init.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/bootmem.h> /* for max_low_pfn */
  7. #include <linux/swapfile.h>
  8. #include <linux/swapops.h>
  9. #include <linux/kmemleak.h>
  10. #include <asm/set_memory.h>
  11. #include <asm/e820/api.h>
  12. #include <asm/init.h>
  13. #include <asm/page.h>
  14. #include <asm/page_types.h>
  15. #include <asm/sections.h>
  16. #include <asm/setup.h>
  17. #include <asm/tlbflush.h>
  18. #include <asm/tlb.h>
  19. #include <asm/proto.h>
  20. #include <asm/dma.h> /* for MAX_DMA_PFN */
  21. #include <asm/microcode.h>
  22. #include <asm/kaslr.h>
  23. #include <asm/hypervisor.h>
  24. #include <asm/cpufeature.h>
  25. #include <asm/pti.h>
  26. /*
  27. * We need to define the tracepoints somewhere, and tlb.c
  28. * is only compied when SMP=y.
  29. */
  30. #define CREATE_TRACE_POINTS
  31. #include <trace/events/tlb.h>
  32. #include "mm_internal.h"
  33. /*
  34. * Tables translating between page_cache_type_t and pte encoding.
  35. *
  36. * The default values are defined statically as minimal supported mode;
  37. * WC and WT fall back to UC-. pat_init() updates these values to support
  38. * more cache modes, WC and WT, when it is safe to do so. See pat_init()
  39. * for the details. Note, __early_ioremap() used during early boot-time
  40. * takes pgprot_t (pte encoding) and does not use these tables.
  41. *
  42. * Index into __cachemode2pte_tbl[] is the cachemode.
  43. *
  44. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  45. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  46. */
  47. uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  48. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  49. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  50. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  51. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  52. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  53. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  54. };
  55. EXPORT_SYMBOL(__cachemode2pte_tbl);
  56. uint8_t __pte2cachemode_tbl[8] = {
  57. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  58. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  59. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  60. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  61. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  62. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  63. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  64. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  65. };
  66. EXPORT_SYMBOL(__pte2cachemode_tbl);
  67. static unsigned long __initdata pgt_buf_start;
  68. static unsigned long __initdata pgt_buf_end;
  69. static unsigned long __initdata pgt_buf_top;
  70. static unsigned long min_pfn_mapped;
  71. static bool __initdata can_use_brk_pgt = true;
  72. /*
  73. * Pages returned are already directly mapped.
  74. *
  75. * Changing that is likely to break Xen, see commit:
  76. *
  77. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  78. *
  79. * for detailed information.
  80. */
  81. __ref void *alloc_low_pages(unsigned int num)
  82. {
  83. unsigned long pfn;
  84. int i;
  85. if (after_bootmem) {
  86. unsigned int order;
  87. order = get_order((unsigned long)num << PAGE_SHIFT);
  88. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
  89. }
  90. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  91. unsigned long ret = 0;
  92. if (min_pfn_mapped < max_pfn_mapped) {
  93. ret = memblock_find_in_range(
  94. min_pfn_mapped << PAGE_SHIFT,
  95. max_pfn_mapped << PAGE_SHIFT,
  96. PAGE_SIZE * num , PAGE_SIZE);
  97. }
  98. if (ret)
  99. memblock_reserve(ret, PAGE_SIZE * num);
  100. else if (can_use_brk_pgt)
  101. ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
  102. if (!ret)
  103. panic("alloc_low_pages: can not alloc memory");
  104. pfn = ret >> PAGE_SHIFT;
  105. } else {
  106. pfn = pgt_buf_end;
  107. pgt_buf_end += num;
  108. printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
  109. pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
  110. }
  111. for (i = 0; i < num; i++) {
  112. void *adr;
  113. adr = __va((pfn + i) << PAGE_SHIFT);
  114. clear_page(adr);
  115. }
  116. return __va(pfn << PAGE_SHIFT);
  117. }
  118. /*
  119. * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
  120. * With KASLR memory randomization, depending on the machine e820 memory
  121. * and the PUD alignment. We may need twice more pages when KASLR memory
  122. * randomization is enabled.
  123. */
  124. #ifndef CONFIG_RANDOMIZE_MEMORY
  125. #define INIT_PGD_PAGE_COUNT 6
  126. #else
  127. #define INIT_PGD_PAGE_COUNT 12
  128. #endif
  129. #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
  130. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  131. void __init early_alloc_pgt_buf(void)
  132. {
  133. unsigned long tables = INIT_PGT_BUF_SIZE;
  134. phys_addr_t base;
  135. base = __pa(extend_brk(tables, PAGE_SIZE));
  136. pgt_buf_start = base >> PAGE_SHIFT;
  137. pgt_buf_end = pgt_buf_start;
  138. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  139. }
  140. int after_bootmem;
  141. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  142. struct map_range {
  143. unsigned long start;
  144. unsigned long end;
  145. unsigned page_size_mask;
  146. };
  147. static int page_size_mask;
  148. static void __init probe_page_size_mask(void)
  149. {
  150. /*
  151. * For pagealloc debugging, identity mapping will use small pages.
  152. * This will simplify cpa(), which otherwise needs to support splitting
  153. * large pages into small in interrupt context, etc.
  154. */
  155. if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
  156. page_size_mask |= 1 << PG_LEVEL_2M;
  157. else
  158. direct_gbpages = 0;
  159. /* Enable PSE if available */
  160. if (boot_cpu_has(X86_FEATURE_PSE))
  161. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  162. /* Enable PGE if available */
  163. __supported_pte_mask &= ~_PAGE_GLOBAL;
  164. if (boot_cpu_has(X86_FEATURE_PGE)) {
  165. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  166. __supported_pte_mask |= _PAGE_GLOBAL;
  167. }
  168. /* By the default is everything supported: */
  169. __default_kernel_pte_mask = __supported_pte_mask;
  170. /* Except when with PTI where the kernel is mostly non-Global: */
  171. if (cpu_feature_enabled(X86_FEATURE_PTI))
  172. __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
  173. /* Enable 1 GB linear kernel mappings if available: */
  174. if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
  175. printk(KERN_INFO "Using GB pages for direct mapping\n");
  176. page_size_mask |= 1 << PG_LEVEL_1G;
  177. } else {
  178. direct_gbpages = 0;
  179. }
  180. }
  181. static void setup_pcid(void)
  182. {
  183. if (!IS_ENABLED(CONFIG_X86_64))
  184. return;
  185. if (!boot_cpu_has(X86_FEATURE_PCID))
  186. return;
  187. if (boot_cpu_has(X86_FEATURE_PGE)) {
  188. /*
  189. * This can't be cr4_set_bits_and_update_boot() -- the
  190. * trampoline code can't handle CR4.PCIDE and it wouldn't
  191. * do any good anyway. Despite the name,
  192. * cr4_set_bits_and_update_boot() doesn't actually cause
  193. * the bits in question to remain set all the way through
  194. * the secondary boot asm.
  195. *
  196. * Instead, we brute-force it and set CR4.PCIDE manually in
  197. * start_secondary().
  198. */
  199. cr4_set_bits(X86_CR4_PCIDE);
  200. /*
  201. * INVPCID's single-context modes (2/3) only work if we set
  202. * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
  203. * on systems that have X86_CR4_PCIDE clear, or that have
  204. * no INVPCID support at all.
  205. */
  206. if (boot_cpu_has(X86_FEATURE_INVPCID))
  207. setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
  208. } else {
  209. /*
  210. * flush_tlb_all(), as currently implemented, won't work if
  211. * PCID is on but PGE is not. Since that combination
  212. * doesn't exist on real hardware, there's no reason to try
  213. * to fully support it, but it's polite to avoid corrupting
  214. * data if we're on an improperly configured VM.
  215. */
  216. setup_clear_cpu_cap(X86_FEATURE_PCID);
  217. }
  218. }
  219. #ifdef CONFIG_X86_32
  220. #define NR_RANGE_MR 3
  221. #else /* CONFIG_X86_64 */
  222. #define NR_RANGE_MR 5
  223. #endif
  224. static int __meminit save_mr(struct map_range *mr, int nr_range,
  225. unsigned long start_pfn, unsigned long end_pfn,
  226. unsigned long page_size_mask)
  227. {
  228. if (start_pfn < end_pfn) {
  229. if (nr_range >= NR_RANGE_MR)
  230. panic("run out of range for init_memory_mapping\n");
  231. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  232. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  233. mr[nr_range].page_size_mask = page_size_mask;
  234. nr_range++;
  235. }
  236. return nr_range;
  237. }
  238. /*
  239. * adjust the page_size_mask for small range to go with
  240. * big page size instead small one if nearby are ram too.
  241. */
  242. static void __ref adjust_range_page_size_mask(struct map_range *mr,
  243. int nr_range)
  244. {
  245. int i;
  246. for (i = 0; i < nr_range; i++) {
  247. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  248. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  249. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  250. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  251. #ifdef CONFIG_X86_32
  252. if ((end >> PAGE_SHIFT) > max_low_pfn)
  253. continue;
  254. #endif
  255. if (memblock_is_region_memory(start, end - start))
  256. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  257. }
  258. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  259. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  260. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  261. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  262. if (memblock_is_region_memory(start, end - start))
  263. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  264. }
  265. }
  266. }
  267. static const char *page_size_string(struct map_range *mr)
  268. {
  269. static const char str_1g[] = "1G";
  270. static const char str_2m[] = "2M";
  271. static const char str_4m[] = "4M";
  272. static const char str_4k[] = "4k";
  273. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  274. return str_1g;
  275. /*
  276. * 32-bit without PAE has a 4M large page size.
  277. * PG_LEVEL_2M is misnamed, but we can at least
  278. * print out the right size in the string.
  279. */
  280. if (IS_ENABLED(CONFIG_X86_32) &&
  281. !IS_ENABLED(CONFIG_X86_PAE) &&
  282. mr->page_size_mask & (1<<PG_LEVEL_2M))
  283. return str_4m;
  284. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  285. return str_2m;
  286. return str_4k;
  287. }
  288. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  289. unsigned long start,
  290. unsigned long end)
  291. {
  292. unsigned long start_pfn, end_pfn, limit_pfn;
  293. unsigned long pfn;
  294. int i;
  295. limit_pfn = PFN_DOWN(end);
  296. /* head if not big page alignment ? */
  297. pfn = start_pfn = PFN_DOWN(start);
  298. #ifdef CONFIG_X86_32
  299. /*
  300. * Don't use a large page for the first 2/4MB of memory
  301. * because there are often fixed size MTRRs in there
  302. * and overlapping MTRRs into large pages can cause
  303. * slowdowns.
  304. */
  305. if (pfn == 0)
  306. end_pfn = PFN_DOWN(PMD_SIZE);
  307. else
  308. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  309. #else /* CONFIG_X86_64 */
  310. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  311. #endif
  312. if (end_pfn > limit_pfn)
  313. end_pfn = limit_pfn;
  314. if (start_pfn < end_pfn) {
  315. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  316. pfn = end_pfn;
  317. }
  318. /* big page (2M) range */
  319. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  320. #ifdef CONFIG_X86_32
  321. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  322. #else /* CONFIG_X86_64 */
  323. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  324. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  325. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  326. #endif
  327. if (start_pfn < end_pfn) {
  328. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  329. page_size_mask & (1<<PG_LEVEL_2M));
  330. pfn = end_pfn;
  331. }
  332. #ifdef CONFIG_X86_64
  333. /* big page (1G) range */
  334. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  335. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  336. if (start_pfn < end_pfn) {
  337. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  338. page_size_mask &
  339. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  340. pfn = end_pfn;
  341. }
  342. /* tail is not big page (1G) alignment */
  343. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  344. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  345. if (start_pfn < end_pfn) {
  346. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  347. page_size_mask & (1<<PG_LEVEL_2M));
  348. pfn = end_pfn;
  349. }
  350. #endif
  351. /* tail is not big page (2M) alignment */
  352. start_pfn = pfn;
  353. end_pfn = limit_pfn;
  354. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  355. if (!after_bootmem)
  356. adjust_range_page_size_mask(mr, nr_range);
  357. /* try to merge same page size and continuous */
  358. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  359. unsigned long old_start;
  360. if (mr[i].end != mr[i+1].start ||
  361. mr[i].page_size_mask != mr[i+1].page_size_mask)
  362. continue;
  363. /* move it */
  364. old_start = mr[i].start;
  365. memmove(&mr[i], &mr[i+1],
  366. (nr_range - 1 - i) * sizeof(struct map_range));
  367. mr[i--].start = old_start;
  368. nr_range--;
  369. }
  370. for (i = 0; i < nr_range; i++)
  371. pr_debug(" [mem %#010lx-%#010lx] page %s\n",
  372. mr[i].start, mr[i].end - 1,
  373. page_size_string(&mr[i]));
  374. return nr_range;
  375. }
  376. struct range pfn_mapped[E820_MAX_ENTRIES];
  377. int nr_pfn_mapped;
  378. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  379. {
  380. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
  381. nr_pfn_mapped, start_pfn, end_pfn);
  382. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
  383. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  384. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  385. max_low_pfn_mapped = max(max_low_pfn_mapped,
  386. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  387. }
  388. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  389. {
  390. int i;
  391. for (i = 0; i < nr_pfn_mapped; i++)
  392. if ((start_pfn >= pfn_mapped[i].start) &&
  393. (end_pfn <= pfn_mapped[i].end))
  394. return true;
  395. return false;
  396. }
  397. /*
  398. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  399. * This runs before bootmem is initialized and gets pages directly from
  400. * the physical memory. To access them they are temporarily mapped.
  401. */
  402. unsigned long __ref init_memory_mapping(unsigned long start,
  403. unsigned long end)
  404. {
  405. struct map_range mr[NR_RANGE_MR];
  406. unsigned long ret = 0;
  407. int nr_range, i;
  408. pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  409. start, end - 1);
  410. memset(mr, 0, sizeof(mr));
  411. nr_range = split_mem_range(mr, 0, start, end);
  412. for (i = 0; i < nr_range; i++)
  413. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  414. mr[i].page_size_mask);
  415. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  416. return ret >> PAGE_SHIFT;
  417. }
  418. /*
  419. * We need to iterate through the E820 memory map and create direct mappings
  420. * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
  421. * create direct mappings for all pfns from [0 to max_low_pfn) and
  422. * [4GB to max_pfn) because of possible memory holes in high addresses
  423. * that cannot be marked as UC by fixed/variable range MTRRs.
  424. * Depending on the alignment of E820 ranges, this may possibly result
  425. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  426. *
  427. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  428. * That range would have hole in the middle or ends, and only ram parts
  429. * will be mapped in init_range_memory_mapping().
  430. */
  431. static unsigned long __init init_range_memory_mapping(
  432. unsigned long r_start,
  433. unsigned long r_end)
  434. {
  435. unsigned long start_pfn, end_pfn;
  436. unsigned long mapped_ram_size = 0;
  437. int i;
  438. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  439. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  440. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  441. if (start >= end)
  442. continue;
  443. /*
  444. * if it is overlapping with brk pgt, we need to
  445. * alloc pgt buf from memblock instead.
  446. */
  447. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  448. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  449. init_memory_mapping(start, end);
  450. mapped_ram_size += end - start;
  451. can_use_brk_pgt = true;
  452. }
  453. return mapped_ram_size;
  454. }
  455. static unsigned long __init get_new_step_size(unsigned long step_size)
  456. {
  457. /*
  458. * Initial mapped size is PMD_SIZE (2M).
  459. * We can not set step_size to be PUD_SIZE (1G) yet.
  460. * In worse case, when we cross the 1G boundary, and
  461. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  462. * to map 1G range with PTE. Hence we use one less than the
  463. * difference of page table level shifts.
  464. *
  465. * Don't need to worry about overflow in the top-down case, on 32bit,
  466. * when step_size is 0, round_down() returns 0 for start, and that
  467. * turns it into 0x100000000ULL.
  468. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  469. * needs to be taken into consideration by the code below.
  470. */
  471. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  472. }
  473. /**
  474. * memory_map_top_down - Map [map_start, map_end) top down
  475. * @map_start: start address of the target memory range
  476. * @map_end: end address of the target memory range
  477. *
  478. * This function will setup direct mapping for memory range
  479. * [map_start, map_end) in top-down. That said, the page tables
  480. * will be allocated at the end of the memory, and we map the
  481. * memory in top-down.
  482. */
  483. static void __init memory_map_top_down(unsigned long map_start,
  484. unsigned long map_end)
  485. {
  486. unsigned long real_end, start, last_start;
  487. unsigned long step_size;
  488. unsigned long addr;
  489. unsigned long mapped_ram_size = 0;
  490. /* xen has big range in reserved near end of ram, skip it at first.*/
  491. addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
  492. real_end = addr + PMD_SIZE;
  493. /* step_size need to be small so pgt_buf from BRK could cover it */
  494. step_size = PMD_SIZE;
  495. max_pfn_mapped = 0; /* will get exact value next */
  496. min_pfn_mapped = real_end >> PAGE_SHIFT;
  497. last_start = start = real_end;
  498. /*
  499. * We start from the top (end of memory) and go to the bottom.
  500. * The memblock_find_in_range() gets us a block of RAM from the
  501. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  502. * for page table.
  503. */
  504. while (last_start > map_start) {
  505. if (last_start > step_size) {
  506. start = round_down(last_start - 1, step_size);
  507. if (start < map_start)
  508. start = map_start;
  509. } else
  510. start = map_start;
  511. mapped_ram_size += init_range_memory_mapping(start,
  512. last_start);
  513. last_start = start;
  514. min_pfn_mapped = last_start >> PAGE_SHIFT;
  515. if (mapped_ram_size >= step_size)
  516. step_size = get_new_step_size(step_size);
  517. }
  518. if (real_end < map_end)
  519. init_range_memory_mapping(real_end, map_end);
  520. }
  521. /**
  522. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  523. * @map_start: start address of the target memory range
  524. * @map_end: end address of the target memory range
  525. *
  526. * This function will setup direct mapping for memory range
  527. * [map_start, map_end) in bottom-up. Since we have limited the
  528. * bottom-up allocation above the kernel, the page tables will
  529. * be allocated just above the kernel and we map the memory
  530. * in [map_start, map_end) in bottom-up.
  531. */
  532. static void __init memory_map_bottom_up(unsigned long map_start,
  533. unsigned long map_end)
  534. {
  535. unsigned long next, start;
  536. unsigned long mapped_ram_size = 0;
  537. /* step_size need to be small so pgt_buf from BRK could cover it */
  538. unsigned long step_size = PMD_SIZE;
  539. start = map_start;
  540. min_pfn_mapped = start >> PAGE_SHIFT;
  541. /*
  542. * We start from the bottom (@map_start) and go to the top (@map_end).
  543. * The memblock_find_in_range() gets us a block of RAM from the
  544. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  545. * for page table.
  546. */
  547. while (start < map_end) {
  548. if (step_size && map_end - start > step_size) {
  549. next = round_up(start + 1, step_size);
  550. if (next > map_end)
  551. next = map_end;
  552. } else {
  553. next = map_end;
  554. }
  555. mapped_ram_size += init_range_memory_mapping(start, next);
  556. start = next;
  557. if (mapped_ram_size >= step_size)
  558. step_size = get_new_step_size(step_size);
  559. }
  560. }
  561. void __init init_mem_mapping(void)
  562. {
  563. unsigned long end;
  564. pti_check_boottime_disable();
  565. probe_page_size_mask();
  566. setup_pcid();
  567. #ifdef CONFIG_X86_64
  568. end = max_pfn << PAGE_SHIFT;
  569. #else
  570. end = max_low_pfn << PAGE_SHIFT;
  571. #endif
  572. /* the ISA range is always mapped regardless of memory holes */
  573. init_memory_mapping(0, ISA_END_ADDRESS);
  574. /* Init the trampoline, possibly with KASLR memory offset */
  575. init_trampoline();
  576. /*
  577. * If the allocation is in bottom-up direction, we setup direct mapping
  578. * in bottom-up, otherwise we setup direct mapping in top-down.
  579. */
  580. if (memblock_bottom_up()) {
  581. unsigned long kernel_end = __pa_symbol(_end);
  582. /*
  583. * we need two separate calls here. This is because we want to
  584. * allocate page tables above the kernel. So we first map
  585. * [kernel_end, end) to make memory above the kernel be mapped
  586. * as soon as possible. And then use page tables allocated above
  587. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  588. */
  589. memory_map_bottom_up(kernel_end, end);
  590. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  591. } else {
  592. memory_map_top_down(ISA_END_ADDRESS, end);
  593. }
  594. #ifdef CONFIG_X86_64
  595. if (max_pfn > max_low_pfn) {
  596. /* can we preseve max_low_pfn ?*/
  597. max_low_pfn = max_pfn;
  598. }
  599. #else
  600. early_ioremap_page_table_range_init();
  601. #endif
  602. load_cr3(swapper_pg_dir);
  603. __flush_tlb_all();
  604. x86_init.hyper.init_mem_mapping();
  605. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  606. }
  607. /*
  608. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  609. * is valid. The argument is a physical page number.
  610. *
  611. * On x86, access has to be given to the first megabyte of RAM because that
  612. * area traditionally contains BIOS code and data regions used by X, dosemu,
  613. * and similar apps. Since they map the entire memory range, the whole range
  614. * must be allowed (for mapping), but any areas that would otherwise be
  615. * disallowed are flagged as being "zero filled" instead of rejected.
  616. * Access has to be given to non-kernel-ram areas as well, these contain the
  617. * PCI mmio resources as well as potential bios/acpi data regions.
  618. */
  619. int devmem_is_allowed(unsigned long pagenr)
  620. {
  621. if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
  622. IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
  623. != REGION_DISJOINT) {
  624. /*
  625. * For disallowed memory regions in the low 1MB range,
  626. * request that the page be shown as all zeros.
  627. */
  628. if (pagenr < 256)
  629. return 2;
  630. return 0;
  631. }
  632. /*
  633. * This must follow RAM test, since System RAM is considered a
  634. * restricted resource under CONFIG_STRICT_IOMEM.
  635. */
  636. if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
  637. /* Low 1MB bypasses iomem restrictions. */
  638. if (pagenr < 256)
  639. return 1;
  640. return 0;
  641. }
  642. return 1;
  643. }
  644. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  645. {
  646. unsigned long begin_aligned, end_aligned;
  647. /* Make sure boundaries are page aligned */
  648. begin_aligned = PAGE_ALIGN(begin);
  649. end_aligned = end & PAGE_MASK;
  650. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  651. begin = begin_aligned;
  652. end = end_aligned;
  653. }
  654. if (begin >= end)
  655. return;
  656. /*
  657. * If debugging page accesses then do not free this memory but
  658. * mark them not present - any buggy init-section access will
  659. * create a kernel page fault:
  660. */
  661. if (debug_pagealloc_enabled()) {
  662. pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
  663. begin, end - 1);
  664. /*
  665. * Inform kmemleak about the hole in the memory since the
  666. * corresponding pages will be unmapped.
  667. */
  668. kmemleak_free_part((void *)begin, end - begin);
  669. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  670. } else {
  671. /*
  672. * We just marked the kernel text read only above, now that
  673. * we are going to free part of that, we need to make that
  674. * writeable and non-executable first.
  675. */
  676. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  677. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  678. free_reserved_area((void *)begin, (void *)end,
  679. POISON_FREE_INITMEM, what);
  680. }
  681. }
  682. /*
  683. * begin/end can be in the direct map or the "high kernel mapping"
  684. * used for the kernel image only. free_init_pages() will do the
  685. * right thing for either kind of address.
  686. */
  687. void free_kernel_image_pages(void *begin, void *end)
  688. {
  689. unsigned long begin_ul = (unsigned long)begin;
  690. unsigned long end_ul = (unsigned long)end;
  691. unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
  692. free_init_pages("unused kernel image", begin_ul, end_ul);
  693. /*
  694. * PTI maps some of the kernel into userspace. For performance,
  695. * this includes some kernel areas that do not contain secrets.
  696. * Those areas might be adjacent to the parts of the kernel image
  697. * being freed, which may contain secrets. Remove the "high kernel
  698. * image mapping" for these freed areas, ensuring they are not even
  699. * potentially vulnerable to Meltdown regardless of the specific
  700. * optimizations PTI is currently using.
  701. *
  702. * The "noalias" prevents unmapping the direct map alias which is
  703. * needed to access the freed pages.
  704. *
  705. * This is only valid for 64bit kernels. 32bit has only one mapping
  706. * which can't be treated in this way for obvious reasons.
  707. */
  708. if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
  709. set_memory_np_noalias(begin_ul, len_pages);
  710. }
  711. void __weak mem_encrypt_free_decrypted_mem(void) { }
  712. void __ref free_initmem(void)
  713. {
  714. e820__reallocate_tables();
  715. mem_encrypt_free_decrypted_mem();
  716. free_kernel_image_pages(&__init_begin, &__init_end);
  717. }
  718. #ifdef CONFIG_BLK_DEV_INITRD
  719. void __init free_initrd_mem(unsigned long start, unsigned long end)
  720. {
  721. /*
  722. * end could be not aligned, and We can not align that,
  723. * decompresser could be confused by aligned initrd_end
  724. * We already reserve the end partial page before in
  725. * - i386_start_kernel()
  726. * - x86_64_start_kernel()
  727. * - relocate_initrd()
  728. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  729. */
  730. free_init_pages("initrd", start, PAGE_ALIGN(end));
  731. }
  732. #endif
  733. /*
  734. * Calculate the precise size of the DMA zone (first 16 MB of RAM),
  735. * and pass it to the MM layer - to help it set zone watermarks more
  736. * accurately.
  737. *
  738. * Done on 64-bit systems only for the time being, although 32-bit systems
  739. * might benefit from this as well.
  740. */
  741. void __init memblock_find_dma_reserve(void)
  742. {
  743. #ifdef CONFIG_X86_64
  744. u64 nr_pages = 0, nr_free_pages = 0;
  745. unsigned long start_pfn, end_pfn;
  746. phys_addr_t start_addr, end_addr;
  747. int i;
  748. u64 u;
  749. /*
  750. * Iterate over all memory ranges (free and reserved ones alike),
  751. * to calculate the total number of pages in the first 16 MB of RAM:
  752. */
  753. nr_pages = 0;
  754. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  755. start_pfn = min(start_pfn, MAX_DMA_PFN);
  756. end_pfn = min(end_pfn, MAX_DMA_PFN);
  757. nr_pages += end_pfn - start_pfn;
  758. }
  759. /*
  760. * Iterate over free memory ranges to calculate the number of free
  761. * pages in the DMA zone, while not counting potential partial
  762. * pages at the beginning or the end of the range:
  763. */
  764. nr_free_pages = 0;
  765. for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
  766. start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
  767. end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
  768. if (start_pfn < end_pfn)
  769. nr_free_pages += end_pfn - start_pfn;
  770. }
  771. set_dma_reserve(nr_pages - nr_free_pages);
  772. #endif
  773. }
  774. void __init zone_sizes_init(void)
  775. {
  776. unsigned long max_zone_pfns[MAX_NR_ZONES];
  777. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  778. #ifdef CONFIG_ZONE_DMA
  779. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  780. #endif
  781. #ifdef CONFIG_ZONE_DMA32
  782. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  783. #endif
  784. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  785. #ifdef CONFIG_HIGHMEM
  786. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  787. #endif
  788. free_area_init_nodes(max_zone_pfns);
  789. }
  790. __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  791. .loaded_mm = &init_mm,
  792. .next_asid = 1,
  793. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  794. };
  795. EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
  796. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  797. {
  798. /* entry 0 MUST be WB (hardwired to speed up translations) */
  799. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  800. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  801. __pte2cachemode_tbl[entry] = cache;
  802. }
  803. #ifdef CONFIG_SWAP
  804. unsigned long max_swapfile_size(void)
  805. {
  806. unsigned long pages;
  807. pages = generic_max_swapfile_size();
  808. if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
  809. /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
  810. unsigned long long l1tf_limit = l1tf_pfn_limit();
  811. /*
  812. * We encode swap offsets also with 3 bits below those for pfn
  813. * which makes the usable limit higher.
  814. */
  815. #if CONFIG_PGTABLE_LEVELS > 2
  816. l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
  817. #endif
  818. pages = min_t(unsigned long long, l1tf_limit, pages);
  819. }
  820. return pages;
  821. }
  822. #endif