spi-nor.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
  3. * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
  4. *
  5. * Copyright (C) 2005, Intec Automation Inc.
  6. * Copyright (C) 2014, Freescale Semiconductor, Inc.
  7. *
  8. * This code is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/mutex.h>
  17. #include <linux/math64.h>
  18. #include <linux/mtd/cfi.h>
  19. #include <linux/mtd/mtd.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/spi/flash.h>
  22. #include <linux/mtd/spi-nor.h>
  23. /* Define max times to check status register before we give up. */
  24. #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
  25. #define SPI_NOR_MAX_ID_LEN 6
  26. struct flash_info {
  27. char *name;
  28. /*
  29. * This array stores the ID bytes.
  30. * The first three bytes are the JEDIC ID.
  31. * JEDEC ID zero means "no ID" (mostly older chips).
  32. */
  33. u8 id[SPI_NOR_MAX_ID_LEN];
  34. u8 id_len;
  35. /* The size listed here is what works with SPINOR_OP_SE, which isn't
  36. * necessarily called a "sector" by the vendor.
  37. */
  38. unsigned sector_size;
  39. u16 n_sectors;
  40. u16 page_size;
  41. u16 addr_width;
  42. u16 flags;
  43. #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
  44. #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
  45. #define SST_WRITE 0x04 /* use SST byte programming */
  46. #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
  47. #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
  48. #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
  49. #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
  50. #define USE_FSR 0x80 /* use flag status register */
  51. };
  52. #define JEDEC_MFR(info) ((info)->id[0])
  53. static const struct flash_info *spi_nor_match_id(const char *name);
  54. /*
  55. * Read the status register, returning its value in the location
  56. * Return the status register value.
  57. * Returns negative if error occurred.
  58. */
  59. static int read_sr(struct spi_nor *nor)
  60. {
  61. int ret;
  62. u8 val;
  63. ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  64. if (ret < 0) {
  65. pr_err("error %d reading SR\n", (int) ret);
  66. return ret;
  67. }
  68. return val;
  69. }
  70. /*
  71. * Read the flag status register, returning its value in the location
  72. * Return the status register value.
  73. * Returns negative if error occurred.
  74. */
  75. static int read_fsr(struct spi_nor *nor)
  76. {
  77. int ret;
  78. u8 val;
  79. ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
  80. if (ret < 0) {
  81. pr_err("error %d reading FSR\n", ret);
  82. return ret;
  83. }
  84. return val;
  85. }
  86. /*
  87. * Read configuration register, returning its value in the
  88. * location. Return the configuration register value.
  89. * Returns negative if error occured.
  90. */
  91. static int read_cr(struct spi_nor *nor)
  92. {
  93. int ret;
  94. u8 val;
  95. ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
  96. if (ret < 0) {
  97. dev_err(nor->dev, "error %d reading CR\n", ret);
  98. return ret;
  99. }
  100. return val;
  101. }
  102. /*
  103. * Dummy Cycle calculation for different type of read.
  104. * It can be used to support more commands with
  105. * different dummy cycle requirements.
  106. */
  107. static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
  108. {
  109. switch (nor->flash_read) {
  110. case SPI_NOR_FAST:
  111. case SPI_NOR_DUAL:
  112. case SPI_NOR_QUAD:
  113. return 8;
  114. case SPI_NOR_NORMAL:
  115. return 0;
  116. }
  117. return 0;
  118. }
  119. /*
  120. * Write status register 1 byte
  121. * Returns negative if error occurred.
  122. */
  123. static inline int write_sr(struct spi_nor *nor, u8 val)
  124. {
  125. nor->cmd_buf[0] = val;
  126. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  127. }
  128. /*
  129. * Set write enable latch with Write Enable command.
  130. * Returns negative if error occurred.
  131. */
  132. static inline int write_enable(struct spi_nor *nor)
  133. {
  134. return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
  135. }
  136. /*
  137. * Send write disble instruction to the chip.
  138. */
  139. static inline int write_disable(struct spi_nor *nor)
  140. {
  141. return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
  142. }
  143. static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
  144. {
  145. return mtd->priv;
  146. }
  147. /* Enable/disable 4-byte addressing mode. */
  148. static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info,
  149. int enable)
  150. {
  151. int status;
  152. bool need_wren = false;
  153. u8 cmd;
  154. switch (JEDEC_MFR(info)) {
  155. case CFI_MFR_ST: /* Micron, actually */
  156. /* Some Micron need WREN command; all will accept it */
  157. need_wren = true;
  158. case CFI_MFR_MACRONIX:
  159. case 0xEF /* winbond */:
  160. if (need_wren)
  161. write_enable(nor);
  162. cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
  163. status = nor->write_reg(nor, cmd, NULL, 0, 0);
  164. if (need_wren)
  165. write_disable(nor);
  166. return status;
  167. default:
  168. /* Spansion style */
  169. nor->cmd_buf[0] = enable << 7;
  170. return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
  171. }
  172. }
  173. static inline int spi_nor_sr_ready(struct spi_nor *nor)
  174. {
  175. int sr = read_sr(nor);
  176. if (sr < 0)
  177. return sr;
  178. else
  179. return !(sr & SR_WIP);
  180. }
  181. static inline int spi_nor_fsr_ready(struct spi_nor *nor)
  182. {
  183. int fsr = read_fsr(nor);
  184. if (fsr < 0)
  185. return fsr;
  186. else
  187. return fsr & FSR_READY;
  188. }
  189. static int spi_nor_ready(struct spi_nor *nor)
  190. {
  191. int sr, fsr;
  192. sr = spi_nor_sr_ready(nor);
  193. if (sr < 0)
  194. return sr;
  195. fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
  196. if (fsr < 0)
  197. return fsr;
  198. return sr && fsr;
  199. }
  200. /*
  201. * Service routine to read status register until ready, or timeout occurs.
  202. * Returns non-zero if error.
  203. */
  204. static int spi_nor_wait_till_ready(struct spi_nor *nor)
  205. {
  206. unsigned long deadline;
  207. int timeout = 0, ret;
  208. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  209. while (!timeout) {
  210. if (time_after_eq(jiffies, deadline))
  211. timeout = 1;
  212. ret = spi_nor_ready(nor);
  213. if (ret < 0)
  214. return ret;
  215. if (ret)
  216. return 0;
  217. cond_resched();
  218. }
  219. dev_err(nor->dev, "flash operation timed out\n");
  220. return -ETIMEDOUT;
  221. }
  222. /*
  223. * Erase the whole flash memory
  224. *
  225. * Returns 0 if successful, non-zero otherwise.
  226. */
  227. static int erase_chip(struct spi_nor *nor)
  228. {
  229. dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
  230. return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
  231. }
  232. static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  233. {
  234. int ret = 0;
  235. mutex_lock(&nor->lock);
  236. if (nor->prepare) {
  237. ret = nor->prepare(nor, ops);
  238. if (ret) {
  239. dev_err(nor->dev, "failed in the preparation.\n");
  240. mutex_unlock(&nor->lock);
  241. return ret;
  242. }
  243. }
  244. return ret;
  245. }
  246. static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  247. {
  248. if (nor->unprepare)
  249. nor->unprepare(nor, ops);
  250. mutex_unlock(&nor->lock);
  251. }
  252. /*
  253. * Erase an address range on the nor chip. The address range may extend
  254. * one or more erase sectors. Return an error is there is a problem erasing.
  255. */
  256. static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
  257. {
  258. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  259. u32 addr, len;
  260. uint32_t rem;
  261. int ret;
  262. dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
  263. (long long)instr->len);
  264. div_u64_rem(instr->len, mtd->erasesize, &rem);
  265. if (rem)
  266. return -EINVAL;
  267. addr = instr->addr;
  268. len = instr->len;
  269. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
  270. if (ret)
  271. return ret;
  272. /* whole-chip erase? */
  273. if (len == mtd->size) {
  274. write_enable(nor);
  275. if (erase_chip(nor)) {
  276. ret = -EIO;
  277. goto erase_err;
  278. }
  279. ret = spi_nor_wait_till_ready(nor);
  280. if (ret)
  281. goto erase_err;
  282. /* REVISIT in some cases we could speed up erasing large regions
  283. * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
  284. * to use "small sector erase", but that's not always optimal.
  285. */
  286. /* "sector"-at-a-time erase */
  287. } else {
  288. while (len) {
  289. write_enable(nor);
  290. if (nor->erase(nor, addr)) {
  291. ret = -EIO;
  292. goto erase_err;
  293. }
  294. addr += mtd->erasesize;
  295. len -= mtd->erasesize;
  296. ret = spi_nor_wait_till_ready(nor);
  297. if (ret)
  298. goto erase_err;
  299. }
  300. }
  301. write_disable(nor);
  302. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  303. instr->state = MTD_ERASE_DONE;
  304. mtd_erase_callback(instr);
  305. return ret;
  306. erase_err:
  307. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  308. instr->state = MTD_ERASE_FAILED;
  309. return ret;
  310. }
  311. static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
  312. {
  313. struct mtd_info *mtd = nor->mtd;
  314. uint32_t offset = ofs;
  315. uint8_t status_old, status_new;
  316. int ret = 0;
  317. status_old = read_sr(nor);
  318. if (offset < mtd->size - (mtd->size / 2))
  319. status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
  320. else if (offset < mtd->size - (mtd->size / 4))
  321. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  322. else if (offset < mtd->size - (mtd->size / 8))
  323. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  324. else if (offset < mtd->size - (mtd->size / 16))
  325. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  326. else if (offset < mtd->size - (mtd->size / 32))
  327. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  328. else if (offset < mtd->size - (mtd->size / 64))
  329. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  330. else
  331. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  332. /* Only modify protection if it will not unlock other areas */
  333. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
  334. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  335. write_enable(nor);
  336. ret = write_sr(nor, status_new);
  337. }
  338. return ret;
  339. }
  340. static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
  341. {
  342. struct mtd_info *mtd = nor->mtd;
  343. uint32_t offset = ofs;
  344. uint8_t status_old, status_new;
  345. int ret = 0;
  346. status_old = read_sr(nor);
  347. if (offset+len > mtd->size - (mtd->size / 64))
  348. status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
  349. else if (offset+len > mtd->size - (mtd->size / 32))
  350. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  351. else if (offset+len > mtd->size - (mtd->size / 16))
  352. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  353. else if (offset+len > mtd->size - (mtd->size / 8))
  354. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  355. else if (offset+len > mtd->size - (mtd->size / 4))
  356. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  357. else if (offset+len > mtd->size - (mtd->size / 2))
  358. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  359. else
  360. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  361. /* Only modify protection if it will not lock other areas */
  362. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
  363. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  364. write_enable(nor);
  365. ret = write_sr(nor, status_new);
  366. }
  367. return ret;
  368. }
  369. static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  370. {
  371. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  372. int ret;
  373. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
  374. if (ret)
  375. return ret;
  376. ret = nor->flash_lock(nor, ofs, len);
  377. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
  378. return ret;
  379. }
  380. static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  381. {
  382. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  383. int ret;
  384. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
  385. if (ret)
  386. return ret;
  387. ret = nor->flash_unlock(nor, ofs, len);
  388. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
  389. return ret;
  390. }
  391. /* Used when the "_ext_id" is two bytes at most */
  392. #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  393. .id = { \
  394. ((_jedec_id) >> 16) & 0xff, \
  395. ((_jedec_id) >> 8) & 0xff, \
  396. (_jedec_id) & 0xff, \
  397. ((_ext_id) >> 8) & 0xff, \
  398. (_ext_id) & 0xff, \
  399. }, \
  400. .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
  401. .sector_size = (_sector_size), \
  402. .n_sectors = (_n_sectors), \
  403. .page_size = 256, \
  404. .flags = (_flags),
  405. #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  406. .id = { \
  407. ((_jedec_id) >> 16) & 0xff, \
  408. ((_jedec_id) >> 8) & 0xff, \
  409. (_jedec_id) & 0xff, \
  410. ((_ext_id) >> 16) & 0xff, \
  411. ((_ext_id) >> 8) & 0xff, \
  412. (_ext_id) & 0xff, \
  413. }, \
  414. .id_len = 6, \
  415. .sector_size = (_sector_size), \
  416. .n_sectors = (_n_sectors), \
  417. .page_size = 256, \
  418. .flags = (_flags),
  419. #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
  420. .sector_size = (_sector_size), \
  421. .n_sectors = (_n_sectors), \
  422. .page_size = (_page_size), \
  423. .addr_width = (_addr_width), \
  424. .flags = (_flags),
  425. /* NOTE: double check command sets and memory organization when you add
  426. * more nor chips. This current list focusses on newer chips, which
  427. * have been converging on command sets which including JEDEC ID.
  428. *
  429. * All newly added entries should describe *hardware* and should use SECT_4K
  430. * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
  431. * scenarios excluding small sectors there is config option that can be
  432. * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
  433. * For historical (and compatibility) reasons (before we got above config) some
  434. * old entries may be missing 4K flag.
  435. */
  436. static const struct flash_info spi_nor_ids[] = {
  437. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  438. { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
  439. { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
  440. { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
  441. { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
  442. { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
  443. { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
  444. { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
  445. { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
  446. { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
  447. { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
  448. /* EON -- en25xxx */
  449. { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
  450. { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
  451. { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
  452. { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
  453. { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
  454. { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
  455. { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
  456. { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) },
  457. /* ESMT */
  458. { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
  459. /* Everspin */
  460. { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  461. { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  462. /* Fujitsu */
  463. { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) },
  464. /* GigaDevice */
  465. { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
  466. { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
  467. { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K) },
  468. /* Intel/Numonyx -- xxxs33b */
  469. { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
  470. { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
  471. { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
  472. /* ISSI */
  473. { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) },
  474. /* Macronix */
  475. { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
  476. { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
  477. { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
  478. { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
  479. { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
  480. { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
  481. { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
  482. { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
  483. { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) },
  484. { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
  485. { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
  486. { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
  487. { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
  488. { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
  489. { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
  490. /* Micron */
  491. { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) },
  492. { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
  493. { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) },
  494. { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
  495. { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ) },
  496. { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
  497. { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
  498. { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
  499. { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
  500. /* PMC */
  501. { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
  502. { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
  503. { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
  504. /* Spansion -- single (large) sector size only, at least
  505. * for the chips listed here (without boot sectors).
  506. */
  507. { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  508. { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  509. { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
  510. { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  511. { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  512. { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
  513. { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
  514. { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
  515. { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
  516. { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  517. { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  518. { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
  519. { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
  520. { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
  521. { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
  522. { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
  523. { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  524. { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
  525. { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  526. { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) },
  527. { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) },
  528. { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K) },
  529. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  530. { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  531. { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  532. { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
  533. { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
  534. { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
  535. { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
  536. { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
  537. { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
  538. { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) },
  539. { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  540. { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  541. /* ST Microelectronics -- newer production may have feature updates */
  542. { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
  543. { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
  544. { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
  545. { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
  546. { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
  547. { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
  548. { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
  549. { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
  550. { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
  551. { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
  552. { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
  553. { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
  554. { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
  555. { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
  556. { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
  557. { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
  558. { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
  559. { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
  560. { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
  561. { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
  562. { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
  563. { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
  564. { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
  565. { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
  566. { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
  567. { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
  568. { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
  569. { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
  570. { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
  571. { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
  572. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  573. { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) },
  574. { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
  575. { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
  576. { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
  577. { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
  578. { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
  579. { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
  580. { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
  581. { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
  582. { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
  583. { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  584. { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K) },
  585. { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
  586. { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  587. { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
  588. { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
  589. /* Catalyst / On Semiconductor -- non-JEDEC */
  590. { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  591. { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  592. { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  593. { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  594. { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  595. { },
  596. };
  597. static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
  598. {
  599. int tmp;
  600. u8 id[SPI_NOR_MAX_ID_LEN];
  601. const struct flash_info *info;
  602. tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
  603. if (tmp < 0) {
  604. dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
  605. return ERR_PTR(tmp);
  606. }
  607. for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
  608. info = &spi_nor_ids[tmp];
  609. if (info->id_len) {
  610. if (!memcmp(info->id, id, info->id_len))
  611. return &spi_nor_ids[tmp];
  612. }
  613. }
  614. dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
  615. id[0], id[1], id[2]);
  616. return ERR_PTR(-ENODEV);
  617. }
  618. static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
  619. size_t *retlen, u_char *buf)
  620. {
  621. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  622. int ret;
  623. dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
  624. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
  625. if (ret)
  626. return ret;
  627. ret = nor->read(nor, from, len, retlen, buf);
  628. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
  629. return ret;
  630. }
  631. static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
  632. size_t *retlen, const u_char *buf)
  633. {
  634. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  635. size_t actual;
  636. int ret;
  637. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  638. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  639. if (ret)
  640. return ret;
  641. write_enable(nor);
  642. nor->sst_write_second = false;
  643. actual = to % 2;
  644. /* Start write from odd address. */
  645. if (actual) {
  646. nor->program_opcode = SPINOR_OP_BP;
  647. /* write one byte. */
  648. nor->write(nor, to, 1, retlen, buf);
  649. ret = spi_nor_wait_till_ready(nor);
  650. if (ret)
  651. goto time_out;
  652. }
  653. to += actual;
  654. /* Write out most of the data here. */
  655. for (; actual < len - 1; actual += 2) {
  656. nor->program_opcode = SPINOR_OP_AAI_WP;
  657. /* write two bytes. */
  658. nor->write(nor, to, 2, retlen, buf + actual);
  659. ret = spi_nor_wait_till_ready(nor);
  660. if (ret)
  661. goto time_out;
  662. to += 2;
  663. nor->sst_write_second = true;
  664. }
  665. nor->sst_write_second = false;
  666. write_disable(nor);
  667. ret = spi_nor_wait_till_ready(nor);
  668. if (ret)
  669. goto time_out;
  670. /* Write out trailing byte if it exists. */
  671. if (actual != len) {
  672. write_enable(nor);
  673. nor->program_opcode = SPINOR_OP_BP;
  674. nor->write(nor, to, 1, retlen, buf + actual);
  675. ret = spi_nor_wait_till_ready(nor);
  676. if (ret)
  677. goto time_out;
  678. write_disable(nor);
  679. }
  680. time_out:
  681. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  682. return ret;
  683. }
  684. /*
  685. * Write an address range to the nor chip. Data must be written in
  686. * FLASH_PAGESIZE chunks. The address range may be any size provided
  687. * it is within the physical boundaries.
  688. */
  689. static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
  690. size_t *retlen, const u_char *buf)
  691. {
  692. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  693. u32 page_offset, page_size, i;
  694. int ret;
  695. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  696. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  697. if (ret)
  698. return ret;
  699. write_enable(nor);
  700. page_offset = to & (nor->page_size - 1);
  701. /* do all the bytes fit onto one page? */
  702. if (page_offset + len <= nor->page_size) {
  703. nor->write(nor, to, len, retlen, buf);
  704. } else {
  705. /* the size of data remaining on the first page */
  706. page_size = nor->page_size - page_offset;
  707. nor->write(nor, to, page_size, retlen, buf);
  708. /* write everything in nor->page_size chunks */
  709. for (i = page_size; i < len; i += page_size) {
  710. page_size = len - i;
  711. if (page_size > nor->page_size)
  712. page_size = nor->page_size;
  713. ret = spi_nor_wait_till_ready(nor);
  714. if (ret)
  715. goto write_err;
  716. write_enable(nor);
  717. nor->write(nor, to + i, page_size, retlen, buf + i);
  718. }
  719. }
  720. ret = spi_nor_wait_till_ready(nor);
  721. write_err:
  722. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  723. return ret;
  724. }
  725. static int macronix_quad_enable(struct spi_nor *nor)
  726. {
  727. int ret, val;
  728. val = read_sr(nor);
  729. write_enable(nor);
  730. nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
  731. nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  732. if (spi_nor_wait_till_ready(nor))
  733. return 1;
  734. ret = read_sr(nor);
  735. if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
  736. dev_err(nor->dev, "Macronix Quad bit not set\n");
  737. return -EINVAL;
  738. }
  739. return 0;
  740. }
  741. /*
  742. * Write status Register and configuration register with 2 bytes
  743. * The first byte will be written to the status register, while the
  744. * second byte will be written to the configuration register.
  745. * Return negative if error occured.
  746. */
  747. static int write_sr_cr(struct spi_nor *nor, u16 val)
  748. {
  749. nor->cmd_buf[0] = val & 0xff;
  750. nor->cmd_buf[1] = (val >> 8);
  751. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
  752. }
  753. static int spansion_quad_enable(struct spi_nor *nor)
  754. {
  755. int ret;
  756. int quad_en = CR_QUAD_EN_SPAN << 8;
  757. write_enable(nor);
  758. ret = write_sr_cr(nor, quad_en);
  759. if (ret < 0) {
  760. dev_err(nor->dev,
  761. "error while writing configuration register\n");
  762. return -EINVAL;
  763. }
  764. /* read back and check it */
  765. ret = read_cr(nor);
  766. if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
  767. dev_err(nor->dev, "Spansion Quad bit not set\n");
  768. return -EINVAL;
  769. }
  770. return 0;
  771. }
  772. static int micron_quad_enable(struct spi_nor *nor)
  773. {
  774. int ret;
  775. u8 val;
  776. ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
  777. if (ret < 0) {
  778. dev_err(nor->dev, "error %d reading EVCR\n", ret);
  779. return ret;
  780. }
  781. write_enable(nor);
  782. /* set EVCR, enable quad I/O */
  783. nor->cmd_buf[0] = val & ~EVCR_QUAD_EN_MICRON;
  784. ret = nor->write_reg(nor, SPINOR_OP_WD_EVCR, nor->cmd_buf, 1, 0);
  785. if (ret < 0) {
  786. dev_err(nor->dev, "error while writing EVCR register\n");
  787. return ret;
  788. }
  789. ret = spi_nor_wait_till_ready(nor);
  790. if (ret)
  791. return ret;
  792. /* read EVCR and check it */
  793. ret = nor->read_reg(nor, SPINOR_OP_RD_EVCR, &val, 1);
  794. if (ret < 0) {
  795. dev_err(nor->dev, "error %d reading EVCR\n", ret);
  796. return ret;
  797. }
  798. if (val & EVCR_QUAD_EN_MICRON) {
  799. dev_err(nor->dev, "Micron EVCR Quad bit not clear\n");
  800. return -EINVAL;
  801. }
  802. return 0;
  803. }
  804. static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info)
  805. {
  806. int status;
  807. switch (JEDEC_MFR(info)) {
  808. case CFI_MFR_MACRONIX:
  809. status = macronix_quad_enable(nor);
  810. if (status) {
  811. dev_err(nor->dev, "Macronix quad-read not enabled\n");
  812. return -EINVAL;
  813. }
  814. return status;
  815. case CFI_MFR_ST:
  816. status = micron_quad_enable(nor);
  817. if (status) {
  818. dev_err(nor->dev, "Micron quad-read not enabled\n");
  819. return -EINVAL;
  820. }
  821. return status;
  822. default:
  823. status = spansion_quad_enable(nor);
  824. if (status) {
  825. dev_err(nor->dev, "Spansion quad-read not enabled\n");
  826. return -EINVAL;
  827. }
  828. return status;
  829. }
  830. }
  831. static int spi_nor_check(struct spi_nor *nor)
  832. {
  833. if (!nor->dev || !nor->read || !nor->write ||
  834. !nor->read_reg || !nor->write_reg || !nor->erase) {
  835. pr_err("spi-nor: please fill all the necessary fields!\n");
  836. return -EINVAL;
  837. }
  838. return 0;
  839. }
  840. int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode)
  841. {
  842. const struct flash_info *info = NULL;
  843. struct device *dev = nor->dev;
  844. struct mtd_info *mtd = nor->mtd;
  845. struct device_node *np = dev->of_node;
  846. int ret;
  847. int i;
  848. ret = spi_nor_check(nor);
  849. if (ret)
  850. return ret;
  851. if (name)
  852. info = spi_nor_match_id(name);
  853. /* Try to auto-detect if chip name wasn't specified or not found */
  854. if (!info)
  855. info = spi_nor_read_id(nor);
  856. if (IS_ERR_OR_NULL(info))
  857. return -ENOENT;
  858. /*
  859. * If caller has specified name of flash model that can normally be
  860. * detected using JEDEC, let's verify it.
  861. */
  862. if (name && info->id_len) {
  863. const struct flash_info *jinfo;
  864. jinfo = spi_nor_read_id(nor);
  865. if (IS_ERR(jinfo)) {
  866. return PTR_ERR(jinfo);
  867. } else if (jinfo != info) {
  868. /*
  869. * JEDEC knows better, so overwrite platform ID. We
  870. * can't trust partitions any longer, but we'll let
  871. * mtd apply them anyway, since some partitions may be
  872. * marked read-only, and we don't want to lose that
  873. * information, even if it's not 100% accurate.
  874. */
  875. dev_warn(dev, "found %s, expected %s\n",
  876. jinfo->name, info->name);
  877. info = jinfo;
  878. }
  879. }
  880. mutex_init(&nor->lock);
  881. /*
  882. * Atmel, SST and Intel/Numonyx serial nor tend to power
  883. * up with the software protection bits set
  884. */
  885. if (JEDEC_MFR(info) == CFI_MFR_ATMEL ||
  886. JEDEC_MFR(info) == CFI_MFR_INTEL ||
  887. JEDEC_MFR(info) == CFI_MFR_SST) {
  888. write_enable(nor);
  889. write_sr(nor, 0);
  890. }
  891. if (!mtd->name)
  892. mtd->name = dev_name(dev);
  893. mtd->type = MTD_NORFLASH;
  894. mtd->writesize = 1;
  895. mtd->flags = MTD_CAP_NORFLASH;
  896. mtd->size = info->sector_size * info->n_sectors;
  897. mtd->_erase = spi_nor_erase;
  898. mtd->_read = spi_nor_read;
  899. /* nor protection support for STmicro chips */
  900. if (JEDEC_MFR(info) == CFI_MFR_ST) {
  901. nor->flash_lock = stm_lock;
  902. nor->flash_unlock = stm_unlock;
  903. }
  904. if (nor->flash_lock && nor->flash_unlock) {
  905. mtd->_lock = spi_nor_lock;
  906. mtd->_unlock = spi_nor_unlock;
  907. }
  908. /* sst nor chips use AAI word program */
  909. if (info->flags & SST_WRITE)
  910. mtd->_write = sst_write;
  911. else
  912. mtd->_write = spi_nor_write;
  913. if (info->flags & USE_FSR)
  914. nor->flags |= SNOR_F_USE_FSR;
  915. #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
  916. /* prefer "small sector" erase if possible */
  917. if (info->flags & SECT_4K) {
  918. nor->erase_opcode = SPINOR_OP_BE_4K;
  919. mtd->erasesize = 4096;
  920. } else if (info->flags & SECT_4K_PMC) {
  921. nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
  922. mtd->erasesize = 4096;
  923. } else
  924. #endif
  925. {
  926. nor->erase_opcode = SPINOR_OP_SE;
  927. mtd->erasesize = info->sector_size;
  928. }
  929. if (info->flags & SPI_NOR_NO_ERASE)
  930. mtd->flags |= MTD_NO_ERASE;
  931. mtd->dev.parent = dev;
  932. nor->page_size = info->page_size;
  933. mtd->writebufsize = nor->page_size;
  934. if (np) {
  935. /* If we were instantiated by DT, use it */
  936. if (of_property_read_bool(np, "m25p,fast-read"))
  937. nor->flash_read = SPI_NOR_FAST;
  938. else
  939. nor->flash_read = SPI_NOR_NORMAL;
  940. } else {
  941. /* If we weren't instantiated by DT, default to fast-read */
  942. nor->flash_read = SPI_NOR_FAST;
  943. }
  944. /* Some devices cannot do fast-read, no matter what DT tells us */
  945. if (info->flags & SPI_NOR_NO_FR)
  946. nor->flash_read = SPI_NOR_NORMAL;
  947. /* Quad/Dual-read mode takes precedence over fast/normal */
  948. if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
  949. ret = set_quad_mode(nor, info);
  950. if (ret) {
  951. dev_err(dev, "quad mode not supported\n");
  952. return ret;
  953. }
  954. nor->flash_read = SPI_NOR_QUAD;
  955. } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
  956. nor->flash_read = SPI_NOR_DUAL;
  957. }
  958. /* Default commands */
  959. switch (nor->flash_read) {
  960. case SPI_NOR_QUAD:
  961. nor->read_opcode = SPINOR_OP_READ_1_1_4;
  962. break;
  963. case SPI_NOR_DUAL:
  964. nor->read_opcode = SPINOR_OP_READ_1_1_2;
  965. break;
  966. case SPI_NOR_FAST:
  967. nor->read_opcode = SPINOR_OP_READ_FAST;
  968. break;
  969. case SPI_NOR_NORMAL:
  970. nor->read_opcode = SPINOR_OP_READ;
  971. break;
  972. default:
  973. dev_err(dev, "No Read opcode defined\n");
  974. return -EINVAL;
  975. }
  976. nor->program_opcode = SPINOR_OP_PP;
  977. if (info->addr_width)
  978. nor->addr_width = info->addr_width;
  979. else if (mtd->size > 0x1000000) {
  980. /* enable 4-byte addressing if the device exceeds 16MiB */
  981. nor->addr_width = 4;
  982. if (JEDEC_MFR(info) == CFI_MFR_AMD) {
  983. /* Dedicated 4-byte command set */
  984. switch (nor->flash_read) {
  985. case SPI_NOR_QUAD:
  986. nor->read_opcode = SPINOR_OP_READ4_1_1_4;
  987. break;
  988. case SPI_NOR_DUAL:
  989. nor->read_opcode = SPINOR_OP_READ4_1_1_2;
  990. break;
  991. case SPI_NOR_FAST:
  992. nor->read_opcode = SPINOR_OP_READ4_FAST;
  993. break;
  994. case SPI_NOR_NORMAL:
  995. nor->read_opcode = SPINOR_OP_READ4;
  996. break;
  997. }
  998. nor->program_opcode = SPINOR_OP_PP_4B;
  999. /* No small sector erase for 4-byte command set */
  1000. nor->erase_opcode = SPINOR_OP_SE_4B;
  1001. mtd->erasesize = info->sector_size;
  1002. } else
  1003. set_4byte(nor, info, 1);
  1004. } else {
  1005. nor->addr_width = 3;
  1006. }
  1007. nor->read_dummy = spi_nor_read_dummy_cycles(nor);
  1008. dev_info(dev, "%s (%lld Kbytes)\n", info->name,
  1009. (long long)mtd->size >> 10);
  1010. dev_dbg(dev,
  1011. "mtd .name = %s, .size = 0x%llx (%lldMiB), "
  1012. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  1013. mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
  1014. mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
  1015. if (mtd->numeraseregions)
  1016. for (i = 0; i < mtd->numeraseregions; i++)
  1017. dev_dbg(dev,
  1018. "mtd.eraseregions[%d] = { .offset = 0x%llx, "
  1019. ".erasesize = 0x%.8x (%uKiB), "
  1020. ".numblocks = %d }\n",
  1021. i, (long long)mtd->eraseregions[i].offset,
  1022. mtd->eraseregions[i].erasesize,
  1023. mtd->eraseregions[i].erasesize / 1024,
  1024. mtd->eraseregions[i].numblocks);
  1025. return 0;
  1026. }
  1027. EXPORT_SYMBOL_GPL(spi_nor_scan);
  1028. static const struct flash_info *spi_nor_match_id(const char *name)
  1029. {
  1030. const struct flash_info *id = spi_nor_ids;
  1031. while (id->name) {
  1032. if (!strcmp(name, id->name))
  1033. return id;
  1034. id++;
  1035. }
  1036. return NULL;
  1037. }
  1038. MODULE_LICENSE("GPL");
  1039. MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
  1040. MODULE_AUTHOR("Mike Lavender");
  1041. MODULE_DESCRIPTION("framework for SPI NOR");