common.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253
  1. #include <linux/bootmem.h>
  2. #include <linux/linkage.h>
  3. #include <linux/bitops.h>
  4. #include <linux/kernel.h>
  5. #include <linux/module.h>
  6. #include <linux/percpu.h>
  7. #include <linux/string.h>
  8. #include <linux/delay.h>
  9. #include <linux/sched.h>
  10. #include <linux/init.h>
  11. #include <linux/kgdb.h>
  12. #include <linux/smp.h>
  13. #include <linux/io.h>
  14. #include <asm/stackprotector.h>
  15. #include <asm/mmu_context.h>
  16. #include <asm/hypervisor.h>
  17. #include <asm/processor.h>
  18. #include <asm/sections.h>
  19. #include <asm/topology.h>
  20. #include <asm/cpumask.h>
  21. #include <asm/pgtable.h>
  22. #include <asm/atomic.h>
  23. #include <asm/proto.h>
  24. #include <asm/setup.h>
  25. #include <asm/apic.h>
  26. #include <asm/desc.h>
  27. #include <asm/i387.h>
  28. #include <asm/mtrr.h>
  29. #include <asm/numa.h>
  30. #include <asm/asm.h>
  31. #include <asm/cpu.h>
  32. #include <asm/mce.h>
  33. #include <asm/msr.h>
  34. #include <asm/pat.h>
  35. #include <asm/smp.h>
  36. #ifdef CONFIG_X86_LOCAL_APIC
  37. #include <asm/uv/uv.h>
  38. #endif
  39. #include "cpu.h"
  40. /* all of these masks are initialized in setup_cpu_local_masks() */
  41. cpumask_var_t cpu_initialized_mask;
  42. cpumask_var_t cpu_callout_mask;
  43. cpumask_var_t cpu_callin_mask;
  44. /* representing cpus for which sibling maps can be computed */
  45. cpumask_var_t cpu_sibling_setup_mask;
  46. /* correctly size the local cpu masks */
  47. void __init setup_cpu_local_masks(void)
  48. {
  49. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  50. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  51. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  52. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  53. }
  54. static const struct cpu_dev *this_cpu __cpuinitdata;
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. #ifdef CONFIG_X86_64
  57. /*
  58. * We need valid kernel segments for data and code in long mode too
  59. * IRET will check the segment types kkeil 2000/10/28
  60. * Also sysret mandates a special GDT layout
  61. *
  62. * TLS descriptors are currently at a different place compared to i386.
  63. * Hopefully nobody expects them at a fixed place (Wine?)
  64. */
  65. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  66. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  67. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  68. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  69. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  70. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  71. #else
  72. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  73. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  74. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  75. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  76. /*
  77. * Segments used for calling PnP BIOS have byte granularity.
  78. * They code segments and data segments have fixed 64k limits,
  79. * the transfer segment sizes are set at run time.
  80. */
  81. /* 32-bit code */
  82. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  83. /* 16-bit code */
  84. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  85. /* 16-bit data */
  86. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  87. /* 16-bit data */
  88. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  89. /* 16-bit data */
  90. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  91. /*
  92. * The APM segments have byte granularity and their bases
  93. * are set at run time. All have 64k limits.
  94. */
  95. /* 32-bit code */
  96. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  97. /* 16-bit code */
  98. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  99. /* data */
  100. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  101. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  102. [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
  103. GDT_STACK_CANARY_INIT
  104. #endif
  105. } };
  106. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  107. static int __init x86_xsave_setup(char *s)
  108. {
  109. setup_clear_cpu_cap(X86_FEATURE_XSAVE);
  110. return 1;
  111. }
  112. __setup("noxsave", x86_xsave_setup);
  113. #ifdef CONFIG_X86_32
  114. static int cachesize_override __cpuinitdata = -1;
  115. static int disable_x86_serial_nr __cpuinitdata = 1;
  116. static int __init cachesize_setup(char *str)
  117. {
  118. get_option(&str, &cachesize_override);
  119. return 1;
  120. }
  121. __setup("cachesize=", cachesize_setup);
  122. static int __init x86_fxsr_setup(char *s)
  123. {
  124. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  125. setup_clear_cpu_cap(X86_FEATURE_XMM);
  126. return 1;
  127. }
  128. __setup("nofxsr", x86_fxsr_setup);
  129. static int __init x86_sep_setup(char *s)
  130. {
  131. setup_clear_cpu_cap(X86_FEATURE_SEP);
  132. return 1;
  133. }
  134. __setup("nosep", x86_sep_setup);
  135. /* Standard macro to see if a specific flag is changeable */
  136. static inline int flag_is_changeable_p(u32 flag)
  137. {
  138. u32 f1, f2;
  139. /*
  140. * Cyrix and IDT cpus allow disabling of CPUID
  141. * so the code below may return different results
  142. * when it is executed before and after enabling
  143. * the CPUID. Add "volatile" to not allow gcc to
  144. * optimize the subsequent calls to this function.
  145. */
  146. asm volatile ("pushfl \n\t"
  147. "pushfl \n\t"
  148. "popl %0 \n\t"
  149. "movl %0, %1 \n\t"
  150. "xorl %2, %0 \n\t"
  151. "pushl %0 \n\t"
  152. "popfl \n\t"
  153. "pushfl \n\t"
  154. "popl %0 \n\t"
  155. "popfl \n\t"
  156. : "=&r" (f1), "=&r" (f2)
  157. : "ir" (flag));
  158. return ((f1^f2) & flag) != 0;
  159. }
  160. /* Probe for the CPUID instruction */
  161. static int __cpuinit have_cpuid_p(void)
  162. {
  163. return flag_is_changeable_p(X86_EFLAGS_ID);
  164. }
  165. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  166. {
  167. unsigned long lo, hi;
  168. if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
  169. return;
  170. /* Disable processor serial number: */
  171. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  172. lo |= 0x200000;
  173. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  174. printk(KERN_NOTICE "CPU serial number disabled.\n");
  175. clear_cpu_cap(c, X86_FEATURE_PN);
  176. /* Disabling the serial number may affect the cpuid level */
  177. c->cpuid_level = cpuid_eax(0);
  178. }
  179. static int __init x86_serial_nr_setup(char *s)
  180. {
  181. disable_x86_serial_nr = 0;
  182. return 1;
  183. }
  184. __setup("serialnumber", x86_serial_nr_setup);
  185. #else
  186. static inline int flag_is_changeable_p(u32 flag)
  187. {
  188. return 1;
  189. }
  190. /* Probe for the CPUID instruction */
  191. static inline int have_cpuid_p(void)
  192. {
  193. return 1;
  194. }
  195. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  196. {
  197. }
  198. #endif
  199. /*
  200. * Some CPU features depend on higher CPUID levels, which may not always
  201. * be available due to CPUID level capping or broken virtualization
  202. * software. Add those features to this table to auto-disable them.
  203. */
  204. struct cpuid_dependent_feature {
  205. u32 feature;
  206. u32 level;
  207. };
  208. static const struct cpuid_dependent_feature __cpuinitconst
  209. cpuid_dependent_features[] = {
  210. { X86_FEATURE_MWAIT, 0x00000005 },
  211. { X86_FEATURE_DCA, 0x00000009 },
  212. { X86_FEATURE_XSAVE, 0x0000000d },
  213. { 0, 0 }
  214. };
  215. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  216. {
  217. const struct cpuid_dependent_feature *df;
  218. for (df = cpuid_dependent_features; df->feature; df++) {
  219. if (!cpu_has(c, df->feature))
  220. continue;
  221. /*
  222. * Note: cpuid_level is set to -1 if unavailable, but
  223. * extended_extended_level is set to 0 if unavailable
  224. * and the legitimate extended levels are all negative
  225. * when signed; hence the weird messing around with
  226. * signs here...
  227. */
  228. if (!((s32)df->level < 0 ?
  229. (u32)df->level > (u32)c->extended_cpuid_level :
  230. (s32)df->level > (s32)c->cpuid_level))
  231. continue;
  232. clear_cpu_cap(c, df->feature);
  233. if (!warn)
  234. continue;
  235. printk(KERN_WARNING
  236. "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
  237. x86_cap_flags[df->feature], df->level);
  238. }
  239. }
  240. /*
  241. * Naming convention should be: <Name> [(<Codename>)]
  242. * This table only is used unless init_<vendor>() below doesn't set it;
  243. * in particular, if CPUID levels 0x80000002..4 are supported, this
  244. * isn't used
  245. */
  246. /* Look up CPU names by table lookup. */
  247. static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
  248. {
  249. const struct cpu_model_info *info;
  250. if (c->x86_model >= 16)
  251. return NULL; /* Range check */
  252. if (!this_cpu)
  253. return NULL;
  254. info = this_cpu->c_models;
  255. while (info && info->family) {
  256. if (info->family == c->x86)
  257. return info->model_names[c->x86_model];
  258. info++;
  259. }
  260. return NULL; /* Not found */
  261. }
  262. __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
  263. __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
  264. void load_percpu_segment(int cpu)
  265. {
  266. #ifdef CONFIG_X86_32
  267. loadsegment(fs, __KERNEL_PERCPU);
  268. #else
  269. loadsegment(gs, 0);
  270. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  271. #endif
  272. load_stack_canary_segment();
  273. }
  274. /*
  275. * Current gdt points %fs at the "master" per-cpu area: after this,
  276. * it's on the real one.
  277. */
  278. void switch_to_new_gdt(int cpu)
  279. {
  280. struct desc_ptr gdt_descr;
  281. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  282. gdt_descr.size = GDT_SIZE - 1;
  283. load_gdt(&gdt_descr);
  284. /* Reload the per-cpu base */
  285. load_percpu_segment(cpu);
  286. }
  287. static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
  288. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  289. {
  290. #ifdef CONFIG_X86_64
  291. display_cacheinfo(c);
  292. #else
  293. /* Not much we can do here... */
  294. /* Check if at least it has cpuid */
  295. if (c->cpuid_level == -1) {
  296. /* No cpuid. It must be an ancient CPU */
  297. if (c->x86 == 4)
  298. strcpy(c->x86_model_id, "486");
  299. else if (c->x86 == 3)
  300. strcpy(c->x86_model_id, "386");
  301. }
  302. #endif
  303. }
  304. static const struct cpu_dev __cpuinitconst default_cpu = {
  305. .c_init = default_init,
  306. .c_vendor = "Unknown",
  307. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  308. };
  309. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  310. {
  311. unsigned int *v;
  312. char *p, *q;
  313. if (c->extended_cpuid_level < 0x80000004)
  314. return;
  315. v = (unsigned int *)c->x86_model_id;
  316. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  317. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  318. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  319. c->x86_model_id[48] = 0;
  320. /*
  321. * Intel chips right-justify this string for some dumb reason;
  322. * undo that brain damage:
  323. */
  324. p = q = &c->x86_model_id[0];
  325. while (*p == ' ')
  326. p++;
  327. if (p != q) {
  328. while (*p)
  329. *q++ = *p++;
  330. while (q <= &c->x86_model_id[48])
  331. *q++ = '\0'; /* Zero-pad the rest */
  332. }
  333. }
  334. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  335. {
  336. unsigned int n, dummy, ebx, ecx, edx, l2size;
  337. n = c->extended_cpuid_level;
  338. if (n >= 0x80000005) {
  339. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  340. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  341. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  342. c->x86_cache_size = (ecx>>24) + (edx>>24);
  343. #ifdef CONFIG_X86_64
  344. /* On K8 L1 TLB is inclusive, so don't count it */
  345. c->x86_tlbsize = 0;
  346. #endif
  347. }
  348. if (n < 0x80000006) /* Some chips just has a large L1. */
  349. return;
  350. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  351. l2size = ecx >> 16;
  352. #ifdef CONFIG_X86_64
  353. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  354. #else
  355. /* do processor-specific cache resizing */
  356. if (this_cpu->c_size_cache)
  357. l2size = this_cpu->c_size_cache(c, l2size);
  358. /* Allow user to override all this if necessary. */
  359. if (cachesize_override != -1)
  360. l2size = cachesize_override;
  361. if (l2size == 0)
  362. return; /* Again, no L2 cache is possible */
  363. #endif
  364. c->x86_cache_size = l2size;
  365. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  366. l2size, ecx & 0xFF);
  367. }
  368. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  369. {
  370. #ifdef CONFIG_X86_HT
  371. u32 eax, ebx, ecx, edx;
  372. int index_msb, core_bits;
  373. if (!cpu_has(c, X86_FEATURE_HT))
  374. return;
  375. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  376. goto out;
  377. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  378. return;
  379. cpuid(1, &eax, &ebx, &ecx, &edx);
  380. smp_num_siblings = (ebx & 0xff0000) >> 16;
  381. if (smp_num_siblings == 1) {
  382. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  383. goto out;
  384. }
  385. if (smp_num_siblings <= 1)
  386. goto out;
  387. if (smp_num_siblings > nr_cpu_ids) {
  388. pr_warning("CPU: Unsupported number of siblings %d",
  389. smp_num_siblings);
  390. smp_num_siblings = 1;
  391. return;
  392. }
  393. index_msb = get_count_order(smp_num_siblings);
  394. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  395. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  396. index_msb = get_count_order(smp_num_siblings);
  397. core_bits = get_count_order(c->x86_max_cores);
  398. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  399. ((1 << core_bits) - 1);
  400. out:
  401. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  402. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  403. c->phys_proc_id);
  404. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  405. c->cpu_core_id);
  406. }
  407. #endif
  408. }
  409. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  410. {
  411. char *v = c->x86_vendor_id;
  412. static int printed;
  413. int i;
  414. for (i = 0; i < X86_VENDOR_NUM; i++) {
  415. if (!cpu_devs[i])
  416. break;
  417. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  418. (cpu_devs[i]->c_ident[1] &&
  419. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  420. this_cpu = cpu_devs[i];
  421. c->x86_vendor = this_cpu->c_x86_vendor;
  422. return;
  423. }
  424. }
  425. if (!printed) {
  426. printed++;
  427. printk(KERN_ERR
  428. "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  429. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  430. }
  431. c->x86_vendor = X86_VENDOR_UNKNOWN;
  432. this_cpu = &default_cpu;
  433. }
  434. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  435. {
  436. /* Get vendor name */
  437. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  438. (unsigned int *)&c->x86_vendor_id[0],
  439. (unsigned int *)&c->x86_vendor_id[8],
  440. (unsigned int *)&c->x86_vendor_id[4]);
  441. c->x86 = 4;
  442. /* Intel-defined flags: level 0x00000001 */
  443. if (c->cpuid_level >= 0x00000001) {
  444. u32 junk, tfms, cap0, misc;
  445. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  446. c->x86 = (tfms >> 8) & 0xf;
  447. c->x86_model = (tfms >> 4) & 0xf;
  448. c->x86_mask = tfms & 0xf;
  449. if (c->x86 == 0xf)
  450. c->x86 += (tfms >> 20) & 0xff;
  451. if (c->x86 >= 0x6)
  452. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  453. if (cap0 & (1<<19)) {
  454. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  455. c->x86_cache_alignment = c->x86_clflush_size;
  456. }
  457. }
  458. }
  459. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  460. {
  461. u32 tfms, xlvl;
  462. u32 ebx;
  463. /* Intel-defined flags: level 0x00000001 */
  464. if (c->cpuid_level >= 0x00000001) {
  465. u32 capability, excap;
  466. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  467. c->x86_capability[0] = capability;
  468. c->x86_capability[4] = excap;
  469. }
  470. /* AMD-defined flags: level 0x80000001 */
  471. xlvl = cpuid_eax(0x80000000);
  472. c->extended_cpuid_level = xlvl;
  473. if ((xlvl & 0xffff0000) == 0x80000000) {
  474. if (xlvl >= 0x80000001) {
  475. c->x86_capability[1] = cpuid_edx(0x80000001);
  476. c->x86_capability[6] = cpuid_ecx(0x80000001);
  477. }
  478. }
  479. if (c->extended_cpuid_level >= 0x80000008) {
  480. u32 eax = cpuid_eax(0x80000008);
  481. c->x86_virt_bits = (eax >> 8) & 0xff;
  482. c->x86_phys_bits = eax & 0xff;
  483. }
  484. #ifdef CONFIG_X86_32
  485. else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
  486. c->x86_phys_bits = 36;
  487. #endif
  488. if (c->extended_cpuid_level >= 0x80000007)
  489. c->x86_power = cpuid_edx(0x80000007);
  490. }
  491. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  492. {
  493. #ifdef CONFIG_X86_32
  494. int i;
  495. /*
  496. * First of all, decide if this is a 486 or higher
  497. * It's a 486 if we can modify the AC flag
  498. */
  499. if (flag_is_changeable_p(X86_EFLAGS_AC))
  500. c->x86 = 4;
  501. else
  502. c->x86 = 3;
  503. for (i = 0; i < X86_VENDOR_NUM; i++)
  504. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  505. c->x86_vendor_id[0] = 0;
  506. cpu_devs[i]->c_identify(c);
  507. if (c->x86_vendor_id[0]) {
  508. get_cpu_vendor(c);
  509. break;
  510. }
  511. }
  512. #endif
  513. }
  514. /*
  515. * Do minimum CPU detection early.
  516. * Fields really needed: vendor, cpuid_level, family, model, mask,
  517. * cache alignment.
  518. * The others are not touched to avoid unwanted side effects.
  519. *
  520. * WARNING: this function is only called on the BP. Don't add code here
  521. * that is supposed to run on all CPUs.
  522. */
  523. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  524. {
  525. #ifdef CONFIG_X86_64
  526. c->x86_clflush_size = 64;
  527. c->x86_phys_bits = 36;
  528. c->x86_virt_bits = 48;
  529. #else
  530. c->x86_clflush_size = 32;
  531. c->x86_phys_bits = 32;
  532. c->x86_virt_bits = 32;
  533. #endif
  534. c->x86_cache_alignment = c->x86_clflush_size;
  535. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  536. c->extended_cpuid_level = 0;
  537. if (!have_cpuid_p())
  538. identify_cpu_without_cpuid(c);
  539. /* cyrix could have cpuid enabled via c_identify()*/
  540. if (!have_cpuid_p())
  541. return;
  542. cpu_detect(c);
  543. get_cpu_vendor(c);
  544. get_cpu_cap(c);
  545. if (this_cpu->c_early_init)
  546. this_cpu->c_early_init(c);
  547. #ifdef CONFIG_SMP
  548. c->cpu_index = boot_cpu_id;
  549. #endif
  550. filter_cpuid_features(c, false);
  551. }
  552. void __init early_cpu_init(void)
  553. {
  554. const struct cpu_dev *const *cdev;
  555. int count = 0;
  556. printk(KERN_INFO "KERNEL supported cpus:\n");
  557. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  558. const struct cpu_dev *cpudev = *cdev;
  559. unsigned int j;
  560. if (count >= X86_VENDOR_NUM)
  561. break;
  562. cpu_devs[count] = cpudev;
  563. count++;
  564. for (j = 0; j < 2; j++) {
  565. if (!cpudev->c_ident[j])
  566. continue;
  567. printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
  568. cpudev->c_ident[j]);
  569. }
  570. }
  571. early_identify_cpu(&boot_cpu_data);
  572. }
  573. /*
  574. * The NOPL instruction is supposed to exist on all CPUs with
  575. * family >= 6; unfortunately, that's not true in practice because
  576. * of early VIA chips and (more importantly) broken virtualizers that
  577. * are not easy to detect. In the latter case it doesn't even *fail*
  578. * reliably, so probing for it doesn't even work. Disable it completely
  579. * unless we can find a reliable way to detect all the broken cases.
  580. */
  581. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  582. {
  583. clear_cpu_cap(c, X86_FEATURE_NOPL);
  584. }
  585. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  586. {
  587. c->extended_cpuid_level = 0;
  588. if (!have_cpuid_p())
  589. identify_cpu_without_cpuid(c);
  590. /* cyrix could have cpuid enabled via c_identify()*/
  591. if (!have_cpuid_p())
  592. return;
  593. cpu_detect(c);
  594. get_cpu_vendor(c);
  595. get_cpu_cap(c);
  596. if (c->cpuid_level >= 0x00000001) {
  597. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  598. #ifdef CONFIG_X86_32
  599. # ifdef CONFIG_X86_HT
  600. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  601. # else
  602. c->apicid = c->initial_apicid;
  603. # endif
  604. #endif
  605. #ifdef CONFIG_X86_HT
  606. c->phys_proc_id = c->initial_apicid;
  607. #endif
  608. }
  609. get_model_name(c); /* Default name */
  610. init_scattered_cpuid_features(c);
  611. detect_nopl(c);
  612. }
  613. /*
  614. * This does the hard work of actually picking apart the CPU stuff...
  615. */
  616. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  617. {
  618. int i;
  619. c->loops_per_jiffy = loops_per_jiffy;
  620. c->x86_cache_size = -1;
  621. c->x86_vendor = X86_VENDOR_UNKNOWN;
  622. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  623. c->x86_vendor_id[0] = '\0'; /* Unset */
  624. c->x86_model_id[0] = '\0'; /* Unset */
  625. c->x86_max_cores = 1;
  626. c->x86_coreid_bits = 0;
  627. #ifdef CONFIG_X86_64
  628. c->x86_clflush_size = 64;
  629. c->x86_phys_bits = 36;
  630. c->x86_virt_bits = 48;
  631. #else
  632. c->cpuid_level = -1; /* CPUID not detected */
  633. c->x86_clflush_size = 32;
  634. c->x86_phys_bits = 32;
  635. c->x86_virt_bits = 32;
  636. #endif
  637. c->x86_cache_alignment = c->x86_clflush_size;
  638. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  639. generic_identify(c);
  640. if (this_cpu->c_identify)
  641. this_cpu->c_identify(c);
  642. /* Clear/Set all flags overriden by options, after probe */
  643. for (i = 0; i < NCAPINTS; i++) {
  644. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  645. c->x86_capability[i] |= cpu_caps_set[i];
  646. }
  647. #ifdef CONFIG_X86_64
  648. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  649. #endif
  650. /*
  651. * Vendor-specific initialization. In this section we
  652. * canonicalize the feature flags, meaning if there are
  653. * features a certain CPU supports which CPUID doesn't
  654. * tell us, CPUID claiming incorrect flags, or other bugs,
  655. * we handle them here.
  656. *
  657. * At the end of this section, c->x86_capability better
  658. * indicate the features this CPU genuinely supports!
  659. */
  660. if (this_cpu->c_init)
  661. this_cpu->c_init(c);
  662. /* Disable the PN if appropriate */
  663. squash_the_stupid_serial_number(c);
  664. /*
  665. * The vendor-specific functions might have changed features.
  666. * Now we do "generic changes."
  667. */
  668. /* Filter out anything that depends on CPUID levels we don't have */
  669. filter_cpuid_features(c, true);
  670. /* If the model name is still unset, do table lookup. */
  671. if (!c->x86_model_id[0]) {
  672. const char *p;
  673. p = table_lookup_model(c);
  674. if (p)
  675. strcpy(c->x86_model_id, p);
  676. else
  677. /* Last resort... */
  678. sprintf(c->x86_model_id, "%02x/%02x",
  679. c->x86, c->x86_model);
  680. }
  681. #ifdef CONFIG_X86_64
  682. detect_ht(c);
  683. #endif
  684. init_hypervisor(c);
  685. /*
  686. * Clear/Set all flags overriden by options, need do it
  687. * before following smp all cpus cap AND.
  688. */
  689. for (i = 0; i < NCAPINTS; i++) {
  690. c->x86_capability[i] &= ~cpu_caps_cleared[i];
  691. c->x86_capability[i] |= cpu_caps_set[i];
  692. }
  693. /*
  694. * On SMP, boot_cpu_data holds the common feature set between
  695. * all CPUs; so make sure that we indicate which features are
  696. * common between the CPUs. The first time this routine gets
  697. * executed, c == &boot_cpu_data.
  698. */
  699. if (c != &boot_cpu_data) {
  700. /* AND the already accumulated flags with these */
  701. for (i = 0; i < NCAPINTS; i++)
  702. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  703. }
  704. #ifdef CONFIG_X86_MCE
  705. /* Init Machine Check Exception if available. */
  706. mcheck_init(c);
  707. #endif
  708. select_idle_routine(c);
  709. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  710. numa_add_cpu(smp_processor_id());
  711. #endif
  712. }
  713. #ifdef CONFIG_X86_64
  714. static void vgetcpu_set_mode(void)
  715. {
  716. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  717. vgetcpu_mode = VGETCPU_RDTSCP;
  718. else
  719. vgetcpu_mode = VGETCPU_LSL;
  720. }
  721. #endif
  722. void __init identify_boot_cpu(void)
  723. {
  724. identify_cpu(&boot_cpu_data);
  725. init_c1e_mask();
  726. #ifdef CONFIG_X86_32
  727. sysenter_setup();
  728. enable_sep_cpu();
  729. #else
  730. vgetcpu_set_mode();
  731. #endif
  732. }
  733. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  734. {
  735. BUG_ON(c == &boot_cpu_data);
  736. identify_cpu(c);
  737. #ifdef CONFIG_X86_32
  738. enable_sep_cpu();
  739. #endif
  740. mtrr_ap_init();
  741. }
  742. struct msr_range {
  743. unsigned min;
  744. unsigned max;
  745. };
  746. static const struct msr_range msr_range_array[] __cpuinitconst = {
  747. { 0x00000000, 0x00000418},
  748. { 0xc0000000, 0xc000040b},
  749. { 0xc0010000, 0xc0010142},
  750. { 0xc0011000, 0xc001103b},
  751. };
  752. static void __cpuinit print_cpu_msr(void)
  753. {
  754. unsigned index_min, index_max;
  755. unsigned index;
  756. u64 val;
  757. int i;
  758. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  759. index_min = msr_range_array[i].min;
  760. index_max = msr_range_array[i].max;
  761. for (index = index_min; index < index_max; index++) {
  762. if (rdmsrl_amd_safe(index, &val))
  763. continue;
  764. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  765. }
  766. }
  767. }
  768. static int show_msr __cpuinitdata;
  769. static __init int setup_show_msr(char *arg)
  770. {
  771. int num;
  772. get_option(&arg, &num);
  773. if (num > 0)
  774. show_msr = num;
  775. return 1;
  776. }
  777. __setup("show_msr=", setup_show_msr);
  778. static __init int setup_noclflush(char *arg)
  779. {
  780. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  781. return 1;
  782. }
  783. __setup("noclflush", setup_noclflush);
  784. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  785. {
  786. const char *vendor = NULL;
  787. if (c->x86_vendor < X86_VENDOR_NUM) {
  788. vendor = this_cpu->c_vendor;
  789. } else {
  790. if (c->cpuid_level >= 0)
  791. vendor = c->x86_vendor_id;
  792. }
  793. if (vendor && !strstr(c->x86_model_id, vendor))
  794. printk(KERN_CONT "%s ", vendor);
  795. if (c->x86_model_id[0])
  796. printk(KERN_CONT "%s", c->x86_model_id);
  797. else
  798. printk(KERN_CONT "%d86", c->x86);
  799. if (c->x86_mask || c->cpuid_level >= 0)
  800. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  801. else
  802. printk(KERN_CONT "\n");
  803. #ifdef CONFIG_SMP
  804. if (c->cpu_index < show_msr)
  805. print_cpu_msr();
  806. #else
  807. if (show_msr)
  808. print_cpu_msr();
  809. #endif
  810. }
  811. static __init int setup_disablecpuid(char *arg)
  812. {
  813. int bit;
  814. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  815. setup_clear_cpu_cap(bit);
  816. else
  817. return 0;
  818. return 1;
  819. }
  820. __setup("clearcpuid=", setup_disablecpuid);
  821. #ifdef CONFIG_X86_64
  822. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  823. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  824. irq_stack_union) __aligned(PAGE_SIZE);
  825. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  826. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  827. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  828. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  829. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  830. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  831. /*
  832. * Special IST stacks which the CPU switches to when it calls
  833. * an IST-marked descriptor entry. Up to 7 stacks (hardware
  834. * limit), all of them are 4K, except the debug stack which
  835. * is 8K.
  836. */
  837. static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
  838. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  839. [DEBUG_STACK - 1] = DEBUG_STKSZ
  840. };
  841. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  842. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  843. __aligned(PAGE_SIZE);
  844. /* May not be marked __init: used by software suspend */
  845. void syscall_init(void)
  846. {
  847. /*
  848. * LSTAR and STAR live in a bit strange symbiosis.
  849. * They both write to the same internal register. STAR allows to
  850. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  851. */
  852. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  853. wrmsrl(MSR_LSTAR, system_call);
  854. wrmsrl(MSR_CSTAR, ignore_sysret);
  855. #ifdef CONFIG_IA32_EMULATION
  856. syscall32_cpu_init();
  857. #endif
  858. /* Flags to clear on syscall */
  859. wrmsrl(MSR_SYSCALL_MASK,
  860. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  861. }
  862. unsigned long kernel_eflags;
  863. /*
  864. * Copies of the original ist values from the tss are only accessed during
  865. * debugging, no special alignment required.
  866. */
  867. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  868. #else /* CONFIG_X86_64 */
  869. #ifdef CONFIG_CC_STACKPROTECTOR
  870. DEFINE_PER_CPU(unsigned long, stack_canary);
  871. #endif
  872. /* Make sure %fs and %gs are initialized properly in idle threads */
  873. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  874. {
  875. memset(regs, 0, sizeof(struct pt_regs));
  876. regs->fs = __KERNEL_PERCPU;
  877. regs->gs = __KERNEL_STACK_CANARY;
  878. return regs;
  879. }
  880. #endif /* CONFIG_X86_64 */
  881. /*
  882. * Clear all 6 debug registers:
  883. */
  884. static void clear_all_debug_regs(void)
  885. {
  886. int i;
  887. for (i = 0; i < 8; i++) {
  888. /* Ignore db4, db5 */
  889. if ((i == 4) || (i == 5))
  890. continue;
  891. set_debugreg(0, i);
  892. }
  893. }
  894. /*
  895. * cpu_init() initializes state that is per-CPU. Some data is already
  896. * initialized (naturally) in the bootstrap process, such as the GDT
  897. * and IDT. We reload them nevertheless, this function acts as a
  898. * 'CPU state barrier', nothing should get across.
  899. * A lot of state is already set up in PDA init for 64 bit
  900. */
  901. #ifdef CONFIG_X86_64
  902. void __cpuinit cpu_init(void)
  903. {
  904. struct orig_ist *orig_ist;
  905. struct task_struct *me;
  906. struct tss_struct *t;
  907. unsigned long v;
  908. int cpu;
  909. int i;
  910. cpu = stack_smp_processor_id();
  911. t = &per_cpu(init_tss, cpu);
  912. orig_ist = &per_cpu(orig_ist, cpu);
  913. #ifdef CONFIG_NUMA
  914. if (cpu != 0 && percpu_read(node_number) == 0 &&
  915. cpu_to_node(cpu) != NUMA_NO_NODE)
  916. percpu_write(node_number, cpu_to_node(cpu));
  917. #endif
  918. me = current;
  919. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  920. panic("CPU#%d already initialized!\n", cpu);
  921. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  922. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  923. /*
  924. * Initialize the per-CPU GDT with the boot GDT,
  925. * and set up the GDT descriptor:
  926. */
  927. switch_to_new_gdt(cpu);
  928. loadsegment(fs, 0);
  929. load_idt((const struct desc_ptr *)&idt_descr);
  930. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  931. syscall_init();
  932. wrmsrl(MSR_FS_BASE, 0);
  933. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  934. barrier();
  935. check_efer();
  936. if (cpu != 0)
  937. enable_x2apic();
  938. /*
  939. * set up and load the per-CPU TSS
  940. */
  941. if (!orig_ist->ist[0]) {
  942. char *estacks = per_cpu(exception_stacks, cpu);
  943. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  944. estacks += exception_stack_sizes[v];
  945. orig_ist->ist[v] = t->x86_tss.ist[v] =
  946. (unsigned long)estacks;
  947. }
  948. }
  949. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  950. /*
  951. * <= is required because the CPU will access up to
  952. * 8 bits beyond the end of the IO permission bitmap.
  953. */
  954. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  955. t->io_bitmap[i] = ~0UL;
  956. atomic_inc(&init_mm.mm_count);
  957. me->active_mm = &init_mm;
  958. BUG_ON(me->mm);
  959. enter_lazy_tlb(&init_mm, me);
  960. load_sp0(t, &current->thread);
  961. set_tss_desc(cpu, t);
  962. load_TR_desc();
  963. load_LDT(&init_mm.context);
  964. #ifdef CONFIG_KGDB
  965. /*
  966. * If the kgdb is connected no debug regs should be altered. This
  967. * is only applicable when KGDB and a KGDB I/O module are built
  968. * into the kernel and you are using early debugging with
  969. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  970. */
  971. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  972. arch_kgdb_ops.correct_hw_break();
  973. else
  974. #endif
  975. clear_all_debug_regs();
  976. fpu_init();
  977. raw_local_save_flags(kernel_eflags);
  978. if (is_uv_system())
  979. uv_cpu_init();
  980. }
  981. #else
  982. void __cpuinit cpu_init(void)
  983. {
  984. int cpu = smp_processor_id();
  985. struct task_struct *curr = current;
  986. struct tss_struct *t = &per_cpu(init_tss, cpu);
  987. struct thread_struct *thread = &curr->thread;
  988. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  989. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  990. for (;;)
  991. local_irq_enable();
  992. }
  993. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  994. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  995. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  996. load_idt(&idt_descr);
  997. switch_to_new_gdt(cpu);
  998. /*
  999. * Set up and load the per-CPU TSS and LDT
  1000. */
  1001. atomic_inc(&init_mm.mm_count);
  1002. curr->active_mm = &init_mm;
  1003. BUG_ON(curr->mm);
  1004. enter_lazy_tlb(&init_mm, curr);
  1005. load_sp0(t, thread);
  1006. set_tss_desc(cpu, t);
  1007. load_TR_desc();
  1008. load_LDT(&init_mm.context);
  1009. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  1010. #ifdef CONFIG_DOUBLEFAULT
  1011. /* Set up doublefault TSS pointer in the GDT */
  1012. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  1013. #endif
  1014. clear_all_debug_regs();
  1015. /*
  1016. * Force FPU initialization:
  1017. */
  1018. if (cpu_has_xsave)
  1019. current_thread_info()->status = TS_XSAVE;
  1020. else
  1021. current_thread_info()->status = 0;
  1022. clear_used_math();
  1023. mxcsr_feature_mask_init();
  1024. /*
  1025. * Boot processor to setup the FP and extended state context info.
  1026. */
  1027. if (smp_processor_id() == boot_cpu_id)
  1028. init_thread_xstate();
  1029. xsave_init();
  1030. }
  1031. #endif