vmem.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/module.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <linux/memblock.h>
  13. #include <asm/pgalloc.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/setup.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/sections.h>
  18. static DEFINE_MUTEX(vmem_mutex);
  19. struct memory_segment {
  20. struct list_head list;
  21. unsigned long start;
  22. unsigned long size;
  23. };
  24. static LIST_HEAD(mem_segs);
  25. static void __ref *vmem_alloc_pages(unsigned int order)
  26. {
  27. if (slab_is_available())
  28. return (void *)__get_free_pages(GFP_KERNEL, order);
  29. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  30. }
  31. static inline pud_t *vmem_pud_alloc(void)
  32. {
  33. pud_t *pud = NULL;
  34. pud = vmem_alloc_pages(2);
  35. if (!pud)
  36. return NULL;
  37. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  38. return pud;
  39. }
  40. static inline pmd_t *vmem_pmd_alloc(void)
  41. {
  42. pmd_t *pmd = NULL;
  43. pmd = vmem_alloc_pages(2);
  44. if (!pmd)
  45. return NULL;
  46. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  47. return pmd;
  48. }
  49. static pte_t __ref *vmem_pte_alloc(void)
  50. {
  51. pte_t *pte;
  52. if (slab_is_available())
  53. pte = (pte_t *) page_table_alloc(&init_mm);
  54. else
  55. pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
  56. PTRS_PER_PTE * sizeof(pte_t));
  57. if (!pte)
  58. return NULL;
  59. clear_table((unsigned long *) pte, _PAGE_INVALID,
  60. PTRS_PER_PTE * sizeof(pte_t));
  61. return pte;
  62. }
  63. /*
  64. * Add a physical memory range to the 1:1 mapping.
  65. */
  66. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  67. {
  68. unsigned long end = start + size;
  69. unsigned long address = start;
  70. pgd_t *pg_dir;
  71. pud_t *pu_dir;
  72. pmd_t *pm_dir;
  73. pte_t *pt_dir;
  74. int ret = -ENOMEM;
  75. while (address < end) {
  76. pg_dir = pgd_offset_k(address);
  77. if (pgd_none(*pg_dir)) {
  78. pu_dir = vmem_pud_alloc();
  79. if (!pu_dir)
  80. goto out;
  81. pgd_populate(&init_mm, pg_dir, pu_dir);
  82. }
  83. pu_dir = pud_offset(pg_dir, address);
  84. if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
  85. !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
  86. !debug_pagealloc_enabled()) {
  87. pud_val(*pu_dir) = __pa(address) |
  88. _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
  89. (ro ? _REGION_ENTRY_PROTECT : 0);
  90. address += PUD_SIZE;
  91. continue;
  92. }
  93. if (pud_none(*pu_dir)) {
  94. pm_dir = vmem_pmd_alloc();
  95. if (!pm_dir)
  96. goto out;
  97. pud_populate(&init_mm, pu_dir, pm_dir);
  98. }
  99. pm_dir = pmd_offset(pu_dir, address);
  100. if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
  101. !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
  102. !debug_pagealloc_enabled()) {
  103. pmd_val(*pm_dir) = __pa(address) |
  104. _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
  105. _SEGMENT_ENTRY_YOUNG |
  106. (ro ? _SEGMENT_ENTRY_PROTECT : 0);
  107. address += PMD_SIZE;
  108. continue;
  109. }
  110. if (pmd_none(*pm_dir)) {
  111. pt_dir = vmem_pte_alloc();
  112. if (!pt_dir)
  113. goto out;
  114. pmd_populate(&init_mm, pm_dir, pt_dir);
  115. }
  116. pt_dir = pte_offset_kernel(pm_dir, address);
  117. pte_val(*pt_dir) = __pa(address) |
  118. pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
  119. address += PAGE_SIZE;
  120. }
  121. ret = 0;
  122. out:
  123. return ret;
  124. }
  125. /*
  126. * Remove a physical memory range from the 1:1 mapping.
  127. * Currently only invalidates page table entries.
  128. */
  129. static void vmem_remove_range(unsigned long start, unsigned long size)
  130. {
  131. unsigned long end = start + size;
  132. unsigned long address = start;
  133. pgd_t *pg_dir;
  134. pud_t *pu_dir;
  135. pmd_t *pm_dir;
  136. pte_t *pt_dir;
  137. pte_t pte;
  138. pte_val(pte) = _PAGE_INVALID;
  139. while (address < end) {
  140. pg_dir = pgd_offset_k(address);
  141. if (pgd_none(*pg_dir)) {
  142. address += PGDIR_SIZE;
  143. continue;
  144. }
  145. pu_dir = pud_offset(pg_dir, address);
  146. if (pud_none(*pu_dir)) {
  147. address += PUD_SIZE;
  148. continue;
  149. }
  150. if (pud_large(*pu_dir)) {
  151. pud_clear(pu_dir);
  152. address += PUD_SIZE;
  153. continue;
  154. }
  155. pm_dir = pmd_offset(pu_dir, address);
  156. if (pmd_none(*pm_dir)) {
  157. address += PMD_SIZE;
  158. continue;
  159. }
  160. if (pmd_large(*pm_dir)) {
  161. pmd_clear(pm_dir);
  162. address += PMD_SIZE;
  163. continue;
  164. }
  165. pt_dir = pte_offset_kernel(pm_dir, address);
  166. *pt_dir = pte;
  167. address += PAGE_SIZE;
  168. }
  169. flush_tlb_kernel_range(start, end);
  170. }
  171. /*
  172. * Add a backed mem_map array to the virtual mem_map array.
  173. */
  174. int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
  175. {
  176. unsigned long address = start;
  177. pgd_t *pg_dir;
  178. pud_t *pu_dir;
  179. pmd_t *pm_dir;
  180. pte_t *pt_dir;
  181. int ret = -ENOMEM;
  182. for (address = start; address < end;) {
  183. pg_dir = pgd_offset_k(address);
  184. if (pgd_none(*pg_dir)) {
  185. pu_dir = vmem_pud_alloc();
  186. if (!pu_dir)
  187. goto out;
  188. pgd_populate(&init_mm, pg_dir, pu_dir);
  189. }
  190. pu_dir = pud_offset(pg_dir, address);
  191. if (pud_none(*pu_dir)) {
  192. pm_dir = vmem_pmd_alloc();
  193. if (!pm_dir)
  194. goto out;
  195. pud_populate(&init_mm, pu_dir, pm_dir);
  196. }
  197. pm_dir = pmd_offset(pu_dir, address);
  198. if (pmd_none(*pm_dir)) {
  199. /* Use 1MB frames for vmemmap if available. We always
  200. * use large frames even if they are only partially
  201. * used.
  202. * Otherwise we would have also page tables since
  203. * vmemmap_populate gets called for each section
  204. * separately. */
  205. if (MACHINE_HAS_EDAT1) {
  206. void *new_page;
  207. new_page = vmemmap_alloc_block(PMD_SIZE, node);
  208. if (!new_page)
  209. goto out;
  210. pmd_val(*pm_dir) = __pa(new_page) |
  211. _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
  212. address = (address + PMD_SIZE) & PMD_MASK;
  213. continue;
  214. }
  215. pt_dir = vmem_pte_alloc();
  216. if (!pt_dir)
  217. goto out;
  218. pmd_populate(&init_mm, pm_dir, pt_dir);
  219. } else if (pmd_large(*pm_dir)) {
  220. address = (address + PMD_SIZE) & PMD_MASK;
  221. continue;
  222. }
  223. pt_dir = pte_offset_kernel(pm_dir, address);
  224. if (pte_none(*pt_dir)) {
  225. void *new_page;
  226. new_page = vmemmap_alloc_block(PAGE_SIZE, node);
  227. if (!new_page)
  228. goto out;
  229. pte_val(*pt_dir) =
  230. __pa(new_page) | pgprot_val(PAGE_KERNEL);
  231. }
  232. address += PAGE_SIZE;
  233. }
  234. ret = 0;
  235. out:
  236. return ret;
  237. }
  238. void vmemmap_free(unsigned long start, unsigned long end)
  239. {
  240. }
  241. /*
  242. * Add memory segment to the segment list if it doesn't overlap with
  243. * an already present segment.
  244. */
  245. static int insert_memory_segment(struct memory_segment *seg)
  246. {
  247. struct memory_segment *tmp;
  248. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  249. seg->start + seg->size < seg->start)
  250. return -ERANGE;
  251. list_for_each_entry(tmp, &mem_segs, list) {
  252. if (seg->start >= tmp->start + tmp->size)
  253. continue;
  254. if (seg->start + seg->size <= tmp->start)
  255. continue;
  256. return -ENOSPC;
  257. }
  258. list_add(&seg->list, &mem_segs);
  259. return 0;
  260. }
  261. /*
  262. * Remove memory segment from the segment list.
  263. */
  264. static void remove_memory_segment(struct memory_segment *seg)
  265. {
  266. list_del(&seg->list);
  267. }
  268. static void __remove_shared_memory(struct memory_segment *seg)
  269. {
  270. remove_memory_segment(seg);
  271. vmem_remove_range(seg->start, seg->size);
  272. }
  273. int vmem_remove_mapping(unsigned long start, unsigned long size)
  274. {
  275. struct memory_segment *seg;
  276. int ret;
  277. mutex_lock(&vmem_mutex);
  278. ret = -ENOENT;
  279. list_for_each_entry(seg, &mem_segs, list) {
  280. if (seg->start == start && seg->size == size)
  281. break;
  282. }
  283. if (seg->start != start || seg->size != size)
  284. goto out;
  285. ret = 0;
  286. __remove_shared_memory(seg);
  287. kfree(seg);
  288. out:
  289. mutex_unlock(&vmem_mutex);
  290. return ret;
  291. }
  292. int vmem_add_mapping(unsigned long start, unsigned long size)
  293. {
  294. struct memory_segment *seg;
  295. int ret;
  296. mutex_lock(&vmem_mutex);
  297. ret = -ENOMEM;
  298. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  299. if (!seg)
  300. goto out;
  301. seg->start = start;
  302. seg->size = size;
  303. ret = insert_memory_segment(seg);
  304. if (ret)
  305. goto out_free;
  306. ret = vmem_add_mem(start, size, 0);
  307. if (ret)
  308. goto out_remove;
  309. goto out;
  310. out_remove:
  311. __remove_shared_memory(seg);
  312. out_free:
  313. kfree(seg);
  314. out:
  315. mutex_unlock(&vmem_mutex);
  316. return ret;
  317. }
  318. /*
  319. * map whole physical memory to virtual memory (identity mapping)
  320. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  321. * additional memory segments.
  322. */
  323. void __init vmem_map_init(void)
  324. {
  325. unsigned long ro_start, ro_end;
  326. struct memblock_region *reg;
  327. phys_addr_t start, end;
  328. ro_start = PFN_ALIGN((unsigned long)&_stext);
  329. ro_end = (unsigned long)&_eshared & PAGE_MASK;
  330. for_each_memblock(memory, reg) {
  331. start = reg->base;
  332. end = reg->base + reg->size;
  333. if (start >= ro_end || end <= ro_start)
  334. vmem_add_mem(start, end - start, 0);
  335. else if (start >= ro_start && end <= ro_end)
  336. vmem_add_mem(start, end - start, 1);
  337. else if (start >= ro_start) {
  338. vmem_add_mem(start, ro_end - start, 1);
  339. vmem_add_mem(ro_end, end - ro_end, 0);
  340. } else if (end < ro_end) {
  341. vmem_add_mem(start, ro_start - start, 0);
  342. vmem_add_mem(ro_start, end - ro_start, 1);
  343. } else {
  344. vmem_add_mem(start, ro_start - start, 0);
  345. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  346. vmem_add_mem(ro_end, end - ro_end, 0);
  347. }
  348. }
  349. }
  350. /*
  351. * Convert memblock.memory to a memory segment list so there is a single
  352. * list that contains all memory segments.
  353. */
  354. static int __init vmem_convert_memory_chunk(void)
  355. {
  356. struct memblock_region *reg;
  357. struct memory_segment *seg;
  358. mutex_lock(&vmem_mutex);
  359. for_each_memblock(memory, reg) {
  360. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  361. if (!seg)
  362. panic("Out of memory...\n");
  363. seg->start = reg->base;
  364. seg->size = reg->size;
  365. insert_memory_segment(seg);
  366. }
  367. mutex_unlock(&vmem_mutex);
  368. return 0;
  369. }
  370. core_initcall(vmem_convert_memory_chunk);