oom_kill.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. * Copyright (C) 2010 Google, Inc.
  8. * Rewritten by David Rientjes
  9. *
  10. * The routines in this file are used to kill a process when
  11. * we're seriously out of memory. This gets called from __alloc_pages()
  12. * in mm/page_alloc.c when we really run out of memory.
  13. *
  14. * Since we won't call these routines often (on a well-configured
  15. * machine) this file will double as a 'coding guide' and a signpost
  16. * for newbie kernel hackers. It features several pointers to major
  17. * kernel subsystems and hints as to where to find out what things do.
  18. */
  19. #include <linux/oom.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/gfp.h>
  23. #include <linux/sched.h>
  24. #include <linux/sched/mm.h>
  25. #include <linux/sched/coredump.h>
  26. #include <linux/sched/task.h>
  27. #include <linux/swap.h>
  28. #include <linux/timex.h>
  29. #include <linux/jiffies.h>
  30. #include <linux/cpuset.h>
  31. #include <linux/export.h>
  32. #include <linux/notifier.h>
  33. #include <linux/memcontrol.h>
  34. #include <linux/mempolicy.h>
  35. #include <linux/security.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/freezer.h>
  38. #include <linux/ftrace.h>
  39. #include <linux/ratelimit.h>
  40. #include <linux/kthread.h>
  41. #include <linux/init.h>
  42. #include <linux/mmu_notifier.h>
  43. #include <asm/tlb.h>
  44. #include "internal.h"
  45. #include "slab.h"
  46. #define CREATE_TRACE_POINTS
  47. #include <trace/events/oom.h>
  48. int sysctl_panic_on_oom;
  49. int sysctl_oom_kill_allocating_task;
  50. int sysctl_oom_dump_tasks = 1;
  51. DEFINE_MUTEX(oom_lock);
  52. #ifdef CONFIG_NUMA
  53. /**
  54. * has_intersects_mems_allowed() - check task eligiblity for kill
  55. * @start: task struct of which task to consider
  56. * @mask: nodemask passed to page allocator for mempolicy ooms
  57. *
  58. * Task eligibility is determined by whether or not a candidate task, @tsk,
  59. * shares the same mempolicy nodes as current if it is bound by such a policy
  60. * and whether or not it has the same set of allowed cpuset nodes.
  61. */
  62. static bool has_intersects_mems_allowed(struct task_struct *start,
  63. const nodemask_t *mask)
  64. {
  65. struct task_struct *tsk;
  66. bool ret = false;
  67. rcu_read_lock();
  68. for_each_thread(start, tsk) {
  69. if (mask) {
  70. /*
  71. * If this is a mempolicy constrained oom, tsk's
  72. * cpuset is irrelevant. Only return true if its
  73. * mempolicy intersects current, otherwise it may be
  74. * needlessly killed.
  75. */
  76. ret = mempolicy_nodemask_intersects(tsk, mask);
  77. } else {
  78. /*
  79. * This is not a mempolicy constrained oom, so only
  80. * check the mems of tsk's cpuset.
  81. */
  82. ret = cpuset_mems_allowed_intersects(current, tsk);
  83. }
  84. if (ret)
  85. break;
  86. }
  87. rcu_read_unlock();
  88. return ret;
  89. }
  90. #else
  91. static bool has_intersects_mems_allowed(struct task_struct *tsk,
  92. const nodemask_t *mask)
  93. {
  94. return true;
  95. }
  96. #endif /* CONFIG_NUMA */
  97. /*
  98. * The process p may have detached its own ->mm while exiting or through
  99. * use_mm(), but one or more of its subthreads may still have a valid
  100. * pointer. Return p, or any of its subthreads with a valid ->mm, with
  101. * task_lock() held.
  102. */
  103. struct task_struct *find_lock_task_mm(struct task_struct *p)
  104. {
  105. struct task_struct *t;
  106. rcu_read_lock();
  107. for_each_thread(p, t) {
  108. task_lock(t);
  109. if (likely(t->mm))
  110. goto found;
  111. task_unlock(t);
  112. }
  113. t = NULL;
  114. found:
  115. rcu_read_unlock();
  116. return t;
  117. }
  118. /*
  119. * order == -1 means the oom kill is required by sysrq, otherwise only
  120. * for display purposes.
  121. */
  122. static inline bool is_sysrq_oom(struct oom_control *oc)
  123. {
  124. return oc->order == -1;
  125. }
  126. static inline bool is_memcg_oom(struct oom_control *oc)
  127. {
  128. return oc->memcg != NULL;
  129. }
  130. /* return true if the task is not adequate as candidate victim task. */
  131. static bool oom_unkillable_task(struct task_struct *p,
  132. struct mem_cgroup *memcg, const nodemask_t *nodemask)
  133. {
  134. if (is_global_init(p))
  135. return true;
  136. if (p->flags & PF_KTHREAD)
  137. return true;
  138. /* When mem_cgroup_out_of_memory() and p is not member of the group */
  139. if (memcg && !task_in_mem_cgroup(p, memcg))
  140. return true;
  141. /* p may not have freeable memory in nodemask */
  142. if (!has_intersects_mems_allowed(p, nodemask))
  143. return true;
  144. return false;
  145. }
  146. /*
  147. * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
  148. * than all user memory (LRU pages)
  149. */
  150. static bool is_dump_unreclaim_slabs(void)
  151. {
  152. unsigned long nr_lru;
  153. nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
  154. global_node_page_state(NR_INACTIVE_ANON) +
  155. global_node_page_state(NR_ACTIVE_FILE) +
  156. global_node_page_state(NR_INACTIVE_FILE) +
  157. global_node_page_state(NR_ISOLATED_ANON) +
  158. global_node_page_state(NR_ISOLATED_FILE) +
  159. global_node_page_state(NR_UNEVICTABLE);
  160. return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
  161. }
  162. /**
  163. * oom_badness - heuristic function to determine which candidate task to kill
  164. * @p: task struct of which task we should calculate
  165. * @totalpages: total present RAM allowed for page allocation
  166. *
  167. * The heuristic for determining which task to kill is made to be as simple and
  168. * predictable as possible. The goal is to return the highest value for the
  169. * task consuming the most memory to avoid subsequent oom failures.
  170. */
  171. unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
  172. const nodemask_t *nodemask, unsigned long totalpages)
  173. {
  174. long points;
  175. long adj;
  176. if (oom_unkillable_task(p, memcg, nodemask))
  177. return 0;
  178. p = find_lock_task_mm(p);
  179. if (!p)
  180. return 0;
  181. /*
  182. * Do not even consider tasks which are explicitly marked oom
  183. * unkillable or have been already oom reaped or the are in
  184. * the middle of vfork
  185. */
  186. adj = (long)p->signal->oom_score_adj;
  187. if (adj == OOM_SCORE_ADJ_MIN ||
  188. test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
  189. in_vfork(p)) {
  190. task_unlock(p);
  191. return 0;
  192. }
  193. /*
  194. * The baseline for the badness score is the proportion of RAM that each
  195. * task's rss, pagetable and swap space use.
  196. */
  197. points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
  198. mm_nr_ptes(p->mm) + mm_nr_pmds(p->mm) + mm_nr_puds(p->mm);
  199. task_unlock(p);
  200. /*
  201. * Root processes get 3% bonus, just like the __vm_enough_memory()
  202. * implementation used by LSMs.
  203. */
  204. if (has_capability_noaudit(p, CAP_SYS_ADMIN))
  205. points -= (points * 3) / 100;
  206. /* Normalize to oom_score_adj units */
  207. adj *= totalpages / 1000;
  208. points += adj;
  209. /*
  210. * Never return 0 for an eligible task regardless of the root bonus and
  211. * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
  212. */
  213. return points > 0 ? points : 1;
  214. }
  215. enum oom_constraint {
  216. CONSTRAINT_NONE,
  217. CONSTRAINT_CPUSET,
  218. CONSTRAINT_MEMORY_POLICY,
  219. CONSTRAINT_MEMCG,
  220. };
  221. /*
  222. * Determine the type of allocation constraint.
  223. */
  224. static enum oom_constraint constrained_alloc(struct oom_control *oc)
  225. {
  226. struct zone *zone;
  227. struct zoneref *z;
  228. enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
  229. bool cpuset_limited = false;
  230. int nid;
  231. if (is_memcg_oom(oc)) {
  232. oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
  233. return CONSTRAINT_MEMCG;
  234. }
  235. /* Default to all available memory */
  236. oc->totalpages = totalram_pages + total_swap_pages;
  237. if (!IS_ENABLED(CONFIG_NUMA))
  238. return CONSTRAINT_NONE;
  239. if (!oc->zonelist)
  240. return CONSTRAINT_NONE;
  241. /*
  242. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  243. * to kill current.We have to random task kill in this case.
  244. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  245. */
  246. if (oc->gfp_mask & __GFP_THISNODE)
  247. return CONSTRAINT_NONE;
  248. /*
  249. * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
  250. * the page allocator means a mempolicy is in effect. Cpuset policy
  251. * is enforced in get_page_from_freelist().
  252. */
  253. if (oc->nodemask &&
  254. !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
  255. oc->totalpages = total_swap_pages;
  256. for_each_node_mask(nid, *oc->nodemask)
  257. oc->totalpages += node_spanned_pages(nid);
  258. return CONSTRAINT_MEMORY_POLICY;
  259. }
  260. /* Check this allocation failure is caused by cpuset's wall function */
  261. for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
  262. high_zoneidx, oc->nodemask)
  263. if (!cpuset_zone_allowed(zone, oc->gfp_mask))
  264. cpuset_limited = true;
  265. if (cpuset_limited) {
  266. oc->totalpages = total_swap_pages;
  267. for_each_node_mask(nid, cpuset_current_mems_allowed)
  268. oc->totalpages += node_spanned_pages(nid);
  269. return CONSTRAINT_CPUSET;
  270. }
  271. return CONSTRAINT_NONE;
  272. }
  273. static int oom_evaluate_task(struct task_struct *task, void *arg)
  274. {
  275. struct oom_control *oc = arg;
  276. unsigned long points;
  277. if (oom_unkillable_task(task, NULL, oc->nodemask))
  278. goto next;
  279. /*
  280. * This task already has access to memory reserves and is being killed.
  281. * Don't allow any other task to have access to the reserves unless
  282. * the task has MMF_OOM_SKIP because chances that it would release
  283. * any memory is quite low.
  284. */
  285. if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
  286. if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
  287. goto next;
  288. goto abort;
  289. }
  290. /*
  291. * If task is allocating a lot of memory and has been marked to be
  292. * killed first if it triggers an oom, then select it.
  293. */
  294. if (oom_task_origin(task)) {
  295. points = ULONG_MAX;
  296. goto select;
  297. }
  298. points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
  299. if (!points || points < oc->chosen_points)
  300. goto next;
  301. /* Prefer thread group leaders for display purposes */
  302. if (points == oc->chosen_points && thread_group_leader(oc->chosen))
  303. goto next;
  304. select:
  305. if (oc->chosen)
  306. put_task_struct(oc->chosen);
  307. get_task_struct(task);
  308. oc->chosen = task;
  309. oc->chosen_points = points;
  310. next:
  311. return 0;
  312. abort:
  313. if (oc->chosen)
  314. put_task_struct(oc->chosen);
  315. oc->chosen = (void *)-1UL;
  316. return 1;
  317. }
  318. /*
  319. * Simple selection loop. We choose the process with the highest number of
  320. * 'points'. In case scan was aborted, oc->chosen is set to -1.
  321. */
  322. static void select_bad_process(struct oom_control *oc)
  323. {
  324. if (is_memcg_oom(oc))
  325. mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
  326. else {
  327. struct task_struct *p;
  328. rcu_read_lock();
  329. for_each_process(p)
  330. if (oom_evaluate_task(p, oc))
  331. break;
  332. rcu_read_unlock();
  333. }
  334. oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
  335. }
  336. /**
  337. * dump_tasks - dump current memory state of all system tasks
  338. * @memcg: current's memory controller, if constrained
  339. * @nodemask: nodemask passed to page allocator for mempolicy ooms
  340. *
  341. * Dumps the current memory state of all eligible tasks. Tasks not in the same
  342. * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
  343. * are not shown.
  344. * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
  345. * swapents, oom_score_adj value, and name.
  346. */
  347. static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
  348. {
  349. struct task_struct *p;
  350. struct task_struct *task;
  351. pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds nr_puds swapents oom_score_adj name\n");
  352. rcu_read_lock();
  353. for_each_process(p) {
  354. if (oom_unkillable_task(p, memcg, nodemask))
  355. continue;
  356. task = find_lock_task_mm(p);
  357. if (!task) {
  358. /*
  359. * This is a kthread or all of p's threads have already
  360. * detached their mm's. There's no need to report
  361. * them; they can't be oom killed anyway.
  362. */
  363. continue;
  364. }
  365. pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %7ld %8lu %5hd %s\n",
  366. task->pid, from_kuid(&init_user_ns, task_uid(task)),
  367. task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
  368. mm_nr_ptes(task->mm),
  369. mm_nr_pmds(task->mm),
  370. mm_nr_puds(task->mm),
  371. get_mm_counter(task->mm, MM_SWAPENTS),
  372. task->signal->oom_score_adj, task->comm);
  373. task_unlock(task);
  374. }
  375. rcu_read_unlock();
  376. }
  377. static void dump_header(struct oom_control *oc, struct task_struct *p)
  378. {
  379. pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=",
  380. current->comm, oc->gfp_mask, &oc->gfp_mask);
  381. if (oc->nodemask)
  382. pr_cont("%*pbl", nodemask_pr_args(oc->nodemask));
  383. else
  384. pr_cont("(null)");
  385. pr_cont(", order=%d, oom_score_adj=%hd\n",
  386. oc->order, current->signal->oom_score_adj);
  387. if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
  388. pr_warn("COMPACTION is disabled!!!\n");
  389. cpuset_print_current_mems_allowed();
  390. dump_stack();
  391. if (is_memcg_oom(oc))
  392. mem_cgroup_print_oom_info(oc->memcg, p);
  393. else {
  394. show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
  395. if (is_dump_unreclaim_slabs())
  396. dump_unreclaimable_slab();
  397. }
  398. if (sysctl_oom_dump_tasks)
  399. dump_tasks(oc->memcg, oc->nodemask);
  400. }
  401. /*
  402. * Number of OOM victims in flight
  403. */
  404. static atomic_t oom_victims = ATOMIC_INIT(0);
  405. static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
  406. static bool oom_killer_disabled __read_mostly;
  407. #define K(x) ((x) << (PAGE_SHIFT-10))
  408. /*
  409. * task->mm can be NULL if the task is the exited group leader. So to
  410. * determine whether the task is using a particular mm, we examine all the
  411. * task's threads: if one of those is using this mm then this task was also
  412. * using it.
  413. */
  414. bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
  415. {
  416. struct task_struct *t;
  417. for_each_thread(p, t) {
  418. struct mm_struct *t_mm = READ_ONCE(t->mm);
  419. if (t_mm)
  420. return t_mm == mm;
  421. }
  422. return false;
  423. }
  424. #ifdef CONFIG_MMU
  425. /*
  426. * OOM Reaper kernel thread which tries to reap the memory used by the OOM
  427. * victim (if that is possible) to help the OOM killer to move on.
  428. */
  429. static struct task_struct *oom_reaper_th;
  430. static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
  431. static struct task_struct *oom_reaper_list;
  432. static DEFINE_SPINLOCK(oom_reaper_lock);
  433. static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
  434. {
  435. struct mmu_gather tlb;
  436. struct vm_area_struct *vma;
  437. bool ret = true;
  438. /*
  439. * We have to make sure to not race with the victim exit path
  440. * and cause premature new oom victim selection:
  441. * __oom_reap_task_mm exit_mm
  442. * mmget_not_zero
  443. * mmput
  444. * atomic_dec_and_test
  445. * exit_oom_victim
  446. * [...]
  447. * out_of_memory
  448. * select_bad_process
  449. * # no TIF_MEMDIE task selects new victim
  450. * unmap_page_range # frees some memory
  451. */
  452. mutex_lock(&oom_lock);
  453. if (!down_read_trylock(&mm->mmap_sem)) {
  454. ret = false;
  455. trace_skip_task_reaping(tsk->pid);
  456. goto unlock_oom;
  457. }
  458. /*
  459. * If the mm has notifiers then we would need to invalidate them around
  460. * unmap_page_range and that is risky because notifiers can sleep and
  461. * what they do is basically undeterministic. So let's have a short
  462. * sleep to give the oom victim some more time.
  463. * TODO: we really want to get rid of this ugly hack and make sure that
  464. * notifiers cannot block for unbounded amount of time and add
  465. * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
  466. */
  467. if (mm_has_notifiers(mm)) {
  468. up_read(&mm->mmap_sem);
  469. schedule_timeout_idle(HZ);
  470. goto unlock_oom;
  471. }
  472. /*
  473. * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
  474. * work on the mm anymore. The check for MMF_OOM_SKIP must run
  475. * under mmap_sem for reading because it serializes against the
  476. * down_write();up_write() cycle in exit_mmap().
  477. */
  478. if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
  479. up_read(&mm->mmap_sem);
  480. trace_skip_task_reaping(tsk->pid);
  481. goto unlock_oom;
  482. }
  483. trace_start_task_reaping(tsk->pid);
  484. /*
  485. * Tell all users of get_user/copy_from_user etc... that the content
  486. * is no longer stable. No barriers really needed because unmapping
  487. * should imply barriers already and the reader would hit a page fault
  488. * if it stumbled over a reaped memory.
  489. */
  490. set_bit(MMF_UNSTABLE, &mm->flags);
  491. tlb_gather_mmu(&tlb, mm, 0, -1);
  492. for (vma = mm->mmap ; vma; vma = vma->vm_next) {
  493. if (!can_madv_dontneed_vma(vma))
  494. continue;
  495. /*
  496. * Only anonymous pages have a good chance to be dropped
  497. * without additional steps which we cannot afford as we
  498. * are OOM already.
  499. *
  500. * We do not even care about fs backed pages because all
  501. * which are reclaimable have already been reclaimed and
  502. * we do not want to block exit_mmap by keeping mm ref
  503. * count elevated without a good reason.
  504. */
  505. if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
  506. unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
  507. NULL);
  508. }
  509. tlb_finish_mmu(&tlb, 0, -1);
  510. pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  511. task_pid_nr(tsk), tsk->comm,
  512. K(get_mm_counter(mm, MM_ANONPAGES)),
  513. K(get_mm_counter(mm, MM_FILEPAGES)),
  514. K(get_mm_counter(mm, MM_SHMEMPAGES)));
  515. up_read(&mm->mmap_sem);
  516. trace_finish_task_reaping(tsk->pid);
  517. unlock_oom:
  518. mutex_unlock(&oom_lock);
  519. return ret;
  520. }
  521. #define MAX_OOM_REAP_RETRIES 10
  522. static void oom_reap_task(struct task_struct *tsk)
  523. {
  524. int attempts = 0;
  525. struct mm_struct *mm = tsk->signal->oom_mm;
  526. /* Retry the down_read_trylock(mmap_sem) a few times */
  527. while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
  528. schedule_timeout_idle(HZ/10);
  529. if (attempts <= MAX_OOM_REAP_RETRIES)
  530. goto done;
  531. pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
  532. task_pid_nr(tsk), tsk->comm);
  533. debug_show_all_locks();
  534. done:
  535. tsk->oom_reaper_list = NULL;
  536. /*
  537. * Hide this mm from OOM killer because it has been either reaped or
  538. * somebody can't call up_write(mmap_sem).
  539. */
  540. set_bit(MMF_OOM_SKIP, &mm->flags);
  541. /* Drop a reference taken by wake_oom_reaper */
  542. put_task_struct(tsk);
  543. }
  544. static int oom_reaper(void *unused)
  545. {
  546. while (true) {
  547. struct task_struct *tsk = NULL;
  548. wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
  549. spin_lock(&oom_reaper_lock);
  550. if (oom_reaper_list != NULL) {
  551. tsk = oom_reaper_list;
  552. oom_reaper_list = tsk->oom_reaper_list;
  553. }
  554. spin_unlock(&oom_reaper_lock);
  555. if (tsk)
  556. oom_reap_task(tsk);
  557. }
  558. return 0;
  559. }
  560. static void wake_oom_reaper(struct task_struct *tsk)
  561. {
  562. if (!oom_reaper_th)
  563. return;
  564. /* tsk is already queued? */
  565. if (tsk == oom_reaper_list || tsk->oom_reaper_list)
  566. return;
  567. get_task_struct(tsk);
  568. spin_lock(&oom_reaper_lock);
  569. tsk->oom_reaper_list = oom_reaper_list;
  570. oom_reaper_list = tsk;
  571. spin_unlock(&oom_reaper_lock);
  572. trace_wake_reaper(tsk->pid);
  573. wake_up(&oom_reaper_wait);
  574. }
  575. static int __init oom_init(void)
  576. {
  577. oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
  578. if (IS_ERR(oom_reaper_th)) {
  579. pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
  580. PTR_ERR(oom_reaper_th));
  581. oom_reaper_th = NULL;
  582. }
  583. return 0;
  584. }
  585. subsys_initcall(oom_init)
  586. #else
  587. static inline void wake_oom_reaper(struct task_struct *tsk)
  588. {
  589. }
  590. #endif /* CONFIG_MMU */
  591. /**
  592. * mark_oom_victim - mark the given task as OOM victim
  593. * @tsk: task to mark
  594. *
  595. * Has to be called with oom_lock held and never after
  596. * oom has been disabled already.
  597. *
  598. * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
  599. * under task_lock or operate on the current).
  600. */
  601. static void mark_oom_victim(struct task_struct *tsk)
  602. {
  603. struct mm_struct *mm = tsk->mm;
  604. WARN_ON(oom_killer_disabled);
  605. /* OOM killer might race with memcg OOM */
  606. if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
  607. return;
  608. /* oom_mm is bound to the signal struct life time. */
  609. if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
  610. mmgrab(tsk->signal->oom_mm);
  611. /*
  612. * Make sure that the task is woken up from uninterruptible sleep
  613. * if it is frozen because OOM killer wouldn't be able to free
  614. * any memory and livelock. freezing_slow_path will tell the freezer
  615. * that TIF_MEMDIE tasks should be ignored.
  616. */
  617. __thaw_task(tsk);
  618. atomic_inc(&oom_victims);
  619. trace_mark_victim(tsk->pid);
  620. }
  621. /**
  622. * exit_oom_victim - note the exit of an OOM victim
  623. */
  624. void exit_oom_victim(void)
  625. {
  626. clear_thread_flag(TIF_MEMDIE);
  627. if (!atomic_dec_return(&oom_victims))
  628. wake_up_all(&oom_victims_wait);
  629. }
  630. /**
  631. * oom_killer_enable - enable OOM killer
  632. */
  633. void oom_killer_enable(void)
  634. {
  635. oom_killer_disabled = false;
  636. pr_info("OOM killer enabled.\n");
  637. }
  638. /**
  639. * oom_killer_disable - disable OOM killer
  640. * @timeout: maximum timeout to wait for oom victims in jiffies
  641. *
  642. * Forces all page allocations to fail rather than trigger OOM killer.
  643. * Will block and wait until all OOM victims are killed or the given
  644. * timeout expires.
  645. *
  646. * The function cannot be called when there are runnable user tasks because
  647. * the userspace would see unexpected allocation failures as a result. Any
  648. * new usage of this function should be consulted with MM people.
  649. *
  650. * Returns true if successful and false if the OOM killer cannot be
  651. * disabled.
  652. */
  653. bool oom_killer_disable(signed long timeout)
  654. {
  655. signed long ret;
  656. /*
  657. * Make sure to not race with an ongoing OOM killer. Check that the
  658. * current is not killed (possibly due to sharing the victim's memory).
  659. */
  660. if (mutex_lock_killable(&oom_lock))
  661. return false;
  662. oom_killer_disabled = true;
  663. mutex_unlock(&oom_lock);
  664. ret = wait_event_interruptible_timeout(oom_victims_wait,
  665. !atomic_read(&oom_victims), timeout);
  666. if (ret <= 0) {
  667. oom_killer_enable();
  668. return false;
  669. }
  670. pr_info("OOM killer disabled.\n");
  671. return true;
  672. }
  673. static inline bool __task_will_free_mem(struct task_struct *task)
  674. {
  675. struct signal_struct *sig = task->signal;
  676. /*
  677. * A coredumping process may sleep for an extended period in exit_mm(),
  678. * so the oom killer cannot assume that the process will promptly exit
  679. * and release memory.
  680. */
  681. if (sig->flags & SIGNAL_GROUP_COREDUMP)
  682. return false;
  683. if (sig->flags & SIGNAL_GROUP_EXIT)
  684. return true;
  685. if (thread_group_empty(task) && (task->flags & PF_EXITING))
  686. return true;
  687. return false;
  688. }
  689. /*
  690. * Checks whether the given task is dying or exiting and likely to
  691. * release its address space. This means that all threads and processes
  692. * sharing the same mm have to be killed or exiting.
  693. * Caller has to make sure that task->mm is stable (hold task_lock or
  694. * it operates on the current).
  695. */
  696. static bool task_will_free_mem(struct task_struct *task)
  697. {
  698. struct mm_struct *mm = task->mm;
  699. struct task_struct *p;
  700. bool ret = true;
  701. /*
  702. * Skip tasks without mm because it might have passed its exit_mm and
  703. * exit_oom_victim. oom_reaper could have rescued that but do not rely
  704. * on that for now. We can consider find_lock_task_mm in future.
  705. */
  706. if (!mm)
  707. return false;
  708. if (!__task_will_free_mem(task))
  709. return false;
  710. /*
  711. * This task has already been drained by the oom reaper so there are
  712. * only small chances it will free some more
  713. */
  714. if (test_bit(MMF_OOM_SKIP, &mm->flags))
  715. return false;
  716. if (atomic_read(&mm->mm_users) <= 1)
  717. return true;
  718. /*
  719. * Make sure that all tasks which share the mm with the given tasks
  720. * are dying as well to make sure that a) nobody pins its mm and
  721. * b) the task is also reapable by the oom reaper.
  722. */
  723. rcu_read_lock();
  724. for_each_process(p) {
  725. if (!process_shares_mm(p, mm))
  726. continue;
  727. if (same_thread_group(task, p))
  728. continue;
  729. ret = __task_will_free_mem(p);
  730. if (!ret)
  731. break;
  732. }
  733. rcu_read_unlock();
  734. return ret;
  735. }
  736. static void oom_kill_process(struct oom_control *oc, const char *message)
  737. {
  738. struct task_struct *p = oc->chosen;
  739. unsigned int points = oc->chosen_points;
  740. struct task_struct *victim = p;
  741. struct task_struct *child;
  742. struct task_struct *t;
  743. struct mm_struct *mm;
  744. unsigned int victim_points = 0;
  745. static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  746. DEFAULT_RATELIMIT_BURST);
  747. bool can_oom_reap = true;
  748. /*
  749. * If the task is already exiting, don't alarm the sysadmin or kill
  750. * its children or threads, just give it access to memory reserves
  751. * so it can die quickly
  752. */
  753. task_lock(p);
  754. if (task_will_free_mem(p)) {
  755. mark_oom_victim(p);
  756. wake_oom_reaper(p);
  757. task_unlock(p);
  758. put_task_struct(p);
  759. return;
  760. }
  761. task_unlock(p);
  762. if (__ratelimit(&oom_rs))
  763. dump_header(oc, p);
  764. pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
  765. message, task_pid_nr(p), p->comm, points);
  766. /*
  767. * If any of p's children has a different mm and is eligible for kill,
  768. * the one with the highest oom_badness() score is sacrificed for its
  769. * parent. This attempts to lose the minimal amount of work done while
  770. * still freeing memory.
  771. */
  772. read_lock(&tasklist_lock);
  773. for_each_thread(p, t) {
  774. list_for_each_entry(child, &t->children, sibling) {
  775. unsigned int child_points;
  776. if (process_shares_mm(child, p->mm))
  777. continue;
  778. /*
  779. * oom_badness() returns 0 if the thread is unkillable
  780. */
  781. child_points = oom_badness(child,
  782. oc->memcg, oc->nodemask, oc->totalpages);
  783. if (child_points > victim_points) {
  784. put_task_struct(victim);
  785. victim = child;
  786. victim_points = child_points;
  787. get_task_struct(victim);
  788. }
  789. }
  790. }
  791. read_unlock(&tasklist_lock);
  792. p = find_lock_task_mm(victim);
  793. if (!p) {
  794. put_task_struct(victim);
  795. return;
  796. } else if (victim != p) {
  797. get_task_struct(p);
  798. put_task_struct(victim);
  799. victim = p;
  800. }
  801. /* Get a reference to safely compare mm after task_unlock(victim) */
  802. mm = victim->mm;
  803. mmgrab(mm);
  804. /* Raise event before sending signal: task reaper must see this */
  805. count_vm_event(OOM_KILL);
  806. count_memcg_event_mm(mm, OOM_KILL);
  807. /*
  808. * We should send SIGKILL before granting access to memory reserves
  809. * in order to prevent the OOM victim from depleting the memory
  810. * reserves from the user space under its control.
  811. */
  812. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
  813. mark_oom_victim(victim);
  814. pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
  815. task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
  816. K(get_mm_counter(victim->mm, MM_ANONPAGES)),
  817. K(get_mm_counter(victim->mm, MM_FILEPAGES)),
  818. K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
  819. task_unlock(victim);
  820. /*
  821. * Kill all user processes sharing victim->mm in other thread groups, if
  822. * any. They don't get access to memory reserves, though, to avoid
  823. * depletion of all memory. This prevents mm->mmap_sem livelock when an
  824. * oom killed thread cannot exit because it requires the semaphore and
  825. * its contended by another thread trying to allocate memory itself.
  826. * That thread will now get access to memory reserves since it has a
  827. * pending fatal signal.
  828. */
  829. rcu_read_lock();
  830. for_each_process(p) {
  831. if (!process_shares_mm(p, mm))
  832. continue;
  833. if (same_thread_group(p, victim))
  834. continue;
  835. if (is_global_init(p)) {
  836. can_oom_reap = false;
  837. set_bit(MMF_OOM_SKIP, &mm->flags);
  838. pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
  839. task_pid_nr(victim), victim->comm,
  840. task_pid_nr(p), p->comm);
  841. continue;
  842. }
  843. /*
  844. * No use_mm() user needs to read from the userspace so we are
  845. * ok to reap it.
  846. */
  847. if (unlikely(p->flags & PF_KTHREAD))
  848. continue;
  849. do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
  850. }
  851. rcu_read_unlock();
  852. if (can_oom_reap)
  853. wake_oom_reaper(victim);
  854. mmdrop(mm);
  855. put_task_struct(victim);
  856. }
  857. #undef K
  858. /*
  859. * Determines whether the kernel must panic because of the panic_on_oom sysctl.
  860. */
  861. static void check_panic_on_oom(struct oom_control *oc,
  862. enum oom_constraint constraint)
  863. {
  864. if (likely(!sysctl_panic_on_oom))
  865. return;
  866. if (sysctl_panic_on_oom != 2) {
  867. /*
  868. * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
  869. * does not panic for cpuset, mempolicy, or memcg allocation
  870. * failures.
  871. */
  872. if (constraint != CONSTRAINT_NONE)
  873. return;
  874. }
  875. /* Do not panic for oom kills triggered by sysrq */
  876. if (is_sysrq_oom(oc))
  877. return;
  878. dump_header(oc, NULL);
  879. panic("Out of memory: %s panic_on_oom is enabled\n",
  880. sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
  881. }
  882. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  883. int register_oom_notifier(struct notifier_block *nb)
  884. {
  885. return blocking_notifier_chain_register(&oom_notify_list, nb);
  886. }
  887. EXPORT_SYMBOL_GPL(register_oom_notifier);
  888. int unregister_oom_notifier(struct notifier_block *nb)
  889. {
  890. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  891. }
  892. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  893. /**
  894. * out_of_memory - kill the "best" process when we run out of memory
  895. * @oc: pointer to struct oom_control
  896. *
  897. * If we run out of memory, we have the choice between either
  898. * killing a random task (bad), letting the system crash (worse)
  899. * OR try to be smart about which process to kill. Note that we
  900. * don't have to be perfect here, we just have to be good.
  901. */
  902. bool out_of_memory(struct oom_control *oc)
  903. {
  904. unsigned long freed = 0;
  905. enum oom_constraint constraint = CONSTRAINT_NONE;
  906. if (oom_killer_disabled)
  907. return false;
  908. if (!is_memcg_oom(oc)) {
  909. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  910. if (freed > 0)
  911. /* Got some memory back in the last second. */
  912. return true;
  913. }
  914. /*
  915. * If current has a pending SIGKILL or is exiting, then automatically
  916. * select it. The goal is to allow it to allocate so that it may
  917. * quickly exit and free its memory.
  918. */
  919. if (task_will_free_mem(current)) {
  920. mark_oom_victim(current);
  921. wake_oom_reaper(current);
  922. return true;
  923. }
  924. /*
  925. * The OOM killer does not compensate for IO-less reclaim.
  926. * pagefault_out_of_memory lost its gfp context so we have to
  927. * make sure exclude 0 mask - all other users should have at least
  928. * ___GFP_DIRECT_RECLAIM to get here.
  929. */
  930. if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
  931. return true;
  932. /*
  933. * Check if there were limitations on the allocation (only relevant for
  934. * NUMA and memcg) that may require different handling.
  935. */
  936. constraint = constrained_alloc(oc);
  937. if (constraint != CONSTRAINT_MEMORY_POLICY)
  938. oc->nodemask = NULL;
  939. check_panic_on_oom(oc, constraint);
  940. if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
  941. current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
  942. current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
  943. get_task_struct(current);
  944. oc->chosen = current;
  945. oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
  946. return true;
  947. }
  948. select_bad_process(oc);
  949. /* Found nothing?!?! Either we hang forever, or we panic. */
  950. if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
  951. dump_header(oc, NULL);
  952. panic("Out of memory and no killable processes...\n");
  953. }
  954. if (oc->chosen && oc->chosen != (void *)-1UL) {
  955. oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
  956. "Memory cgroup out of memory");
  957. /*
  958. * Give the killed process a good chance to exit before trying
  959. * to allocate memory again.
  960. */
  961. schedule_timeout_killable(1);
  962. }
  963. return !!oc->chosen;
  964. }
  965. /*
  966. * The pagefault handler calls here because it is out of memory, so kill a
  967. * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
  968. * killing is already in progress so do nothing.
  969. */
  970. void pagefault_out_of_memory(void)
  971. {
  972. struct oom_control oc = {
  973. .zonelist = NULL,
  974. .nodemask = NULL,
  975. .memcg = NULL,
  976. .gfp_mask = 0,
  977. .order = 0,
  978. };
  979. if (mem_cgroup_oom_synchronize(true))
  980. return;
  981. if (!mutex_trylock(&oom_lock))
  982. return;
  983. out_of_memory(&oc);
  984. mutex_unlock(&oom_lock);
  985. }