process.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999, 2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/smp.h>
  16. #include <linux/slab.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/tick.h>
  19. #include <linux/personality.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/compat.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/random.h>
  24. #include <linux/module.h>
  25. #include <asm/io.h>
  26. #include <asm/processor.h>
  27. #include <asm/vtimer.h>
  28. #include <asm/exec.h>
  29. #include <asm/irq.h>
  30. #include <asm/nmi.h>
  31. #include <asm/smp.h>
  32. #include <asm/switch_to.h>
  33. #include <asm/runtime_instr.h>
  34. #include "entry.h"
  35. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  36. /*
  37. * Return saved PC of a blocked thread. used in kernel/sched.
  38. * resume in entry.S does not create a new stack frame, it
  39. * just stores the registers %r6-%r15 to the frame given by
  40. * schedule. We want to return the address of the caller of
  41. * schedule, so we have to walk the backchain one time to
  42. * find the frame schedule() store its return address.
  43. */
  44. unsigned long thread_saved_pc(struct task_struct *tsk)
  45. {
  46. struct stack_frame *sf, *low, *high;
  47. if (!tsk || !task_stack_page(tsk))
  48. return 0;
  49. low = task_stack_page(tsk);
  50. high = (struct stack_frame *) task_pt_regs(tsk);
  51. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  52. if (sf <= low || sf > high)
  53. return 0;
  54. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  55. if (sf <= low || sf > high)
  56. return 0;
  57. return sf->gprs[8];
  58. }
  59. extern void kernel_thread_starter(void);
  60. /*
  61. * Free current thread data structures etc..
  62. */
  63. void exit_thread(void)
  64. {
  65. exit_thread_runtime_instr();
  66. }
  67. void flush_thread(void)
  68. {
  69. }
  70. void release_thread(struct task_struct *dead_task)
  71. {
  72. }
  73. void arch_release_task_struct(struct task_struct *tsk)
  74. {
  75. /* Free either the floating-point or the vector register save area */
  76. kfree(tsk->thread.fpu.regs);
  77. }
  78. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  79. {
  80. *dst = *src;
  81. /* Set up a new floating-point register save area */
  82. dst->thread.fpu.fpc = 0;
  83. dst->thread.fpu.flags = 0; /* Always start with VX disabled */
  84. dst->thread.fpu.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
  85. GFP_KERNEL|__GFP_REPEAT);
  86. if (!dst->thread.fpu.fprs)
  87. return -ENOMEM;
  88. /*
  89. * Save the floating-point or vector register state of the current
  90. * task. The state is not saved for early kernel threads, for example,
  91. * the init_task, which do not have an allocated save area.
  92. * The CIF_FPU flag is set in any case to lazy clear or restore a saved
  93. * state when switching to a different task or returning to user space.
  94. */
  95. save_fpu_regs();
  96. dst->thread.fpu.fpc = current->thread.fpu.fpc;
  97. if (is_vx_task(current))
  98. convert_vx_to_fp(dst->thread.fpu.fprs,
  99. current->thread.fpu.vxrs);
  100. else
  101. memcpy(dst->thread.fpu.fprs, current->thread.fpu.fprs,
  102. sizeof(freg_t) * __NUM_FPRS);
  103. return 0;
  104. }
  105. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  106. unsigned long arg, struct task_struct *p)
  107. {
  108. struct thread_info *ti;
  109. struct fake_frame
  110. {
  111. struct stack_frame sf;
  112. struct pt_regs childregs;
  113. } *frame;
  114. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  115. p->thread.ksp = (unsigned long) frame;
  116. /* Save access registers to new thread structure. */
  117. save_access_regs(&p->thread.acrs[0]);
  118. /* start new process with ar4 pointing to the correct address space */
  119. p->thread.mm_segment = get_fs();
  120. /* Don't copy debug registers */
  121. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  122. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  123. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  124. /* Initialize per thread user and system timer values */
  125. ti = task_thread_info(p);
  126. ti->user_timer = 0;
  127. ti->system_timer = 0;
  128. frame->sf.back_chain = 0;
  129. /* new return point is ret_from_fork */
  130. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  131. /* fake return stack for resume(), don't go back to schedule */
  132. frame->sf.gprs[9] = (unsigned long) frame;
  133. /* Store access registers to kernel stack of new process. */
  134. if (unlikely(p->flags & PF_KTHREAD)) {
  135. /* kernel thread */
  136. memset(&frame->childregs, 0, sizeof(struct pt_regs));
  137. frame->childregs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_DAT |
  138. PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  139. frame->childregs.psw.addr = PSW_ADDR_AMODE |
  140. (unsigned long) kernel_thread_starter;
  141. frame->childregs.gprs[9] = new_stackp; /* function */
  142. frame->childregs.gprs[10] = arg;
  143. frame->childregs.gprs[11] = (unsigned long) do_exit;
  144. frame->childregs.orig_gpr2 = -1;
  145. return 0;
  146. }
  147. frame->childregs = *current_pt_regs();
  148. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  149. frame->childregs.flags = 0;
  150. if (new_stackp)
  151. frame->childregs.gprs[15] = new_stackp;
  152. /* Don't copy runtime instrumentation info */
  153. p->thread.ri_cb = NULL;
  154. p->thread.ri_signum = 0;
  155. frame->childregs.psw.mask &= ~PSW_MASK_RI;
  156. /* Set a new TLS ? */
  157. if (clone_flags & CLONE_SETTLS) {
  158. unsigned long tls = frame->childregs.gprs[6];
  159. if (is_compat_task()) {
  160. p->thread.acrs[0] = (unsigned int)tls;
  161. } else {
  162. p->thread.acrs[0] = (unsigned int)(tls >> 32);
  163. p->thread.acrs[1] = (unsigned int)tls;
  164. }
  165. }
  166. return 0;
  167. }
  168. asmlinkage void execve_tail(void)
  169. {
  170. current->thread.fpu.fpc = 0;
  171. asm volatile("sfpc %0" : : "d" (0));
  172. }
  173. /*
  174. * fill in the FPU structure for a core dump.
  175. */
  176. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  177. {
  178. save_fpu_regs();
  179. fpregs->fpc = current->thread.fpu.fpc;
  180. fpregs->pad = 0;
  181. if (is_vx_task(current))
  182. convert_vx_to_fp((freg_t *)&fpregs->fprs,
  183. current->thread.fpu.vxrs);
  184. else
  185. memcpy(&fpregs->fprs, current->thread.fpu.fprs,
  186. sizeof(fpregs->fprs));
  187. return 1;
  188. }
  189. EXPORT_SYMBOL(dump_fpu);
  190. unsigned long get_wchan(struct task_struct *p)
  191. {
  192. struct stack_frame *sf, *low, *high;
  193. unsigned long return_address;
  194. int count;
  195. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  196. return 0;
  197. low = task_stack_page(p);
  198. high = (struct stack_frame *) task_pt_regs(p);
  199. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  200. if (sf <= low || sf > high)
  201. return 0;
  202. for (count = 0; count < 16; count++) {
  203. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  204. if (sf <= low || sf > high)
  205. return 0;
  206. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  207. if (!in_sched_functions(return_address))
  208. return return_address;
  209. }
  210. return 0;
  211. }
  212. unsigned long arch_align_stack(unsigned long sp)
  213. {
  214. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  215. sp -= get_random_int() & ~PAGE_MASK;
  216. return sp & ~0xf;
  217. }
  218. static inline unsigned long brk_rnd(void)
  219. {
  220. /* 8MB for 32bit, 1GB for 64bit */
  221. if (is_32bit_task())
  222. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  223. else
  224. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  225. }
  226. unsigned long arch_randomize_brk(struct mm_struct *mm)
  227. {
  228. unsigned long ret;
  229. ret = PAGE_ALIGN(mm->brk + brk_rnd());
  230. return (ret > mm->brk) ? ret : mm->brk;
  231. }