sch_qfq.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585
  1. /*
  2. * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
  3. *
  4. * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
  5. * Copyright (c) 2012 Paolo Valente.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * version 2 as published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/bitops.h>
  14. #include <linux/errno.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/pkt_sched.h>
  17. #include <net/sch_generic.h>
  18. #include <net/pkt_sched.h>
  19. #include <net/pkt_cls.h>
  20. /* Quick Fair Queueing Plus
  21. ========================
  22. Sources:
  23. [1] Paolo Valente,
  24. "Reducing the Execution Time of Fair-Queueing Schedulers."
  25. http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  26. Sources for QFQ:
  27. [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  28. Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  29. See also:
  30. http://retis.sssup.it/~fabio/linux/qfq/
  31. */
  32. /*
  33. QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  34. classes. Each aggregate is timestamped with a virtual start time S
  35. and a virtual finish time F, and scheduled according to its
  36. timestamps. S and F are computed as a function of a system virtual
  37. time function V. The classes within each aggregate are instead
  38. scheduled with DRR.
  39. To speed up operations, QFQ+ divides also aggregates into a limited
  40. number of groups. Which group a class belongs to depends on the
  41. ratio between the maximum packet length for the class and the weight
  42. of the class. Groups have their own S and F. In the end, QFQ+
  43. schedules groups, then aggregates within groups, then classes within
  44. aggregates. See [1] and [2] for a full description.
  45. Virtual time computations.
  46. S, F and V are all computed in fixed point arithmetic with
  47. FRAC_BITS decimal bits.
  48. QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  49. one bit per index.
  50. QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  51. The layout of the bits is as below:
  52. [ MTU_SHIFT ][ FRAC_BITS ]
  53. [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
  54. ^.__grp->index = 0
  55. *.__grp->slot_shift
  56. where MIN_SLOT_SHIFT is derived by difference from the others.
  57. The max group index corresponds to Lmax/w_min, where
  58. Lmax=1<<MTU_SHIFT, w_min = 1 .
  59. From this, and knowing how many groups (MAX_INDEX) we want,
  60. we can derive the shift corresponding to each group.
  61. Because we often need to compute
  62. F = S + len/w_i and V = V + len/wsum
  63. instead of storing w_i store the value
  64. inv_w = (1<<FRAC_BITS)/w_i
  65. so we can do F = S + len * inv_w * wsum.
  66. We use W_TOT in the formulas so we can easily move between
  67. static and adaptive weight sum.
  68. The per-scheduler-instance data contain all the data structures
  69. for the scheduler: bitmaps and bucket lists.
  70. */
  71. /*
  72. * Maximum number of consecutive slots occupied by backlogged classes
  73. * inside a group.
  74. */
  75. #define QFQ_MAX_SLOTS 32
  76. /*
  77. * Shifts used for aggregate<->group mapping. We allow class weights that are
  78. * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
  79. * group with the smallest index that can support the L_i / r_i configured
  80. * for the classes in the aggregate.
  81. *
  82. * grp->index is the index of the group; and grp->slot_shift
  83. * is the shift for the corresponding (scaled) sigma_i.
  84. */
  85. #define QFQ_MAX_INDEX 24
  86. #define QFQ_MAX_WSHIFT 10
  87. #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
  88. #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
  89. #define FRAC_BITS 30 /* fixed point arithmetic */
  90. #define ONE_FP (1UL << FRAC_BITS)
  91. #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
  92. #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
  93. #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
  94. /*
  95. * Possible group states. These values are used as indexes for the bitmaps
  96. * array of struct qfq_queue.
  97. */
  98. enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
  99. struct qfq_group;
  100. struct qfq_aggregate;
  101. struct qfq_class {
  102. struct Qdisc_class_common common;
  103. unsigned int refcnt;
  104. unsigned int filter_cnt;
  105. struct gnet_stats_basic_packed bstats;
  106. struct gnet_stats_queue qstats;
  107. struct gnet_stats_rate_est64 rate_est;
  108. struct Qdisc *qdisc;
  109. struct list_head alist; /* Link for active-classes list. */
  110. struct qfq_aggregate *agg; /* Parent aggregate. */
  111. int deficit; /* DRR deficit counter. */
  112. };
  113. struct qfq_aggregate {
  114. struct hlist_node next; /* Link for the slot list. */
  115. u64 S, F; /* flow timestamps (exact) */
  116. /* group we belong to. In principle we would need the index,
  117. * which is log_2(lmax/weight), but we never reference it
  118. * directly, only the group.
  119. */
  120. struct qfq_group *grp;
  121. /* these are copied from the flowset. */
  122. u32 class_weight; /* Weight of each class in this aggregate. */
  123. /* Max pkt size for the classes in this aggregate, DRR quantum. */
  124. int lmax;
  125. u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
  126. u32 budgetmax; /* Max budget for this aggregate. */
  127. u32 initial_budget, budget; /* Initial and current budget. */
  128. int num_classes; /* Number of classes in this aggr. */
  129. struct list_head active; /* DRR queue of active classes. */
  130. struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
  131. };
  132. struct qfq_group {
  133. u64 S, F; /* group timestamps (approx). */
  134. unsigned int slot_shift; /* Slot shift. */
  135. unsigned int index; /* Group index. */
  136. unsigned int front; /* Index of the front slot. */
  137. unsigned long full_slots; /* non-empty slots */
  138. /* Array of RR lists of active aggregates. */
  139. struct hlist_head slots[QFQ_MAX_SLOTS];
  140. };
  141. struct qfq_sched {
  142. struct tcf_proto __rcu *filter_list;
  143. struct Qdisc_class_hash clhash;
  144. u64 oldV, V; /* Precise virtual times. */
  145. struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
  146. u32 wsum; /* weight sum */
  147. u32 iwsum; /* inverse weight sum */
  148. unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
  149. struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
  150. u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
  151. u32 max_agg_classes; /* Max number of classes per aggr. */
  152. struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
  153. };
  154. /*
  155. * Possible reasons why the timestamps of an aggregate are updated
  156. * enqueue: the aggregate switches from idle to active and must scheduled
  157. * for service
  158. * requeue: the aggregate finishes its budget, so it stops being served and
  159. * must be rescheduled for service
  160. */
  161. enum update_reason {enqueue, requeue};
  162. static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
  163. {
  164. struct qfq_sched *q = qdisc_priv(sch);
  165. struct Qdisc_class_common *clc;
  166. clc = qdisc_class_find(&q->clhash, classid);
  167. if (clc == NULL)
  168. return NULL;
  169. return container_of(clc, struct qfq_class, common);
  170. }
  171. static void qfq_purge_queue(struct qfq_class *cl)
  172. {
  173. unsigned int len = cl->qdisc->q.qlen;
  174. qdisc_reset(cl->qdisc);
  175. qdisc_tree_decrease_qlen(cl->qdisc, len);
  176. }
  177. static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
  178. [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
  179. [TCA_QFQ_LMAX] = { .type = NLA_U32 },
  180. };
  181. /*
  182. * Calculate a flow index, given its weight and maximum packet length.
  183. * index = log_2(maxlen/weight) but we need to apply the scaling.
  184. * This is used only once at flow creation.
  185. */
  186. static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
  187. {
  188. u64 slot_size = (u64)maxlen * inv_w;
  189. unsigned long size_map;
  190. int index = 0;
  191. size_map = slot_size >> min_slot_shift;
  192. if (!size_map)
  193. goto out;
  194. index = __fls(size_map) + 1; /* basically a log_2 */
  195. index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
  196. if (index < 0)
  197. index = 0;
  198. out:
  199. pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
  200. (unsigned long) ONE_FP/inv_w, maxlen, index);
  201. return index;
  202. }
  203. static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
  204. static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
  205. enum update_reason);
  206. static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
  207. u32 lmax, u32 weight)
  208. {
  209. INIT_LIST_HEAD(&agg->active);
  210. hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
  211. agg->lmax = lmax;
  212. agg->class_weight = weight;
  213. }
  214. static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
  215. u32 lmax, u32 weight)
  216. {
  217. struct qfq_aggregate *agg;
  218. hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
  219. if (agg->lmax == lmax && agg->class_weight == weight)
  220. return agg;
  221. return NULL;
  222. }
  223. /* Update aggregate as a function of the new number of classes. */
  224. static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
  225. int new_num_classes)
  226. {
  227. u32 new_agg_weight;
  228. if (new_num_classes == q->max_agg_classes)
  229. hlist_del_init(&agg->nonfull_next);
  230. if (agg->num_classes > new_num_classes &&
  231. new_num_classes == q->max_agg_classes - 1) /* agg no more full */
  232. hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
  233. /* The next assignment may let
  234. * agg->initial_budget > agg->budgetmax
  235. * hold, we will take it into account in charge_actual_service().
  236. */
  237. agg->budgetmax = new_num_classes * agg->lmax;
  238. new_agg_weight = agg->class_weight * new_num_classes;
  239. agg->inv_w = ONE_FP/new_agg_weight;
  240. if (agg->grp == NULL) {
  241. int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
  242. q->min_slot_shift);
  243. agg->grp = &q->groups[i];
  244. }
  245. q->wsum +=
  246. (int) agg->class_weight * (new_num_classes - agg->num_classes);
  247. q->iwsum = ONE_FP / q->wsum;
  248. agg->num_classes = new_num_classes;
  249. }
  250. /* Add class to aggregate. */
  251. static void qfq_add_to_agg(struct qfq_sched *q,
  252. struct qfq_aggregate *agg,
  253. struct qfq_class *cl)
  254. {
  255. cl->agg = agg;
  256. qfq_update_agg(q, agg, agg->num_classes+1);
  257. if (cl->qdisc->q.qlen > 0) { /* adding an active class */
  258. list_add_tail(&cl->alist, &agg->active);
  259. if (list_first_entry(&agg->active, struct qfq_class, alist) ==
  260. cl && q->in_serv_agg != agg) /* agg was inactive */
  261. qfq_activate_agg(q, agg, enqueue); /* schedule agg */
  262. }
  263. }
  264. static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
  265. static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
  266. {
  267. hlist_del_init(&agg->nonfull_next);
  268. q->wsum -= agg->class_weight;
  269. if (q->wsum != 0)
  270. q->iwsum = ONE_FP / q->wsum;
  271. if (q->in_serv_agg == agg)
  272. q->in_serv_agg = qfq_choose_next_agg(q);
  273. kfree(agg);
  274. }
  275. /* Deschedule class from within its parent aggregate. */
  276. static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
  277. {
  278. struct qfq_aggregate *agg = cl->agg;
  279. list_del(&cl->alist); /* remove from RR queue of the aggregate */
  280. if (list_empty(&agg->active)) /* agg is now inactive */
  281. qfq_deactivate_agg(q, agg);
  282. }
  283. /* Remove class from its parent aggregate. */
  284. static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
  285. {
  286. struct qfq_aggregate *agg = cl->agg;
  287. cl->agg = NULL;
  288. if (agg->num_classes == 1) { /* agg being emptied, destroy it */
  289. qfq_destroy_agg(q, agg);
  290. return;
  291. }
  292. qfq_update_agg(q, agg, agg->num_classes-1);
  293. }
  294. /* Deschedule class and remove it from its parent aggregate. */
  295. static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
  296. {
  297. if (cl->qdisc->q.qlen > 0) /* class is active */
  298. qfq_deactivate_class(q, cl);
  299. qfq_rm_from_agg(q, cl);
  300. }
  301. /* Move class to a new aggregate, matching the new class weight and/or lmax */
  302. static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
  303. u32 lmax)
  304. {
  305. struct qfq_sched *q = qdisc_priv(sch);
  306. struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
  307. if (new_agg == NULL) { /* create new aggregate */
  308. new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
  309. if (new_agg == NULL)
  310. return -ENOBUFS;
  311. qfq_init_agg(q, new_agg, lmax, weight);
  312. }
  313. qfq_deact_rm_from_agg(q, cl);
  314. qfq_add_to_agg(q, new_agg, cl);
  315. return 0;
  316. }
  317. static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  318. struct nlattr **tca, unsigned long *arg)
  319. {
  320. struct qfq_sched *q = qdisc_priv(sch);
  321. struct qfq_class *cl = (struct qfq_class *)*arg;
  322. bool existing = false;
  323. struct nlattr *tb[TCA_QFQ_MAX + 1];
  324. struct qfq_aggregate *new_agg = NULL;
  325. u32 weight, lmax, inv_w;
  326. int err;
  327. int delta_w;
  328. if (tca[TCA_OPTIONS] == NULL) {
  329. pr_notice("qfq: no options\n");
  330. return -EINVAL;
  331. }
  332. err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
  333. if (err < 0)
  334. return err;
  335. if (tb[TCA_QFQ_WEIGHT]) {
  336. weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
  337. if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
  338. pr_notice("qfq: invalid weight %u\n", weight);
  339. return -EINVAL;
  340. }
  341. } else
  342. weight = 1;
  343. if (tb[TCA_QFQ_LMAX]) {
  344. lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
  345. if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
  346. pr_notice("qfq: invalid max length %u\n", lmax);
  347. return -EINVAL;
  348. }
  349. } else
  350. lmax = psched_mtu(qdisc_dev(sch));
  351. inv_w = ONE_FP / weight;
  352. weight = ONE_FP / inv_w;
  353. if (cl != NULL &&
  354. lmax == cl->agg->lmax &&
  355. weight == cl->agg->class_weight)
  356. return 0; /* nothing to change */
  357. delta_w = weight - (cl ? cl->agg->class_weight : 0);
  358. if (q->wsum + delta_w > QFQ_MAX_WSUM) {
  359. pr_notice("qfq: total weight out of range (%d + %u)\n",
  360. delta_w, q->wsum);
  361. return -EINVAL;
  362. }
  363. if (cl != NULL) { /* modify existing class */
  364. if (tca[TCA_RATE]) {
  365. err = gen_replace_estimator(&cl->bstats, NULL,
  366. &cl->rate_est,
  367. qdisc_root_sleeping_lock(sch),
  368. tca[TCA_RATE]);
  369. if (err)
  370. return err;
  371. }
  372. existing = true;
  373. goto set_change_agg;
  374. }
  375. /* create and init new class */
  376. cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
  377. if (cl == NULL)
  378. return -ENOBUFS;
  379. cl->refcnt = 1;
  380. cl->common.classid = classid;
  381. cl->deficit = lmax;
  382. cl->qdisc = qdisc_create_dflt(sch->dev_queue,
  383. &pfifo_qdisc_ops, classid);
  384. if (cl->qdisc == NULL)
  385. cl->qdisc = &noop_qdisc;
  386. if (tca[TCA_RATE]) {
  387. err = gen_new_estimator(&cl->bstats, NULL,
  388. &cl->rate_est,
  389. qdisc_root_sleeping_lock(sch),
  390. tca[TCA_RATE]);
  391. if (err)
  392. goto destroy_class;
  393. }
  394. sch_tree_lock(sch);
  395. qdisc_class_hash_insert(&q->clhash, &cl->common);
  396. sch_tree_unlock(sch);
  397. qdisc_class_hash_grow(sch, &q->clhash);
  398. set_change_agg:
  399. sch_tree_lock(sch);
  400. new_agg = qfq_find_agg(q, lmax, weight);
  401. if (new_agg == NULL) { /* create new aggregate */
  402. sch_tree_unlock(sch);
  403. new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
  404. if (new_agg == NULL) {
  405. err = -ENOBUFS;
  406. gen_kill_estimator(&cl->bstats, &cl->rate_est);
  407. goto destroy_class;
  408. }
  409. sch_tree_lock(sch);
  410. qfq_init_agg(q, new_agg, lmax, weight);
  411. }
  412. if (existing)
  413. qfq_deact_rm_from_agg(q, cl);
  414. qfq_add_to_agg(q, new_agg, cl);
  415. sch_tree_unlock(sch);
  416. *arg = (unsigned long)cl;
  417. return 0;
  418. destroy_class:
  419. qdisc_destroy(cl->qdisc);
  420. kfree(cl);
  421. return err;
  422. }
  423. static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
  424. {
  425. struct qfq_sched *q = qdisc_priv(sch);
  426. qfq_rm_from_agg(q, cl);
  427. gen_kill_estimator(&cl->bstats, &cl->rate_est);
  428. qdisc_destroy(cl->qdisc);
  429. kfree(cl);
  430. }
  431. static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
  432. {
  433. struct qfq_sched *q = qdisc_priv(sch);
  434. struct qfq_class *cl = (struct qfq_class *)arg;
  435. if (cl->filter_cnt > 0)
  436. return -EBUSY;
  437. sch_tree_lock(sch);
  438. qfq_purge_queue(cl);
  439. qdisc_class_hash_remove(&q->clhash, &cl->common);
  440. BUG_ON(--cl->refcnt == 0);
  441. /*
  442. * This shouldn't happen: we "hold" one cops->get() when called
  443. * from tc_ctl_tclass; the destroy method is done from cops->put().
  444. */
  445. sch_tree_unlock(sch);
  446. return 0;
  447. }
  448. static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
  449. {
  450. struct qfq_class *cl = qfq_find_class(sch, classid);
  451. if (cl != NULL)
  452. cl->refcnt++;
  453. return (unsigned long)cl;
  454. }
  455. static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
  456. {
  457. struct qfq_class *cl = (struct qfq_class *)arg;
  458. if (--cl->refcnt == 0)
  459. qfq_destroy_class(sch, cl);
  460. }
  461. static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
  462. unsigned long cl)
  463. {
  464. struct qfq_sched *q = qdisc_priv(sch);
  465. if (cl)
  466. return NULL;
  467. return &q->filter_list;
  468. }
  469. static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
  470. u32 classid)
  471. {
  472. struct qfq_class *cl = qfq_find_class(sch, classid);
  473. if (cl != NULL)
  474. cl->filter_cnt++;
  475. return (unsigned long)cl;
  476. }
  477. static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
  478. {
  479. struct qfq_class *cl = (struct qfq_class *)arg;
  480. cl->filter_cnt--;
  481. }
  482. static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
  483. struct Qdisc *new, struct Qdisc **old)
  484. {
  485. struct qfq_class *cl = (struct qfq_class *)arg;
  486. if (new == NULL) {
  487. new = qdisc_create_dflt(sch->dev_queue,
  488. &pfifo_qdisc_ops, cl->common.classid);
  489. if (new == NULL)
  490. new = &noop_qdisc;
  491. }
  492. sch_tree_lock(sch);
  493. qfq_purge_queue(cl);
  494. *old = cl->qdisc;
  495. cl->qdisc = new;
  496. sch_tree_unlock(sch);
  497. return 0;
  498. }
  499. static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
  500. {
  501. struct qfq_class *cl = (struct qfq_class *)arg;
  502. return cl->qdisc;
  503. }
  504. static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
  505. struct sk_buff *skb, struct tcmsg *tcm)
  506. {
  507. struct qfq_class *cl = (struct qfq_class *)arg;
  508. struct nlattr *nest;
  509. tcm->tcm_parent = TC_H_ROOT;
  510. tcm->tcm_handle = cl->common.classid;
  511. tcm->tcm_info = cl->qdisc->handle;
  512. nest = nla_nest_start(skb, TCA_OPTIONS);
  513. if (nest == NULL)
  514. goto nla_put_failure;
  515. if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
  516. nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
  517. goto nla_put_failure;
  518. return nla_nest_end(skb, nest);
  519. nla_put_failure:
  520. nla_nest_cancel(skb, nest);
  521. return -EMSGSIZE;
  522. }
  523. static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
  524. struct gnet_dump *d)
  525. {
  526. struct qfq_class *cl = (struct qfq_class *)arg;
  527. struct tc_qfq_stats xstats;
  528. memset(&xstats, 0, sizeof(xstats));
  529. xstats.weight = cl->agg->class_weight;
  530. xstats.lmax = cl->agg->lmax;
  531. if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
  532. gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
  533. gnet_stats_copy_queue(d, NULL,
  534. &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
  535. return -1;
  536. return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
  537. }
  538. static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
  539. {
  540. struct qfq_sched *q = qdisc_priv(sch);
  541. struct qfq_class *cl;
  542. unsigned int i;
  543. if (arg->stop)
  544. return;
  545. for (i = 0; i < q->clhash.hashsize; i++) {
  546. hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
  547. if (arg->count < arg->skip) {
  548. arg->count++;
  549. continue;
  550. }
  551. if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
  552. arg->stop = 1;
  553. return;
  554. }
  555. arg->count++;
  556. }
  557. }
  558. }
  559. static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
  560. int *qerr)
  561. {
  562. struct qfq_sched *q = qdisc_priv(sch);
  563. struct qfq_class *cl;
  564. struct tcf_result res;
  565. struct tcf_proto *fl;
  566. int result;
  567. if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
  568. pr_debug("qfq_classify: found %d\n", skb->priority);
  569. cl = qfq_find_class(sch, skb->priority);
  570. if (cl != NULL)
  571. return cl;
  572. }
  573. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  574. fl = rcu_dereference_bh(q->filter_list);
  575. result = tc_classify(skb, fl, &res, false);
  576. if (result >= 0) {
  577. #ifdef CONFIG_NET_CLS_ACT
  578. switch (result) {
  579. case TC_ACT_QUEUED:
  580. case TC_ACT_STOLEN:
  581. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  582. case TC_ACT_SHOT:
  583. return NULL;
  584. }
  585. #endif
  586. cl = (struct qfq_class *)res.class;
  587. if (cl == NULL)
  588. cl = qfq_find_class(sch, res.classid);
  589. return cl;
  590. }
  591. return NULL;
  592. }
  593. /* Generic comparison function, handling wraparound. */
  594. static inline int qfq_gt(u64 a, u64 b)
  595. {
  596. return (s64)(a - b) > 0;
  597. }
  598. /* Round a precise timestamp to its slotted value. */
  599. static inline u64 qfq_round_down(u64 ts, unsigned int shift)
  600. {
  601. return ts & ~((1ULL << shift) - 1);
  602. }
  603. /* return the pointer to the group with lowest index in the bitmap */
  604. static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
  605. unsigned long bitmap)
  606. {
  607. int index = __ffs(bitmap);
  608. return &q->groups[index];
  609. }
  610. /* Calculate a mask to mimic what would be ffs_from(). */
  611. static inline unsigned long mask_from(unsigned long bitmap, int from)
  612. {
  613. return bitmap & ~((1UL << from) - 1);
  614. }
  615. /*
  616. * The state computation relies on ER=0, IR=1, EB=2, IB=3
  617. * First compute eligibility comparing grp->S, q->V,
  618. * then check if someone is blocking us and possibly add EB
  619. */
  620. static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
  621. {
  622. /* if S > V we are not eligible */
  623. unsigned int state = qfq_gt(grp->S, q->V);
  624. unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
  625. struct qfq_group *next;
  626. if (mask) {
  627. next = qfq_ffs(q, mask);
  628. if (qfq_gt(grp->F, next->F))
  629. state |= EB;
  630. }
  631. return state;
  632. }
  633. /*
  634. * In principle
  635. * q->bitmaps[dst] |= q->bitmaps[src] & mask;
  636. * q->bitmaps[src] &= ~mask;
  637. * but we should make sure that src != dst
  638. */
  639. static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
  640. int src, int dst)
  641. {
  642. q->bitmaps[dst] |= q->bitmaps[src] & mask;
  643. q->bitmaps[src] &= ~mask;
  644. }
  645. static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
  646. {
  647. unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
  648. struct qfq_group *next;
  649. if (mask) {
  650. next = qfq_ffs(q, mask);
  651. if (!qfq_gt(next->F, old_F))
  652. return;
  653. }
  654. mask = (1UL << index) - 1;
  655. qfq_move_groups(q, mask, EB, ER);
  656. qfq_move_groups(q, mask, IB, IR);
  657. }
  658. /*
  659. * perhaps
  660. *
  661. old_V ^= q->V;
  662. old_V >>= q->min_slot_shift;
  663. if (old_V) {
  664. ...
  665. }
  666. *
  667. */
  668. static void qfq_make_eligible(struct qfq_sched *q)
  669. {
  670. unsigned long vslot = q->V >> q->min_slot_shift;
  671. unsigned long old_vslot = q->oldV >> q->min_slot_shift;
  672. if (vslot != old_vslot) {
  673. unsigned long mask;
  674. int last_flip_pos = fls(vslot ^ old_vslot);
  675. if (last_flip_pos > 31) /* higher than the number of groups */
  676. mask = ~0UL; /* make all groups eligible */
  677. else
  678. mask = (1UL << last_flip_pos) - 1;
  679. qfq_move_groups(q, mask, IR, ER);
  680. qfq_move_groups(q, mask, IB, EB);
  681. }
  682. }
  683. /*
  684. * The index of the slot in which the input aggregate agg is to be
  685. * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
  686. * and not a '-1' because the start time of the group may be moved
  687. * backward by one slot after the aggregate has been inserted, and
  688. * this would cause non-empty slots to be right-shifted by one
  689. * position.
  690. *
  691. * QFQ+ fully satisfies this bound to the slot index if the parameters
  692. * of the classes are not changed dynamically, and if QFQ+ never
  693. * happens to postpone the service of agg unjustly, i.e., it never
  694. * happens that the aggregate becomes backlogged and eligible, or just
  695. * eligible, while an aggregate with a higher approximated finish time
  696. * is being served. In particular, in this case QFQ+ guarantees that
  697. * the timestamps of agg are low enough that the slot index is never
  698. * higher than 2. Unfortunately, QFQ+ cannot provide the same
  699. * guarantee if it happens to unjustly postpone the service of agg, or
  700. * if the parameters of some class are changed.
  701. *
  702. * As for the first event, i.e., an out-of-order service, the
  703. * upper bound to the slot index guaranteed by QFQ+ grows to
  704. * 2 +
  705. * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
  706. * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
  707. *
  708. * The following function deals with this problem by backward-shifting
  709. * the timestamps of agg, if needed, so as to guarantee that the slot
  710. * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
  711. * cause the service of other aggregates to be postponed, yet the
  712. * worst-case guarantees of these aggregates are not violated. In
  713. * fact, in case of no out-of-order service, the timestamps of agg
  714. * would have been even lower than they are after the backward shift,
  715. * because QFQ+ would have guaranteed a maximum value equal to 2 for
  716. * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
  717. * service is postponed because of the backward-shift would have
  718. * however waited for the service of agg before being served.
  719. *
  720. * The other event that may cause the slot index to be higher than 2
  721. * for agg is a recent change of the parameters of some class. If the
  722. * weight of a class is increased or the lmax (max_pkt_size) of the
  723. * class is decreased, then a new aggregate with smaller slot size
  724. * than the original parent aggregate of the class may happen to be
  725. * activated. The activation of this aggregate should be properly
  726. * delayed to when the service of the class has finished in the ideal
  727. * system tracked by QFQ+. If the activation of the aggregate is not
  728. * delayed to this reference time instant, then this aggregate may be
  729. * unjustly served before other aggregates waiting for service. This
  730. * may cause the above bound to the slot index to be violated for some
  731. * of these unlucky aggregates.
  732. *
  733. * Instead of delaying the activation of the new aggregate, which is
  734. * quite complex, the above-discussed capping of the slot index is
  735. * used to handle also the consequences of a change of the parameters
  736. * of a class.
  737. */
  738. static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
  739. u64 roundedS)
  740. {
  741. u64 slot = (roundedS - grp->S) >> grp->slot_shift;
  742. unsigned int i; /* slot index in the bucket list */
  743. if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
  744. u64 deltaS = roundedS - grp->S -
  745. ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
  746. agg->S -= deltaS;
  747. agg->F -= deltaS;
  748. slot = QFQ_MAX_SLOTS - 2;
  749. }
  750. i = (grp->front + slot) % QFQ_MAX_SLOTS;
  751. hlist_add_head(&agg->next, &grp->slots[i]);
  752. __set_bit(slot, &grp->full_slots);
  753. }
  754. /* Maybe introduce hlist_first_entry?? */
  755. static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
  756. {
  757. return hlist_entry(grp->slots[grp->front].first,
  758. struct qfq_aggregate, next);
  759. }
  760. /*
  761. * remove the entry from the slot
  762. */
  763. static void qfq_front_slot_remove(struct qfq_group *grp)
  764. {
  765. struct qfq_aggregate *agg = qfq_slot_head(grp);
  766. BUG_ON(!agg);
  767. hlist_del(&agg->next);
  768. if (hlist_empty(&grp->slots[grp->front]))
  769. __clear_bit(0, &grp->full_slots);
  770. }
  771. /*
  772. * Returns the first aggregate in the first non-empty bucket of the
  773. * group. As a side effect, adjusts the bucket list so the first
  774. * non-empty bucket is at position 0 in full_slots.
  775. */
  776. static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
  777. {
  778. unsigned int i;
  779. pr_debug("qfq slot_scan: grp %u full %#lx\n",
  780. grp->index, grp->full_slots);
  781. if (grp->full_slots == 0)
  782. return NULL;
  783. i = __ffs(grp->full_slots); /* zero based */
  784. if (i > 0) {
  785. grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
  786. grp->full_slots >>= i;
  787. }
  788. return qfq_slot_head(grp);
  789. }
  790. /*
  791. * adjust the bucket list. When the start time of a group decreases,
  792. * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
  793. * move the objects. The mask of occupied slots must be shifted
  794. * because we use ffs() to find the first non-empty slot.
  795. * This covers decreases in the group's start time, but what about
  796. * increases of the start time ?
  797. * Here too we should make sure that i is less than 32
  798. */
  799. static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
  800. {
  801. unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
  802. grp->full_slots <<= i;
  803. grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
  804. }
  805. static void qfq_update_eligible(struct qfq_sched *q)
  806. {
  807. struct qfq_group *grp;
  808. unsigned long ineligible;
  809. ineligible = q->bitmaps[IR] | q->bitmaps[IB];
  810. if (ineligible) {
  811. if (!q->bitmaps[ER]) {
  812. grp = qfq_ffs(q, ineligible);
  813. if (qfq_gt(grp->S, q->V))
  814. q->V = grp->S;
  815. }
  816. qfq_make_eligible(q);
  817. }
  818. }
  819. /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
  820. static void agg_dequeue(struct qfq_aggregate *agg,
  821. struct qfq_class *cl, unsigned int len)
  822. {
  823. qdisc_dequeue_peeked(cl->qdisc);
  824. cl->deficit -= (int) len;
  825. if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
  826. list_del(&cl->alist);
  827. else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
  828. cl->deficit += agg->lmax;
  829. list_move_tail(&cl->alist, &agg->active);
  830. }
  831. }
  832. static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
  833. struct qfq_class **cl,
  834. unsigned int *len)
  835. {
  836. struct sk_buff *skb;
  837. *cl = list_first_entry(&agg->active, struct qfq_class, alist);
  838. skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
  839. if (skb == NULL)
  840. WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
  841. else
  842. *len = qdisc_pkt_len(skb);
  843. return skb;
  844. }
  845. /* Update F according to the actual service received by the aggregate. */
  846. static inline void charge_actual_service(struct qfq_aggregate *agg)
  847. {
  848. /* Compute the service received by the aggregate, taking into
  849. * account that, after decreasing the number of classes in
  850. * agg, it may happen that
  851. * agg->initial_budget - agg->budget > agg->bugdetmax
  852. */
  853. u32 service_received = min(agg->budgetmax,
  854. agg->initial_budget - agg->budget);
  855. agg->F = agg->S + (u64)service_received * agg->inv_w;
  856. }
  857. /* Assign a reasonable start time for a new aggregate in group i.
  858. * Admissible values for \hat(F) are multiples of \sigma_i
  859. * no greater than V+\sigma_i . Larger values mean that
  860. * we had a wraparound so we consider the timestamp to be stale.
  861. *
  862. * If F is not stale and F >= V then we set S = F.
  863. * Otherwise we should assign S = V, but this may violate
  864. * the ordering in EB (see [2]). So, if we have groups in ER,
  865. * set S to the F_j of the first group j which would be blocking us.
  866. * We are guaranteed not to move S backward because
  867. * otherwise our group i would still be blocked.
  868. */
  869. static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
  870. {
  871. unsigned long mask;
  872. u64 limit, roundedF;
  873. int slot_shift = agg->grp->slot_shift;
  874. roundedF = qfq_round_down(agg->F, slot_shift);
  875. limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
  876. if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
  877. /* timestamp was stale */
  878. mask = mask_from(q->bitmaps[ER], agg->grp->index);
  879. if (mask) {
  880. struct qfq_group *next = qfq_ffs(q, mask);
  881. if (qfq_gt(roundedF, next->F)) {
  882. if (qfq_gt(limit, next->F))
  883. agg->S = next->F;
  884. else /* preserve timestamp correctness */
  885. agg->S = limit;
  886. return;
  887. }
  888. }
  889. agg->S = q->V;
  890. } else /* timestamp is not stale */
  891. agg->S = agg->F;
  892. }
  893. /* Update the timestamps of agg before scheduling/rescheduling it for
  894. * service. In particular, assign to agg->F its maximum possible
  895. * value, i.e., the virtual finish time with which the aggregate
  896. * should be labeled if it used all its budget once in service.
  897. */
  898. static inline void
  899. qfq_update_agg_ts(struct qfq_sched *q,
  900. struct qfq_aggregate *agg, enum update_reason reason)
  901. {
  902. if (reason != requeue)
  903. qfq_update_start(q, agg);
  904. else /* just charge agg for the service received */
  905. agg->S = agg->F;
  906. agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
  907. }
  908. static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
  909. static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
  910. {
  911. struct qfq_sched *q = qdisc_priv(sch);
  912. struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
  913. struct qfq_class *cl;
  914. struct sk_buff *skb = NULL;
  915. /* next-packet len, 0 means no more active classes in in-service agg */
  916. unsigned int len = 0;
  917. if (in_serv_agg == NULL)
  918. return NULL;
  919. if (!list_empty(&in_serv_agg->active))
  920. skb = qfq_peek_skb(in_serv_agg, &cl, &len);
  921. /*
  922. * If there are no active classes in the in-service aggregate,
  923. * or if the aggregate has not enough budget to serve its next
  924. * class, then choose the next aggregate to serve.
  925. */
  926. if (len == 0 || in_serv_agg->budget < len) {
  927. charge_actual_service(in_serv_agg);
  928. /* recharge the budget of the aggregate */
  929. in_serv_agg->initial_budget = in_serv_agg->budget =
  930. in_serv_agg->budgetmax;
  931. if (!list_empty(&in_serv_agg->active)) {
  932. /*
  933. * Still active: reschedule for
  934. * service. Possible optimization: if no other
  935. * aggregate is active, then there is no point
  936. * in rescheduling this aggregate, and we can
  937. * just keep it as the in-service one. This
  938. * should be however a corner case, and to
  939. * handle it, we would need to maintain an
  940. * extra num_active_aggs field.
  941. */
  942. qfq_update_agg_ts(q, in_serv_agg, requeue);
  943. qfq_schedule_agg(q, in_serv_agg);
  944. } else if (sch->q.qlen == 0) { /* no aggregate to serve */
  945. q->in_serv_agg = NULL;
  946. return NULL;
  947. }
  948. /*
  949. * If we get here, there are other aggregates queued:
  950. * choose the new aggregate to serve.
  951. */
  952. in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
  953. skb = qfq_peek_skb(in_serv_agg, &cl, &len);
  954. }
  955. if (!skb)
  956. return NULL;
  957. sch->q.qlen--;
  958. qdisc_bstats_update(sch, skb);
  959. agg_dequeue(in_serv_agg, cl, len);
  960. /* If lmax is lowered, through qfq_change_class, for a class
  961. * owning pending packets with larger size than the new value
  962. * of lmax, then the following condition may hold.
  963. */
  964. if (unlikely(in_serv_agg->budget < len))
  965. in_serv_agg->budget = 0;
  966. else
  967. in_serv_agg->budget -= len;
  968. q->V += (u64)len * q->iwsum;
  969. pr_debug("qfq dequeue: len %u F %lld now %lld\n",
  970. len, (unsigned long long) in_serv_agg->F,
  971. (unsigned long long) q->V);
  972. return skb;
  973. }
  974. static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
  975. {
  976. struct qfq_group *grp;
  977. struct qfq_aggregate *agg, *new_front_agg;
  978. u64 old_F;
  979. qfq_update_eligible(q);
  980. q->oldV = q->V;
  981. if (!q->bitmaps[ER])
  982. return NULL;
  983. grp = qfq_ffs(q, q->bitmaps[ER]);
  984. old_F = grp->F;
  985. agg = qfq_slot_head(grp);
  986. /* agg starts to be served, remove it from schedule */
  987. qfq_front_slot_remove(grp);
  988. new_front_agg = qfq_slot_scan(grp);
  989. if (new_front_agg == NULL) /* group is now inactive, remove from ER */
  990. __clear_bit(grp->index, &q->bitmaps[ER]);
  991. else {
  992. u64 roundedS = qfq_round_down(new_front_agg->S,
  993. grp->slot_shift);
  994. unsigned int s;
  995. if (grp->S == roundedS)
  996. return agg;
  997. grp->S = roundedS;
  998. grp->F = roundedS + (2ULL << grp->slot_shift);
  999. __clear_bit(grp->index, &q->bitmaps[ER]);
  1000. s = qfq_calc_state(q, grp);
  1001. __set_bit(grp->index, &q->bitmaps[s]);
  1002. }
  1003. qfq_unblock_groups(q, grp->index, old_F);
  1004. return agg;
  1005. }
  1006. static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  1007. {
  1008. struct qfq_sched *q = qdisc_priv(sch);
  1009. struct qfq_class *cl;
  1010. struct qfq_aggregate *agg;
  1011. int err = 0;
  1012. cl = qfq_classify(skb, sch, &err);
  1013. if (cl == NULL) {
  1014. if (err & __NET_XMIT_BYPASS)
  1015. qdisc_qstats_drop(sch);
  1016. kfree_skb(skb);
  1017. return err;
  1018. }
  1019. pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
  1020. if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
  1021. pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
  1022. cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
  1023. err = qfq_change_agg(sch, cl, cl->agg->class_weight,
  1024. qdisc_pkt_len(skb));
  1025. if (err)
  1026. return err;
  1027. }
  1028. err = qdisc_enqueue(skb, cl->qdisc);
  1029. if (unlikely(err != NET_XMIT_SUCCESS)) {
  1030. pr_debug("qfq_enqueue: enqueue failed %d\n", err);
  1031. if (net_xmit_drop_count(err)) {
  1032. cl->qstats.drops++;
  1033. qdisc_qstats_drop(sch);
  1034. }
  1035. return err;
  1036. }
  1037. bstats_update(&cl->bstats, skb);
  1038. ++sch->q.qlen;
  1039. agg = cl->agg;
  1040. /* if the queue was not empty, then done here */
  1041. if (cl->qdisc->q.qlen != 1) {
  1042. if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
  1043. list_first_entry(&agg->active, struct qfq_class, alist)
  1044. == cl && cl->deficit < qdisc_pkt_len(skb))
  1045. list_move_tail(&cl->alist, &agg->active);
  1046. return err;
  1047. }
  1048. /* schedule class for service within the aggregate */
  1049. cl->deficit = agg->lmax;
  1050. list_add_tail(&cl->alist, &agg->active);
  1051. if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
  1052. q->in_serv_agg == agg)
  1053. return err; /* non-empty or in service, nothing else to do */
  1054. qfq_activate_agg(q, agg, enqueue);
  1055. return err;
  1056. }
  1057. /*
  1058. * Schedule aggregate according to its timestamps.
  1059. */
  1060. static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
  1061. {
  1062. struct qfq_group *grp = agg->grp;
  1063. u64 roundedS;
  1064. int s;
  1065. roundedS = qfq_round_down(agg->S, grp->slot_shift);
  1066. /*
  1067. * Insert agg in the correct bucket.
  1068. * If agg->S >= grp->S we don't need to adjust the
  1069. * bucket list and simply go to the insertion phase.
  1070. * Otherwise grp->S is decreasing, we must make room
  1071. * in the bucket list, and also recompute the group state.
  1072. * Finally, if there were no flows in this group and nobody
  1073. * was in ER make sure to adjust V.
  1074. */
  1075. if (grp->full_slots) {
  1076. if (!qfq_gt(grp->S, agg->S))
  1077. goto skip_update;
  1078. /* create a slot for this agg->S */
  1079. qfq_slot_rotate(grp, roundedS);
  1080. /* group was surely ineligible, remove */
  1081. __clear_bit(grp->index, &q->bitmaps[IR]);
  1082. __clear_bit(grp->index, &q->bitmaps[IB]);
  1083. } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
  1084. q->in_serv_agg == NULL)
  1085. q->V = roundedS;
  1086. grp->S = roundedS;
  1087. grp->F = roundedS + (2ULL << grp->slot_shift);
  1088. s = qfq_calc_state(q, grp);
  1089. __set_bit(grp->index, &q->bitmaps[s]);
  1090. pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
  1091. s, q->bitmaps[s],
  1092. (unsigned long long) agg->S,
  1093. (unsigned long long) agg->F,
  1094. (unsigned long long) q->V);
  1095. skip_update:
  1096. qfq_slot_insert(grp, agg, roundedS);
  1097. }
  1098. /* Update agg ts and schedule agg for service */
  1099. static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
  1100. enum update_reason reason)
  1101. {
  1102. agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
  1103. qfq_update_agg_ts(q, agg, reason);
  1104. if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
  1105. q->in_serv_agg = agg; /* start serving this aggregate */
  1106. /* update V: to be in service, agg must be eligible */
  1107. q->oldV = q->V = agg->S;
  1108. } else if (agg != q->in_serv_agg)
  1109. qfq_schedule_agg(q, agg);
  1110. }
  1111. static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
  1112. struct qfq_aggregate *agg)
  1113. {
  1114. unsigned int i, offset;
  1115. u64 roundedS;
  1116. roundedS = qfq_round_down(agg->S, grp->slot_shift);
  1117. offset = (roundedS - grp->S) >> grp->slot_shift;
  1118. i = (grp->front + offset) % QFQ_MAX_SLOTS;
  1119. hlist_del(&agg->next);
  1120. if (hlist_empty(&grp->slots[i]))
  1121. __clear_bit(offset, &grp->full_slots);
  1122. }
  1123. /*
  1124. * Called to forcibly deschedule an aggregate. If the aggregate is
  1125. * not in the front bucket, or if the latter has other aggregates in
  1126. * the front bucket, we can simply remove the aggregate with no other
  1127. * side effects.
  1128. * Otherwise we must propagate the event up.
  1129. */
  1130. static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
  1131. {
  1132. struct qfq_group *grp = agg->grp;
  1133. unsigned long mask;
  1134. u64 roundedS;
  1135. int s;
  1136. if (agg == q->in_serv_agg) {
  1137. charge_actual_service(agg);
  1138. q->in_serv_agg = qfq_choose_next_agg(q);
  1139. return;
  1140. }
  1141. agg->F = agg->S;
  1142. qfq_slot_remove(q, grp, agg);
  1143. if (!grp->full_slots) {
  1144. __clear_bit(grp->index, &q->bitmaps[IR]);
  1145. __clear_bit(grp->index, &q->bitmaps[EB]);
  1146. __clear_bit(grp->index, &q->bitmaps[IB]);
  1147. if (test_bit(grp->index, &q->bitmaps[ER]) &&
  1148. !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
  1149. mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
  1150. if (mask)
  1151. mask = ~((1UL << __fls(mask)) - 1);
  1152. else
  1153. mask = ~0UL;
  1154. qfq_move_groups(q, mask, EB, ER);
  1155. qfq_move_groups(q, mask, IB, IR);
  1156. }
  1157. __clear_bit(grp->index, &q->bitmaps[ER]);
  1158. } else if (hlist_empty(&grp->slots[grp->front])) {
  1159. agg = qfq_slot_scan(grp);
  1160. roundedS = qfq_round_down(agg->S, grp->slot_shift);
  1161. if (grp->S != roundedS) {
  1162. __clear_bit(grp->index, &q->bitmaps[ER]);
  1163. __clear_bit(grp->index, &q->bitmaps[IR]);
  1164. __clear_bit(grp->index, &q->bitmaps[EB]);
  1165. __clear_bit(grp->index, &q->bitmaps[IB]);
  1166. grp->S = roundedS;
  1167. grp->F = roundedS + (2ULL << grp->slot_shift);
  1168. s = qfq_calc_state(q, grp);
  1169. __set_bit(grp->index, &q->bitmaps[s]);
  1170. }
  1171. }
  1172. }
  1173. static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
  1174. {
  1175. struct qfq_sched *q = qdisc_priv(sch);
  1176. struct qfq_class *cl = (struct qfq_class *)arg;
  1177. if (cl->qdisc->q.qlen == 0)
  1178. qfq_deactivate_class(q, cl);
  1179. }
  1180. static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
  1181. struct hlist_head *slot)
  1182. {
  1183. struct qfq_aggregate *agg;
  1184. struct qfq_class *cl;
  1185. unsigned int len;
  1186. hlist_for_each_entry(agg, slot, next) {
  1187. list_for_each_entry(cl, &agg->active, alist) {
  1188. if (!cl->qdisc->ops->drop)
  1189. continue;
  1190. len = cl->qdisc->ops->drop(cl->qdisc);
  1191. if (len > 0) {
  1192. if (cl->qdisc->q.qlen == 0)
  1193. qfq_deactivate_class(q, cl);
  1194. return len;
  1195. }
  1196. }
  1197. }
  1198. return 0;
  1199. }
  1200. static unsigned int qfq_drop(struct Qdisc *sch)
  1201. {
  1202. struct qfq_sched *q = qdisc_priv(sch);
  1203. struct qfq_group *grp;
  1204. unsigned int i, j, len;
  1205. for (i = 0; i <= QFQ_MAX_INDEX; i++) {
  1206. grp = &q->groups[i];
  1207. for (j = 0; j < QFQ_MAX_SLOTS; j++) {
  1208. len = qfq_drop_from_slot(q, &grp->slots[j]);
  1209. if (len > 0) {
  1210. sch->q.qlen--;
  1211. return len;
  1212. }
  1213. }
  1214. }
  1215. return 0;
  1216. }
  1217. static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
  1218. {
  1219. struct qfq_sched *q = qdisc_priv(sch);
  1220. struct qfq_group *grp;
  1221. int i, j, err;
  1222. u32 max_cl_shift, maxbudg_shift, max_classes;
  1223. err = qdisc_class_hash_init(&q->clhash);
  1224. if (err < 0)
  1225. return err;
  1226. if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
  1227. max_classes = QFQ_MAX_AGG_CLASSES;
  1228. else
  1229. max_classes = qdisc_dev(sch)->tx_queue_len + 1;
  1230. /* max_cl_shift = floor(log_2(max_classes)) */
  1231. max_cl_shift = __fls(max_classes);
  1232. q->max_agg_classes = 1<<max_cl_shift;
  1233. /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
  1234. maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
  1235. q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
  1236. for (i = 0; i <= QFQ_MAX_INDEX; i++) {
  1237. grp = &q->groups[i];
  1238. grp->index = i;
  1239. grp->slot_shift = q->min_slot_shift + i;
  1240. for (j = 0; j < QFQ_MAX_SLOTS; j++)
  1241. INIT_HLIST_HEAD(&grp->slots[j]);
  1242. }
  1243. INIT_HLIST_HEAD(&q->nonfull_aggs);
  1244. return 0;
  1245. }
  1246. static void qfq_reset_qdisc(struct Qdisc *sch)
  1247. {
  1248. struct qfq_sched *q = qdisc_priv(sch);
  1249. struct qfq_class *cl;
  1250. unsigned int i;
  1251. for (i = 0; i < q->clhash.hashsize; i++) {
  1252. hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
  1253. if (cl->qdisc->q.qlen > 0)
  1254. qfq_deactivate_class(q, cl);
  1255. qdisc_reset(cl->qdisc);
  1256. }
  1257. }
  1258. sch->q.qlen = 0;
  1259. }
  1260. static void qfq_destroy_qdisc(struct Qdisc *sch)
  1261. {
  1262. struct qfq_sched *q = qdisc_priv(sch);
  1263. struct qfq_class *cl;
  1264. struct hlist_node *next;
  1265. unsigned int i;
  1266. tcf_destroy_chain(&q->filter_list);
  1267. for (i = 0; i < q->clhash.hashsize; i++) {
  1268. hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
  1269. common.hnode) {
  1270. qfq_destroy_class(sch, cl);
  1271. }
  1272. }
  1273. qdisc_class_hash_destroy(&q->clhash);
  1274. }
  1275. static const struct Qdisc_class_ops qfq_class_ops = {
  1276. .change = qfq_change_class,
  1277. .delete = qfq_delete_class,
  1278. .get = qfq_get_class,
  1279. .put = qfq_put_class,
  1280. .tcf_chain = qfq_tcf_chain,
  1281. .bind_tcf = qfq_bind_tcf,
  1282. .unbind_tcf = qfq_unbind_tcf,
  1283. .graft = qfq_graft_class,
  1284. .leaf = qfq_class_leaf,
  1285. .qlen_notify = qfq_qlen_notify,
  1286. .dump = qfq_dump_class,
  1287. .dump_stats = qfq_dump_class_stats,
  1288. .walk = qfq_walk,
  1289. };
  1290. static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
  1291. .cl_ops = &qfq_class_ops,
  1292. .id = "qfq",
  1293. .priv_size = sizeof(struct qfq_sched),
  1294. .enqueue = qfq_enqueue,
  1295. .dequeue = qfq_dequeue,
  1296. .peek = qdisc_peek_dequeued,
  1297. .drop = qfq_drop,
  1298. .init = qfq_init_qdisc,
  1299. .reset = qfq_reset_qdisc,
  1300. .destroy = qfq_destroy_qdisc,
  1301. .owner = THIS_MODULE,
  1302. };
  1303. static int __init qfq_init(void)
  1304. {
  1305. return register_qdisc(&qfq_qdisc_ops);
  1306. }
  1307. static void __exit qfq_exit(void)
  1308. {
  1309. unregister_qdisc(&qfq_qdisc_ops);
  1310. }
  1311. module_init(qfq_init);
  1312. module_exit(qfq_exit);
  1313. MODULE_LICENSE("GPL");