kvm_main.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include <kvm/iodev.h>
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/syscore_ops.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <linux/sort.h>
  49. #include <linux/bsearch.h>
  50. #include <asm/processor.h>
  51. #include <asm/io.h>
  52. #include <asm/ioctl.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/pgtable.h>
  55. #include "coalesced_mmio.h"
  56. #include "async_pf.h"
  57. #include "vfio.h"
  58. #define CREATE_TRACE_POINTS
  59. #include <trace/events/kvm.h>
  60. MODULE_AUTHOR("Qumranet");
  61. MODULE_LICENSE("GPL");
  62. /* Architectures should define their poll value according to the halt latency */
  63. static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  64. module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
  65. /* Default doubles per-vcpu halt_poll_ns. */
  66. static unsigned int halt_poll_ns_grow = 2;
  67. module_param(halt_poll_ns_grow, int, S_IRUGO);
  68. /* Default resets per-vcpu halt_poll_ns . */
  69. static unsigned int halt_poll_ns_shrink;
  70. module_param(halt_poll_ns_shrink, int, S_IRUGO);
  71. /*
  72. * Ordering of locks:
  73. *
  74. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  75. */
  76. DEFINE_SPINLOCK(kvm_lock);
  77. static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  78. LIST_HEAD(vm_list);
  79. static cpumask_var_t cpus_hardware_enabled;
  80. static int kvm_usage_count;
  81. static atomic_t hardware_enable_failed;
  82. struct kmem_cache *kvm_vcpu_cache;
  83. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  84. static __read_mostly struct preempt_ops kvm_preempt_ops;
  85. struct dentry *kvm_debugfs_dir;
  86. EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
  87. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88. unsigned long arg);
  89. #ifdef CONFIG_KVM_COMPAT
  90. static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91. unsigned long arg);
  92. #endif
  93. static int hardware_enable_all(void);
  94. static void hardware_disable_all(void);
  95. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  96. static void kvm_release_pfn_dirty(pfn_t pfn);
  97. static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
  98. __visible bool kvm_rebooting;
  99. EXPORT_SYMBOL_GPL(kvm_rebooting);
  100. static bool largepages_enabled = true;
  101. bool kvm_is_reserved_pfn(pfn_t pfn)
  102. {
  103. if (pfn_valid(pfn))
  104. return PageReserved(pfn_to_page(pfn));
  105. return true;
  106. }
  107. /*
  108. * Switches to specified vcpu, until a matching vcpu_put()
  109. */
  110. int vcpu_load(struct kvm_vcpu *vcpu)
  111. {
  112. int cpu;
  113. if (mutex_lock_killable(&vcpu->mutex))
  114. return -EINTR;
  115. cpu = get_cpu();
  116. preempt_notifier_register(&vcpu->preempt_notifier);
  117. kvm_arch_vcpu_load(vcpu, cpu);
  118. put_cpu();
  119. return 0;
  120. }
  121. void vcpu_put(struct kvm_vcpu *vcpu)
  122. {
  123. preempt_disable();
  124. kvm_arch_vcpu_put(vcpu);
  125. preempt_notifier_unregister(&vcpu->preempt_notifier);
  126. preempt_enable();
  127. mutex_unlock(&vcpu->mutex);
  128. }
  129. static void ack_flush(void *_completed)
  130. {
  131. }
  132. bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
  133. {
  134. int i, cpu, me;
  135. cpumask_var_t cpus;
  136. bool called = true;
  137. struct kvm_vcpu *vcpu;
  138. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  139. me = get_cpu();
  140. kvm_for_each_vcpu(i, vcpu, kvm) {
  141. kvm_make_request(req, vcpu);
  142. cpu = vcpu->cpu;
  143. /* Set ->requests bit before we read ->mode */
  144. smp_mb();
  145. if (cpus != NULL && cpu != -1 && cpu != me &&
  146. kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
  147. cpumask_set_cpu(cpu, cpus);
  148. }
  149. if (unlikely(cpus == NULL))
  150. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  151. else if (!cpumask_empty(cpus))
  152. smp_call_function_many(cpus, ack_flush, NULL, 1);
  153. else
  154. called = false;
  155. put_cpu();
  156. free_cpumask_var(cpus);
  157. return called;
  158. }
  159. #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
  160. void kvm_flush_remote_tlbs(struct kvm *kvm)
  161. {
  162. long dirty_count = kvm->tlbs_dirty;
  163. smp_mb();
  164. if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  165. ++kvm->stat.remote_tlb_flush;
  166. cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
  167. }
  168. EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
  169. #endif
  170. void kvm_reload_remote_mmus(struct kvm *kvm)
  171. {
  172. kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  173. }
  174. void kvm_make_mclock_inprogress_request(struct kvm *kvm)
  175. {
  176. kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
  177. }
  178. void kvm_make_scan_ioapic_request(struct kvm *kvm)
  179. {
  180. kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
  181. }
  182. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  183. {
  184. struct page *page;
  185. int r;
  186. mutex_init(&vcpu->mutex);
  187. vcpu->cpu = -1;
  188. vcpu->kvm = kvm;
  189. vcpu->vcpu_id = id;
  190. vcpu->pid = NULL;
  191. vcpu->halt_poll_ns = 0;
  192. init_waitqueue_head(&vcpu->wq);
  193. kvm_async_pf_vcpu_init(vcpu);
  194. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  195. if (!page) {
  196. r = -ENOMEM;
  197. goto fail;
  198. }
  199. vcpu->run = page_address(page);
  200. kvm_vcpu_set_in_spin_loop(vcpu, false);
  201. kvm_vcpu_set_dy_eligible(vcpu, false);
  202. vcpu->preempted = false;
  203. r = kvm_arch_vcpu_init(vcpu);
  204. if (r < 0)
  205. goto fail_free_run;
  206. return 0;
  207. fail_free_run:
  208. free_page((unsigned long)vcpu->run);
  209. fail:
  210. return r;
  211. }
  212. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  213. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  214. {
  215. put_pid(vcpu->pid);
  216. kvm_arch_vcpu_uninit(vcpu);
  217. free_page((unsigned long)vcpu->run);
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  220. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  221. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  222. {
  223. return container_of(mn, struct kvm, mmu_notifier);
  224. }
  225. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  226. struct mm_struct *mm,
  227. unsigned long address)
  228. {
  229. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  230. int need_tlb_flush, idx;
  231. /*
  232. * When ->invalidate_page runs, the linux pte has been zapped
  233. * already but the page is still allocated until
  234. * ->invalidate_page returns. So if we increase the sequence
  235. * here the kvm page fault will notice if the spte can't be
  236. * established because the page is going to be freed. If
  237. * instead the kvm page fault establishes the spte before
  238. * ->invalidate_page runs, kvm_unmap_hva will release it
  239. * before returning.
  240. *
  241. * The sequence increase only need to be seen at spin_unlock
  242. * time, and not at spin_lock time.
  243. *
  244. * Increasing the sequence after the spin_unlock would be
  245. * unsafe because the kvm page fault could then establish the
  246. * pte after kvm_unmap_hva returned, without noticing the page
  247. * is going to be freed.
  248. */
  249. idx = srcu_read_lock(&kvm->srcu);
  250. spin_lock(&kvm->mmu_lock);
  251. kvm->mmu_notifier_seq++;
  252. need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
  253. /* we've to flush the tlb before the pages can be freed */
  254. if (need_tlb_flush)
  255. kvm_flush_remote_tlbs(kvm);
  256. spin_unlock(&kvm->mmu_lock);
  257. kvm_arch_mmu_notifier_invalidate_page(kvm, address);
  258. srcu_read_unlock(&kvm->srcu, idx);
  259. }
  260. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  261. struct mm_struct *mm,
  262. unsigned long address,
  263. pte_t pte)
  264. {
  265. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  266. int idx;
  267. idx = srcu_read_lock(&kvm->srcu);
  268. spin_lock(&kvm->mmu_lock);
  269. kvm->mmu_notifier_seq++;
  270. kvm_set_spte_hva(kvm, address, pte);
  271. spin_unlock(&kvm->mmu_lock);
  272. srcu_read_unlock(&kvm->srcu, idx);
  273. }
  274. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  275. struct mm_struct *mm,
  276. unsigned long start,
  277. unsigned long end)
  278. {
  279. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  280. int need_tlb_flush = 0, idx;
  281. idx = srcu_read_lock(&kvm->srcu);
  282. spin_lock(&kvm->mmu_lock);
  283. /*
  284. * The count increase must become visible at unlock time as no
  285. * spte can be established without taking the mmu_lock and
  286. * count is also read inside the mmu_lock critical section.
  287. */
  288. kvm->mmu_notifier_count++;
  289. need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
  290. need_tlb_flush |= kvm->tlbs_dirty;
  291. /* we've to flush the tlb before the pages can be freed */
  292. if (need_tlb_flush)
  293. kvm_flush_remote_tlbs(kvm);
  294. spin_unlock(&kvm->mmu_lock);
  295. srcu_read_unlock(&kvm->srcu, idx);
  296. }
  297. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  298. struct mm_struct *mm,
  299. unsigned long start,
  300. unsigned long end)
  301. {
  302. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  303. spin_lock(&kvm->mmu_lock);
  304. /*
  305. * This sequence increase will notify the kvm page fault that
  306. * the page that is going to be mapped in the spte could have
  307. * been freed.
  308. */
  309. kvm->mmu_notifier_seq++;
  310. smp_wmb();
  311. /*
  312. * The above sequence increase must be visible before the
  313. * below count decrease, which is ensured by the smp_wmb above
  314. * in conjunction with the smp_rmb in mmu_notifier_retry().
  315. */
  316. kvm->mmu_notifier_count--;
  317. spin_unlock(&kvm->mmu_lock);
  318. BUG_ON(kvm->mmu_notifier_count < 0);
  319. }
  320. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  321. struct mm_struct *mm,
  322. unsigned long start,
  323. unsigned long end)
  324. {
  325. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  326. int young, idx;
  327. idx = srcu_read_lock(&kvm->srcu);
  328. spin_lock(&kvm->mmu_lock);
  329. young = kvm_age_hva(kvm, start, end);
  330. if (young)
  331. kvm_flush_remote_tlbs(kvm);
  332. spin_unlock(&kvm->mmu_lock);
  333. srcu_read_unlock(&kvm->srcu, idx);
  334. return young;
  335. }
  336. static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
  337. struct mm_struct *mm,
  338. unsigned long start,
  339. unsigned long end)
  340. {
  341. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  342. int young, idx;
  343. idx = srcu_read_lock(&kvm->srcu);
  344. spin_lock(&kvm->mmu_lock);
  345. /*
  346. * Even though we do not flush TLB, this will still adversely
  347. * affect performance on pre-Haswell Intel EPT, where there is
  348. * no EPT Access Bit to clear so that we have to tear down EPT
  349. * tables instead. If we find this unacceptable, we can always
  350. * add a parameter to kvm_age_hva so that it effectively doesn't
  351. * do anything on clear_young.
  352. *
  353. * Also note that currently we never issue secondary TLB flushes
  354. * from clear_young, leaving this job up to the regular system
  355. * cadence. If we find this inaccurate, we might come up with a
  356. * more sophisticated heuristic later.
  357. */
  358. young = kvm_age_hva(kvm, start, end);
  359. spin_unlock(&kvm->mmu_lock);
  360. srcu_read_unlock(&kvm->srcu, idx);
  361. return young;
  362. }
  363. static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
  364. struct mm_struct *mm,
  365. unsigned long address)
  366. {
  367. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  368. int young, idx;
  369. idx = srcu_read_lock(&kvm->srcu);
  370. spin_lock(&kvm->mmu_lock);
  371. young = kvm_test_age_hva(kvm, address);
  372. spin_unlock(&kvm->mmu_lock);
  373. srcu_read_unlock(&kvm->srcu, idx);
  374. return young;
  375. }
  376. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  377. struct mm_struct *mm)
  378. {
  379. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  380. int idx;
  381. idx = srcu_read_lock(&kvm->srcu);
  382. kvm_arch_flush_shadow_all(kvm);
  383. srcu_read_unlock(&kvm->srcu, idx);
  384. }
  385. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  386. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  387. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  388. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  389. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  390. .clear_young = kvm_mmu_notifier_clear_young,
  391. .test_young = kvm_mmu_notifier_test_young,
  392. .change_pte = kvm_mmu_notifier_change_pte,
  393. .release = kvm_mmu_notifier_release,
  394. };
  395. static int kvm_init_mmu_notifier(struct kvm *kvm)
  396. {
  397. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  398. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  399. }
  400. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  401. static int kvm_init_mmu_notifier(struct kvm *kvm)
  402. {
  403. return 0;
  404. }
  405. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  406. static struct kvm_memslots *kvm_alloc_memslots(void)
  407. {
  408. int i;
  409. struct kvm_memslots *slots;
  410. slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
  411. if (!slots)
  412. return NULL;
  413. /*
  414. * Init kvm generation close to the maximum to easily test the
  415. * code of handling generation number wrap-around.
  416. */
  417. slots->generation = -150;
  418. for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
  419. slots->id_to_index[i] = slots->memslots[i].id = i;
  420. return slots;
  421. }
  422. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  423. {
  424. if (!memslot->dirty_bitmap)
  425. return;
  426. kvfree(memslot->dirty_bitmap);
  427. memslot->dirty_bitmap = NULL;
  428. }
  429. /*
  430. * Free any memory in @free but not in @dont.
  431. */
  432. static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
  433. struct kvm_memory_slot *dont)
  434. {
  435. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  436. kvm_destroy_dirty_bitmap(free);
  437. kvm_arch_free_memslot(kvm, free, dont);
  438. free->npages = 0;
  439. }
  440. static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
  441. {
  442. struct kvm_memory_slot *memslot;
  443. if (!slots)
  444. return;
  445. kvm_for_each_memslot(memslot, slots)
  446. kvm_free_memslot(kvm, memslot, NULL);
  447. kvfree(slots);
  448. }
  449. static struct kvm *kvm_create_vm(unsigned long type)
  450. {
  451. int r, i;
  452. struct kvm *kvm = kvm_arch_alloc_vm();
  453. if (!kvm)
  454. return ERR_PTR(-ENOMEM);
  455. r = kvm_arch_init_vm(kvm, type);
  456. if (r)
  457. goto out_err_no_disable;
  458. r = hardware_enable_all();
  459. if (r)
  460. goto out_err_no_disable;
  461. #ifdef CONFIG_HAVE_KVM_IRQFD
  462. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  463. #endif
  464. BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
  465. r = -ENOMEM;
  466. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
  467. kvm->memslots[i] = kvm_alloc_memslots();
  468. if (!kvm->memslots[i])
  469. goto out_err_no_srcu;
  470. }
  471. if (init_srcu_struct(&kvm->srcu))
  472. goto out_err_no_srcu;
  473. if (init_srcu_struct(&kvm->irq_srcu))
  474. goto out_err_no_irq_srcu;
  475. for (i = 0; i < KVM_NR_BUSES; i++) {
  476. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  477. GFP_KERNEL);
  478. if (!kvm->buses[i])
  479. goto out_err;
  480. }
  481. spin_lock_init(&kvm->mmu_lock);
  482. kvm->mm = current->mm;
  483. atomic_inc(&kvm->mm->mm_count);
  484. kvm_eventfd_init(kvm);
  485. mutex_init(&kvm->lock);
  486. mutex_init(&kvm->irq_lock);
  487. mutex_init(&kvm->slots_lock);
  488. atomic_set(&kvm->users_count, 1);
  489. INIT_LIST_HEAD(&kvm->devices);
  490. r = kvm_init_mmu_notifier(kvm);
  491. if (r)
  492. goto out_err;
  493. spin_lock(&kvm_lock);
  494. list_add(&kvm->vm_list, &vm_list);
  495. spin_unlock(&kvm_lock);
  496. preempt_notifier_inc();
  497. return kvm;
  498. out_err:
  499. cleanup_srcu_struct(&kvm->irq_srcu);
  500. out_err_no_irq_srcu:
  501. cleanup_srcu_struct(&kvm->srcu);
  502. out_err_no_srcu:
  503. hardware_disable_all();
  504. out_err_no_disable:
  505. for (i = 0; i < KVM_NR_BUSES; i++)
  506. kfree(kvm->buses[i]);
  507. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
  508. kvm_free_memslots(kvm, kvm->memslots[i]);
  509. kvm_arch_free_vm(kvm);
  510. return ERR_PTR(r);
  511. }
  512. /*
  513. * Avoid using vmalloc for a small buffer.
  514. * Should not be used when the size is statically known.
  515. */
  516. void *kvm_kvzalloc(unsigned long size)
  517. {
  518. if (size > PAGE_SIZE)
  519. return vzalloc(size);
  520. else
  521. return kzalloc(size, GFP_KERNEL);
  522. }
  523. static void kvm_destroy_devices(struct kvm *kvm)
  524. {
  525. struct list_head *node, *tmp;
  526. list_for_each_safe(node, tmp, &kvm->devices) {
  527. struct kvm_device *dev =
  528. list_entry(node, struct kvm_device, vm_node);
  529. list_del(node);
  530. dev->ops->destroy(dev);
  531. }
  532. }
  533. static void kvm_destroy_vm(struct kvm *kvm)
  534. {
  535. int i;
  536. struct mm_struct *mm = kvm->mm;
  537. kvm_arch_sync_events(kvm);
  538. spin_lock(&kvm_lock);
  539. list_del(&kvm->vm_list);
  540. spin_unlock(&kvm_lock);
  541. kvm_free_irq_routing(kvm);
  542. for (i = 0; i < KVM_NR_BUSES; i++)
  543. kvm_io_bus_destroy(kvm->buses[i]);
  544. kvm_coalesced_mmio_free(kvm);
  545. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  546. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  547. #else
  548. kvm_arch_flush_shadow_all(kvm);
  549. #endif
  550. kvm_arch_destroy_vm(kvm);
  551. kvm_destroy_devices(kvm);
  552. for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
  553. kvm_free_memslots(kvm, kvm->memslots[i]);
  554. cleanup_srcu_struct(&kvm->irq_srcu);
  555. cleanup_srcu_struct(&kvm->srcu);
  556. kvm_arch_free_vm(kvm);
  557. preempt_notifier_dec();
  558. hardware_disable_all();
  559. mmdrop(mm);
  560. }
  561. void kvm_get_kvm(struct kvm *kvm)
  562. {
  563. atomic_inc(&kvm->users_count);
  564. }
  565. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  566. void kvm_put_kvm(struct kvm *kvm)
  567. {
  568. if (atomic_dec_and_test(&kvm->users_count))
  569. kvm_destroy_vm(kvm);
  570. }
  571. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  572. static int kvm_vm_release(struct inode *inode, struct file *filp)
  573. {
  574. struct kvm *kvm = filp->private_data;
  575. kvm_irqfd_release(kvm);
  576. kvm_put_kvm(kvm);
  577. return 0;
  578. }
  579. /*
  580. * Allocation size is twice as large as the actual dirty bitmap size.
  581. * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
  582. */
  583. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  584. {
  585. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  586. memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
  587. if (!memslot->dirty_bitmap)
  588. return -ENOMEM;
  589. return 0;
  590. }
  591. /*
  592. * Insert memslot and re-sort memslots based on their GFN,
  593. * so binary search could be used to lookup GFN.
  594. * Sorting algorithm takes advantage of having initially
  595. * sorted array and known changed memslot position.
  596. */
  597. static void update_memslots(struct kvm_memslots *slots,
  598. struct kvm_memory_slot *new)
  599. {
  600. int id = new->id;
  601. int i = slots->id_to_index[id];
  602. struct kvm_memory_slot *mslots = slots->memslots;
  603. WARN_ON(mslots[i].id != id);
  604. if (!new->npages) {
  605. WARN_ON(!mslots[i].npages);
  606. if (mslots[i].npages)
  607. slots->used_slots--;
  608. } else {
  609. if (!mslots[i].npages)
  610. slots->used_slots++;
  611. }
  612. while (i < KVM_MEM_SLOTS_NUM - 1 &&
  613. new->base_gfn <= mslots[i + 1].base_gfn) {
  614. if (!mslots[i + 1].npages)
  615. break;
  616. mslots[i] = mslots[i + 1];
  617. slots->id_to_index[mslots[i].id] = i;
  618. i++;
  619. }
  620. /*
  621. * The ">=" is needed when creating a slot with base_gfn == 0,
  622. * so that it moves before all those with base_gfn == npages == 0.
  623. *
  624. * On the other hand, if new->npages is zero, the above loop has
  625. * already left i pointing to the beginning of the empty part of
  626. * mslots, and the ">=" would move the hole backwards in this
  627. * case---which is wrong. So skip the loop when deleting a slot.
  628. */
  629. if (new->npages) {
  630. while (i > 0 &&
  631. new->base_gfn >= mslots[i - 1].base_gfn) {
  632. mslots[i] = mslots[i - 1];
  633. slots->id_to_index[mslots[i].id] = i;
  634. i--;
  635. }
  636. } else
  637. WARN_ON_ONCE(i != slots->used_slots);
  638. mslots[i] = *new;
  639. slots->id_to_index[mslots[i].id] = i;
  640. }
  641. static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
  642. {
  643. u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
  644. #ifdef __KVM_HAVE_READONLY_MEM
  645. valid_flags |= KVM_MEM_READONLY;
  646. #endif
  647. if (mem->flags & ~valid_flags)
  648. return -EINVAL;
  649. return 0;
  650. }
  651. static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
  652. int as_id, struct kvm_memslots *slots)
  653. {
  654. struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
  655. /*
  656. * Set the low bit in the generation, which disables SPTE caching
  657. * until the end of synchronize_srcu_expedited.
  658. */
  659. WARN_ON(old_memslots->generation & 1);
  660. slots->generation = old_memslots->generation + 1;
  661. rcu_assign_pointer(kvm->memslots[as_id], slots);
  662. synchronize_srcu_expedited(&kvm->srcu);
  663. /*
  664. * Increment the new memslot generation a second time. This prevents
  665. * vm exits that race with memslot updates from caching a memslot
  666. * generation that will (potentially) be valid forever.
  667. */
  668. slots->generation++;
  669. kvm_arch_memslots_updated(kvm, slots);
  670. return old_memslots;
  671. }
  672. /*
  673. * Allocate some memory and give it an address in the guest physical address
  674. * space.
  675. *
  676. * Discontiguous memory is allowed, mostly for framebuffers.
  677. *
  678. * Must be called holding kvm->slots_lock for write.
  679. */
  680. int __kvm_set_memory_region(struct kvm *kvm,
  681. const struct kvm_userspace_memory_region *mem)
  682. {
  683. int r;
  684. gfn_t base_gfn;
  685. unsigned long npages;
  686. struct kvm_memory_slot *slot;
  687. struct kvm_memory_slot old, new;
  688. struct kvm_memslots *slots = NULL, *old_memslots;
  689. int as_id, id;
  690. enum kvm_mr_change change;
  691. r = check_memory_region_flags(mem);
  692. if (r)
  693. goto out;
  694. r = -EINVAL;
  695. as_id = mem->slot >> 16;
  696. id = (u16)mem->slot;
  697. /* General sanity checks */
  698. if (mem->memory_size & (PAGE_SIZE - 1))
  699. goto out;
  700. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  701. goto out;
  702. /* We can read the guest memory with __xxx_user() later on. */
  703. if ((id < KVM_USER_MEM_SLOTS) &&
  704. ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
  705. !access_ok(VERIFY_WRITE,
  706. (void __user *)(unsigned long)mem->userspace_addr,
  707. mem->memory_size)))
  708. goto out;
  709. if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
  710. goto out;
  711. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  712. goto out;
  713. slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
  714. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  715. npages = mem->memory_size >> PAGE_SHIFT;
  716. if (npages > KVM_MEM_MAX_NR_PAGES)
  717. goto out;
  718. new = old = *slot;
  719. new.id = id;
  720. new.base_gfn = base_gfn;
  721. new.npages = npages;
  722. new.flags = mem->flags;
  723. if (npages) {
  724. if (!old.npages)
  725. change = KVM_MR_CREATE;
  726. else { /* Modify an existing slot. */
  727. if ((mem->userspace_addr != old.userspace_addr) ||
  728. (npages != old.npages) ||
  729. ((new.flags ^ old.flags) & KVM_MEM_READONLY))
  730. goto out;
  731. if (base_gfn != old.base_gfn)
  732. change = KVM_MR_MOVE;
  733. else if (new.flags != old.flags)
  734. change = KVM_MR_FLAGS_ONLY;
  735. else { /* Nothing to change. */
  736. r = 0;
  737. goto out;
  738. }
  739. }
  740. } else {
  741. if (!old.npages)
  742. goto out;
  743. change = KVM_MR_DELETE;
  744. new.base_gfn = 0;
  745. new.flags = 0;
  746. }
  747. if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
  748. /* Check for overlaps */
  749. r = -EEXIST;
  750. kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
  751. if ((slot->id >= KVM_USER_MEM_SLOTS) ||
  752. (slot->id == id))
  753. continue;
  754. if (!((base_gfn + npages <= slot->base_gfn) ||
  755. (base_gfn >= slot->base_gfn + slot->npages)))
  756. goto out;
  757. }
  758. }
  759. /* Free page dirty bitmap if unneeded */
  760. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  761. new.dirty_bitmap = NULL;
  762. r = -ENOMEM;
  763. if (change == KVM_MR_CREATE) {
  764. new.userspace_addr = mem->userspace_addr;
  765. if (kvm_arch_create_memslot(kvm, &new, npages))
  766. goto out_free;
  767. }
  768. /* Allocate page dirty bitmap if needed */
  769. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  770. if (kvm_create_dirty_bitmap(&new) < 0)
  771. goto out_free;
  772. }
  773. slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
  774. if (!slots)
  775. goto out_free;
  776. memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
  777. if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
  778. slot = id_to_memslot(slots, id);
  779. slot->flags |= KVM_MEMSLOT_INVALID;
  780. old_memslots = install_new_memslots(kvm, as_id, slots);
  781. /* slot was deleted or moved, clear iommu mapping */
  782. kvm_iommu_unmap_pages(kvm, &old);
  783. /* From this point no new shadow pages pointing to a deleted,
  784. * or moved, memslot will be created.
  785. *
  786. * validation of sp->gfn happens in:
  787. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  788. * - kvm_is_visible_gfn (mmu_check_roots)
  789. */
  790. kvm_arch_flush_shadow_memslot(kvm, slot);
  791. /*
  792. * We can re-use the old_memslots from above, the only difference
  793. * from the currently installed memslots is the invalid flag. This
  794. * will get overwritten by update_memslots anyway.
  795. */
  796. slots = old_memslots;
  797. }
  798. r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
  799. if (r)
  800. goto out_slots;
  801. /* actual memory is freed via old in kvm_free_memslot below */
  802. if (change == KVM_MR_DELETE) {
  803. new.dirty_bitmap = NULL;
  804. memset(&new.arch, 0, sizeof(new.arch));
  805. }
  806. update_memslots(slots, &new);
  807. old_memslots = install_new_memslots(kvm, as_id, slots);
  808. kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
  809. kvm_free_memslot(kvm, &old, &new);
  810. kvfree(old_memslots);
  811. /*
  812. * IOMMU mapping: New slots need to be mapped. Old slots need to be
  813. * un-mapped and re-mapped if their base changes. Since base change
  814. * unmapping is handled above with slot deletion, mapping alone is
  815. * needed here. Anything else the iommu might care about for existing
  816. * slots (size changes, userspace addr changes and read-only flag
  817. * changes) is disallowed above, so any other attribute changes getting
  818. * here can be skipped.
  819. */
  820. if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
  821. r = kvm_iommu_map_pages(kvm, &new);
  822. return r;
  823. }
  824. return 0;
  825. out_slots:
  826. kvfree(slots);
  827. out_free:
  828. kvm_free_memslot(kvm, &new, &old);
  829. out:
  830. return r;
  831. }
  832. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  833. int kvm_set_memory_region(struct kvm *kvm,
  834. const struct kvm_userspace_memory_region *mem)
  835. {
  836. int r;
  837. mutex_lock(&kvm->slots_lock);
  838. r = __kvm_set_memory_region(kvm, mem);
  839. mutex_unlock(&kvm->slots_lock);
  840. return r;
  841. }
  842. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  843. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  844. struct kvm_userspace_memory_region *mem)
  845. {
  846. if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
  847. return -EINVAL;
  848. return kvm_set_memory_region(kvm, mem);
  849. }
  850. int kvm_get_dirty_log(struct kvm *kvm,
  851. struct kvm_dirty_log *log, int *is_dirty)
  852. {
  853. struct kvm_memslots *slots;
  854. struct kvm_memory_slot *memslot;
  855. int r, i, as_id, id;
  856. unsigned long n;
  857. unsigned long any = 0;
  858. r = -EINVAL;
  859. as_id = log->slot >> 16;
  860. id = (u16)log->slot;
  861. if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
  862. goto out;
  863. slots = __kvm_memslots(kvm, as_id);
  864. memslot = id_to_memslot(slots, id);
  865. r = -ENOENT;
  866. if (!memslot->dirty_bitmap)
  867. goto out;
  868. n = kvm_dirty_bitmap_bytes(memslot);
  869. for (i = 0; !any && i < n/sizeof(long); ++i)
  870. any = memslot->dirty_bitmap[i];
  871. r = -EFAULT;
  872. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  873. goto out;
  874. if (any)
  875. *is_dirty = 1;
  876. r = 0;
  877. out:
  878. return r;
  879. }
  880. EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
  881. #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
  882. /**
  883. * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
  884. * are dirty write protect them for next write.
  885. * @kvm: pointer to kvm instance
  886. * @log: slot id and address to which we copy the log
  887. * @is_dirty: flag set if any page is dirty
  888. *
  889. * We need to keep it in mind that VCPU threads can write to the bitmap
  890. * concurrently. So, to avoid losing track of dirty pages we keep the
  891. * following order:
  892. *
  893. * 1. Take a snapshot of the bit and clear it if needed.
  894. * 2. Write protect the corresponding page.
  895. * 3. Copy the snapshot to the userspace.
  896. * 4. Upon return caller flushes TLB's if needed.
  897. *
  898. * Between 2 and 4, the guest may write to the page using the remaining TLB
  899. * entry. This is not a problem because the page is reported dirty using
  900. * the snapshot taken before and step 4 ensures that writes done after
  901. * exiting to userspace will be logged for the next call.
  902. *
  903. */
  904. int kvm_get_dirty_log_protect(struct kvm *kvm,
  905. struct kvm_dirty_log *log, bool *is_dirty)
  906. {
  907. struct kvm_memslots *slots;
  908. struct kvm_memory_slot *memslot;
  909. int r, i, as_id, id;
  910. unsigned long n;
  911. unsigned long *dirty_bitmap;
  912. unsigned long *dirty_bitmap_buffer;
  913. r = -EINVAL;
  914. as_id = log->slot >> 16;
  915. id = (u16)log->slot;
  916. if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
  917. goto out;
  918. slots = __kvm_memslots(kvm, as_id);
  919. memslot = id_to_memslot(slots, id);
  920. dirty_bitmap = memslot->dirty_bitmap;
  921. r = -ENOENT;
  922. if (!dirty_bitmap)
  923. goto out;
  924. n = kvm_dirty_bitmap_bytes(memslot);
  925. dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
  926. memset(dirty_bitmap_buffer, 0, n);
  927. spin_lock(&kvm->mmu_lock);
  928. *is_dirty = false;
  929. for (i = 0; i < n / sizeof(long); i++) {
  930. unsigned long mask;
  931. gfn_t offset;
  932. if (!dirty_bitmap[i])
  933. continue;
  934. *is_dirty = true;
  935. mask = xchg(&dirty_bitmap[i], 0);
  936. dirty_bitmap_buffer[i] = mask;
  937. if (mask) {
  938. offset = i * BITS_PER_LONG;
  939. kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
  940. offset, mask);
  941. }
  942. }
  943. spin_unlock(&kvm->mmu_lock);
  944. r = -EFAULT;
  945. if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
  946. goto out;
  947. r = 0;
  948. out:
  949. return r;
  950. }
  951. EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
  952. #endif
  953. bool kvm_largepages_enabled(void)
  954. {
  955. return largepages_enabled;
  956. }
  957. void kvm_disable_largepages(void)
  958. {
  959. largepages_enabled = false;
  960. }
  961. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  962. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  963. {
  964. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  965. }
  966. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  967. struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
  968. {
  969. return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
  970. }
  971. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  972. {
  973. struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
  974. if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
  975. memslot->flags & KVM_MEMSLOT_INVALID)
  976. return 0;
  977. return 1;
  978. }
  979. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  980. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  981. {
  982. struct vm_area_struct *vma;
  983. unsigned long addr, size;
  984. size = PAGE_SIZE;
  985. addr = gfn_to_hva(kvm, gfn);
  986. if (kvm_is_error_hva(addr))
  987. return PAGE_SIZE;
  988. down_read(&current->mm->mmap_sem);
  989. vma = find_vma(current->mm, addr);
  990. if (!vma)
  991. goto out;
  992. size = vma_kernel_pagesize(vma);
  993. out:
  994. up_read(&current->mm->mmap_sem);
  995. return size;
  996. }
  997. static bool memslot_is_readonly(struct kvm_memory_slot *slot)
  998. {
  999. return slot->flags & KVM_MEM_READONLY;
  1000. }
  1001. static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  1002. gfn_t *nr_pages, bool write)
  1003. {
  1004. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  1005. return KVM_HVA_ERR_BAD;
  1006. if (memslot_is_readonly(slot) && write)
  1007. return KVM_HVA_ERR_RO_BAD;
  1008. if (nr_pages)
  1009. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  1010. return __gfn_to_hva_memslot(slot, gfn);
  1011. }
  1012. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  1013. gfn_t *nr_pages)
  1014. {
  1015. return __gfn_to_hva_many(slot, gfn, nr_pages, true);
  1016. }
  1017. unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
  1018. gfn_t gfn)
  1019. {
  1020. return gfn_to_hva_many(slot, gfn, NULL);
  1021. }
  1022. EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
  1023. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1024. {
  1025. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  1026. }
  1027. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1028. unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
  1029. {
  1030. return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
  1031. }
  1032. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
  1033. /*
  1034. * If writable is set to false, the hva returned by this function is only
  1035. * allowed to be read.
  1036. */
  1037. unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
  1038. gfn_t gfn, bool *writable)
  1039. {
  1040. unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
  1041. if (!kvm_is_error_hva(hva) && writable)
  1042. *writable = !memslot_is_readonly(slot);
  1043. return hva;
  1044. }
  1045. unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
  1046. {
  1047. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1048. return gfn_to_hva_memslot_prot(slot, gfn, writable);
  1049. }
  1050. unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
  1051. {
  1052. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1053. return gfn_to_hva_memslot_prot(slot, gfn, writable);
  1054. }
  1055. static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
  1056. unsigned long start, int write, struct page **page)
  1057. {
  1058. int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
  1059. if (write)
  1060. flags |= FOLL_WRITE;
  1061. return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
  1062. }
  1063. static inline int check_user_page_hwpoison(unsigned long addr)
  1064. {
  1065. int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
  1066. rc = __get_user_pages(current, current->mm, addr, 1,
  1067. flags, NULL, NULL, NULL);
  1068. return rc == -EHWPOISON;
  1069. }
  1070. /*
  1071. * The atomic path to get the writable pfn which will be stored in @pfn,
  1072. * true indicates success, otherwise false is returned.
  1073. */
  1074. static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
  1075. bool write_fault, bool *writable, pfn_t *pfn)
  1076. {
  1077. struct page *page[1];
  1078. int npages;
  1079. if (!(async || atomic))
  1080. return false;
  1081. /*
  1082. * Fast pin a writable pfn only if it is a write fault request
  1083. * or the caller allows to map a writable pfn for a read fault
  1084. * request.
  1085. */
  1086. if (!(write_fault || writable))
  1087. return false;
  1088. npages = __get_user_pages_fast(addr, 1, 1, page);
  1089. if (npages == 1) {
  1090. *pfn = page_to_pfn(page[0]);
  1091. if (writable)
  1092. *writable = true;
  1093. return true;
  1094. }
  1095. return false;
  1096. }
  1097. /*
  1098. * The slow path to get the pfn of the specified host virtual address,
  1099. * 1 indicates success, -errno is returned if error is detected.
  1100. */
  1101. static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
  1102. bool *writable, pfn_t *pfn)
  1103. {
  1104. struct page *page[1];
  1105. int npages = 0;
  1106. might_sleep();
  1107. if (writable)
  1108. *writable = write_fault;
  1109. if (async) {
  1110. down_read(&current->mm->mmap_sem);
  1111. npages = get_user_page_nowait(current, current->mm,
  1112. addr, write_fault, page);
  1113. up_read(&current->mm->mmap_sem);
  1114. } else
  1115. npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
  1116. write_fault, 0, page,
  1117. FOLL_TOUCH|FOLL_HWPOISON);
  1118. if (npages != 1)
  1119. return npages;
  1120. /* map read fault as writable if possible */
  1121. if (unlikely(!write_fault) && writable) {
  1122. struct page *wpage[1];
  1123. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  1124. if (npages == 1) {
  1125. *writable = true;
  1126. put_page(page[0]);
  1127. page[0] = wpage[0];
  1128. }
  1129. npages = 1;
  1130. }
  1131. *pfn = page_to_pfn(page[0]);
  1132. return npages;
  1133. }
  1134. static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
  1135. {
  1136. if (unlikely(!(vma->vm_flags & VM_READ)))
  1137. return false;
  1138. if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
  1139. return false;
  1140. return true;
  1141. }
  1142. /*
  1143. * Pin guest page in memory and return its pfn.
  1144. * @addr: host virtual address which maps memory to the guest
  1145. * @atomic: whether this function can sleep
  1146. * @async: whether this function need to wait IO complete if the
  1147. * host page is not in the memory
  1148. * @write_fault: whether we should get a writable host page
  1149. * @writable: whether it allows to map a writable host page for !@write_fault
  1150. *
  1151. * The function will map a writable host page for these two cases:
  1152. * 1): @write_fault = true
  1153. * 2): @write_fault = false && @writable, @writable will tell the caller
  1154. * whether the mapping is writable.
  1155. */
  1156. static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
  1157. bool write_fault, bool *writable)
  1158. {
  1159. struct vm_area_struct *vma;
  1160. pfn_t pfn = 0;
  1161. int npages;
  1162. /* we can do it either atomically or asynchronously, not both */
  1163. BUG_ON(atomic && async);
  1164. if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
  1165. return pfn;
  1166. if (atomic)
  1167. return KVM_PFN_ERR_FAULT;
  1168. npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
  1169. if (npages == 1)
  1170. return pfn;
  1171. down_read(&current->mm->mmap_sem);
  1172. if (npages == -EHWPOISON ||
  1173. (!async && check_user_page_hwpoison(addr))) {
  1174. pfn = KVM_PFN_ERR_HWPOISON;
  1175. goto exit;
  1176. }
  1177. vma = find_vma_intersection(current->mm, addr, addr + 1);
  1178. if (vma == NULL)
  1179. pfn = KVM_PFN_ERR_FAULT;
  1180. else if ((vma->vm_flags & VM_PFNMAP)) {
  1181. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  1182. vma->vm_pgoff;
  1183. BUG_ON(!kvm_is_reserved_pfn(pfn));
  1184. } else {
  1185. if (async && vma_is_valid(vma, write_fault))
  1186. *async = true;
  1187. pfn = KVM_PFN_ERR_FAULT;
  1188. }
  1189. exit:
  1190. up_read(&current->mm->mmap_sem);
  1191. return pfn;
  1192. }
  1193. pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
  1194. bool *async, bool write_fault, bool *writable)
  1195. {
  1196. unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
  1197. if (addr == KVM_HVA_ERR_RO_BAD)
  1198. return KVM_PFN_ERR_RO_FAULT;
  1199. if (kvm_is_error_hva(addr))
  1200. return KVM_PFN_NOSLOT;
  1201. /* Do not map writable pfn in the readonly memslot. */
  1202. if (writable && memslot_is_readonly(slot)) {
  1203. *writable = false;
  1204. writable = NULL;
  1205. }
  1206. return hva_to_pfn(addr, atomic, async, write_fault,
  1207. writable);
  1208. }
  1209. EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
  1210. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  1211. bool *writable)
  1212. {
  1213. return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
  1214. write_fault, writable);
  1215. }
  1216. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  1217. pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
  1218. {
  1219. return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
  1220. }
  1221. EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
  1222. pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
  1223. {
  1224. return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
  1225. }
  1226. EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
  1227. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  1228. {
  1229. return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
  1230. }
  1231. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  1232. pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
  1233. {
  1234. return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
  1235. }
  1236. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
  1237. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1238. {
  1239. return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
  1240. }
  1241. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1242. pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  1243. {
  1244. return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
  1245. }
  1246. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
  1247. int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
  1248. struct page **pages, int nr_pages)
  1249. {
  1250. unsigned long addr;
  1251. gfn_t entry;
  1252. addr = gfn_to_hva_many(slot, gfn, &entry);
  1253. if (kvm_is_error_hva(addr))
  1254. return -1;
  1255. if (entry < nr_pages)
  1256. return 0;
  1257. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  1258. }
  1259. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  1260. static struct page *kvm_pfn_to_page(pfn_t pfn)
  1261. {
  1262. if (is_error_noslot_pfn(pfn))
  1263. return KVM_ERR_PTR_BAD_PAGE;
  1264. if (kvm_is_reserved_pfn(pfn)) {
  1265. WARN_ON(1);
  1266. return KVM_ERR_PTR_BAD_PAGE;
  1267. }
  1268. return pfn_to_page(pfn);
  1269. }
  1270. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1271. {
  1272. pfn_t pfn;
  1273. pfn = gfn_to_pfn(kvm, gfn);
  1274. return kvm_pfn_to_page(pfn);
  1275. }
  1276. EXPORT_SYMBOL_GPL(gfn_to_page);
  1277. struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1278. {
  1279. pfn_t pfn;
  1280. pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
  1281. return kvm_pfn_to_page(pfn);
  1282. }
  1283. EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
  1284. void kvm_release_page_clean(struct page *page)
  1285. {
  1286. WARN_ON(is_error_page(page));
  1287. kvm_release_pfn_clean(page_to_pfn(page));
  1288. }
  1289. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1290. void kvm_release_pfn_clean(pfn_t pfn)
  1291. {
  1292. if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
  1293. put_page(pfn_to_page(pfn));
  1294. }
  1295. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1296. void kvm_release_page_dirty(struct page *page)
  1297. {
  1298. WARN_ON(is_error_page(page));
  1299. kvm_release_pfn_dirty(page_to_pfn(page));
  1300. }
  1301. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1302. static void kvm_release_pfn_dirty(pfn_t pfn)
  1303. {
  1304. kvm_set_pfn_dirty(pfn);
  1305. kvm_release_pfn_clean(pfn);
  1306. }
  1307. void kvm_set_pfn_dirty(pfn_t pfn)
  1308. {
  1309. if (!kvm_is_reserved_pfn(pfn)) {
  1310. struct page *page = pfn_to_page(pfn);
  1311. if (!PageReserved(page))
  1312. SetPageDirty(page);
  1313. }
  1314. }
  1315. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1316. void kvm_set_pfn_accessed(pfn_t pfn)
  1317. {
  1318. if (!kvm_is_reserved_pfn(pfn))
  1319. mark_page_accessed(pfn_to_page(pfn));
  1320. }
  1321. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1322. void kvm_get_pfn(pfn_t pfn)
  1323. {
  1324. if (!kvm_is_reserved_pfn(pfn))
  1325. get_page(pfn_to_page(pfn));
  1326. }
  1327. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1328. static int next_segment(unsigned long len, int offset)
  1329. {
  1330. if (len > PAGE_SIZE - offset)
  1331. return PAGE_SIZE - offset;
  1332. else
  1333. return len;
  1334. }
  1335. static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
  1336. void *data, int offset, int len)
  1337. {
  1338. int r;
  1339. unsigned long addr;
  1340. addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
  1341. if (kvm_is_error_hva(addr))
  1342. return -EFAULT;
  1343. r = __copy_from_user(data, (void __user *)addr + offset, len);
  1344. if (r)
  1345. return -EFAULT;
  1346. return 0;
  1347. }
  1348. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1349. int len)
  1350. {
  1351. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1352. return __kvm_read_guest_page(slot, gfn, data, offset, len);
  1353. }
  1354. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1355. int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
  1356. int offset, int len)
  1357. {
  1358. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1359. return __kvm_read_guest_page(slot, gfn, data, offset, len);
  1360. }
  1361. EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
  1362. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1363. {
  1364. gfn_t gfn = gpa >> PAGE_SHIFT;
  1365. int seg;
  1366. int offset = offset_in_page(gpa);
  1367. int ret;
  1368. while ((seg = next_segment(len, offset)) != 0) {
  1369. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1370. if (ret < 0)
  1371. return ret;
  1372. offset = 0;
  1373. len -= seg;
  1374. data += seg;
  1375. ++gfn;
  1376. }
  1377. return 0;
  1378. }
  1379. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1380. int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
  1381. {
  1382. gfn_t gfn = gpa >> PAGE_SHIFT;
  1383. int seg;
  1384. int offset = offset_in_page(gpa);
  1385. int ret;
  1386. while ((seg = next_segment(len, offset)) != 0) {
  1387. ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
  1388. if (ret < 0)
  1389. return ret;
  1390. offset = 0;
  1391. len -= seg;
  1392. data += seg;
  1393. ++gfn;
  1394. }
  1395. return 0;
  1396. }
  1397. EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
  1398. static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
  1399. void *data, int offset, unsigned long len)
  1400. {
  1401. int r;
  1402. unsigned long addr;
  1403. addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
  1404. if (kvm_is_error_hva(addr))
  1405. return -EFAULT;
  1406. pagefault_disable();
  1407. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1408. pagefault_enable();
  1409. if (r)
  1410. return -EFAULT;
  1411. return 0;
  1412. }
  1413. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1414. unsigned long len)
  1415. {
  1416. gfn_t gfn = gpa >> PAGE_SHIFT;
  1417. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1418. int offset = offset_in_page(gpa);
  1419. return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
  1420. }
  1421. EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
  1422. int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
  1423. void *data, unsigned long len)
  1424. {
  1425. gfn_t gfn = gpa >> PAGE_SHIFT;
  1426. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1427. int offset = offset_in_page(gpa);
  1428. return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
  1429. }
  1430. EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
  1431. static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
  1432. const void *data, int offset, int len)
  1433. {
  1434. int r;
  1435. unsigned long addr;
  1436. addr = gfn_to_hva_memslot(memslot, gfn);
  1437. if (kvm_is_error_hva(addr))
  1438. return -EFAULT;
  1439. r = __copy_to_user((void __user *)addr + offset, data, len);
  1440. if (r)
  1441. return -EFAULT;
  1442. mark_page_dirty_in_slot(memslot, gfn);
  1443. return 0;
  1444. }
  1445. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
  1446. const void *data, int offset, int len)
  1447. {
  1448. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  1449. return __kvm_write_guest_page(slot, gfn, data, offset, len);
  1450. }
  1451. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1452. int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  1453. const void *data, int offset, int len)
  1454. {
  1455. struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1456. return __kvm_write_guest_page(slot, gfn, data, offset, len);
  1457. }
  1458. EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
  1459. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1460. unsigned long len)
  1461. {
  1462. gfn_t gfn = gpa >> PAGE_SHIFT;
  1463. int seg;
  1464. int offset = offset_in_page(gpa);
  1465. int ret;
  1466. while ((seg = next_segment(len, offset)) != 0) {
  1467. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1468. if (ret < 0)
  1469. return ret;
  1470. offset = 0;
  1471. len -= seg;
  1472. data += seg;
  1473. ++gfn;
  1474. }
  1475. return 0;
  1476. }
  1477. EXPORT_SYMBOL_GPL(kvm_write_guest);
  1478. int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
  1479. unsigned long len)
  1480. {
  1481. gfn_t gfn = gpa >> PAGE_SHIFT;
  1482. int seg;
  1483. int offset = offset_in_page(gpa);
  1484. int ret;
  1485. while ((seg = next_segment(len, offset)) != 0) {
  1486. ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
  1487. if (ret < 0)
  1488. return ret;
  1489. offset = 0;
  1490. len -= seg;
  1491. data += seg;
  1492. ++gfn;
  1493. }
  1494. return 0;
  1495. }
  1496. EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
  1497. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1498. gpa_t gpa, unsigned long len)
  1499. {
  1500. struct kvm_memslots *slots = kvm_memslots(kvm);
  1501. int offset = offset_in_page(gpa);
  1502. gfn_t start_gfn = gpa >> PAGE_SHIFT;
  1503. gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
  1504. gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
  1505. gfn_t nr_pages_avail;
  1506. ghc->gpa = gpa;
  1507. ghc->generation = slots->generation;
  1508. ghc->len = len;
  1509. ghc->memslot = gfn_to_memslot(kvm, start_gfn);
  1510. ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
  1511. if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
  1512. ghc->hva += offset;
  1513. } else {
  1514. /*
  1515. * If the requested region crosses two memslots, we still
  1516. * verify that the entire region is valid here.
  1517. */
  1518. while (start_gfn <= end_gfn) {
  1519. ghc->memslot = gfn_to_memslot(kvm, start_gfn);
  1520. ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
  1521. &nr_pages_avail);
  1522. if (kvm_is_error_hva(ghc->hva))
  1523. return -EFAULT;
  1524. start_gfn += nr_pages_avail;
  1525. }
  1526. /* Use the slow path for cross page reads and writes. */
  1527. ghc->memslot = NULL;
  1528. }
  1529. return 0;
  1530. }
  1531. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1532. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1533. void *data, unsigned long len)
  1534. {
  1535. struct kvm_memslots *slots = kvm_memslots(kvm);
  1536. int r;
  1537. BUG_ON(len > ghc->len);
  1538. if (slots->generation != ghc->generation)
  1539. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
  1540. if (unlikely(!ghc->memslot))
  1541. return kvm_write_guest(kvm, ghc->gpa, data, len);
  1542. if (kvm_is_error_hva(ghc->hva))
  1543. return -EFAULT;
  1544. r = __copy_to_user((void __user *)ghc->hva, data, len);
  1545. if (r)
  1546. return -EFAULT;
  1547. mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1548. return 0;
  1549. }
  1550. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1551. int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1552. void *data, unsigned long len)
  1553. {
  1554. struct kvm_memslots *slots = kvm_memslots(kvm);
  1555. int r;
  1556. BUG_ON(len > ghc->len);
  1557. if (slots->generation != ghc->generation)
  1558. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
  1559. if (unlikely(!ghc->memslot))
  1560. return kvm_read_guest(kvm, ghc->gpa, data, len);
  1561. if (kvm_is_error_hva(ghc->hva))
  1562. return -EFAULT;
  1563. r = __copy_from_user(data, (void __user *)ghc->hva, len);
  1564. if (r)
  1565. return -EFAULT;
  1566. return 0;
  1567. }
  1568. EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
  1569. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1570. {
  1571. const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
  1572. return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
  1573. }
  1574. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1575. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1576. {
  1577. gfn_t gfn = gpa >> PAGE_SHIFT;
  1578. int seg;
  1579. int offset = offset_in_page(gpa);
  1580. int ret;
  1581. while ((seg = next_segment(len, offset)) != 0) {
  1582. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1583. if (ret < 0)
  1584. return ret;
  1585. offset = 0;
  1586. len -= seg;
  1587. ++gfn;
  1588. }
  1589. return 0;
  1590. }
  1591. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1592. static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
  1593. gfn_t gfn)
  1594. {
  1595. if (memslot && memslot->dirty_bitmap) {
  1596. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1597. set_bit_le(rel_gfn, memslot->dirty_bitmap);
  1598. }
  1599. }
  1600. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1601. {
  1602. struct kvm_memory_slot *memslot;
  1603. memslot = gfn_to_memslot(kvm, gfn);
  1604. mark_page_dirty_in_slot(memslot, gfn);
  1605. }
  1606. EXPORT_SYMBOL_GPL(mark_page_dirty);
  1607. void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
  1608. {
  1609. struct kvm_memory_slot *memslot;
  1610. memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
  1611. mark_page_dirty_in_slot(memslot, gfn);
  1612. }
  1613. EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
  1614. static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
  1615. {
  1616. int old, val;
  1617. old = val = vcpu->halt_poll_ns;
  1618. /* 10us base */
  1619. if (val == 0 && halt_poll_ns_grow)
  1620. val = 10000;
  1621. else
  1622. val *= halt_poll_ns_grow;
  1623. vcpu->halt_poll_ns = val;
  1624. trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
  1625. }
  1626. static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
  1627. {
  1628. int old, val;
  1629. old = val = vcpu->halt_poll_ns;
  1630. if (halt_poll_ns_shrink == 0)
  1631. val = 0;
  1632. else
  1633. val /= halt_poll_ns_shrink;
  1634. vcpu->halt_poll_ns = val;
  1635. trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
  1636. }
  1637. static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
  1638. {
  1639. if (kvm_arch_vcpu_runnable(vcpu)) {
  1640. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1641. return -EINTR;
  1642. }
  1643. if (kvm_cpu_has_pending_timer(vcpu))
  1644. return -EINTR;
  1645. if (signal_pending(current))
  1646. return -EINTR;
  1647. return 0;
  1648. }
  1649. /*
  1650. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1651. */
  1652. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1653. {
  1654. ktime_t start, cur;
  1655. DEFINE_WAIT(wait);
  1656. bool waited = false;
  1657. u64 block_ns;
  1658. start = cur = ktime_get();
  1659. if (vcpu->halt_poll_ns) {
  1660. ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
  1661. ++vcpu->stat.halt_attempted_poll;
  1662. do {
  1663. /*
  1664. * This sets KVM_REQ_UNHALT if an interrupt
  1665. * arrives.
  1666. */
  1667. if (kvm_vcpu_check_block(vcpu) < 0) {
  1668. ++vcpu->stat.halt_successful_poll;
  1669. goto out;
  1670. }
  1671. cur = ktime_get();
  1672. } while (single_task_running() && ktime_before(cur, stop));
  1673. }
  1674. for (;;) {
  1675. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1676. if (kvm_vcpu_check_block(vcpu) < 0)
  1677. break;
  1678. waited = true;
  1679. schedule();
  1680. }
  1681. finish_wait(&vcpu->wq, &wait);
  1682. cur = ktime_get();
  1683. out:
  1684. block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
  1685. if (halt_poll_ns) {
  1686. if (block_ns <= vcpu->halt_poll_ns)
  1687. ;
  1688. /* we had a long block, shrink polling */
  1689. else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
  1690. shrink_halt_poll_ns(vcpu);
  1691. /* we had a short halt and our poll time is too small */
  1692. else if (vcpu->halt_poll_ns < halt_poll_ns &&
  1693. block_ns < halt_poll_ns)
  1694. grow_halt_poll_ns(vcpu);
  1695. } else
  1696. vcpu->halt_poll_ns = 0;
  1697. trace_kvm_vcpu_wakeup(block_ns, waited);
  1698. }
  1699. EXPORT_SYMBOL_GPL(kvm_vcpu_block);
  1700. #ifndef CONFIG_S390
  1701. /*
  1702. * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
  1703. */
  1704. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1705. {
  1706. int me;
  1707. int cpu = vcpu->cpu;
  1708. wait_queue_head_t *wqp;
  1709. wqp = kvm_arch_vcpu_wq(vcpu);
  1710. if (waitqueue_active(wqp)) {
  1711. wake_up_interruptible(wqp);
  1712. ++vcpu->stat.halt_wakeup;
  1713. }
  1714. me = get_cpu();
  1715. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  1716. if (kvm_arch_vcpu_should_kick(vcpu))
  1717. smp_send_reschedule(cpu);
  1718. put_cpu();
  1719. }
  1720. EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
  1721. #endif /* !CONFIG_S390 */
  1722. int kvm_vcpu_yield_to(struct kvm_vcpu *target)
  1723. {
  1724. struct pid *pid;
  1725. struct task_struct *task = NULL;
  1726. int ret = 0;
  1727. rcu_read_lock();
  1728. pid = rcu_dereference(target->pid);
  1729. if (pid)
  1730. task = get_pid_task(pid, PIDTYPE_PID);
  1731. rcu_read_unlock();
  1732. if (!task)
  1733. return ret;
  1734. ret = yield_to(task, 1);
  1735. put_task_struct(task);
  1736. return ret;
  1737. }
  1738. EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
  1739. /*
  1740. * Helper that checks whether a VCPU is eligible for directed yield.
  1741. * Most eligible candidate to yield is decided by following heuristics:
  1742. *
  1743. * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
  1744. * (preempted lock holder), indicated by @in_spin_loop.
  1745. * Set at the beiginning and cleared at the end of interception/PLE handler.
  1746. *
  1747. * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
  1748. * chance last time (mostly it has become eligible now since we have probably
  1749. * yielded to lockholder in last iteration. This is done by toggling
  1750. * @dy_eligible each time a VCPU checked for eligibility.)
  1751. *
  1752. * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
  1753. * to preempted lock-holder could result in wrong VCPU selection and CPU
  1754. * burning. Giving priority for a potential lock-holder increases lock
  1755. * progress.
  1756. *
  1757. * Since algorithm is based on heuristics, accessing another VCPU data without
  1758. * locking does not harm. It may result in trying to yield to same VCPU, fail
  1759. * and continue with next VCPU and so on.
  1760. */
  1761. static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
  1762. {
  1763. #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
  1764. bool eligible;
  1765. eligible = !vcpu->spin_loop.in_spin_loop ||
  1766. vcpu->spin_loop.dy_eligible;
  1767. if (vcpu->spin_loop.in_spin_loop)
  1768. kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
  1769. return eligible;
  1770. #else
  1771. return true;
  1772. #endif
  1773. }
  1774. void kvm_vcpu_on_spin(struct kvm_vcpu *me)
  1775. {
  1776. struct kvm *kvm = me->kvm;
  1777. struct kvm_vcpu *vcpu;
  1778. int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
  1779. int yielded = 0;
  1780. int try = 3;
  1781. int pass;
  1782. int i;
  1783. kvm_vcpu_set_in_spin_loop(me, true);
  1784. /*
  1785. * We boost the priority of a VCPU that is runnable but not
  1786. * currently running, because it got preempted by something
  1787. * else and called schedule in __vcpu_run. Hopefully that
  1788. * VCPU is holding the lock that we need and will release it.
  1789. * We approximate round-robin by starting at the last boosted VCPU.
  1790. */
  1791. for (pass = 0; pass < 2 && !yielded && try; pass++) {
  1792. kvm_for_each_vcpu(i, vcpu, kvm) {
  1793. if (!pass && i <= last_boosted_vcpu) {
  1794. i = last_boosted_vcpu;
  1795. continue;
  1796. } else if (pass && i > last_boosted_vcpu)
  1797. break;
  1798. if (!ACCESS_ONCE(vcpu->preempted))
  1799. continue;
  1800. if (vcpu == me)
  1801. continue;
  1802. if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
  1803. continue;
  1804. if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
  1805. continue;
  1806. yielded = kvm_vcpu_yield_to(vcpu);
  1807. if (yielded > 0) {
  1808. kvm->last_boosted_vcpu = i;
  1809. break;
  1810. } else if (yielded < 0) {
  1811. try--;
  1812. if (!try)
  1813. break;
  1814. }
  1815. }
  1816. }
  1817. kvm_vcpu_set_in_spin_loop(me, false);
  1818. /* Ensure vcpu is not eligible during next spinloop */
  1819. kvm_vcpu_set_dy_eligible(me, false);
  1820. }
  1821. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1822. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1823. {
  1824. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1825. struct page *page;
  1826. if (vmf->pgoff == 0)
  1827. page = virt_to_page(vcpu->run);
  1828. #ifdef CONFIG_X86
  1829. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1830. page = virt_to_page(vcpu->arch.pio_data);
  1831. #endif
  1832. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1833. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1834. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1835. #endif
  1836. else
  1837. return kvm_arch_vcpu_fault(vcpu, vmf);
  1838. get_page(page);
  1839. vmf->page = page;
  1840. return 0;
  1841. }
  1842. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1843. .fault = kvm_vcpu_fault,
  1844. };
  1845. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1846. {
  1847. vma->vm_ops = &kvm_vcpu_vm_ops;
  1848. return 0;
  1849. }
  1850. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1851. {
  1852. struct kvm_vcpu *vcpu = filp->private_data;
  1853. kvm_put_kvm(vcpu->kvm);
  1854. return 0;
  1855. }
  1856. static struct file_operations kvm_vcpu_fops = {
  1857. .release = kvm_vcpu_release,
  1858. .unlocked_ioctl = kvm_vcpu_ioctl,
  1859. #ifdef CONFIG_KVM_COMPAT
  1860. .compat_ioctl = kvm_vcpu_compat_ioctl,
  1861. #endif
  1862. .mmap = kvm_vcpu_mmap,
  1863. .llseek = noop_llseek,
  1864. };
  1865. /*
  1866. * Allocates an inode for the vcpu.
  1867. */
  1868. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1869. {
  1870. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
  1871. }
  1872. /*
  1873. * Creates some virtual cpus. Good luck creating more than one.
  1874. */
  1875. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1876. {
  1877. int r;
  1878. struct kvm_vcpu *vcpu, *v;
  1879. if (id >= KVM_MAX_VCPUS)
  1880. return -EINVAL;
  1881. vcpu = kvm_arch_vcpu_create(kvm, id);
  1882. if (IS_ERR(vcpu))
  1883. return PTR_ERR(vcpu);
  1884. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1885. r = kvm_arch_vcpu_setup(vcpu);
  1886. if (r)
  1887. goto vcpu_destroy;
  1888. mutex_lock(&kvm->lock);
  1889. if (!kvm_vcpu_compatible(vcpu)) {
  1890. r = -EINVAL;
  1891. goto unlock_vcpu_destroy;
  1892. }
  1893. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1894. r = -EINVAL;
  1895. goto unlock_vcpu_destroy;
  1896. }
  1897. kvm_for_each_vcpu(r, v, kvm)
  1898. if (v->vcpu_id == id) {
  1899. r = -EEXIST;
  1900. goto unlock_vcpu_destroy;
  1901. }
  1902. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1903. /* Now it's all set up, let userspace reach it */
  1904. kvm_get_kvm(kvm);
  1905. r = create_vcpu_fd(vcpu);
  1906. if (r < 0) {
  1907. kvm_put_kvm(kvm);
  1908. goto unlock_vcpu_destroy;
  1909. }
  1910. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1911. /*
  1912. * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
  1913. * before kvm->online_vcpu's incremented value.
  1914. */
  1915. smp_wmb();
  1916. atomic_inc(&kvm->online_vcpus);
  1917. mutex_unlock(&kvm->lock);
  1918. kvm_arch_vcpu_postcreate(vcpu);
  1919. return r;
  1920. unlock_vcpu_destroy:
  1921. mutex_unlock(&kvm->lock);
  1922. vcpu_destroy:
  1923. kvm_arch_vcpu_destroy(vcpu);
  1924. return r;
  1925. }
  1926. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1927. {
  1928. if (sigset) {
  1929. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1930. vcpu->sigset_active = 1;
  1931. vcpu->sigset = *sigset;
  1932. } else
  1933. vcpu->sigset_active = 0;
  1934. return 0;
  1935. }
  1936. static long kvm_vcpu_ioctl(struct file *filp,
  1937. unsigned int ioctl, unsigned long arg)
  1938. {
  1939. struct kvm_vcpu *vcpu = filp->private_data;
  1940. void __user *argp = (void __user *)arg;
  1941. int r;
  1942. struct kvm_fpu *fpu = NULL;
  1943. struct kvm_sregs *kvm_sregs = NULL;
  1944. if (vcpu->kvm->mm != current->mm)
  1945. return -EIO;
  1946. if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
  1947. return -EINVAL;
  1948. #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
  1949. /*
  1950. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1951. * so vcpu_load() would break it.
  1952. */
  1953. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
  1954. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1955. #endif
  1956. r = vcpu_load(vcpu);
  1957. if (r)
  1958. return r;
  1959. switch (ioctl) {
  1960. case KVM_RUN:
  1961. r = -EINVAL;
  1962. if (arg)
  1963. goto out;
  1964. if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
  1965. /* The thread running this VCPU changed. */
  1966. struct pid *oldpid = vcpu->pid;
  1967. struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
  1968. rcu_assign_pointer(vcpu->pid, newpid);
  1969. if (oldpid)
  1970. synchronize_rcu();
  1971. put_pid(oldpid);
  1972. }
  1973. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1974. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1975. break;
  1976. case KVM_GET_REGS: {
  1977. struct kvm_regs *kvm_regs;
  1978. r = -ENOMEM;
  1979. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1980. if (!kvm_regs)
  1981. goto out;
  1982. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1983. if (r)
  1984. goto out_free1;
  1985. r = -EFAULT;
  1986. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1987. goto out_free1;
  1988. r = 0;
  1989. out_free1:
  1990. kfree(kvm_regs);
  1991. break;
  1992. }
  1993. case KVM_SET_REGS: {
  1994. struct kvm_regs *kvm_regs;
  1995. r = -ENOMEM;
  1996. kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
  1997. if (IS_ERR(kvm_regs)) {
  1998. r = PTR_ERR(kvm_regs);
  1999. goto out;
  2000. }
  2001. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  2002. kfree(kvm_regs);
  2003. break;
  2004. }
  2005. case KVM_GET_SREGS: {
  2006. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  2007. r = -ENOMEM;
  2008. if (!kvm_sregs)
  2009. goto out;
  2010. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  2011. if (r)
  2012. goto out;
  2013. r = -EFAULT;
  2014. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  2015. goto out;
  2016. r = 0;
  2017. break;
  2018. }
  2019. case KVM_SET_SREGS: {
  2020. kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
  2021. if (IS_ERR(kvm_sregs)) {
  2022. r = PTR_ERR(kvm_sregs);
  2023. kvm_sregs = NULL;
  2024. goto out;
  2025. }
  2026. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  2027. break;
  2028. }
  2029. case KVM_GET_MP_STATE: {
  2030. struct kvm_mp_state mp_state;
  2031. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  2032. if (r)
  2033. goto out;
  2034. r = -EFAULT;
  2035. if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
  2036. goto out;
  2037. r = 0;
  2038. break;
  2039. }
  2040. case KVM_SET_MP_STATE: {
  2041. struct kvm_mp_state mp_state;
  2042. r = -EFAULT;
  2043. if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
  2044. goto out;
  2045. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  2046. break;
  2047. }
  2048. case KVM_TRANSLATE: {
  2049. struct kvm_translation tr;
  2050. r = -EFAULT;
  2051. if (copy_from_user(&tr, argp, sizeof(tr)))
  2052. goto out;
  2053. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  2054. if (r)
  2055. goto out;
  2056. r = -EFAULT;
  2057. if (copy_to_user(argp, &tr, sizeof(tr)))
  2058. goto out;
  2059. r = 0;
  2060. break;
  2061. }
  2062. case KVM_SET_GUEST_DEBUG: {
  2063. struct kvm_guest_debug dbg;
  2064. r = -EFAULT;
  2065. if (copy_from_user(&dbg, argp, sizeof(dbg)))
  2066. goto out;
  2067. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  2068. break;
  2069. }
  2070. case KVM_SET_SIGNAL_MASK: {
  2071. struct kvm_signal_mask __user *sigmask_arg = argp;
  2072. struct kvm_signal_mask kvm_sigmask;
  2073. sigset_t sigset, *p;
  2074. p = NULL;
  2075. if (argp) {
  2076. r = -EFAULT;
  2077. if (copy_from_user(&kvm_sigmask, argp,
  2078. sizeof(kvm_sigmask)))
  2079. goto out;
  2080. r = -EINVAL;
  2081. if (kvm_sigmask.len != sizeof(sigset))
  2082. goto out;
  2083. r = -EFAULT;
  2084. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2085. sizeof(sigset)))
  2086. goto out;
  2087. p = &sigset;
  2088. }
  2089. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  2090. break;
  2091. }
  2092. case KVM_GET_FPU: {
  2093. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  2094. r = -ENOMEM;
  2095. if (!fpu)
  2096. goto out;
  2097. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  2098. if (r)
  2099. goto out;
  2100. r = -EFAULT;
  2101. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  2102. goto out;
  2103. r = 0;
  2104. break;
  2105. }
  2106. case KVM_SET_FPU: {
  2107. fpu = memdup_user(argp, sizeof(*fpu));
  2108. if (IS_ERR(fpu)) {
  2109. r = PTR_ERR(fpu);
  2110. fpu = NULL;
  2111. goto out;
  2112. }
  2113. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  2114. break;
  2115. }
  2116. default:
  2117. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2118. }
  2119. out:
  2120. vcpu_put(vcpu);
  2121. kfree(fpu);
  2122. kfree(kvm_sregs);
  2123. return r;
  2124. }
  2125. #ifdef CONFIG_KVM_COMPAT
  2126. static long kvm_vcpu_compat_ioctl(struct file *filp,
  2127. unsigned int ioctl, unsigned long arg)
  2128. {
  2129. struct kvm_vcpu *vcpu = filp->private_data;
  2130. void __user *argp = compat_ptr(arg);
  2131. int r;
  2132. if (vcpu->kvm->mm != current->mm)
  2133. return -EIO;
  2134. switch (ioctl) {
  2135. case KVM_SET_SIGNAL_MASK: {
  2136. struct kvm_signal_mask __user *sigmask_arg = argp;
  2137. struct kvm_signal_mask kvm_sigmask;
  2138. compat_sigset_t csigset;
  2139. sigset_t sigset;
  2140. if (argp) {
  2141. r = -EFAULT;
  2142. if (copy_from_user(&kvm_sigmask, argp,
  2143. sizeof(kvm_sigmask)))
  2144. goto out;
  2145. r = -EINVAL;
  2146. if (kvm_sigmask.len != sizeof(csigset))
  2147. goto out;
  2148. r = -EFAULT;
  2149. if (copy_from_user(&csigset, sigmask_arg->sigset,
  2150. sizeof(csigset)))
  2151. goto out;
  2152. sigset_from_compat(&sigset, &csigset);
  2153. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2154. } else
  2155. r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
  2156. break;
  2157. }
  2158. default:
  2159. r = kvm_vcpu_ioctl(filp, ioctl, arg);
  2160. }
  2161. out:
  2162. return r;
  2163. }
  2164. #endif
  2165. static int kvm_device_ioctl_attr(struct kvm_device *dev,
  2166. int (*accessor)(struct kvm_device *dev,
  2167. struct kvm_device_attr *attr),
  2168. unsigned long arg)
  2169. {
  2170. struct kvm_device_attr attr;
  2171. if (!accessor)
  2172. return -EPERM;
  2173. if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
  2174. return -EFAULT;
  2175. return accessor(dev, &attr);
  2176. }
  2177. static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
  2178. unsigned long arg)
  2179. {
  2180. struct kvm_device *dev = filp->private_data;
  2181. switch (ioctl) {
  2182. case KVM_SET_DEVICE_ATTR:
  2183. return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
  2184. case KVM_GET_DEVICE_ATTR:
  2185. return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
  2186. case KVM_HAS_DEVICE_ATTR:
  2187. return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
  2188. default:
  2189. if (dev->ops->ioctl)
  2190. return dev->ops->ioctl(dev, ioctl, arg);
  2191. return -ENOTTY;
  2192. }
  2193. }
  2194. static int kvm_device_release(struct inode *inode, struct file *filp)
  2195. {
  2196. struct kvm_device *dev = filp->private_data;
  2197. struct kvm *kvm = dev->kvm;
  2198. kvm_put_kvm(kvm);
  2199. return 0;
  2200. }
  2201. static const struct file_operations kvm_device_fops = {
  2202. .unlocked_ioctl = kvm_device_ioctl,
  2203. #ifdef CONFIG_KVM_COMPAT
  2204. .compat_ioctl = kvm_device_ioctl,
  2205. #endif
  2206. .release = kvm_device_release,
  2207. };
  2208. struct kvm_device *kvm_device_from_filp(struct file *filp)
  2209. {
  2210. if (filp->f_op != &kvm_device_fops)
  2211. return NULL;
  2212. return filp->private_data;
  2213. }
  2214. static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
  2215. #ifdef CONFIG_KVM_MPIC
  2216. [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
  2217. [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
  2218. #endif
  2219. #ifdef CONFIG_KVM_XICS
  2220. [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
  2221. #endif
  2222. };
  2223. int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
  2224. {
  2225. if (type >= ARRAY_SIZE(kvm_device_ops_table))
  2226. return -ENOSPC;
  2227. if (kvm_device_ops_table[type] != NULL)
  2228. return -EEXIST;
  2229. kvm_device_ops_table[type] = ops;
  2230. return 0;
  2231. }
  2232. void kvm_unregister_device_ops(u32 type)
  2233. {
  2234. if (kvm_device_ops_table[type] != NULL)
  2235. kvm_device_ops_table[type] = NULL;
  2236. }
  2237. static int kvm_ioctl_create_device(struct kvm *kvm,
  2238. struct kvm_create_device *cd)
  2239. {
  2240. struct kvm_device_ops *ops = NULL;
  2241. struct kvm_device *dev;
  2242. bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
  2243. int ret;
  2244. if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
  2245. return -ENODEV;
  2246. ops = kvm_device_ops_table[cd->type];
  2247. if (ops == NULL)
  2248. return -ENODEV;
  2249. if (test)
  2250. return 0;
  2251. dev = kzalloc(sizeof(*dev), GFP_KERNEL);
  2252. if (!dev)
  2253. return -ENOMEM;
  2254. dev->ops = ops;
  2255. dev->kvm = kvm;
  2256. ret = ops->create(dev, cd->type);
  2257. if (ret < 0) {
  2258. kfree(dev);
  2259. return ret;
  2260. }
  2261. ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
  2262. if (ret < 0) {
  2263. ops->destroy(dev);
  2264. return ret;
  2265. }
  2266. list_add(&dev->vm_node, &kvm->devices);
  2267. kvm_get_kvm(kvm);
  2268. cd->fd = ret;
  2269. return 0;
  2270. }
  2271. static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
  2272. {
  2273. switch (arg) {
  2274. case KVM_CAP_USER_MEMORY:
  2275. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  2276. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  2277. case KVM_CAP_INTERNAL_ERROR_DATA:
  2278. #ifdef CONFIG_HAVE_KVM_MSI
  2279. case KVM_CAP_SIGNAL_MSI:
  2280. #endif
  2281. #ifdef CONFIG_HAVE_KVM_IRQFD
  2282. case KVM_CAP_IRQFD:
  2283. case KVM_CAP_IRQFD_RESAMPLE:
  2284. #endif
  2285. case KVM_CAP_CHECK_EXTENSION_VM:
  2286. return 1;
  2287. #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
  2288. case KVM_CAP_IRQ_ROUTING:
  2289. return KVM_MAX_IRQ_ROUTES;
  2290. #endif
  2291. #if KVM_ADDRESS_SPACE_NUM > 1
  2292. case KVM_CAP_MULTI_ADDRESS_SPACE:
  2293. return KVM_ADDRESS_SPACE_NUM;
  2294. #endif
  2295. default:
  2296. break;
  2297. }
  2298. return kvm_vm_ioctl_check_extension(kvm, arg);
  2299. }
  2300. static long kvm_vm_ioctl(struct file *filp,
  2301. unsigned int ioctl, unsigned long arg)
  2302. {
  2303. struct kvm *kvm = filp->private_data;
  2304. void __user *argp = (void __user *)arg;
  2305. int r;
  2306. if (kvm->mm != current->mm)
  2307. return -EIO;
  2308. switch (ioctl) {
  2309. case KVM_CREATE_VCPU:
  2310. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2311. break;
  2312. case KVM_SET_USER_MEMORY_REGION: {
  2313. struct kvm_userspace_memory_region kvm_userspace_mem;
  2314. r = -EFAULT;
  2315. if (copy_from_user(&kvm_userspace_mem, argp,
  2316. sizeof(kvm_userspace_mem)))
  2317. goto out;
  2318. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
  2319. break;
  2320. }
  2321. case KVM_GET_DIRTY_LOG: {
  2322. struct kvm_dirty_log log;
  2323. r = -EFAULT;
  2324. if (copy_from_user(&log, argp, sizeof(log)))
  2325. goto out;
  2326. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2327. break;
  2328. }
  2329. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2330. case KVM_REGISTER_COALESCED_MMIO: {
  2331. struct kvm_coalesced_mmio_zone zone;
  2332. r = -EFAULT;
  2333. if (copy_from_user(&zone, argp, sizeof(zone)))
  2334. goto out;
  2335. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  2336. break;
  2337. }
  2338. case KVM_UNREGISTER_COALESCED_MMIO: {
  2339. struct kvm_coalesced_mmio_zone zone;
  2340. r = -EFAULT;
  2341. if (copy_from_user(&zone, argp, sizeof(zone)))
  2342. goto out;
  2343. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  2344. break;
  2345. }
  2346. #endif
  2347. case KVM_IRQFD: {
  2348. struct kvm_irqfd data;
  2349. r = -EFAULT;
  2350. if (copy_from_user(&data, argp, sizeof(data)))
  2351. goto out;
  2352. r = kvm_irqfd(kvm, &data);
  2353. break;
  2354. }
  2355. case KVM_IOEVENTFD: {
  2356. struct kvm_ioeventfd data;
  2357. r = -EFAULT;
  2358. if (copy_from_user(&data, argp, sizeof(data)))
  2359. goto out;
  2360. r = kvm_ioeventfd(kvm, &data);
  2361. break;
  2362. }
  2363. #ifdef CONFIG_HAVE_KVM_MSI
  2364. case KVM_SIGNAL_MSI: {
  2365. struct kvm_msi msi;
  2366. r = -EFAULT;
  2367. if (copy_from_user(&msi, argp, sizeof(msi)))
  2368. goto out;
  2369. r = kvm_send_userspace_msi(kvm, &msi);
  2370. break;
  2371. }
  2372. #endif
  2373. #ifdef __KVM_HAVE_IRQ_LINE
  2374. case KVM_IRQ_LINE_STATUS:
  2375. case KVM_IRQ_LINE: {
  2376. struct kvm_irq_level irq_event;
  2377. r = -EFAULT;
  2378. if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
  2379. goto out;
  2380. r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
  2381. ioctl == KVM_IRQ_LINE_STATUS);
  2382. if (r)
  2383. goto out;
  2384. r = -EFAULT;
  2385. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2386. if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
  2387. goto out;
  2388. }
  2389. r = 0;
  2390. break;
  2391. }
  2392. #endif
  2393. #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
  2394. case KVM_SET_GSI_ROUTING: {
  2395. struct kvm_irq_routing routing;
  2396. struct kvm_irq_routing __user *urouting;
  2397. struct kvm_irq_routing_entry *entries;
  2398. r = -EFAULT;
  2399. if (copy_from_user(&routing, argp, sizeof(routing)))
  2400. goto out;
  2401. r = -EINVAL;
  2402. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  2403. goto out;
  2404. if (routing.flags)
  2405. goto out;
  2406. r = -ENOMEM;
  2407. entries = vmalloc(routing.nr * sizeof(*entries));
  2408. if (!entries)
  2409. goto out;
  2410. r = -EFAULT;
  2411. urouting = argp;
  2412. if (copy_from_user(entries, urouting->entries,
  2413. routing.nr * sizeof(*entries)))
  2414. goto out_free_irq_routing;
  2415. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  2416. routing.flags);
  2417. out_free_irq_routing:
  2418. vfree(entries);
  2419. break;
  2420. }
  2421. #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
  2422. case KVM_CREATE_DEVICE: {
  2423. struct kvm_create_device cd;
  2424. r = -EFAULT;
  2425. if (copy_from_user(&cd, argp, sizeof(cd)))
  2426. goto out;
  2427. r = kvm_ioctl_create_device(kvm, &cd);
  2428. if (r)
  2429. goto out;
  2430. r = -EFAULT;
  2431. if (copy_to_user(argp, &cd, sizeof(cd)))
  2432. goto out;
  2433. r = 0;
  2434. break;
  2435. }
  2436. case KVM_CHECK_EXTENSION:
  2437. r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
  2438. break;
  2439. default:
  2440. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  2441. }
  2442. out:
  2443. return r;
  2444. }
  2445. #ifdef CONFIG_KVM_COMPAT
  2446. struct compat_kvm_dirty_log {
  2447. __u32 slot;
  2448. __u32 padding1;
  2449. union {
  2450. compat_uptr_t dirty_bitmap; /* one bit per page */
  2451. __u64 padding2;
  2452. };
  2453. };
  2454. static long kvm_vm_compat_ioctl(struct file *filp,
  2455. unsigned int ioctl, unsigned long arg)
  2456. {
  2457. struct kvm *kvm = filp->private_data;
  2458. int r;
  2459. if (kvm->mm != current->mm)
  2460. return -EIO;
  2461. switch (ioctl) {
  2462. case KVM_GET_DIRTY_LOG: {
  2463. struct compat_kvm_dirty_log compat_log;
  2464. struct kvm_dirty_log log;
  2465. r = -EFAULT;
  2466. if (copy_from_user(&compat_log, (void __user *)arg,
  2467. sizeof(compat_log)))
  2468. goto out;
  2469. log.slot = compat_log.slot;
  2470. log.padding1 = compat_log.padding1;
  2471. log.padding2 = compat_log.padding2;
  2472. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  2473. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2474. break;
  2475. }
  2476. default:
  2477. r = kvm_vm_ioctl(filp, ioctl, arg);
  2478. }
  2479. out:
  2480. return r;
  2481. }
  2482. #endif
  2483. static struct file_operations kvm_vm_fops = {
  2484. .release = kvm_vm_release,
  2485. .unlocked_ioctl = kvm_vm_ioctl,
  2486. #ifdef CONFIG_KVM_COMPAT
  2487. .compat_ioctl = kvm_vm_compat_ioctl,
  2488. #endif
  2489. .llseek = noop_llseek,
  2490. };
  2491. static int kvm_dev_ioctl_create_vm(unsigned long type)
  2492. {
  2493. int r;
  2494. struct kvm *kvm;
  2495. kvm = kvm_create_vm(type);
  2496. if (IS_ERR(kvm))
  2497. return PTR_ERR(kvm);
  2498. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2499. r = kvm_coalesced_mmio_init(kvm);
  2500. if (r < 0) {
  2501. kvm_put_kvm(kvm);
  2502. return r;
  2503. }
  2504. #endif
  2505. r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
  2506. if (r < 0)
  2507. kvm_put_kvm(kvm);
  2508. return r;
  2509. }
  2510. static long kvm_dev_ioctl(struct file *filp,
  2511. unsigned int ioctl, unsigned long arg)
  2512. {
  2513. long r = -EINVAL;
  2514. switch (ioctl) {
  2515. case KVM_GET_API_VERSION:
  2516. if (arg)
  2517. goto out;
  2518. r = KVM_API_VERSION;
  2519. break;
  2520. case KVM_CREATE_VM:
  2521. r = kvm_dev_ioctl_create_vm(arg);
  2522. break;
  2523. case KVM_CHECK_EXTENSION:
  2524. r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
  2525. break;
  2526. case KVM_GET_VCPU_MMAP_SIZE:
  2527. if (arg)
  2528. goto out;
  2529. r = PAGE_SIZE; /* struct kvm_run */
  2530. #ifdef CONFIG_X86
  2531. r += PAGE_SIZE; /* pio data page */
  2532. #endif
  2533. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2534. r += PAGE_SIZE; /* coalesced mmio ring page */
  2535. #endif
  2536. break;
  2537. case KVM_TRACE_ENABLE:
  2538. case KVM_TRACE_PAUSE:
  2539. case KVM_TRACE_DISABLE:
  2540. r = -EOPNOTSUPP;
  2541. break;
  2542. default:
  2543. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2544. }
  2545. out:
  2546. return r;
  2547. }
  2548. static struct file_operations kvm_chardev_ops = {
  2549. .unlocked_ioctl = kvm_dev_ioctl,
  2550. .compat_ioctl = kvm_dev_ioctl,
  2551. .llseek = noop_llseek,
  2552. };
  2553. static struct miscdevice kvm_dev = {
  2554. KVM_MINOR,
  2555. "kvm",
  2556. &kvm_chardev_ops,
  2557. };
  2558. static void hardware_enable_nolock(void *junk)
  2559. {
  2560. int cpu = raw_smp_processor_id();
  2561. int r;
  2562. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2563. return;
  2564. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2565. r = kvm_arch_hardware_enable();
  2566. if (r) {
  2567. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2568. atomic_inc(&hardware_enable_failed);
  2569. pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
  2570. }
  2571. }
  2572. static void hardware_enable(void)
  2573. {
  2574. raw_spin_lock(&kvm_count_lock);
  2575. if (kvm_usage_count)
  2576. hardware_enable_nolock(NULL);
  2577. raw_spin_unlock(&kvm_count_lock);
  2578. }
  2579. static void hardware_disable_nolock(void *junk)
  2580. {
  2581. int cpu = raw_smp_processor_id();
  2582. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2583. return;
  2584. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2585. kvm_arch_hardware_disable();
  2586. }
  2587. static void hardware_disable(void)
  2588. {
  2589. raw_spin_lock(&kvm_count_lock);
  2590. if (kvm_usage_count)
  2591. hardware_disable_nolock(NULL);
  2592. raw_spin_unlock(&kvm_count_lock);
  2593. }
  2594. static void hardware_disable_all_nolock(void)
  2595. {
  2596. BUG_ON(!kvm_usage_count);
  2597. kvm_usage_count--;
  2598. if (!kvm_usage_count)
  2599. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2600. }
  2601. static void hardware_disable_all(void)
  2602. {
  2603. raw_spin_lock(&kvm_count_lock);
  2604. hardware_disable_all_nolock();
  2605. raw_spin_unlock(&kvm_count_lock);
  2606. }
  2607. static int hardware_enable_all(void)
  2608. {
  2609. int r = 0;
  2610. raw_spin_lock(&kvm_count_lock);
  2611. kvm_usage_count++;
  2612. if (kvm_usage_count == 1) {
  2613. atomic_set(&hardware_enable_failed, 0);
  2614. on_each_cpu(hardware_enable_nolock, NULL, 1);
  2615. if (atomic_read(&hardware_enable_failed)) {
  2616. hardware_disable_all_nolock();
  2617. r = -EBUSY;
  2618. }
  2619. }
  2620. raw_spin_unlock(&kvm_count_lock);
  2621. return r;
  2622. }
  2623. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2624. void *v)
  2625. {
  2626. val &= ~CPU_TASKS_FROZEN;
  2627. switch (val) {
  2628. case CPU_DYING:
  2629. hardware_disable();
  2630. break;
  2631. case CPU_STARTING:
  2632. hardware_enable();
  2633. break;
  2634. }
  2635. return NOTIFY_OK;
  2636. }
  2637. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2638. void *v)
  2639. {
  2640. /*
  2641. * Some (well, at least mine) BIOSes hang on reboot if
  2642. * in vmx root mode.
  2643. *
  2644. * And Intel TXT required VMX off for all cpu when system shutdown.
  2645. */
  2646. pr_info("kvm: exiting hardware virtualization\n");
  2647. kvm_rebooting = true;
  2648. on_each_cpu(hardware_disable_nolock, NULL, 1);
  2649. return NOTIFY_OK;
  2650. }
  2651. static struct notifier_block kvm_reboot_notifier = {
  2652. .notifier_call = kvm_reboot,
  2653. .priority = 0,
  2654. };
  2655. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2656. {
  2657. int i;
  2658. for (i = 0; i < bus->dev_count; i++) {
  2659. struct kvm_io_device *pos = bus->range[i].dev;
  2660. kvm_iodevice_destructor(pos);
  2661. }
  2662. kfree(bus);
  2663. }
  2664. static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
  2665. const struct kvm_io_range *r2)
  2666. {
  2667. gpa_t addr1 = r1->addr;
  2668. gpa_t addr2 = r2->addr;
  2669. if (addr1 < addr2)
  2670. return -1;
  2671. /* If r2->len == 0, match the exact address. If r2->len != 0,
  2672. * accept any overlapping write. Any order is acceptable for
  2673. * overlapping ranges, because kvm_io_bus_get_first_dev ensures
  2674. * we process all of them.
  2675. */
  2676. if (r2->len) {
  2677. addr1 += r1->len;
  2678. addr2 += r2->len;
  2679. }
  2680. if (addr1 > addr2)
  2681. return 1;
  2682. return 0;
  2683. }
  2684. static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
  2685. {
  2686. return kvm_io_bus_cmp(p1, p2);
  2687. }
  2688. static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
  2689. gpa_t addr, int len)
  2690. {
  2691. bus->range[bus->dev_count++] = (struct kvm_io_range) {
  2692. .addr = addr,
  2693. .len = len,
  2694. .dev = dev,
  2695. };
  2696. sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
  2697. kvm_io_bus_sort_cmp, NULL);
  2698. return 0;
  2699. }
  2700. static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
  2701. gpa_t addr, int len)
  2702. {
  2703. struct kvm_io_range *range, key;
  2704. int off;
  2705. key = (struct kvm_io_range) {
  2706. .addr = addr,
  2707. .len = len,
  2708. };
  2709. range = bsearch(&key, bus->range, bus->dev_count,
  2710. sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
  2711. if (range == NULL)
  2712. return -ENOENT;
  2713. off = range - bus->range;
  2714. while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
  2715. off--;
  2716. return off;
  2717. }
  2718. static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
  2719. struct kvm_io_range *range, const void *val)
  2720. {
  2721. int idx;
  2722. idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
  2723. if (idx < 0)
  2724. return -EOPNOTSUPP;
  2725. while (idx < bus->dev_count &&
  2726. kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
  2727. if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
  2728. range->len, val))
  2729. return idx;
  2730. idx++;
  2731. }
  2732. return -EOPNOTSUPP;
  2733. }
  2734. /* kvm_io_bus_write - called under kvm->slots_lock */
  2735. int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
  2736. int len, const void *val)
  2737. {
  2738. struct kvm_io_bus *bus;
  2739. struct kvm_io_range range;
  2740. int r;
  2741. range = (struct kvm_io_range) {
  2742. .addr = addr,
  2743. .len = len,
  2744. };
  2745. bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
  2746. r = __kvm_io_bus_write(vcpu, bus, &range, val);
  2747. return r < 0 ? r : 0;
  2748. }
  2749. /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
  2750. int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
  2751. gpa_t addr, int len, const void *val, long cookie)
  2752. {
  2753. struct kvm_io_bus *bus;
  2754. struct kvm_io_range range;
  2755. range = (struct kvm_io_range) {
  2756. .addr = addr,
  2757. .len = len,
  2758. };
  2759. bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
  2760. /* First try the device referenced by cookie. */
  2761. if ((cookie >= 0) && (cookie < bus->dev_count) &&
  2762. (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
  2763. if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
  2764. val))
  2765. return cookie;
  2766. /*
  2767. * cookie contained garbage; fall back to search and return the
  2768. * correct cookie value.
  2769. */
  2770. return __kvm_io_bus_write(vcpu, bus, &range, val);
  2771. }
  2772. static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
  2773. struct kvm_io_range *range, void *val)
  2774. {
  2775. int idx;
  2776. idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
  2777. if (idx < 0)
  2778. return -EOPNOTSUPP;
  2779. while (idx < bus->dev_count &&
  2780. kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
  2781. if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
  2782. range->len, val))
  2783. return idx;
  2784. idx++;
  2785. }
  2786. return -EOPNOTSUPP;
  2787. }
  2788. EXPORT_SYMBOL_GPL(kvm_io_bus_write);
  2789. /* kvm_io_bus_read - called under kvm->slots_lock */
  2790. int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
  2791. int len, void *val)
  2792. {
  2793. struct kvm_io_bus *bus;
  2794. struct kvm_io_range range;
  2795. int r;
  2796. range = (struct kvm_io_range) {
  2797. .addr = addr,
  2798. .len = len,
  2799. };
  2800. bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
  2801. r = __kvm_io_bus_read(vcpu, bus, &range, val);
  2802. return r < 0 ? r : 0;
  2803. }
  2804. /* Caller must hold slots_lock. */
  2805. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  2806. int len, struct kvm_io_device *dev)
  2807. {
  2808. struct kvm_io_bus *new_bus, *bus;
  2809. bus = kvm->buses[bus_idx];
  2810. /* exclude ioeventfd which is limited by maximum fd */
  2811. if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
  2812. return -ENOSPC;
  2813. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
  2814. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2815. if (!new_bus)
  2816. return -ENOMEM;
  2817. memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
  2818. sizeof(struct kvm_io_range)));
  2819. kvm_io_bus_insert_dev(new_bus, dev, addr, len);
  2820. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2821. synchronize_srcu_expedited(&kvm->srcu);
  2822. kfree(bus);
  2823. return 0;
  2824. }
  2825. /* Caller must hold slots_lock. */
  2826. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  2827. struct kvm_io_device *dev)
  2828. {
  2829. int i, r;
  2830. struct kvm_io_bus *new_bus, *bus;
  2831. bus = kvm->buses[bus_idx];
  2832. r = -ENOENT;
  2833. for (i = 0; i < bus->dev_count; i++)
  2834. if (bus->range[i].dev == dev) {
  2835. r = 0;
  2836. break;
  2837. }
  2838. if (r)
  2839. return r;
  2840. new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
  2841. sizeof(struct kvm_io_range)), GFP_KERNEL);
  2842. if (!new_bus)
  2843. return -ENOMEM;
  2844. memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
  2845. new_bus->dev_count--;
  2846. memcpy(new_bus->range + i, bus->range + i + 1,
  2847. (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
  2848. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  2849. synchronize_srcu_expedited(&kvm->srcu);
  2850. kfree(bus);
  2851. return r;
  2852. }
  2853. static struct notifier_block kvm_cpu_notifier = {
  2854. .notifier_call = kvm_cpu_hotplug,
  2855. };
  2856. static int vm_stat_get(void *_offset, u64 *val)
  2857. {
  2858. unsigned offset = (long)_offset;
  2859. struct kvm *kvm;
  2860. *val = 0;
  2861. spin_lock(&kvm_lock);
  2862. list_for_each_entry(kvm, &vm_list, vm_list)
  2863. *val += *(u32 *)((void *)kvm + offset);
  2864. spin_unlock(&kvm_lock);
  2865. return 0;
  2866. }
  2867. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2868. static int vcpu_stat_get(void *_offset, u64 *val)
  2869. {
  2870. unsigned offset = (long)_offset;
  2871. struct kvm *kvm;
  2872. struct kvm_vcpu *vcpu;
  2873. int i;
  2874. *val = 0;
  2875. spin_lock(&kvm_lock);
  2876. list_for_each_entry(kvm, &vm_list, vm_list)
  2877. kvm_for_each_vcpu(i, vcpu, kvm)
  2878. *val += *(u32 *)((void *)vcpu + offset);
  2879. spin_unlock(&kvm_lock);
  2880. return 0;
  2881. }
  2882. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2883. static const struct file_operations *stat_fops[] = {
  2884. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2885. [KVM_STAT_VM] = &vm_stat_fops,
  2886. };
  2887. static int kvm_init_debug(void)
  2888. {
  2889. int r = -EEXIST;
  2890. struct kvm_stats_debugfs_item *p;
  2891. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2892. if (kvm_debugfs_dir == NULL)
  2893. goto out;
  2894. for (p = debugfs_entries; p->name; ++p) {
  2895. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2896. (void *)(long)p->offset,
  2897. stat_fops[p->kind]);
  2898. if (p->dentry == NULL)
  2899. goto out_dir;
  2900. }
  2901. return 0;
  2902. out_dir:
  2903. debugfs_remove_recursive(kvm_debugfs_dir);
  2904. out:
  2905. return r;
  2906. }
  2907. static void kvm_exit_debug(void)
  2908. {
  2909. struct kvm_stats_debugfs_item *p;
  2910. for (p = debugfs_entries; p->name; ++p)
  2911. debugfs_remove(p->dentry);
  2912. debugfs_remove(kvm_debugfs_dir);
  2913. }
  2914. static int kvm_suspend(void)
  2915. {
  2916. if (kvm_usage_count)
  2917. hardware_disable_nolock(NULL);
  2918. return 0;
  2919. }
  2920. static void kvm_resume(void)
  2921. {
  2922. if (kvm_usage_count) {
  2923. WARN_ON(raw_spin_is_locked(&kvm_count_lock));
  2924. hardware_enable_nolock(NULL);
  2925. }
  2926. }
  2927. static struct syscore_ops kvm_syscore_ops = {
  2928. .suspend = kvm_suspend,
  2929. .resume = kvm_resume,
  2930. };
  2931. static inline
  2932. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2933. {
  2934. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2935. }
  2936. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2937. {
  2938. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2939. if (vcpu->preempted)
  2940. vcpu->preempted = false;
  2941. kvm_arch_sched_in(vcpu, cpu);
  2942. kvm_arch_vcpu_load(vcpu, cpu);
  2943. }
  2944. static void kvm_sched_out(struct preempt_notifier *pn,
  2945. struct task_struct *next)
  2946. {
  2947. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2948. if (current->state == TASK_RUNNING)
  2949. vcpu->preempted = true;
  2950. kvm_arch_vcpu_put(vcpu);
  2951. }
  2952. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2953. struct module *module)
  2954. {
  2955. int r;
  2956. int cpu;
  2957. r = kvm_arch_init(opaque);
  2958. if (r)
  2959. goto out_fail;
  2960. /*
  2961. * kvm_arch_init makes sure there's at most one caller
  2962. * for architectures that support multiple implementations,
  2963. * like intel and amd on x86.
  2964. * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
  2965. * conflicts in case kvm is already setup for another implementation.
  2966. */
  2967. r = kvm_irqfd_init();
  2968. if (r)
  2969. goto out_irqfd;
  2970. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2971. r = -ENOMEM;
  2972. goto out_free_0;
  2973. }
  2974. r = kvm_arch_hardware_setup();
  2975. if (r < 0)
  2976. goto out_free_0a;
  2977. for_each_online_cpu(cpu) {
  2978. smp_call_function_single(cpu,
  2979. kvm_arch_check_processor_compat,
  2980. &r, 1);
  2981. if (r < 0)
  2982. goto out_free_1;
  2983. }
  2984. r = register_cpu_notifier(&kvm_cpu_notifier);
  2985. if (r)
  2986. goto out_free_2;
  2987. register_reboot_notifier(&kvm_reboot_notifier);
  2988. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2989. if (!vcpu_align)
  2990. vcpu_align = __alignof__(struct kvm_vcpu);
  2991. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2992. 0, NULL);
  2993. if (!kvm_vcpu_cache) {
  2994. r = -ENOMEM;
  2995. goto out_free_3;
  2996. }
  2997. r = kvm_async_pf_init();
  2998. if (r)
  2999. goto out_free;
  3000. kvm_chardev_ops.owner = module;
  3001. kvm_vm_fops.owner = module;
  3002. kvm_vcpu_fops.owner = module;
  3003. r = misc_register(&kvm_dev);
  3004. if (r) {
  3005. pr_err("kvm: misc device register failed\n");
  3006. goto out_unreg;
  3007. }
  3008. register_syscore_ops(&kvm_syscore_ops);
  3009. kvm_preempt_ops.sched_in = kvm_sched_in;
  3010. kvm_preempt_ops.sched_out = kvm_sched_out;
  3011. r = kvm_init_debug();
  3012. if (r) {
  3013. pr_err("kvm: create debugfs files failed\n");
  3014. goto out_undebugfs;
  3015. }
  3016. r = kvm_vfio_ops_init();
  3017. WARN_ON(r);
  3018. return 0;
  3019. out_undebugfs:
  3020. unregister_syscore_ops(&kvm_syscore_ops);
  3021. misc_deregister(&kvm_dev);
  3022. out_unreg:
  3023. kvm_async_pf_deinit();
  3024. out_free:
  3025. kmem_cache_destroy(kvm_vcpu_cache);
  3026. out_free_3:
  3027. unregister_reboot_notifier(&kvm_reboot_notifier);
  3028. unregister_cpu_notifier(&kvm_cpu_notifier);
  3029. out_free_2:
  3030. out_free_1:
  3031. kvm_arch_hardware_unsetup();
  3032. out_free_0a:
  3033. free_cpumask_var(cpus_hardware_enabled);
  3034. out_free_0:
  3035. kvm_irqfd_exit();
  3036. out_irqfd:
  3037. kvm_arch_exit();
  3038. out_fail:
  3039. return r;
  3040. }
  3041. EXPORT_SYMBOL_GPL(kvm_init);
  3042. void kvm_exit(void)
  3043. {
  3044. kvm_exit_debug();
  3045. misc_deregister(&kvm_dev);
  3046. kmem_cache_destroy(kvm_vcpu_cache);
  3047. kvm_async_pf_deinit();
  3048. unregister_syscore_ops(&kvm_syscore_ops);
  3049. unregister_reboot_notifier(&kvm_reboot_notifier);
  3050. unregister_cpu_notifier(&kvm_cpu_notifier);
  3051. on_each_cpu(hardware_disable_nolock, NULL, 1);
  3052. kvm_arch_hardware_unsetup();
  3053. kvm_arch_exit();
  3054. kvm_irqfd_exit();
  3055. free_cpumask_var(cpus_hardware_enabled);
  3056. kvm_vfio_ops_exit();
  3057. }
  3058. EXPORT_SYMBOL_GPL(kvm_exit);