disk-io.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return btrfs_crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO
  277. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. eb->start, parent_transid, btrfs_header_generation(eb));
  318. ret = 1;
  319. clear_extent_buffer_uptodate(eb);
  320. out:
  321. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  322. &cached_state, GFP_NOFS);
  323. return ret;
  324. }
  325. /*
  326. * Return 0 if the superblock checksum type matches the checksum value of that
  327. * algorithm. Pass the raw disk superblock data.
  328. */
  329. static int btrfs_check_super_csum(char *raw_disk_sb)
  330. {
  331. struct btrfs_super_block *disk_sb =
  332. (struct btrfs_super_block *)raw_disk_sb;
  333. u16 csum_type = btrfs_super_csum_type(disk_sb);
  334. int ret = 0;
  335. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  336. u32 crc = ~(u32)0;
  337. const int csum_size = sizeof(crc);
  338. char result[csum_size];
  339. /*
  340. * The super_block structure does not span the whole
  341. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  342. * is filled with zeros and is included in the checkum.
  343. */
  344. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  345. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  346. btrfs_csum_final(crc, result);
  347. if (memcmp(raw_disk_sb, result, csum_size))
  348. ret = 1;
  349. if (ret && btrfs_super_generation(disk_sb) < 10) {
  350. printk(KERN_WARNING
  351. "BTRFS: super block crcs don't match, older mkfs detected\n");
  352. ret = 0;
  353. }
  354. }
  355. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  356. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  357. csum_type);
  358. ret = 1;
  359. }
  360. return ret;
  361. }
  362. /*
  363. * helper to read a given tree block, doing retries as required when
  364. * the checksums don't match and we have alternate mirrors to try.
  365. */
  366. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  367. struct extent_buffer *eb,
  368. u64 start, u64 parent_transid)
  369. {
  370. struct extent_io_tree *io_tree;
  371. int failed = 0;
  372. int ret;
  373. int num_copies = 0;
  374. int mirror_num = 0;
  375. int failed_mirror = 0;
  376. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  377. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  378. while (1) {
  379. ret = read_extent_buffer_pages(io_tree, eb, start,
  380. WAIT_COMPLETE,
  381. btree_get_extent, mirror_num);
  382. if (!ret) {
  383. if (!verify_parent_transid(io_tree, eb,
  384. parent_transid, 0))
  385. break;
  386. else
  387. ret = -EIO;
  388. }
  389. /*
  390. * This buffer's crc is fine, but its contents are corrupted, so
  391. * there is no reason to read the other copies, they won't be
  392. * any less wrong.
  393. */
  394. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  395. break;
  396. num_copies = btrfs_num_copies(root->fs_info,
  397. eb->start, eb->len);
  398. if (num_copies == 1)
  399. break;
  400. if (!failed_mirror) {
  401. failed = 1;
  402. failed_mirror = eb->read_mirror;
  403. }
  404. mirror_num++;
  405. if (mirror_num == failed_mirror)
  406. mirror_num++;
  407. if (mirror_num > num_copies)
  408. break;
  409. }
  410. if (failed && !ret && failed_mirror)
  411. repair_eb_io_failure(root, eb, failed_mirror);
  412. return ret;
  413. }
  414. /*
  415. * checksum a dirty tree block before IO. This has extra checks to make sure
  416. * we only fill in the checksum field in the first page of a multi-page block
  417. */
  418. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  419. {
  420. u64 start = page_offset(page);
  421. u64 found_start;
  422. struct extent_buffer *eb;
  423. eb = (struct extent_buffer *)page->private;
  424. if (page != eb->pages[0])
  425. return 0;
  426. found_start = btrfs_header_bytenr(eb);
  427. if (WARN_ON(found_start != start || !PageUptodate(page)))
  428. return 0;
  429. csum_tree_block(root, eb, 0);
  430. return 0;
  431. }
  432. static int check_tree_block_fsid(struct btrfs_root *root,
  433. struct extent_buffer *eb)
  434. {
  435. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  436. u8 fsid[BTRFS_UUID_SIZE];
  437. int ret = 1;
  438. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  439. while (fs_devices) {
  440. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  441. ret = 0;
  442. break;
  443. }
  444. fs_devices = fs_devices->seed;
  445. }
  446. return ret;
  447. }
  448. #define CORRUPT(reason, eb, root, slot) \
  449. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  450. "root=%llu, slot=%d", reason, \
  451. btrfs_header_bytenr(eb), root->objectid, slot)
  452. static noinline int check_leaf(struct btrfs_root *root,
  453. struct extent_buffer *leaf)
  454. {
  455. struct btrfs_key key;
  456. struct btrfs_key leaf_key;
  457. u32 nritems = btrfs_header_nritems(leaf);
  458. int slot;
  459. if (nritems == 0)
  460. return 0;
  461. /* Check the 0 item */
  462. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  463. BTRFS_LEAF_DATA_SIZE(root)) {
  464. CORRUPT("invalid item offset size pair", leaf, root, 0);
  465. return -EIO;
  466. }
  467. /*
  468. * Check to make sure each items keys are in the correct order and their
  469. * offsets make sense. We only have to loop through nritems-1 because
  470. * we check the current slot against the next slot, which verifies the
  471. * next slot's offset+size makes sense and that the current's slot
  472. * offset is correct.
  473. */
  474. for (slot = 0; slot < nritems - 1; slot++) {
  475. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  476. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  477. /* Make sure the keys are in the right order */
  478. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  479. CORRUPT("bad key order", leaf, root, slot);
  480. return -EIO;
  481. }
  482. /*
  483. * Make sure the offset and ends are right, remember that the
  484. * item data starts at the end of the leaf and grows towards the
  485. * front.
  486. */
  487. if (btrfs_item_offset_nr(leaf, slot) !=
  488. btrfs_item_end_nr(leaf, slot + 1)) {
  489. CORRUPT("slot offset bad", leaf, root, slot);
  490. return -EIO;
  491. }
  492. /*
  493. * Check to make sure that we don't point outside of the leaf,
  494. * just incase all the items are consistent to eachother, but
  495. * all point outside of the leaf.
  496. */
  497. if (btrfs_item_end_nr(leaf, slot) >
  498. BTRFS_LEAF_DATA_SIZE(root)) {
  499. CORRUPT("slot end outside of leaf", leaf, root, slot);
  500. return -EIO;
  501. }
  502. }
  503. return 0;
  504. }
  505. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  506. u64 phy_offset, struct page *page,
  507. u64 start, u64 end, int mirror)
  508. {
  509. u64 found_start;
  510. int found_level;
  511. struct extent_buffer *eb;
  512. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  513. int ret = 0;
  514. int reads_done;
  515. if (!page->private)
  516. goto out;
  517. eb = (struct extent_buffer *)page->private;
  518. /* the pending IO might have been the only thing that kept this buffer
  519. * in memory. Make sure we have a ref for all this other checks
  520. */
  521. extent_buffer_get(eb);
  522. reads_done = atomic_dec_and_test(&eb->io_pages);
  523. if (!reads_done)
  524. goto err;
  525. eb->read_mirror = mirror;
  526. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_start = btrfs_header_bytenr(eb);
  531. if (found_start != eb->start) {
  532. printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
  533. "%llu %llu\n",
  534. found_start, eb->start);
  535. ret = -EIO;
  536. goto err;
  537. }
  538. if (check_tree_block_fsid(root, eb)) {
  539. printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
  540. eb->start);
  541. ret = -EIO;
  542. goto err;
  543. }
  544. found_level = btrfs_header_level(eb);
  545. if (found_level >= BTRFS_MAX_LEVEL) {
  546. btrfs_info(root->fs_info, "bad tree block level %d",
  547. (int)btrfs_header_level(eb));
  548. ret = -EIO;
  549. goto err;
  550. }
  551. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  552. eb, found_level);
  553. ret = csum_tree_block(root, eb, 1);
  554. if (ret) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. /*
  559. * If this is a leaf block and it is corrupt, set the corrupt bit so
  560. * that we don't try and read the other copies of this block, just
  561. * return -EIO.
  562. */
  563. if (found_level == 0 && check_leaf(root, eb)) {
  564. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  565. ret = -EIO;
  566. }
  567. if (!ret)
  568. set_extent_buffer_uptodate(eb);
  569. err:
  570. if (reads_done &&
  571. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  572. btree_readahead_hook(root, eb, eb->start, ret);
  573. if (ret) {
  574. /*
  575. * our io error hook is going to dec the io pages
  576. * again, we have to make sure it has something
  577. * to decrement
  578. */
  579. atomic_inc(&eb->io_pages);
  580. clear_extent_buffer_uptodate(eb);
  581. }
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. atomic_dec(&eb->io_pages);
  594. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  595. btree_readahead_hook(root, eb, eb->start, -EIO);
  596. return -EIO; /* we fixed nothing */
  597. }
  598. static void end_workqueue_bio(struct bio *bio, int err)
  599. {
  600. struct end_io_wq *end_io_wq = bio->bi_private;
  601. struct btrfs_fs_info *fs_info;
  602. fs_info = end_io_wq->info;
  603. end_io_wq->error = err;
  604. end_io_wq->work.func = end_workqueue_fn;
  605. end_io_wq->work.flags = 0;
  606. if (bio->bi_rw & REQ_WRITE) {
  607. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  608. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  609. &end_io_wq->work);
  610. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  611. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  612. &end_io_wq->work);
  613. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  614. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  615. &end_io_wq->work);
  616. else
  617. btrfs_queue_worker(&fs_info->endio_write_workers,
  618. &end_io_wq->work);
  619. } else {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  621. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata)
  624. btrfs_queue_worker(&fs_info->endio_meta_workers,
  625. &end_io_wq->work);
  626. else
  627. btrfs_queue_worker(&fs_info->endio_workers,
  628. &end_io_wq->work);
  629. }
  630. }
  631. /*
  632. * For the metadata arg you want
  633. *
  634. * 0 - if data
  635. * 1 - if normal metadta
  636. * 2 - if writing to the free space cache area
  637. * 3 - raid parity work
  638. */
  639. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  640. int metadata)
  641. {
  642. struct end_io_wq *end_io_wq;
  643. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  644. if (!end_io_wq)
  645. return -ENOMEM;
  646. end_io_wq->private = bio->bi_private;
  647. end_io_wq->end_io = bio->bi_end_io;
  648. end_io_wq->info = info;
  649. end_io_wq->error = 0;
  650. end_io_wq->bio = bio;
  651. end_io_wq->metadata = metadata;
  652. bio->bi_private = end_io_wq;
  653. bio->bi_end_io = end_workqueue_bio;
  654. return 0;
  655. }
  656. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  657. {
  658. unsigned long limit = min_t(unsigned long,
  659. info->workers.max_workers,
  660. info->fs_devices->open_devices);
  661. return 256 * limit;
  662. }
  663. static void run_one_async_start(struct btrfs_work *work)
  664. {
  665. struct async_submit_bio *async;
  666. int ret;
  667. async = container_of(work, struct async_submit_bio, work);
  668. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  669. async->mirror_num, async->bio_flags,
  670. async->bio_offset);
  671. if (ret)
  672. async->error = ret;
  673. }
  674. static void run_one_async_done(struct btrfs_work *work)
  675. {
  676. struct btrfs_fs_info *fs_info;
  677. struct async_submit_bio *async;
  678. int limit;
  679. async = container_of(work, struct async_submit_bio, work);
  680. fs_info = BTRFS_I(async->inode)->root->fs_info;
  681. limit = btrfs_async_submit_limit(fs_info);
  682. limit = limit * 2 / 3;
  683. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  684. waitqueue_active(&fs_info->async_submit_wait))
  685. wake_up(&fs_info->async_submit_wait);
  686. /* If an error occured we just want to clean up the bio and move on */
  687. if (async->error) {
  688. bio_endio(async->bio, async->error);
  689. return;
  690. }
  691. async->submit_bio_done(async->inode, async->rw, async->bio,
  692. async->mirror_num, async->bio_flags,
  693. async->bio_offset);
  694. }
  695. static void run_one_async_free(struct btrfs_work *work)
  696. {
  697. struct async_submit_bio *async;
  698. async = container_of(work, struct async_submit_bio, work);
  699. kfree(async);
  700. }
  701. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  702. int rw, struct bio *bio, int mirror_num,
  703. unsigned long bio_flags,
  704. u64 bio_offset,
  705. extent_submit_bio_hook_t *submit_bio_start,
  706. extent_submit_bio_hook_t *submit_bio_done)
  707. {
  708. struct async_submit_bio *async;
  709. async = kmalloc(sizeof(*async), GFP_NOFS);
  710. if (!async)
  711. return -ENOMEM;
  712. async->inode = inode;
  713. async->rw = rw;
  714. async->bio = bio;
  715. async->mirror_num = mirror_num;
  716. async->submit_bio_start = submit_bio_start;
  717. async->submit_bio_done = submit_bio_done;
  718. async->work.func = run_one_async_start;
  719. async->work.ordered_func = run_one_async_done;
  720. async->work.ordered_free = run_one_async_free;
  721. async->work.flags = 0;
  722. async->bio_flags = bio_flags;
  723. async->bio_offset = bio_offset;
  724. async->error = 0;
  725. atomic_inc(&fs_info->nr_async_submits);
  726. if (rw & REQ_SYNC)
  727. btrfs_set_work_high_prio(&async->work);
  728. btrfs_queue_worker(&fs_info->workers, &async->work);
  729. while (atomic_read(&fs_info->async_submit_draining) &&
  730. atomic_read(&fs_info->nr_async_submits)) {
  731. wait_event(fs_info->async_submit_wait,
  732. (atomic_read(&fs_info->nr_async_submits) == 0));
  733. }
  734. return 0;
  735. }
  736. static int btree_csum_one_bio(struct bio *bio)
  737. {
  738. struct bio_vec *bvec = bio->bi_io_vec;
  739. int bio_index = 0;
  740. struct btrfs_root *root;
  741. int ret = 0;
  742. WARN_ON(bio->bi_vcnt <= 0);
  743. while (bio_index < bio->bi_vcnt) {
  744. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  745. ret = csum_dirty_buffer(root, bvec->bv_page);
  746. if (ret)
  747. break;
  748. bio_index++;
  749. bvec++;
  750. }
  751. return ret;
  752. }
  753. static int __btree_submit_bio_start(struct inode *inode, int rw,
  754. struct bio *bio, int mirror_num,
  755. unsigned long bio_flags,
  756. u64 bio_offset)
  757. {
  758. /*
  759. * when we're called for a write, we're already in the async
  760. * submission context. Just jump into btrfs_map_bio
  761. */
  762. return btree_csum_one_bio(bio);
  763. }
  764. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  765. int mirror_num, unsigned long bio_flags,
  766. u64 bio_offset)
  767. {
  768. int ret;
  769. /*
  770. * when we're called for a write, we're already in the async
  771. * submission context. Just jump into btrfs_map_bio
  772. */
  773. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  774. if (ret)
  775. bio_endio(bio, ret);
  776. return ret;
  777. }
  778. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  779. {
  780. if (bio_flags & EXTENT_BIO_TREE_LOG)
  781. return 0;
  782. #ifdef CONFIG_X86
  783. if (cpu_has_xmm4_2)
  784. return 0;
  785. #endif
  786. return 1;
  787. }
  788. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  789. int mirror_num, unsigned long bio_flags,
  790. u64 bio_offset)
  791. {
  792. int async = check_async_write(inode, bio_flags);
  793. int ret;
  794. if (!(rw & REQ_WRITE)) {
  795. /*
  796. * called for a read, do the setup so that checksum validation
  797. * can happen in the async kernel threads
  798. */
  799. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  800. bio, 1);
  801. if (ret)
  802. goto out_w_error;
  803. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  804. mirror_num, 0);
  805. } else if (!async) {
  806. ret = btree_csum_one_bio(bio);
  807. if (ret)
  808. goto out_w_error;
  809. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  810. mirror_num, 0);
  811. } else {
  812. /*
  813. * kthread helpers are used to submit writes so that
  814. * checksumming can happen in parallel across all CPUs
  815. */
  816. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  817. inode, rw, bio, mirror_num, 0,
  818. bio_offset,
  819. __btree_submit_bio_start,
  820. __btree_submit_bio_done);
  821. }
  822. if (ret) {
  823. out_w_error:
  824. bio_endio(bio, ret);
  825. }
  826. return ret;
  827. }
  828. #ifdef CONFIG_MIGRATION
  829. static int btree_migratepage(struct address_space *mapping,
  830. struct page *newpage, struct page *page,
  831. enum migrate_mode mode)
  832. {
  833. /*
  834. * we can't safely write a btree page from here,
  835. * we haven't done the locking hook
  836. */
  837. if (PageDirty(page))
  838. return -EAGAIN;
  839. /*
  840. * Buffers may be managed in a filesystem specific way.
  841. * We must have no buffers or drop them.
  842. */
  843. if (page_has_private(page) &&
  844. !try_to_release_page(page, GFP_KERNEL))
  845. return -EAGAIN;
  846. return migrate_page(mapping, newpage, page, mode);
  847. }
  848. #endif
  849. static int btree_writepages(struct address_space *mapping,
  850. struct writeback_control *wbc)
  851. {
  852. struct btrfs_fs_info *fs_info;
  853. int ret;
  854. if (wbc->sync_mode == WB_SYNC_NONE) {
  855. if (wbc->for_kupdate)
  856. return 0;
  857. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  858. /* this is a bit racy, but that's ok */
  859. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  860. BTRFS_DIRTY_METADATA_THRESH);
  861. if (ret < 0)
  862. return 0;
  863. }
  864. return btree_write_cache_pages(mapping, wbc);
  865. }
  866. static int btree_readpage(struct file *file, struct page *page)
  867. {
  868. struct extent_io_tree *tree;
  869. tree = &BTRFS_I(page->mapping->host)->io_tree;
  870. return extent_read_full_page(tree, page, btree_get_extent, 0);
  871. }
  872. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  873. {
  874. if (PageWriteback(page) || PageDirty(page))
  875. return 0;
  876. return try_release_extent_buffer(page);
  877. }
  878. static void btree_invalidatepage(struct page *page, unsigned int offset,
  879. unsigned int length)
  880. {
  881. struct extent_io_tree *tree;
  882. tree = &BTRFS_I(page->mapping->host)->io_tree;
  883. extent_invalidatepage(tree, page, offset);
  884. btree_releasepage(page, GFP_NOFS);
  885. if (PagePrivate(page)) {
  886. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  887. "page private not zero on page %llu",
  888. (unsigned long long)page_offset(page));
  889. ClearPagePrivate(page);
  890. set_page_private(page, 0);
  891. page_cache_release(page);
  892. }
  893. }
  894. static int btree_set_page_dirty(struct page *page)
  895. {
  896. #ifdef DEBUG
  897. struct extent_buffer *eb;
  898. BUG_ON(!PagePrivate(page));
  899. eb = (struct extent_buffer *)page->private;
  900. BUG_ON(!eb);
  901. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  902. BUG_ON(!atomic_read(&eb->refs));
  903. btrfs_assert_tree_locked(eb);
  904. #endif
  905. return __set_page_dirty_nobuffers(page);
  906. }
  907. static const struct address_space_operations btree_aops = {
  908. .readpage = btree_readpage,
  909. .writepages = btree_writepages,
  910. .releasepage = btree_releasepage,
  911. .invalidatepage = btree_invalidatepage,
  912. #ifdef CONFIG_MIGRATION
  913. .migratepage = btree_migratepage,
  914. #endif
  915. .set_page_dirty = btree_set_page_dirty,
  916. };
  917. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  918. u64 parent_transid)
  919. {
  920. struct extent_buffer *buf = NULL;
  921. struct inode *btree_inode = root->fs_info->btree_inode;
  922. int ret = 0;
  923. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  924. if (!buf)
  925. return 0;
  926. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  927. buf, 0, WAIT_NONE, btree_get_extent, 0);
  928. free_extent_buffer(buf);
  929. return ret;
  930. }
  931. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  932. int mirror_num, struct extent_buffer **eb)
  933. {
  934. struct extent_buffer *buf = NULL;
  935. struct inode *btree_inode = root->fs_info->btree_inode;
  936. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  937. int ret;
  938. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  939. if (!buf)
  940. return 0;
  941. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  942. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  943. btree_get_extent, mirror_num);
  944. if (ret) {
  945. free_extent_buffer(buf);
  946. return ret;
  947. }
  948. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  949. free_extent_buffer(buf);
  950. return -EIO;
  951. } else if (extent_buffer_uptodate(buf)) {
  952. *eb = buf;
  953. } else {
  954. free_extent_buffer(buf);
  955. }
  956. return 0;
  957. }
  958. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  959. u64 bytenr, u32 blocksize)
  960. {
  961. return find_extent_buffer(root->fs_info, bytenr);
  962. }
  963. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  964. u64 bytenr, u32 blocksize)
  965. {
  966. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  967. }
  968. int btrfs_write_tree_block(struct extent_buffer *buf)
  969. {
  970. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  971. buf->start + buf->len - 1);
  972. }
  973. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  974. {
  975. return filemap_fdatawait_range(buf->pages[0]->mapping,
  976. buf->start, buf->start + buf->len - 1);
  977. }
  978. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  979. u32 blocksize, u64 parent_transid)
  980. {
  981. struct extent_buffer *buf = NULL;
  982. int ret;
  983. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  984. if (!buf)
  985. return NULL;
  986. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  987. if (ret) {
  988. free_extent_buffer(buf);
  989. return NULL;
  990. }
  991. return buf;
  992. }
  993. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  994. struct extent_buffer *buf)
  995. {
  996. struct btrfs_fs_info *fs_info = root->fs_info;
  997. if (btrfs_header_generation(buf) ==
  998. fs_info->running_transaction->transid) {
  999. btrfs_assert_tree_locked(buf);
  1000. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1001. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1002. -buf->len,
  1003. fs_info->dirty_metadata_batch);
  1004. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1005. btrfs_set_lock_blocking(buf);
  1006. clear_extent_buffer_dirty(buf);
  1007. }
  1008. }
  1009. }
  1010. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1011. u32 stripesize, struct btrfs_root *root,
  1012. struct btrfs_fs_info *fs_info,
  1013. u64 objectid)
  1014. {
  1015. root->node = NULL;
  1016. root->commit_root = NULL;
  1017. root->sectorsize = sectorsize;
  1018. root->nodesize = nodesize;
  1019. root->leafsize = leafsize;
  1020. root->stripesize = stripesize;
  1021. root->ref_cows = 0;
  1022. root->track_dirty = 0;
  1023. root->in_radix = 0;
  1024. root->orphan_item_inserted = 0;
  1025. root->orphan_cleanup_state = 0;
  1026. root->objectid = objectid;
  1027. root->last_trans = 0;
  1028. root->highest_objectid = 0;
  1029. root->nr_delalloc_inodes = 0;
  1030. root->nr_ordered_extents = 0;
  1031. root->name = NULL;
  1032. root->inode_tree = RB_ROOT;
  1033. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1034. root->block_rsv = NULL;
  1035. root->orphan_block_rsv = NULL;
  1036. INIT_LIST_HEAD(&root->dirty_list);
  1037. INIT_LIST_HEAD(&root->root_list);
  1038. INIT_LIST_HEAD(&root->delalloc_inodes);
  1039. INIT_LIST_HEAD(&root->delalloc_root);
  1040. INIT_LIST_HEAD(&root->ordered_extents);
  1041. INIT_LIST_HEAD(&root->ordered_root);
  1042. INIT_LIST_HEAD(&root->logged_list[0]);
  1043. INIT_LIST_HEAD(&root->logged_list[1]);
  1044. spin_lock_init(&root->orphan_lock);
  1045. spin_lock_init(&root->inode_lock);
  1046. spin_lock_init(&root->delalloc_lock);
  1047. spin_lock_init(&root->ordered_extent_lock);
  1048. spin_lock_init(&root->accounting_lock);
  1049. spin_lock_init(&root->log_extents_lock[0]);
  1050. spin_lock_init(&root->log_extents_lock[1]);
  1051. mutex_init(&root->objectid_mutex);
  1052. mutex_init(&root->log_mutex);
  1053. init_waitqueue_head(&root->log_writer_wait);
  1054. init_waitqueue_head(&root->log_commit_wait[0]);
  1055. init_waitqueue_head(&root->log_commit_wait[1]);
  1056. atomic_set(&root->log_commit[0], 0);
  1057. atomic_set(&root->log_commit[1], 0);
  1058. atomic_set(&root->log_writers, 0);
  1059. atomic_set(&root->log_batch, 0);
  1060. atomic_set(&root->orphan_inodes, 0);
  1061. atomic_set(&root->refs, 1);
  1062. root->log_transid = 0;
  1063. root->last_log_commit = 0;
  1064. if (fs_info)
  1065. extent_io_tree_init(&root->dirty_log_pages,
  1066. fs_info->btree_inode->i_mapping);
  1067. memset(&root->root_key, 0, sizeof(root->root_key));
  1068. memset(&root->root_item, 0, sizeof(root->root_item));
  1069. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1070. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1071. if (fs_info)
  1072. root->defrag_trans_start = fs_info->generation;
  1073. else
  1074. root->defrag_trans_start = 0;
  1075. init_completion(&root->kobj_unregister);
  1076. root->defrag_running = 0;
  1077. root->root_key.objectid = objectid;
  1078. root->anon_dev = 0;
  1079. spin_lock_init(&root->root_item_lock);
  1080. }
  1081. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1082. {
  1083. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1084. if (root)
  1085. root->fs_info = fs_info;
  1086. return root;
  1087. }
  1088. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1089. /* Should only be used by the testing infrastructure */
  1090. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1091. {
  1092. struct btrfs_root *root;
  1093. root = btrfs_alloc_root(NULL);
  1094. if (!root)
  1095. return ERR_PTR(-ENOMEM);
  1096. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1097. root->dummy_root = 1;
  1098. return root;
  1099. }
  1100. #endif
  1101. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1102. struct btrfs_fs_info *fs_info,
  1103. u64 objectid)
  1104. {
  1105. struct extent_buffer *leaf;
  1106. struct btrfs_root *tree_root = fs_info->tree_root;
  1107. struct btrfs_root *root;
  1108. struct btrfs_key key;
  1109. int ret = 0;
  1110. uuid_le uuid;
  1111. root = btrfs_alloc_root(fs_info);
  1112. if (!root)
  1113. return ERR_PTR(-ENOMEM);
  1114. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1115. tree_root->sectorsize, tree_root->stripesize,
  1116. root, fs_info, objectid);
  1117. root->root_key.objectid = objectid;
  1118. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1119. root->root_key.offset = 0;
  1120. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1121. 0, objectid, NULL, 0, 0, 0);
  1122. if (IS_ERR(leaf)) {
  1123. ret = PTR_ERR(leaf);
  1124. leaf = NULL;
  1125. goto fail;
  1126. }
  1127. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1128. btrfs_set_header_bytenr(leaf, leaf->start);
  1129. btrfs_set_header_generation(leaf, trans->transid);
  1130. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1131. btrfs_set_header_owner(leaf, objectid);
  1132. root->node = leaf;
  1133. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1134. BTRFS_FSID_SIZE);
  1135. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1136. btrfs_header_chunk_tree_uuid(leaf),
  1137. BTRFS_UUID_SIZE);
  1138. btrfs_mark_buffer_dirty(leaf);
  1139. root->commit_root = btrfs_root_node(root);
  1140. root->track_dirty = 1;
  1141. root->root_item.flags = 0;
  1142. root->root_item.byte_limit = 0;
  1143. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1144. btrfs_set_root_generation(&root->root_item, trans->transid);
  1145. btrfs_set_root_level(&root->root_item, 0);
  1146. btrfs_set_root_refs(&root->root_item, 1);
  1147. btrfs_set_root_used(&root->root_item, leaf->len);
  1148. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1149. btrfs_set_root_dirid(&root->root_item, 0);
  1150. uuid_le_gen(&uuid);
  1151. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1152. root->root_item.drop_level = 0;
  1153. key.objectid = objectid;
  1154. key.type = BTRFS_ROOT_ITEM_KEY;
  1155. key.offset = 0;
  1156. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1157. if (ret)
  1158. goto fail;
  1159. btrfs_tree_unlock(leaf);
  1160. return root;
  1161. fail:
  1162. if (leaf) {
  1163. btrfs_tree_unlock(leaf);
  1164. free_extent_buffer(leaf);
  1165. }
  1166. kfree(root);
  1167. return ERR_PTR(ret);
  1168. }
  1169. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1170. struct btrfs_fs_info *fs_info)
  1171. {
  1172. struct btrfs_root *root;
  1173. struct btrfs_root *tree_root = fs_info->tree_root;
  1174. struct extent_buffer *leaf;
  1175. root = btrfs_alloc_root(fs_info);
  1176. if (!root)
  1177. return ERR_PTR(-ENOMEM);
  1178. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1179. tree_root->sectorsize, tree_root->stripesize,
  1180. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1181. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1182. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1183. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1184. /*
  1185. * log trees do not get reference counted because they go away
  1186. * before a real commit is actually done. They do store pointers
  1187. * to file data extents, and those reference counts still get
  1188. * updated (along with back refs to the log tree).
  1189. */
  1190. root->ref_cows = 0;
  1191. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1192. BTRFS_TREE_LOG_OBJECTID, NULL,
  1193. 0, 0, 0);
  1194. if (IS_ERR(leaf)) {
  1195. kfree(root);
  1196. return ERR_CAST(leaf);
  1197. }
  1198. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1199. btrfs_set_header_bytenr(leaf, leaf->start);
  1200. btrfs_set_header_generation(leaf, trans->transid);
  1201. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1202. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1203. root->node = leaf;
  1204. write_extent_buffer(root->node, root->fs_info->fsid,
  1205. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1206. btrfs_mark_buffer_dirty(root->node);
  1207. btrfs_tree_unlock(root->node);
  1208. return root;
  1209. }
  1210. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1211. struct btrfs_fs_info *fs_info)
  1212. {
  1213. struct btrfs_root *log_root;
  1214. log_root = alloc_log_tree(trans, fs_info);
  1215. if (IS_ERR(log_root))
  1216. return PTR_ERR(log_root);
  1217. WARN_ON(fs_info->log_root_tree);
  1218. fs_info->log_root_tree = log_root;
  1219. return 0;
  1220. }
  1221. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_root *root)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, root->fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. btrfs_set_stack_inode_generation(inode_item, 1);
  1233. btrfs_set_stack_inode_size(inode_item, 3);
  1234. btrfs_set_stack_inode_nlink(inode_item, 1);
  1235. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1236. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1237. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1238. WARN_ON(root->log_root);
  1239. root->log_root = log_root;
  1240. root->log_transid = 0;
  1241. root->last_log_commit = 0;
  1242. return 0;
  1243. }
  1244. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1245. struct btrfs_key *key)
  1246. {
  1247. struct btrfs_root *root;
  1248. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1249. struct btrfs_path *path;
  1250. u64 generation;
  1251. u32 blocksize;
  1252. int ret;
  1253. path = btrfs_alloc_path();
  1254. if (!path)
  1255. return ERR_PTR(-ENOMEM);
  1256. root = btrfs_alloc_root(fs_info);
  1257. if (!root) {
  1258. ret = -ENOMEM;
  1259. goto alloc_fail;
  1260. }
  1261. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1262. tree_root->sectorsize, tree_root->stripesize,
  1263. root, fs_info, key->objectid);
  1264. ret = btrfs_find_root(tree_root, key, path,
  1265. &root->root_item, &root->root_key);
  1266. if (ret) {
  1267. if (ret > 0)
  1268. ret = -ENOENT;
  1269. goto find_fail;
  1270. }
  1271. generation = btrfs_root_generation(&root->root_item);
  1272. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1273. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1274. blocksize, generation);
  1275. if (!root->node) {
  1276. ret = -ENOMEM;
  1277. goto find_fail;
  1278. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1279. ret = -EIO;
  1280. goto read_fail;
  1281. }
  1282. root->commit_root = btrfs_root_node(root);
  1283. out:
  1284. btrfs_free_path(path);
  1285. return root;
  1286. read_fail:
  1287. free_extent_buffer(root->node);
  1288. find_fail:
  1289. kfree(root);
  1290. alloc_fail:
  1291. root = ERR_PTR(ret);
  1292. goto out;
  1293. }
  1294. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1295. struct btrfs_key *location)
  1296. {
  1297. struct btrfs_root *root;
  1298. root = btrfs_read_tree_root(tree_root, location);
  1299. if (IS_ERR(root))
  1300. return root;
  1301. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1302. root->ref_cows = 1;
  1303. btrfs_check_and_init_root_item(&root->root_item);
  1304. }
  1305. return root;
  1306. }
  1307. int btrfs_init_fs_root(struct btrfs_root *root)
  1308. {
  1309. int ret;
  1310. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1311. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1312. GFP_NOFS);
  1313. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1314. ret = -ENOMEM;
  1315. goto fail;
  1316. }
  1317. btrfs_init_free_ino_ctl(root);
  1318. mutex_init(&root->fs_commit_mutex);
  1319. spin_lock_init(&root->cache_lock);
  1320. init_waitqueue_head(&root->cache_wait);
  1321. ret = get_anon_bdev(&root->anon_dev);
  1322. if (ret)
  1323. goto fail;
  1324. return 0;
  1325. fail:
  1326. kfree(root->free_ino_ctl);
  1327. kfree(root->free_ino_pinned);
  1328. return ret;
  1329. }
  1330. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1331. u64 root_id)
  1332. {
  1333. struct btrfs_root *root;
  1334. spin_lock(&fs_info->fs_roots_radix_lock);
  1335. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1336. (unsigned long)root_id);
  1337. spin_unlock(&fs_info->fs_roots_radix_lock);
  1338. return root;
  1339. }
  1340. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1341. struct btrfs_root *root)
  1342. {
  1343. int ret;
  1344. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1345. if (ret)
  1346. return ret;
  1347. spin_lock(&fs_info->fs_roots_radix_lock);
  1348. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1349. (unsigned long)root->root_key.objectid,
  1350. root);
  1351. if (ret == 0)
  1352. root->in_radix = 1;
  1353. spin_unlock(&fs_info->fs_roots_radix_lock);
  1354. radix_tree_preload_end();
  1355. return ret;
  1356. }
  1357. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1358. struct btrfs_key *location,
  1359. bool check_ref)
  1360. {
  1361. struct btrfs_root *root;
  1362. int ret;
  1363. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1364. return fs_info->tree_root;
  1365. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1366. return fs_info->extent_root;
  1367. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1368. return fs_info->chunk_root;
  1369. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1370. return fs_info->dev_root;
  1371. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1372. return fs_info->csum_root;
  1373. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1374. return fs_info->quota_root ? fs_info->quota_root :
  1375. ERR_PTR(-ENOENT);
  1376. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1377. return fs_info->uuid_root ? fs_info->uuid_root :
  1378. ERR_PTR(-ENOENT);
  1379. again:
  1380. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1381. if (root) {
  1382. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1383. return ERR_PTR(-ENOENT);
  1384. return root;
  1385. }
  1386. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1387. if (IS_ERR(root))
  1388. return root;
  1389. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1390. ret = -ENOENT;
  1391. goto fail;
  1392. }
  1393. ret = btrfs_init_fs_root(root);
  1394. if (ret)
  1395. goto fail;
  1396. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1397. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1398. if (ret < 0)
  1399. goto fail;
  1400. if (ret == 0)
  1401. root->orphan_item_inserted = 1;
  1402. ret = btrfs_insert_fs_root(fs_info, root);
  1403. if (ret) {
  1404. if (ret == -EEXIST) {
  1405. free_fs_root(root);
  1406. goto again;
  1407. }
  1408. goto fail;
  1409. }
  1410. return root;
  1411. fail:
  1412. free_fs_root(root);
  1413. return ERR_PTR(ret);
  1414. }
  1415. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1416. {
  1417. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1418. int ret = 0;
  1419. struct btrfs_device *device;
  1420. struct backing_dev_info *bdi;
  1421. rcu_read_lock();
  1422. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1423. if (!device->bdev)
  1424. continue;
  1425. bdi = blk_get_backing_dev_info(device->bdev);
  1426. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1427. ret = 1;
  1428. break;
  1429. }
  1430. }
  1431. rcu_read_unlock();
  1432. return ret;
  1433. }
  1434. /*
  1435. * If this fails, caller must call bdi_destroy() to get rid of the
  1436. * bdi again.
  1437. */
  1438. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1439. {
  1440. int err;
  1441. bdi->capabilities = BDI_CAP_MAP_COPY;
  1442. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1443. if (err)
  1444. return err;
  1445. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1446. bdi->congested_fn = btrfs_congested_fn;
  1447. bdi->congested_data = info;
  1448. return 0;
  1449. }
  1450. /*
  1451. * called by the kthread helper functions to finally call the bio end_io
  1452. * functions. This is where read checksum verification actually happens
  1453. */
  1454. static void end_workqueue_fn(struct btrfs_work *work)
  1455. {
  1456. struct bio *bio;
  1457. struct end_io_wq *end_io_wq;
  1458. int error;
  1459. end_io_wq = container_of(work, struct end_io_wq, work);
  1460. bio = end_io_wq->bio;
  1461. error = end_io_wq->error;
  1462. bio->bi_private = end_io_wq->private;
  1463. bio->bi_end_io = end_io_wq->end_io;
  1464. kfree(end_io_wq);
  1465. bio_endio(bio, error);
  1466. }
  1467. static int cleaner_kthread(void *arg)
  1468. {
  1469. struct btrfs_root *root = arg;
  1470. int again;
  1471. do {
  1472. again = 0;
  1473. /* Make the cleaner go to sleep early. */
  1474. if (btrfs_need_cleaner_sleep(root))
  1475. goto sleep;
  1476. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1477. goto sleep;
  1478. /*
  1479. * Avoid the problem that we change the status of the fs
  1480. * during the above check and trylock.
  1481. */
  1482. if (btrfs_need_cleaner_sleep(root)) {
  1483. mutex_unlock(&root->fs_info->cleaner_mutex);
  1484. goto sleep;
  1485. }
  1486. btrfs_run_delayed_iputs(root);
  1487. again = btrfs_clean_one_deleted_snapshot(root);
  1488. mutex_unlock(&root->fs_info->cleaner_mutex);
  1489. /*
  1490. * The defragger has dealt with the R/O remount and umount,
  1491. * needn't do anything special here.
  1492. */
  1493. btrfs_run_defrag_inodes(root->fs_info);
  1494. sleep:
  1495. if (!try_to_freeze() && !again) {
  1496. set_current_state(TASK_INTERRUPTIBLE);
  1497. if (!kthread_should_stop())
  1498. schedule();
  1499. __set_current_state(TASK_RUNNING);
  1500. }
  1501. } while (!kthread_should_stop());
  1502. return 0;
  1503. }
  1504. static int transaction_kthread(void *arg)
  1505. {
  1506. struct btrfs_root *root = arg;
  1507. struct btrfs_trans_handle *trans;
  1508. struct btrfs_transaction *cur;
  1509. u64 transid;
  1510. unsigned long now;
  1511. unsigned long delay;
  1512. bool cannot_commit;
  1513. do {
  1514. cannot_commit = false;
  1515. delay = HZ * root->fs_info->commit_interval;
  1516. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1517. spin_lock(&root->fs_info->trans_lock);
  1518. cur = root->fs_info->running_transaction;
  1519. if (!cur) {
  1520. spin_unlock(&root->fs_info->trans_lock);
  1521. goto sleep;
  1522. }
  1523. now = get_seconds();
  1524. if (cur->state < TRANS_STATE_BLOCKED &&
  1525. (now < cur->start_time ||
  1526. now - cur->start_time < root->fs_info->commit_interval)) {
  1527. spin_unlock(&root->fs_info->trans_lock);
  1528. delay = HZ * 5;
  1529. goto sleep;
  1530. }
  1531. transid = cur->transid;
  1532. spin_unlock(&root->fs_info->trans_lock);
  1533. /* If the file system is aborted, this will always fail. */
  1534. trans = btrfs_attach_transaction(root);
  1535. if (IS_ERR(trans)) {
  1536. if (PTR_ERR(trans) != -ENOENT)
  1537. cannot_commit = true;
  1538. goto sleep;
  1539. }
  1540. if (transid == trans->transid) {
  1541. btrfs_commit_transaction(trans, root);
  1542. } else {
  1543. btrfs_end_transaction(trans, root);
  1544. }
  1545. sleep:
  1546. wake_up_process(root->fs_info->cleaner_kthread);
  1547. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1548. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1549. &root->fs_info->fs_state)))
  1550. btrfs_cleanup_transaction(root);
  1551. if (!try_to_freeze()) {
  1552. set_current_state(TASK_INTERRUPTIBLE);
  1553. if (!kthread_should_stop() &&
  1554. (!btrfs_transaction_blocked(root->fs_info) ||
  1555. cannot_commit))
  1556. schedule_timeout(delay);
  1557. __set_current_state(TASK_RUNNING);
  1558. }
  1559. } while (!kthread_should_stop());
  1560. return 0;
  1561. }
  1562. /*
  1563. * this will find the highest generation in the array of
  1564. * root backups. The index of the highest array is returned,
  1565. * or -1 if we can't find anything.
  1566. *
  1567. * We check to make sure the array is valid by comparing the
  1568. * generation of the latest root in the array with the generation
  1569. * in the super block. If they don't match we pitch it.
  1570. */
  1571. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1572. {
  1573. u64 cur;
  1574. int newest_index = -1;
  1575. struct btrfs_root_backup *root_backup;
  1576. int i;
  1577. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1578. root_backup = info->super_copy->super_roots + i;
  1579. cur = btrfs_backup_tree_root_gen(root_backup);
  1580. if (cur == newest_gen)
  1581. newest_index = i;
  1582. }
  1583. /* check to see if we actually wrapped around */
  1584. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1585. root_backup = info->super_copy->super_roots;
  1586. cur = btrfs_backup_tree_root_gen(root_backup);
  1587. if (cur == newest_gen)
  1588. newest_index = 0;
  1589. }
  1590. return newest_index;
  1591. }
  1592. /*
  1593. * find the oldest backup so we know where to store new entries
  1594. * in the backup array. This will set the backup_root_index
  1595. * field in the fs_info struct
  1596. */
  1597. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1598. u64 newest_gen)
  1599. {
  1600. int newest_index = -1;
  1601. newest_index = find_newest_super_backup(info, newest_gen);
  1602. /* if there was garbage in there, just move along */
  1603. if (newest_index == -1) {
  1604. info->backup_root_index = 0;
  1605. } else {
  1606. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1607. }
  1608. }
  1609. /*
  1610. * copy all the root pointers into the super backup array.
  1611. * this will bump the backup pointer by one when it is
  1612. * done
  1613. */
  1614. static void backup_super_roots(struct btrfs_fs_info *info)
  1615. {
  1616. int next_backup;
  1617. struct btrfs_root_backup *root_backup;
  1618. int last_backup;
  1619. next_backup = info->backup_root_index;
  1620. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1621. BTRFS_NUM_BACKUP_ROOTS;
  1622. /*
  1623. * just overwrite the last backup if we're at the same generation
  1624. * this happens only at umount
  1625. */
  1626. root_backup = info->super_for_commit->super_roots + last_backup;
  1627. if (btrfs_backup_tree_root_gen(root_backup) ==
  1628. btrfs_header_generation(info->tree_root->node))
  1629. next_backup = last_backup;
  1630. root_backup = info->super_for_commit->super_roots + next_backup;
  1631. /*
  1632. * make sure all of our padding and empty slots get zero filled
  1633. * regardless of which ones we use today
  1634. */
  1635. memset(root_backup, 0, sizeof(*root_backup));
  1636. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1637. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1638. btrfs_set_backup_tree_root_gen(root_backup,
  1639. btrfs_header_generation(info->tree_root->node));
  1640. btrfs_set_backup_tree_root_level(root_backup,
  1641. btrfs_header_level(info->tree_root->node));
  1642. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1643. btrfs_set_backup_chunk_root_gen(root_backup,
  1644. btrfs_header_generation(info->chunk_root->node));
  1645. btrfs_set_backup_chunk_root_level(root_backup,
  1646. btrfs_header_level(info->chunk_root->node));
  1647. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1648. btrfs_set_backup_extent_root_gen(root_backup,
  1649. btrfs_header_generation(info->extent_root->node));
  1650. btrfs_set_backup_extent_root_level(root_backup,
  1651. btrfs_header_level(info->extent_root->node));
  1652. /*
  1653. * we might commit during log recovery, which happens before we set
  1654. * the fs_root. Make sure it is valid before we fill it in.
  1655. */
  1656. if (info->fs_root && info->fs_root->node) {
  1657. btrfs_set_backup_fs_root(root_backup,
  1658. info->fs_root->node->start);
  1659. btrfs_set_backup_fs_root_gen(root_backup,
  1660. btrfs_header_generation(info->fs_root->node));
  1661. btrfs_set_backup_fs_root_level(root_backup,
  1662. btrfs_header_level(info->fs_root->node));
  1663. }
  1664. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1665. btrfs_set_backup_dev_root_gen(root_backup,
  1666. btrfs_header_generation(info->dev_root->node));
  1667. btrfs_set_backup_dev_root_level(root_backup,
  1668. btrfs_header_level(info->dev_root->node));
  1669. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1670. btrfs_set_backup_csum_root_gen(root_backup,
  1671. btrfs_header_generation(info->csum_root->node));
  1672. btrfs_set_backup_csum_root_level(root_backup,
  1673. btrfs_header_level(info->csum_root->node));
  1674. btrfs_set_backup_total_bytes(root_backup,
  1675. btrfs_super_total_bytes(info->super_copy));
  1676. btrfs_set_backup_bytes_used(root_backup,
  1677. btrfs_super_bytes_used(info->super_copy));
  1678. btrfs_set_backup_num_devices(root_backup,
  1679. btrfs_super_num_devices(info->super_copy));
  1680. /*
  1681. * if we don't copy this out to the super_copy, it won't get remembered
  1682. * for the next commit
  1683. */
  1684. memcpy(&info->super_copy->super_roots,
  1685. &info->super_for_commit->super_roots,
  1686. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1687. }
  1688. /*
  1689. * this copies info out of the root backup array and back into
  1690. * the in-memory super block. It is meant to help iterate through
  1691. * the array, so you send it the number of backups you've already
  1692. * tried and the last backup index you used.
  1693. *
  1694. * this returns -1 when it has tried all the backups
  1695. */
  1696. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1697. struct btrfs_super_block *super,
  1698. int *num_backups_tried, int *backup_index)
  1699. {
  1700. struct btrfs_root_backup *root_backup;
  1701. int newest = *backup_index;
  1702. if (*num_backups_tried == 0) {
  1703. u64 gen = btrfs_super_generation(super);
  1704. newest = find_newest_super_backup(info, gen);
  1705. if (newest == -1)
  1706. return -1;
  1707. *backup_index = newest;
  1708. *num_backups_tried = 1;
  1709. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1710. /* we've tried all the backups, all done */
  1711. return -1;
  1712. } else {
  1713. /* jump to the next oldest backup */
  1714. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1715. BTRFS_NUM_BACKUP_ROOTS;
  1716. *backup_index = newest;
  1717. *num_backups_tried += 1;
  1718. }
  1719. root_backup = super->super_roots + newest;
  1720. btrfs_set_super_generation(super,
  1721. btrfs_backup_tree_root_gen(root_backup));
  1722. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1723. btrfs_set_super_root_level(super,
  1724. btrfs_backup_tree_root_level(root_backup));
  1725. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1726. /*
  1727. * fixme: the total bytes and num_devices need to match or we should
  1728. * need a fsck
  1729. */
  1730. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1731. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1732. return 0;
  1733. }
  1734. /* helper to cleanup workers */
  1735. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1736. {
  1737. btrfs_stop_workers(&fs_info->generic_worker);
  1738. btrfs_stop_workers(&fs_info->fixup_workers);
  1739. btrfs_stop_workers(&fs_info->delalloc_workers);
  1740. btrfs_stop_workers(&fs_info->workers);
  1741. btrfs_stop_workers(&fs_info->endio_workers);
  1742. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1743. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1744. btrfs_stop_workers(&fs_info->rmw_workers);
  1745. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1746. btrfs_stop_workers(&fs_info->endio_write_workers);
  1747. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1748. btrfs_stop_workers(&fs_info->submit_workers);
  1749. btrfs_stop_workers(&fs_info->delayed_workers);
  1750. btrfs_stop_workers(&fs_info->caching_workers);
  1751. btrfs_stop_workers(&fs_info->readahead_workers);
  1752. btrfs_stop_workers(&fs_info->flush_workers);
  1753. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1754. }
  1755. static void free_root_extent_buffers(struct btrfs_root *root)
  1756. {
  1757. if (root) {
  1758. free_extent_buffer(root->node);
  1759. free_extent_buffer(root->commit_root);
  1760. root->node = NULL;
  1761. root->commit_root = NULL;
  1762. }
  1763. }
  1764. /* helper to cleanup tree roots */
  1765. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1766. {
  1767. free_root_extent_buffers(info->tree_root);
  1768. free_root_extent_buffers(info->dev_root);
  1769. free_root_extent_buffers(info->extent_root);
  1770. free_root_extent_buffers(info->csum_root);
  1771. free_root_extent_buffers(info->quota_root);
  1772. free_root_extent_buffers(info->uuid_root);
  1773. if (chunk_root)
  1774. free_root_extent_buffers(info->chunk_root);
  1775. }
  1776. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1777. {
  1778. int ret;
  1779. struct btrfs_root *gang[8];
  1780. int i;
  1781. while (!list_empty(&fs_info->dead_roots)) {
  1782. gang[0] = list_entry(fs_info->dead_roots.next,
  1783. struct btrfs_root, root_list);
  1784. list_del(&gang[0]->root_list);
  1785. if (gang[0]->in_radix) {
  1786. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1787. } else {
  1788. free_extent_buffer(gang[0]->node);
  1789. free_extent_buffer(gang[0]->commit_root);
  1790. btrfs_put_fs_root(gang[0]);
  1791. }
  1792. }
  1793. while (1) {
  1794. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1795. (void **)gang, 0,
  1796. ARRAY_SIZE(gang));
  1797. if (!ret)
  1798. break;
  1799. for (i = 0; i < ret; i++)
  1800. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1801. }
  1802. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1803. btrfs_free_log_root_tree(NULL, fs_info);
  1804. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1805. fs_info->pinned_extents);
  1806. }
  1807. }
  1808. int open_ctree(struct super_block *sb,
  1809. struct btrfs_fs_devices *fs_devices,
  1810. char *options)
  1811. {
  1812. u32 sectorsize;
  1813. u32 nodesize;
  1814. u32 leafsize;
  1815. u32 blocksize;
  1816. u32 stripesize;
  1817. u64 generation;
  1818. u64 features;
  1819. struct btrfs_key location;
  1820. struct buffer_head *bh;
  1821. struct btrfs_super_block *disk_super;
  1822. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1823. struct btrfs_root *tree_root;
  1824. struct btrfs_root *extent_root;
  1825. struct btrfs_root *csum_root;
  1826. struct btrfs_root *chunk_root;
  1827. struct btrfs_root *dev_root;
  1828. struct btrfs_root *quota_root;
  1829. struct btrfs_root *uuid_root;
  1830. struct btrfs_root *log_tree_root;
  1831. int ret;
  1832. int err = -EINVAL;
  1833. int num_backups_tried = 0;
  1834. int backup_index = 0;
  1835. bool create_uuid_tree;
  1836. bool check_uuid_tree;
  1837. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1838. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1839. if (!tree_root || !chunk_root) {
  1840. err = -ENOMEM;
  1841. goto fail;
  1842. }
  1843. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1844. if (ret) {
  1845. err = ret;
  1846. goto fail;
  1847. }
  1848. ret = setup_bdi(fs_info, &fs_info->bdi);
  1849. if (ret) {
  1850. err = ret;
  1851. goto fail_srcu;
  1852. }
  1853. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1854. if (ret) {
  1855. err = ret;
  1856. goto fail_bdi;
  1857. }
  1858. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1859. (1 + ilog2(nr_cpu_ids));
  1860. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1861. if (ret) {
  1862. err = ret;
  1863. goto fail_dirty_metadata_bytes;
  1864. }
  1865. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1866. if (ret) {
  1867. err = ret;
  1868. goto fail_delalloc_bytes;
  1869. }
  1870. fs_info->btree_inode = new_inode(sb);
  1871. if (!fs_info->btree_inode) {
  1872. err = -ENOMEM;
  1873. goto fail_bio_counter;
  1874. }
  1875. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1876. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1877. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1878. INIT_LIST_HEAD(&fs_info->trans_list);
  1879. INIT_LIST_HEAD(&fs_info->dead_roots);
  1880. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1881. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1882. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1883. spin_lock_init(&fs_info->delalloc_root_lock);
  1884. spin_lock_init(&fs_info->trans_lock);
  1885. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1886. spin_lock_init(&fs_info->delayed_iput_lock);
  1887. spin_lock_init(&fs_info->defrag_inodes_lock);
  1888. spin_lock_init(&fs_info->free_chunk_lock);
  1889. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1890. spin_lock_init(&fs_info->super_lock);
  1891. spin_lock_init(&fs_info->buffer_lock);
  1892. rwlock_init(&fs_info->tree_mod_log_lock);
  1893. mutex_init(&fs_info->reloc_mutex);
  1894. seqlock_init(&fs_info->profiles_lock);
  1895. init_completion(&fs_info->kobj_unregister);
  1896. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1897. INIT_LIST_HEAD(&fs_info->space_info);
  1898. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1899. btrfs_mapping_init(&fs_info->mapping_tree);
  1900. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1901. BTRFS_BLOCK_RSV_GLOBAL);
  1902. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1903. BTRFS_BLOCK_RSV_DELALLOC);
  1904. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1905. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1906. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1907. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1908. BTRFS_BLOCK_RSV_DELOPS);
  1909. atomic_set(&fs_info->nr_async_submits, 0);
  1910. atomic_set(&fs_info->async_delalloc_pages, 0);
  1911. atomic_set(&fs_info->async_submit_draining, 0);
  1912. atomic_set(&fs_info->nr_async_bios, 0);
  1913. atomic_set(&fs_info->defrag_running, 0);
  1914. atomic64_set(&fs_info->tree_mod_seq, 0);
  1915. fs_info->sb = sb;
  1916. fs_info->max_inline = 8192 * 1024;
  1917. fs_info->metadata_ratio = 0;
  1918. fs_info->defrag_inodes = RB_ROOT;
  1919. fs_info->free_chunk_space = 0;
  1920. fs_info->tree_mod_log = RB_ROOT;
  1921. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1922. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1923. /* readahead state */
  1924. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1925. spin_lock_init(&fs_info->reada_lock);
  1926. fs_info->thread_pool_size = min_t(unsigned long,
  1927. num_online_cpus() + 2, 8);
  1928. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1929. spin_lock_init(&fs_info->ordered_root_lock);
  1930. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1931. GFP_NOFS);
  1932. if (!fs_info->delayed_root) {
  1933. err = -ENOMEM;
  1934. goto fail_iput;
  1935. }
  1936. btrfs_init_delayed_root(fs_info->delayed_root);
  1937. mutex_init(&fs_info->scrub_lock);
  1938. atomic_set(&fs_info->scrubs_running, 0);
  1939. atomic_set(&fs_info->scrub_pause_req, 0);
  1940. atomic_set(&fs_info->scrubs_paused, 0);
  1941. atomic_set(&fs_info->scrub_cancel_req, 0);
  1942. init_waitqueue_head(&fs_info->replace_wait);
  1943. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1944. fs_info->scrub_workers_refcnt = 0;
  1945. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1946. fs_info->check_integrity_print_mask = 0;
  1947. #endif
  1948. spin_lock_init(&fs_info->balance_lock);
  1949. mutex_init(&fs_info->balance_mutex);
  1950. atomic_set(&fs_info->balance_running, 0);
  1951. atomic_set(&fs_info->balance_pause_req, 0);
  1952. atomic_set(&fs_info->balance_cancel_req, 0);
  1953. fs_info->balance_ctl = NULL;
  1954. init_waitqueue_head(&fs_info->balance_wait_q);
  1955. sb->s_blocksize = 4096;
  1956. sb->s_blocksize_bits = blksize_bits(4096);
  1957. sb->s_bdi = &fs_info->bdi;
  1958. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1959. set_nlink(fs_info->btree_inode, 1);
  1960. /*
  1961. * we set the i_size on the btree inode to the max possible int.
  1962. * the real end of the address space is determined by all of
  1963. * the devices in the system
  1964. */
  1965. fs_info->btree_inode->i_size = OFFSET_MAX;
  1966. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1967. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1968. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1969. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1970. fs_info->btree_inode->i_mapping);
  1971. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1972. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1973. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1974. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1975. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1976. sizeof(struct btrfs_key));
  1977. set_bit(BTRFS_INODE_DUMMY,
  1978. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1979. btrfs_insert_inode_hash(fs_info->btree_inode);
  1980. spin_lock_init(&fs_info->block_group_cache_lock);
  1981. fs_info->block_group_cache_tree = RB_ROOT;
  1982. fs_info->first_logical_byte = (u64)-1;
  1983. extent_io_tree_init(&fs_info->freed_extents[0],
  1984. fs_info->btree_inode->i_mapping);
  1985. extent_io_tree_init(&fs_info->freed_extents[1],
  1986. fs_info->btree_inode->i_mapping);
  1987. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1988. fs_info->do_barriers = 1;
  1989. mutex_init(&fs_info->ordered_operations_mutex);
  1990. mutex_init(&fs_info->ordered_extent_flush_mutex);
  1991. mutex_init(&fs_info->tree_log_mutex);
  1992. mutex_init(&fs_info->chunk_mutex);
  1993. mutex_init(&fs_info->transaction_kthread_mutex);
  1994. mutex_init(&fs_info->cleaner_mutex);
  1995. mutex_init(&fs_info->volume_mutex);
  1996. init_rwsem(&fs_info->extent_commit_sem);
  1997. init_rwsem(&fs_info->cleanup_work_sem);
  1998. init_rwsem(&fs_info->subvol_sem);
  1999. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2000. fs_info->dev_replace.lock_owner = 0;
  2001. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2002. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2003. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2004. mutex_init(&fs_info->dev_replace.lock);
  2005. spin_lock_init(&fs_info->qgroup_lock);
  2006. mutex_init(&fs_info->qgroup_ioctl_lock);
  2007. fs_info->qgroup_tree = RB_ROOT;
  2008. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2009. fs_info->qgroup_seq = 1;
  2010. fs_info->quota_enabled = 0;
  2011. fs_info->pending_quota_state = 0;
  2012. fs_info->qgroup_ulist = NULL;
  2013. mutex_init(&fs_info->qgroup_rescan_lock);
  2014. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2015. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2016. init_waitqueue_head(&fs_info->transaction_throttle);
  2017. init_waitqueue_head(&fs_info->transaction_wait);
  2018. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2019. init_waitqueue_head(&fs_info->async_submit_wait);
  2020. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2021. if (ret) {
  2022. err = ret;
  2023. goto fail_alloc;
  2024. }
  2025. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2026. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2027. invalidate_bdev(fs_devices->latest_bdev);
  2028. /*
  2029. * Read super block and check the signature bytes only
  2030. */
  2031. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2032. if (!bh) {
  2033. err = -EINVAL;
  2034. goto fail_alloc;
  2035. }
  2036. /*
  2037. * We want to check superblock checksum, the type is stored inside.
  2038. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2039. */
  2040. if (btrfs_check_super_csum(bh->b_data)) {
  2041. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2042. err = -EINVAL;
  2043. goto fail_alloc;
  2044. }
  2045. /*
  2046. * super_copy is zeroed at allocation time and we never touch the
  2047. * following bytes up to INFO_SIZE, the checksum is calculated from
  2048. * the whole block of INFO_SIZE
  2049. */
  2050. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2051. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2052. sizeof(*fs_info->super_for_commit));
  2053. brelse(bh);
  2054. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2055. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2056. if (ret) {
  2057. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2058. err = -EINVAL;
  2059. goto fail_alloc;
  2060. }
  2061. disk_super = fs_info->super_copy;
  2062. if (!btrfs_super_root(disk_super))
  2063. goto fail_alloc;
  2064. /* check FS state, whether FS is broken. */
  2065. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2066. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2067. /*
  2068. * run through our array of backup supers and setup
  2069. * our ring pointer to the oldest one
  2070. */
  2071. generation = btrfs_super_generation(disk_super);
  2072. find_oldest_super_backup(fs_info, generation);
  2073. /*
  2074. * In the long term, we'll store the compression type in the super
  2075. * block, and it'll be used for per file compression control.
  2076. */
  2077. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2078. ret = btrfs_parse_options(tree_root, options);
  2079. if (ret) {
  2080. err = ret;
  2081. goto fail_alloc;
  2082. }
  2083. features = btrfs_super_incompat_flags(disk_super) &
  2084. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2085. if (features) {
  2086. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2087. "unsupported optional features (%Lx).\n",
  2088. features);
  2089. err = -EINVAL;
  2090. goto fail_alloc;
  2091. }
  2092. if (btrfs_super_leafsize(disk_super) !=
  2093. btrfs_super_nodesize(disk_super)) {
  2094. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2095. "blocksizes don't match. node %d leaf %d\n",
  2096. btrfs_super_nodesize(disk_super),
  2097. btrfs_super_leafsize(disk_super));
  2098. err = -EINVAL;
  2099. goto fail_alloc;
  2100. }
  2101. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2102. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2103. "blocksize (%d) was too large\n",
  2104. btrfs_super_leafsize(disk_super));
  2105. err = -EINVAL;
  2106. goto fail_alloc;
  2107. }
  2108. features = btrfs_super_incompat_flags(disk_super);
  2109. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2110. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2111. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2112. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2113. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2114. /*
  2115. * flag our filesystem as having big metadata blocks if
  2116. * they are bigger than the page size
  2117. */
  2118. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2119. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2120. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2121. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2122. }
  2123. nodesize = btrfs_super_nodesize(disk_super);
  2124. leafsize = btrfs_super_leafsize(disk_super);
  2125. sectorsize = btrfs_super_sectorsize(disk_super);
  2126. stripesize = btrfs_super_stripesize(disk_super);
  2127. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2128. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2129. /*
  2130. * mixed block groups end up with duplicate but slightly offset
  2131. * extent buffers for the same range. It leads to corruptions
  2132. */
  2133. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2134. (sectorsize != leafsize)) {
  2135. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2136. "are not allowed for mixed block groups on %s\n",
  2137. sb->s_id);
  2138. goto fail_alloc;
  2139. }
  2140. /*
  2141. * Needn't use the lock because there is no other task which will
  2142. * update the flag.
  2143. */
  2144. btrfs_set_super_incompat_flags(disk_super, features);
  2145. features = btrfs_super_compat_ro_flags(disk_super) &
  2146. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2147. if (!(sb->s_flags & MS_RDONLY) && features) {
  2148. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2149. "unsupported option features (%Lx).\n",
  2150. features);
  2151. err = -EINVAL;
  2152. goto fail_alloc;
  2153. }
  2154. btrfs_init_workers(&fs_info->generic_worker,
  2155. "genwork", 1, NULL);
  2156. btrfs_init_workers(&fs_info->workers, "worker",
  2157. fs_info->thread_pool_size,
  2158. &fs_info->generic_worker);
  2159. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2160. fs_info->thread_pool_size, NULL);
  2161. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2162. fs_info->thread_pool_size, NULL);
  2163. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2164. min_t(u64, fs_devices->num_devices,
  2165. fs_info->thread_pool_size), NULL);
  2166. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2167. fs_info->thread_pool_size, NULL);
  2168. /* a higher idle thresh on the submit workers makes it much more
  2169. * likely that bios will be send down in a sane order to the
  2170. * devices
  2171. */
  2172. fs_info->submit_workers.idle_thresh = 64;
  2173. fs_info->workers.idle_thresh = 16;
  2174. fs_info->workers.ordered = 1;
  2175. fs_info->delalloc_workers.idle_thresh = 2;
  2176. fs_info->delalloc_workers.ordered = 1;
  2177. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2178. &fs_info->generic_worker);
  2179. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2180. fs_info->thread_pool_size,
  2181. &fs_info->generic_worker);
  2182. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2183. fs_info->thread_pool_size,
  2184. &fs_info->generic_worker);
  2185. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2186. "endio-meta-write", fs_info->thread_pool_size,
  2187. &fs_info->generic_worker);
  2188. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2189. "endio-raid56", fs_info->thread_pool_size,
  2190. &fs_info->generic_worker);
  2191. btrfs_init_workers(&fs_info->rmw_workers,
  2192. "rmw", fs_info->thread_pool_size,
  2193. &fs_info->generic_worker);
  2194. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2195. fs_info->thread_pool_size,
  2196. &fs_info->generic_worker);
  2197. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2198. 1, &fs_info->generic_worker);
  2199. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2200. fs_info->thread_pool_size,
  2201. &fs_info->generic_worker);
  2202. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2203. fs_info->thread_pool_size,
  2204. &fs_info->generic_worker);
  2205. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2206. &fs_info->generic_worker);
  2207. /*
  2208. * endios are largely parallel and should have a very
  2209. * low idle thresh
  2210. */
  2211. fs_info->endio_workers.idle_thresh = 4;
  2212. fs_info->endio_meta_workers.idle_thresh = 4;
  2213. fs_info->endio_raid56_workers.idle_thresh = 4;
  2214. fs_info->rmw_workers.idle_thresh = 2;
  2215. fs_info->endio_write_workers.idle_thresh = 2;
  2216. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2217. fs_info->readahead_workers.idle_thresh = 2;
  2218. /*
  2219. * btrfs_start_workers can really only fail because of ENOMEM so just
  2220. * return -ENOMEM if any of these fail.
  2221. */
  2222. ret = btrfs_start_workers(&fs_info->workers);
  2223. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2224. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2225. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2226. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2227. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2228. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2229. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2230. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2231. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2232. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2233. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2234. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2235. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2236. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2237. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2238. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2239. if (ret) {
  2240. err = -ENOMEM;
  2241. goto fail_sb_buffer;
  2242. }
  2243. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2244. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2245. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2246. tree_root->nodesize = nodesize;
  2247. tree_root->leafsize = leafsize;
  2248. tree_root->sectorsize = sectorsize;
  2249. tree_root->stripesize = stripesize;
  2250. sb->s_blocksize = sectorsize;
  2251. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2252. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2253. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2254. goto fail_sb_buffer;
  2255. }
  2256. if (sectorsize != PAGE_SIZE) {
  2257. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2258. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2259. goto fail_sb_buffer;
  2260. }
  2261. mutex_lock(&fs_info->chunk_mutex);
  2262. ret = btrfs_read_sys_array(tree_root);
  2263. mutex_unlock(&fs_info->chunk_mutex);
  2264. if (ret) {
  2265. printk(KERN_WARNING "BTRFS: failed to read the system "
  2266. "array on %s\n", sb->s_id);
  2267. goto fail_sb_buffer;
  2268. }
  2269. blocksize = btrfs_level_size(tree_root,
  2270. btrfs_super_chunk_root_level(disk_super));
  2271. generation = btrfs_super_chunk_root_generation(disk_super);
  2272. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2273. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2274. chunk_root->node = read_tree_block(chunk_root,
  2275. btrfs_super_chunk_root(disk_super),
  2276. blocksize, generation);
  2277. if (!chunk_root->node ||
  2278. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2279. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2280. sb->s_id);
  2281. goto fail_tree_roots;
  2282. }
  2283. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2284. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2285. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2286. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2287. ret = btrfs_read_chunk_tree(chunk_root);
  2288. if (ret) {
  2289. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2290. sb->s_id);
  2291. goto fail_tree_roots;
  2292. }
  2293. /*
  2294. * keep the device that is marked to be the target device for the
  2295. * dev_replace procedure
  2296. */
  2297. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2298. if (!fs_devices->latest_bdev) {
  2299. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2300. sb->s_id);
  2301. goto fail_tree_roots;
  2302. }
  2303. retry_root_backup:
  2304. blocksize = btrfs_level_size(tree_root,
  2305. btrfs_super_root_level(disk_super));
  2306. generation = btrfs_super_generation(disk_super);
  2307. tree_root->node = read_tree_block(tree_root,
  2308. btrfs_super_root(disk_super),
  2309. blocksize, generation);
  2310. if (!tree_root->node ||
  2311. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2312. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2313. sb->s_id);
  2314. goto recovery_tree_root;
  2315. }
  2316. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2317. tree_root->commit_root = btrfs_root_node(tree_root);
  2318. btrfs_set_root_refs(&tree_root->root_item, 1);
  2319. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2320. location.type = BTRFS_ROOT_ITEM_KEY;
  2321. location.offset = 0;
  2322. extent_root = btrfs_read_tree_root(tree_root, &location);
  2323. if (IS_ERR(extent_root)) {
  2324. ret = PTR_ERR(extent_root);
  2325. goto recovery_tree_root;
  2326. }
  2327. extent_root->track_dirty = 1;
  2328. fs_info->extent_root = extent_root;
  2329. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2330. dev_root = btrfs_read_tree_root(tree_root, &location);
  2331. if (IS_ERR(dev_root)) {
  2332. ret = PTR_ERR(dev_root);
  2333. goto recovery_tree_root;
  2334. }
  2335. dev_root->track_dirty = 1;
  2336. fs_info->dev_root = dev_root;
  2337. btrfs_init_devices_late(fs_info);
  2338. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2339. csum_root = btrfs_read_tree_root(tree_root, &location);
  2340. if (IS_ERR(csum_root)) {
  2341. ret = PTR_ERR(csum_root);
  2342. goto recovery_tree_root;
  2343. }
  2344. csum_root->track_dirty = 1;
  2345. fs_info->csum_root = csum_root;
  2346. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2347. quota_root = btrfs_read_tree_root(tree_root, &location);
  2348. if (!IS_ERR(quota_root)) {
  2349. quota_root->track_dirty = 1;
  2350. fs_info->quota_enabled = 1;
  2351. fs_info->pending_quota_state = 1;
  2352. fs_info->quota_root = quota_root;
  2353. }
  2354. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2355. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2356. if (IS_ERR(uuid_root)) {
  2357. ret = PTR_ERR(uuid_root);
  2358. if (ret != -ENOENT)
  2359. goto recovery_tree_root;
  2360. create_uuid_tree = true;
  2361. check_uuid_tree = false;
  2362. } else {
  2363. uuid_root->track_dirty = 1;
  2364. fs_info->uuid_root = uuid_root;
  2365. create_uuid_tree = false;
  2366. check_uuid_tree =
  2367. generation != btrfs_super_uuid_tree_generation(disk_super);
  2368. }
  2369. fs_info->generation = generation;
  2370. fs_info->last_trans_committed = generation;
  2371. ret = btrfs_recover_balance(fs_info);
  2372. if (ret) {
  2373. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2374. goto fail_block_groups;
  2375. }
  2376. ret = btrfs_init_dev_stats(fs_info);
  2377. if (ret) {
  2378. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2379. ret);
  2380. goto fail_block_groups;
  2381. }
  2382. ret = btrfs_init_dev_replace(fs_info);
  2383. if (ret) {
  2384. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2385. goto fail_block_groups;
  2386. }
  2387. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2388. ret = btrfs_sysfs_add_one(fs_info);
  2389. if (ret) {
  2390. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2391. goto fail_block_groups;
  2392. }
  2393. ret = btrfs_init_space_info(fs_info);
  2394. if (ret) {
  2395. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2396. goto fail_sysfs;
  2397. }
  2398. ret = btrfs_read_block_groups(extent_root);
  2399. if (ret) {
  2400. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2401. goto fail_sysfs;
  2402. }
  2403. fs_info->num_tolerated_disk_barrier_failures =
  2404. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2405. if (fs_info->fs_devices->missing_devices >
  2406. fs_info->num_tolerated_disk_barrier_failures &&
  2407. !(sb->s_flags & MS_RDONLY)) {
  2408. printk(KERN_WARNING "BTRFS: "
  2409. "too many missing devices, writeable mount is not allowed\n");
  2410. goto fail_sysfs;
  2411. }
  2412. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2413. "btrfs-cleaner");
  2414. if (IS_ERR(fs_info->cleaner_kthread))
  2415. goto fail_sysfs;
  2416. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2417. tree_root,
  2418. "btrfs-transaction");
  2419. if (IS_ERR(fs_info->transaction_kthread))
  2420. goto fail_cleaner;
  2421. if (!btrfs_test_opt(tree_root, SSD) &&
  2422. !btrfs_test_opt(tree_root, NOSSD) &&
  2423. !fs_info->fs_devices->rotating) {
  2424. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2425. "mode\n");
  2426. btrfs_set_opt(fs_info->mount_opt, SSD);
  2427. }
  2428. /* Set the real inode map cache flag */
  2429. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2430. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2431. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2432. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2433. ret = btrfsic_mount(tree_root, fs_devices,
  2434. btrfs_test_opt(tree_root,
  2435. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2436. 1 : 0,
  2437. fs_info->check_integrity_print_mask);
  2438. if (ret)
  2439. printk(KERN_WARNING "BTRFS: failed to initialize"
  2440. " integrity check module %s\n", sb->s_id);
  2441. }
  2442. #endif
  2443. ret = btrfs_read_qgroup_config(fs_info);
  2444. if (ret)
  2445. goto fail_trans_kthread;
  2446. /* do not make disk changes in broken FS */
  2447. if (btrfs_super_log_root(disk_super) != 0) {
  2448. u64 bytenr = btrfs_super_log_root(disk_super);
  2449. if (fs_devices->rw_devices == 0) {
  2450. printk(KERN_WARNING "BTRFS: log replay required "
  2451. "on RO media\n");
  2452. err = -EIO;
  2453. goto fail_qgroup;
  2454. }
  2455. blocksize =
  2456. btrfs_level_size(tree_root,
  2457. btrfs_super_log_root_level(disk_super));
  2458. log_tree_root = btrfs_alloc_root(fs_info);
  2459. if (!log_tree_root) {
  2460. err = -ENOMEM;
  2461. goto fail_qgroup;
  2462. }
  2463. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2464. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2465. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2466. blocksize,
  2467. generation + 1);
  2468. if (!log_tree_root->node ||
  2469. !extent_buffer_uptodate(log_tree_root->node)) {
  2470. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2471. free_extent_buffer(log_tree_root->node);
  2472. kfree(log_tree_root);
  2473. goto fail_trans_kthread;
  2474. }
  2475. /* returns with log_tree_root freed on success */
  2476. ret = btrfs_recover_log_trees(log_tree_root);
  2477. if (ret) {
  2478. btrfs_error(tree_root->fs_info, ret,
  2479. "Failed to recover log tree");
  2480. free_extent_buffer(log_tree_root->node);
  2481. kfree(log_tree_root);
  2482. goto fail_trans_kthread;
  2483. }
  2484. if (sb->s_flags & MS_RDONLY) {
  2485. ret = btrfs_commit_super(tree_root);
  2486. if (ret)
  2487. goto fail_trans_kthread;
  2488. }
  2489. }
  2490. ret = btrfs_find_orphan_roots(tree_root);
  2491. if (ret)
  2492. goto fail_trans_kthread;
  2493. if (!(sb->s_flags & MS_RDONLY)) {
  2494. ret = btrfs_cleanup_fs_roots(fs_info);
  2495. if (ret)
  2496. goto fail_trans_kthread;
  2497. ret = btrfs_recover_relocation(tree_root);
  2498. if (ret < 0) {
  2499. printk(KERN_WARNING
  2500. "BTRFS: failed to recover relocation\n");
  2501. err = -EINVAL;
  2502. goto fail_qgroup;
  2503. }
  2504. }
  2505. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2506. location.type = BTRFS_ROOT_ITEM_KEY;
  2507. location.offset = 0;
  2508. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2509. if (IS_ERR(fs_info->fs_root)) {
  2510. err = PTR_ERR(fs_info->fs_root);
  2511. goto fail_qgroup;
  2512. }
  2513. if (sb->s_flags & MS_RDONLY)
  2514. return 0;
  2515. down_read(&fs_info->cleanup_work_sem);
  2516. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2517. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2518. up_read(&fs_info->cleanup_work_sem);
  2519. close_ctree(tree_root);
  2520. return ret;
  2521. }
  2522. up_read(&fs_info->cleanup_work_sem);
  2523. ret = btrfs_resume_balance_async(fs_info);
  2524. if (ret) {
  2525. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2526. close_ctree(tree_root);
  2527. return ret;
  2528. }
  2529. ret = btrfs_resume_dev_replace_async(fs_info);
  2530. if (ret) {
  2531. pr_warn("BTRFS: failed to resume dev_replace\n");
  2532. close_ctree(tree_root);
  2533. return ret;
  2534. }
  2535. btrfs_qgroup_rescan_resume(fs_info);
  2536. if (create_uuid_tree) {
  2537. pr_info("BTRFS: creating UUID tree\n");
  2538. ret = btrfs_create_uuid_tree(fs_info);
  2539. if (ret) {
  2540. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2541. ret);
  2542. close_ctree(tree_root);
  2543. return ret;
  2544. }
  2545. } else if (check_uuid_tree ||
  2546. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2547. pr_info("BTRFS: checking UUID tree\n");
  2548. ret = btrfs_check_uuid_tree(fs_info);
  2549. if (ret) {
  2550. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2551. ret);
  2552. close_ctree(tree_root);
  2553. return ret;
  2554. }
  2555. } else {
  2556. fs_info->update_uuid_tree_gen = 1;
  2557. }
  2558. return 0;
  2559. fail_qgroup:
  2560. btrfs_free_qgroup_config(fs_info);
  2561. fail_trans_kthread:
  2562. kthread_stop(fs_info->transaction_kthread);
  2563. btrfs_cleanup_transaction(fs_info->tree_root);
  2564. del_fs_roots(fs_info);
  2565. fail_cleaner:
  2566. kthread_stop(fs_info->cleaner_kthread);
  2567. /*
  2568. * make sure we're done with the btree inode before we stop our
  2569. * kthreads
  2570. */
  2571. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2572. fail_sysfs:
  2573. btrfs_sysfs_remove_one(fs_info);
  2574. fail_block_groups:
  2575. btrfs_put_block_group_cache(fs_info);
  2576. btrfs_free_block_groups(fs_info);
  2577. fail_tree_roots:
  2578. free_root_pointers(fs_info, 1);
  2579. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2580. fail_sb_buffer:
  2581. btrfs_stop_all_workers(fs_info);
  2582. fail_alloc:
  2583. fail_iput:
  2584. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2585. iput(fs_info->btree_inode);
  2586. fail_bio_counter:
  2587. percpu_counter_destroy(&fs_info->bio_counter);
  2588. fail_delalloc_bytes:
  2589. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2590. fail_dirty_metadata_bytes:
  2591. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2592. fail_bdi:
  2593. bdi_destroy(&fs_info->bdi);
  2594. fail_srcu:
  2595. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2596. fail:
  2597. btrfs_free_stripe_hash_table(fs_info);
  2598. btrfs_close_devices(fs_info->fs_devices);
  2599. return err;
  2600. recovery_tree_root:
  2601. if (!btrfs_test_opt(tree_root, RECOVERY))
  2602. goto fail_tree_roots;
  2603. free_root_pointers(fs_info, 0);
  2604. /* don't use the log in recovery mode, it won't be valid */
  2605. btrfs_set_super_log_root(disk_super, 0);
  2606. /* we can't trust the free space cache either */
  2607. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2608. ret = next_root_backup(fs_info, fs_info->super_copy,
  2609. &num_backups_tried, &backup_index);
  2610. if (ret == -1)
  2611. goto fail_block_groups;
  2612. goto retry_root_backup;
  2613. }
  2614. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2615. {
  2616. if (uptodate) {
  2617. set_buffer_uptodate(bh);
  2618. } else {
  2619. struct btrfs_device *device = (struct btrfs_device *)
  2620. bh->b_private;
  2621. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2622. "I/O error on %s\n",
  2623. rcu_str_deref(device->name));
  2624. /* note, we dont' set_buffer_write_io_error because we have
  2625. * our own ways of dealing with the IO errors
  2626. */
  2627. clear_buffer_uptodate(bh);
  2628. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2629. }
  2630. unlock_buffer(bh);
  2631. put_bh(bh);
  2632. }
  2633. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2634. {
  2635. struct buffer_head *bh;
  2636. struct buffer_head *latest = NULL;
  2637. struct btrfs_super_block *super;
  2638. int i;
  2639. u64 transid = 0;
  2640. u64 bytenr;
  2641. /* we would like to check all the supers, but that would make
  2642. * a btrfs mount succeed after a mkfs from a different FS.
  2643. * So, we need to add a special mount option to scan for
  2644. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2645. */
  2646. for (i = 0; i < 1; i++) {
  2647. bytenr = btrfs_sb_offset(i);
  2648. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2649. i_size_read(bdev->bd_inode))
  2650. break;
  2651. bh = __bread(bdev, bytenr / 4096,
  2652. BTRFS_SUPER_INFO_SIZE);
  2653. if (!bh)
  2654. continue;
  2655. super = (struct btrfs_super_block *)bh->b_data;
  2656. if (btrfs_super_bytenr(super) != bytenr ||
  2657. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2658. brelse(bh);
  2659. continue;
  2660. }
  2661. if (!latest || btrfs_super_generation(super) > transid) {
  2662. brelse(latest);
  2663. latest = bh;
  2664. transid = btrfs_super_generation(super);
  2665. } else {
  2666. brelse(bh);
  2667. }
  2668. }
  2669. return latest;
  2670. }
  2671. /*
  2672. * this should be called twice, once with wait == 0 and
  2673. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2674. * we write are pinned.
  2675. *
  2676. * They are released when wait == 1 is done.
  2677. * max_mirrors must be the same for both runs, and it indicates how
  2678. * many supers on this one device should be written.
  2679. *
  2680. * max_mirrors == 0 means to write them all.
  2681. */
  2682. static int write_dev_supers(struct btrfs_device *device,
  2683. struct btrfs_super_block *sb,
  2684. int do_barriers, int wait, int max_mirrors)
  2685. {
  2686. struct buffer_head *bh;
  2687. int i;
  2688. int ret;
  2689. int errors = 0;
  2690. u32 crc;
  2691. u64 bytenr;
  2692. if (max_mirrors == 0)
  2693. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2694. for (i = 0; i < max_mirrors; i++) {
  2695. bytenr = btrfs_sb_offset(i);
  2696. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2697. break;
  2698. if (wait) {
  2699. bh = __find_get_block(device->bdev, bytenr / 4096,
  2700. BTRFS_SUPER_INFO_SIZE);
  2701. if (!bh) {
  2702. errors++;
  2703. continue;
  2704. }
  2705. wait_on_buffer(bh);
  2706. if (!buffer_uptodate(bh))
  2707. errors++;
  2708. /* drop our reference */
  2709. brelse(bh);
  2710. /* drop the reference from the wait == 0 run */
  2711. brelse(bh);
  2712. continue;
  2713. } else {
  2714. btrfs_set_super_bytenr(sb, bytenr);
  2715. crc = ~(u32)0;
  2716. crc = btrfs_csum_data((char *)sb +
  2717. BTRFS_CSUM_SIZE, crc,
  2718. BTRFS_SUPER_INFO_SIZE -
  2719. BTRFS_CSUM_SIZE);
  2720. btrfs_csum_final(crc, sb->csum);
  2721. /*
  2722. * one reference for us, and we leave it for the
  2723. * caller
  2724. */
  2725. bh = __getblk(device->bdev, bytenr / 4096,
  2726. BTRFS_SUPER_INFO_SIZE);
  2727. if (!bh) {
  2728. printk(KERN_ERR "BTRFS: couldn't get super "
  2729. "buffer head for bytenr %Lu\n", bytenr);
  2730. errors++;
  2731. continue;
  2732. }
  2733. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2734. /* one reference for submit_bh */
  2735. get_bh(bh);
  2736. set_buffer_uptodate(bh);
  2737. lock_buffer(bh);
  2738. bh->b_end_io = btrfs_end_buffer_write_sync;
  2739. bh->b_private = device;
  2740. }
  2741. /*
  2742. * we fua the first super. The others we allow
  2743. * to go down lazy.
  2744. */
  2745. if (i == 0)
  2746. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2747. else
  2748. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2749. if (ret)
  2750. errors++;
  2751. }
  2752. return errors < i ? 0 : -1;
  2753. }
  2754. /*
  2755. * endio for the write_dev_flush, this will wake anyone waiting
  2756. * for the barrier when it is done
  2757. */
  2758. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2759. {
  2760. if (err) {
  2761. if (err == -EOPNOTSUPP)
  2762. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2763. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2764. }
  2765. if (bio->bi_private)
  2766. complete(bio->bi_private);
  2767. bio_put(bio);
  2768. }
  2769. /*
  2770. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2771. * sent down. With wait == 1, it waits for the previous flush.
  2772. *
  2773. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2774. * capable
  2775. */
  2776. static int write_dev_flush(struct btrfs_device *device, int wait)
  2777. {
  2778. struct bio *bio;
  2779. int ret = 0;
  2780. if (device->nobarriers)
  2781. return 0;
  2782. if (wait) {
  2783. bio = device->flush_bio;
  2784. if (!bio)
  2785. return 0;
  2786. wait_for_completion(&device->flush_wait);
  2787. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2788. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2789. rcu_str_deref(device->name));
  2790. device->nobarriers = 1;
  2791. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2792. ret = -EIO;
  2793. btrfs_dev_stat_inc_and_print(device,
  2794. BTRFS_DEV_STAT_FLUSH_ERRS);
  2795. }
  2796. /* drop the reference from the wait == 0 run */
  2797. bio_put(bio);
  2798. device->flush_bio = NULL;
  2799. return ret;
  2800. }
  2801. /*
  2802. * one reference for us, and we leave it for the
  2803. * caller
  2804. */
  2805. device->flush_bio = NULL;
  2806. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2807. if (!bio)
  2808. return -ENOMEM;
  2809. bio->bi_end_io = btrfs_end_empty_barrier;
  2810. bio->bi_bdev = device->bdev;
  2811. init_completion(&device->flush_wait);
  2812. bio->bi_private = &device->flush_wait;
  2813. device->flush_bio = bio;
  2814. bio_get(bio);
  2815. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2816. return 0;
  2817. }
  2818. /*
  2819. * send an empty flush down to each device in parallel,
  2820. * then wait for them
  2821. */
  2822. static int barrier_all_devices(struct btrfs_fs_info *info)
  2823. {
  2824. struct list_head *head;
  2825. struct btrfs_device *dev;
  2826. int errors_send = 0;
  2827. int errors_wait = 0;
  2828. int ret;
  2829. /* send down all the barriers */
  2830. head = &info->fs_devices->devices;
  2831. list_for_each_entry_rcu(dev, head, dev_list) {
  2832. if (!dev->bdev) {
  2833. errors_send++;
  2834. continue;
  2835. }
  2836. if (!dev->in_fs_metadata || !dev->writeable)
  2837. continue;
  2838. ret = write_dev_flush(dev, 0);
  2839. if (ret)
  2840. errors_send++;
  2841. }
  2842. /* wait for all the barriers */
  2843. list_for_each_entry_rcu(dev, head, dev_list) {
  2844. if (!dev->bdev) {
  2845. errors_wait++;
  2846. continue;
  2847. }
  2848. if (!dev->in_fs_metadata || !dev->writeable)
  2849. continue;
  2850. ret = write_dev_flush(dev, 1);
  2851. if (ret)
  2852. errors_wait++;
  2853. }
  2854. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2855. errors_wait > info->num_tolerated_disk_barrier_failures)
  2856. return -EIO;
  2857. return 0;
  2858. }
  2859. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2860. struct btrfs_fs_info *fs_info)
  2861. {
  2862. struct btrfs_ioctl_space_info space;
  2863. struct btrfs_space_info *sinfo;
  2864. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2865. BTRFS_BLOCK_GROUP_SYSTEM,
  2866. BTRFS_BLOCK_GROUP_METADATA,
  2867. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2868. int num_types = 4;
  2869. int i;
  2870. int c;
  2871. int num_tolerated_disk_barrier_failures =
  2872. (int)fs_info->fs_devices->num_devices;
  2873. for (i = 0; i < num_types; i++) {
  2874. struct btrfs_space_info *tmp;
  2875. sinfo = NULL;
  2876. rcu_read_lock();
  2877. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2878. if (tmp->flags == types[i]) {
  2879. sinfo = tmp;
  2880. break;
  2881. }
  2882. }
  2883. rcu_read_unlock();
  2884. if (!sinfo)
  2885. continue;
  2886. down_read(&sinfo->groups_sem);
  2887. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2888. if (!list_empty(&sinfo->block_groups[c])) {
  2889. u64 flags;
  2890. btrfs_get_block_group_info(
  2891. &sinfo->block_groups[c], &space);
  2892. if (space.total_bytes == 0 ||
  2893. space.used_bytes == 0)
  2894. continue;
  2895. flags = space.flags;
  2896. /*
  2897. * return
  2898. * 0: if dup, single or RAID0 is configured for
  2899. * any of metadata, system or data, else
  2900. * 1: if RAID5 is configured, or if RAID1 or
  2901. * RAID10 is configured and only two mirrors
  2902. * are used, else
  2903. * 2: if RAID6 is configured, else
  2904. * num_mirrors - 1: if RAID1 or RAID10 is
  2905. * configured and more than
  2906. * 2 mirrors are used.
  2907. */
  2908. if (num_tolerated_disk_barrier_failures > 0 &&
  2909. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2910. BTRFS_BLOCK_GROUP_RAID0)) ||
  2911. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2912. == 0)))
  2913. num_tolerated_disk_barrier_failures = 0;
  2914. else if (num_tolerated_disk_barrier_failures > 1) {
  2915. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2916. BTRFS_BLOCK_GROUP_RAID5 |
  2917. BTRFS_BLOCK_GROUP_RAID10)) {
  2918. num_tolerated_disk_barrier_failures = 1;
  2919. } else if (flags &
  2920. BTRFS_BLOCK_GROUP_RAID6) {
  2921. num_tolerated_disk_barrier_failures = 2;
  2922. }
  2923. }
  2924. }
  2925. }
  2926. up_read(&sinfo->groups_sem);
  2927. }
  2928. return num_tolerated_disk_barrier_failures;
  2929. }
  2930. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2931. {
  2932. struct list_head *head;
  2933. struct btrfs_device *dev;
  2934. struct btrfs_super_block *sb;
  2935. struct btrfs_dev_item *dev_item;
  2936. int ret;
  2937. int do_barriers;
  2938. int max_errors;
  2939. int total_errors = 0;
  2940. u64 flags;
  2941. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2942. backup_super_roots(root->fs_info);
  2943. sb = root->fs_info->super_for_commit;
  2944. dev_item = &sb->dev_item;
  2945. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2946. head = &root->fs_info->fs_devices->devices;
  2947. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2948. if (do_barriers) {
  2949. ret = barrier_all_devices(root->fs_info);
  2950. if (ret) {
  2951. mutex_unlock(
  2952. &root->fs_info->fs_devices->device_list_mutex);
  2953. btrfs_error(root->fs_info, ret,
  2954. "errors while submitting device barriers.");
  2955. return ret;
  2956. }
  2957. }
  2958. list_for_each_entry_rcu(dev, head, dev_list) {
  2959. if (!dev->bdev) {
  2960. total_errors++;
  2961. continue;
  2962. }
  2963. if (!dev->in_fs_metadata || !dev->writeable)
  2964. continue;
  2965. btrfs_set_stack_device_generation(dev_item, 0);
  2966. btrfs_set_stack_device_type(dev_item, dev->type);
  2967. btrfs_set_stack_device_id(dev_item, dev->devid);
  2968. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2969. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2970. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2971. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2972. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2973. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2974. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2975. flags = btrfs_super_flags(sb);
  2976. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2977. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2978. if (ret)
  2979. total_errors++;
  2980. }
  2981. if (total_errors > max_errors) {
  2982. btrfs_err(root->fs_info, "%d errors while writing supers",
  2983. total_errors);
  2984. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2985. /* FUA is masked off if unsupported and can't be the reason */
  2986. btrfs_error(root->fs_info, -EIO,
  2987. "%d errors while writing supers", total_errors);
  2988. return -EIO;
  2989. }
  2990. total_errors = 0;
  2991. list_for_each_entry_rcu(dev, head, dev_list) {
  2992. if (!dev->bdev)
  2993. continue;
  2994. if (!dev->in_fs_metadata || !dev->writeable)
  2995. continue;
  2996. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2997. if (ret)
  2998. total_errors++;
  2999. }
  3000. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3001. if (total_errors > max_errors) {
  3002. btrfs_error(root->fs_info, -EIO,
  3003. "%d errors while writing supers", total_errors);
  3004. return -EIO;
  3005. }
  3006. return 0;
  3007. }
  3008. int write_ctree_super(struct btrfs_trans_handle *trans,
  3009. struct btrfs_root *root, int max_mirrors)
  3010. {
  3011. return write_all_supers(root, max_mirrors);
  3012. }
  3013. /* Drop a fs root from the radix tree and free it. */
  3014. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3015. struct btrfs_root *root)
  3016. {
  3017. spin_lock(&fs_info->fs_roots_radix_lock);
  3018. radix_tree_delete(&fs_info->fs_roots_radix,
  3019. (unsigned long)root->root_key.objectid);
  3020. spin_unlock(&fs_info->fs_roots_radix_lock);
  3021. if (btrfs_root_refs(&root->root_item) == 0)
  3022. synchronize_srcu(&fs_info->subvol_srcu);
  3023. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3024. btrfs_free_log(NULL, root);
  3025. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3026. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3027. free_fs_root(root);
  3028. }
  3029. static void free_fs_root(struct btrfs_root *root)
  3030. {
  3031. iput(root->cache_inode);
  3032. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3033. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3034. root->orphan_block_rsv = NULL;
  3035. if (root->anon_dev)
  3036. free_anon_bdev(root->anon_dev);
  3037. free_extent_buffer(root->node);
  3038. free_extent_buffer(root->commit_root);
  3039. kfree(root->free_ino_ctl);
  3040. kfree(root->free_ino_pinned);
  3041. kfree(root->name);
  3042. btrfs_put_fs_root(root);
  3043. }
  3044. void btrfs_free_fs_root(struct btrfs_root *root)
  3045. {
  3046. free_fs_root(root);
  3047. }
  3048. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3049. {
  3050. u64 root_objectid = 0;
  3051. struct btrfs_root *gang[8];
  3052. int i;
  3053. int ret;
  3054. while (1) {
  3055. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3056. (void **)gang, root_objectid,
  3057. ARRAY_SIZE(gang));
  3058. if (!ret)
  3059. break;
  3060. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3061. for (i = 0; i < ret; i++) {
  3062. int err;
  3063. root_objectid = gang[i]->root_key.objectid;
  3064. err = btrfs_orphan_cleanup(gang[i]);
  3065. if (err)
  3066. return err;
  3067. }
  3068. root_objectid++;
  3069. }
  3070. return 0;
  3071. }
  3072. int btrfs_commit_super(struct btrfs_root *root)
  3073. {
  3074. struct btrfs_trans_handle *trans;
  3075. mutex_lock(&root->fs_info->cleaner_mutex);
  3076. btrfs_run_delayed_iputs(root);
  3077. mutex_unlock(&root->fs_info->cleaner_mutex);
  3078. wake_up_process(root->fs_info->cleaner_kthread);
  3079. /* wait until ongoing cleanup work done */
  3080. down_write(&root->fs_info->cleanup_work_sem);
  3081. up_write(&root->fs_info->cleanup_work_sem);
  3082. trans = btrfs_join_transaction(root);
  3083. if (IS_ERR(trans))
  3084. return PTR_ERR(trans);
  3085. return btrfs_commit_transaction(trans, root);
  3086. }
  3087. int close_ctree(struct btrfs_root *root)
  3088. {
  3089. struct btrfs_fs_info *fs_info = root->fs_info;
  3090. int ret;
  3091. fs_info->closing = 1;
  3092. smp_mb();
  3093. /* wait for the uuid_scan task to finish */
  3094. down(&fs_info->uuid_tree_rescan_sem);
  3095. /* avoid complains from lockdep et al., set sem back to initial state */
  3096. up(&fs_info->uuid_tree_rescan_sem);
  3097. /* pause restriper - we want to resume on mount */
  3098. btrfs_pause_balance(fs_info);
  3099. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3100. btrfs_scrub_cancel(fs_info);
  3101. /* wait for any defraggers to finish */
  3102. wait_event(fs_info->transaction_wait,
  3103. (atomic_read(&fs_info->defrag_running) == 0));
  3104. /* clear out the rbtree of defraggable inodes */
  3105. btrfs_cleanup_defrag_inodes(fs_info);
  3106. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3107. ret = btrfs_commit_super(root);
  3108. if (ret)
  3109. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3110. }
  3111. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3112. btrfs_error_commit_super(root);
  3113. kthread_stop(fs_info->transaction_kthread);
  3114. kthread_stop(fs_info->cleaner_kthread);
  3115. fs_info->closing = 2;
  3116. smp_mb();
  3117. btrfs_free_qgroup_config(root->fs_info);
  3118. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3119. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3120. percpu_counter_sum(&fs_info->delalloc_bytes));
  3121. }
  3122. btrfs_sysfs_remove_one(fs_info);
  3123. del_fs_roots(fs_info);
  3124. btrfs_put_block_group_cache(fs_info);
  3125. btrfs_free_block_groups(fs_info);
  3126. btrfs_stop_all_workers(fs_info);
  3127. free_root_pointers(fs_info, 1);
  3128. iput(fs_info->btree_inode);
  3129. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3130. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3131. btrfsic_unmount(root, fs_info->fs_devices);
  3132. #endif
  3133. btrfs_close_devices(fs_info->fs_devices);
  3134. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3135. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3136. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3137. percpu_counter_destroy(&fs_info->bio_counter);
  3138. bdi_destroy(&fs_info->bdi);
  3139. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3140. btrfs_free_stripe_hash_table(fs_info);
  3141. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3142. root->orphan_block_rsv = NULL;
  3143. return 0;
  3144. }
  3145. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3146. int atomic)
  3147. {
  3148. int ret;
  3149. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3150. ret = extent_buffer_uptodate(buf);
  3151. if (!ret)
  3152. return ret;
  3153. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3154. parent_transid, atomic);
  3155. if (ret == -EAGAIN)
  3156. return ret;
  3157. return !ret;
  3158. }
  3159. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3160. {
  3161. return set_extent_buffer_uptodate(buf);
  3162. }
  3163. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3164. {
  3165. struct btrfs_root *root;
  3166. u64 transid = btrfs_header_generation(buf);
  3167. int was_dirty;
  3168. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3169. /*
  3170. * This is a fast path so only do this check if we have sanity tests
  3171. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3172. * outside of the sanity tests.
  3173. */
  3174. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3175. return;
  3176. #endif
  3177. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3178. btrfs_assert_tree_locked(buf);
  3179. if (transid != root->fs_info->generation)
  3180. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3181. "found %llu running %llu\n",
  3182. buf->start, transid, root->fs_info->generation);
  3183. was_dirty = set_extent_buffer_dirty(buf);
  3184. if (!was_dirty)
  3185. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3186. buf->len,
  3187. root->fs_info->dirty_metadata_batch);
  3188. }
  3189. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3190. int flush_delayed)
  3191. {
  3192. /*
  3193. * looks as though older kernels can get into trouble with
  3194. * this code, they end up stuck in balance_dirty_pages forever
  3195. */
  3196. int ret;
  3197. if (current->flags & PF_MEMALLOC)
  3198. return;
  3199. if (flush_delayed)
  3200. btrfs_balance_delayed_items(root);
  3201. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3202. BTRFS_DIRTY_METADATA_THRESH);
  3203. if (ret > 0) {
  3204. balance_dirty_pages_ratelimited(
  3205. root->fs_info->btree_inode->i_mapping);
  3206. }
  3207. return;
  3208. }
  3209. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3210. {
  3211. __btrfs_btree_balance_dirty(root, 1);
  3212. }
  3213. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3214. {
  3215. __btrfs_btree_balance_dirty(root, 0);
  3216. }
  3217. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3218. {
  3219. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3220. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3221. }
  3222. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3223. int read_only)
  3224. {
  3225. /*
  3226. * Placeholder for checks
  3227. */
  3228. return 0;
  3229. }
  3230. static void btrfs_error_commit_super(struct btrfs_root *root)
  3231. {
  3232. mutex_lock(&root->fs_info->cleaner_mutex);
  3233. btrfs_run_delayed_iputs(root);
  3234. mutex_unlock(&root->fs_info->cleaner_mutex);
  3235. down_write(&root->fs_info->cleanup_work_sem);
  3236. up_write(&root->fs_info->cleanup_work_sem);
  3237. /* cleanup FS via transaction */
  3238. btrfs_cleanup_transaction(root);
  3239. }
  3240. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3241. struct btrfs_root *root)
  3242. {
  3243. struct btrfs_inode *btrfs_inode;
  3244. struct list_head splice;
  3245. INIT_LIST_HEAD(&splice);
  3246. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3247. spin_lock(&root->fs_info->ordered_root_lock);
  3248. list_splice_init(&t->ordered_operations, &splice);
  3249. while (!list_empty(&splice)) {
  3250. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3251. ordered_operations);
  3252. list_del_init(&btrfs_inode->ordered_operations);
  3253. spin_unlock(&root->fs_info->ordered_root_lock);
  3254. btrfs_invalidate_inodes(btrfs_inode->root);
  3255. spin_lock(&root->fs_info->ordered_root_lock);
  3256. }
  3257. spin_unlock(&root->fs_info->ordered_root_lock);
  3258. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3259. }
  3260. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3261. {
  3262. struct btrfs_ordered_extent *ordered;
  3263. spin_lock(&root->ordered_extent_lock);
  3264. /*
  3265. * This will just short circuit the ordered completion stuff which will
  3266. * make sure the ordered extent gets properly cleaned up.
  3267. */
  3268. list_for_each_entry(ordered, &root->ordered_extents,
  3269. root_extent_list)
  3270. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3271. spin_unlock(&root->ordered_extent_lock);
  3272. }
  3273. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3274. {
  3275. struct btrfs_root *root;
  3276. struct list_head splice;
  3277. INIT_LIST_HEAD(&splice);
  3278. spin_lock(&fs_info->ordered_root_lock);
  3279. list_splice_init(&fs_info->ordered_roots, &splice);
  3280. while (!list_empty(&splice)) {
  3281. root = list_first_entry(&splice, struct btrfs_root,
  3282. ordered_root);
  3283. list_move_tail(&root->ordered_root,
  3284. &fs_info->ordered_roots);
  3285. btrfs_destroy_ordered_extents(root);
  3286. cond_resched_lock(&fs_info->ordered_root_lock);
  3287. }
  3288. spin_unlock(&fs_info->ordered_root_lock);
  3289. }
  3290. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3291. struct btrfs_root *root)
  3292. {
  3293. struct rb_node *node;
  3294. struct btrfs_delayed_ref_root *delayed_refs;
  3295. struct btrfs_delayed_ref_node *ref;
  3296. int ret = 0;
  3297. delayed_refs = &trans->delayed_refs;
  3298. spin_lock(&delayed_refs->lock);
  3299. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3300. spin_unlock(&delayed_refs->lock);
  3301. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3302. return ret;
  3303. }
  3304. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3305. struct btrfs_delayed_ref_head *head;
  3306. bool pin_bytes = false;
  3307. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3308. href_node);
  3309. if (!mutex_trylock(&head->mutex)) {
  3310. atomic_inc(&head->node.refs);
  3311. spin_unlock(&delayed_refs->lock);
  3312. mutex_lock(&head->mutex);
  3313. mutex_unlock(&head->mutex);
  3314. btrfs_put_delayed_ref(&head->node);
  3315. spin_lock(&delayed_refs->lock);
  3316. continue;
  3317. }
  3318. spin_lock(&head->lock);
  3319. while ((node = rb_first(&head->ref_root)) != NULL) {
  3320. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3321. rb_node);
  3322. ref->in_tree = 0;
  3323. rb_erase(&ref->rb_node, &head->ref_root);
  3324. atomic_dec(&delayed_refs->num_entries);
  3325. btrfs_put_delayed_ref(ref);
  3326. }
  3327. if (head->must_insert_reserved)
  3328. pin_bytes = true;
  3329. btrfs_free_delayed_extent_op(head->extent_op);
  3330. delayed_refs->num_heads--;
  3331. if (head->processing == 0)
  3332. delayed_refs->num_heads_ready--;
  3333. atomic_dec(&delayed_refs->num_entries);
  3334. head->node.in_tree = 0;
  3335. rb_erase(&head->href_node, &delayed_refs->href_root);
  3336. spin_unlock(&head->lock);
  3337. spin_unlock(&delayed_refs->lock);
  3338. mutex_unlock(&head->mutex);
  3339. if (pin_bytes)
  3340. btrfs_pin_extent(root, head->node.bytenr,
  3341. head->node.num_bytes, 1);
  3342. btrfs_put_delayed_ref(&head->node);
  3343. cond_resched();
  3344. spin_lock(&delayed_refs->lock);
  3345. }
  3346. spin_unlock(&delayed_refs->lock);
  3347. return ret;
  3348. }
  3349. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3350. {
  3351. struct btrfs_inode *btrfs_inode;
  3352. struct list_head splice;
  3353. INIT_LIST_HEAD(&splice);
  3354. spin_lock(&root->delalloc_lock);
  3355. list_splice_init(&root->delalloc_inodes, &splice);
  3356. while (!list_empty(&splice)) {
  3357. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3358. delalloc_inodes);
  3359. list_del_init(&btrfs_inode->delalloc_inodes);
  3360. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3361. &btrfs_inode->runtime_flags);
  3362. spin_unlock(&root->delalloc_lock);
  3363. btrfs_invalidate_inodes(btrfs_inode->root);
  3364. spin_lock(&root->delalloc_lock);
  3365. }
  3366. spin_unlock(&root->delalloc_lock);
  3367. }
  3368. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3369. {
  3370. struct btrfs_root *root;
  3371. struct list_head splice;
  3372. INIT_LIST_HEAD(&splice);
  3373. spin_lock(&fs_info->delalloc_root_lock);
  3374. list_splice_init(&fs_info->delalloc_roots, &splice);
  3375. while (!list_empty(&splice)) {
  3376. root = list_first_entry(&splice, struct btrfs_root,
  3377. delalloc_root);
  3378. list_del_init(&root->delalloc_root);
  3379. root = btrfs_grab_fs_root(root);
  3380. BUG_ON(!root);
  3381. spin_unlock(&fs_info->delalloc_root_lock);
  3382. btrfs_destroy_delalloc_inodes(root);
  3383. btrfs_put_fs_root(root);
  3384. spin_lock(&fs_info->delalloc_root_lock);
  3385. }
  3386. spin_unlock(&fs_info->delalloc_root_lock);
  3387. }
  3388. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3389. struct extent_io_tree *dirty_pages,
  3390. int mark)
  3391. {
  3392. int ret;
  3393. struct extent_buffer *eb;
  3394. u64 start = 0;
  3395. u64 end;
  3396. while (1) {
  3397. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3398. mark, NULL);
  3399. if (ret)
  3400. break;
  3401. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3402. while (start <= end) {
  3403. eb = btrfs_find_tree_block(root, start,
  3404. root->leafsize);
  3405. start += root->leafsize;
  3406. if (!eb)
  3407. continue;
  3408. wait_on_extent_buffer_writeback(eb);
  3409. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3410. &eb->bflags))
  3411. clear_extent_buffer_dirty(eb);
  3412. free_extent_buffer_stale(eb);
  3413. }
  3414. }
  3415. return ret;
  3416. }
  3417. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3418. struct extent_io_tree *pinned_extents)
  3419. {
  3420. struct extent_io_tree *unpin;
  3421. u64 start;
  3422. u64 end;
  3423. int ret;
  3424. bool loop = true;
  3425. unpin = pinned_extents;
  3426. again:
  3427. while (1) {
  3428. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3429. EXTENT_DIRTY, NULL);
  3430. if (ret)
  3431. break;
  3432. /* opt_discard */
  3433. if (btrfs_test_opt(root, DISCARD))
  3434. ret = btrfs_error_discard_extent(root, start,
  3435. end + 1 - start,
  3436. NULL);
  3437. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3438. btrfs_error_unpin_extent_range(root, start, end);
  3439. cond_resched();
  3440. }
  3441. if (loop) {
  3442. if (unpin == &root->fs_info->freed_extents[0])
  3443. unpin = &root->fs_info->freed_extents[1];
  3444. else
  3445. unpin = &root->fs_info->freed_extents[0];
  3446. loop = false;
  3447. goto again;
  3448. }
  3449. return 0;
  3450. }
  3451. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3452. struct btrfs_root *root)
  3453. {
  3454. btrfs_destroy_ordered_operations(cur_trans, root);
  3455. btrfs_destroy_delayed_refs(cur_trans, root);
  3456. cur_trans->state = TRANS_STATE_COMMIT_START;
  3457. wake_up(&root->fs_info->transaction_blocked_wait);
  3458. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3459. wake_up(&root->fs_info->transaction_wait);
  3460. btrfs_destroy_delayed_inodes(root);
  3461. btrfs_assert_delayed_root_empty(root);
  3462. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3463. EXTENT_DIRTY);
  3464. btrfs_destroy_pinned_extent(root,
  3465. root->fs_info->pinned_extents);
  3466. cur_trans->state =TRANS_STATE_COMPLETED;
  3467. wake_up(&cur_trans->commit_wait);
  3468. /*
  3469. memset(cur_trans, 0, sizeof(*cur_trans));
  3470. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3471. */
  3472. }
  3473. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3474. {
  3475. struct btrfs_transaction *t;
  3476. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3477. spin_lock(&root->fs_info->trans_lock);
  3478. while (!list_empty(&root->fs_info->trans_list)) {
  3479. t = list_first_entry(&root->fs_info->trans_list,
  3480. struct btrfs_transaction, list);
  3481. if (t->state >= TRANS_STATE_COMMIT_START) {
  3482. atomic_inc(&t->use_count);
  3483. spin_unlock(&root->fs_info->trans_lock);
  3484. btrfs_wait_for_commit(root, t->transid);
  3485. btrfs_put_transaction(t);
  3486. spin_lock(&root->fs_info->trans_lock);
  3487. continue;
  3488. }
  3489. if (t == root->fs_info->running_transaction) {
  3490. t->state = TRANS_STATE_COMMIT_DOING;
  3491. spin_unlock(&root->fs_info->trans_lock);
  3492. /*
  3493. * We wait for 0 num_writers since we don't hold a trans
  3494. * handle open currently for this transaction.
  3495. */
  3496. wait_event(t->writer_wait,
  3497. atomic_read(&t->num_writers) == 0);
  3498. } else {
  3499. spin_unlock(&root->fs_info->trans_lock);
  3500. }
  3501. btrfs_cleanup_one_transaction(t, root);
  3502. spin_lock(&root->fs_info->trans_lock);
  3503. if (t == root->fs_info->running_transaction)
  3504. root->fs_info->running_transaction = NULL;
  3505. list_del_init(&t->list);
  3506. spin_unlock(&root->fs_info->trans_lock);
  3507. btrfs_put_transaction(t);
  3508. trace_btrfs_transaction_commit(root);
  3509. spin_lock(&root->fs_info->trans_lock);
  3510. }
  3511. spin_unlock(&root->fs_info->trans_lock);
  3512. btrfs_destroy_all_ordered_extents(root->fs_info);
  3513. btrfs_destroy_delayed_inodes(root);
  3514. btrfs_assert_delayed_root_empty(root);
  3515. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3516. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3517. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3518. return 0;
  3519. }
  3520. static struct extent_io_ops btree_extent_io_ops = {
  3521. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3522. .readpage_io_failed_hook = btree_io_failed_hook,
  3523. .submit_bio_hook = btree_submit_bio_hook,
  3524. /* note we're sharing with inode.c for the merge bio hook */
  3525. .merge_bio_hook = btrfs_merge_bio_hook,
  3526. };