pci_dma.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518
  1. /*
  2. * Copyright IBM Corp. 2012
  3. *
  4. * Author(s):
  5. * Jan Glauber <jang@linux.vnet.ibm.com>
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/export.h>
  10. #include <linux/iommu-helper.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/pci.h>
  14. #include <asm/pci_dma.h>
  15. static struct kmem_cache *dma_region_table_cache;
  16. static struct kmem_cache *dma_page_table_cache;
  17. static int s390_iommu_strict;
  18. static int zpci_refresh_global(struct zpci_dev *zdev)
  19. {
  20. return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma,
  21. zdev->iommu_pages * PAGE_SIZE);
  22. }
  23. static unsigned long *dma_alloc_cpu_table(void)
  24. {
  25. unsigned long *table, *entry;
  26. table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC);
  27. if (!table)
  28. return NULL;
  29. for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++)
  30. *entry = ZPCI_TABLE_INVALID | ZPCI_TABLE_PROTECTED;
  31. return table;
  32. }
  33. static void dma_free_cpu_table(void *table)
  34. {
  35. kmem_cache_free(dma_region_table_cache, table);
  36. }
  37. static unsigned long *dma_alloc_page_table(void)
  38. {
  39. unsigned long *table, *entry;
  40. table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC);
  41. if (!table)
  42. return NULL;
  43. for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++)
  44. *entry = ZPCI_PTE_INVALID | ZPCI_TABLE_PROTECTED;
  45. return table;
  46. }
  47. static void dma_free_page_table(void *table)
  48. {
  49. kmem_cache_free(dma_page_table_cache, table);
  50. }
  51. static unsigned long *dma_get_seg_table_origin(unsigned long *entry)
  52. {
  53. unsigned long *sto;
  54. if (reg_entry_isvalid(*entry))
  55. sto = get_rt_sto(*entry);
  56. else {
  57. sto = dma_alloc_cpu_table();
  58. if (!sto)
  59. return NULL;
  60. set_rt_sto(entry, sto);
  61. validate_rt_entry(entry);
  62. entry_clr_protected(entry);
  63. }
  64. return sto;
  65. }
  66. static unsigned long *dma_get_page_table_origin(unsigned long *entry)
  67. {
  68. unsigned long *pto;
  69. if (reg_entry_isvalid(*entry))
  70. pto = get_st_pto(*entry);
  71. else {
  72. pto = dma_alloc_page_table();
  73. if (!pto)
  74. return NULL;
  75. set_st_pto(entry, pto);
  76. validate_st_entry(entry);
  77. entry_clr_protected(entry);
  78. }
  79. return pto;
  80. }
  81. static unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr)
  82. {
  83. unsigned long *sto, *pto;
  84. unsigned int rtx, sx, px;
  85. rtx = calc_rtx(dma_addr);
  86. sto = dma_get_seg_table_origin(&rto[rtx]);
  87. if (!sto)
  88. return NULL;
  89. sx = calc_sx(dma_addr);
  90. pto = dma_get_page_table_origin(&sto[sx]);
  91. if (!pto)
  92. return NULL;
  93. px = calc_px(dma_addr);
  94. return &pto[px];
  95. }
  96. static void dma_update_cpu_trans(struct zpci_dev *zdev, void *page_addr,
  97. dma_addr_t dma_addr, int flags)
  98. {
  99. unsigned long *entry;
  100. entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr);
  101. if (!entry) {
  102. WARN_ON_ONCE(1);
  103. return;
  104. }
  105. if (flags & ZPCI_PTE_INVALID) {
  106. invalidate_pt_entry(entry);
  107. return;
  108. } else {
  109. set_pt_pfaa(entry, page_addr);
  110. validate_pt_entry(entry);
  111. }
  112. if (flags & ZPCI_TABLE_PROTECTED)
  113. entry_set_protected(entry);
  114. else
  115. entry_clr_protected(entry);
  116. }
  117. static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa,
  118. dma_addr_t dma_addr, size_t size, int flags)
  119. {
  120. unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  121. u8 *page_addr = (u8 *) (pa & PAGE_MASK);
  122. dma_addr_t start_dma_addr = dma_addr;
  123. unsigned long irq_flags;
  124. int i, rc = 0;
  125. if (!nr_pages)
  126. return -EINVAL;
  127. spin_lock_irqsave(&zdev->dma_table_lock, irq_flags);
  128. if (!zdev->dma_table)
  129. goto no_refresh;
  130. for (i = 0; i < nr_pages; i++) {
  131. dma_update_cpu_trans(zdev, page_addr, dma_addr, flags);
  132. page_addr += PAGE_SIZE;
  133. dma_addr += PAGE_SIZE;
  134. }
  135. /*
  136. * With zdev->tlb_refresh == 0, rpcit is not required to establish new
  137. * translations when previously invalid translation-table entries are
  138. * validated. With lazy unmap, it also is skipped for previously valid
  139. * entries, but a global rpcit is then required before any address can
  140. * be re-used, i.e. after each iommu bitmap wrap-around.
  141. */
  142. if (!zdev->tlb_refresh &&
  143. (!s390_iommu_strict ||
  144. ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)))
  145. goto no_refresh;
  146. rc = zpci_refresh_trans((u64) zdev->fh << 32, start_dma_addr,
  147. nr_pages * PAGE_SIZE);
  148. no_refresh:
  149. spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags);
  150. return rc;
  151. }
  152. static void dma_free_seg_table(unsigned long entry)
  153. {
  154. unsigned long *sto = get_rt_sto(entry);
  155. int sx;
  156. for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++)
  157. if (reg_entry_isvalid(sto[sx]))
  158. dma_free_page_table(get_st_pto(sto[sx]));
  159. dma_free_cpu_table(sto);
  160. }
  161. static void dma_cleanup_tables(struct zpci_dev *zdev)
  162. {
  163. unsigned long *table;
  164. int rtx;
  165. if (!zdev || !zdev->dma_table)
  166. return;
  167. table = zdev->dma_table;
  168. for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++)
  169. if (reg_entry_isvalid(table[rtx]))
  170. dma_free_seg_table(table[rtx]);
  171. dma_free_cpu_table(table);
  172. zdev->dma_table = NULL;
  173. }
  174. static unsigned long __dma_alloc_iommu(struct zpci_dev *zdev,
  175. unsigned long start, int size)
  176. {
  177. unsigned long boundary_size;
  178. boundary_size = ALIGN(dma_get_seg_boundary(&zdev->pdev->dev) + 1,
  179. PAGE_SIZE) >> PAGE_SHIFT;
  180. return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages,
  181. start, size, 0, boundary_size, 0);
  182. }
  183. static unsigned long dma_alloc_iommu(struct zpci_dev *zdev, int size)
  184. {
  185. unsigned long offset, flags;
  186. int wrap = 0;
  187. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  188. offset = __dma_alloc_iommu(zdev, zdev->next_bit, size);
  189. if (offset == -1) {
  190. /* wrap-around */
  191. offset = __dma_alloc_iommu(zdev, 0, size);
  192. wrap = 1;
  193. }
  194. if (offset != -1) {
  195. zdev->next_bit = offset + size;
  196. if (!zdev->tlb_refresh && !s390_iommu_strict && wrap)
  197. /* global flush after wrap-around with lazy unmap */
  198. zpci_refresh_global(zdev);
  199. }
  200. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  201. return offset;
  202. }
  203. static void dma_free_iommu(struct zpci_dev *zdev, unsigned long offset, int size)
  204. {
  205. unsigned long flags;
  206. spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags);
  207. if (!zdev->iommu_bitmap)
  208. goto out;
  209. bitmap_clear(zdev->iommu_bitmap, offset, size);
  210. /*
  211. * Lazy flush for unmap: need to move next_bit to avoid address re-use
  212. * until wrap-around.
  213. */
  214. if (!s390_iommu_strict && offset >= zdev->next_bit)
  215. zdev->next_bit = offset + size;
  216. out:
  217. spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags);
  218. }
  219. static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page,
  220. unsigned long offset, size_t size,
  221. enum dma_data_direction direction,
  222. struct dma_attrs *attrs)
  223. {
  224. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  225. unsigned long nr_pages, iommu_page_index;
  226. unsigned long pa = page_to_phys(page) + offset;
  227. int flags = ZPCI_PTE_VALID;
  228. dma_addr_t dma_addr;
  229. /* This rounds up number of pages based on size and offset */
  230. nr_pages = iommu_num_pages(pa, size, PAGE_SIZE);
  231. iommu_page_index = dma_alloc_iommu(zdev, nr_pages);
  232. if (iommu_page_index == -1)
  233. goto out_err;
  234. /* Use rounded up size */
  235. size = nr_pages * PAGE_SIZE;
  236. dma_addr = zdev->start_dma + iommu_page_index * PAGE_SIZE;
  237. if (dma_addr + size > zdev->end_dma)
  238. goto out_free;
  239. if (direction == DMA_NONE || direction == DMA_TO_DEVICE)
  240. flags |= ZPCI_TABLE_PROTECTED;
  241. if (!dma_update_trans(zdev, pa, dma_addr, size, flags)) {
  242. atomic64_add(nr_pages, &zdev->mapped_pages);
  243. return dma_addr + (offset & ~PAGE_MASK);
  244. }
  245. out_free:
  246. dma_free_iommu(zdev, iommu_page_index, nr_pages);
  247. out_err:
  248. zpci_err("map error:\n");
  249. zpci_err_hex(&pa, sizeof(pa));
  250. return DMA_ERROR_CODE;
  251. }
  252. static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr,
  253. size_t size, enum dma_data_direction direction,
  254. struct dma_attrs *attrs)
  255. {
  256. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  257. unsigned long iommu_page_index;
  258. int npages;
  259. npages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  260. dma_addr = dma_addr & PAGE_MASK;
  261. if (dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE,
  262. ZPCI_TABLE_PROTECTED | ZPCI_PTE_INVALID)) {
  263. zpci_err("unmap error:\n");
  264. zpci_err_hex(&dma_addr, sizeof(dma_addr));
  265. }
  266. atomic64_add(npages, &zdev->unmapped_pages);
  267. iommu_page_index = (dma_addr - zdev->start_dma) >> PAGE_SHIFT;
  268. dma_free_iommu(zdev, iommu_page_index, npages);
  269. }
  270. static void *s390_dma_alloc(struct device *dev, size_t size,
  271. dma_addr_t *dma_handle, gfp_t flag,
  272. struct dma_attrs *attrs)
  273. {
  274. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  275. struct page *page;
  276. unsigned long pa;
  277. dma_addr_t map;
  278. size = PAGE_ALIGN(size);
  279. page = alloc_pages(flag, get_order(size));
  280. if (!page)
  281. return NULL;
  282. pa = page_to_phys(page);
  283. memset((void *) pa, 0, size);
  284. map = s390_dma_map_pages(dev, page, pa % PAGE_SIZE,
  285. size, DMA_BIDIRECTIONAL, NULL);
  286. if (dma_mapping_error(dev, map)) {
  287. free_pages(pa, get_order(size));
  288. return NULL;
  289. }
  290. atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages);
  291. if (dma_handle)
  292. *dma_handle = map;
  293. return (void *) pa;
  294. }
  295. static void s390_dma_free(struct device *dev, size_t size,
  296. void *pa, dma_addr_t dma_handle,
  297. struct dma_attrs *attrs)
  298. {
  299. struct zpci_dev *zdev = to_zpci(to_pci_dev(dev));
  300. size = PAGE_ALIGN(size);
  301. atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages);
  302. s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
  303. free_pages((unsigned long) pa, get_order(size));
  304. }
  305. static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg,
  306. int nr_elements, enum dma_data_direction dir,
  307. struct dma_attrs *attrs)
  308. {
  309. int mapped_elements = 0;
  310. struct scatterlist *s;
  311. int i;
  312. for_each_sg(sg, s, nr_elements, i) {
  313. struct page *page = sg_page(s);
  314. s->dma_address = s390_dma_map_pages(dev, page, s->offset,
  315. s->length, dir, NULL);
  316. if (!dma_mapping_error(dev, s->dma_address)) {
  317. s->dma_length = s->length;
  318. mapped_elements++;
  319. } else
  320. goto unmap;
  321. }
  322. out:
  323. return mapped_elements;
  324. unmap:
  325. for_each_sg(sg, s, mapped_elements, i) {
  326. if (s->dma_address)
  327. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length,
  328. dir, NULL);
  329. s->dma_address = 0;
  330. s->dma_length = 0;
  331. }
  332. mapped_elements = 0;
  333. goto out;
  334. }
  335. static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  336. int nr_elements, enum dma_data_direction dir,
  337. struct dma_attrs *attrs)
  338. {
  339. struct scatterlist *s;
  340. int i;
  341. for_each_sg(sg, s, nr_elements, i) {
  342. s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, NULL);
  343. s->dma_address = 0;
  344. s->dma_length = 0;
  345. }
  346. }
  347. int zpci_dma_init_device(struct zpci_dev *zdev)
  348. {
  349. int rc;
  350. spin_lock_init(&zdev->iommu_bitmap_lock);
  351. spin_lock_init(&zdev->dma_table_lock);
  352. zdev->dma_table = dma_alloc_cpu_table();
  353. if (!zdev->dma_table) {
  354. rc = -ENOMEM;
  355. goto out_clean;
  356. }
  357. zdev->iommu_size = (unsigned long) high_memory - PAGE_OFFSET;
  358. zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT;
  359. zdev->iommu_bitmap = vzalloc(zdev->iommu_pages / 8);
  360. if (!zdev->iommu_bitmap) {
  361. rc = -ENOMEM;
  362. goto out_reg;
  363. }
  364. rc = zpci_register_ioat(zdev,
  365. 0,
  366. zdev->start_dma + PAGE_OFFSET,
  367. zdev->start_dma + zdev->iommu_size - 1,
  368. (u64) zdev->dma_table);
  369. if (rc)
  370. goto out_reg;
  371. return 0;
  372. out_reg:
  373. dma_free_cpu_table(zdev->dma_table);
  374. out_clean:
  375. return rc;
  376. }
  377. void zpci_dma_exit_device(struct zpci_dev *zdev)
  378. {
  379. zpci_unregister_ioat(zdev, 0);
  380. dma_cleanup_tables(zdev);
  381. vfree(zdev->iommu_bitmap);
  382. zdev->iommu_bitmap = NULL;
  383. zdev->next_bit = 0;
  384. }
  385. static int __init dma_alloc_cpu_table_caches(void)
  386. {
  387. dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables",
  388. ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN,
  389. 0, NULL);
  390. if (!dma_region_table_cache)
  391. return -ENOMEM;
  392. dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables",
  393. ZPCI_PT_SIZE, ZPCI_PT_ALIGN,
  394. 0, NULL);
  395. if (!dma_page_table_cache) {
  396. kmem_cache_destroy(dma_region_table_cache);
  397. return -ENOMEM;
  398. }
  399. return 0;
  400. }
  401. int __init zpci_dma_init(void)
  402. {
  403. return dma_alloc_cpu_table_caches();
  404. }
  405. void zpci_dma_exit(void)
  406. {
  407. kmem_cache_destroy(dma_page_table_cache);
  408. kmem_cache_destroy(dma_region_table_cache);
  409. }
  410. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  411. static int __init dma_debug_do_init(void)
  412. {
  413. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  414. return 0;
  415. }
  416. fs_initcall(dma_debug_do_init);
  417. struct dma_map_ops s390_dma_ops = {
  418. .alloc = s390_dma_alloc,
  419. .free = s390_dma_free,
  420. .map_sg = s390_dma_map_sg,
  421. .unmap_sg = s390_dma_unmap_sg,
  422. .map_page = s390_dma_map_pages,
  423. .unmap_page = s390_dma_unmap_pages,
  424. /* if we support direct DMA this must be conditional */
  425. .is_phys = 0,
  426. /* dma_supported is unconditionally true without a callback */
  427. };
  428. EXPORT_SYMBOL_GPL(s390_dma_ops);
  429. static int __init s390_iommu_setup(char *str)
  430. {
  431. if (!strncmp(str, "strict", 6))
  432. s390_iommu_strict = 1;
  433. return 0;
  434. }
  435. __setup("s390_iommu=", s390_iommu_setup);