fsl-quadspi.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. * Freescale QuadSPI driver.
  3. *
  4. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/errno.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/sched.h>
  17. #include <linux/delay.h>
  18. #include <linux/io.h>
  19. #include <linux/clk.h>
  20. #include <linux/err.h>
  21. #include <linux/of.h>
  22. #include <linux/of_device.h>
  23. #include <linux/timer.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/completion.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/partitions.h>
  28. #include <linux/mtd/spi-nor.h>
  29. #include <linux/mutex.h>
  30. #include <linux/pm_qos.h>
  31. /* Controller needs driver to swap endian */
  32. #define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0)
  33. /* Controller needs 4x internal clock */
  34. #define QUADSPI_QUIRK_4X_INT_CLK (1 << 1)
  35. /*
  36. * TKT253890, Controller needs driver to fill txfifo till 16 byte to
  37. * trigger data transfer even though extern data will not transferred.
  38. */
  39. #define QUADSPI_QUIRK_TKT253890 (1 << 2)
  40. /* Controller cannot wake up from wait mode, TKT245618 */
  41. #define QUADSPI_QUIRK_TKT245618 (1 << 3)
  42. /* The registers */
  43. #define QUADSPI_MCR 0x00
  44. #define QUADSPI_MCR_RESERVED_SHIFT 16
  45. #define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  46. #define QUADSPI_MCR_MDIS_SHIFT 14
  47. #define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
  48. #define QUADSPI_MCR_CLR_TXF_SHIFT 11
  49. #define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  50. #define QUADSPI_MCR_CLR_RXF_SHIFT 10
  51. #define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  52. #define QUADSPI_MCR_DDR_EN_SHIFT 7
  53. #define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  54. #define QUADSPI_MCR_END_CFG_SHIFT 2
  55. #define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
  56. #define QUADSPI_MCR_SWRSTHD_SHIFT 1
  57. #define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  58. #define QUADSPI_MCR_SWRSTSD_SHIFT 0
  59. #define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  60. #define QUADSPI_IPCR 0x08
  61. #define QUADSPI_IPCR_SEQID_SHIFT 24
  62. #define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  63. #define QUADSPI_BUF0CR 0x10
  64. #define QUADSPI_BUF1CR 0x14
  65. #define QUADSPI_BUF2CR 0x18
  66. #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
  67. #define QUADSPI_BUF3CR 0x1c
  68. #define QUADSPI_BUF3CR_ALLMST_SHIFT 31
  69. #define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  70. #define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
  71. #define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  72. #define QUADSPI_BFGENCR 0x20
  73. #define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
  74. #define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  75. #define QUADSPI_BFGENCR_SEQID_SHIFT 12
  76. #define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  77. #define QUADSPI_BUF0IND 0x30
  78. #define QUADSPI_BUF1IND 0x34
  79. #define QUADSPI_BUF2IND 0x38
  80. #define QUADSPI_SFAR 0x100
  81. #define QUADSPI_SMPR 0x108
  82. #define QUADSPI_SMPR_DDRSMP_SHIFT 16
  83. #define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  84. #define QUADSPI_SMPR_FSDLY_SHIFT 6
  85. #define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  86. #define QUADSPI_SMPR_FSPHS_SHIFT 5
  87. #define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  88. #define QUADSPI_SMPR_HSENA_SHIFT 0
  89. #define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
  90. #define QUADSPI_RBSR 0x10c
  91. #define QUADSPI_RBSR_RDBFL_SHIFT 8
  92. #define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
  93. #define QUADSPI_RBCT 0x110
  94. #define QUADSPI_RBCT_WMRK_MASK 0x1F
  95. #define QUADSPI_RBCT_RXBRD_SHIFT 8
  96. #define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
  97. #define QUADSPI_TBSR 0x150
  98. #define QUADSPI_TBDR 0x154
  99. #define QUADSPI_SR 0x15c
  100. #define QUADSPI_SR_IP_ACC_SHIFT 1
  101. #define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
  102. #define QUADSPI_SR_AHB_ACC_SHIFT 2
  103. #define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
  104. #define QUADSPI_FR 0x160
  105. #define QUADSPI_FR_TFF_MASK 0x1
  106. #define QUADSPI_SFA1AD 0x180
  107. #define QUADSPI_SFA2AD 0x184
  108. #define QUADSPI_SFB1AD 0x188
  109. #define QUADSPI_SFB2AD 0x18c
  110. #define QUADSPI_RBDR 0x200
  111. #define QUADSPI_LUTKEY 0x300
  112. #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
  113. #define QUADSPI_LCKCR 0x304
  114. #define QUADSPI_LCKER_LOCK 0x1
  115. #define QUADSPI_LCKER_UNLOCK 0x2
  116. #define QUADSPI_RSER 0x164
  117. #define QUADSPI_RSER_TFIE (0x1 << 0)
  118. #define QUADSPI_LUT_BASE 0x310
  119. /*
  120. * The definition of the LUT register shows below:
  121. *
  122. * ---------------------------------------------------
  123. * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
  124. * ---------------------------------------------------
  125. */
  126. #define OPRND0_SHIFT 0
  127. #define PAD0_SHIFT 8
  128. #define INSTR0_SHIFT 10
  129. #define OPRND1_SHIFT 16
  130. /* Instruction set for the LUT register. */
  131. #define LUT_STOP 0
  132. #define LUT_CMD 1
  133. #define LUT_ADDR 2
  134. #define LUT_DUMMY 3
  135. #define LUT_MODE 4
  136. #define LUT_MODE2 5
  137. #define LUT_MODE4 6
  138. #define LUT_READ 7
  139. #define LUT_WRITE 8
  140. #define LUT_JMP_ON_CS 9
  141. #define LUT_ADDR_DDR 10
  142. #define LUT_MODE_DDR 11
  143. #define LUT_MODE2_DDR 12
  144. #define LUT_MODE4_DDR 13
  145. #define LUT_READ_DDR 14
  146. #define LUT_WRITE_DDR 15
  147. #define LUT_DATA_LEARN 16
  148. /*
  149. * The PAD definitions for LUT register.
  150. *
  151. * The pad stands for the lines number of IO[0:3].
  152. * For example, the Quad read need four IO lines, so you should
  153. * set LUT_PAD4 which means we use four IO lines.
  154. */
  155. #define LUT_PAD1 0
  156. #define LUT_PAD2 1
  157. #define LUT_PAD4 2
  158. /* Oprands for the LUT register. */
  159. #define ADDR24BIT 0x18
  160. #define ADDR32BIT 0x20
  161. /* Macros for constructing the LUT register. */
  162. #define LUT0(ins, pad, opr) \
  163. (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
  164. ((LUT_##ins) << INSTR0_SHIFT))
  165. #define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
  166. /* other macros for LUT register. */
  167. #define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
  168. #define QUADSPI_LUT_NUM 64
  169. /* SEQID -- we can have 16 seqids at most. */
  170. #define SEQID_QUAD_READ 0
  171. #define SEQID_WREN 1
  172. #define SEQID_WRDI 2
  173. #define SEQID_RDSR 3
  174. #define SEQID_SE 4
  175. #define SEQID_CHIP_ERASE 5
  176. #define SEQID_PP 6
  177. #define SEQID_RDID 7
  178. #define SEQID_WRSR 8
  179. #define SEQID_RDCR 9
  180. #define SEQID_EN4B 10
  181. #define SEQID_BRWR 11
  182. #define QUADSPI_MIN_IOMAP SZ_4M
  183. enum fsl_qspi_devtype {
  184. FSL_QUADSPI_VYBRID,
  185. FSL_QUADSPI_IMX6SX,
  186. FSL_QUADSPI_IMX7D,
  187. FSL_QUADSPI_IMX6UL,
  188. };
  189. struct fsl_qspi_devtype_data {
  190. enum fsl_qspi_devtype devtype;
  191. int rxfifo;
  192. int txfifo;
  193. int ahb_buf_size;
  194. int driver_data;
  195. };
  196. static struct fsl_qspi_devtype_data vybrid_data = {
  197. .devtype = FSL_QUADSPI_VYBRID,
  198. .rxfifo = 128,
  199. .txfifo = 64,
  200. .ahb_buf_size = 1024,
  201. .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
  202. };
  203. static struct fsl_qspi_devtype_data imx6sx_data = {
  204. .devtype = FSL_QUADSPI_IMX6SX,
  205. .rxfifo = 128,
  206. .txfifo = 512,
  207. .ahb_buf_size = 1024,
  208. .driver_data = QUADSPI_QUIRK_4X_INT_CLK
  209. | QUADSPI_QUIRK_TKT245618,
  210. };
  211. static struct fsl_qspi_devtype_data imx7d_data = {
  212. .devtype = FSL_QUADSPI_IMX7D,
  213. .rxfifo = 512,
  214. .txfifo = 512,
  215. .ahb_buf_size = 1024,
  216. .driver_data = QUADSPI_QUIRK_TKT253890
  217. | QUADSPI_QUIRK_4X_INT_CLK,
  218. };
  219. static struct fsl_qspi_devtype_data imx6ul_data = {
  220. .devtype = FSL_QUADSPI_IMX6UL,
  221. .rxfifo = 128,
  222. .txfifo = 512,
  223. .ahb_buf_size = 1024,
  224. .driver_data = QUADSPI_QUIRK_TKT253890
  225. | QUADSPI_QUIRK_4X_INT_CLK,
  226. };
  227. #define FSL_QSPI_MAX_CHIP 4
  228. struct fsl_qspi {
  229. struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
  230. struct spi_nor nor[FSL_QSPI_MAX_CHIP];
  231. void __iomem *iobase;
  232. void __iomem *ahb_addr;
  233. u32 memmap_phy;
  234. u32 memmap_offs;
  235. u32 memmap_len;
  236. struct clk *clk, *clk_en;
  237. struct device *dev;
  238. struct completion c;
  239. struct fsl_qspi_devtype_data *devtype_data;
  240. u32 nor_size;
  241. u32 nor_num;
  242. u32 clk_rate;
  243. unsigned int chip_base_addr; /* We may support two chips. */
  244. bool has_second_chip;
  245. struct mutex lock;
  246. struct pm_qos_request pm_qos_req;
  247. };
  248. static inline int needs_swap_endian(struct fsl_qspi *q)
  249. {
  250. return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
  251. }
  252. static inline int needs_4x_clock(struct fsl_qspi *q)
  253. {
  254. return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
  255. }
  256. static inline int needs_fill_txfifo(struct fsl_qspi *q)
  257. {
  258. return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
  259. }
  260. static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
  261. {
  262. return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
  263. }
  264. /*
  265. * An IC bug makes us to re-arrange the 32-bit data.
  266. * The following chips, such as IMX6SLX, have fixed this bug.
  267. */
  268. static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
  269. {
  270. return needs_swap_endian(q) ? __swab32(a) : a;
  271. }
  272. static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
  273. {
  274. writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  275. writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
  276. }
  277. static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
  278. {
  279. writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
  280. writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
  281. }
  282. static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
  283. {
  284. struct fsl_qspi *q = dev_id;
  285. u32 reg;
  286. /* clear interrupt */
  287. reg = readl(q->iobase + QUADSPI_FR);
  288. writel(reg, q->iobase + QUADSPI_FR);
  289. if (reg & QUADSPI_FR_TFF_MASK)
  290. complete(&q->c);
  291. dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
  292. return IRQ_HANDLED;
  293. }
  294. static void fsl_qspi_init_lut(struct fsl_qspi *q)
  295. {
  296. void __iomem *base = q->iobase;
  297. int rxfifo = q->devtype_data->rxfifo;
  298. u32 lut_base;
  299. u8 cmd, addrlen, dummy;
  300. int i;
  301. fsl_qspi_unlock_lut(q);
  302. /* Clear all the LUT table */
  303. for (i = 0; i < QUADSPI_LUT_NUM; i++)
  304. writel(0, base + QUADSPI_LUT_BASE + i * 4);
  305. /* Quad Read */
  306. lut_base = SEQID_QUAD_READ * 4;
  307. if (q->nor_size <= SZ_16M) {
  308. cmd = SPINOR_OP_READ_1_1_4;
  309. addrlen = ADDR24BIT;
  310. dummy = 8;
  311. } else {
  312. /* use the 4-byte address */
  313. cmd = SPINOR_OP_READ_1_1_4;
  314. addrlen = ADDR32BIT;
  315. dummy = 8;
  316. }
  317. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  318. base + QUADSPI_LUT(lut_base));
  319. writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
  320. base + QUADSPI_LUT(lut_base + 1));
  321. /* Write enable */
  322. lut_base = SEQID_WREN * 4;
  323. writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
  324. /* Page Program */
  325. lut_base = SEQID_PP * 4;
  326. if (q->nor_size <= SZ_16M) {
  327. cmd = SPINOR_OP_PP;
  328. addrlen = ADDR24BIT;
  329. } else {
  330. /* use the 4-byte address */
  331. cmd = SPINOR_OP_PP;
  332. addrlen = ADDR32BIT;
  333. }
  334. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  335. base + QUADSPI_LUT(lut_base));
  336. writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
  337. /* Read Status */
  338. lut_base = SEQID_RDSR * 4;
  339. writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
  340. base + QUADSPI_LUT(lut_base));
  341. /* Erase a sector */
  342. lut_base = SEQID_SE * 4;
  343. cmd = q->nor[0].erase_opcode;
  344. addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
  345. writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
  346. base + QUADSPI_LUT(lut_base));
  347. /* Erase the whole chip */
  348. lut_base = SEQID_CHIP_ERASE * 4;
  349. writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
  350. base + QUADSPI_LUT(lut_base));
  351. /* READ ID */
  352. lut_base = SEQID_RDID * 4;
  353. writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
  354. base + QUADSPI_LUT(lut_base));
  355. /* Write Register */
  356. lut_base = SEQID_WRSR * 4;
  357. writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
  358. base + QUADSPI_LUT(lut_base));
  359. /* Read Configuration Register */
  360. lut_base = SEQID_RDCR * 4;
  361. writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
  362. base + QUADSPI_LUT(lut_base));
  363. /* Write disable */
  364. lut_base = SEQID_WRDI * 4;
  365. writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
  366. /* Enter 4 Byte Mode (Micron) */
  367. lut_base = SEQID_EN4B * 4;
  368. writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
  369. /* Enter 4 Byte Mode (Spansion) */
  370. lut_base = SEQID_BRWR * 4;
  371. writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
  372. fsl_qspi_lock_lut(q);
  373. }
  374. /* Get the SEQID for the command */
  375. static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
  376. {
  377. switch (cmd) {
  378. case SPINOR_OP_READ_1_1_4:
  379. return SEQID_QUAD_READ;
  380. case SPINOR_OP_WREN:
  381. return SEQID_WREN;
  382. case SPINOR_OP_WRDI:
  383. return SEQID_WRDI;
  384. case SPINOR_OP_RDSR:
  385. return SEQID_RDSR;
  386. case SPINOR_OP_SE:
  387. return SEQID_SE;
  388. case SPINOR_OP_CHIP_ERASE:
  389. return SEQID_CHIP_ERASE;
  390. case SPINOR_OP_PP:
  391. return SEQID_PP;
  392. case SPINOR_OP_RDID:
  393. return SEQID_RDID;
  394. case SPINOR_OP_WRSR:
  395. return SEQID_WRSR;
  396. case SPINOR_OP_RDCR:
  397. return SEQID_RDCR;
  398. case SPINOR_OP_EN4B:
  399. return SEQID_EN4B;
  400. case SPINOR_OP_BRWR:
  401. return SEQID_BRWR;
  402. default:
  403. if (cmd == q->nor[0].erase_opcode)
  404. return SEQID_SE;
  405. dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
  406. break;
  407. }
  408. return -EINVAL;
  409. }
  410. static int
  411. fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
  412. {
  413. void __iomem *base = q->iobase;
  414. int seqid;
  415. u32 reg, reg2;
  416. int err;
  417. init_completion(&q->c);
  418. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
  419. q->chip_base_addr, addr, len, cmd);
  420. /* save the reg */
  421. reg = readl(base + QUADSPI_MCR);
  422. writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
  423. writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
  424. base + QUADSPI_RBCT);
  425. writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
  426. do {
  427. reg2 = readl(base + QUADSPI_SR);
  428. if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
  429. udelay(1);
  430. dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
  431. continue;
  432. }
  433. break;
  434. } while (1);
  435. /* trigger the LUT now */
  436. seqid = fsl_qspi_get_seqid(q, cmd);
  437. writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
  438. /* Wait for the interrupt. */
  439. if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
  440. dev_err(q->dev,
  441. "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
  442. cmd, addr, readl(base + QUADSPI_FR),
  443. readl(base + QUADSPI_SR));
  444. err = -ETIMEDOUT;
  445. } else {
  446. err = 0;
  447. }
  448. /* restore the MCR */
  449. writel(reg, base + QUADSPI_MCR);
  450. return err;
  451. }
  452. /* Read out the data from the QUADSPI_RBDR buffer registers. */
  453. static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
  454. {
  455. u32 tmp;
  456. int i = 0;
  457. while (len > 0) {
  458. tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
  459. tmp = fsl_qspi_endian_xchg(q, tmp);
  460. dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
  461. q->chip_base_addr, tmp);
  462. if (len >= 4) {
  463. *((u32 *)rxbuf) = tmp;
  464. rxbuf += 4;
  465. } else {
  466. memcpy(rxbuf, &tmp, len);
  467. break;
  468. }
  469. len -= 4;
  470. i++;
  471. }
  472. }
  473. /*
  474. * If we have changed the content of the flash by writing or erasing,
  475. * we need to invalidate the AHB buffer. If we do not do so, we may read out
  476. * the wrong data. The spec tells us reset the AHB domain and Serial Flash
  477. * domain at the same time.
  478. */
  479. static inline void fsl_qspi_invalid(struct fsl_qspi *q)
  480. {
  481. u32 reg;
  482. reg = readl(q->iobase + QUADSPI_MCR);
  483. reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
  484. writel(reg, q->iobase + QUADSPI_MCR);
  485. /*
  486. * The minimum delay : 1 AHB + 2 SFCK clocks.
  487. * Delay 1 us is enough.
  488. */
  489. udelay(1);
  490. reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
  491. writel(reg, q->iobase + QUADSPI_MCR);
  492. }
  493. static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
  494. u8 opcode, unsigned int to, u32 *txbuf,
  495. unsigned count, size_t *retlen)
  496. {
  497. int ret, i, j;
  498. u32 tmp;
  499. dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
  500. q->chip_base_addr, to, count);
  501. /* clear the TX FIFO. */
  502. tmp = readl(q->iobase + QUADSPI_MCR);
  503. writel(tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
  504. /* fill the TX data to the FIFO */
  505. for (j = 0, i = ((count + 3) / 4); j < i; j++) {
  506. tmp = fsl_qspi_endian_xchg(q, *txbuf);
  507. writel(tmp, q->iobase + QUADSPI_TBDR);
  508. txbuf++;
  509. }
  510. /* fill the TXFIFO upto 16 bytes for i.MX7d */
  511. if (needs_fill_txfifo(q))
  512. for (; i < 4; i++)
  513. writel(tmp, q->iobase + QUADSPI_TBDR);
  514. /* Trigger it */
  515. ret = fsl_qspi_runcmd(q, opcode, to, count);
  516. if (ret == 0 && retlen)
  517. *retlen += count;
  518. return ret;
  519. }
  520. static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
  521. {
  522. int nor_size = q->nor_size;
  523. void __iomem *base = q->iobase;
  524. writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
  525. writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
  526. writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
  527. writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
  528. }
  529. /*
  530. * There are two different ways to read out the data from the flash:
  531. * the "IP Command Read" and the "AHB Command Read".
  532. *
  533. * The IC guy suggests we use the "AHB Command Read" which is faster
  534. * then the "IP Command Read". (What's more is that there is a bug in
  535. * the "IP Command Read" in the Vybrid.)
  536. *
  537. * After we set up the registers for the "AHB Command Read", we can use
  538. * the memcpy to read the data directly. A "missed" access to the buffer
  539. * causes the controller to clear the buffer, and use the sequence pointed
  540. * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
  541. */
  542. static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
  543. {
  544. void __iomem *base = q->iobase;
  545. int seqid;
  546. /* AHB configuration for access buffer 0/1/2 .*/
  547. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
  548. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
  549. writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
  550. /*
  551. * Set ADATSZ with the maximum AHB buffer size to improve the
  552. * read performance.
  553. */
  554. writel(QUADSPI_BUF3CR_ALLMST_MASK | ((q->devtype_data->ahb_buf_size / 8)
  555. << QUADSPI_BUF3CR_ADATSZ_SHIFT), base + QUADSPI_BUF3CR);
  556. /* We only use the buffer3 */
  557. writel(0, base + QUADSPI_BUF0IND);
  558. writel(0, base + QUADSPI_BUF1IND);
  559. writel(0, base + QUADSPI_BUF2IND);
  560. /* Set the default lut sequence for AHB Read. */
  561. seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
  562. writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
  563. q->iobase + QUADSPI_BFGENCR);
  564. }
  565. /* This function was used to prepare and enable QSPI clock */
  566. static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
  567. {
  568. int ret;
  569. ret = clk_prepare_enable(q->clk_en);
  570. if (ret)
  571. return ret;
  572. ret = clk_prepare_enable(q->clk);
  573. if (ret) {
  574. clk_disable_unprepare(q->clk_en);
  575. return ret;
  576. }
  577. if (needs_wakeup_wait_mode(q))
  578. pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
  579. return 0;
  580. }
  581. /* This function was used to disable and unprepare QSPI clock */
  582. static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
  583. {
  584. if (needs_wakeup_wait_mode(q))
  585. pm_qos_remove_request(&q->pm_qos_req);
  586. clk_disable_unprepare(q->clk);
  587. clk_disable_unprepare(q->clk_en);
  588. }
  589. /* We use this function to do some basic init for spi_nor_scan(). */
  590. static int fsl_qspi_nor_setup(struct fsl_qspi *q)
  591. {
  592. void __iomem *base = q->iobase;
  593. u32 reg;
  594. int ret;
  595. /* disable and unprepare clock to avoid glitch pass to controller */
  596. fsl_qspi_clk_disable_unprep(q);
  597. /* the default frequency, we will change it in the future. */
  598. ret = clk_set_rate(q->clk, 66000000);
  599. if (ret)
  600. return ret;
  601. ret = fsl_qspi_clk_prep_enable(q);
  602. if (ret)
  603. return ret;
  604. /* Reset the module */
  605. writel(QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
  606. base + QUADSPI_MCR);
  607. udelay(1);
  608. /* Init the LUT table. */
  609. fsl_qspi_init_lut(q);
  610. /* Disable the module */
  611. writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
  612. base + QUADSPI_MCR);
  613. reg = readl(base + QUADSPI_SMPR);
  614. writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
  615. | QUADSPI_SMPR_FSPHS_MASK
  616. | QUADSPI_SMPR_HSENA_MASK
  617. | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
  618. /* Enable the module */
  619. writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
  620. base + QUADSPI_MCR);
  621. /* clear all interrupt status */
  622. writel(0xffffffff, q->iobase + QUADSPI_FR);
  623. /* enable the interrupt */
  624. writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
  625. return 0;
  626. }
  627. static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
  628. {
  629. unsigned long rate = q->clk_rate;
  630. int ret;
  631. if (needs_4x_clock(q))
  632. rate *= 4;
  633. /* disable and unprepare clock to avoid glitch pass to controller */
  634. fsl_qspi_clk_disable_unprep(q);
  635. ret = clk_set_rate(q->clk, rate);
  636. if (ret)
  637. return ret;
  638. ret = fsl_qspi_clk_prep_enable(q);
  639. if (ret)
  640. return ret;
  641. /* Init the LUT table again. */
  642. fsl_qspi_init_lut(q);
  643. /* Init for AHB read */
  644. fsl_qspi_init_abh_read(q);
  645. return 0;
  646. }
  647. static const struct of_device_id fsl_qspi_dt_ids[] = {
  648. { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
  649. { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
  650. { .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
  651. { .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
  652. { /* sentinel */ }
  653. };
  654. MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
  655. static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
  656. {
  657. q->chip_base_addr = q->nor_size * (nor - q->nor);
  658. }
  659. static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
  660. {
  661. int ret;
  662. struct fsl_qspi *q = nor->priv;
  663. ret = fsl_qspi_runcmd(q, opcode, 0, len);
  664. if (ret)
  665. return ret;
  666. fsl_qspi_read_data(q, len, buf);
  667. return 0;
  668. }
  669. static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
  670. int write_enable)
  671. {
  672. struct fsl_qspi *q = nor->priv;
  673. int ret;
  674. if (!buf) {
  675. ret = fsl_qspi_runcmd(q, opcode, 0, 1);
  676. if (ret)
  677. return ret;
  678. if (opcode == SPINOR_OP_CHIP_ERASE)
  679. fsl_qspi_invalid(q);
  680. } else if (len > 0) {
  681. ret = fsl_qspi_nor_write(q, nor, opcode, 0,
  682. (u32 *)buf, len, NULL);
  683. } else {
  684. dev_err(q->dev, "invalid cmd %d\n", opcode);
  685. ret = -EINVAL;
  686. }
  687. return ret;
  688. }
  689. static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
  690. size_t len, size_t *retlen, const u_char *buf)
  691. {
  692. struct fsl_qspi *q = nor->priv;
  693. fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
  694. (u32 *)buf, len, retlen);
  695. /* invalid the data in the AHB buffer. */
  696. fsl_qspi_invalid(q);
  697. }
  698. static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
  699. size_t len, size_t *retlen, u_char *buf)
  700. {
  701. struct fsl_qspi *q = nor->priv;
  702. u8 cmd = nor->read_opcode;
  703. /* if necessary,ioremap buffer before AHB read, */
  704. if (!q->ahb_addr) {
  705. q->memmap_offs = q->chip_base_addr + from;
  706. q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
  707. q->ahb_addr = ioremap_nocache(
  708. q->memmap_phy + q->memmap_offs,
  709. q->memmap_len);
  710. if (!q->ahb_addr) {
  711. dev_err(q->dev, "ioremap failed\n");
  712. return -ENOMEM;
  713. }
  714. /* ioremap if the data requested is out of range */
  715. } else if (q->chip_base_addr + from < q->memmap_offs
  716. || q->chip_base_addr + from + len >
  717. q->memmap_offs + q->memmap_len) {
  718. iounmap(q->ahb_addr);
  719. q->memmap_offs = q->chip_base_addr + from;
  720. q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
  721. q->ahb_addr = ioremap_nocache(
  722. q->memmap_phy + q->memmap_offs,
  723. q->memmap_len);
  724. if (!q->ahb_addr) {
  725. dev_err(q->dev, "ioremap failed\n");
  726. return -ENOMEM;
  727. }
  728. }
  729. dev_dbg(q->dev, "cmd [%x],read from 0x%p, len:%d\n",
  730. cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
  731. len);
  732. /* Read out the data directly from the AHB buffer.*/
  733. memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
  734. len);
  735. *retlen += len;
  736. return 0;
  737. }
  738. static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
  739. {
  740. struct fsl_qspi *q = nor->priv;
  741. int ret;
  742. dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
  743. nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
  744. ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
  745. if (ret)
  746. return ret;
  747. fsl_qspi_invalid(q);
  748. return 0;
  749. }
  750. static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  751. {
  752. struct fsl_qspi *q = nor->priv;
  753. int ret;
  754. mutex_lock(&q->lock);
  755. ret = fsl_qspi_clk_prep_enable(q);
  756. if (ret)
  757. goto err_mutex;
  758. fsl_qspi_set_base_addr(q, nor);
  759. return 0;
  760. err_mutex:
  761. mutex_unlock(&q->lock);
  762. return ret;
  763. }
  764. static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  765. {
  766. struct fsl_qspi *q = nor->priv;
  767. fsl_qspi_clk_disable_unprep(q);
  768. mutex_unlock(&q->lock);
  769. }
  770. static int fsl_qspi_probe(struct platform_device *pdev)
  771. {
  772. struct device_node *np = pdev->dev.of_node;
  773. struct mtd_part_parser_data ppdata;
  774. struct device *dev = &pdev->dev;
  775. struct fsl_qspi *q;
  776. struct resource *res;
  777. struct spi_nor *nor;
  778. struct mtd_info *mtd;
  779. int ret, i = 0;
  780. const struct of_device_id *of_id =
  781. of_match_device(fsl_qspi_dt_ids, &pdev->dev);
  782. q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
  783. if (!q)
  784. return -ENOMEM;
  785. q->nor_num = of_get_child_count(dev->of_node);
  786. if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
  787. return -ENODEV;
  788. q->dev = dev;
  789. q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
  790. platform_set_drvdata(pdev, q);
  791. /* find the resources */
  792. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
  793. q->iobase = devm_ioremap_resource(dev, res);
  794. if (IS_ERR(q->iobase))
  795. return PTR_ERR(q->iobase);
  796. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  797. "QuadSPI-memory");
  798. if (!devm_request_mem_region(dev, res->start, resource_size(res),
  799. res->name)) {
  800. dev_err(dev, "can't request region for resource %pR\n", res);
  801. return -EBUSY;
  802. }
  803. q->memmap_phy = res->start;
  804. /* find the clocks */
  805. q->clk_en = devm_clk_get(dev, "qspi_en");
  806. if (IS_ERR(q->clk_en))
  807. return PTR_ERR(q->clk_en);
  808. q->clk = devm_clk_get(dev, "qspi");
  809. if (IS_ERR(q->clk))
  810. return PTR_ERR(q->clk);
  811. ret = fsl_qspi_clk_prep_enable(q);
  812. if (ret) {
  813. dev_err(dev, "can not enable the clock\n");
  814. goto clk_failed;
  815. }
  816. /* find the irq */
  817. ret = platform_get_irq(pdev, 0);
  818. if (ret < 0) {
  819. dev_err(dev, "failed to get the irq: %d\n", ret);
  820. goto irq_failed;
  821. }
  822. ret = devm_request_irq(dev, ret,
  823. fsl_qspi_irq_handler, 0, pdev->name, q);
  824. if (ret) {
  825. dev_err(dev, "failed to request irq: %d\n", ret);
  826. goto irq_failed;
  827. }
  828. ret = fsl_qspi_nor_setup(q);
  829. if (ret)
  830. goto irq_failed;
  831. if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
  832. q->has_second_chip = true;
  833. mutex_init(&q->lock);
  834. /* iterate the subnodes. */
  835. for_each_available_child_of_node(dev->of_node, np) {
  836. char modalias[40];
  837. /* skip the holes */
  838. if (!q->has_second_chip)
  839. i *= 2;
  840. nor = &q->nor[i];
  841. mtd = &q->mtd[i];
  842. nor->mtd = mtd;
  843. nor->dev = dev;
  844. nor->priv = q;
  845. mtd->priv = nor;
  846. /* fill the hooks */
  847. nor->read_reg = fsl_qspi_read_reg;
  848. nor->write_reg = fsl_qspi_write_reg;
  849. nor->read = fsl_qspi_read;
  850. nor->write = fsl_qspi_write;
  851. nor->erase = fsl_qspi_erase;
  852. nor->prepare = fsl_qspi_prep;
  853. nor->unprepare = fsl_qspi_unprep;
  854. ret = of_modalias_node(np, modalias, sizeof(modalias));
  855. if (ret < 0)
  856. goto mutex_failed;
  857. ret = of_property_read_u32(np, "spi-max-frequency",
  858. &q->clk_rate);
  859. if (ret < 0)
  860. goto mutex_failed;
  861. /* set the chip address for READID */
  862. fsl_qspi_set_base_addr(q, nor);
  863. ret = spi_nor_scan(nor, modalias, SPI_NOR_QUAD);
  864. if (ret)
  865. goto mutex_failed;
  866. ppdata.of_node = np;
  867. ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
  868. if (ret)
  869. goto mutex_failed;
  870. /* Set the correct NOR size now. */
  871. if (q->nor_size == 0) {
  872. q->nor_size = mtd->size;
  873. /* Map the SPI NOR to accessiable address */
  874. fsl_qspi_set_map_addr(q);
  875. }
  876. /*
  877. * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
  878. * may writes 265 bytes per time. The write is working in the
  879. * unit of the TX FIFO, not in the unit of the SPI NOR's page
  880. * size.
  881. *
  882. * So shrink the spi_nor->page_size if it is larger then the
  883. * TX FIFO.
  884. */
  885. if (nor->page_size > q->devtype_data->txfifo)
  886. nor->page_size = q->devtype_data->txfifo;
  887. i++;
  888. }
  889. /* finish the rest init. */
  890. ret = fsl_qspi_nor_setup_last(q);
  891. if (ret)
  892. goto last_init_failed;
  893. fsl_qspi_clk_disable_unprep(q);
  894. return 0;
  895. last_init_failed:
  896. for (i = 0; i < q->nor_num; i++) {
  897. /* skip the holes */
  898. if (!q->has_second_chip)
  899. i *= 2;
  900. mtd_device_unregister(&q->mtd[i]);
  901. }
  902. mutex_failed:
  903. mutex_destroy(&q->lock);
  904. irq_failed:
  905. fsl_qspi_clk_disable_unprep(q);
  906. clk_failed:
  907. dev_err(dev, "Freescale QuadSPI probe failed\n");
  908. return ret;
  909. }
  910. static int fsl_qspi_remove(struct platform_device *pdev)
  911. {
  912. struct fsl_qspi *q = platform_get_drvdata(pdev);
  913. int i;
  914. for (i = 0; i < q->nor_num; i++) {
  915. /* skip the holes */
  916. if (!q->has_second_chip)
  917. i *= 2;
  918. mtd_device_unregister(&q->mtd[i]);
  919. }
  920. /* disable the hardware */
  921. writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
  922. writel(0x0, q->iobase + QUADSPI_RSER);
  923. mutex_destroy(&q->lock);
  924. if (q->ahb_addr)
  925. iounmap(q->ahb_addr);
  926. return 0;
  927. }
  928. static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
  929. {
  930. return 0;
  931. }
  932. static int fsl_qspi_resume(struct platform_device *pdev)
  933. {
  934. int ret;
  935. struct fsl_qspi *q = platform_get_drvdata(pdev);
  936. ret = fsl_qspi_clk_prep_enable(q);
  937. if (ret)
  938. return ret;
  939. fsl_qspi_nor_setup(q);
  940. fsl_qspi_set_map_addr(q);
  941. fsl_qspi_nor_setup_last(q);
  942. fsl_qspi_clk_disable_unprep(q);
  943. return 0;
  944. }
  945. static struct platform_driver fsl_qspi_driver = {
  946. .driver = {
  947. .name = "fsl-quadspi",
  948. .bus = &platform_bus_type,
  949. .of_match_table = fsl_qspi_dt_ids,
  950. },
  951. .probe = fsl_qspi_probe,
  952. .remove = fsl_qspi_remove,
  953. .suspend = fsl_qspi_suspend,
  954. .resume = fsl_qspi_resume,
  955. };
  956. module_platform_driver(fsl_qspi_driver);
  957. MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
  958. MODULE_AUTHOR("Freescale Semiconductor Inc.");
  959. MODULE_LICENSE("GPL v2");