data.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/writeback.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include <linux/uio.h>
  22. #include <linux/mm.h>
  23. #include <linux/memcontrol.h>
  24. #include <linux/cleancache.h>
  25. #include <linux/sched/signal.h>
  26. #include "f2fs.h"
  27. #include "node.h"
  28. #include "segment.h"
  29. #include "trace.h"
  30. #include <trace/events/f2fs.h>
  31. static bool __is_cp_guaranteed(struct page *page)
  32. {
  33. struct address_space *mapping = page->mapping;
  34. struct inode *inode;
  35. struct f2fs_sb_info *sbi;
  36. if (!mapping)
  37. return false;
  38. inode = mapping->host;
  39. sbi = F2FS_I_SB(inode);
  40. if (inode->i_ino == F2FS_META_INO(sbi) ||
  41. inode->i_ino == F2FS_NODE_INO(sbi) ||
  42. S_ISDIR(inode->i_mode) ||
  43. is_cold_data(page))
  44. return true;
  45. return false;
  46. }
  47. static void f2fs_read_end_io(struct bio *bio)
  48. {
  49. struct bio_vec *bvec;
  50. int i;
  51. #ifdef CONFIG_F2FS_FAULT_INJECTION
  52. if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
  53. f2fs_show_injection_info(FAULT_IO);
  54. bio->bi_status = BLK_STS_IOERR;
  55. }
  56. #endif
  57. if (f2fs_bio_encrypted(bio)) {
  58. if (bio->bi_status) {
  59. fscrypt_release_ctx(bio->bi_private);
  60. } else {
  61. fscrypt_decrypt_bio_pages(bio->bi_private, bio);
  62. return;
  63. }
  64. }
  65. bio_for_each_segment_all(bvec, bio, i) {
  66. struct page *page = bvec->bv_page;
  67. if (!bio->bi_status) {
  68. if (!PageUptodate(page))
  69. SetPageUptodate(page);
  70. } else {
  71. ClearPageUptodate(page);
  72. SetPageError(page);
  73. }
  74. unlock_page(page);
  75. }
  76. bio_put(bio);
  77. }
  78. static void f2fs_write_end_io(struct bio *bio)
  79. {
  80. struct f2fs_sb_info *sbi = bio->bi_private;
  81. struct bio_vec *bvec;
  82. int i;
  83. bio_for_each_segment_all(bvec, bio, i) {
  84. struct page *page = bvec->bv_page;
  85. enum count_type type = WB_DATA_TYPE(page);
  86. if (IS_DUMMY_WRITTEN_PAGE(page)) {
  87. set_page_private(page, (unsigned long)NULL);
  88. ClearPagePrivate(page);
  89. unlock_page(page);
  90. mempool_free(page, sbi->write_io_dummy);
  91. if (unlikely(bio->bi_status))
  92. f2fs_stop_checkpoint(sbi, true);
  93. continue;
  94. }
  95. fscrypt_pullback_bio_page(&page, true);
  96. if (unlikely(bio->bi_status)) {
  97. mapping_set_error(page->mapping, -EIO);
  98. if (type == F2FS_WB_CP_DATA)
  99. f2fs_stop_checkpoint(sbi, true);
  100. }
  101. f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
  102. page->index != nid_of_node(page));
  103. dec_page_count(sbi, type);
  104. clear_cold_data(page);
  105. end_page_writeback(page);
  106. }
  107. if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
  108. wq_has_sleeper(&sbi->cp_wait))
  109. wake_up(&sbi->cp_wait);
  110. bio_put(bio);
  111. }
  112. /*
  113. * Return true, if pre_bio's bdev is same as its target device.
  114. */
  115. struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
  116. block_t blk_addr, struct bio *bio)
  117. {
  118. struct block_device *bdev = sbi->sb->s_bdev;
  119. int i;
  120. for (i = 0; i < sbi->s_ndevs; i++) {
  121. if (FDEV(i).start_blk <= blk_addr &&
  122. FDEV(i).end_blk >= blk_addr) {
  123. blk_addr -= FDEV(i).start_blk;
  124. bdev = FDEV(i).bdev;
  125. break;
  126. }
  127. }
  128. if (bio) {
  129. bio_set_dev(bio, bdev);
  130. bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
  131. }
  132. return bdev;
  133. }
  134. int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
  135. {
  136. int i;
  137. for (i = 0; i < sbi->s_ndevs; i++)
  138. if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
  139. return i;
  140. return 0;
  141. }
  142. static bool __same_bdev(struct f2fs_sb_info *sbi,
  143. block_t blk_addr, struct bio *bio)
  144. {
  145. struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
  146. return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
  147. }
  148. /*
  149. * Low-level block read/write IO operations.
  150. */
  151. static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
  152. struct writeback_control *wbc,
  153. int npages, bool is_read)
  154. {
  155. struct bio *bio;
  156. bio = f2fs_bio_alloc(sbi, npages, true);
  157. f2fs_target_device(sbi, blk_addr, bio);
  158. bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
  159. bio->bi_private = is_read ? NULL : sbi;
  160. if (wbc)
  161. wbc_init_bio(wbc, bio);
  162. return bio;
  163. }
  164. static inline void __submit_bio(struct f2fs_sb_info *sbi,
  165. struct bio *bio, enum page_type type)
  166. {
  167. if (!is_read_io(bio_op(bio))) {
  168. unsigned int start;
  169. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  170. current->plug && (type == DATA || type == NODE))
  171. blk_finish_plug(current->plug);
  172. if (type != DATA && type != NODE)
  173. goto submit_io;
  174. start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
  175. start %= F2FS_IO_SIZE(sbi);
  176. if (start == 0)
  177. goto submit_io;
  178. /* fill dummy pages */
  179. for (; start < F2FS_IO_SIZE(sbi); start++) {
  180. struct page *page =
  181. mempool_alloc(sbi->write_io_dummy,
  182. GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
  183. f2fs_bug_on(sbi, !page);
  184. SetPagePrivate(page);
  185. set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
  186. lock_page(page);
  187. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
  188. f2fs_bug_on(sbi, 1);
  189. }
  190. /*
  191. * In the NODE case, we lose next block address chain. So, we
  192. * need to do checkpoint in f2fs_sync_file.
  193. */
  194. if (type == NODE)
  195. set_sbi_flag(sbi, SBI_NEED_CP);
  196. }
  197. submit_io:
  198. if (is_read_io(bio_op(bio)))
  199. trace_f2fs_submit_read_bio(sbi->sb, type, bio);
  200. else
  201. trace_f2fs_submit_write_bio(sbi->sb, type, bio);
  202. submit_bio(bio);
  203. }
  204. static void __submit_merged_bio(struct f2fs_bio_info *io)
  205. {
  206. struct f2fs_io_info *fio = &io->fio;
  207. if (!io->bio)
  208. return;
  209. bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
  210. if (is_read_io(fio->op))
  211. trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
  212. else
  213. trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
  214. __submit_bio(io->sbi, io->bio, fio->type);
  215. io->bio = NULL;
  216. }
  217. static bool __has_merged_page(struct f2fs_bio_info *io,
  218. struct inode *inode, nid_t ino, pgoff_t idx)
  219. {
  220. struct bio_vec *bvec;
  221. struct page *target;
  222. int i;
  223. if (!io->bio)
  224. return false;
  225. if (!inode && !ino)
  226. return true;
  227. bio_for_each_segment_all(bvec, io->bio, i) {
  228. if (bvec->bv_page->mapping)
  229. target = bvec->bv_page;
  230. else
  231. target = fscrypt_control_page(bvec->bv_page);
  232. if (idx != target->index)
  233. continue;
  234. if (inode && inode == target->mapping->host)
  235. return true;
  236. if (ino && ino == ino_of_node(target))
  237. return true;
  238. }
  239. return false;
  240. }
  241. static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
  242. nid_t ino, pgoff_t idx, enum page_type type)
  243. {
  244. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  245. enum temp_type temp;
  246. struct f2fs_bio_info *io;
  247. bool ret = false;
  248. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  249. io = sbi->write_io[btype] + temp;
  250. down_read(&io->io_rwsem);
  251. ret = __has_merged_page(io, inode, ino, idx);
  252. up_read(&io->io_rwsem);
  253. /* TODO: use HOT temp only for meta pages now. */
  254. if (ret || btype == META)
  255. break;
  256. }
  257. return ret;
  258. }
  259. static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
  260. enum page_type type, enum temp_type temp)
  261. {
  262. enum page_type btype = PAGE_TYPE_OF_BIO(type);
  263. struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
  264. down_write(&io->io_rwsem);
  265. /* change META to META_FLUSH in the checkpoint procedure */
  266. if (type >= META_FLUSH) {
  267. io->fio.type = META_FLUSH;
  268. io->fio.op = REQ_OP_WRITE;
  269. io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
  270. if (!test_opt(sbi, NOBARRIER))
  271. io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  272. }
  273. __submit_merged_bio(io);
  274. up_write(&io->io_rwsem);
  275. }
  276. static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
  277. struct inode *inode, nid_t ino, pgoff_t idx,
  278. enum page_type type, bool force)
  279. {
  280. enum temp_type temp;
  281. if (!force && !has_merged_page(sbi, inode, ino, idx, type))
  282. return;
  283. for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
  284. __f2fs_submit_merged_write(sbi, type, temp);
  285. /* TODO: use HOT temp only for meta pages now. */
  286. if (type >= META)
  287. break;
  288. }
  289. }
  290. void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
  291. {
  292. __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
  293. }
  294. void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
  295. struct inode *inode, nid_t ino, pgoff_t idx,
  296. enum page_type type)
  297. {
  298. __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
  299. }
  300. void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
  301. {
  302. f2fs_submit_merged_write(sbi, DATA);
  303. f2fs_submit_merged_write(sbi, NODE);
  304. f2fs_submit_merged_write(sbi, META);
  305. }
  306. /*
  307. * Fill the locked page with data located in the block address.
  308. * A caller needs to unlock the page on failure.
  309. */
  310. int f2fs_submit_page_bio(struct f2fs_io_info *fio)
  311. {
  312. struct bio *bio;
  313. struct page *page = fio->encrypted_page ?
  314. fio->encrypted_page : fio->page;
  315. trace_f2fs_submit_page_bio(page, fio);
  316. f2fs_trace_ios(fio, 0);
  317. /* Allocate a new bio */
  318. bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
  319. 1, is_read_io(fio->op));
  320. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  321. bio_put(bio);
  322. return -EFAULT;
  323. }
  324. bio_set_op_attrs(bio, fio->op, fio->op_flags);
  325. __submit_bio(fio->sbi, bio, fio->type);
  326. if (!is_read_io(fio->op))
  327. inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
  328. return 0;
  329. }
  330. int f2fs_submit_page_write(struct f2fs_io_info *fio)
  331. {
  332. struct f2fs_sb_info *sbi = fio->sbi;
  333. enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
  334. struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
  335. struct page *bio_page;
  336. int err = 0;
  337. f2fs_bug_on(sbi, is_read_io(fio->op));
  338. down_write(&io->io_rwsem);
  339. next:
  340. if (fio->in_list) {
  341. spin_lock(&io->io_lock);
  342. if (list_empty(&io->io_list)) {
  343. spin_unlock(&io->io_lock);
  344. goto out_fail;
  345. }
  346. fio = list_first_entry(&io->io_list,
  347. struct f2fs_io_info, list);
  348. list_del(&fio->list);
  349. spin_unlock(&io->io_lock);
  350. }
  351. if (fio->old_blkaddr != NEW_ADDR)
  352. verify_block_addr(sbi, fio->old_blkaddr);
  353. verify_block_addr(sbi, fio->new_blkaddr);
  354. bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
  355. /* set submitted = true as a return value */
  356. fio->submitted = true;
  357. inc_page_count(sbi, WB_DATA_TYPE(bio_page));
  358. if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
  359. (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
  360. !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
  361. __submit_merged_bio(io);
  362. alloc_new:
  363. if (io->bio == NULL) {
  364. if ((fio->type == DATA || fio->type == NODE) &&
  365. fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
  366. err = -EAGAIN;
  367. dec_page_count(sbi, WB_DATA_TYPE(bio_page));
  368. goto out_fail;
  369. }
  370. io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
  371. BIO_MAX_PAGES, false);
  372. io->fio = *fio;
  373. }
  374. if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
  375. __submit_merged_bio(io);
  376. goto alloc_new;
  377. }
  378. if (fio->io_wbc)
  379. wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
  380. io->last_block_in_bio = fio->new_blkaddr;
  381. f2fs_trace_ios(fio, 0);
  382. trace_f2fs_submit_page_write(fio->page, fio);
  383. if (fio->in_list)
  384. goto next;
  385. out_fail:
  386. up_write(&io->io_rwsem);
  387. return err;
  388. }
  389. static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
  390. unsigned nr_pages)
  391. {
  392. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  393. struct fscrypt_ctx *ctx = NULL;
  394. struct bio *bio;
  395. if (f2fs_encrypted_file(inode)) {
  396. ctx = fscrypt_get_ctx(inode, GFP_NOFS);
  397. if (IS_ERR(ctx))
  398. return ERR_CAST(ctx);
  399. /* wait the page to be moved by cleaning */
  400. f2fs_wait_on_block_writeback(sbi, blkaddr);
  401. }
  402. bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
  403. if (!bio) {
  404. if (ctx)
  405. fscrypt_release_ctx(ctx);
  406. return ERR_PTR(-ENOMEM);
  407. }
  408. f2fs_target_device(sbi, blkaddr, bio);
  409. bio->bi_end_io = f2fs_read_end_io;
  410. bio->bi_private = ctx;
  411. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  412. return bio;
  413. }
  414. /* This can handle encryption stuffs */
  415. static int f2fs_submit_page_read(struct inode *inode, struct page *page,
  416. block_t blkaddr)
  417. {
  418. struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
  419. if (IS_ERR(bio))
  420. return PTR_ERR(bio);
  421. if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
  422. bio_put(bio);
  423. return -EFAULT;
  424. }
  425. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  426. return 0;
  427. }
  428. static void __set_data_blkaddr(struct dnode_of_data *dn)
  429. {
  430. struct f2fs_node *rn = F2FS_NODE(dn->node_page);
  431. __le32 *addr_array;
  432. int base = 0;
  433. if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
  434. base = get_extra_isize(dn->inode);
  435. /* Get physical address of data block */
  436. addr_array = blkaddr_in_node(rn);
  437. addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
  438. }
  439. /*
  440. * Lock ordering for the change of data block address:
  441. * ->data_page
  442. * ->node_page
  443. * update block addresses in the node page
  444. */
  445. void set_data_blkaddr(struct dnode_of_data *dn)
  446. {
  447. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  448. __set_data_blkaddr(dn);
  449. if (set_page_dirty(dn->node_page))
  450. dn->node_changed = true;
  451. }
  452. void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
  453. {
  454. dn->data_blkaddr = blkaddr;
  455. set_data_blkaddr(dn);
  456. f2fs_update_extent_cache(dn);
  457. }
  458. /* dn->ofs_in_node will be returned with up-to-date last block pointer */
  459. int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
  460. {
  461. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  462. int err;
  463. if (!count)
  464. return 0;
  465. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  466. return -EPERM;
  467. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  468. return err;
  469. trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
  470. dn->ofs_in_node, count);
  471. f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
  472. for (; count > 0; dn->ofs_in_node++) {
  473. block_t blkaddr = datablock_addr(dn->inode,
  474. dn->node_page, dn->ofs_in_node);
  475. if (blkaddr == NULL_ADDR) {
  476. dn->data_blkaddr = NEW_ADDR;
  477. __set_data_blkaddr(dn);
  478. count--;
  479. }
  480. }
  481. if (set_page_dirty(dn->node_page))
  482. dn->node_changed = true;
  483. return 0;
  484. }
  485. /* Should keep dn->ofs_in_node unchanged */
  486. int reserve_new_block(struct dnode_of_data *dn)
  487. {
  488. unsigned int ofs_in_node = dn->ofs_in_node;
  489. int ret;
  490. ret = reserve_new_blocks(dn, 1);
  491. dn->ofs_in_node = ofs_in_node;
  492. return ret;
  493. }
  494. int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
  495. {
  496. bool need_put = dn->inode_page ? false : true;
  497. int err;
  498. err = get_dnode_of_data(dn, index, ALLOC_NODE);
  499. if (err)
  500. return err;
  501. if (dn->data_blkaddr == NULL_ADDR)
  502. err = reserve_new_block(dn);
  503. if (err || need_put)
  504. f2fs_put_dnode(dn);
  505. return err;
  506. }
  507. int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
  508. {
  509. struct extent_info ei = {0,0,0};
  510. struct inode *inode = dn->inode;
  511. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  512. dn->data_blkaddr = ei.blk + index - ei.fofs;
  513. return 0;
  514. }
  515. return f2fs_reserve_block(dn, index);
  516. }
  517. struct page *get_read_data_page(struct inode *inode, pgoff_t index,
  518. int op_flags, bool for_write)
  519. {
  520. struct address_space *mapping = inode->i_mapping;
  521. struct dnode_of_data dn;
  522. struct page *page;
  523. struct extent_info ei = {0,0,0};
  524. int err;
  525. page = f2fs_grab_cache_page(mapping, index, for_write);
  526. if (!page)
  527. return ERR_PTR(-ENOMEM);
  528. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  529. dn.data_blkaddr = ei.blk + index - ei.fofs;
  530. goto got_it;
  531. }
  532. set_new_dnode(&dn, inode, NULL, NULL, 0);
  533. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  534. if (err)
  535. goto put_err;
  536. f2fs_put_dnode(&dn);
  537. if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
  538. err = -ENOENT;
  539. goto put_err;
  540. }
  541. got_it:
  542. if (PageUptodate(page)) {
  543. unlock_page(page);
  544. return page;
  545. }
  546. /*
  547. * A new dentry page is allocated but not able to be written, since its
  548. * new inode page couldn't be allocated due to -ENOSPC.
  549. * In such the case, its blkaddr can be remained as NEW_ADDR.
  550. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
  551. */
  552. if (dn.data_blkaddr == NEW_ADDR) {
  553. zero_user_segment(page, 0, PAGE_SIZE);
  554. if (!PageUptodate(page))
  555. SetPageUptodate(page);
  556. unlock_page(page);
  557. return page;
  558. }
  559. err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
  560. if (err)
  561. goto put_err;
  562. return page;
  563. put_err:
  564. f2fs_put_page(page, 1);
  565. return ERR_PTR(err);
  566. }
  567. struct page *find_data_page(struct inode *inode, pgoff_t index)
  568. {
  569. struct address_space *mapping = inode->i_mapping;
  570. struct page *page;
  571. page = find_get_page(mapping, index);
  572. if (page && PageUptodate(page))
  573. return page;
  574. f2fs_put_page(page, 0);
  575. page = get_read_data_page(inode, index, 0, false);
  576. if (IS_ERR(page))
  577. return page;
  578. if (PageUptodate(page))
  579. return page;
  580. wait_on_page_locked(page);
  581. if (unlikely(!PageUptodate(page))) {
  582. f2fs_put_page(page, 0);
  583. return ERR_PTR(-EIO);
  584. }
  585. return page;
  586. }
  587. /*
  588. * If it tries to access a hole, return an error.
  589. * Because, the callers, functions in dir.c and GC, should be able to know
  590. * whether this page exists or not.
  591. */
  592. struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
  593. bool for_write)
  594. {
  595. struct address_space *mapping = inode->i_mapping;
  596. struct page *page;
  597. repeat:
  598. page = get_read_data_page(inode, index, 0, for_write);
  599. if (IS_ERR(page))
  600. return page;
  601. /* wait for read completion */
  602. lock_page(page);
  603. if (unlikely(page->mapping != mapping)) {
  604. f2fs_put_page(page, 1);
  605. goto repeat;
  606. }
  607. if (unlikely(!PageUptodate(page))) {
  608. f2fs_put_page(page, 1);
  609. return ERR_PTR(-EIO);
  610. }
  611. return page;
  612. }
  613. /*
  614. * Caller ensures that this data page is never allocated.
  615. * A new zero-filled data page is allocated in the page cache.
  616. *
  617. * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
  618. * f2fs_unlock_op().
  619. * Note that, ipage is set only by make_empty_dir, and if any error occur,
  620. * ipage should be released by this function.
  621. */
  622. struct page *get_new_data_page(struct inode *inode,
  623. struct page *ipage, pgoff_t index, bool new_i_size)
  624. {
  625. struct address_space *mapping = inode->i_mapping;
  626. struct page *page;
  627. struct dnode_of_data dn;
  628. int err;
  629. page = f2fs_grab_cache_page(mapping, index, true);
  630. if (!page) {
  631. /*
  632. * before exiting, we should make sure ipage will be released
  633. * if any error occur.
  634. */
  635. f2fs_put_page(ipage, 1);
  636. return ERR_PTR(-ENOMEM);
  637. }
  638. set_new_dnode(&dn, inode, ipage, NULL, 0);
  639. err = f2fs_reserve_block(&dn, index);
  640. if (err) {
  641. f2fs_put_page(page, 1);
  642. return ERR_PTR(err);
  643. }
  644. if (!ipage)
  645. f2fs_put_dnode(&dn);
  646. if (PageUptodate(page))
  647. goto got_it;
  648. if (dn.data_blkaddr == NEW_ADDR) {
  649. zero_user_segment(page, 0, PAGE_SIZE);
  650. if (!PageUptodate(page))
  651. SetPageUptodate(page);
  652. } else {
  653. f2fs_put_page(page, 1);
  654. /* if ipage exists, blkaddr should be NEW_ADDR */
  655. f2fs_bug_on(F2FS_I_SB(inode), ipage);
  656. page = get_lock_data_page(inode, index, true);
  657. if (IS_ERR(page))
  658. return page;
  659. }
  660. got_it:
  661. if (new_i_size && i_size_read(inode) <
  662. ((loff_t)(index + 1) << PAGE_SHIFT))
  663. f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
  664. return page;
  665. }
  666. static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
  667. {
  668. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  669. struct f2fs_summary sum;
  670. struct node_info ni;
  671. pgoff_t fofs;
  672. blkcnt_t count = 1;
  673. int err;
  674. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  675. return -EPERM;
  676. dn->data_blkaddr = datablock_addr(dn->inode,
  677. dn->node_page, dn->ofs_in_node);
  678. if (dn->data_blkaddr == NEW_ADDR)
  679. goto alloc;
  680. if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
  681. return err;
  682. alloc:
  683. get_node_info(sbi, dn->nid, &ni);
  684. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  685. allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
  686. &sum, seg_type, NULL, false);
  687. set_data_blkaddr(dn);
  688. /* update i_size */
  689. fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
  690. dn->ofs_in_node;
  691. if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
  692. f2fs_i_size_write(dn->inode,
  693. ((loff_t)(fofs + 1) << PAGE_SHIFT));
  694. return 0;
  695. }
  696. static inline bool __force_buffered_io(struct inode *inode, int rw)
  697. {
  698. return (f2fs_encrypted_file(inode) ||
  699. (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
  700. F2FS_I_SB(inode)->s_ndevs);
  701. }
  702. int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
  703. {
  704. struct inode *inode = file_inode(iocb->ki_filp);
  705. struct f2fs_map_blocks map;
  706. int flag;
  707. int err = 0;
  708. bool direct_io = iocb->ki_flags & IOCB_DIRECT;
  709. /* convert inline data for Direct I/O*/
  710. if (direct_io) {
  711. err = f2fs_convert_inline_inode(inode);
  712. if (err)
  713. return err;
  714. }
  715. if (is_inode_flag_set(inode, FI_NO_PREALLOC))
  716. return 0;
  717. map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
  718. map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
  719. if (map.m_len > map.m_lblk)
  720. map.m_len -= map.m_lblk;
  721. else
  722. map.m_len = 0;
  723. map.m_next_pgofs = NULL;
  724. map.m_next_extent = NULL;
  725. map.m_seg_type = NO_CHECK_TYPE;
  726. if (direct_io) {
  727. map.m_seg_type = rw_hint_to_seg_type(iocb->ki_hint);
  728. flag = __force_buffered_io(inode, WRITE) ?
  729. F2FS_GET_BLOCK_PRE_AIO :
  730. F2FS_GET_BLOCK_PRE_DIO;
  731. goto map_blocks;
  732. }
  733. if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
  734. err = f2fs_convert_inline_inode(inode);
  735. if (err)
  736. return err;
  737. }
  738. if (f2fs_has_inline_data(inode))
  739. return err;
  740. flag = F2FS_GET_BLOCK_PRE_AIO;
  741. map_blocks:
  742. err = f2fs_map_blocks(inode, &map, 1, flag);
  743. if (map.m_len > 0 && err == -ENOSPC) {
  744. if (!direct_io)
  745. set_inode_flag(inode, FI_NO_PREALLOC);
  746. err = 0;
  747. }
  748. return err;
  749. }
  750. static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
  751. {
  752. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  753. if (lock)
  754. down_read(&sbi->node_change);
  755. else
  756. up_read(&sbi->node_change);
  757. } else {
  758. if (lock)
  759. f2fs_lock_op(sbi);
  760. else
  761. f2fs_unlock_op(sbi);
  762. }
  763. }
  764. /*
  765. * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
  766. * f2fs_map_blocks structure.
  767. * If original data blocks are allocated, then give them to blockdev.
  768. * Otherwise,
  769. * a. preallocate requested block addresses
  770. * b. do not use extent cache for better performance
  771. * c. give the block addresses to blockdev
  772. */
  773. int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
  774. int create, int flag)
  775. {
  776. unsigned int maxblocks = map->m_len;
  777. struct dnode_of_data dn;
  778. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  779. int mode = create ? ALLOC_NODE : LOOKUP_NODE;
  780. pgoff_t pgofs, end_offset, end;
  781. int err = 0, ofs = 1;
  782. unsigned int ofs_in_node, last_ofs_in_node;
  783. blkcnt_t prealloc;
  784. struct extent_info ei = {0,0,0};
  785. block_t blkaddr;
  786. unsigned int start_pgofs;
  787. if (!maxblocks)
  788. return 0;
  789. map->m_len = 0;
  790. map->m_flags = 0;
  791. /* it only supports block size == page size */
  792. pgofs = (pgoff_t)map->m_lblk;
  793. end = pgofs + maxblocks;
  794. if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
  795. map->m_pblk = ei.blk + pgofs - ei.fofs;
  796. map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
  797. map->m_flags = F2FS_MAP_MAPPED;
  798. if (map->m_next_extent)
  799. *map->m_next_extent = pgofs + map->m_len;
  800. goto out;
  801. }
  802. next_dnode:
  803. if (create)
  804. __do_map_lock(sbi, flag, true);
  805. /* When reading holes, we need its node page */
  806. set_new_dnode(&dn, inode, NULL, NULL, 0);
  807. err = get_dnode_of_data(&dn, pgofs, mode);
  808. if (err) {
  809. if (flag == F2FS_GET_BLOCK_BMAP)
  810. map->m_pblk = 0;
  811. if (err == -ENOENT) {
  812. err = 0;
  813. if (map->m_next_pgofs)
  814. *map->m_next_pgofs =
  815. get_next_page_offset(&dn, pgofs);
  816. if (map->m_next_extent)
  817. *map->m_next_extent =
  818. get_next_page_offset(&dn, pgofs);
  819. }
  820. goto unlock_out;
  821. }
  822. start_pgofs = pgofs;
  823. prealloc = 0;
  824. last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
  825. end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
  826. next_block:
  827. blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
  828. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
  829. if (create) {
  830. if (unlikely(f2fs_cp_error(sbi))) {
  831. err = -EIO;
  832. goto sync_out;
  833. }
  834. if (flag == F2FS_GET_BLOCK_PRE_AIO) {
  835. if (blkaddr == NULL_ADDR) {
  836. prealloc++;
  837. last_ofs_in_node = dn.ofs_in_node;
  838. }
  839. } else {
  840. err = __allocate_data_block(&dn,
  841. map->m_seg_type);
  842. if (!err)
  843. set_inode_flag(inode, FI_APPEND_WRITE);
  844. }
  845. if (err)
  846. goto sync_out;
  847. map->m_flags |= F2FS_MAP_NEW;
  848. blkaddr = dn.data_blkaddr;
  849. } else {
  850. if (flag == F2FS_GET_BLOCK_BMAP) {
  851. map->m_pblk = 0;
  852. goto sync_out;
  853. }
  854. if (flag == F2FS_GET_BLOCK_PRECACHE)
  855. goto sync_out;
  856. if (flag == F2FS_GET_BLOCK_FIEMAP &&
  857. blkaddr == NULL_ADDR) {
  858. if (map->m_next_pgofs)
  859. *map->m_next_pgofs = pgofs + 1;
  860. goto sync_out;
  861. }
  862. if (flag != F2FS_GET_BLOCK_FIEMAP)
  863. goto sync_out;
  864. }
  865. }
  866. if (flag == F2FS_GET_BLOCK_PRE_AIO)
  867. goto skip;
  868. if (map->m_len == 0) {
  869. /* preallocated unwritten block should be mapped for fiemap. */
  870. if (blkaddr == NEW_ADDR)
  871. map->m_flags |= F2FS_MAP_UNWRITTEN;
  872. map->m_flags |= F2FS_MAP_MAPPED;
  873. map->m_pblk = blkaddr;
  874. map->m_len = 1;
  875. } else if ((map->m_pblk != NEW_ADDR &&
  876. blkaddr == (map->m_pblk + ofs)) ||
  877. (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
  878. flag == F2FS_GET_BLOCK_PRE_DIO) {
  879. ofs++;
  880. map->m_len++;
  881. } else {
  882. goto sync_out;
  883. }
  884. skip:
  885. dn.ofs_in_node++;
  886. pgofs++;
  887. /* preallocate blocks in batch for one dnode page */
  888. if (flag == F2FS_GET_BLOCK_PRE_AIO &&
  889. (pgofs == end || dn.ofs_in_node == end_offset)) {
  890. dn.ofs_in_node = ofs_in_node;
  891. err = reserve_new_blocks(&dn, prealloc);
  892. if (err)
  893. goto sync_out;
  894. map->m_len += dn.ofs_in_node - ofs_in_node;
  895. if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
  896. err = -ENOSPC;
  897. goto sync_out;
  898. }
  899. dn.ofs_in_node = end_offset;
  900. }
  901. if (pgofs >= end)
  902. goto sync_out;
  903. else if (dn.ofs_in_node < end_offset)
  904. goto next_block;
  905. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  906. if (map->m_flags & F2FS_MAP_MAPPED) {
  907. unsigned int ofs = start_pgofs - map->m_lblk;
  908. f2fs_update_extent_cache_range(&dn,
  909. start_pgofs, map->m_pblk + ofs,
  910. map->m_len - ofs);
  911. }
  912. }
  913. f2fs_put_dnode(&dn);
  914. if (create) {
  915. __do_map_lock(sbi, flag, false);
  916. f2fs_balance_fs(sbi, dn.node_changed);
  917. }
  918. goto next_dnode;
  919. sync_out:
  920. if (flag == F2FS_GET_BLOCK_PRECACHE) {
  921. if (map->m_flags & F2FS_MAP_MAPPED) {
  922. unsigned int ofs = start_pgofs - map->m_lblk;
  923. f2fs_update_extent_cache_range(&dn,
  924. start_pgofs, map->m_pblk + ofs,
  925. map->m_len - ofs);
  926. }
  927. if (map->m_next_extent)
  928. *map->m_next_extent = pgofs + 1;
  929. }
  930. f2fs_put_dnode(&dn);
  931. unlock_out:
  932. if (create) {
  933. __do_map_lock(sbi, flag, false);
  934. f2fs_balance_fs(sbi, dn.node_changed);
  935. }
  936. out:
  937. trace_f2fs_map_blocks(inode, map, err);
  938. return err;
  939. }
  940. static int __get_data_block(struct inode *inode, sector_t iblock,
  941. struct buffer_head *bh, int create, int flag,
  942. pgoff_t *next_pgofs, int seg_type)
  943. {
  944. struct f2fs_map_blocks map;
  945. int err;
  946. map.m_lblk = iblock;
  947. map.m_len = bh->b_size >> inode->i_blkbits;
  948. map.m_next_pgofs = next_pgofs;
  949. map.m_next_extent = NULL;
  950. map.m_seg_type = seg_type;
  951. err = f2fs_map_blocks(inode, &map, create, flag);
  952. if (!err) {
  953. map_bh(bh, inode->i_sb, map.m_pblk);
  954. bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
  955. bh->b_size = (u64)map.m_len << inode->i_blkbits;
  956. }
  957. return err;
  958. }
  959. static int get_data_block(struct inode *inode, sector_t iblock,
  960. struct buffer_head *bh_result, int create, int flag,
  961. pgoff_t *next_pgofs)
  962. {
  963. return __get_data_block(inode, iblock, bh_result, create,
  964. flag, next_pgofs,
  965. NO_CHECK_TYPE);
  966. }
  967. static int get_data_block_dio(struct inode *inode, sector_t iblock,
  968. struct buffer_head *bh_result, int create)
  969. {
  970. return __get_data_block(inode, iblock, bh_result, create,
  971. F2FS_GET_BLOCK_DEFAULT, NULL,
  972. rw_hint_to_seg_type(
  973. inode->i_write_hint));
  974. }
  975. static int get_data_block_bmap(struct inode *inode, sector_t iblock,
  976. struct buffer_head *bh_result, int create)
  977. {
  978. /* Block number less than F2FS MAX BLOCKS */
  979. if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
  980. return -EFBIG;
  981. return __get_data_block(inode, iblock, bh_result, create,
  982. F2FS_GET_BLOCK_BMAP, NULL,
  983. NO_CHECK_TYPE);
  984. }
  985. static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
  986. {
  987. return (offset >> inode->i_blkbits);
  988. }
  989. static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
  990. {
  991. return (blk << inode->i_blkbits);
  992. }
  993. static int f2fs_xattr_fiemap(struct inode *inode,
  994. struct fiemap_extent_info *fieinfo)
  995. {
  996. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  997. struct page *page;
  998. struct node_info ni;
  999. __u64 phys = 0, len;
  1000. __u32 flags;
  1001. nid_t xnid = F2FS_I(inode)->i_xattr_nid;
  1002. int err = 0;
  1003. if (f2fs_has_inline_xattr(inode)) {
  1004. int offset;
  1005. page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
  1006. inode->i_ino, false);
  1007. if (!page)
  1008. return -ENOMEM;
  1009. get_node_info(sbi, inode->i_ino, &ni);
  1010. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1011. offset = offsetof(struct f2fs_inode, i_addr) +
  1012. sizeof(__le32) * (DEF_ADDRS_PER_INODE -
  1013. F2FS_INLINE_XATTR_ADDRS(inode));
  1014. phys += offset;
  1015. len = inline_xattr_size(inode);
  1016. f2fs_put_page(page, 1);
  1017. flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
  1018. if (!xnid)
  1019. flags |= FIEMAP_EXTENT_LAST;
  1020. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1021. if (err || err == 1)
  1022. return err;
  1023. }
  1024. if (xnid) {
  1025. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
  1026. if (!page)
  1027. return -ENOMEM;
  1028. get_node_info(sbi, xnid, &ni);
  1029. phys = (__u64)blk_to_logical(inode, ni.blk_addr);
  1030. len = inode->i_sb->s_blocksize;
  1031. f2fs_put_page(page, 1);
  1032. flags = FIEMAP_EXTENT_LAST;
  1033. }
  1034. if (phys)
  1035. err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
  1036. return (err < 0 ? err : 0);
  1037. }
  1038. int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  1039. u64 start, u64 len)
  1040. {
  1041. struct buffer_head map_bh;
  1042. sector_t start_blk, last_blk;
  1043. pgoff_t next_pgofs;
  1044. u64 logical = 0, phys = 0, size = 0;
  1045. u32 flags = 0;
  1046. int ret = 0;
  1047. if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
  1048. ret = f2fs_precache_extents(inode);
  1049. if (ret)
  1050. return ret;
  1051. }
  1052. ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
  1053. if (ret)
  1054. return ret;
  1055. inode_lock(inode);
  1056. if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
  1057. ret = f2fs_xattr_fiemap(inode, fieinfo);
  1058. goto out;
  1059. }
  1060. if (f2fs_has_inline_data(inode)) {
  1061. ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
  1062. if (ret != -EAGAIN)
  1063. goto out;
  1064. }
  1065. if (logical_to_blk(inode, len) == 0)
  1066. len = blk_to_logical(inode, 1);
  1067. start_blk = logical_to_blk(inode, start);
  1068. last_blk = logical_to_blk(inode, start + len - 1);
  1069. next:
  1070. memset(&map_bh, 0, sizeof(struct buffer_head));
  1071. map_bh.b_size = len;
  1072. ret = get_data_block(inode, start_blk, &map_bh, 0,
  1073. F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
  1074. if (ret)
  1075. goto out;
  1076. /* HOLE */
  1077. if (!buffer_mapped(&map_bh)) {
  1078. start_blk = next_pgofs;
  1079. if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
  1080. F2FS_I_SB(inode)->max_file_blocks))
  1081. goto prep_next;
  1082. flags |= FIEMAP_EXTENT_LAST;
  1083. }
  1084. if (size) {
  1085. if (f2fs_encrypted_inode(inode))
  1086. flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
  1087. ret = fiemap_fill_next_extent(fieinfo, logical,
  1088. phys, size, flags);
  1089. }
  1090. if (start_blk > last_blk || ret)
  1091. goto out;
  1092. logical = blk_to_logical(inode, start_blk);
  1093. phys = blk_to_logical(inode, map_bh.b_blocknr);
  1094. size = map_bh.b_size;
  1095. flags = 0;
  1096. if (buffer_unwritten(&map_bh))
  1097. flags = FIEMAP_EXTENT_UNWRITTEN;
  1098. start_blk += logical_to_blk(inode, size);
  1099. prep_next:
  1100. cond_resched();
  1101. if (fatal_signal_pending(current))
  1102. ret = -EINTR;
  1103. else
  1104. goto next;
  1105. out:
  1106. if (ret == 1)
  1107. ret = 0;
  1108. inode_unlock(inode);
  1109. return ret;
  1110. }
  1111. /*
  1112. * This function was originally taken from fs/mpage.c, and customized for f2fs.
  1113. * Major change was from block_size == page_size in f2fs by default.
  1114. */
  1115. static int f2fs_mpage_readpages(struct address_space *mapping,
  1116. struct list_head *pages, struct page *page,
  1117. unsigned nr_pages)
  1118. {
  1119. struct bio *bio = NULL;
  1120. sector_t last_block_in_bio = 0;
  1121. struct inode *inode = mapping->host;
  1122. const unsigned blkbits = inode->i_blkbits;
  1123. const unsigned blocksize = 1 << blkbits;
  1124. sector_t block_in_file;
  1125. sector_t last_block;
  1126. sector_t last_block_in_file;
  1127. sector_t block_nr;
  1128. struct f2fs_map_blocks map;
  1129. map.m_pblk = 0;
  1130. map.m_lblk = 0;
  1131. map.m_len = 0;
  1132. map.m_flags = 0;
  1133. map.m_next_pgofs = NULL;
  1134. map.m_next_extent = NULL;
  1135. map.m_seg_type = NO_CHECK_TYPE;
  1136. for (; nr_pages; nr_pages--) {
  1137. if (pages) {
  1138. page = list_last_entry(pages, struct page, lru);
  1139. prefetchw(&page->flags);
  1140. list_del(&page->lru);
  1141. if (add_to_page_cache_lru(page, mapping,
  1142. page->index,
  1143. readahead_gfp_mask(mapping)))
  1144. goto next_page;
  1145. }
  1146. block_in_file = (sector_t)page->index;
  1147. last_block = block_in_file + nr_pages;
  1148. last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
  1149. blkbits;
  1150. if (last_block > last_block_in_file)
  1151. last_block = last_block_in_file;
  1152. /*
  1153. * Map blocks using the previous result first.
  1154. */
  1155. if ((map.m_flags & F2FS_MAP_MAPPED) &&
  1156. block_in_file > map.m_lblk &&
  1157. block_in_file < (map.m_lblk + map.m_len))
  1158. goto got_it;
  1159. /*
  1160. * Then do more f2fs_map_blocks() calls until we are
  1161. * done with this page.
  1162. */
  1163. map.m_flags = 0;
  1164. if (block_in_file < last_block) {
  1165. map.m_lblk = block_in_file;
  1166. map.m_len = last_block - block_in_file;
  1167. if (f2fs_map_blocks(inode, &map, 0,
  1168. F2FS_GET_BLOCK_DEFAULT))
  1169. goto set_error_page;
  1170. }
  1171. got_it:
  1172. if ((map.m_flags & F2FS_MAP_MAPPED)) {
  1173. block_nr = map.m_pblk + block_in_file - map.m_lblk;
  1174. SetPageMappedToDisk(page);
  1175. if (!PageUptodate(page) && !cleancache_get_page(page)) {
  1176. SetPageUptodate(page);
  1177. goto confused;
  1178. }
  1179. } else {
  1180. zero_user_segment(page, 0, PAGE_SIZE);
  1181. if (!PageUptodate(page))
  1182. SetPageUptodate(page);
  1183. unlock_page(page);
  1184. goto next_page;
  1185. }
  1186. /*
  1187. * This page will go to BIO. Do we need to send this
  1188. * BIO off first?
  1189. */
  1190. if (bio && (last_block_in_bio != block_nr - 1 ||
  1191. !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
  1192. submit_and_realloc:
  1193. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1194. bio = NULL;
  1195. }
  1196. if (bio == NULL) {
  1197. bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
  1198. if (IS_ERR(bio)) {
  1199. bio = NULL;
  1200. goto set_error_page;
  1201. }
  1202. }
  1203. if (bio_add_page(bio, page, blocksize, 0) < blocksize)
  1204. goto submit_and_realloc;
  1205. last_block_in_bio = block_nr;
  1206. goto next_page;
  1207. set_error_page:
  1208. SetPageError(page);
  1209. zero_user_segment(page, 0, PAGE_SIZE);
  1210. unlock_page(page);
  1211. goto next_page;
  1212. confused:
  1213. if (bio) {
  1214. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1215. bio = NULL;
  1216. }
  1217. unlock_page(page);
  1218. next_page:
  1219. if (pages)
  1220. put_page(page);
  1221. }
  1222. BUG_ON(pages && !list_empty(pages));
  1223. if (bio)
  1224. __submit_bio(F2FS_I_SB(inode), bio, DATA);
  1225. return 0;
  1226. }
  1227. static int f2fs_read_data_page(struct file *file, struct page *page)
  1228. {
  1229. struct inode *inode = page->mapping->host;
  1230. int ret = -EAGAIN;
  1231. trace_f2fs_readpage(page, DATA);
  1232. /* If the file has inline data, try to read it directly */
  1233. if (f2fs_has_inline_data(inode))
  1234. ret = f2fs_read_inline_data(inode, page);
  1235. if (ret == -EAGAIN)
  1236. ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
  1237. return ret;
  1238. }
  1239. static int f2fs_read_data_pages(struct file *file,
  1240. struct address_space *mapping,
  1241. struct list_head *pages, unsigned nr_pages)
  1242. {
  1243. struct inode *inode = mapping->host;
  1244. struct page *page = list_last_entry(pages, struct page, lru);
  1245. trace_f2fs_readpages(inode, page, nr_pages);
  1246. /* If the file has inline data, skip readpages */
  1247. if (f2fs_has_inline_data(inode))
  1248. return 0;
  1249. return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
  1250. }
  1251. static int encrypt_one_page(struct f2fs_io_info *fio)
  1252. {
  1253. struct inode *inode = fio->page->mapping->host;
  1254. gfp_t gfp_flags = GFP_NOFS;
  1255. if (!f2fs_encrypted_file(inode))
  1256. return 0;
  1257. /* wait for GCed encrypted page writeback */
  1258. f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
  1259. retry_encrypt:
  1260. fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
  1261. PAGE_SIZE, 0, fio->page->index, gfp_flags);
  1262. if (!IS_ERR(fio->encrypted_page))
  1263. return 0;
  1264. /* flush pending IOs and wait for a while in the ENOMEM case */
  1265. if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
  1266. f2fs_flush_merged_writes(fio->sbi);
  1267. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1268. gfp_flags |= __GFP_NOFAIL;
  1269. goto retry_encrypt;
  1270. }
  1271. return PTR_ERR(fio->encrypted_page);
  1272. }
  1273. static inline bool need_inplace_update(struct f2fs_io_info *fio)
  1274. {
  1275. struct inode *inode = fio->page->mapping->host;
  1276. if (f2fs_is_pinned_file(inode))
  1277. return true;
  1278. if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
  1279. return false;
  1280. if (is_cold_data(fio->page))
  1281. return false;
  1282. if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
  1283. return false;
  1284. return need_inplace_update_policy(inode, fio);
  1285. }
  1286. static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
  1287. {
  1288. if (fio->old_blkaddr == NEW_ADDR)
  1289. return false;
  1290. if (fio->old_blkaddr == NULL_ADDR)
  1291. return false;
  1292. return true;
  1293. }
  1294. int do_write_data_page(struct f2fs_io_info *fio)
  1295. {
  1296. struct page *page = fio->page;
  1297. struct inode *inode = page->mapping->host;
  1298. struct dnode_of_data dn;
  1299. struct extent_info ei = {0,0,0};
  1300. bool ipu_force = false;
  1301. int err = 0;
  1302. set_new_dnode(&dn, inode, NULL, NULL, 0);
  1303. if (need_inplace_update(fio) &&
  1304. f2fs_lookup_extent_cache(inode, page->index, &ei)) {
  1305. fio->old_blkaddr = ei.blk + page->index - ei.fofs;
  1306. if (valid_ipu_blkaddr(fio)) {
  1307. ipu_force = true;
  1308. fio->need_lock = LOCK_DONE;
  1309. goto got_it;
  1310. }
  1311. }
  1312. /* Deadlock due to between page->lock and f2fs_lock_op */
  1313. if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
  1314. return -EAGAIN;
  1315. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  1316. if (err)
  1317. goto out;
  1318. fio->old_blkaddr = dn.data_blkaddr;
  1319. /* This page is already truncated */
  1320. if (fio->old_blkaddr == NULL_ADDR) {
  1321. ClearPageUptodate(page);
  1322. goto out_writepage;
  1323. }
  1324. got_it:
  1325. /*
  1326. * If current allocation needs SSR,
  1327. * it had better in-place writes for updated data.
  1328. */
  1329. if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
  1330. err = encrypt_one_page(fio);
  1331. if (err)
  1332. goto out_writepage;
  1333. set_page_writeback(page);
  1334. f2fs_put_dnode(&dn);
  1335. if (fio->need_lock == LOCK_REQ)
  1336. f2fs_unlock_op(fio->sbi);
  1337. err = rewrite_data_page(fio);
  1338. trace_f2fs_do_write_data_page(fio->page, IPU);
  1339. set_inode_flag(inode, FI_UPDATE_WRITE);
  1340. return err;
  1341. }
  1342. if (fio->need_lock == LOCK_RETRY) {
  1343. if (!f2fs_trylock_op(fio->sbi)) {
  1344. err = -EAGAIN;
  1345. goto out_writepage;
  1346. }
  1347. fio->need_lock = LOCK_REQ;
  1348. }
  1349. err = encrypt_one_page(fio);
  1350. if (err)
  1351. goto out_writepage;
  1352. set_page_writeback(page);
  1353. /* LFS mode write path */
  1354. write_data_page(&dn, fio);
  1355. trace_f2fs_do_write_data_page(page, OPU);
  1356. set_inode_flag(inode, FI_APPEND_WRITE);
  1357. if (page->index == 0)
  1358. set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
  1359. out_writepage:
  1360. f2fs_put_dnode(&dn);
  1361. out:
  1362. if (fio->need_lock == LOCK_REQ)
  1363. f2fs_unlock_op(fio->sbi);
  1364. return err;
  1365. }
  1366. static int __write_data_page(struct page *page, bool *submitted,
  1367. struct writeback_control *wbc,
  1368. enum iostat_type io_type)
  1369. {
  1370. struct inode *inode = page->mapping->host;
  1371. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1372. loff_t i_size = i_size_read(inode);
  1373. const pgoff_t end_index = ((unsigned long long) i_size)
  1374. >> PAGE_SHIFT;
  1375. loff_t psize = (page->index + 1) << PAGE_SHIFT;
  1376. unsigned offset = 0;
  1377. bool need_balance_fs = false;
  1378. int err = 0;
  1379. struct f2fs_io_info fio = {
  1380. .sbi = sbi,
  1381. .ino = inode->i_ino,
  1382. .type = DATA,
  1383. .op = REQ_OP_WRITE,
  1384. .op_flags = wbc_to_write_flags(wbc),
  1385. .old_blkaddr = NULL_ADDR,
  1386. .page = page,
  1387. .encrypted_page = NULL,
  1388. .submitted = false,
  1389. .need_lock = LOCK_RETRY,
  1390. .io_type = io_type,
  1391. .io_wbc = wbc,
  1392. };
  1393. trace_f2fs_writepage(page, DATA);
  1394. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1395. goto redirty_out;
  1396. if (page->index < end_index)
  1397. goto write;
  1398. /*
  1399. * If the offset is out-of-range of file size,
  1400. * this page does not have to be written to disk.
  1401. */
  1402. offset = i_size & (PAGE_SIZE - 1);
  1403. if ((page->index >= end_index + 1) || !offset)
  1404. goto out;
  1405. zero_user_segment(page, offset, PAGE_SIZE);
  1406. write:
  1407. if (f2fs_is_drop_cache(inode))
  1408. goto out;
  1409. /* we should not write 0'th page having journal header */
  1410. if (f2fs_is_volatile_file(inode) && (!page->index ||
  1411. (!wbc->for_reclaim &&
  1412. available_free_memory(sbi, BASE_CHECK))))
  1413. goto redirty_out;
  1414. /* we should bypass data pages to proceed the kworkder jobs */
  1415. if (unlikely(f2fs_cp_error(sbi))) {
  1416. mapping_set_error(page->mapping, -EIO);
  1417. goto out;
  1418. }
  1419. /* Dentry blocks are controlled by checkpoint */
  1420. if (S_ISDIR(inode->i_mode)) {
  1421. fio.need_lock = LOCK_DONE;
  1422. err = do_write_data_page(&fio);
  1423. goto done;
  1424. }
  1425. if (!wbc->for_reclaim)
  1426. need_balance_fs = true;
  1427. else if (has_not_enough_free_secs(sbi, 0, 0))
  1428. goto redirty_out;
  1429. else
  1430. set_inode_flag(inode, FI_HOT_DATA);
  1431. err = -EAGAIN;
  1432. if (f2fs_has_inline_data(inode)) {
  1433. err = f2fs_write_inline_data(inode, page);
  1434. if (!err)
  1435. goto out;
  1436. }
  1437. if (err == -EAGAIN) {
  1438. err = do_write_data_page(&fio);
  1439. if (err == -EAGAIN) {
  1440. fio.need_lock = LOCK_REQ;
  1441. err = do_write_data_page(&fio);
  1442. }
  1443. }
  1444. down_write(&F2FS_I(inode)->i_sem);
  1445. if (F2FS_I(inode)->last_disk_size < psize)
  1446. F2FS_I(inode)->last_disk_size = psize;
  1447. up_write(&F2FS_I(inode)->i_sem);
  1448. done:
  1449. if (err && err != -ENOENT)
  1450. goto redirty_out;
  1451. out:
  1452. inode_dec_dirty_pages(inode);
  1453. if (err)
  1454. ClearPageUptodate(page);
  1455. if (wbc->for_reclaim) {
  1456. f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
  1457. clear_inode_flag(inode, FI_HOT_DATA);
  1458. remove_dirty_inode(inode);
  1459. submitted = NULL;
  1460. }
  1461. unlock_page(page);
  1462. if (!S_ISDIR(inode->i_mode))
  1463. f2fs_balance_fs(sbi, need_balance_fs);
  1464. if (unlikely(f2fs_cp_error(sbi))) {
  1465. f2fs_submit_merged_write(sbi, DATA);
  1466. submitted = NULL;
  1467. }
  1468. if (submitted)
  1469. *submitted = fio.submitted;
  1470. return 0;
  1471. redirty_out:
  1472. redirty_page_for_writepage(wbc, page);
  1473. if (!err)
  1474. return AOP_WRITEPAGE_ACTIVATE;
  1475. unlock_page(page);
  1476. return err;
  1477. }
  1478. static int f2fs_write_data_page(struct page *page,
  1479. struct writeback_control *wbc)
  1480. {
  1481. return __write_data_page(page, NULL, wbc, FS_DATA_IO);
  1482. }
  1483. /*
  1484. * This function was copied from write_cche_pages from mm/page-writeback.c.
  1485. * The major change is making write step of cold data page separately from
  1486. * warm/hot data page.
  1487. */
  1488. static int f2fs_write_cache_pages(struct address_space *mapping,
  1489. struct writeback_control *wbc,
  1490. enum iostat_type io_type)
  1491. {
  1492. int ret = 0;
  1493. int done = 0;
  1494. struct pagevec pvec;
  1495. int nr_pages;
  1496. pgoff_t uninitialized_var(writeback_index);
  1497. pgoff_t index;
  1498. pgoff_t end; /* Inclusive */
  1499. pgoff_t done_index;
  1500. pgoff_t last_idx = ULONG_MAX;
  1501. int cycled;
  1502. int range_whole = 0;
  1503. int tag;
  1504. pagevec_init(&pvec);
  1505. if (get_dirty_pages(mapping->host) <=
  1506. SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
  1507. set_inode_flag(mapping->host, FI_HOT_DATA);
  1508. else
  1509. clear_inode_flag(mapping->host, FI_HOT_DATA);
  1510. if (wbc->range_cyclic) {
  1511. writeback_index = mapping->writeback_index; /* prev offset */
  1512. index = writeback_index;
  1513. if (index == 0)
  1514. cycled = 1;
  1515. else
  1516. cycled = 0;
  1517. end = -1;
  1518. } else {
  1519. index = wbc->range_start >> PAGE_SHIFT;
  1520. end = wbc->range_end >> PAGE_SHIFT;
  1521. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1522. range_whole = 1;
  1523. cycled = 1; /* ignore range_cyclic tests */
  1524. }
  1525. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1526. tag = PAGECACHE_TAG_TOWRITE;
  1527. else
  1528. tag = PAGECACHE_TAG_DIRTY;
  1529. retry:
  1530. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1531. tag_pages_for_writeback(mapping, index, end);
  1532. done_index = index;
  1533. while (!done && (index <= end)) {
  1534. int i;
  1535. nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
  1536. tag);
  1537. if (nr_pages == 0)
  1538. break;
  1539. for (i = 0; i < nr_pages; i++) {
  1540. struct page *page = pvec.pages[i];
  1541. bool submitted = false;
  1542. done_index = page->index;
  1543. retry_write:
  1544. lock_page(page);
  1545. if (unlikely(page->mapping != mapping)) {
  1546. continue_unlock:
  1547. unlock_page(page);
  1548. continue;
  1549. }
  1550. if (!PageDirty(page)) {
  1551. /* someone wrote it for us */
  1552. goto continue_unlock;
  1553. }
  1554. if (PageWriteback(page)) {
  1555. if (wbc->sync_mode != WB_SYNC_NONE)
  1556. f2fs_wait_on_page_writeback(page,
  1557. DATA, true);
  1558. else
  1559. goto continue_unlock;
  1560. }
  1561. BUG_ON(PageWriteback(page));
  1562. if (!clear_page_dirty_for_io(page))
  1563. goto continue_unlock;
  1564. ret = __write_data_page(page, &submitted, wbc, io_type);
  1565. if (unlikely(ret)) {
  1566. /*
  1567. * keep nr_to_write, since vfs uses this to
  1568. * get # of written pages.
  1569. */
  1570. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1571. unlock_page(page);
  1572. ret = 0;
  1573. continue;
  1574. } else if (ret == -EAGAIN) {
  1575. ret = 0;
  1576. if (wbc->sync_mode == WB_SYNC_ALL) {
  1577. cond_resched();
  1578. congestion_wait(BLK_RW_ASYNC,
  1579. HZ/50);
  1580. goto retry_write;
  1581. }
  1582. continue;
  1583. }
  1584. done_index = page->index + 1;
  1585. done = 1;
  1586. break;
  1587. } else if (submitted) {
  1588. last_idx = page->index;
  1589. }
  1590. /* give a priority to WB_SYNC threads */
  1591. if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
  1592. --wbc->nr_to_write <= 0) &&
  1593. wbc->sync_mode == WB_SYNC_NONE) {
  1594. done = 1;
  1595. break;
  1596. }
  1597. }
  1598. pagevec_release(&pvec);
  1599. cond_resched();
  1600. }
  1601. if (!cycled && !done) {
  1602. cycled = 1;
  1603. index = 0;
  1604. end = writeback_index - 1;
  1605. goto retry;
  1606. }
  1607. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1608. mapping->writeback_index = done_index;
  1609. if (last_idx != ULONG_MAX)
  1610. f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
  1611. 0, last_idx, DATA);
  1612. return ret;
  1613. }
  1614. int __f2fs_write_data_pages(struct address_space *mapping,
  1615. struct writeback_control *wbc,
  1616. enum iostat_type io_type)
  1617. {
  1618. struct inode *inode = mapping->host;
  1619. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1620. struct blk_plug plug;
  1621. int ret;
  1622. /* deal with chardevs and other special file */
  1623. if (!mapping->a_ops->writepage)
  1624. return 0;
  1625. /* skip writing if there is no dirty page in this inode */
  1626. if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
  1627. return 0;
  1628. /* during POR, we don't need to trigger writepage at all. */
  1629. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1630. goto skip_write;
  1631. if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
  1632. get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
  1633. available_free_memory(sbi, DIRTY_DENTS))
  1634. goto skip_write;
  1635. /* skip writing during file defragment */
  1636. if (is_inode_flag_set(inode, FI_DO_DEFRAG))
  1637. goto skip_write;
  1638. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1639. /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
  1640. if (wbc->sync_mode == WB_SYNC_ALL)
  1641. atomic_inc(&sbi->wb_sync_req);
  1642. else if (atomic_read(&sbi->wb_sync_req))
  1643. goto skip_write;
  1644. blk_start_plug(&plug);
  1645. ret = f2fs_write_cache_pages(mapping, wbc, io_type);
  1646. blk_finish_plug(&plug);
  1647. if (wbc->sync_mode == WB_SYNC_ALL)
  1648. atomic_dec(&sbi->wb_sync_req);
  1649. /*
  1650. * if some pages were truncated, we cannot guarantee its mapping->host
  1651. * to detect pending bios.
  1652. */
  1653. remove_dirty_inode(inode);
  1654. return ret;
  1655. skip_write:
  1656. wbc->pages_skipped += get_dirty_pages(inode);
  1657. trace_f2fs_writepages(mapping->host, wbc, DATA);
  1658. return 0;
  1659. }
  1660. static int f2fs_write_data_pages(struct address_space *mapping,
  1661. struct writeback_control *wbc)
  1662. {
  1663. struct inode *inode = mapping->host;
  1664. return __f2fs_write_data_pages(mapping, wbc,
  1665. F2FS_I(inode)->cp_task == current ?
  1666. FS_CP_DATA_IO : FS_DATA_IO);
  1667. }
  1668. static void f2fs_write_failed(struct address_space *mapping, loff_t to)
  1669. {
  1670. struct inode *inode = mapping->host;
  1671. loff_t i_size = i_size_read(inode);
  1672. if (to > i_size) {
  1673. down_write(&F2FS_I(inode)->i_mmap_sem);
  1674. truncate_pagecache(inode, i_size);
  1675. truncate_blocks(inode, i_size, true);
  1676. up_write(&F2FS_I(inode)->i_mmap_sem);
  1677. }
  1678. }
  1679. static int prepare_write_begin(struct f2fs_sb_info *sbi,
  1680. struct page *page, loff_t pos, unsigned len,
  1681. block_t *blk_addr, bool *node_changed)
  1682. {
  1683. struct inode *inode = page->mapping->host;
  1684. pgoff_t index = page->index;
  1685. struct dnode_of_data dn;
  1686. struct page *ipage;
  1687. bool locked = false;
  1688. struct extent_info ei = {0,0,0};
  1689. int err = 0;
  1690. /*
  1691. * we already allocated all the blocks, so we don't need to get
  1692. * the block addresses when there is no need to fill the page.
  1693. */
  1694. if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
  1695. !is_inode_flag_set(inode, FI_NO_PREALLOC))
  1696. return 0;
  1697. if (f2fs_has_inline_data(inode) ||
  1698. (pos & PAGE_MASK) >= i_size_read(inode)) {
  1699. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  1700. locked = true;
  1701. }
  1702. restart:
  1703. /* check inline_data */
  1704. ipage = get_node_page(sbi, inode->i_ino);
  1705. if (IS_ERR(ipage)) {
  1706. err = PTR_ERR(ipage);
  1707. goto unlock_out;
  1708. }
  1709. set_new_dnode(&dn, inode, ipage, ipage, 0);
  1710. if (f2fs_has_inline_data(inode)) {
  1711. if (pos + len <= MAX_INLINE_DATA(inode)) {
  1712. read_inline_data(page, ipage);
  1713. set_inode_flag(inode, FI_DATA_EXIST);
  1714. if (inode->i_nlink)
  1715. set_inline_node(ipage);
  1716. } else {
  1717. err = f2fs_convert_inline_page(&dn, page);
  1718. if (err)
  1719. goto out;
  1720. if (dn.data_blkaddr == NULL_ADDR)
  1721. err = f2fs_get_block(&dn, index);
  1722. }
  1723. } else if (locked) {
  1724. err = f2fs_get_block(&dn, index);
  1725. } else {
  1726. if (f2fs_lookup_extent_cache(inode, index, &ei)) {
  1727. dn.data_blkaddr = ei.blk + index - ei.fofs;
  1728. } else {
  1729. /* hole case */
  1730. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  1731. if (err || dn.data_blkaddr == NULL_ADDR) {
  1732. f2fs_put_dnode(&dn);
  1733. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
  1734. true);
  1735. locked = true;
  1736. goto restart;
  1737. }
  1738. }
  1739. }
  1740. /* convert_inline_page can make node_changed */
  1741. *blk_addr = dn.data_blkaddr;
  1742. *node_changed = dn.node_changed;
  1743. out:
  1744. f2fs_put_dnode(&dn);
  1745. unlock_out:
  1746. if (locked)
  1747. __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
  1748. return err;
  1749. }
  1750. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  1751. loff_t pos, unsigned len, unsigned flags,
  1752. struct page **pagep, void **fsdata)
  1753. {
  1754. struct inode *inode = mapping->host;
  1755. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1756. struct page *page = NULL;
  1757. pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
  1758. bool need_balance = false;
  1759. block_t blkaddr = NULL_ADDR;
  1760. int err = 0;
  1761. trace_f2fs_write_begin(inode, pos, len, flags);
  1762. if (f2fs_is_atomic_file(inode) &&
  1763. !available_free_memory(sbi, INMEM_PAGES)) {
  1764. err = -ENOMEM;
  1765. goto fail;
  1766. }
  1767. /*
  1768. * We should check this at this moment to avoid deadlock on inode page
  1769. * and #0 page. The locking rule for inline_data conversion should be:
  1770. * lock_page(page #0) -> lock_page(inode_page)
  1771. */
  1772. if (index != 0) {
  1773. err = f2fs_convert_inline_inode(inode);
  1774. if (err)
  1775. goto fail;
  1776. }
  1777. repeat:
  1778. /*
  1779. * Do not use grab_cache_page_write_begin() to avoid deadlock due to
  1780. * wait_for_stable_page. Will wait that below with our IO control.
  1781. */
  1782. page = f2fs_pagecache_get_page(mapping, index,
  1783. FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
  1784. if (!page) {
  1785. err = -ENOMEM;
  1786. goto fail;
  1787. }
  1788. *pagep = page;
  1789. err = prepare_write_begin(sbi, page, pos, len,
  1790. &blkaddr, &need_balance);
  1791. if (err)
  1792. goto fail;
  1793. if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
  1794. unlock_page(page);
  1795. f2fs_balance_fs(sbi, true);
  1796. lock_page(page);
  1797. if (page->mapping != mapping) {
  1798. /* The page got truncated from under us */
  1799. f2fs_put_page(page, 1);
  1800. goto repeat;
  1801. }
  1802. }
  1803. f2fs_wait_on_page_writeback(page, DATA, false);
  1804. /* wait for GCed encrypted page writeback */
  1805. if (f2fs_encrypted_file(inode))
  1806. f2fs_wait_on_block_writeback(sbi, blkaddr);
  1807. if (len == PAGE_SIZE || PageUptodate(page))
  1808. return 0;
  1809. if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
  1810. zero_user_segment(page, len, PAGE_SIZE);
  1811. return 0;
  1812. }
  1813. if (blkaddr == NEW_ADDR) {
  1814. zero_user_segment(page, 0, PAGE_SIZE);
  1815. SetPageUptodate(page);
  1816. } else {
  1817. err = f2fs_submit_page_read(inode, page, blkaddr);
  1818. if (err)
  1819. goto fail;
  1820. lock_page(page);
  1821. if (unlikely(page->mapping != mapping)) {
  1822. f2fs_put_page(page, 1);
  1823. goto repeat;
  1824. }
  1825. if (unlikely(!PageUptodate(page))) {
  1826. err = -EIO;
  1827. goto fail;
  1828. }
  1829. }
  1830. return 0;
  1831. fail:
  1832. f2fs_put_page(page, 1);
  1833. f2fs_write_failed(mapping, pos + len);
  1834. if (f2fs_is_atomic_file(inode))
  1835. drop_inmem_pages_all(sbi);
  1836. return err;
  1837. }
  1838. static int f2fs_write_end(struct file *file,
  1839. struct address_space *mapping,
  1840. loff_t pos, unsigned len, unsigned copied,
  1841. struct page *page, void *fsdata)
  1842. {
  1843. struct inode *inode = page->mapping->host;
  1844. trace_f2fs_write_end(inode, pos, len, copied);
  1845. /*
  1846. * This should be come from len == PAGE_SIZE, and we expect copied
  1847. * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
  1848. * let generic_perform_write() try to copy data again through copied=0.
  1849. */
  1850. if (!PageUptodate(page)) {
  1851. if (unlikely(copied != len))
  1852. copied = 0;
  1853. else
  1854. SetPageUptodate(page);
  1855. }
  1856. if (!copied)
  1857. goto unlock_out;
  1858. set_page_dirty(page);
  1859. if (pos + copied > i_size_read(inode))
  1860. f2fs_i_size_write(inode, pos + copied);
  1861. unlock_out:
  1862. f2fs_put_page(page, 1);
  1863. f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
  1864. return copied;
  1865. }
  1866. static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
  1867. loff_t offset)
  1868. {
  1869. unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
  1870. if (offset & blocksize_mask)
  1871. return -EINVAL;
  1872. if (iov_iter_alignment(iter) & blocksize_mask)
  1873. return -EINVAL;
  1874. return 0;
  1875. }
  1876. static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
  1877. {
  1878. struct address_space *mapping = iocb->ki_filp->f_mapping;
  1879. struct inode *inode = mapping->host;
  1880. size_t count = iov_iter_count(iter);
  1881. loff_t offset = iocb->ki_pos;
  1882. int rw = iov_iter_rw(iter);
  1883. int err;
  1884. err = check_direct_IO(inode, iter, offset);
  1885. if (err)
  1886. return err;
  1887. if (__force_buffered_io(inode, rw))
  1888. return 0;
  1889. trace_f2fs_direct_IO_enter(inode, offset, count, rw);
  1890. down_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1891. err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
  1892. up_read(&F2FS_I(inode)->dio_rwsem[rw]);
  1893. if (rw == WRITE) {
  1894. if (err > 0) {
  1895. f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
  1896. err);
  1897. set_inode_flag(inode, FI_UPDATE_WRITE);
  1898. } else if (err < 0) {
  1899. f2fs_write_failed(mapping, offset + count);
  1900. }
  1901. }
  1902. trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
  1903. return err;
  1904. }
  1905. void f2fs_invalidate_page(struct page *page, unsigned int offset,
  1906. unsigned int length)
  1907. {
  1908. struct inode *inode = page->mapping->host;
  1909. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1910. if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
  1911. (offset % PAGE_SIZE || length != PAGE_SIZE))
  1912. return;
  1913. if (PageDirty(page)) {
  1914. if (inode->i_ino == F2FS_META_INO(sbi)) {
  1915. dec_page_count(sbi, F2FS_DIRTY_META);
  1916. } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
  1917. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1918. } else {
  1919. inode_dec_dirty_pages(inode);
  1920. remove_dirty_inode(inode);
  1921. }
  1922. }
  1923. /* This is atomic written page, keep Private */
  1924. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1925. return drop_inmem_page(inode, page);
  1926. set_page_private(page, 0);
  1927. ClearPagePrivate(page);
  1928. }
  1929. int f2fs_release_page(struct page *page, gfp_t wait)
  1930. {
  1931. /* If this is dirty page, keep PagePrivate */
  1932. if (PageDirty(page))
  1933. return 0;
  1934. /* This is atomic written page, keep Private */
  1935. if (IS_ATOMIC_WRITTEN_PAGE(page))
  1936. return 0;
  1937. set_page_private(page, 0);
  1938. ClearPagePrivate(page);
  1939. return 1;
  1940. }
  1941. /*
  1942. * This was copied from __set_page_dirty_buffers which gives higher performance
  1943. * in very high speed storages. (e.g., pmem)
  1944. */
  1945. void f2fs_set_page_dirty_nobuffers(struct page *page)
  1946. {
  1947. struct address_space *mapping = page->mapping;
  1948. unsigned long flags;
  1949. if (unlikely(!mapping))
  1950. return;
  1951. spin_lock(&mapping->private_lock);
  1952. lock_page_memcg(page);
  1953. SetPageDirty(page);
  1954. spin_unlock(&mapping->private_lock);
  1955. spin_lock_irqsave(&mapping->tree_lock, flags);
  1956. WARN_ON_ONCE(!PageUptodate(page));
  1957. account_page_dirtied(page, mapping);
  1958. radix_tree_tag_set(&mapping->page_tree,
  1959. page_index(page), PAGECACHE_TAG_DIRTY);
  1960. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1961. unlock_page_memcg(page);
  1962. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1963. return;
  1964. }
  1965. static int f2fs_set_data_page_dirty(struct page *page)
  1966. {
  1967. struct address_space *mapping = page->mapping;
  1968. struct inode *inode = mapping->host;
  1969. trace_f2fs_set_page_dirty(page, DATA);
  1970. if (!PageUptodate(page))
  1971. SetPageUptodate(page);
  1972. if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
  1973. if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
  1974. register_inmem_page(inode, page);
  1975. return 1;
  1976. }
  1977. /*
  1978. * Previously, this page has been registered, we just
  1979. * return here.
  1980. */
  1981. return 0;
  1982. }
  1983. if (!PageDirty(page)) {
  1984. f2fs_set_page_dirty_nobuffers(page);
  1985. update_dirty_page(inode, page);
  1986. return 1;
  1987. }
  1988. return 0;
  1989. }
  1990. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  1991. {
  1992. struct inode *inode = mapping->host;
  1993. if (f2fs_has_inline_data(inode))
  1994. return 0;
  1995. /* make sure allocating whole blocks */
  1996. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  1997. filemap_write_and_wait(mapping);
  1998. return generic_block_bmap(mapping, block, get_data_block_bmap);
  1999. }
  2000. #ifdef CONFIG_MIGRATION
  2001. #include <linux/migrate.h>
  2002. int f2fs_migrate_page(struct address_space *mapping,
  2003. struct page *newpage, struct page *page, enum migrate_mode mode)
  2004. {
  2005. int rc, extra_count;
  2006. struct f2fs_inode_info *fi = F2FS_I(mapping->host);
  2007. bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
  2008. BUG_ON(PageWriteback(page));
  2009. /* migrating an atomic written page is safe with the inmem_lock hold */
  2010. if (atomic_written) {
  2011. if (mode != MIGRATE_SYNC)
  2012. return -EBUSY;
  2013. if (!mutex_trylock(&fi->inmem_lock))
  2014. return -EAGAIN;
  2015. }
  2016. /*
  2017. * A reference is expected if PagePrivate set when move mapping,
  2018. * however F2FS breaks this for maintaining dirty page counts when
  2019. * truncating pages. So here adjusting the 'extra_count' make it work.
  2020. */
  2021. extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
  2022. rc = migrate_page_move_mapping(mapping, newpage,
  2023. page, NULL, mode, extra_count);
  2024. if (rc != MIGRATEPAGE_SUCCESS) {
  2025. if (atomic_written)
  2026. mutex_unlock(&fi->inmem_lock);
  2027. return rc;
  2028. }
  2029. if (atomic_written) {
  2030. struct inmem_pages *cur;
  2031. list_for_each_entry(cur, &fi->inmem_pages, list)
  2032. if (cur->page == page) {
  2033. cur->page = newpage;
  2034. break;
  2035. }
  2036. mutex_unlock(&fi->inmem_lock);
  2037. put_page(page);
  2038. get_page(newpage);
  2039. }
  2040. if (PagePrivate(page))
  2041. SetPagePrivate(newpage);
  2042. set_page_private(newpage, page_private(page));
  2043. if (mode != MIGRATE_SYNC_NO_COPY)
  2044. migrate_page_copy(newpage, page);
  2045. else
  2046. migrate_page_states(newpage, page);
  2047. return MIGRATEPAGE_SUCCESS;
  2048. }
  2049. #endif
  2050. const struct address_space_operations f2fs_dblock_aops = {
  2051. .readpage = f2fs_read_data_page,
  2052. .readpages = f2fs_read_data_pages,
  2053. .writepage = f2fs_write_data_page,
  2054. .writepages = f2fs_write_data_pages,
  2055. .write_begin = f2fs_write_begin,
  2056. .write_end = f2fs_write_end,
  2057. .set_page_dirty = f2fs_set_data_page_dirty,
  2058. .invalidatepage = f2fs_invalidate_page,
  2059. .releasepage = f2fs_release_page,
  2060. .direct_IO = f2fs_direct_IO,
  2061. .bmap = f2fs_bmap,
  2062. #ifdef CONFIG_MIGRATION
  2063. .migratepage = f2fs_migrate_page,
  2064. #endif
  2065. };