dma-mapping.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * SWIOTLB-based DMA API implementation
  3. *
  4. * Copyright (C) 2012 ARM Ltd.
  5. * Author: Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <linux/gfp.h>
  20. #include <linux/export.h>
  21. #include <linux/slab.h>
  22. #include <linux/genalloc.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/dma-contiguous.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/swiotlb.h>
  27. #include <asm/cacheflush.h>
  28. struct dma_map_ops *dma_ops;
  29. EXPORT_SYMBOL(dma_ops);
  30. static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
  31. bool coherent)
  32. {
  33. if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
  34. return pgprot_writecombine(prot);
  35. return prot;
  36. }
  37. static struct gen_pool *atomic_pool;
  38. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  39. static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
  40. static int __init early_coherent_pool(char *p)
  41. {
  42. atomic_pool_size = memparse(p, &p);
  43. return 0;
  44. }
  45. early_param("coherent_pool", early_coherent_pool);
  46. static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
  47. {
  48. unsigned long val;
  49. void *ptr = NULL;
  50. if (!atomic_pool) {
  51. WARN(1, "coherent pool not initialised!\n");
  52. return NULL;
  53. }
  54. val = gen_pool_alloc(atomic_pool, size);
  55. if (val) {
  56. phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
  57. *ret_page = phys_to_page(phys);
  58. ptr = (void *)val;
  59. memset(ptr, 0, size);
  60. }
  61. return ptr;
  62. }
  63. static bool __in_atomic_pool(void *start, size_t size)
  64. {
  65. return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
  66. }
  67. static int __free_from_pool(void *start, size_t size)
  68. {
  69. if (!__in_atomic_pool(start, size))
  70. return 0;
  71. gen_pool_free(atomic_pool, (unsigned long)start, size);
  72. return 1;
  73. }
  74. static void *__dma_alloc_coherent(struct device *dev, size_t size,
  75. dma_addr_t *dma_handle, gfp_t flags,
  76. struct dma_attrs *attrs)
  77. {
  78. if (dev == NULL) {
  79. WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
  80. return NULL;
  81. }
  82. if (IS_ENABLED(CONFIG_ZONE_DMA) &&
  83. dev->coherent_dma_mask <= DMA_BIT_MASK(32))
  84. flags |= GFP_DMA;
  85. if (dev_get_cma_area(dev) && (flags & __GFP_WAIT)) {
  86. struct page *page;
  87. void *addr;
  88. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  89. get_order(size));
  90. if (!page)
  91. return NULL;
  92. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  93. addr = page_address(page);
  94. memset(addr, 0, size);
  95. return addr;
  96. } else {
  97. return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
  98. }
  99. }
  100. static void __dma_free_coherent(struct device *dev, size_t size,
  101. void *vaddr, dma_addr_t dma_handle,
  102. struct dma_attrs *attrs)
  103. {
  104. bool freed;
  105. phys_addr_t paddr = dma_to_phys(dev, dma_handle);
  106. if (dev == NULL) {
  107. WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
  108. return;
  109. }
  110. freed = dma_release_from_contiguous(dev,
  111. phys_to_page(paddr),
  112. size >> PAGE_SHIFT);
  113. if (!freed)
  114. swiotlb_free_coherent(dev, size, vaddr, dma_handle);
  115. }
  116. static void *__dma_alloc(struct device *dev, size_t size,
  117. dma_addr_t *dma_handle, gfp_t flags,
  118. struct dma_attrs *attrs)
  119. {
  120. struct page *page;
  121. void *ptr, *coherent_ptr;
  122. bool coherent = is_device_dma_coherent(dev);
  123. pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
  124. size = PAGE_ALIGN(size);
  125. if (!coherent && !(flags & __GFP_WAIT)) {
  126. struct page *page = NULL;
  127. void *addr = __alloc_from_pool(size, &page, flags);
  128. if (addr)
  129. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  130. return addr;
  131. }
  132. ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
  133. if (!ptr)
  134. goto no_mem;
  135. /* no need for non-cacheable mapping if coherent */
  136. if (coherent)
  137. return ptr;
  138. /* remove any dirty cache lines on the kernel alias */
  139. __dma_flush_range(ptr, ptr + size);
  140. /* create a coherent mapping */
  141. page = virt_to_page(ptr);
  142. coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
  143. prot, NULL);
  144. if (!coherent_ptr)
  145. goto no_map;
  146. return coherent_ptr;
  147. no_map:
  148. __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
  149. no_mem:
  150. *dma_handle = DMA_ERROR_CODE;
  151. return NULL;
  152. }
  153. static void __dma_free(struct device *dev, size_t size,
  154. void *vaddr, dma_addr_t dma_handle,
  155. struct dma_attrs *attrs)
  156. {
  157. void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
  158. size = PAGE_ALIGN(size);
  159. if (!is_device_dma_coherent(dev)) {
  160. if (__free_from_pool(vaddr, size))
  161. return;
  162. vunmap(vaddr);
  163. }
  164. __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
  165. }
  166. static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
  167. unsigned long offset, size_t size,
  168. enum dma_data_direction dir,
  169. struct dma_attrs *attrs)
  170. {
  171. dma_addr_t dev_addr;
  172. dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
  173. if (!is_device_dma_coherent(dev))
  174. __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  175. return dev_addr;
  176. }
  177. static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
  178. size_t size, enum dma_data_direction dir,
  179. struct dma_attrs *attrs)
  180. {
  181. if (!is_device_dma_coherent(dev))
  182. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  183. swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
  184. }
  185. static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
  186. int nelems, enum dma_data_direction dir,
  187. struct dma_attrs *attrs)
  188. {
  189. struct scatterlist *sg;
  190. int i, ret;
  191. ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
  192. if (!is_device_dma_coherent(dev))
  193. for_each_sg(sgl, sg, ret, i)
  194. __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  195. sg->length, dir);
  196. return ret;
  197. }
  198. static void __swiotlb_unmap_sg_attrs(struct device *dev,
  199. struct scatterlist *sgl, int nelems,
  200. enum dma_data_direction dir,
  201. struct dma_attrs *attrs)
  202. {
  203. struct scatterlist *sg;
  204. int i;
  205. if (!is_device_dma_coherent(dev))
  206. for_each_sg(sgl, sg, nelems, i)
  207. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  208. sg->length, dir);
  209. swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
  210. }
  211. static void __swiotlb_sync_single_for_cpu(struct device *dev,
  212. dma_addr_t dev_addr, size_t size,
  213. enum dma_data_direction dir)
  214. {
  215. if (!is_device_dma_coherent(dev))
  216. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  217. swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
  218. }
  219. static void __swiotlb_sync_single_for_device(struct device *dev,
  220. dma_addr_t dev_addr, size_t size,
  221. enum dma_data_direction dir)
  222. {
  223. swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
  224. if (!is_device_dma_coherent(dev))
  225. __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  226. }
  227. static void __swiotlb_sync_sg_for_cpu(struct device *dev,
  228. struct scatterlist *sgl, int nelems,
  229. enum dma_data_direction dir)
  230. {
  231. struct scatterlist *sg;
  232. int i;
  233. if (!is_device_dma_coherent(dev))
  234. for_each_sg(sgl, sg, nelems, i)
  235. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  236. sg->length, dir);
  237. swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
  238. }
  239. static void __swiotlb_sync_sg_for_device(struct device *dev,
  240. struct scatterlist *sgl, int nelems,
  241. enum dma_data_direction dir)
  242. {
  243. struct scatterlist *sg;
  244. int i;
  245. swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
  246. if (!is_device_dma_coherent(dev))
  247. for_each_sg(sgl, sg, nelems, i)
  248. __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  249. sg->length, dir);
  250. }
  251. static int __swiotlb_mmap(struct device *dev,
  252. struct vm_area_struct *vma,
  253. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  254. struct dma_attrs *attrs)
  255. {
  256. int ret = -ENXIO;
  257. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
  258. PAGE_SHIFT;
  259. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  260. unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
  261. unsigned long off = vma->vm_pgoff;
  262. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
  263. is_device_dma_coherent(dev));
  264. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  265. return ret;
  266. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  267. ret = remap_pfn_range(vma, vma->vm_start,
  268. pfn + off,
  269. vma->vm_end - vma->vm_start,
  270. vma->vm_page_prot);
  271. }
  272. return ret;
  273. }
  274. static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
  275. void *cpu_addr, dma_addr_t handle, size_t size,
  276. struct dma_attrs *attrs)
  277. {
  278. int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  279. if (!ret)
  280. sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
  281. PAGE_ALIGN(size), 0);
  282. return ret;
  283. }
  284. static struct dma_map_ops swiotlb_dma_ops = {
  285. .alloc = __dma_alloc,
  286. .free = __dma_free,
  287. .mmap = __swiotlb_mmap,
  288. .get_sgtable = __swiotlb_get_sgtable,
  289. .map_page = __swiotlb_map_page,
  290. .unmap_page = __swiotlb_unmap_page,
  291. .map_sg = __swiotlb_map_sg_attrs,
  292. .unmap_sg = __swiotlb_unmap_sg_attrs,
  293. .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
  294. .sync_single_for_device = __swiotlb_sync_single_for_device,
  295. .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
  296. .sync_sg_for_device = __swiotlb_sync_sg_for_device,
  297. .dma_supported = swiotlb_dma_supported,
  298. .mapping_error = swiotlb_dma_mapping_error,
  299. };
  300. static int __init atomic_pool_init(void)
  301. {
  302. pgprot_t prot = __pgprot(PROT_NORMAL_NC);
  303. unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
  304. struct page *page;
  305. void *addr;
  306. unsigned int pool_size_order = get_order(atomic_pool_size);
  307. if (dev_get_cma_area(NULL))
  308. page = dma_alloc_from_contiguous(NULL, nr_pages,
  309. pool_size_order);
  310. else
  311. page = alloc_pages(GFP_DMA, pool_size_order);
  312. if (page) {
  313. int ret;
  314. void *page_addr = page_address(page);
  315. memset(page_addr, 0, atomic_pool_size);
  316. __dma_flush_range(page_addr, page_addr + atomic_pool_size);
  317. atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
  318. if (!atomic_pool)
  319. goto free_page;
  320. addr = dma_common_contiguous_remap(page, atomic_pool_size,
  321. VM_USERMAP, prot, atomic_pool_init);
  322. if (!addr)
  323. goto destroy_genpool;
  324. ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
  325. page_to_phys(page),
  326. atomic_pool_size, -1);
  327. if (ret)
  328. goto remove_mapping;
  329. gen_pool_set_algo(atomic_pool,
  330. gen_pool_first_fit_order_align,
  331. (void *)PAGE_SHIFT);
  332. pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
  333. atomic_pool_size / 1024);
  334. return 0;
  335. }
  336. goto out;
  337. remove_mapping:
  338. dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
  339. destroy_genpool:
  340. gen_pool_destroy(atomic_pool);
  341. atomic_pool = NULL;
  342. free_page:
  343. if (!dma_release_from_contiguous(NULL, page, nr_pages))
  344. __free_pages(page, pool_size_order);
  345. out:
  346. pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
  347. atomic_pool_size / 1024);
  348. return -ENOMEM;
  349. }
  350. /********************************************
  351. * The following APIs are for dummy DMA ops *
  352. ********************************************/
  353. static void *__dummy_alloc(struct device *dev, size_t size,
  354. dma_addr_t *dma_handle, gfp_t flags,
  355. struct dma_attrs *attrs)
  356. {
  357. return NULL;
  358. }
  359. static void __dummy_free(struct device *dev, size_t size,
  360. void *vaddr, dma_addr_t dma_handle,
  361. struct dma_attrs *attrs)
  362. {
  363. }
  364. static int __dummy_mmap(struct device *dev,
  365. struct vm_area_struct *vma,
  366. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  367. struct dma_attrs *attrs)
  368. {
  369. return -ENXIO;
  370. }
  371. static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
  372. unsigned long offset, size_t size,
  373. enum dma_data_direction dir,
  374. struct dma_attrs *attrs)
  375. {
  376. return DMA_ERROR_CODE;
  377. }
  378. static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
  379. size_t size, enum dma_data_direction dir,
  380. struct dma_attrs *attrs)
  381. {
  382. }
  383. static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
  384. int nelems, enum dma_data_direction dir,
  385. struct dma_attrs *attrs)
  386. {
  387. return 0;
  388. }
  389. static void __dummy_unmap_sg(struct device *dev,
  390. struct scatterlist *sgl, int nelems,
  391. enum dma_data_direction dir,
  392. struct dma_attrs *attrs)
  393. {
  394. }
  395. static void __dummy_sync_single(struct device *dev,
  396. dma_addr_t dev_addr, size_t size,
  397. enum dma_data_direction dir)
  398. {
  399. }
  400. static void __dummy_sync_sg(struct device *dev,
  401. struct scatterlist *sgl, int nelems,
  402. enum dma_data_direction dir)
  403. {
  404. }
  405. static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  406. {
  407. return 1;
  408. }
  409. static int __dummy_dma_supported(struct device *hwdev, u64 mask)
  410. {
  411. return 0;
  412. }
  413. struct dma_map_ops dummy_dma_ops = {
  414. .alloc = __dummy_alloc,
  415. .free = __dummy_free,
  416. .mmap = __dummy_mmap,
  417. .map_page = __dummy_map_page,
  418. .unmap_page = __dummy_unmap_page,
  419. .map_sg = __dummy_map_sg,
  420. .unmap_sg = __dummy_unmap_sg,
  421. .sync_single_for_cpu = __dummy_sync_single,
  422. .sync_single_for_device = __dummy_sync_single,
  423. .sync_sg_for_cpu = __dummy_sync_sg,
  424. .sync_sg_for_device = __dummy_sync_sg,
  425. .mapping_error = __dummy_mapping_error,
  426. .dma_supported = __dummy_dma_supported,
  427. };
  428. EXPORT_SYMBOL(dummy_dma_ops);
  429. static int __init arm64_dma_init(void)
  430. {
  431. int ret;
  432. dma_ops = &swiotlb_dma_ops;
  433. ret = atomic_pool_init();
  434. return ret;
  435. }
  436. arch_initcall(arm64_dma_init);
  437. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  438. static int __init dma_debug_do_init(void)
  439. {
  440. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  441. return 0;
  442. }
  443. fs_initcall(dma_debug_do_init);