSH_DW;
  1659. if (INTEL_INFO(ring->dev)->gen >= 8)
  1660. cmd += 1;
  1661. /*
  1662. * Bspec vol 1c.5 - video engine command streamer:
  1663. * "If ENABLED, all TLBs will be invalidated once the flush
  1664. * operation is complete. This bit is only valid when the
  1665. * Post-Sync Operation field is a value of 1h or 3h."
  1666. */
  1667. if (invalidate & I915_GEM_GPU_DOMAINS)
  1668. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1669. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1670. intel_ring_emit(ring, cmd);
  1671. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1672. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1673. intel_ring_emit(ring, 0); /* upper addr */
  1674. intel_ring_emit(ring, 0); /* value */
  1675. } else {
  1676. intel_ring_emit(ring, 0);
  1677. intel_ring_emit(ring, MI_NOOP);
  1678. }
  1679. intel_ring_advance(ring);
  1680. return 0;
  1681. }
  1682. static int
  1683. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1684. u64 offset, u32 len,
  1685. unsigned flags)
  1686. {
  1687. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1688. int ret;
  1689. ret = intel_ring_begin(ring, 4);
  1690. if (ret)
  1691. return ret;
  1692. /* FIXME(BDW): Address space and security selectors. */
  1693. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1694. intel_ring_emit(ring, lower_32_bits(offset));
  1695. intel_ring_emit(ring, upper_32_bits(offset));
  1696. intel_ring_emit(ring, MI_NOOP);
  1697. intel_ring_advance(ring);
  1698. return 0;
  1699. }
  1700. static int
  1701. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1702. u64 offset, u32 len,
  1703. unsigned flags)
  1704. {
  1705. int ret;
  1706. ret = intel_ring_begin(ring, 2);
  1707. if (ret)
  1708. return ret;
  1709. intel_ring_emit(ring,
  1710. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1711. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1712. /* bit0-7 is the length on GEN6+ */
  1713. intel_ring_emit(ring, offset);
  1714. intel_ring_advance(ring);
  1715. return 0;
  1716. }
  1717. static int
  1718. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1719. u64 offset, u32 len,
  1720. unsigned flags)
  1721. {
  1722. int ret;
  1723. ret = intel_ring_begin(ring, 2);
  1724. if (ret)
  1725. return ret;
  1726. intel_ring_emit(ring,
  1727. MI_BATCH_BUFFER_START |
  1728. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1729. /* bit0-7 is the length on GEN6+ */
  1730. intel_ring_emit(ring, offset);
  1731. intel_ring_advance(ring);
  1732. return 0;
  1733. }
  1734. /* Blitter support (SandyBridge+) */
  1735. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1736. u32 invalidate, u32 flush)
  1737. {
  1738. struct drm_device *dev = ring->dev;
  1739. uint32_t cmd;
  1740. int ret;
  1741. ret = intel_ring_begin(ring, 4);
  1742. if (ret)
  1743. return ret;
  1744. cmd = MI_FLUSH_DW;
  1745. if (INTEL_INFO(ring->dev)->gen >= 8)
  1746. cmd += 1;
  1747. /*
  1748. * Bspec vol 1c.3 - blitter engine command streamer:
  1749. * "If ENABLED, all TLBs will be invalidated once the flush
  1750. * operation is complete. This bit is only valid when the
  1751. * Post-Sync Operation field is a value of 1h or 3h."
  1752. */
  1753. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1754. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1755. MI_FLUSH_DW_OP_STOREDW;
  1756. intel_ring_emit(ring, cmd);
  1757. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1758. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1759. intel_ring_emit(ring, 0); /* upper addr */
  1760. intel_ring_emit(ring, 0); /* value */
  1761. } else {
  1762. intel_ring_emit(ring, 0);
  1763. intel_ring_emit(ring, MI_NOOP);
  1764. }
  1765. intel_ring_advance(ring);
  1766. if (IS_GEN7(dev) && !invalidate && flush)
  1767. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1768. return 0;
  1769. }
  1770. int intel_init_render_ring_buffer(struct drm_device *dev)
  1771. {
  1772. struct drm_i915_private *dev_priv = dev->dev_private;
  1773. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1774. struct drm_i915_gem_object *obj;
  1775. int ret;
  1776. ring->name = "render ring";
  1777. ring->id = RCS;
  1778. ring->mmio_base = RENDER_RING_BASE;
  1779. if (INTEL_INFO(dev)->gen >= 8) {
  1780. if (i915_semaphore_is_enabled(dev)) {
  1781. obj = i915_gem_alloc_object(dev, 4096);
  1782. if (obj == NULL) {
  1783. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1784. i915.semaphores = 0;
  1785. } else {
  1786. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1787. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1788. if (ret != 0) {
  1789. drm_gem_object_unreference(&obj->base);
  1790. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1791. i915.semaphores = 0;
  1792. } else
  1793. dev_priv->semaphore_obj = obj;
  1794. }
  1795. }
  1796. ring->add_request = gen6_add_request;
  1797. ring->flush = gen8_render_ring_flush;
  1798. ring->irq_get = gen8_ring_get_irq;
  1799. ring->irq_put = gen8_ring_put_irq;
  1800. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1801. ring->get_seqno = gen6_ring_get_seqno;
  1802. ring->set_seqno = ring_set_seqno;
  1803. if (i915_semaphore_is_enabled(dev)) {
  1804. WARN_ON(!dev_priv->semaphore_obj);
  1805. ring->semaphore.sync_to = gen8_ring_sync;
  1806. ring->semaphore.signal = gen8_rcs_signal;
  1807. GEN8_RING_SEMAPHORE_INIT;
  1808. }
  1809. } else if (INTEL_INFO(dev)->gen >= 6) {
  1810. ring->add_request = gen6_add_request;
  1811. ring->flush = gen7_render_ring_flush;
  1812. if (INTEL_INFO(dev)->gen == 6)
  1813. ring->flush = gen6_render_ring_flush;
  1814. ring->irq_get = gen6_ring_get_irq;
  1815. ring->irq_put = gen6_ring_put_irq;
  1816. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1817. ring->get_seqno = gen6_ring_get_seqno;
  1818. ring->set_seqno = ring_set_seqno;
  1819. if (i915_semaphore_is_enabled(dev)) {
  1820. ring->semaphore.sync_to = gen6_ring_sync;
  1821. ring->semaphore.signal = gen6_signal;
  1822. /*
  1823. * The current semaphore is only applied on pre-gen8
  1824. * platform. And there is no VCS2 ring on the pre-gen8
  1825. * platform. So the semaphore between RCS and VCS2 is
  1826. * initialized as INVALID. Gen8 will initialize the
  1827. * sema between VCS2 and RCS later.
  1828. */
  1829. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1830. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1831. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1832. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1833. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1834. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1835. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1836. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1837. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1838. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1839. }
  1840. } else if (IS_GEN5(dev)) {
  1841. ring->add_request = pc_render_add_request;
  1842. ring->flush = gen4_render_ring_flush;
  1843. ring->get_seqno = pc_render_get_seqno;
  1844. ring->set_seqno = pc_render_set_seqno;
  1845. ring->irq_get = gen5_ring_get_irq;
  1846. ring->irq_put = gen5_ring_put_irq;
  1847. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1848. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1849. } else {
  1850. ring->add_request = i9xx_add_request;
  1851. if (INTEL_INFO(dev)->gen < 4)
  1852. ring->flush = gen2_render_ring_flush;
  1853. else
  1854. ring->flush = gen4_render_ring_flush;
  1855. ring->get_seqno = ring_get_seqno;
  1856. ring->set_seqno = ring_set_seqno;
  1857. if (IS_GEN2(dev)) {
  1858. ring->irq_get = i8xx_ring_get_irq;
  1859. ring->irq_put = i8xx_ring_put_irq;
  1860. } else {
  1861. ring->irq_get = i9xx_ring_get_irq;
  1862. ring->irq_put = i9xx_ring_put_irq;
  1863. }
  1864. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1865. }
  1866. ring->write_tail = ring_write_tail;
  1867. if (IS_HASWELL(dev))
  1868. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1869. else if (IS_GEN8(dev))
  1870. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1871. else if (INTEL_INFO(dev)->gen >= 6)
  1872. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1873. else if (INTEL_INFO(dev)->gen >= 4)
  1874. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1875. else if (IS_I830(dev) || IS_845G(dev))
  1876. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1877. else
  1878. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1879. ring->init = init_render_ring;
  1880. ring->cleanup = render_ring_cleanup;
  1881. /* Workaround batchbuffer to combat CS tlb bug. */
  1882. if (HAS_BROKEN_CS_TLB(dev)) {
  1883. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1884. if (obj == NULL) {
  1885. DRM_ERROR("Failed to allocate batch bo\n");
  1886. return -ENOMEM;
  1887. }
  1888. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1889. if (ret != 0) {
  1890. drm_gem_object_unreference(&obj->base);
  1891. DRM_ERROR("Failed to ping batch bo\n");
  1892. return ret;
  1893. }
  1894. ring->scratch.obj = obj;
  1895. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1896. }
  1897. return intel_init_ring_buffer(dev, ring);
  1898. }
  1899. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1900. {
  1901. struct drm_i915_private *dev_priv = dev->dev_private;
  1902. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1903. struct intel_ringbuffer *ringbuf = ring->buffer;
  1904. int ret;
  1905. if (ringbuf == NULL) {
  1906. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1907. if (!ringbuf)
  1908. return -ENOMEM;
  1909. ring->buffer = ringbuf;
  1910. }
  1911. ring->name = "render ring";
  1912. ring->id = RCS;
  1913. ring->mmio_base = RENDER_RING_BASE;
  1914. if (INTEL_INFO(dev)->gen >= 6) {
  1915. /* non-kms not supported on gen6+ */
  1916. ret = -ENODEV;
  1917. goto err_ringbuf;
  1918. }
  1919. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1920. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1921. * the special gen5 functions. */
  1922. ring->add_request = i9xx_add_request;
  1923. if (INTEL_INFO(dev)->gen < 4)
  1924. ring->flush = gen2_render_ring_flush;
  1925. else
  1926. ring->flush = gen4_render_ring_flush;
  1927. ring->get_seqno = ring_get_seqno;
  1928. ring->set_seqno = ring_set_seqno;
  1929. if (IS_GEN2(dev)) {
  1930. ring->irq_get = i8xx_ring_get_irq;
  1931. ring->irq_put = i8xx_ring_put_irq;
  1932. } else {
  1933. ring->irq_get = i9xx_ring_get_irq;
  1934. ring->irq_put = i9xx_ring_put_irq;
  1935. }
  1936. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1937. ring->write_tail = ring_write_tail;
  1938. if (INTEL_INFO(dev)->gen >= 4)
  1939. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1940. else if (IS_I830(dev) || IS_845G(dev))
  1941. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1942. else
  1943. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1944. ring->init = init_render_ring;
  1945. ring->cleanup = render_ring_cleanup;
  1946. ring->dev = dev;
  1947. INIT_LIST_HEAD(&ring->active_list);
  1948. INIT_LIST_HEAD(&ring->request_list);
  1949. ringbuf->size = size;
  1950. ringbuf->effective_size = ringbuf->size;
  1951. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1952. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1953. ringbuf->virtual_start = ioremap_wc(start, size);
  1954. if (ringbuf->virtual_start == NULL) {
  1955. DRM_ERROR("can not ioremap virtual address for"
  1956. " ring buffer\n");
  1957. ret = -ENOMEM;
  1958. goto err_ringbuf;
  1959. }
  1960. if (!I915_NEED_GFX_HWS(dev)) {
  1961. ret = init_phys_status_page(ring);
  1962. if (ret)
  1963. goto err_vstart;
  1964. }
  1965. return 0;
  1966. err_vstart:
  1967. iounmap(ringbuf->virtual_start);
  1968. err_ringbuf:
  1969. kfree(ringbuf);
  1970. ring->buffer = NULL;
  1971. return ret;
  1972. }
  1973. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1974. {
  1975. struct drm_i915_private *dev_priv = dev->dev_private;
  1976. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1977. ring->name = "bsd ring";
  1978. ring->id = VCS;
  1979. ring->write_tail = ring_write_tail;
  1980. if (INTEL_INFO(dev)->gen >= 6) {
  1981. ring->mmio_base = GEN6_BSD_RING_BASE;
  1982. /* gen6 bsd needs a special wa for tail updates */
  1983. if (IS_GEN6(dev))
  1984. ring->write_tail = gen6_bsd_ring_write_tail;
  1985. ring->flush = gen6_bsd_ring_flush;
  1986. ring->add_request = gen6_add_request;
  1987. ring->get_seqno = gen6_ring_get_seqno;
  1988. ring->set_seqno = ring_set_seqno;
  1989. if (INTEL_INFO(dev)->gen >= 8) {
  1990. ring->irq_enable_mask =
  1991. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1992. ring->irq_get = gen8_ring_get_irq;
  1993. ring->irq_put = gen8_ring_put_irq;
  1994. ring->dispatch_execbuffer =
  1995. gen8_ring_dispatch_execbuffer;
  1996. if (i915_semaphore_is_enabled(dev)) {
  1997. ring->semaphore.sync_to = gen8_ring_sync;
  1998. ring->semaphore.signal = gen8_xcs_signal;
  1999. GEN8_RING_SEMAPHORE_INIT;
  2000. }
  2001. } else {
  2002. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2003. ring->irq_get = gen6_ring_get_irq;
  2004. ring->irq_put = gen6_ring_put_irq;
  2005. ring->dispatch_execbuffer =
  2006. gen6_ring_dispatch_execbuffer;
  2007. if (i915_semaphore_is_enabled(dev)) {
  2008. ring->semaphore.sync_to = gen6_ring_sync;
  2009. ring->semaphore.signal = gen6_signal;
  2010. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2011. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2012. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2013. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2014. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2015. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2016. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2017. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2018. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2019. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2020. }
  2021. }
  2022. } else {
  2023. ring->mmio_base = BSD_RING_BASE;
  2024. ring->flush = bsd_ring_flush;
  2025. ring->add_request = i9xx_add_request;
  2026. ring->get_seqno = ring_get_seqno;
  2027. ring->set_seqno = ring_set_seqno;
  2028. if (IS_GEN5(dev)) {
  2029. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2030. ring->irq_get = gen5_ring_get_irq;
  2031. ring->irq_put = gen5_ring_put_irq;
  2032. } else {
  2033. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2034. ring->irq_get = i9xx_ring_get_irq;
  2035. ring->irq_put = i9xx_ring_put_irq;
  2036. }
  2037. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2038. }
  2039. ring->init = init_ring_common;
  2040. return intel_init_ring_buffer(dev, ring);
  2041. }
  2042. /**
  2043. * Initialize the second BSD ring for Broadwell GT3.
  2044. * It is noted that this only exists on Broadwell GT3.
  2045. */
  2046. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2047. {
  2048. struct drm_i915_private *dev_priv = dev->dev_private;
  2049. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2050. if ((INTEL_INFO(dev)->gen != 8)) {
  2051. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2052. return -EINVAL;
  2053. }
  2054. ring->name = "bsd2 ring";
  2055. ring->id = VCS2;
  2056. ring->write_tail = ring_write_tail;
  2057. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2058. ring->flush = gen6_bsd_ring_flush;
  2059. ring->add_request = gen6_add_request;
  2060. ring->get_seqno = gen6_ring_get_seqno;
  2061. ring->set_seqno = ring_set_seqno;
  2062. ring->irq_enable_mask =
  2063. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2064. ring->irq_get = gen8_ring_get_irq;
  2065. ring->irq_put = gen8_ring_put_irq;
  2066. ring->dispatch_execbuffer =
  2067. gen8_ring_dispatch_execbuffer;
  2068. if (i915_semaphore_is_enabled(dev)) {
  2069. ring->semaphore.sync_to = gen8_ring_sync;
  2070. ring->semaphore.signal = gen8_xcs_signal;
  2071. GEN8_RING_SEMAPHORE_INIT;
  2072. }
  2073. ring->init = init_ring_common;
  2074. return intel_init_ring_buffer(dev, ring);
  2075. }
  2076. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2077. {
  2078. struct drm_i915_private *dev_priv = dev->dev_private;
  2079. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2080. ring->name = "blitter ring";
  2081. ring->id = BCS;
  2082. ring->mmio_base = BLT_RING_BASE;
  2083. ring->write_tail = ring_write_tail;
  2084. ring->flush = gen6_ring_flush;
  2085. ring->add_request = gen6_add_request;
  2086. ring->get_seqno = gen6_ring_get_seqno;
  2087. ring->set_seqno = ring_set_seqno;
  2088. if (INTEL_INFO(dev)->gen >= 8) {
  2089. ring->irq_enable_mask =
  2090. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2091. ring->irq_get = gen8_ring_get_irq;
  2092. ring->irq_put = gen8_ring_put_irq;
  2093. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2094. if (i915_semaphore_is_enabled(dev)) {
  2095. ring->semaphore.sync_to = gen8_ring_sync;
  2096. ring->semaphore.signal = gen8_xcs_signal;
  2097. GEN8_RING_SEMAPHORE_INIT;
  2098. }
  2099. } else {
  2100. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2101. ring->irq_get = gen6_ring_get_irq;
  2102. ring->irq_put = gen6_ring_put_irq;
  2103. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2104. if (i915_semaphore_is_enabled(dev)) {
  2105. ring->semaphore.signal = gen6_signal;
  2106. ring->semaphore.sync_to = gen6_ring_sync;
  2107. /*
  2108. * The current semaphore is only applied on pre-gen8
  2109. * platform. And there is no VCS2 ring on the pre-gen8
  2110. * platform. So the semaphore between BCS and VCS2 is
  2111. * initialized as INVALID. Gen8 will initialize the
  2112. * sema between BCS and VCS2 later.
  2113. */
  2114. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2115. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2116. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2117. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2118. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2119. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2120. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2121. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2122. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2123. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2124. }
  2125. }
  2126. ring->init = init_ring_common;
  2127. return intel_init_ring_buffer(dev, ring);
  2128. }
  2129. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2130. {
  2131. struct drm_i915_private *dev_priv = dev->dev_private;
  2132. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2133. ring->name = "video enhancement ring";
  2134. ring->id = VECS;
  2135. ring->mmio_base = VEBOX_RING_BASE;
  2136. ring->write_tail = ring_write_tail;
  2137. ring->flush = gen6_ring_flush;
  2138. ring->add_request = gen6_add_request;
  2139. ring->get_seqno = gen6_ring_get_seqno;
  2140. ring->set_seqno = ring_set_seqno;
  2141. if (INTEL_INFO(dev)->gen >= 8) {
  2142. ring->irq_enable_mask =
  2143. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2144. ring->irq_get = gen8_ring_get_irq;
  2145. ring->irq_put = gen8_ring_put_irq;
  2146. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2147. if (i915_semaphore_is_enabled(dev)) {
  2148. ring->semaphore.sync_to = gen8_ring_sync;
  2149. ring->semaphore.signal = gen8_xcs_signal;
  2150. GEN8_RING_SEMAPHORE_INIT;
  2151. }
  2152. } else {
  2153. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2154. ring->irq_get = hsw_vebox_get_irq;
  2155. ring->irq_put = hsw_vebox_put_irq;
  2156. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2157. if (i915_semaphore_is_enabled(dev)) {
  2158. ring->semaphore.sync_to = gen6_ring_sync;
  2159. ring->semaphore.signal = gen6_signal;
  2160. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2161. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2162. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2163. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2164. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2165. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2166. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2167. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2168. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2169. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2170. }
  2171. }
  2172. ring->init = init_ring_common;
  2173. return intel_init_ring_buffer(dev, ring);
  2174. }
  2175. int
  2176. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2177. {
  2178. int ret;
  2179. if (!ring->gpu_caches_dirty)
  2180. return 0;
  2181. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2182. if (ret)
  2183. return ret;
  2184. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2185. ring->gpu_caches_dirty = false;
  2186. return 0;
  2187. }
  2188. int
  2189. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2190. {
  2191. uint32_t flush_domains;
  2192. int ret;
  2193. flush_domains = 0;
  2194. if (ring->gpu_caches_dirty)
  2195. flush_domains = I915_GEM_GPU_DOMAINS;
  2196. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2197. if (ret)
  2198. return ret;
  2199. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2200. ring->gpu_caches_dirty = false;
  2201. return 0;
  2202. }
  2203. void
  2204. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2205. {
  2206. int ret;
  2207. if (!intel_ring_initialized(ring))
  2208. return;
  2209. ret = intel_ring_idle(ring);
  2210. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2211. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2212. ring->name, ret);
  2213. stop_ring(ring);
  2214. }