interrupt.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define IOINT_SCHID_MASK 0x0000ffff
  29. #define IOINT_SSID_MASK 0x00030000
  30. #define IOINT_CSSID_MASK 0x03fc0000
  31. #define PFAULT_INIT 0x0600
  32. #define PFAULT_DONE 0x0680
  33. #define VIRTIO_PARAM 0x0d00
  34. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  35. {
  36. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  37. }
  38. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  39. {
  40. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  41. }
  42. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  43. {
  44. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  45. }
  46. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  47. {
  48. if ((vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) ||
  49. (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO) ||
  50. (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT))
  51. return 0;
  52. return 1;
  53. }
  54. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  55. {
  56. if (psw_extint_disabled(vcpu) ||
  57. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  58. return 0;
  59. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  60. /* No timer interrupts when single stepping */
  61. return 0;
  62. return 1;
  63. }
  64. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  65. {
  66. preempt_disable();
  67. if (!(vcpu->arch.sie_block->ckc <
  68. get_tod_clock_fast() + vcpu->arch.sie_block->epoch)) {
  69. preempt_enable();
  70. return 0;
  71. }
  72. preempt_enable();
  73. return ckc_interrupts_enabled(vcpu);
  74. }
  75. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  76. {
  77. return !psw_extint_disabled(vcpu) &&
  78. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  79. }
  80. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  81. {
  82. return (vcpu->arch.sie_block->cputm >> 63) &&
  83. cpu_timer_interrupts_enabled(vcpu);
  84. }
  85. static inline int is_ioirq(unsigned long irq_type)
  86. {
  87. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  88. (irq_type <= IRQ_PEND_IO_ISC_7));
  89. }
  90. static uint64_t isc_to_isc_bits(int isc)
  91. {
  92. return (0x80 >> isc) << 24;
  93. }
  94. static inline u8 int_word_to_isc(u32 int_word)
  95. {
  96. return (int_word & 0x38000000) >> 27;
  97. }
  98. static inline unsigned long pending_floating_irqs(struct kvm_vcpu *vcpu)
  99. {
  100. return vcpu->kvm->arch.float_int.pending_irqs;
  101. }
  102. static inline unsigned long pending_local_irqs(struct kvm_vcpu *vcpu)
  103. {
  104. return vcpu->arch.local_int.pending_irqs;
  105. }
  106. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  107. unsigned long active_mask)
  108. {
  109. int i;
  110. for (i = 0; i <= MAX_ISC; i++)
  111. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  112. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  113. return active_mask;
  114. }
  115. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  116. {
  117. unsigned long active_mask;
  118. active_mask = pending_local_irqs(vcpu);
  119. active_mask |= pending_floating_irqs(vcpu);
  120. if (!active_mask)
  121. return 0;
  122. if (psw_extint_disabled(vcpu))
  123. active_mask &= ~IRQ_PEND_EXT_MASK;
  124. if (psw_ioint_disabled(vcpu))
  125. active_mask &= ~IRQ_PEND_IO_MASK;
  126. else
  127. active_mask = disable_iscs(vcpu, active_mask);
  128. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  129. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  130. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  131. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  132. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  133. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  134. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  135. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  136. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  137. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  138. if (psw_mchk_disabled(vcpu))
  139. active_mask &= ~IRQ_PEND_MCHK_MASK;
  140. if (!(vcpu->arch.sie_block->gcr[14] &
  141. vcpu->kvm->arch.float_int.mchk.cr14))
  142. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  143. /*
  144. * STOP irqs will never be actively delivered. They are triggered via
  145. * intercept requests and cleared when the stop intercept is performed.
  146. */
  147. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  148. return active_mask;
  149. }
  150. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  151. {
  152. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  153. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  154. }
  155. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  156. {
  157. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  158. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  159. }
  160. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  161. {
  162. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  163. &vcpu->arch.sie_block->cpuflags);
  164. vcpu->arch.sie_block->lctl = 0x0000;
  165. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  166. if (guestdbg_enabled(vcpu)) {
  167. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  168. LCTL_CR10 | LCTL_CR11);
  169. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  170. }
  171. }
  172. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  173. {
  174. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  175. }
  176. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  177. {
  178. if (!(pending_floating_irqs(vcpu) & IRQ_PEND_IO_MASK))
  179. return;
  180. else if (psw_ioint_disabled(vcpu))
  181. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  182. else
  183. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  184. }
  185. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  186. {
  187. if (!(pending_local_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  188. return;
  189. if (psw_extint_disabled(vcpu))
  190. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  191. else
  192. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  193. }
  194. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  195. {
  196. if (!(pending_local_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  197. return;
  198. if (psw_mchk_disabled(vcpu))
  199. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  200. else
  201. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  202. }
  203. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  204. {
  205. if (kvm_s390_is_stop_irq_pending(vcpu))
  206. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  207. }
  208. /* Set interception request for non-deliverable interrupts */
  209. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  210. {
  211. set_intercept_indicators_io(vcpu);
  212. set_intercept_indicators_ext(vcpu);
  213. set_intercept_indicators_mchk(vcpu);
  214. set_intercept_indicators_stop(vcpu);
  215. }
  216. static u16 get_ilc(struct kvm_vcpu *vcpu)
  217. {
  218. switch (vcpu->arch.sie_block->icptcode) {
  219. case ICPT_INST:
  220. case ICPT_INSTPROGI:
  221. case ICPT_OPEREXC:
  222. case ICPT_PARTEXEC:
  223. case ICPT_IOINST:
  224. /* last instruction only stored for these icptcodes */
  225. return insn_length(vcpu->arch.sie_block->ipa >> 8);
  226. case ICPT_PROGI:
  227. return vcpu->arch.sie_block->pgmilc;
  228. default:
  229. return 0;
  230. }
  231. }
  232. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  233. {
  234. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  235. int rc;
  236. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  237. 0, 0);
  238. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  239. (u16 *)__LC_EXT_INT_CODE);
  240. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  241. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  242. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  243. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  244. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  245. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  246. return rc ? -EFAULT : 0;
  247. }
  248. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  249. {
  250. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  251. int rc;
  252. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  253. 0, 0);
  254. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  255. (u16 __user *)__LC_EXT_INT_CODE);
  256. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  257. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  258. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  259. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  260. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  261. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  262. return rc ? -EFAULT : 0;
  263. }
  264. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  265. {
  266. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  267. struct kvm_s390_ext_info ext;
  268. int rc;
  269. spin_lock(&li->lock);
  270. ext = li->irq.ext;
  271. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  272. li->irq.ext.ext_params2 = 0;
  273. spin_unlock(&li->lock);
  274. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  275. ext.ext_params2);
  276. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  277. KVM_S390_INT_PFAULT_INIT,
  278. 0, ext.ext_params2);
  279. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  280. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  281. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  282. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  283. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  284. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  285. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  286. return rc ? -EFAULT : 0;
  287. }
  288. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  289. {
  290. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  291. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  292. struct kvm_s390_mchk_info mchk = {};
  293. unsigned long adtl_status_addr;
  294. int deliver = 0;
  295. int rc = 0;
  296. spin_lock(&fi->lock);
  297. spin_lock(&li->lock);
  298. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  299. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  300. /*
  301. * If there was an exigent machine check pending, then any
  302. * repressible machine checks that might have been pending
  303. * are indicated along with it, so always clear bits for
  304. * repressible and exigent interrupts
  305. */
  306. mchk = li->irq.mchk;
  307. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  308. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  309. memset(&li->irq.mchk, 0, sizeof(mchk));
  310. deliver = 1;
  311. }
  312. /*
  313. * We indicate floating repressible conditions along with
  314. * other pending conditions. Channel Report Pending and Channel
  315. * Subsystem damage are the only two and and are indicated by
  316. * bits in mcic and masked in cr14.
  317. */
  318. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  319. mchk.mcic |= fi->mchk.mcic;
  320. mchk.cr14 |= fi->mchk.cr14;
  321. memset(&fi->mchk, 0, sizeof(mchk));
  322. deliver = 1;
  323. }
  324. spin_unlock(&li->lock);
  325. spin_unlock(&fi->lock);
  326. if (deliver) {
  327. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  328. mchk.mcic);
  329. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  330. KVM_S390_MCHK,
  331. mchk.cr14, mchk.mcic);
  332. rc = kvm_s390_vcpu_store_status(vcpu,
  333. KVM_S390_STORE_STATUS_PREFIXED);
  334. rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
  335. &adtl_status_addr,
  336. sizeof(unsigned long));
  337. rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
  338. adtl_status_addr);
  339. rc |= put_guest_lc(vcpu, mchk.mcic,
  340. (u64 __user *) __LC_MCCK_CODE);
  341. rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
  342. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  343. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
  344. &mchk.fixed_logout,
  345. sizeof(mchk.fixed_logout));
  346. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  347. &vcpu->arch.sie_block->gpsw,
  348. sizeof(psw_t));
  349. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  350. &vcpu->arch.sie_block->gpsw,
  351. sizeof(psw_t));
  352. }
  353. return rc ? -EFAULT : 0;
  354. }
  355. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  356. {
  357. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  358. int rc;
  359. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  360. vcpu->stat.deliver_restart_signal++;
  361. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  362. rc = write_guest_lc(vcpu,
  363. offsetof(struct _lowcore, restart_old_psw),
  364. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  365. rc |= read_guest_lc(vcpu, offsetof(struct _lowcore, restart_psw),
  366. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  367. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  368. return rc ? -EFAULT : 0;
  369. }
  370. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  371. {
  372. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  373. struct kvm_s390_prefix_info prefix;
  374. spin_lock(&li->lock);
  375. prefix = li->irq.prefix;
  376. li->irq.prefix.address = 0;
  377. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  378. spin_unlock(&li->lock);
  379. vcpu->stat.deliver_prefix_signal++;
  380. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  381. KVM_S390_SIGP_SET_PREFIX,
  382. prefix.address, 0);
  383. kvm_s390_set_prefix(vcpu, prefix.address);
  384. return 0;
  385. }
  386. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  387. {
  388. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  389. int rc;
  390. int cpu_addr;
  391. spin_lock(&li->lock);
  392. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  393. clear_bit(cpu_addr, li->sigp_emerg_pending);
  394. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  395. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  396. spin_unlock(&li->lock);
  397. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  398. vcpu->stat.deliver_emergency_signal++;
  399. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  400. cpu_addr, 0);
  401. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  402. (u16 *)__LC_EXT_INT_CODE);
  403. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  404. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  405. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  406. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  407. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  408. return rc ? -EFAULT : 0;
  409. }
  410. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  411. {
  412. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  413. struct kvm_s390_extcall_info extcall;
  414. int rc;
  415. spin_lock(&li->lock);
  416. extcall = li->irq.extcall;
  417. li->irq.extcall.code = 0;
  418. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  419. spin_unlock(&li->lock);
  420. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  421. vcpu->stat.deliver_external_call++;
  422. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  423. KVM_S390_INT_EXTERNAL_CALL,
  424. extcall.code, 0);
  425. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  426. (u16 *)__LC_EXT_INT_CODE);
  427. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  428. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  429. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  430. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  431. sizeof(psw_t));
  432. return rc ? -EFAULT : 0;
  433. }
  434. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  435. {
  436. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  437. struct kvm_s390_pgm_info pgm_info;
  438. int rc = 0, nullifying = false;
  439. u16 ilc = get_ilc(vcpu);
  440. spin_lock(&li->lock);
  441. pgm_info = li->irq.pgm;
  442. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  443. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  444. spin_unlock(&li->lock);
  445. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilc:%d",
  446. pgm_info.code, ilc);
  447. vcpu->stat.deliver_program_int++;
  448. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  449. pgm_info.code, 0);
  450. switch (pgm_info.code & ~PGM_PER) {
  451. case PGM_AFX_TRANSLATION:
  452. case PGM_ASX_TRANSLATION:
  453. case PGM_EX_TRANSLATION:
  454. case PGM_LFX_TRANSLATION:
  455. case PGM_LSTE_SEQUENCE:
  456. case PGM_LSX_TRANSLATION:
  457. case PGM_LX_TRANSLATION:
  458. case PGM_PRIMARY_AUTHORITY:
  459. case PGM_SECONDARY_AUTHORITY:
  460. nullifying = true;
  461. /* fall through */
  462. case PGM_SPACE_SWITCH:
  463. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  464. (u64 *)__LC_TRANS_EXC_CODE);
  465. break;
  466. case PGM_ALEN_TRANSLATION:
  467. case PGM_ALE_SEQUENCE:
  468. case PGM_ASTE_INSTANCE:
  469. case PGM_ASTE_SEQUENCE:
  470. case PGM_ASTE_VALIDITY:
  471. case PGM_EXTENDED_AUTHORITY:
  472. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  473. (u8 *)__LC_EXC_ACCESS_ID);
  474. nullifying = true;
  475. break;
  476. case PGM_ASCE_TYPE:
  477. case PGM_PAGE_TRANSLATION:
  478. case PGM_REGION_FIRST_TRANS:
  479. case PGM_REGION_SECOND_TRANS:
  480. case PGM_REGION_THIRD_TRANS:
  481. case PGM_SEGMENT_TRANSLATION:
  482. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  483. (u64 *)__LC_TRANS_EXC_CODE);
  484. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  485. (u8 *)__LC_EXC_ACCESS_ID);
  486. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  487. (u8 *)__LC_OP_ACCESS_ID);
  488. nullifying = true;
  489. break;
  490. case PGM_MONITOR:
  491. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  492. (u16 *)__LC_MON_CLASS_NR);
  493. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  494. (u64 *)__LC_MON_CODE);
  495. break;
  496. case PGM_VECTOR_PROCESSING:
  497. case PGM_DATA:
  498. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  499. (u32 *)__LC_DATA_EXC_CODE);
  500. break;
  501. case PGM_PROTECTION:
  502. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  503. (u64 *)__LC_TRANS_EXC_CODE);
  504. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  505. (u8 *)__LC_EXC_ACCESS_ID);
  506. break;
  507. case PGM_STACK_FULL:
  508. case PGM_STACK_EMPTY:
  509. case PGM_STACK_SPECIFICATION:
  510. case PGM_STACK_TYPE:
  511. case PGM_STACK_OPERATION:
  512. case PGM_TRACE_TABEL:
  513. case PGM_CRYPTO_OPERATION:
  514. nullifying = true;
  515. break;
  516. }
  517. if (pgm_info.code & PGM_PER) {
  518. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  519. (u8 *) __LC_PER_CODE);
  520. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  521. (u8 *)__LC_PER_ATMID);
  522. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  523. (u64 *) __LC_PER_ADDRESS);
  524. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  525. (u8 *) __LC_PER_ACCESS_ID);
  526. }
  527. if (nullifying && vcpu->arch.sie_block->icptcode == ICPT_INST)
  528. kvm_s390_rewind_psw(vcpu, ilc);
  529. rc |= put_guest_lc(vcpu, ilc, (u16 *) __LC_PGM_ILC);
  530. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  531. (u64 *) __LC_LAST_BREAK);
  532. rc |= put_guest_lc(vcpu, pgm_info.code,
  533. (u16 *)__LC_PGM_INT_CODE);
  534. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  535. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  536. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  537. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  538. return rc ? -EFAULT : 0;
  539. }
  540. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  541. {
  542. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  543. struct kvm_s390_ext_info ext;
  544. int rc = 0;
  545. spin_lock(&fi->lock);
  546. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  547. spin_unlock(&fi->lock);
  548. return 0;
  549. }
  550. ext = fi->srv_signal;
  551. memset(&fi->srv_signal, 0, sizeof(ext));
  552. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  553. spin_unlock(&fi->lock);
  554. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  555. ext.ext_params);
  556. vcpu->stat.deliver_service_signal++;
  557. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  558. ext.ext_params, 0);
  559. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  560. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  561. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  562. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  563. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  564. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  565. rc |= put_guest_lc(vcpu, ext.ext_params,
  566. (u32 *)__LC_EXT_PARAMS);
  567. return rc ? -EFAULT : 0;
  568. }
  569. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  570. {
  571. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  572. struct kvm_s390_interrupt_info *inti;
  573. int rc = 0;
  574. spin_lock(&fi->lock);
  575. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  576. struct kvm_s390_interrupt_info,
  577. list);
  578. if (inti) {
  579. list_del(&inti->list);
  580. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  581. }
  582. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  583. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  584. spin_unlock(&fi->lock);
  585. if (inti) {
  586. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  587. KVM_S390_INT_PFAULT_DONE, 0,
  588. inti->ext.ext_params2);
  589. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  590. inti->ext.ext_params2);
  591. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  592. (u16 *)__LC_EXT_INT_CODE);
  593. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  594. (u16 *)__LC_EXT_CPU_ADDR);
  595. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  596. &vcpu->arch.sie_block->gpsw,
  597. sizeof(psw_t));
  598. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  599. &vcpu->arch.sie_block->gpsw,
  600. sizeof(psw_t));
  601. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  602. (u64 *)__LC_EXT_PARAMS2);
  603. kfree(inti);
  604. }
  605. return rc ? -EFAULT : 0;
  606. }
  607. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  608. {
  609. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  610. struct kvm_s390_interrupt_info *inti;
  611. int rc = 0;
  612. spin_lock(&fi->lock);
  613. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  614. struct kvm_s390_interrupt_info,
  615. list);
  616. if (inti) {
  617. VCPU_EVENT(vcpu, 4,
  618. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  619. inti->ext.ext_params, inti->ext.ext_params2);
  620. vcpu->stat.deliver_virtio_interrupt++;
  621. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  622. inti->type,
  623. inti->ext.ext_params,
  624. inti->ext.ext_params2);
  625. list_del(&inti->list);
  626. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  627. }
  628. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  629. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  630. spin_unlock(&fi->lock);
  631. if (inti) {
  632. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  633. (u16 *)__LC_EXT_INT_CODE);
  634. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  635. (u16 *)__LC_EXT_CPU_ADDR);
  636. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  637. &vcpu->arch.sie_block->gpsw,
  638. sizeof(psw_t));
  639. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  640. &vcpu->arch.sie_block->gpsw,
  641. sizeof(psw_t));
  642. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  643. (u32 *)__LC_EXT_PARAMS);
  644. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  645. (u64 *)__LC_EXT_PARAMS2);
  646. kfree(inti);
  647. }
  648. return rc ? -EFAULT : 0;
  649. }
  650. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  651. unsigned long irq_type)
  652. {
  653. struct list_head *isc_list;
  654. struct kvm_s390_float_interrupt *fi;
  655. struct kvm_s390_interrupt_info *inti = NULL;
  656. int rc = 0;
  657. fi = &vcpu->kvm->arch.float_int;
  658. spin_lock(&fi->lock);
  659. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  660. inti = list_first_entry_or_null(isc_list,
  661. struct kvm_s390_interrupt_info,
  662. list);
  663. if (inti) {
  664. VCPU_EVENT(vcpu, 4, "deliver: I/O 0x%llx", inti->type);
  665. vcpu->stat.deliver_io_int++;
  666. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  667. inti->type,
  668. ((__u32)inti->io.subchannel_id << 16) |
  669. inti->io.subchannel_nr,
  670. ((__u64)inti->io.io_int_parm << 32) |
  671. inti->io.io_int_word);
  672. list_del(&inti->list);
  673. fi->counters[FIRQ_CNTR_IO] -= 1;
  674. }
  675. if (list_empty(isc_list))
  676. clear_bit(irq_type, &fi->pending_irqs);
  677. spin_unlock(&fi->lock);
  678. if (inti) {
  679. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  680. (u16 *)__LC_SUBCHANNEL_ID);
  681. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  682. (u16 *)__LC_SUBCHANNEL_NR);
  683. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  684. (u32 *)__LC_IO_INT_PARM);
  685. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  686. (u32 *)__LC_IO_INT_WORD);
  687. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  688. &vcpu->arch.sie_block->gpsw,
  689. sizeof(psw_t));
  690. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  691. &vcpu->arch.sie_block->gpsw,
  692. sizeof(psw_t));
  693. kfree(inti);
  694. }
  695. return rc ? -EFAULT : 0;
  696. }
  697. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  698. static const deliver_irq_t deliver_irq_funcs[] = {
  699. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  700. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  701. [IRQ_PEND_PROG] = __deliver_prog,
  702. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  703. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  704. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  705. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  706. [IRQ_PEND_RESTART] = __deliver_restart,
  707. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  708. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  709. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  710. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  711. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  712. };
  713. /* Check whether an external call is pending (deliverable or not) */
  714. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  715. {
  716. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  717. uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  718. if (!sclp.has_sigpif)
  719. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  720. return (sigp_ctrl & SIGP_CTRL_C) &&
  721. (atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND);
  722. }
  723. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  724. {
  725. int rc;
  726. rc = !!deliverable_irqs(vcpu);
  727. if (!rc && kvm_cpu_has_pending_timer(vcpu))
  728. rc = 1;
  729. /* external call pending and deliverable */
  730. if (!rc && kvm_s390_ext_call_pending(vcpu) &&
  731. !psw_extint_disabled(vcpu) &&
  732. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  733. rc = 1;
  734. if (!rc && !exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  735. rc = 1;
  736. return rc;
  737. }
  738. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  739. {
  740. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  741. }
  742. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  743. {
  744. u64 now, sltime;
  745. vcpu->stat.exit_wait_state++;
  746. /* fast path */
  747. if (kvm_cpu_has_pending_timer(vcpu) || kvm_arch_vcpu_runnable(vcpu))
  748. return 0;
  749. if (psw_interrupts_disabled(vcpu)) {
  750. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  751. return -EOPNOTSUPP; /* disabled wait */
  752. }
  753. if (!ckc_interrupts_enabled(vcpu)) {
  754. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  755. __set_cpu_idle(vcpu);
  756. goto no_timer;
  757. }
  758. preempt_disable();
  759. now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
  760. preempt_enable();
  761. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  762. /* underflow */
  763. if (vcpu->arch.sie_block->ckc < now)
  764. return 0;
  765. __set_cpu_idle(vcpu);
  766. hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
  767. VCPU_EVENT(vcpu, 4, "enabled wait via clock comparator: %llu ns", sltime);
  768. no_timer:
  769. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  770. kvm_vcpu_block(vcpu);
  771. __unset_cpu_idle(vcpu);
  772. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  773. hrtimer_cancel(&vcpu->arch.ckc_timer);
  774. return 0;
  775. }
  776. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  777. {
  778. if (waitqueue_active(&vcpu->wq)) {
  779. /*
  780. * The vcpu gave up the cpu voluntarily, mark it as a good
  781. * yield-candidate.
  782. */
  783. vcpu->preempted = true;
  784. wake_up_interruptible(&vcpu->wq);
  785. vcpu->stat.halt_wakeup++;
  786. }
  787. }
  788. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  789. {
  790. struct kvm_vcpu *vcpu;
  791. u64 now, sltime;
  792. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  793. preempt_disable();
  794. now = get_tod_clock_fast() + vcpu->arch.sie_block->epoch;
  795. preempt_enable();
  796. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  797. /*
  798. * If the monotonic clock runs faster than the tod clock we might be
  799. * woken up too early and have to go back to sleep to avoid deadlocks.
  800. */
  801. if (vcpu->arch.sie_block->ckc > now &&
  802. hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  803. return HRTIMER_RESTART;
  804. kvm_s390_vcpu_wakeup(vcpu);
  805. return HRTIMER_NORESTART;
  806. }
  807. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  808. {
  809. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  810. spin_lock(&li->lock);
  811. li->pending_irqs = 0;
  812. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  813. memset(&li->irq, 0, sizeof(li->irq));
  814. spin_unlock(&li->lock);
  815. /* clear pending external calls set by sigp interpretation facility */
  816. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  817. vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl = 0;
  818. }
  819. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  820. {
  821. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  822. deliver_irq_t func;
  823. int rc = 0;
  824. unsigned long irq_type;
  825. unsigned long irqs;
  826. __reset_intercept_indicators(vcpu);
  827. /* pending ckc conditions might have been invalidated */
  828. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  829. if (ckc_irq_pending(vcpu))
  830. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  831. /* pending cpu timer conditions might have been invalidated */
  832. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  833. if (cpu_timer_irq_pending(vcpu))
  834. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  835. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  836. /* bits are in the order of interrupt priority */
  837. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  838. if (is_ioirq(irq_type)) {
  839. rc = __deliver_io(vcpu, irq_type);
  840. } else {
  841. func = deliver_irq_funcs[irq_type];
  842. if (!func) {
  843. WARN_ON_ONCE(func == NULL);
  844. clear_bit(irq_type, &li->pending_irqs);
  845. continue;
  846. }
  847. rc = func(vcpu);
  848. }
  849. }
  850. set_intercept_indicators(vcpu);
  851. return rc;
  852. }
  853. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  854. {
  855. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  856. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  857. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  858. irq->u.pgm.code, 0);
  859. li->irq.pgm = irq->u.pgm;
  860. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  861. return 0;
  862. }
  863. int kvm_s390_inject_program_int(struct kvm_vcpu *vcpu, u16 code)
  864. {
  865. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  866. struct kvm_s390_irq irq;
  867. spin_lock(&li->lock);
  868. irq.u.pgm.code = code;
  869. __inject_prog(vcpu, &irq);
  870. BUG_ON(waitqueue_active(li->wq));
  871. spin_unlock(&li->lock);
  872. return 0;
  873. }
  874. int kvm_s390_inject_prog_irq(struct kvm_vcpu *vcpu,
  875. struct kvm_s390_pgm_info *pgm_info)
  876. {
  877. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  878. struct kvm_s390_irq irq;
  879. int rc;
  880. spin_lock(&li->lock);
  881. irq.u.pgm = *pgm_info;
  882. rc = __inject_prog(vcpu, &irq);
  883. BUG_ON(waitqueue_active(li->wq));
  884. spin_unlock(&li->lock);
  885. return rc;
  886. }
  887. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  888. {
  889. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  890. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  891. irq->u.ext.ext_params2);
  892. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  893. irq->u.ext.ext_params,
  894. irq->u.ext.ext_params2);
  895. li->irq.ext = irq->u.ext;
  896. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  897. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  898. return 0;
  899. }
  900. static int __inject_extcall_sigpif(struct kvm_vcpu *vcpu, uint16_t src_id)
  901. {
  902. unsigned char new_val, old_val;
  903. uint8_t *sigp_ctrl = &vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  904. new_val = SIGP_CTRL_C | (src_id & SIGP_CTRL_SCN_MASK);
  905. old_val = *sigp_ctrl & ~SIGP_CTRL_C;
  906. if (cmpxchg(sigp_ctrl, old_val, new_val) != old_val) {
  907. /* another external call is pending */
  908. return -EBUSY;
  909. }
  910. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  911. return 0;
  912. }
  913. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  914. {
  915. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  916. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  917. uint16_t src_id = irq->u.extcall.code;
  918. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  919. src_id);
  920. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  921. src_id, 0);
  922. /* sending vcpu invalid */
  923. if (src_id >= KVM_MAX_VCPUS ||
  924. kvm_get_vcpu(vcpu->kvm, src_id) == NULL)
  925. return -EINVAL;
  926. if (sclp.has_sigpif)
  927. return __inject_extcall_sigpif(vcpu, src_id);
  928. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  929. return -EBUSY;
  930. *extcall = irq->u.extcall;
  931. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  932. return 0;
  933. }
  934. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  935. {
  936. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  937. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  938. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  939. irq->u.prefix.address);
  940. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  941. irq->u.prefix.address, 0);
  942. if (!is_vcpu_stopped(vcpu))
  943. return -EBUSY;
  944. *prefix = irq->u.prefix;
  945. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  946. return 0;
  947. }
  948. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  949. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  950. {
  951. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  952. struct kvm_s390_stop_info *stop = &li->irq.stop;
  953. int rc = 0;
  954. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  955. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  956. return -EINVAL;
  957. if (is_vcpu_stopped(vcpu)) {
  958. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  959. rc = kvm_s390_store_status_unloaded(vcpu,
  960. KVM_S390_STORE_STATUS_NOADDR);
  961. return rc;
  962. }
  963. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  964. return -EBUSY;
  965. stop->flags = irq->u.stop.flags;
  966. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  967. return 0;
  968. }
  969. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  970. struct kvm_s390_irq *irq)
  971. {
  972. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  973. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  974. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  975. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  976. return 0;
  977. }
  978. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  979. struct kvm_s390_irq *irq)
  980. {
  981. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  982. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  983. irq->u.emerg.code);
  984. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  985. irq->u.emerg.code, 0);
  986. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  987. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  988. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  989. return 0;
  990. }
  991. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  992. {
  993. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  994. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  995. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  996. irq->u.mchk.mcic);
  997. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  998. irq->u.mchk.mcic);
  999. /*
  1000. * Because repressible machine checks can be indicated along with
  1001. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1002. * we need to combine cr14, mcic and external damage code.
  1003. * Failing storage address and the logout area should not be or'ed
  1004. * together, we just indicate the last occurrence of the corresponding
  1005. * machine check
  1006. */
  1007. mchk->cr14 |= irq->u.mchk.cr14;
  1008. mchk->mcic |= irq->u.mchk.mcic;
  1009. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1010. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1011. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1012. sizeof(mchk->fixed_logout));
  1013. if (mchk->mcic & MCHK_EX_MASK)
  1014. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1015. else if (mchk->mcic & MCHK_REP_MASK)
  1016. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1017. return 0;
  1018. }
  1019. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1020. {
  1021. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1022. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1023. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1024. 0, 0);
  1025. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1026. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1027. return 0;
  1028. }
  1029. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1030. {
  1031. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1032. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1033. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1034. 0, 0);
  1035. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1036. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1037. return 0;
  1038. }
  1039. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1040. int isc, u32 schid)
  1041. {
  1042. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1043. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1044. struct kvm_s390_interrupt_info *iter;
  1045. u16 id = (schid & 0xffff0000U) >> 16;
  1046. u16 nr = schid & 0x0000ffffU;
  1047. spin_lock(&fi->lock);
  1048. list_for_each_entry(iter, isc_list, list) {
  1049. if (schid && (id != iter->io.subchannel_id ||
  1050. nr != iter->io.subchannel_nr))
  1051. continue;
  1052. /* found an appropriate entry */
  1053. list_del_init(&iter->list);
  1054. fi->counters[FIRQ_CNTR_IO] -= 1;
  1055. if (list_empty(isc_list))
  1056. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1057. spin_unlock(&fi->lock);
  1058. return iter;
  1059. }
  1060. spin_unlock(&fi->lock);
  1061. return NULL;
  1062. }
  1063. /*
  1064. * Dequeue and return an I/O interrupt matching any of the interruption
  1065. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1066. */
  1067. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1068. u64 isc_mask, u32 schid)
  1069. {
  1070. struct kvm_s390_interrupt_info *inti = NULL;
  1071. int isc;
  1072. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1073. if (isc_mask & isc_to_isc_bits(isc))
  1074. inti = get_io_int(kvm, isc, schid);
  1075. }
  1076. return inti;
  1077. }
  1078. #define SCCB_MASK 0xFFFFFFF8
  1079. #define SCCB_EVENT_PENDING 0x3
  1080. static int __inject_service(struct kvm *kvm,
  1081. struct kvm_s390_interrupt_info *inti)
  1082. {
  1083. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1084. spin_lock(&fi->lock);
  1085. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1086. /*
  1087. * Early versions of the QEMU s390 bios will inject several
  1088. * service interrupts after another without handling a
  1089. * condition code indicating busy.
  1090. * We will silently ignore those superfluous sccb values.
  1091. * A future version of QEMU will take care of serialization
  1092. * of servc requests
  1093. */
  1094. if (fi->srv_signal.ext_params & SCCB_MASK)
  1095. goto out;
  1096. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1097. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1098. out:
  1099. spin_unlock(&fi->lock);
  1100. kfree(inti);
  1101. return 0;
  1102. }
  1103. static int __inject_virtio(struct kvm *kvm,
  1104. struct kvm_s390_interrupt_info *inti)
  1105. {
  1106. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1107. spin_lock(&fi->lock);
  1108. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1109. spin_unlock(&fi->lock);
  1110. return -EBUSY;
  1111. }
  1112. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1113. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1114. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1115. spin_unlock(&fi->lock);
  1116. return 0;
  1117. }
  1118. static int __inject_pfault_done(struct kvm *kvm,
  1119. struct kvm_s390_interrupt_info *inti)
  1120. {
  1121. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1122. spin_lock(&fi->lock);
  1123. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1124. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1125. spin_unlock(&fi->lock);
  1126. return -EBUSY;
  1127. }
  1128. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1129. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1130. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1131. spin_unlock(&fi->lock);
  1132. return 0;
  1133. }
  1134. #define CR_PENDING_SUBCLASS 28
  1135. static int __inject_float_mchk(struct kvm *kvm,
  1136. struct kvm_s390_interrupt_info *inti)
  1137. {
  1138. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1139. spin_lock(&fi->lock);
  1140. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1141. fi->mchk.mcic |= inti->mchk.mcic;
  1142. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1143. spin_unlock(&fi->lock);
  1144. kfree(inti);
  1145. return 0;
  1146. }
  1147. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1148. {
  1149. struct kvm_s390_float_interrupt *fi;
  1150. struct list_head *list;
  1151. int isc;
  1152. fi = &kvm->arch.float_int;
  1153. spin_lock(&fi->lock);
  1154. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1155. spin_unlock(&fi->lock);
  1156. return -EBUSY;
  1157. }
  1158. fi->counters[FIRQ_CNTR_IO] += 1;
  1159. isc = int_word_to_isc(inti->io.io_int_word);
  1160. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1161. list_add_tail(&inti->list, list);
  1162. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1163. spin_unlock(&fi->lock);
  1164. return 0;
  1165. }
  1166. /*
  1167. * Find a destination VCPU for a floating irq and kick it.
  1168. */
  1169. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1170. {
  1171. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1172. struct kvm_s390_local_interrupt *li;
  1173. struct kvm_vcpu *dst_vcpu;
  1174. int sigcpu, online_vcpus, nr_tries = 0;
  1175. online_vcpus = atomic_read(&kvm->online_vcpus);
  1176. if (!online_vcpus)
  1177. return;
  1178. /* find idle VCPUs first, then round robin */
  1179. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1180. if (sigcpu == online_vcpus) {
  1181. do {
  1182. sigcpu = fi->next_rr_cpu;
  1183. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1184. /* avoid endless loops if all vcpus are stopped */
  1185. if (nr_tries++ >= online_vcpus)
  1186. return;
  1187. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1188. }
  1189. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1190. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1191. li = &dst_vcpu->arch.local_int;
  1192. spin_lock(&li->lock);
  1193. switch (type) {
  1194. case KVM_S390_MCHK:
  1195. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1196. break;
  1197. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1198. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1199. break;
  1200. default:
  1201. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1202. break;
  1203. }
  1204. spin_unlock(&li->lock);
  1205. kvm_s390_vcpu_wakeup(dst_vcpu);
  1206. }
  1207. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1208. {
  1209. struct kvm_s390_float_interrupt *fi;
  1210. u64 type = READ_ONCE(inti->type);
  1211. int rc;
  1212. fi = &kvm->arch.float_int;
  1213. switch (type) {
  1214. case KVM_S390_MCHK:
  1215. rc = __inject_float_mchk(kvm, inti);
  1216. break;
  1217. case KVM_S390_INT_VIRTIO:
  1218. rc = __inject_virtio(kvm, inti);
  1219. break;
  1220. case KVM_S390_INT_SERVICE:
  1221. rc = __inject_service(kvm, inti);
  1222. break;
  1223. case KVM_S390_INT_PFAULT_DONE:
  1224. rc = __inject_pfault_done(kvm, inti);
  1225. break;
  1226. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1227. rc = __inject_io(kvm, inti);
  1228. break;
  1229. default:
  1230. rc = -EINVAL;
  1231. }
  1232. if (rc)
  1233. return rc;
  1234. __floating_irq_kick(kvm, type);
  1235. return 0;
  1236. }
  1237. int kvm_s390_inject_vm(struct kvm *kvm,
  1238. struct kvm_s390_interrupt *s390int)
  1239. {
  1240. struct kvm_s390_interrupt_info *inti;
  1241. int rc;
  1242. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1243. if (!inti)
  1244. return -ENOMEM;
  1245. inti->type = s390int->type;
  1246. switch (inti->type) {
  1247. case KVM_S390_INT_VIRTIO:
  1248. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1249. s390int->parm, s390int->parm64);
  1250. inti->ext.ext_params = s390int->parm;
  1251. inti->ext.ext_params2 = s390int->parm64;
  1252. break;
  1253. case KVM_S390_INT_SERVICE:
  1254. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1255. inti->ext.ext_params = s390int->parm;
  1256. break;
  1257. case KVM_S390_INT_PFAULT_DONE:
  1258. inti->ext.ext_params2 = s390int->parm64;
  1259. break;
  1260. case KVM_S390_MCHK:
  1261. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1262. s390int->parm64);
  1263. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1264. inti->mchk.mcic = s390int->parm64;
  1265. break;
  1266. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1267. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1268. VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)");
  1269. else
  1270. VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x",
  1271. s390int->type & IOINT_CSSID_MASK,
  1272. s390int->type & IOINT_SSID_MASK,
  1273. s390int->type & IOINT_SCHID_MASK);
  1274. inti->io.subchannel_id = s390int->parm >> 16;
  1275. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1276. inti->io.io_int_parm = s390int->parm64 >> 32;
  1277. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1278. break;
  1279. default:
  1280. kfree(inti);
  1281. return -EINVAL;
  1282. }
  1283. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1284. 2);
  1285. rc = __inject_vm(kvm, inti);
  1286. if (rc)
  1287. kfree(inti);
  1288. return rc;
  1289. }
  1290. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1291. struct kvm_s390_interrupt_info *inti)
  1292. {
  1293. return __inject_vm(kvm, inti);
  1294. }
  1295. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1296. struct kvm_s390_irq *irq)
  1297. {
  1298. irq->type = s390int->type;
  1299. switch (irq->type) {
  1300. case KVM_S390_PROGRAM_INT:
  1301. if (s390int->parm & 0xffff0000)
  1302. return -EINVAL;
  1303. irq->u.pgm.code = s390int->parm;
  1304. break;
  1305. case KVM_S390_SIGP_SET_PREFIX:
  1306. irq->u.prefix.address = s390int->parm;
  1307. break;
  1308. case KVM_S390_SIGP_STOP:
  1309. irq->u.stop.flags = s390int->parm;
  1310. break;
  1311. case KVM_S390_INT_EXTERNAL_CALL:
  1312. if (s390int->parm & 0xffff0000)
  1313. return -EINVAL;
  1314. irq->u.extcall.code = s390int->parm;
  1315. break;
  1316. case KVM_S390_INT_EMERGENCY:
  1317. if (s390int->parm & 0xffff0000)
  1318. return -EINVAL;
  1319. irq->u.emerg.code = s390int->parm;
  1320. break;
  1321. case KVM_S390_MCHK:
  1322. irq->u.mchk.mcic = s390int->parm64;
  1323. break;
  1324. }
  1325. return 0;
  1326. }
  1327. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1328. {
  1329. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1330. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1331. }
  1332. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1333. {
  1334. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1335. spin_lock(&li->lock);
  1336. li->irq.stop.flags = 0;
  1337. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1338. spin_unlock(&li->lock);
  1339. }
  1340. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1341. {
  1342. int rc;
  1343. switch (irq->type) {
  1344. case KVM_S390_PROGRAM_INT:
  1345. rc = __inject_prog(vcpu, irq);
  1346. break;
  1347. case KVM_S390_SIGP_SET_PREFIX:
  1348. rc = __inject_set_prefix(vcpu, irq);
  1349. break;
  1350. case KVM_S390_SIGP_STOP:
  1351. rc = __inject_sigp_stop(vcpu, irq);
  1352. break;
  1353. case KVM_S390_RESTART:
  1354. rc = __inject_sigp_restart(vcpu, irq);
  1355. break;
  1356. case KVM_S390_INT_CLOCK_COMP:
  1357. rc = __inject_ckc(vcpu);
  1358. break;
  1359. case KVM_S390_INT_CPU_TIMER:
  1360. rc = __inject_cpu_timer(vcpu);
  1361. break;
  1362. case KVM_S390_INT_EXTERNAL_CALL:
  1363. rc = __inject_extcall(vcpu, irq);
  1364. break;
  1365. case KVM_S390_INT_EMERGENCY:
  1366. rc = __inject_sigp_emergency(vcpu, irq);
  1367. break;
  1368. case KVM_S390_MCHK:
  1369. rc = __inject_mchk(vcpu, irq);
  1370. break;
  1371. case KVM_S390_INT_PFAULT_INIT:
  1372. rc = __inject_pfault_init(vcpu, irq);
  1373. break;
  1374. case KVM_S390_INT_VIRTIO:
  1375. case KVM_S390_INT_SERVICE:
  1376. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1377. default:
  1378. rc = -EINVAL;
  1379. }
  1380. return rc;
  1381. }
  1382. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1383. {
  1384. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1385. int rc;
  1386. spin_lock(&li->lock);
  1387. rc = do_inject_vcpu(vcpu, irq);
  1388. spin_unlock(&li->lock);
  1389. if (!rc)
  1390. kvm_s390_vcpu_wakeup(vcpu);
  1391. return rc;
  1392. }
  1393. static inline void clear_irq_list(struct list_head *_list)
  1394. {
  1395. struct kvm_s390_interrupt_info *inti, *n;
  1396. list_for_each_entry_safe(inti, n, _list, list) {
  1397. list_del(&inti->list);
  1398. kfree(inti);
  1399. }
  1400. }
  1401. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1402. struct kvm_s390_irq *irq)
  1403. {
  1404. irq->type = inti->type;
  1405. switch (inti->type) {
  1406. case KVM_S390_INT_PFAULT_INIT:
  1407. case KVM_S390_INT_PFAULT_DONE:
  1408. case KVM_S390_INT_VIRTIO:
  1409. irq->u.ext = inti->ext;
  1410. break;
  1411. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1412. irq->u.io = inti->io;
  1413. break;
  1414. }
  1415. }
  1416. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1417. {
  1418. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1419. int i;
  1420. spin_lock(&fi->lock);
  1421. fi->pending_irqs = 0;
  1422. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1423. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1424. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1425. clear_irq_list(&fi->lists[i]);
  1426. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1427. fi->counters[i] = 0;
  1428. spin_unlock(&fi->lock);
  1429. };
  1430. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1431. {
  1432. struct kvm_s390_interrupt_info *inti;
  1433. struct kvm_s390_float_interrupt *fi;
  1434. struct kvm_s390_irq *buf;
  1435. struct kvm_s390_irq *irq;
  1436. int max_irqs;
  1437. int ret = 0;
  1438. int n = 0;
  1439. int i;
  1440. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1441. return -EINVAL;
  1442. /*
  1443. * We are already using -ENOMEM to signal
  1444. * userspace it may retry with a bigger buffer,
  1445. * so we need to use something else for this case
  1446. */
  1447. buf = vzalloc(len);
  1448. if (!buf)
  1449. return -ENOBUFS;
  1450. max_irqs = len / sizeof(struct kvm_s390_irq);
  1451. fi = &kvm->arch.float_int;
  1452. spin_lock(&fi->lock);
  1453. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1454. list_for_each_entry(inti, &fi->lists[i], list) {
  1455. if (n == max_irqs) {
  1456. /* signal userspace to try again */
  1457. ret = -ENOMEM;
  1458. goto out;
  1459. }
  1460. inti_to_irq(inti, &buf[n]);
  1461. n++;
  1462. }
  1463. }
  1464. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1465. if (n == max_irqs) {
  1466. /* signal userspace to try again */
  1467. ret = -ENOMEM;
  1468. goto out;
  1469. }
  1470. irq = (struct kvm_s390_irq *) &buf[n];
  1471. irq->type = KVM_S390_INT_SERVICE;
  1472. irq->u.ext = fi->srv_signal;
  1473. n++;
  1474. }
  1475. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1476. if (n == max_irqs) {
  1477. /* signal userspace to try again */
  1478. ret = -ENOMEM;
  1479. goto out;
  1480. }
  1481. irq = (struct kvm_s390_irq *) &buf[n];
  1482. irq->type = KVM_S390_MCHK;
  1483. irq->u.mchk = fi->mchk;
  1484. n++;
  1485. }
  1486. out:
  1487. spin_unlock(&fi->lock);
  1488. if (!ret && n > 0) {
  1489. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1490. ret = -EFAULT;
  1491. }
  1492. vfree(buf);
  1493. return ret < 0 ? ret : n;
  1494. }
  1495. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1496. {
  1497. int r;
  1498. switch (attr->group) {
  1499. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1500. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1501. attr->attr);
  1502. break;
  1503. default:
  1504. r = -EINVAL;
  1505. }
  1506. return r;
  1507. }
  1508. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1509. u64 addr)
  1510. {
  1511. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1512. void *target = NULL;
  1513. void __user *source;
  1514. u64 size;
  1515. if (get_user(inti->type, (u64 __user *)addr))
  1516. return -EFAULT;
  1517. switch (inti->type) {
  1518. case KVM_S390_INT_PFAULT_INIT:
  1519. case KVM_S390_INT_PFAULT_DONE:
  1520. case KVM_S390_INT_VIRTIO:
  1521. case KVM_S390_INT_SERVICE:
  1522. target = (void *) &inti->ext;
  1523. source = &uptr->u.ext;
  1524. size = sizeof(inti->ext);
  1525. break;
  1526. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1527. target = (void *) &inti->io;
  1528. source = &uptr->u.io;
  1529. size = sizeof(inti->io);
  1530. break;
  1531. case KVM_S390_MCHK:
  1532. target = (void *) &inti->mchk;
  1533. source = &uptr->u.mchk;
  1534. size = sizeof(inti->mchk);
  1535. break;
  1536. default:
  1537. return -EINVAL;
  1538. }
  1539. if (copy_from_user(target, source, size))
  1540. return -EFAULT;
  1541. return 0;
  1542. }
  1543. static int enqueue_floating_irq(struct kvm_device *dev,
  1544. struct kvm_device_attr *attr)
  1545. {
  1546. struct kvm_s390_interrupt_info *inti = NULL;
  1547. int r = 0;
  1548. int len = attr->attr;
  1549. if (len % sizeof(struct kvm_s390_irq) != 0)
  1550. return -EINVAL;
  1551. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1552. return -EINVAL;
  1553. while (len >= sizeof(struct kvm_s390_irq)) {
  1554. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1555. if (!inti)
  1556. return -ENOMEM;
  1557. r = copy_irq_from_user(inti, attr->addr);
  1558. if (r) {
  1559. kfree(inti);
  1560. return r;
  1561. }
  1562. r = __inject_vm(dev->kvm, inti);
  1563. if (r) {
  1564. kfree(inti);
  1565. return r;
  1566. }
  1567. len -= sizeof(struct kvm_s390_irq);
  1568. attr->addr += sizeof(struct kvm_s390_irq);
  1569. }
  1570. return r;
  1571. }
  1572. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1573. {
  1574. if (id >= MAX_S390_IO_ADAPTERS)
  1575. return NULL;
  1576. return kvm->arch.adapters[id];
  1577. }
  1578. static int register_io_adapter(struct kvm_device *dev,
  1579. struct kvm_device_attr *attr)
  1580. {
  1581. struct s390_io_adapter *adapter;
  1582. struct kvm_s390_io_adapter adapter_info;
  1583. if (copy_from_user(&adapter_info,
  1584. (void __user *)attr->addr, sizeof(adapter_info)))
  1585. return -EFAULT;
  1586. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1587. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1588. return -EINVAL;
  1589. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1590. if (!adapter)
  1591. return -ENOMEM;
  1592. INIT_LIST_HEAD(&adapter->maps);
  1593. init_rwsem(&adapter->maps_lock);
  1594. atomic_set(&adapter->nr_maps, 0);
  1595. adapter->id = adapter_info.id;
  1596. adapter->isc = adapter_info.isc;
  1597. adapter->maskable = adapter_info.maskable;
  1598. adapter->masked = false;
  1599. adapter->swap = adapter_info.swap;
  1600. dev->kvm->arch.adapters[adapter->id] = adapter;
  1601. return 0;
  1602. }
  1603. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1604. {
  1605. int ret;
  1606. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1607. if (!adapter || !adapter->maskable)
  1608. return -EINVAL;
  1609. ret = adapter->masked;
  1610. adapter->masked = masked;
  1611. return ret;
  1612. }
  1613. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1614. {
  1615. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1616. struct s390_map_info *map;
  1617. int ret;
  1618. if (!adapter || !addr)
  1619. return -EINVAL;
  1620. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1621. if (!map) {
  1622. ret = -ENOMEM;
  1623. goto out;
  1624. }
  1625. INIT_LIST_HEAD(&map->list);
  1626. map->guest_addr = addr;
  1627. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1628. if (map->addr == -EFAULT) {
  1629. ret = -EFAULT;
  1630. goto out;
  1631. }
  1632. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1633. if (ret < 0)
  1634. goto out;
  1635. BUG_ON(ret != 1);
  1636. down_write(&adapter->maps_lock);
  1637. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1638. list_add_tail(&map->list, &adapter->maps);
  1639. ret = 0;
  1640. } else {
  1641. put_page(map->page);
  1642. ret = -EINVAL;
  1643. }
  1644. up_write(&adapter->maps_lock);
  1645. out:
  1646. if (ret)
  1647. kfree(map);
  1648. return ret;
  1649. }
  1650. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1651. {
  1652. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1653. struct s390_map_info *map, *tmp;
  1654. int found = 0;
  1655. if (!adapter || !addr)
  1656. return -EINVAL;
  1657. down_write(&adapter->maps_lock);
  1658. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1659. if (map->guest_addr == addr) {
  1660. found = 1;
  1661. atomic_dec(&adapter->nr_maps);
  1662. list_del(&map->list);
  1663. put_page(map->page);
  1664. kfree(map);
  1665. break;
  1666. }
  1667. }
  1668. up_write(&adapter->maps_lock);
  1669. return found ? 0 : -EINVAL;
  1670. }
  1671. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1672. {
  1673. int i;
  1674. struct s390_map_info *map, *tmp;
  1675. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1676. if (!kvm->arch.adapters[i])
  1677. continue;
  1678. list_for_each_entry_safe(map, tmp,
  1679. &kvm->arch.adapters[i]->maps, list) {
  1680. list_del(&map->list);
  1681. put_page(map->page);
  1682. kfree(map);
  1683. }
  1684. kfree(kvm->arch.adapters[i]);
  1685. }
  1686. }
  1687. static int modify_io_adapter(struct kvm_device *dev,
  1688. struct kvm_device_attr *attr)
  1689. {
  1690. struct kvm_s390_io_adapter_req req;
  1691. struct s390_io_adapter *adapter;
  1692. int ret;
  1693. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1694. return -EFAULT;
  1695. adapter = get_io_adapter(dev->kvm, req.id);
  1696. if (!adapter)
  1697. return -EINVAL;
  1698. switch (req.type) {
  1699. case KVM_S390_IO_ADAPTER_MASK:
  1700. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1701. if (ret > 0)
  1702. ret = 0;
  1703. break;
  1704. case KVM_S390_IO_ADAPTER_MAP:
  1705. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1706. break;
  1707. case KVM_S390_IO_ADAPTER_UNMAP:
  1708. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1709. break;
  1710. default:
  1711. ret = -EINVAL;
  1712. }
  1713. return ret;
  1714. }
  1715. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1716. {
  1717. int r = 0;
  1718. unsigned int i;
  1719. struct kvm_vcpu *vcpu;
  1720. switch (attr->group) {
  1721. case KVM_DEV_FLIC_ENQUEUE:
  1722. r = enqueue_floating_irq(dev, attr);
  1723. break;
  1724. case KVM_DEV_FLIC_CLEAR_IRQS:
  1725. kvm_s390_clear_float_irqs(dev->kvm);
  1726. break;
  1727. case KVM_DEV_FLIC_APF_ENABLE:
  1728. dev->kvm->arch.gmap->pfault_enabled = 1;
  1729. break;
  1730. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1731. dev->kvm->arch.gmap->pfault_enabled = 0;
  1732. /*
  1733. * Make sure no async faults are in transition when
  1734. * clearing the queues. So we don't need to worry
  1735. * about late coming workers.
  1736. */
  1737. synchronize_srcu(&dev->kvm->srcu);
  1738. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  1739. kvm_clear_async_pf_completion_queue(vcpu);
  1740. break;
  1741. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1742. r = register_io_adapter(dev, attr);
  1743. break;
  1744. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1745. r = modify_io_adapter(dev, attr);
  1746. break;
  1747. default:
  1748. r = -EINVAL;
  1749. }
  1750. return r;
  1751. }
  1752. static int flic_create(struct kvm_device *dev, u32 type)
  1753. {
  1754. if (!dev)
  1755. return -EINVAL;
  1756. if (dev->kvm->arch.flic)
  1757. return -EINVAL;
  1758. dev->kvm->arch.flic = dev;
  1759. return 0;
  1760. }
  1761. static void flic_destroy(struct kvm_device *dev)
  1762. {
  1763. dev->kvm->arch.flic = NULL;
  1764. kfree(dev);
  1765. }
  1766. /* s390 floating irq controller (flic) */
  1767. struct kvm_device_ops kvm_flic_ops = {
  1768. .name = "kvm-flic",
  1769. .get_attr = flic_get_attr,
  1770. .set_attr = flic_set_attr,
  1771. .create = flic_create,
  1772. .destroy = flic_destroy,
  1773. };
  1774. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  1775. {
  1776. unsigned long bit;
  1777. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  1778. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  1779. }
  1780. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  1781. u64 addr)
  1782. {
  1783. struct s390_map_info *map;
  1784. if (!adapter)
  1785. return NULL;
  1786. list_for_each_entry(map, &adapter->maps, list) {
  1787. if (map->guest_addr == addr)
  1788. return map;
  1789. }
  1790. return NULL;
  1791. }
  1792. static int adapter_indicators_set(struct kvm *kvm,
  1793. struct s390_io_adapter *adapter,
  1794. struct kvm_s390_adapter_int *adapter_int)
  1795. {
  1796. unsigned long bit;
  1797. int summary_set, idx;
  1798. struct s390_map_info *info;
  1799. void *map;
  1800. info = get_map_info(adapter, adapter_int->ind_addr);
  1801. if (!info)
  1802. return -1;
  1803. map = page_address(info->page);
  1804. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  1805. set_bit(bit, map);
  1806. idx = srcu_read_lock(&kvm->srcu);
  1807. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1808. set_page_dirty_lock(info->page);
  1809. info = get_map_info(adapter, adapter_int->summary_addr);
  1810. if (!info) {
  1811. srcu_read_unlock(&kvm->srcu, idx);
  1812. return -1;
  1813. }
  1814. map = page_address(info->page);
  1815. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  1816. adapter->swap);
  1817. summary_set = test_and_set_bit(bit, map);
  1818. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1819. set_page_dirty_lock(info->page);
  1820. srcu_read_unlock(&kvm->srcu, idx);
  1821. return summary_set ? 0 : 1;
  1822. }
  1823. /*
  1824. * < 0 - not injected due to error
  1825. * = 0 - coalesced, summary indicator already active
  1826. * > 0 - injected interrupt
  1827. */
  1828. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  1829. struct kvm *kvm, int irq_source_id, int level,
  1830. bool line_status)
  1831. {
  1832. int ret;
  1833. struct s390_io_adapter *adapter;
  1834. /* We're only interested in the 0->1 transition. */
  1835. if (!level)
  1836. return 0;
  1837. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  1838. if (!adapter)
  1839. return -1;
  1840. down_read(&adapter->maps_lock);
  1841. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  1842. up_read(&adapter->maps_lock);
  1843. if ((ret > 0) && !adapter->masked) {
  1844. struct kvm_s390_interrupt s390int = {
  1845. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1846. .parm = 0,
  1847. .parm64 = (adapter->isc << 27) | 0x80000000,
  1848. };
  1849. ret = kvm_s390_inject_vm(kvm, &s390int);
  1850. if (ret == 0)
  1851. ret = 1;
  1852. }
  1853. return ret;
  1854. }
  1855. int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
  1856. const struct kvm_irq_routing_entry *ue)
  1857. {
  1858. int ret;
  1859. switch (ue->type) {
  1860. case KVM_IRQ_ROUTING_S390_ADAPTER:
  1861. e->set = set_adapter_int;
  1862. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  1863. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  1864. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  1865. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  1866. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  1867. ret = 0;
  1868. break;
  1869. default:
  1870. ret = -EINVAL;
  1871. }
  1872. return ret;
  1873. }
  1874. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  1875. int irq_source_id, int level, bool line_status)
  1876. {
  1877. return -EINVAL;
  1878. }
  1879. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  1880. {
  1881. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1882. struct kvm_s390_irq *buf;
  1883. int r = 0;
  1884. int n;
  1885. buf = vmalloc(len);
  1886. if (!buf)
  1887. return -ENOMEM;
  1888. if (copy_from_user((void *) buf, irqstate, len)) {
  1889. r = -EFAULT;
  1890. goto out_free;
  1891. }
  1892. /*
  1893. * Don't allow setting the interrupt state
  1894. * when there are already interrupts pending
  1895. */
  1896. spin_lock(&li->lock);
  1897. if (li->pending_irqs) {
  1898. r = -EBUSY;
  1899. goto out_unlock;
  1900. }
  1901. for (n = 0; n < len / sizeof(*buf); n++) {
  1902. r = do_inject_vcpu(vcpu, &buf[n]);
  1903. if (r)
  1904. break;
  1905. }
  1906. out_unlock:
  1907. spin_unlock(&li->lock);
  1908. out_free:
  1909. vfree(buf);
  1910. return r;
  1911. }
  1912. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  1913. struct kvm_s390_irq *irq,
  1914. unsigned long irq_type)
  1915. {
  1916. switch (irq_type) {
  1917. case IRQ_PEND_MCHK_EX:
  1918. case IRQ_PEND_MCHK_REP:
  1919. irq->type = KVM_S390_MCHK;
  1920. irq->u.mchk = li->irq.mchk;
  1921. break;
  1922. case IRQ_PEND_PROG:
  1923. irq->type = KVM_S390_PROGRAM_INT;
  1924. irq->u.pgm = li->irq.pgm;
  1925. break;
  1926. case IRQ_PEND_PFAULT_INIT:
  1927. irq->type = KVM_S390_INT_PFAULT_INIT;
  1928. irq->u.ext = li->irq.ext;
  1929. break;
  1930. case IRQ_PEND_EXT_EXTERNAL:
  1931. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  1932. irq->u.extcall = li->irq.extcall;
  1933. break;
  1934. case IRQ_PEND_EXT_CLOCK_COMP:
  1935. irq->type = KVM_S390_INT_CLOCK_COMP;
  1936. break;
  1937. case IRQ_PEND_EXT_CPU_TIMER:
  1938. irq->type = KVM_S390_INT_CPU_TIMER;
  1939. break;
  1940. case IRQ_PEND_SIGP_STOP:
  1941. irq->type = KVM_S390_SIGP_STOP;
  1942. irq->u.stop = li->irq.stop;
  1943. break;
  1944. case IRQ_PEND_RESTART:
  1945. irq->type = KVM_S390_RESTART;
  1946. break;
  1947. case IRQ_PEND_SET_PREFIX:
  1948. irq->type = KVM_S390_SIGP_SET_PREFIX;
  1949. irq->u.prefix = li->irq.prefix;
  1950. break;
  1951. }
  1952. }
  1953. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  1954. {
  1955. uint8_t sigp_ctrl = vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  1956. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  1957. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1958. unsigned long pending_irqs;
  1959. struct kvm_s390_irq irq;
  1960. unsigned long irq_type;
  1961. int cpuaddr;
  1962. int n = 0;
  1963. spin_lock(&li->lock);
  1964. pending_irqs = li->pending_irqs;
  1965. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  1966. sizeof(sigp_emerg_pending));
  1967. spin_unlock(&li->lock);
  1968. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  1969. memset(&irq, 0, sizeof(irq));
  1970. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  1971. continue;
  1972. if (n + sizeof(irq) > len)
  1973. return -ENOBUFS;
  1974. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  1975. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1976. return -EFAULT;
  1977. n += sizeof(irq);
  1978. }
  1979. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  1980. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  1981. memset(&irq, 0, sizeof(irq));
  1982. if (n + sizeof(irq) > len)
  1983. return -ENOBUFS;
  1984. irq.type = KVM_S390_INT_EMERGENCY;
  1985. irq.u.emerg.code = cpuaddr;
  1986. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  1987. return -EFAULT;
  1988. n += sizeof(irq);
  1989. }
  1990. }
  1991. if ((sigp_ctrl & SIGP_CTRL_C) &&
  1992. (atomic_read(&vcpu->arch.sie_block->cpuflags) &
  1993. CPUSTAT_ECALL_PEND)) {
  1994. if (n + sizeof(irq) > len)
  1995. return -ENOBUFS;
  1996. memset(&irq, 0, sizeof(irq));
  1997. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  1998. irq.u.extcall.code = sigp_ctrl & SIGP_CTRL_SCN_MASK;
  1999. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2000. return -EFAULT;
  2001. n += sizeof(irq);
  2002. }
  2003. return n;
  2004. }