mips.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * KVM/MIPS: MIPS specific KVM APIs
  7. *
  8. * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
  9. * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/errno.h>
  13. #include <linux/err.h>
  14. #include <linux/kdebug.h>
  15. #include <linux/module.h>
  16. #include <linux/uaccess.h>
  17. #include <linux/vmalloc.h>
  18. #include <linux/fs.h>
  19. #include <linux/bootmem.h>
  20. #include <asm/fpu.h>
  21. #include <asm/page.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/pgtable.h>
  25. #include <linux/kvm_host.h>
  26. #include "interrupt.h"
  27. #include "commpage.h"
  28. #define CREATE_TRACE_POINTS
  29. #include "trace.h"
  30. #ifndef VECTORSPACING
  31. #define VECTORSPACING 0x100 /* for EI/VI mode */
  32. #endif
  33. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  34. struct kvm_stats_debugfs_item debugfs_entries[] = {
  35. { "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
  36. { "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
  37. { "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
  38. { "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
  39. { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  40. { "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
  41. { "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
  42. { "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
  43. { "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
  44. { "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
  45. { "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
  46. { "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
  47. { "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
  48. { "trap_inst", VCPU_STAT(trap_inst_exits), KVM_STAT_VCPU },
  49. { "msa_fpe", VCPU_STAT(msa_fpe_exits), KVM_STAT_VCPU },
  50. { "fpe", VCPU_STAT(fpe_exits), KVM_STAT_VCPU },
  51. { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  52. { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  53. { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  54. { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  55. { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  56. { "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
  57. {NULL}
  58. };
  59. /*
  60. * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  61. * Config7, so we are "runnable" if interrupts are pending
  62. */
  63. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  64. {
  65. return !!(vcpu->arch.pending_exceptions);
  66. }
  67. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  68. {
  69. return 1;
  70. }
  71. int kvm_arch_hardware_enable(void)
  72. {
  73. return 0;
  74. }
  75. int kvm_arch_hardware_setup(void)
  76. {
  77. return 0;
  78. }
  79. void kvm_arch_check_processor_compat(void *rtn)
  80. {
  81. *(int *)rtn = 0;
  82. }
  83. static void kvm_mips_init_tlbs(struct kvm *kvm)
  84. {
  85. unsigned long wired;
  86. /*
  87. * Add a wired entry to the TLB, it is used to map the commpage to
  88. * the Guest kernel
  89. */
  90. wired = read_c0_wired();
  91. write_c0_wired(wired + 1);
  92. mtc0_tlbw_hazard();
  93. kvm->arch.commpage_tlb = wired;
  94. kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
  95. kvm->arch.commpage_tlb);
  96. }
  97. static void kvm_mips_init_vm_percpu(void *arg)
  98. {
  99. struct kvm *kvm = (struct kvm *)arg;
  100. kvm_mips_init_tlbs(kvm);
  101. kvm_mips_callbacks->vm_init(kvm);
  102. }
  103. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  104. {
  105. if (atomic_inc_return(&kvm_mips_instance) == 1) {
  106. kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
  107. __func__);
  108. on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
  109. }
  110. return 0;
  111. }
  112. bool kvm_arch_has_vcpu_debugfs(void)
  113. {
  114. return false;
  115. }
  116. int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
  117. {
  118. return 0;
  119. }
  120. void kvm_mips_free_vcpus(struct kvm *kvm)
  121. {
  122. unsigned int i;
  123. struct kvm_vcpu *vcpu;
  124. /* Put the pages we reserved for the guest pmap */
  125. for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
  126. if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
  127. kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
  128. }
  129. kfree(kvm->arch.guest_pmap);
  130. kvm_for_each_vcpu(i, vcpu, kvm) {
  131. kvm_arch_vcpu_free(vcpu);
  132. }
  133. mutex_lock(&kvm->lock);
  134. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  135. kvm->vcpus[i] = NULL;
  136. atomic_set(&kvm->online_vcpus, 0);
  137. mutex_unlock(&kvm->lock);
  138. }
  139. static void kvm_mips_uninit_tlbs(void *arg)
  140. {
  141. /* Restore wired count */
  142. write_c0_wired(0);
  143. mtc0_tlbw_hazard();
  144. /* Clear out all the TLBs */
  145. kvm_local_flush_tlb_all();
  146. }
  147. void kvm_arch_destroy_vm(struct kvm *kvm)
  148. {
  149. kvm_mips_free_vcpus(kvm);
  150. /* If this is the last instance, restore wired count */
  151. if (atomic_dec_return(&kvm_mips_instance) == 0) {
  152. kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
  153. __func__);
  154. on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
  155. }
  156. }
  157. long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
  158. unsigned long arg)
  159. {
  160. return -ENOIOCTLCMD;
  161. }
  162. int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
  163. unsigned long npages)
  164. {
  165. return 0;
  166. }
  167. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  168. struct kvm_memory_slot *memslot,
  169. const struct kvm_userspace_memory_region *mem,
  170. enum kvm_mr_change change)
  171. {
  172. return 0;
  173. }
  174. void kvm_arch_commit_memory_region(struct kvm *kvm,
  175. const struct kvm_userspace_memory_region *mem,
  176. const struct kvm_memory_slot *old,
  177. const struct kvm_memory_slot *new,
  178. enum kvm_mr_change change)
  179. {
  180. unsigned long npages = 0;
  181. int i;
  182. kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
  183. __func__, kvm, mem->slot, mem->guest_phys_addr,
  184. mem->memory_size, mem->userspace_addr);
  185. /* Setup Guest PMAP table */
  186. if (!kvm->arch.guest_pmap) {
  187. if (mem->slot == 0)
  188. npages = mem->memory_size >> PAGE_SHIFT;
  189. if (npages) {
  190. kvm->arch.guest_pmap_npages = npages;
  191. kvm->arch.guest_pmap =
  192. kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
  193. if (!kvm->arch.guest_pmap) {
  194. kvm_err("Failed to allocate guest PMAP\n");
  195. return;
  196. }
  197. kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
  198. npages, kvm->arch.guest_pmap);
  199. /* Now setup the page table */
  200. for (i = 0; i < npages; i++)
  201. kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
  202. }
  203. }
  204. }
  205. static inline void dump_handler(const char *symbol, void *start, void *end)
  206. {
  207. u32 *p;
  208. pr_debug("LEAF(%s)\n", symbol);
  209. pr_debug("\t.set push\n");
  210. pr_debug("\t.set noreorder\n");
  211. for (p = start; p < (u32 *)end; ++p)
  212. pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
  213. pr_debug("\t.set\tpop\n");
  214. pr_debug("\tEND(%s)\n", symbol);
  215. }
  216. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  217. {
  218. int err, size;
  219. void *gebase, *p, *handler;
  220. int i;
  221. struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
  222. if (!vcpu) {
  223. err = -ENOMEM;
  224. goto out;
  225. }
  226. err = kvm_vcpu_init(vcpu, kvm, id);
  227. if (err)
  228. goto out_free_cpu;
  229. kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
  230. /*
  231. * Allocate space for host mode exception handlers that handle
  232. * guest mode exits
  233. */
  234. if (cpu_has_veic || cpu_has_vint)
  235. size = 0x200 + VECTORSPACING * 64;
  236. else
  237. size = 0x4000;
  238. gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
  239. if (!gebase) {
  240. err = -ENOMEM;
  241. goto out_uninit_cpu;
  242. }
  243. kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
  244. ALIGN(size, PAGE_SIZE), gebase);
  245. /*
  246. * Check new ebase actually fits in CP0_EBase. The lack of a write gate
  247. * limits us to the low 512MB of physical address space. If the memory
  248. * we allocate is out of range, just give up now.
  249. */
  250. if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
  251. kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
  252. gebase);
  253. err = -ENOMEM;
  254. goto out_free_gebase;
  255. }
  256. /* Save new ebase */
  257. vcpu->arch.guest_ebase = gebase;
  258. /* Build guest exception vectors dynamically in unmapped memory */
  259. handler = gebase + 0x2000;
  260. /* TLB Refill, EXL = 0 */
  261. kvm_mips_build_exception(gebase, handler);
  262. /* General Exception Entry point */
  263. kvm_mips_build_exception(gebase + 0x180, handler);
  264. /* For vectored interrupts poke the exception code @ all offsets 0-7 */
  265. for (i = 0; i < 8; i++) {
  266. kvm_debug("L1 Vectored handler @ %p\n",
  267. gebase + 0x200 + (i * VECTORSPACING));
  268. kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
  269. handler);
  270. }
  271. /* General exit handler */
  272. p = handler;
  273. p = kvm_mips_build_exit(p);
  274. /* Guest entry routine */
  275. vcpu->arch.vcpu_run = p;
  276. p = kvm_mips_build_vcpu_run(p);
  277. /* Dump the generated code */
  278. pr_debug("#include <asm/asm.h>\n");
  279. pr_debug("#include <asm/regdef.h>\n");
  280. pr_debug("\n");
  281. dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
  282. dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
  283. dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
  284. /* Invalidate the icache for these ranges */
  285. flush_icache_range((unsigned long)gebase,
  286. (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
  287. /*
  288. * Allocate comm page for guest kernel, a TLB will be reserved for
  289. * mapping GVA @ 0xFFFF8000 to this page
  290. */
  291. vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
  292. if (!vcpu->arch.kseg0_commpage) {
  293. err = -ENOMEM;
  294. goto out_free_gebase;
  295. }
  296. kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
  297. kvm_mips_commpage_init(vcpu);
  298. /* Init */
  299. vcpu->arch.last_sched_cpu = -1;
  300. /* Start off the timer */
  301. kvm_mips_init_count(vcpu);
  302. return vcpu;
  303. out_free_gebase:
  304. kfree(gebase);
  305. out_uninit_cpu:
  306. kvm_vcpu_uninit(vcpu);
  307. out_free_cpu:
  308. kfree(vcpu);
  309. out:
  310. return ERR_PTR(err);
  311. }
  312. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  313. {
  314. hrtimer_cancel(&vcpu->arch.comparecount_timer);
  315. kvm_vcpu_uninit(vcpu);
  316. kvm_mips_dump_stats(vcpu);
  317. kfree(vcpu->arch.guest_ebase);
  318. kfree(vcpu->arch.kseg0_commpage);
  319. kfree(vcpu);
  320. }
  321. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  322. {
  323. kvm_arch_vcpu_free(vcpu);
  324. }
  325. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  326. struct kvm_guest_debug *dbg)
  327. {
  328. return -ENOIOCTLCMD;
  329. }
  330. /* Must be called with preemption disabled, just before entering guest */
  331. static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
  332. {
  333. struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
  334. struct mips_coproc *cop0 = vcpu->arch.cop0;
  335. int i, cpu = smp_processor_id();
  336. unsigned int gasid;
  337. /*
  338. * Lazy host ASID regeneration for guest user mode.
  339. * If the guest ASID has changed since the last guest usermode
  340. * execution, regenerate the host ASID so as to invalidate stale TLB
  341. * entries.
  342. */
  343. if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
  344. gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
  345. if (gasid != vcpu->arch.last_user_gasid) {
  346. kvm_get_new_mmu_context(user_mm, cpu, vcpu);
  347. for_each_possible_cpu(i)
  348. if (i != cpu)
  349. cpu_context(i, user_mm) = 0;
  350. vcpu->arch.last_user_gasid = gasid;
  351. }
  352. }
  353. }
  354. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  355. {
  356. int r = 0;
  357. sigset_t sigsaved;
  358. if (vcpu->sigset_active)
  359. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  360. if (vcpu->mmio_needed) {
  361. if (!vcpu->mmio_is_write)
  362. kvm_mips_complete_mmio_load(vcpu, run);
  363. vcpu->mmio_needed = 0;
  364. }
  365. lose_fpu(1);
  366. local_irq_disable();
  367. /* Check if we have any exceptions/interrupts pending */
  368. kvm_mips_deliver_interrupts(vcpu,
  369. kvm_read_c0_guest_cause(vcpu->arch.cop0));
  370. guest_enter_irqoff();
  371. /* Disable hardware page table walking while in guest */
  372. htw_stop();
  373. trace_kvm_enter(vcpu);
  374. kvm_mips_check_asids(vcpu);
  375. r = vcpu->arch.vcpu_run(run, vcpu);
  376. trace_kvm_out(vcpu);
  377. /* Re-enable HTW before enabling interrupts */
  378. htw_start();
  379. guest_exit_irqoff();
  380. local_irq_enable();
  381. if (vcpu->sigset_active)
  382. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  383. return r;
  384. }
  385. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  386. struct kvm_mips_interrupt *irq)
  387. {
  388. int intr = (int)irq->irq;
  389. struct kvm_vcpu *dvcpu = NULL;
  390. if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
  391. kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
  392. (int)intr);
  393. if (irq->cpu == -1)
  394. dvcpu = vcpu;
  395. else
  396. dvcpu = vcpu->kvm->vcpus[irq->cpu];
  397. if (intr == 2 || intr == 3 || intr == 4) {
  398. kvm_mips_callbacks->queue_io_int(dvcpu, irq);
  399. } else if (intr == -2 || intr == -3 || intr == -4) {
  400. kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
  401. } else {
  402. kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
  403. irq->cpu, irq->irq);
  404. return -EINVAL;
  405. }
  406. dvcpu->arch.wait = 0;
  407. if (swait_active(&dvcpu->wq))
  408. swake_up(&dvcpu->wq);
  409. return 0;
  410. }
  411. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  412. struct kvm_mp_state *mp_state)
  413. {
  414. return -ENOIOCTLCMD;
  415. }
  416. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  417. struct kvm_mp_state *mp_state)
  418. {
  419. return -ENOIOCTLCMD;
  420. }
  421. static u64 kvm_mips_get_one_regs[] = {
  422. KVM_REG_MIPS_R0,
  423. KVM_REG_MIPS_R1,
  424. KVM_REG_MIPS_R2,
  425. KVM_REG_MIPS_R3,
  426. KVM_REG_MIPS_R4,
  427. KVM_REG_MIPS_R5,
  428. KVM_REG_MIPS_R6,
  429. KVM_REG_MIPS_R7,
  430. KVM_REG_MIPS_R8,
  431. KVM_REG_MIPS_R9,
  432. KVM_REG_MIPS_R10,
  433. KVM_REG_MIPS_R11,
  434. KVM_REG_MIPS_R12,
  435. KVM_REG_MIPS_R13,
  436. KVM_REG_MIPS_R14,
  437. KVM_REG_MIPS_R15,
  438. KVM_REG_MIPS_R16,
  439. KVM_REG_MIPS_R17,
  440. KVM_REG_MIPS_R18,
  441. KVM_REG_MIPS_R19,
  442. KVM_REG_MIPS_R20,
  443. KVM_REG_MIPS_R21,
  444. KVM_REG_MIPS_R22,
  445. KVM_REG_MIPS_R23,
  446. KVM_REG_MIPS_R24,
  447. KVM_REG_MIPS_R25,
  448. KVM_REG_MIPS_R26,
  449. KVM_REG_MIPS_R27,
  450. KVM_REG_MIPS_R28,
  451. KVM_REG_MIPS_R29,
  452. KVM_REG_MIPS_R30,
  453. KVM_REG_MIPS_R31,
  454. #ifndef CONFIG_CPU_MIPSR6
  455. KVM_REG_MIPS_HI,
  456. KVM_REG_MIPS_LO,
  457. #endif
  458. KVM_REG_MIPS_PC,
  459. KVM_REG_MIPS_CP0_INDEX,
  460. KVM_REG_MIPS_CP0_CONTEXT,
  461. KVM_REG_MIPS_CP0_USERLOCAL,
  462. KVM_REG_MIPS_CP0_PAGEMASK,
  463. KVM_REG_MIPS_CP0_WIRED,
  464. KVM_REG_MIPS_CP0_HWRENA,
  465. KVM_REG_MIPS_CP0_BADVADDR,
  466. KVM_REG_MIPS_CP0_COUNT,
  467. KVM_REG_MIPS_CP0_ENTRYHI,
  468. KVM_REG_MIPS_CP0_COMPARE,
  469. KVM_REG_MIPS_CP0_STATUS,
  470. KVM_REG_MIPS_CP0_CAUSE,
  471. KVM_REG_MIPS_CP0_EPC,
  472. KVM_REG_MIPS_CP0_PRID,
  473. KVM_REG_MIPS_CP0_CONFIG,
  474. KVM_REG_MIPS_CP0_CONFIG1,
  475. KVM_REG_MIPS_CP0_CONFIG2,
  476. KVM_REG_MIPS_CP0_CONFIG3,
  477. KVM_REG_MIPS_CP0_CONFIG4,
  478. KVM_REG_MIPS_CP0_CONFIG5,
  479. KVM_REG_MIPS_CP0_CONFIG7,
  480. KVM_REG_MIPS_CP0_ERROREPC,
  481. KVM_REG_MIPS_COUNT_CTL,
  482. KVM_REG_MIPS_COUNT_RESUME,
  483. KVM_REG_MIPS_COUNT_HZ,
  484. };
  485. static u64 kvm_mips_get_one_regs_fpu[] = {
  486. KVM_REG_MIPS_FCR_IR,
  487. KVM_REG_MIPS_FCR_CSR,
  488. };
  489. static u64 kvm_mips_get_one_regs_msa[] = {
  490. KVM_REG_MIPS_MSA_IR,
  491. KVM_REG_MIPS_MSA_CSR,
  492. };
  493. static u64 kvm_mips_get_one_regs_kscratch[] = {
  494. KVM_REG_MIPS_CP0_KSCRATCH1,
  495. KVM_REG_MIPS_CP0_KSCRATCH2,
  496. KVM_REG_MIPS_CP0_KSCRATCH3,
  497. KVM_REG_MIPS_CP0_KSCRATCH4,
  498. KVM_REG_MIPS_CP0_KSCRATCH5,
  499. KVM_REG_MIPS_CP0_KSCRATCH6,
  500. };
  501. static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
  502. {
  503. unsigned long ret;
  504. ret = ARRAY_SIZE(kvm_mips_get_one_regs);
  505. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  506. ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
  507. /* odd doubles */
  508. if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
  509. ret += 16;
  510. }
  511. if (kvm_mips_guest_can_have_msa(&vcpu->arch))
  512. ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
  513. ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
  514. ret += kvm_mips_callbacks->num_regs(vcpu);
  515. return ret;
  516. }
  517. static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
  518. {
  519. u64 index;
  520. unsigned int i;
  521. if (copy_to_user(indices, kvm_mips_get_one_regs,
  522. sizeof(kvm_mips_get_one_regs)))
  523. return -EFAULT;
  524. indices += ARRAY_SIZE(kvm_mips_get_one_regs);
  525. if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
  526. if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
  527. sizeof(kvm_mips_get_one_regs_fpu)))
  528. return -EFAULT;
  529. indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
  530. for (i = 0; i < 32; ++i) {
  531. index = KVM_REG_MIPS_FPR_32(i);
  532. if (copy_to_user(indices, &index, sizeof(index)))
  533. return -EFAULT;
  534. ++indices;
  535. /* skip odd doubles if no F64 */
  536. if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
  537. continue;
  538. index = KVM_REG_MIPS_FPR_64(i);
  539. if (copy_to_user(indices, &index, sizeof(index)))
  540. return -EFAULT;
  541. ++indices;
  542. }
  543. }
  544. if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
  545. if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
  546. sizeof(kvm_mips_get_one_regs_msa)))
  547. return -EFAULT;
  548. indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
  549. for (i = 0; i < 32; ++i) {
  550. index = KVM_REG_MIPS_VEC_128(i);
  551. if (copy_to_user(indices, &index, sizeof(index)))
  552. return -EFAULT;
  553. ++indices;
  554. }
  555. }
  556. for (i = 0; i < 6; ++i) {
  557. if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
  558. continue;
  559. if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
  560. sizeof(kvm_mips_get_one_regs_kscratch[i])))
  561. return -EFAULT;
  562. ++indices;
  563. }
  564. return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
  565. }
  566. static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
  567. const struct kvm_one_reg *reg)
  568. {
  569. struct mips_coproc *cop0 = vcpu->arch.cop0;
  570. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  571. int ret;
  572. s64 v;
  573. s64 vs[2];
  574. unsigned int idx;
  575. switch (reg->id) {
  576. /* General purpose registers */
  577. case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
  578. v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
  579. break;
  580. #ifndef CONFIG_CPU_MIPSR6
  581. case KVM_REG_MIPS_HI:
  582. v = (long)vcpu->arch.hi;
  583. break;
  584. case KVM_REG_MIPS_LO:
  585. v = (long)vcpu->arch.lo;
  586. break;
  587. #endif
  588. case KVM_REG_MIPS_PC:
  589. v = (long)vcpu->arch.pc;
  590. break;
  591. /* Floating point registers */
  592. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  593. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  594. return -EINVAL;
  595. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  596. /* Odd singles in top of even double when FR=0 */
  597. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  598. v = get_fpr32(&fpu->fpr[idx], 0);
  599. else
  600. v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
  601. break;
  602. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  603. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  604. return -EINVAL;
  605. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  606. /* Can't access odd doubles in FR=0 mode */
  607. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  608. return -EINVAL;
  609. v = get_fpr64(&fpu->fpr[idx], 0);
  610. break;
  611. case KVM_REG_MIPS_FCR_IR:
  612. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  613. return -EINVAL;
  614. v = boot_cpu_data.fpu_id;
  615. break;
  616. case KVM_REG_MIPS_FCR_CSR:
  617. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  618. return -EINVAL;
  619. v = fpu->fcr31;
  620. break;
  621. /* MIPS SIMD Architecture (MSA) registers */
  622. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  623. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  624. return -EINVAL;
  625. /* Can't access MSA registers in FR=0 mode */
  626. if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
  627. return -EINVAL;
  628. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  629. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  630. /* least significant byte first */
  631. vs[0] = get_fpr64(&fpu->fpr[idx], 0);
  632. vs[1] = get_fpr64(&fpu->fpr[idx], 1);
  633. #else
  634. /* most significant byte first */
  635. vs[0] = get_fpr64(&fpu->fpr[idx], 1);
  636. vs[1] = get_fpr64(&fpu->fpr[idx], 0);
  637. #endif
  638. break;
  639. case KVM_REG_MIPS_MSA_IR:
  640. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  641. return -EINVAL;
  642. v = boot_cpu_data.msa_id;
  643. break;
  644. case KVM_REG_MIPS_MSA_CSR:
  645. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  646. return -EINVAL;
  647. v = fpu->msacsr;
  648. break;
  649. /* Co-processor 0 registers */
  650. case KVM_REG_MIPS_CP0_INDEX:
  651. v = (long)kvm_read_c0_guest_index(cop0);
  652. break;
  653. case KVM_REG_MIPS_CP0_CONTEXT:
  654. v = (long)kvm_read_c0_guest_context(cop0);
  655. break;
  656. case KVM_REG_MIPS_CP0_USERLOCAL:
  657. v = (long)kvm_read_c0_guest_userlocal(cop0);
  658. break;
  659. case KVM_REG_MIPS_CP0_PAGEMASK:
  660. v = (long)kvm_read_c0_guest_pagemask(cop0);
  661. break;
  662. case KVM_REG_MIPS_CP0_WIRED:
  663. v = (long)kvm_read_c0_guest_wired(cop0);
  664. break;
  665. case KVM_REG_MIPS_CP0_HWRENA:
  666. v = (long)kvm_read_c0_guest_hwrena(cop0);
  667. break;
  668. case KVM_REG_MIPS_CP0_BADVADDR:
  669. v = (long)kvm_read_c0_guest_badvaddr(cop0);
  670. break;
  671. case KVM_REG_MIPS_CP0_ENTRYHI:
  672. v = (long)kvm_read_c0_guest_entryhi(cop0);
  673. break;
  674. case KVM_REG_MIPS_CP0_COMPARE:
  675. v = (long)kvm_read_c0_guest_compare(cop0);
  676. break;
  677. case KVM_REG_MIPS_CP0_STATUS:
  678. v = (long)kvm_read_c0_guest_status(cop0);
  679. break;
  680. case KVM_REG_MIPS_CP0_CAUSE:
  681. v = (long)kvm_read_c0_guest_cause(cop0);
  682. break;
  683. case KVM_REG_MIPS_CP0_EPC:
  684. v = (long)kvm_read_c0_guest_epc(cop0);
  685. break;
  686. case KVM_REG_MIPS_CP0_PRID:
  687. v = (long)kvm_read_c0_guest_prid(cop0);
  688. break;
  689. case KVM_REG_MIPS_CP0_CONFIG:
  690. v = (long)kvm_read_c0_guest_config(cop0);
  691. break;
  692. case KVM_REG_MIPS_CP0_CONFIG1:
  693. v = (long)kvm_read_c0_guest_config1(cop0);
  694. break;
  695. case KVM_REG_MIPS_CP0_CONFIG2:
  696. v = (long)kvm_read_c0_guest_config2(cop0);
  697. break;
  698. case KVM_REG_MIPS_CP0_CONFIG3:
  699. v = (long)kvm_read_c0_guest_config3(cop0);
  700. break;
  701. case KVM_REG_MIPS_CP0_CONFIG4:
  702. v = (long)kvm_read_c0_guest_config4(cop0);
  703. break;
  704. case KVM_REG_MIPS_CP0_CONFIG5:
  705. v = (long)kvm_read_c0_guest_config5(cop0);
  706. break;
  707. case KVM_REG_MIPS_CP0_CONFIG7:
  708. v = (long)kvm_read_c0_guest_config7(cop0);
  709. break;
  710. case KVM_REG_MIPS_CP0_ERROREPC:
  711. v = (long)kvm_read_c0_guest_errorepc(cop0);
  712. break;
  713. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  714. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  715. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  716. return -EINVAL;
  717. switch (idx) {
  718. case 2:
  719. v = (long)kvm_read_c0_guest_kscratch1(cop0);
  720. break;
  721. case 3:
  722. v = (long)kvm_read_c0_guest_kscratch2(cop0);
  723. break;
  724. case 4:
  725. v = (long)kvm_read_c0_guest_kscratch3(cop0);
  726. break;
  727. case 5:
  728. v = (long)kvm_read_c0_guest_kscratch4(cop0);
  729. break;
  730. case 6:
  731. v = (long)kvm_read_c0_guest_kscratch5(cop0);
  732. break;
  733. case 7:
  734. v = (long)kvm_read_c0_guest_kscratch6(cop0);
  735. break;
  736. }
  737. break;
  738. /* registers to be handled specially */
  739. default:
  740. ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
  741. if (ret)
  742. return ret;
  743. break;
  744. }
  745. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  746. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  747. return put_user(v, uaddr64);
  748. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  749. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  750. u32 v32 = (u32)v;
  751. return put_user(v32, uaddr32);
  752. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  753. void __user *uaddr = (void __user *)(long)reg->addr;
  754. return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
  755. } else {
  756. return -EINVAL;
  757. }
  758. }
  759. static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
  760. const struct kvm_one_reg *reg)
  761. {
  762. struct mips_coproc *cop0 = vcpu->arch.cop0;
  763. struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
  764. s64 v;
  765. s64 vs[2];
  766. unsigned int idx;
  767. if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
  768. u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
  769. if (get_user(v, uaddr64) != 0)
  770. return -EFAULT;
  771. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
  772. u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
  773. s32 v32;
  774. if (get_user(v32, uaddr32) != 0)
  775. return -EFAULT;
  776. v = (s64)v32;
  777. } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
  778. void __user *uaddr = (void __user *)(long)reg->addr;
  779. return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
  780. } else {
  781. return -EINVAL;
  782. }
  783. switch (reg->id) {
  784. /* General purpose registers */
  785. case KVM_REG_MIPS_R0:
  786. /* Silently ignore requests to set $0 */
  787. break;
  788. case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
  789. vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
  790. break;
  791. #ifndef CONFIG_CPU_MIPSR6
  792. case KVM_REG_MIPS_HI:
  793. vcpu->arch.hi = v;
  794. break;
  795. case KVM_REG_MIPS_LO:
  796. vcpu->arch.lo = v;
  797. break;
  798. #endif
  799. case KVM_REG_MIPS_PC:
  800. vcpu->arch.pc = v;
  801. break;
  802. /* Floating point registers */
  803. case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
  804. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  805. return -EINVAL;
  806. idx = reg->id - KVM_REG_MIPS_FPR_32(0);
  807. /* Odd singles in top of even double when FR=0 */
  808. if (kvm_read_c0_guest_status(cop0) & ST0_FR)
  809. set_fpr32(&fpu->fpr[idx], 0, v);
  810. else
  811. set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
  812. break;
  813. case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
  814. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  815. return -EINVAL;
  816. idx = reg->id - KVM_REG_MIPS_FPR_64(0);
  817. /* Can't access odd doubles in FR=0 mode */
  818. if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
  819. return -EINVAL;
  820. set_fpr64(&fpu->fpr[idx], 0, v);
  821. break;
  822. case KVM_REG_MIPS_FCR_IR:
  823. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  824. return -EINVAL;
  825. /* Read-only */
  826. break;
  827. case KVM_REG_MIPS_FCR_CSR:
  828. if (!kvm_mips_guest_has_fpu(&vcpu->arch))
  829. return -EINVAL;
  830. fpu->fcr31 = v;
  831. break;
  832. /* MIPS SIMD Architecture (MSA) registers */
  833. case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
  834. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  835. return -EINVAL;
  836. idx = reg->id - KVM_REG_MIPS_VEC_128(0);
  837. #ifdef CONFIG_CPU_LITTLE_ENDIAN
  838. /* least significant byte first */
  839. set_fpr64(&fpu->fpr[idx], 0, vs[0]);
  840. set_fpr64(&fpu->fpr[idx], 1, vs[1]);
  841. #else
  842. /* most significant byte first */
  843. set_fpr64(&fpu->fpr[idx], 1, vs[0]);
  844. set_fpr64(&fpu->fpr[idx], 0, vs[1]);
  845. #endif
  846. break;
  847. case KVM_REG_MIPS_MSA_IR:
  848. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  849. return -EINVAL;
  850. /* Read-only */
  851. break;
  852. case KVM_REG_MIPS_MSA_CSR:
  853. if (!kvm_mips_guest_has_msa(&vcpu->arch))
  854. return -EINVAL;
  855. fpu->msacsr = v;
  856. break;
  857. /* Co-processor 0 registers */
  858. case KVM_REG_MIPS_CP0_INDEX:
  859. kvm_write_c0_guest_index(cop0, v);
  860. break;
  861. case KVM_REG_MIPS_CP0_CONTEXT:
  862. kvm_write_c0_guest_context(cop0, v);
  863. break;
  864. case KVM_REG_MIPS_CP0_USERLOCAL:
  865. kvm_write_c0_guest_userlocal(cop0, v);
  866. break;
  867. case KVM_REG_MIPS_CP0_PAGEMASK:
  868. kvm_write_c0_guest_pagemask(cop0, v);
  869. break;
  870. case KVM_REG_MIPS_CP0_WIRED:
  871. kvm_write_c0_guest_wired(cop0, v);
  872. break;
  873. case KVM_REG_MIPS_CP0_HWRENA:
  874. kvm_write_c0_guest_hwrena(cop0, v);
  875. break;
  876. case KVM_REG_MIPS_CP0_BADVADDR:
  877. kvm_write_c0_guest_badvaddr(cop0, v);
  878. break;
  879. case KVM_REG_MIPS_CP0_ENTRYHI:
  880. kvm_write_c0_guest_entryhi(cop0, v);
  881. break;
  882. case KVM_REG_MIPS_CP0_STATUS:
  883. kvm_write_c0_guest_status(cop0, v);
  884. break;
  885. case KVM_REG_MIPS_CP0_EPC:
  886. kvm_write_c0_guest_epc(cop0, v);
  887. break;
  888. case KVM_REG_MIPS_CP0_PRID:
  889. kvm_write_c0_guest_prid(cop0, v);
  890. break;
  891. case KVM_REG_MIPS_CP0_ERROREPC:
  892. kvm_write_c0_guest_errorepc(cop0, v);
  893. break;
  894. case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
  895. idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
  896. if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
  897. return -EINVAL;
  898. switch (idx) {
  899. case 2:
  900. kvm_write_c0_guest_kscratch1(cop0, v);
  901. break;
  902. case 3:
  903. kvm_write_c0_guest_kscratch2(cop0, v);
  904. break;
  905. case 4:
  906. kvm_write_c0_guest_kscratch3(cop0, v);
  907. break;
  908. case 5:
  909. kvm_write_c0_guest_kscratch4(cop0, v);
  910. break;
  911. case 6:
  912. kvm_write_c0_guest_kscratch5(cop0, v);
  913. break;
  914. case 7:
  915. kvm_write_c0_guest_kscratch6(cop0, v);
  916. break;
  917. }
  918. break;
  919. /* registers to be handled specially */
  920. default:
  921. return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
  922. }
  923. return 0;
  924. }
  925. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  926. struct kvm_enable_cap *cap)
  927. {
  928. int r = 0;
  929. if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
  930. return -EINVAL;
  931. if (cap->flags)
  932. return -EINVAL;
  933. if (cap->args[0])
  934. return -EINVAL;
  935. switch (cap->cap) {
  936. case KVM_CAP_MIPS_FPU:
  937. vcpu->arch.fpu_enabled = true;
  938. break;
  939. case KVM_CAP_MIPS_MSA:
  940. vcpu->arch.msa_enabled = true;
  941. break;
  942. default:
  943. r = -EINVAL;
  944. break;
  945. }
  946. return r;
  947. }
  948. long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
  949. unsigned long arg)
  950. {
  951. struct kvm_vcpu *vcpu = filp->private_data;
  952. void __user *argp = (void __user *)arg;
  953. long r;
  954. switch (ioctl) {
  955. case KVM_SET_ONE_REG:
  956. case KVM_GET_ONE_REG: {
  957. struct kvm_one_reg reg;
  958. if (copy_from_user(&reg, argp, sizeof(reg)))
  959. return -EFAULT;
  960. if (ioctl == KVM_SET_ONE_REG)
  961. return kvm_mips_set_reg(vcpu, &reg);
  962. else
  963. return kvm_mips_get_reg(vcpu, &reg);
  964. }
  965. case KVM_GET_REG_LIST: {
  966. struct kvm_reg_list __user *user_list = argp;
  967. struct kvm_reg_list reg_list;
  968. unsigned n;
  969. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  970. return -EFAULT;
  971. n = reg_list.n;
  972. reg_list.n = kvm_mips_num_regs(vcpu);
  973. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  974. return -EFAULT;
  975. if (n < reg_list.n)
  976. return -E2BIG;
  977. return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
  978. }
  979. case KVM_INTERRUPT:
  980. {
  981. struct kvm_mips_interrupt irq;
  982. if (copy_from_user(&irq, argp, sizeof(irq)))
  983. return -EFAULT;
  984. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
  985. irq.irq);
  986. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  987. break;
  988. }
  989. case KVM_ENABLE_CAP: {
  990. struct kvm_enable_cap cap;
  991. if (copy_from_user(&cap, argp, sizeof(cap)))
  992. return -EFAULT;
  993. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  994. break;
  995. }
  996. default:
  997. r = -ENOIOCTLCMD;
  998. }
  999. return r;
  1000. }
  1001. /* Get (and clear) the dirty memory log for a memory slot. */
  1002. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  1003. {
  1004. struct kvm_memslots *slots;
  1005. struct kvm_memory_slot *memslot;
  1006. unsigned long ga, ga_end;
  1007. int is_dirty = 0;
  1008. int r;
  1009. unsigned long n;
  1010. mutex_lock(&kvm->slots_lock);
  1011. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1012. if (r)
  1013. goto out;
  1014. /* If nothing is dirty, don't bother messing with page tables. */
  1015. if (is_dirty) {
  1016. slots = kvm_memslots(kvm);
  1017. memslot = id_to_memslot(slots, log->slot);
  1018. ga = memslot->base_gfn << PAGE_SHIFT;
  1019. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  1020. kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
  1021. ga_end);
  1022. n = kvm_dirty_bitmap_bytes(memslot);
  1023. memset(memslot->dirty_bitmap, 0, n);
  1024. }
  1025. r = 0;
  1026. out:
  1027. mutex_unlock(&kvm->slots_lock);
  1028. return r;
  1029. }
  1030. long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
  1031. {
  1032. long r;
  1033. switch (ioctl) {
  1034. default:
  1035. r = -ENOIOCTLCMD;
  1036. }
  1037. return r;
  1038. }
  1039. int kvm_arch_init(void *opaque)
  1040. {
  1041. if (kvm_mips_callbacks) {
  1042. kvm_err("kvm: module already exists\n");
  1043. return -EEXIST;
  1044. }
  1045. return kvm_mips_emulation_init(&kvm_mips_callbacks);
  1046. }
  1047. void kvm_arch_exit(void)
  1048. {
  1049. kvm_mips_callbacks = NULL;
  1050. }
  1051. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1052. struct kvm_sregs *sregs)
  1053. {
  1054. return -ENOIOCTLCMD;
  1055. }
  1056. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1057. struct kvm_sregs *sregs)
  1058. {
  1059. return -ENOIOCTLCMD;
  1060. }
  1061. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1062. {
  1063. }
  1064. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1065. {
  1066. return -ENOIOCTLCMD;
  1067. }
  1068. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1069. {
  1070. return -ENOIOCTLCMD;
  1071. }
  1072. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  1073. {
  1074. return VM_FAULT_SIGBUS;
  1075. }
  1076. int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
  1077. {
  1078. int r;
  1079. switch (ext) {
  1080. case KVM_CAP_ONE_REG:
  1081. case KVM_CAP_ENABLE_CAP:
  1082. r = 1;
  1083. break;
  1084. case KVM_CAP_COALESCED_MMIO:
  1085. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1086. break;
  1087. case KVM_CAP_MIPS_FPU:
  1088. /* We don't handle systems with inconsistent cpu_has_fpu */
  1089. r = !!raw_cpu_has_fpu;
  1090. break;
  1091. case KVM_CAP_MIPS_MSA:
  1092. /*
  1093. * We don't support MSA vector partitioning yet:
  1094. * 1) It would require explicit support which can't be tested
  1095. * yet due to lack of support in current hardware.
  1096. * 2) It extends the state that would need to be saved/restored
  1097. * by e.g. QEMU for migration.
  1098. *
  1099. * When vector partitioning hardware becomes available, support
  1100. * could be added by requiring a flag when enabling
  1101. * KVM_CAP_MIPS_MSA capability to indicate that userland knows
  1102. * to save/restore the appropriate extra state.
  1103. */
  1104. r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
  1105. break;
  1106. default:
  1107. r = 0;
  1108. break;
  1109. }
  1110. return r;
  1111. }
  1112. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1113. {
  1114. return kvm_mips_pending_timer(vcpu);
  1115. }
  1116. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  1117. {
  1118. int i;
  1119. struct mips_coproc *cop0;
  1120. if (!vcpu)
  1121. return -1;
  1122. kvm_debug("VCPU Register Dump:\n");
  1123. kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
  1124. kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
  1125. for (i = 0; i < 32; i += 4) {
  1126. kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
  1127. vcpu->arch.gprs[i],
  1128. vcpu->arch.gprs[i + 1],
  1129. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  1130. }
  1131. kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
  1132. kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
  1133. cop0 = vcpu->arch.cop0;
  1134. kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
  1135. kvm_read_c0_guest_status(cop0),
  1136. kvm_read_c0_guest_cause(cop0));
  1137. kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
  1138. return 0;
  1139. }
  1140. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1141. {
  1142. int i;
  1143. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1144. vcpu->arch.gprs[i] = regs->gpr[i];
  1145. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  1146. vcpu->arch.hi = regs->hi;
  1147. vcpu->arch.lo = regs->lo;
  1148. vcpu->arch.pc = regs->pc;
  1149. return 0;
  1150. }
  1151. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1152. {
  1153. int i;
  1154. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  1155. regs->gpr[i] = vcpu->arch.gprs[i];
  1156. regs->hi = vcpu->arch.hi;
  1157. regs->lo = vcpu->arch.lo;
  1158. regs->pc = vcpu->arch.pc;
  1159. return 0;
  1160. }
  1161. static void kvm_mips_comparecount_func(unsigned long data)
  1162. {
  1163. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  1164. kvm_mips_callbacks->queue_timer_int(vcpu);
  1165. vcpu->arch.wait = 0;
  1166. if (swait_active(&vcpu->wq))
  1167. swake_up(&vcpu->wq);
  1168. }
  1169. /* low level hrtimer wake routine */
  1170. static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
  1171. {
  1172. struct kvm_vcpu *vcpu;
  1173. vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
  1174. kvm_mips_comparecount_func((unsigned long) vcpu);
  1175. return kvm_mips_count_timeout(vcpu);
  1176. }
  1177. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  1178. {
  1179. kvm_mips_callbacks->vcpu_init(vcpu);
  1180. hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
  1181. HRTIMER_MODE_REL);
  1182. vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
  1183. return 0;
  1184. }
  1185. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1186. struct kvm_translation *tr)
  1187. {
  1188. return 0;
  1189. }
  1190. /* Initial guest state */
  1191. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1192. {
  1193. return kvm_mips_callbacks->vcpu_setup(vcpu);
  1194. }
  1195. static void kvm_mips_set_c0_status(void)
  1196. {
  1197. u32 status = read_c0_status();
  1198. if (cpu_has_dsp)
  1199. status |= (ST0_MX);
  1200. write_c0_status(status);
  1201. ehb();
  1202. }
  1203. /*
  1204. * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
  1205. */
  1206. int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1207. {
  1208. u32 cause = vcpu->arch.host_cp0_cause;
  1209. u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
  1210. u32 __user *opc = (u32 __user *) vcpu->arch.pc;
  1211. unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
  1212. enum emulation_result er = EMULATE_DONE;
  1213. int ret = RESUME_GUEST;
  1214. /* re-enable HTW before enabling interrupts */
  1215. htw_start();
  1216. /* Set a default exit reason */
  1217. run->exit_reason = KVM_EXIT_UNKNOWN;
  1218. run->ready_for_interrupt_injection = 1;
  1219. /*
  1220. * Set the appropriate status bits based on host CPU features,
  1221. * before we hit the scheduler
  1222. */
  1223. kvm_mips_set_c0_status();
  1224. local_irq_enable();
  1225. kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
  1226. cause, opc, run, vcpu);
  1227. trace_kvm_exit(vcpu, exccode);
  1228. /*
  1229. * Do a privilege check, if in UM most of these exit conditions end up
  1230. * causing an exception to be delivered to the Guest Kernel
  1231. */
  1232. er = kvm_mips_check_privilege(cause, opc, run, vcpu);
  1233. if (er == EMULATE_PRIV_FAIL) {
  1234. goto skip_emul;
  1235. } else if (er == EMULATE_FAIL) {
  1236. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1237. ret = RESUME_HOST;
  1238. goto skip_emul;
  1239. }
  1240. switch (exccode) {
  1241. case EXCCODE_INT:
  1242. kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
  1243. ++vcpu->stat.int_exits;
  1244. if (need_resched())
  1245. cond_resched();
  1246. ret = RESUME_GUEST;
  1247. break;
  1248. case EXCCODE_CPU:
  1249. kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
  1250. ++vcpu->stat.cop_unusable_exits;
  1251. ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
  1252. /* XXXKYMA: Might need to return to user space */
  1253. if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
  1254. ret = RESUME_HOST;
  1255. break;
  1256. case EXCCODE_MOD:
  1257. ++vcpu->stat.tlbmod_exits;
  1258. ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
  1259. break;
  1260. case EXCCODE_TLBS:
  1261. kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
  1262. cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
  1263. badvaddr);
  1264. ++vcpu->stat.tlbmiss_st_exits;
  1265. ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
  1266. break;
  1267. case EXCCODE_TLBL:
  1268. kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
  1269. cause, opc, badvaddr);
  1270. ++vcpu->stat.tlbmiss_ld_exits;
  1271. ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
  1272. break;
  1273. case EXCCODE_ADES:
  1274. ++vcpu->stat.addrerr_st_exits;
  1275. ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
  1276. break;
  1277. case EXCCODE_ADEL:
  1278. ++vcpu->stat.addrerr_ld_exits;
  1279. ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
  1280. break;
  1281. case EXCCODE_SYS:
  1282. ++vcpu->stat.syscall_exits;
  1283. ret = kvm_mips_callbacks->handle_syscall(vcpu);
  1284. break;
  1285. case EXCCODE_RI:
  1286. ++vcpu->stat.resvd_inst_exits;
  1287. ret = kvm_mips_callbacks->handle_res_inst(vcpu);
  1288. break;
  1289. case EXCCODE_BP:
  1290. ++vcpu->stat.break_inst_exits;
  1291. ret = kvm_mips_callbacks->handle_break(vcpu);
  1292. break;
  1293. case EXCCODE_TR:
  1294. ++vcpu->stat.trap_inst_exits;
  1295. ret = kvm_mips_callbacks->handle_trap(vcpu);
  1296. break;
  1297. case EXCCODE_MSAFPE:
  1298. ++vcpu->stat.msa_fpe_exits;
  1299. ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
  1300. break;
  1301. case EXCCODE_FPE:
  1302. ++vcpu->stat.fpe_exits;
  1303. ret = kvm_mips_callbacks->handle_fpe(vcpu);
  1304. break;
  1305. case EXCCODE_MSADIS:
  1306. ++vcpu->stat.msa_disabled_exits;
  1307. ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
  1308. break;
  1309. default:
  1310. kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
  1311. exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
  1312. kvm_read_c0_guest_status(vcpu->arch.cop0));
  1313. kvm_arch_vcpu_dump_regs(vcpu);
  1314. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1315. ret = RESUME_HOST;
  1316. break;
  1317. }
  1318. skip_emul:
  1319. local_irq_disable();
  1320. if (er == EMULATE_DONE && !(ret & RESUME_HOST))
  1321. kvm_mips_deliver_interrupts(vcpu, cause);
  1322. if (!(ret & RESUME_HOST)) {
  1323. /* Only check for signals if not already exiting to userspace */
  1324. if (signal_pending(current)) {
  1325. run->exit_reason = KVM_EXIT_INTR;
  1326. ret = (-EINTR << 2) | RESUME_HOST;
  1327. ++vcpu->stat.signal_exits;
  1328. trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
  1329. }
  1330. }
  1331. if (ret == RESUME_GUEST) {
  1332. trace_kvm_reenter(vcpu);
  1333. kvm_mips_check_asids(vcpu);
  1334. /*
  1335. * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
  1336. * is live), restore FCR31 / MSACSR.
  1337. *
  1338. * This should be before returning to the guest exception
  1339. * vector, as it may well cause an [MSA] FP exception if there
  1340. * are pending exception bits unmasked. (see
  1341. * kvm_mips_csr_die_notifier() for how that is handled).
  1342. */
  1343. if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
  1344. read_c0_status() & ST0_CU1)
  1345. __kvm_restore_fcsr(&vcpu->arch);
  1346. if (kvm_mips_guest_has_msa(&vcpu->arch) &&
  1347. read_c0_config5() & MIPS_CONF5_MSAEN)
  1348. __kvm_restore_msacsr(&vcpu->arch);
  1349. }
  1350. /* Disable HTW before returning to guest or host */
  1351. htw_stop();
  1352. return ret;
  1353. }
  1354. /* Enable FPU for guest and restore context */
  1355. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1356. {
  1357. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1358. unsigned int sr, cfg5;
  1359. preempt_disable();
  1360. sr = kvm_read_c0_guest_status(cop0);
  1361. /*
  1362. * If MSA state is already live, it is undefined how it interacts with
  1363. * FR=0 FPU state, and we don't want to hit reserved instruction
  1364. * exceptions trying to save the MSA state later when CU=1 && FR=1, so
  1365. * play it safe and save it first.
  1366. *
  1367. * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
  1368. * get called when guest CU1 is set, however we can't trust the guest
  1369. * not to clobber the status register directly via the commpage.
  1370. */
  1371. if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
  1372. vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
  1373. kvm_lose_fpu(vcpu);
  1374. /*
  1375. * Enable FPU for guest
  1376. * We set FR and FRE according to guest context
  1377. */
  1378. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1379. if (cpu_has_fre) {
  1380. cfg5 = kvm_read_c0_guest_config5(cop0);
  1381. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1382. }
  1383. enable_fpu_hazard();
  1384. /* If guest FPU state not active, restore it now */
  1385. if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
  1386. __kvm_restore_fpu(&vcpu->arch);
  1387. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1388. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
  1389. } else {
  1390. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
  1391. }
  1392. preempt_enable();
  1393. }
  1394. #ifdef CONFIG_CPU_HAS_MSA
  1395. /* Enable MSA for guest and restore context */
  1396. void kvm_own_msa(struct kvm_vcpu *vcpu)
  1397. {
  1398. struct mips_coproc *cop0 = vcpu->arch.cop0;
  1399. unsigned int sr, cfg5;
  1400. preempt_disable();
  1401. /*
  1402. * Enable FPU if enabled in guest, since we're restoring FPU context
  1403. * anyway. We set FR and FRE according to guest context.
  1404. */
  1405. if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
  1406. sr = kvm_read_c0_guest_status(cop0);
  1407. /*
  1408. * If FR=0 FPU state is already live, it is undefined how it
  1409. * interacts with MSA state, so play it safe and save it first.
  1410. */
  1411. if (!(sr & ST0_FR) &&
  1412. (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
  1413. KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
  1414. kvm_lose_fpu(vcpu);
  1415. change_c0_status(ST0_CU1 | ST0_FR, sr);
  1416. if (sr & ST0_CU1 && cpu_has_fre) {
  1417. cfg5 = kvm_read_c0_guest_config5(cop0);
  1418. change_c0_config5(MIPS_CONF5_FRE, cfg5);
  1419. }
  1420. }
  1421. /* Enable MSA for guest */
  1422. set_c0_config5(MIPS_CONF5_MSAEN);
  1423. enable_fpu_hazard();
  1424. switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
  1425. case KVM_MIPS_AUX_FPU:
  1426. /*
  1427. * Guest FPU state already loaded, only restore upper MSA state
  1428. */
  1429. __kvm_restore_msa_upper(&vcpu->arch);
  1430. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1431. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
  1432. break;
  1433. case 0:
  1434. /* Neither FPU or MSA already active, restore full MSA state */
  1435. __kvm_restore_msa(&vcpu->arch);
  1436. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
  1437. if (kvm_mips_guest_has_fpu(&vcpu->arch))
  1438. vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
  1439. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
  1440. KVM_TRACE_AUX_FPU_MSA);
  1441. break;
  1442. default:
  1443. trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
  1444. break;
  1445. }
  1446. preempt_enable();
  1447. }
  1448. #endif
  1449. /* Drop FPU & MSA without saving it */
  1450. void kvm_drop_fpu(struct kvm_vcpu *vcpu)
  1451. {
  1452. preempt_disable();
  1453. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1454. disable_msa();
  1455. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
  1456. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
  1457. }
  1458. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1459. clear_c0_status(ST0_CU1 | ST0_FR);
  1460. trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
  1461. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1462. }
  1463. preempt_enable();
  1464. }
  1465. /* Save and disable FPU & MSA */
  1466. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1467. {
  1468. /*
  1469. * FPU & MSA get disabled in root context (hardware) when it is disabled
  1470. * in guest context (software), but the register state in the hardware
  1471. * may still be in use. This is why we explicitly re-enable the hardware
  1472. * before saving.
  1473. */
  1474. preempt_disable();
  1475. if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
  1476. set_c0_config5(MIPS_CONF5_MSAEN);
  1477. enable_fpu_hazard();
  1478. __kvm_save_msa(&vcpu->arch);
  1479. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
  1480. /* Disable MSA & FPU */
  1481. disable_msa();
  1482. if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1483. clear_c0_status(ST0_CU1 | ST0_FR);
  1484. disable_fpu_hazard();
  1485. }
  1486. vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
  1487. } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
  1488. set_c0_status(ST0_CU1);
  1489. enable_fpu_hazard();
  1490. __kvm_save_fpu(&vcpu->arch);
  1491. vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
  1492. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
  1493. /* Disable FPU */
  1494. clear_c0_status(ST0_CU1 | ST0_FR);
  1495. disable_fpu_hazard();
  1496. }
  1497. preempt_enable();
  1498. }
  1499. /*
  1500. * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
  1501. * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
  1502. * exception if cause bits are set in the value being written.
  1503. */
  1504. static int kvm_mips_csr_die_notify(struct notifier_block *self,
  1505. unsigned long cmd, void *ptr)
  1506. {
  1507. struct die_args *args = (struct die_args *)ptr;
  1508. struct pt_regs *regs = args->regs;
  1509. unsigned long pc;
  1510. /* Only interested in FPE and MSAFPE */
  1511. if (cmd != DIE_FP && cmd != DIE_MSAFP)
  1512. return NOTIFY_DONE;
  1513. /* Return immediately if guest context isn't active */
  1514. if (!(current->flags & PF_VCPU))
  1515. return NOTIFY_DONE;
  1516. /* Should never get here from user mode */
  1517. BUG_ON(user_mode(regs));
  1518. pc = instruction_pointer(regs);
  1519. switch (cmd) {
  1520. case DIE_FP:
  1521. /* match 2nd instruction in __kvm_restore_fcsr */
  1522. if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
  1523. return NOTIFY_DONE;
  1524. break;
  1525. case DIE_MSAFP:
  1526. /* match 2nd/3rd instruction in __kvm_restore_msacsr */
  1527. if (!cpu_has_msa ||
  1528. pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
  1529. pc > (unsigned long)&__kvm_restore_msacsr + 8)
  1530. return NOTIFY_DONE;
  1531. break;
  1532. }
  1533. /* Move PC forward a little and continue executing */
  1534. instruction_pointer(regs) += 4;
  1535. return NOTIFY_STOP;
  1536. }
  1537. static struct notifier_block kvm_mips_csr_die_notifier = {
  1538. .notifier_call = kvm_mips_csr_die_notify,
  1539. };
  1540. static int __init kvm_mips_init(void)
  1541. {
  1542. int ret;
  1543. ret = kvm_mips_entry_setup();
  1544. if (ret)
  1545. return ret;
  1546. ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1547. if (ret)
  1548. return ret;
  1549. register_die_notifier(&kvm_mips_csr_die_notifier);
  1550. return 0;
  1551. }
  1552. static void __exit kvm_mips_exit(void)
  1553. {
  1554. kvm_exit();
  1555. unregister_die_notifier(&kvm_mips_csr_die_notifier);
  1556. }
  1557. module_init(kvm_mips_init);
  1558. module_exit(kvm_mips_exit);
  1559. EXPORT_TRACEPOINT_SYMBOL(kvm_exit);