svcsock.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064
  1. /*
  2. * linux/net/sunrpc/svcsock.c
  3. *
  4. * These are the RPC server socket internals.
  5. *
  6. * The server scheduling algorithm does not always distribute the load
  7. * evenly when servicing a single client. May need to modify the
  8. * svc_xprt_enqueue procedure...
  9. *
  10. * TCP support is largely untested and may be a little slow. The problem
  11. * is that we currently do two separate recvfrom's, one for the 4-byte
  12. * record length, and the second for the actual record. This could possibly
  13. * be improved by always reading a minimum size of around 100 bytes and
  14. * tucking any superfluous bytes away in a temporary store. Still, that
  15. * leaves write requests out in the rain. An alternative may be to peek at
  16. * the first skb in the queue, and if it matches the next TCP sequence
  17. * number, to extract the record marker. Yuck.
  18. *
  19. * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/errno.h>
  24. #include <linux/fcntl.h>
  25. #include <linux/net.h>
  26. #include <linux/in.h>
  27. #include <linux/inet.h>
  28. #include <linux/udp.h>
  29. #include <linux/tcp.h>
  30. #include <linux/unistd.h>
  31. #include <linux/slab.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/skbuff.h>
  34. #include <linux/file.h>
  35. #include <linux/freezer.h>
  36. #include <net/sock.h>
  37. #include <net/checksum.h>
  38. #include <net/ip.h>
  39. #include <net/ipv6.h>
  40. #include <net/tcp_states.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/ioctls.h>
  43. #include <linux/sunrpc/types.h>
  44. #include <linux/sunrpc/clnt.h>
  45. #include <linux/sunrpc/xdr.h>
  46. #include <linux/sunrpc/svcsock.h>
  47. #include <linux/sunrpc/stats.h>
  48. /* SMP locking strategy:
  49. *
  50. * svc_pool->sp_lock protects most of the fields of that pool.
  51. * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  52. * when both need to be taken (rare), svc_serv->sv_lock is first.
  53. * BKL protects svc_serv->sv_nrthread.
  54. * svc_sock->sk_lock protects the svc_sock->sk_deferred list
  55. * and the ->sk_info_authunix cache.
  56. * svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
  57. * enqueued multiply.
  58. *
  59. * Some flags can be set to certain values at any time
  60. * providing that certain rules are followed:
  61. *
  62. * XPT_CONN, XPT_DATA, can be set or cleared at any time.
  63. * after a set, svc_xprt_enqueue must be called.
  64. * after a clear, the socket must be read/accepted
  65. * if this succeeds, it must be set again.
  66. * XPT_CLOSE can set at any time. It is never cleared.
  67. * xpt_ref contains a bias of '1' until XPT_DEAD is set.
  68. * so when xprt_ref hits zero, we know the transport is dead
  69. * and no-one is using it.
  70. * XPT_DEAD can only be set while XPT_BUSY is held which ensures
  71. * no other thread will be using the socket or will try to
  72. * set XPT_DEAD.
  73. *
  74. */
  75. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  76. static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
  77. int *errp, int flags);
  78. static void svc_delete_xprt(struct svc_xprt *xprt);
  79. static void svc_udp_data_ready(struct sock *, int);
  80. static int svc_udp_recvfrom(struct svc_rqst *);
  81. static int svc_udp_sendto(struct svc_rqst *);
  82. static void svc_close_xprt(struct svc_xprt *xprt);
  83. static void svc_sock_detach(struct svc_xprt *);
  84. static void svc_sock_free(struct svc_xprt *);
  85. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  86. static int svc_deferred_recv(struct svc_rqst *rqstp);
  87. static struct cache_deferred_req *svc_defer(struct cache_req *req);
  88. static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
  89. struct sockaddr *, int, int);
  90. /* apparently the "standard" is that clients close
  91. * idle connections after 5 minutes, servers after
  92. * 6 minutes
  93. * http://www.connectathon.org/talks96/nfstcp.pdf
  94. */
  95. static int svc_conn_age_period = 6*60;
  96. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  97. static struct lock_class_key svc_key[2];
  98. static struct lock_class_key svc_slock_key[2];
  99. static inline void svc_reclassify_socket(struct socket *sock)
  100. {
  101. struct sock *sk = sock->sk;
  102. BUG_ON(sock_owned_by_user(sk));
  103. switch (sk->sk_family) {
  104. case AF_INET:
  105. sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
  106. &svc_slock_key[0],
  107. "sk_xprt.xpt_lock-AF_INET-NFSD",
  108. &svc_key[0]);
  109. break;
  110. case AF_INET6:
  111. sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
  112. &svc_slock_key[1],
  113. "sk_xprt.xpt_lock-AF_INET6-NFSD",
  114. &svc_key[1]);
  115. break;
  116. default:
  117. BUG();
  118. }
  119. }
  120. #else
  121. static inline void svc_reclassify_socket(struct socket *sock)
  122. {
  123. }
  124. #endif
  125. static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
  126. {
  127. switch (addr->sa_family) {
  128. case AF_INET:
  129. snprintf(buf, len, "%u.%u.%u.%u, port=%u",
  130. NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
  131. ntohs(((struct sockaddr_in *) addr)->sin_port));
  132. break;
  133. case AF_INET6:
  134. snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
  135. NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
  136. ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
  137. break;
  138. default:
  139. snprintf(buf, len, "unknown address type: %d", addr->sa_family);
  140. break;
  141. }
  142. return buf;
  143. }
  144. /**
  145. * svc_print_addr - Format rq_addr field for printing
  146. * @rqstp: svc_rqst struct containing address to print
  147. * @buf: target buffer for formatted address
  148. * @len: length of target buffer
  149. *
  150. */
  151. char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
  152. {
  153. return __svc_print_addr(svc_addr(rqstp), buf, len);
  154. }
  155. EXPORT_SYMBOL_GPL(svc_print_addr);
  156. /*
  157. * Queue up an idle server thread. Must have pool->sp_lock held.
  158. * Note: this is really a stack rather than a queue, so that we only
  159. * use as many different threads as we need, and the rest don't pollute
  160. * the cache.
  161. */
  162. static inline void
  163. svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
  164. {
  165. list_add(&rqstp->rq_list, &pool->sp_threads);
  166. }
  167. /*
  168. * Dequeue an nfsd thread. Must have pool->sp_lock held.
  169. */
  170. static inline void
  171. svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
  172. {
  173. list_del(&rqstp->rq_list);
  174. }
  175. /*
  176. * Release an skbuff after use
  177. */
  178. static void svc_release_skb(struct svc_rqst *rqstp)
  179. {
  180. struct sk_buff *skb = rqstp->rq_xprt_ctxt;
  181. struct svc_deferred_req *dr = rqstp->rq_deferred;
  182. if (skb) {
  183. rqstp->rq_xprt_ctxt = NULL;
  184. dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
  185. skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
  186. }
  187. if (dr) {
  188. rqstp->rq_deferred = NULL;
  189. kfree(dr);
  190. }
  191. }
  192. /*
  193. * Queue up a socket with data pending. If there are idle nfsd
  194. * processes, wake 'em up.
  195. *
  196. */
  197. void svc_xprt_enqueue(struct svc_xprt *xprt)
  198. {
  199. struct svc_serv *serv = xprt->xpt_server;
  200. struct svc_pool *pool;
  201. struct svc_rqst *rqstp;
  202. int cpu;
  203. if (!(xprt->xpt_flags &
  204. ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
  205. return;
  206. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  207. return;
  208. cpu = get_cpu();
  209. pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
  210. put_cpu();
  211. spin_lock_bh(&pool->sp_lock);
  212. if (!list_empty(&pool->sp_threads) &&
  213. !list_empty(&pool->sp_sockets))
  214. printk(KERN_ERR
  215. "svc_xprt_enqueue: "
  216. "threads and transports both waiting??\n");
  217. if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
  218. /* Don't enqueue dead sockets */
  219. dprintk("svc: transport %p is dead, not enqueued\n", xprt);
  220. goto out_unlock;
  221. }
  222. /* Mark socket as busy. It will remain in this state until the
  223. * server has processed all pending data and put the socket back
  224. * on the idle list. We update XPT_BUSY atomically because
  225. * it also guards against trying to enqueue the svc_sock twice.
  226. */
  227. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
  228. /* Don't enqueue socket while already enqueued */
  229. dprintk("svc: transport %p busy, not enqueued\n", xprt);
  230. goto out_unlock;
  231. }
  232. BUG_ON(xprt->xpt_pool != NULL);
  233. xprt->xpt_pool = pool;
  234. /* Handle pending connection */
  235. if (test_bit(XPT_CONN, &xprt->xpt_flags))
  236. goto process;
  237. /* Handle close in-progress */
  238. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  239. goto process;
  240. /* Check if we have space to reply to a request */
  241. if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
  242. /* Don't enqueue while not enough space for reply */
  243. dprintk("svc: no write space, transport %p not enqueued\n",
  244. xprt);
  245. xprt->xpt_pool = NULL;
  246. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  247. goto out_unlock;
  248. }
  249. process:
  250. if (!list_empty(&pool->sp_threads)) {
  251. rqstp = list_entry(pool->sp_threads.next,
  252. struct svc_rqst,
  253. rq_list);
  254. dprintk("svc: transport %p served by daemon %p\n",
  255. xprt, rqstp);
  256. svc_thread_dequeue(pool, rqstp);
  257. if (rqstp->rq_xprt)
  258. printk(KERN_ERR
  259. "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
  260. rqstp, rqstp->rq_xprt);
  261. rqstp->rq_xprt = xprt;
  262. svc_xprt_get(xprt);
  263. rqstp->rq_reserved = serv->sv_max_mesg;
  264. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  265. BUG_ON(xprt->xpt_pool != pool);
  266. wake_up(&rqstp->rq_wait);
  267. } else {
  268. dprintk("svc: transport %p put into queue\n", xprt);
  269. list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
  270. BUG_ON(xprt->xpt_pool != pool);
  271. }
  272. out_unlock:
  273. spin_unlock_bh(&pool->sp_lock);
  274. }
  275. EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
  276. /*
  277. * Dequeue the first socket. Must be called with the pool->sp_lock held.
  278. */
  279. static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
  280. {
  281. struct svc_xprt *xprt;
  282. if (list_empty(&pool->sp_sockets))
  283. return NULL;
  284. xprt = list_entry(pool->sp_sockets.next,
  285. struct svc_xprt, xpt_ready);
  286. list_del_init(&xprt->xpt_ready);
  287. dprintk("svc: transport %p dequeued, inuse=%d\n",
  288. xprt, atomic_read(&xprt->xpt_ref.refcount));
  289. return xprt;
  290. }
  291. /*
  292. * svc_xprt_received conditionally queues the transport for processing
  293. * by another thread. The caller must hold the XPT_BUSY bit and must
  294. * not thereafter touch transport data.
  295. *
  296. * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
  297. * insufficient) data.
  298. */
  299. void svc_xprt_received(struct svc_xprt *xprt)
  300. {
  301. BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
  302. xprt->xpt_pool = NULL;
  303. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  304. svc_xprt_enqueue(xprt);
  305. }
  306. EXPORT_SYMBOL_GPL(svc_xprt_received);
  307. /**
  308. * svc_reserve - change the space reserved for the reply to a request.
  309. * @rqstp: The request in question
  310. * @space: new max space to reserve
  311. *
  312. * Each request reserves some space on the output queue of the socket
  313. * to make sure the reply fits. This function reduces that reserved
  314. * space to be the amount of space used already, plus @space.
  315. *
  316. */
  317. void svc_reserve(struct svc_rqst *rqstp, int space)
  318. {
  319. space += rqstp->rq_res.head[0].iov_len;
  320. if (space < rqstp->rq_reserved) {
  321. struct svc_xprt *xprt = rqstp->rq_xprt;
  322. atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
  323. rqstp->rq_reserved = space;
  324. svc_xprt_enqueue(xprt);
  325. }
  326. }
  327. static void svc_xprt_release(struct svc_rqst *rqstp)
  328. {
  329. struct svc_xprt *xprt = rqstp->rq_xprt;
  330. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  331. svc_free_res_pages(rqstp);
  332. rqstp->rq_res.page_len = 0;
  333. rqstp->rq_res.page_base = 0;
  334. /* Reset response buffer and release
  335. * the reservation.
  336. * But first, check that enough space was reserved
  337. * for the reply, otherwise we have a bug!
  338. */
  339. if ((rqstp->rq_res.len) > rqstp->rq_reserved)
  340. printk(KERN_ERR "RPC request reserved %d but used %d\n",
  341. rqstp->rq_reserved,
  342. rqstp->rq_res.len);
  343. rqstp->rq_res.head[0].iov_len = 0;
  344. svc_reserve(rqstp, 0);
  345. rqstp->rq_xprt = NULL;
  346. svc_xprt_put(xprt);
  347. }
  348. /*
  349. * External function to wake up a server waiting for data
  350. * This really only makes sense for services like lockd
  351. * which have exactly one thread anyway.
  352. */
  353. void
  354. svc_wake_up(struct svc_serv *serv)
  355. {
  356. struct svc_rqst *rqstp;
  357. unsigned int i;
  358. struct svc_pool *pool;
  359. for (i = 0; i < serv->sv_nrpools; i++) {
  360. pool = &serv->sv_pools[i];
  361. spin_lock_bh(&pool->sp_lock);
  362. if (!list_empty(&pool->sp_threads)) {
  363. rqstp = list_entry(pool->sp_threads.next,
  364. struct svc_rqst,
  365. rq_list);
  366. dprintk("svc: daemon %p woken up.\n", rqstp);
  367. /*
  368. svc_thread_dequeue(pool, rqstp);
  369. rqstp->rq_sock = NULL;
  370. */
  371. wake_up(&rqstp->rq_wait);
  372. }
  373. spin_unlock_bh(&pool->sp_lock);
  374. }
  375. }
  376. union svc_pktinfo_u {
  377. struct in_pktinfo pkti;
  378. struct in6_pktinfo pkti6;
  379. };
  380. #define SVC_PKTINFO_SPACE \
  381. CMSG_SPACE(sizeof(union svc_pktinfo_u))
  382. static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
  383. {
  384. switch (rqstp->rq_sock->sk_sk->sk_family) {
  385. case AF_INET: {
  386. struct in_pktinfo *pki = CMSG_DATA(cmh);
  387. cmh->cmsg_level = SOL_IP;
  388. cmh->cmsg_type = IP_PKTINFO;
  389. pki->ipi_ifindex = 0;
  390. pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
  391. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  392. }
  393. break;
  394. case AF_INET6: {
  395. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  396. cmh->cmsg_level = SOL_IPV6;
  397. cmh->cmsg_type = IPV6_PKTINFO;
  398. pki->ipi6_ifindex = 0;
  399. ipv6_addr_copy(&pki->ipi6_addr,
  400. &rqstp->rq_daddr.addr6);
  401. cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
  402. }
  403. break;
  404. }
  405. return;
  406. }
  407. /*
  408. * Generic sendto routine
  409. */
  410. static int
  411. svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
  412. {
  413. struct svc_sock *svsk = rqstp->rq_sock;
  414. struct socket *sock = svsk->sk_sock;
  415. int slen;
  416. union {
  417. struct cmsghdr hdr;
  418. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  419. } buffer;
  420. struct cmsghdr *cmh = &buffer.hdr;
  421. int len = 0;
  422. int result;
  423. int size;
  424. struct page **ppage = xdr->pages;
  425. size_t base = xdr->page_base;
  426. unsigned int pglen = xdr->page_len;
  427. unsigned int flags = MSG_MORE;
  428. char buf[RPC_MAX_ADDRBUFLEN];
  429. slen = xdr->len;
  430. if (rqstp->rq_prot == IPPROTO_UDP) {
  431. struct msghdr msg = {
  432. .msg_name = &rqstp->rq_addr,
  433. .msg_namelen = rqstp->rq_addrlen,
  434. .msg_control = cmh,
  435. .msg_controllen = sizeof(buffer),
  436. .msg_flags = MSG_MORE,
  437. };
  438. svc_set_cmsg_data(rqstp, cmh);
  439. if (sock_sendmsg(sock, &msg, 0) < 0)
  440. goto out;
  441. }
  442. /* send head */
  443. if (slen == xdr->head[0].iov_len)
  444. flags = 0;
  445. len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
  446. xdr->head[0].iov_len, flags);
  447. if (len != xdr->head[0].iov_len)
  448. goto out;
  449. slen -= xdr->head[0].iov_len;
  450. if (slen == 0)
  451. goto out;
  452. /* send page data */
  453. size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
  454. while (pglen > 0) {
  455. if (slen == size)
  456. flags = 0;
  457. result = kernel_sendpage(sock, *ppage, base, size, flags);
  458. if (result > 0)
  459. len += result;
  460. if (result != size)
  461. goto out;
  462. slen -= size;
  463. pglen -= size;
  464. size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
  465. base = 0;
  466. ppage++;
  467. }
  468. /* send tail */
  469. if (xdr->tail[0].iov_len) {
  470. result = kernel_sendpage(sock, rqstp->rq_respages[0],
  471. ((unsigned long)xdr->tail[0].iov_base)
  472. & (PAGE_SIZE-1),
  473. xdr->tail[0].iov_len, 0);
  474. if (result > 0)
  475. len += result;
  476. }
  477. out:
  478. dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
  479. rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
  480. xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
  481. return len;
  482. }
  483. /*
  484. * Report socket names for nfsdfs
  485. */
  486. static int one_sock_name(char *buf, struct svc_sock *svsk)
  487. {
  488. int len;
  489. switch(svsk->sk_sk->sk_family) {
  490. case AF_INET:
  491. len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
  492. svsk->sk_sk->sk_protocol==IPPROTO_UDP?
  493. "udp" : "tcp",
  494. NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
  495. inet_sk(svsk->sk_sk)->num);
  496. break;
  497. default:
  498. len = sprintf(buf, "*unknown-%d*\n",
  499. svsk->sk_sk->sk_family);
  500. }
  501. return len;
  502. }
  503. int
  504. svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
  505. {
  506. struct svc_sock *svsk, *closesk = NULL;
  507. int len = 0;
  508. if (!serv)
  509. return 0;
  510. spin_lock_bh(&serv->sv_lock);
  511. list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
  512. int onelen = one_sock_name(buf+len, svsk);
  513. if (toclose && strcmp(toclose, buf+len) == 0)
  514. closesk = svsk;
  515. else
  516. len += onelen;
  517. }
  518. spin_unlock_bh(&serv->sv_lock);
  519. if (closesk)
  520. /* Should unregister with portmap, but you cannot
  521. * unregister just one protocol...
  522. */
  523. svc_close_xprt(&closesk->sk_xprt);
  524. else if (toclose)
  525. return -ENOENT;
  526. return len;
  527. }
  528. EXPORT_SYMBOL(svc_sock_names);
  529. /*
  530. * Check input queue length
  531. */
  532. static int
  533. svc_recv_available(struct svc_sock *svsk)
  534. {
  535. struct socket *sock = svsk->sk_sock;
  536. int avail, err;
  537. err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
  538. return (err >= 0)? avail : err;
  539. }
  540. /*
  541. * Generic recvfrom routine.
  542. */
  543. static int
  544. svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
  545. {
  546. struct svc_sock *svsk = rqstp->rq_sock;
  547. struct msghdr msg = {
  548. .msg_flags = MSG_DONTWAIT,
  549. };
  550. int len;
  551. len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
  552. msg.msg_flags);
  553. dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
  554. svsk, iov[0].iov_base, iov[0].iov_len, len);
  555. return len;
  556. }
  557. /*
  558. * Set socket snd and rcv buffer lengths
  559. */
  560. static inline void
  561. svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
  562. {
  563. #if 0
  564. mm_segment_t oldfs;
  565. oldfs = get_fs(); set_fs(KERNEL_DS);
  566. sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
  567. (char*)&snd, sizeof(snd));
  568. sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
  569. (char*)&rcv, sizeof(rcv));
  570. #else
  571. /* sock_setsockopt limits use to sysctl_?mem_max,
  572. * which isn't acceptable. Until that is made conditional
  573. * on not having CAP_SYS_RESOURCE or similar, we go direct...
  574. * DaveM said I could!
  575. */
  576. lock_sock(sock->sk);
  577. sock->sk->sk_sndbuf = snd * 2;
  578. sock->sk->sk_rcvbuf = rcv * 2;
  579. sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
  580. release_sock(sock->sk);
  581. #endif
  582. }
  583. /*
  584. * INET callback when data has been received on the socket.
  585. */
  586. static void
  587. svc_udp_data_ready(struct sock *sk, int count)
  588. {
  589. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  590. if (svsk) {
  591. dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
  592. svsk, sk, count,
  593. test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  594. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  595. svc_xprt_enqueue(&svsk->sk_xprt);
  596. }
  597. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  598. wake_up_interruptible(sk->sk_sleep);
  599. }
  600. /*
  601. * INET callback when space is newly available on the socket.
  602. */
  603. static void
  604. svc_write_space(struct sock *sk)
  605. {
  606. struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
  607. if (svsk) {
  608. dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
  609. svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
  610. svc_xprt_enqueue(&svsk->sk_xprt);
  611. }
  612. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
  613. dprintk("RPC svc_write_space: someone sleeping on %p\n",
  614. svsk);
  615. wake_up_interruptible(sk->sk_sleep);
  616. }
  617. }
  618. /*
  619. * Copy the UDP datagram's destination address to the rqstp structure.
  620. * The 'destination' address in this case is the address to which the
  621. * peer sent the datagram, i.e. our local address. For multihomed
  622. * hosts, this can change from msg to msg. Note that only the IP
  623. * address changes, the port number should remain the same.
  624. */
  625. static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
  626. struct cmsghdr *cmh)
  627. {
  628. switch (rqstp->rq_sock->sk_sk->sk_family) {
  629. case AF_INET: {
  630. struct in_pktinfo *pki = CMSG_DATA(cmh);
  631. rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
  632. break;
  633. }
  634. case AF_INET6: {
  635. struct in6_pktinfo *pki = CMSG_DATA(cmh);
  636. ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
  637. break;
  638. }
  639. }
  640. }
  641. /*
  642. * Receive a datagram from a UDP socket.
  643. */
  644. static int
  645. svc_udp_recvfrom(struct svc_rqst *rqstp)
  646. {
  647. struct svc_sock *svsk = rqstp->rq_sock;
  648. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  649. struct sk_buff *skb;
  650. union {
  651. struct cmsghdr hdr;
  652. long all[SVC_PKTINFO_SPACE / sizeof(long)];
  653. } buffer;
  654. struct cmsghdr *cmh = &buffer.hdr;
  655. int err, len;
  656. struct msghdr msg = {
  657. .msg_name = svc_addr(rqstp),
  658. .msg_control = cmh,
  659. .msg_controllen = sizeof(buffer),
  660. .msg_flags = MSG_DONTWAIT,
  661. };
  662. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  663. /* udp sockets need large rcvbuf as all pending
  664. * requests are still in that buffer. sndbuf must
  665. * also be large enough that there is enough space
  666. * for one reply per thread. We count all threads
  667. * rather than threads in a particular pool, which
  668. * provides an upper bound on the number of threads
  669. * which will access the socket.
  670. */
  671. svc_sock_setbufsize(svsk->sk_sock,
  672. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  673. (serv->sv_nrthreads+3) * serv->sv_max_mesg);
  674. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  675. skb = NULL;
  676. err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
  677. 0, 0, MSG_PEEK | MSG_DONTWAIT);
  678. if (err >= 0)
  679. skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
  680. if (skb == NULL) {
  681. if (err != -EAGAIN) {
  682. /* possibly an icmp error */
  683. dprintk("svc: recvfrom returned error %d\n", -err);
  684. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  685. }
  686. svc_xprt_received(&svsk->sk_xprt);
  687. return -EAGAIN;
  688. }
  689. len = svc_addr_len(svc_addr(rqstp));
  690. if (len < 0)
  691. return len;
  692. rqstp->rq_addrlen = len;
  693. if (skb->tstamp.tv64 == 0) {
  694. skb->tstamp = ktime_get_real();
  695. /* Don't enable netstamp, sunrpc doesn't
  696. need that much accuracy */
  697. }
  698. svsk->sk_sk->sk_stamp = skb->tstamp;
  699. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
  700. /*
  701. * Maybe more packets - kick another thread ASAP.
  702. */
  703. svc_xprt_received(&svsk->sk_xprt);
  704. len = skb->len - sizeof(struct udphdr);
  705. rqstp->rq_arg.len = len;
  706. rqstp->rq_prot = IPPROTO_UDP;
  707. if (cmh->cmsg_level != IPPROTO_IP ||
  708. cmh->cmsg_type != IP_PKTINFO) {
  709. if (net_ratelimit())
  710. printk("rpcsvc: received unknown control message:"
  711. "%d/%d\n",
  712. cmh->cmsg_level, cmh->cmsg_type);
  713. skb_free_datagram(svsk->sk_sk, skb);
  714. return 0;
  715. }
  716. svc_udp_get_dest_address(rqstp, cmh);
  717. if (skb_is_nonlinear(skb)) {
  718. /* we have to copy */
  719. local_bh_disable();
  720. if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
  721. local_bh_enable();
  722. /* checksum error */
  723. skb_free_datagram(svsk->sk_sk, skb);
  724. return 0;
  725. }
  726. local_bh_enable();
  727. skb_free_datagram(svsk->sk_sk, skb);
  728. } else {
  729. /* we can use it in-place */
  730. rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
  731. rqstp->rq_arg.head[0].iov_len = len;
  732. if (skb_checksum_complete(skb)) {
  733. skb_free_datagram(svsk->sk_sk, skb);
  734. return 0;
  735. }
  736. rqstp->rq_xprt_ctxt = skb;
  737. }
  738. rqstp->rq_arg.page_base = 0;
  739. if (len <= rqstp->rq_arg.head[0].iov_len) {
  740. rqstp->rq_arg.head[0].iov_len = len;
  741. rqstp->rq_arg.page_len = 0;
  742. rqstp->rq_respages = rqstp->rq_pages+1;
  743. } else {
  744. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  745. rqstp->rq_respages = rqstp->rq_pages + 1 +
  746. DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
  747. }
  748. if (serv->sv_stats)
  749. serv->sv_stats->netudpcnt++;
  750. return len;
  751. }
  752. static int
  753. svc_udp_sendto(struct svc_rqst *rqstp)
  754. {
  755. int error;
  756. error = svc_sendto(rqstp, &rqstp->rq_res);
  757. if (error == -ECONNREFUSED)
  758. /* ICMP error on earlier request. */
  759. error = svc_sendto(rqstp, &rqstp->rq_res);
  760. return error;
  761. }
  762. static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
  763. {
  764. }
  765. static int svc_udp_has_wspace(struct svc_xprt *xprt)
  766. {
  767. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  768. struct svc_serv *serv = xprt->xpt_server;
  769. unsigned long required;
  770. /*
  771. * Set the SOCK_NOSPACE flag before checking the available
  772. * sock space.
  773. */
  774. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  775. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  776. if (required*2 > sock_wspace(svsk->sk_sk))
  777. return 0;
  778. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  779. return 1;
  780. }
  781. static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
  782. {
  783. BUG();
  784. return NULL;
  785. }
  786. static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
  787. struct sockaddr *sa, int salen,
  788. int flags)
  789. {
  790. return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
  791. }
  792. static struct svc_xprt_ops svc_udp_ops = {
  793. .xpo_create = svc_udp_create,
  794. .xpo_recvfrom = svc_udp_recvfrom,
  795. .xpo_sendto = svc_udp_sendto,
  796. .xpo_release_rqst = svc_release_skb,
  797. .xpo_detach = svc_sock_detach,
  798. .xpo_free = svc_sock_free,
  799. .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
  800. .xpo_has_wspace = svc_udp_has_wspace,
  801. .xpo_accept = svc_udp_accept,
  802. };
  803. static struct svc_xprt_class svc_udp_class = {
  804. .xcl_name = "udp",
  805. .xcl_owner = THIS_MODULE,
  806. .xcl_ops = &svc_udp_ops,
  807. .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
  808. };
  809. static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
  810. {
  811. int one = 1;
  812. mm_segment_t oldfs;
  813. svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
  814. clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  815. svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
  816. svsk->sk_sk->sk_write_space = svc_write_space;
  817. /* initialise setting must have enough space to
  818. * receive and respond to one request.
  819. * svc_udp_recvfrom will re-adjust if necessary
  820. */
  821. svc_sock_setbufsize(svsk->sk_sock,
  822. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  823. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  824. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
  825. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  826. oldfs = get_fs();
  827. set_fs(KERNEL_DS);
  828. /* make sure we get destination address info */
  829. svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
  830. (char __user *)&one, sizeof(one));
  831. set_fs(oldfs);
  832. }
  833. /*
  834. * A data_ready event on a listening socket means there's a connection
  835. * pending. Do not use state_change as a substitute for it.
  836. */
  837. static void
  838. svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
  839. {
  840. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  841. dprintk("svc: socket %p TCP (listen) state change %d\n",
  842. sk, sk->sk_state);
  843. /*
  844. * This callback may called twice when a new connection
  845. * is established as a child socket inherits everything
  846. * from a parent LISTEN socket.
  847. * 1) data_ready method of the parent socket will be called
  848. * when one of child sockets become ESTABLISHED.
  849. * 2) data_ready method of the child socket may be called
  850. * when it receives data before the socket is accepted.
  851. * In case of 2, we should ignore it silently.
  852. */
  853. if (sk->sk_state == TCP_LISTEN) {
  854. if (svsk) {
  855. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  856. svc_xprt_enqueue(&svsk->sk_xprt);
  857. } else
  858. printk("svc: socket %p: no user data\n", sk);
  859. }
  860. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  861. wake_up_interruptible_all(sk->sk_sleep);
  862. }
  863. /*
  864. * A state change on a connected socket means it's dying or dead.
  865. */
  866. static void
  867. svc_tcp_state_change(struct sock *sk)
  868. {
  869. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  870. dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
  871. sk, sk->sk_state, sk->sk_user_data);
  872. if (!svsk)
  873. printk("svc: socket %p: no user data\n", sk);
  874. else {
  875. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  876. svc_xprt_enqueue(&svsk->sk_xprt);
  877. }
  878. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  879. wake_up_interruptible_all(sk->sk_sleep);
  880. }
  881. static void
  882. svc_tcp_data_ready(struct sock *sk, int count)
  883. {
  884. struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
  885. dprintk("svc: socket %p TCP data ready (svsk %p)\n",
  886. sk, sk->sk_user_data);
  887. if (svsk) {
  888. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  889. svc_xprt_enqueue(&svsk->sk_xprt);
  890. }
  891. if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
  892. wake_up_interruptible(sk->sk_sleep);
  893. }
  894. static inline int svc_port_is_privileged(struct sockaddr *sin)
  895. {
  896. switch (sin->sa_family) {
  897. case AF_INET:
  898. return ntohs(((struct sockaddr_in *)sin)->sin_port)
  899. < PROT_SOCK;
  900. case AF_INET6:
  901. return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
  902. < PROT_SOCK;
  903. default:
  904. return 0;
  905. }
  906. }
  907. /*
  908. * Accept a TCP connection
  909. */
  910. static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
  911. {
  912. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  913. struct sockaddr_storage addr;
  914. struct sockaddr *sin = (struct sockaddr *) &addr;
  915. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  916. struct socket *sock = svsk->sk_sock;
  917. struct socket *newsock;
  918. struct svc_sock *newsvsk;
  919. int err, slen;
  920. char buf[RPC_MAX_ADDRBUFLEN];
  921. dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
  922. if (!sock)
  923. return NULL;
  924. clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  925. err = kernel_accept(sock, &newsock, O_NONBLOCK);
  926. if (err < 0) {
  927. if (err == -ENOMEM)
  928. printk(KERN_WARNING "%s: no more sockets!\n",
  929. serv->sv_name);
  930. else if (err != -EAGAIN && net_ratelimit())
  931. printk(KERN_WARNING "%s: accept failed (err %d)!\n",
  932. serv->sv_name, -err);
  933. return NULL;
  934. }
  935. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  936. err = kernel_getpeername(newsock, sin, &slen);
  937. if (err < 0) {
  938. if (net_ratelimit())
  939. printk(KERN_WARNING "%s: peername failed (err %d)!\n",
  940. serv->sv_name, -err);
  941. goto failed; /* aborted connection or whatever */
  942. }
  943. /* Ideally, we would want to reject connections from unauthorized
  944. * hosts here, but when we get encryption, the IP of the host won't
  945. * tell us anything. For now just warn about unpriv connections.
  946. */
  947. if (!svc_port_is_privileged(sin)) {
  948. dprintk(KERN_WARNING
  949. "%s: connect from unprivileged port: %s\n",
  950. serv->sv_name,
  951. __svc_print_addr(sin, buf, sizeof(buf)));
  952. }
  953. dprintk("%s: connect from %s\n", serv->sv_name,
  954. __svc_print_addr(sin, buf, sizeof(buf)));
  955. /* make sure that a write doesn't block forever when
  956. * low on memory
  957. */
  958. newsock->sk->sk_sndtimeo = HZ*30;
  959. if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
  960. (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
  961. goto failed;
  962. svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
  963. err = kernel_getsockname(newsock, sin, &slen);
  964. if (unlikely(err < 0)) {
  965. dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
  966. slen = offsetof(struct sockaddr, sa_data);
  967. }
  968. svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
  969. if (serv->sv_stats)
  970. serv->sv_stats->nettcpconn++;
  971. return &newsvsk->sk_xprt;
  972. failed:
  973. sock_release(newsock);
  974. return NULL;
  975. }
  976. /*
  977. * Receive data from a TCP socket.
  978. */
  979. static int
  980. svc_tcp_recvfrom(struct svc_rqst *rqstp)
  981. {
  982. struct svc_sock *svsk = rqstp->rq_sock;
  983. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  984. int len;
  985. struct kvec *vec;
  986. int pnum, vlen;
  987. dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
  988. svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
  989. test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
  990. test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
  991. if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
  992. /* sndbuf needs to have room for one request
  993. * per thread, otherwise we can stall even when the
  994. * network isn't a bottleneck.
  995. *
  996. * We count all threads rather than threads in a
  997. * particular pool, which provides an upper bound
  998. * on the number of threads which will access the socket.
  999. *
  1000. * rcvbuf just needs to be able to hold a few requests.
  1001. * Normally they will be removed from the queue
  1002. * as soon a a complete request arrives.
  1003. */
  1004. svc_sock_setbufsize(svsk->sk_sock,
  1005. (serv->sv_nrthreads+3) * serv->sv_max_mesg,
  1006. 3 * serv->sv_max_mesg);
  1007. clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1008. /* Receive data. If we haven't got the record length yet, get
  1009. * the next four bytes. Otherwise try to gobble up as much as
  1010. * possible up to the complete record length.
  1011. */
  1012. if (svsk->sk_tcplen < 4) {
  1013. unsigned long want = 4 - svsk->sk_tcplen;
  1014. struct kvec iov;
  1015. iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
  1016. iov.iov_len = want;
  1017. if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
  1018. goto error;
  1019. svsk->sk_tcplen += len;
  1020. if (len < want) {
  1021. dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
  1022. len, want);
  1023. svc_xprt_received(&svsk->sk_xprt);
  1024. return -EAGAIN; /* record header not complete */
  1025. }
  1026. svsk->sk_reclen = ntohl(svsk->sk_reclen);
  1027. if (!(svsk->sk_reclen & 0x80000000)) {
  1028. /* FIXME: technically, a record can be fragmented,
  1029. * and non-terminal fragments will not have the top
  1030. * bit set in the fragment length header.
  1031. * But apparently no known nfs clients send fragmented
  1032. * records. */
  1033. if (net_ratelimit())
  1034. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
  1035. " (non-terminal)\n",
  1036. (unsigned long) svsk->sk_reclen);
  1037. goto err_delete;
  1038. }
  1039. svsk->sk_reclen &= 0x7fffffff;
  1040. dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
  1041. if (svsk->sk_reclen > serv->sv_max_mesg) {
  1042. if (net_ratelimit())
  1043. printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
  1044. " (large)\n",
  1045. (unsigned long) svsk->sk_reclen);
  1046. goto err_delete;
  1047. }
  1048. }
  1049. /* Check whether enough data is available */
  1050. len = svc_recv_available(svsk);
  1051. if (len < 0)
  1052. goto error;
  1053. if (len < svsk->sk_reclen) {
  1054. dprintk("svc: incomplete TCP record (%d of %d)\n",
  1055. len, svsk->sk_reclen);
  1056. svc_xprt_received(&svsk->sk_xprt);
  1057. return -EAGAIN; /* record not complete */
  1058. }
  1059. len = svsk->sk_reclen;
  1060. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1061. vec = rqstp->rq_vec;
  1062. vec[0] = rqstp->rq_arg.head[0];
  1063. vlen = PAGE_SIZE;
  1064. pnum = 1;
  1065. while (vlen < len) {
  1066. vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
  1067. vec[pnum].iov_len = PAGE_SIZE;
  1068. pnum++;
  1069. vlen += PAGE_SIZE;
  1070. }
  1071. rqstp->rq_respages = &rqstp->rq_pages[pnum];
  1072. /* Now receive data */
  1073. len = svc_recvfrom(rqstp, vec, pnum, len);
  1074. if (len < 0)
  1075. goto error;
  1076. dprintk("svc: TCP complete record (%d bytes)\n", len);
  1077. rqstp->rq_arg.len = len;
  1078. rqstp->rq_arg.page_base = 0;
  1079. if (len <= rqstp->rq_arg.head[0].iov_len) {
  1080. rqstp->rq_arg.head[0].iov_len = len;
  1081. rqstp->rq_arg.page_len = 0;
  1082. } else {
  1083. rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
  1084. }
  1085. rqstp->rq_xprt_ctxt = NULL;
  1086. rqstp->rq_prot = IPPROTO_TCP;
  1087. /* Reset TCP read info */
  1088. svsk->sk_reclen = 0;
  1089. svsk->sk_tcplen = 0;
  1090. svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
  1091. svc_xprt_received(&svsk->sk_xprt);
  1092. if (serv->sv_stats)
  1093. serv->sv_stats->nettcpcnt++;
  1094. return len;
  1095. err_delete:
  1096. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1097. return -EAGAIN;
  1098. error:
  1099. if (len == -EAGAIN) {
  1100. dprintk("RPC: TCP recvfrom got EAGAIN\n");
  1101. svc_xprt_received(&svsk->sk_xprt);
  1102. } else {
  1103. printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
  1104. svsk->sk_xprt.xpt_server->sv_name, -len);
  1105. goto err_delete;
  1106. }
  1107. return len;
  1108. }
  1109. /*
  1110. * Send out data on TCP socket.
  1111. */
  1112. static int
  1113. svc_tcp_sendto(struct svc_rqst *rqstp)
  1114. {
  1115. struct xdr_buf *xbufp = &rqstp->rq_res;
  1116. int sent;
  1117. __be32 reclen;
  1118. /* Set up the first element of the reply kvec.
  1119. * Any other kvecs that may be in use have been taken
  1120. * care of by the server implementation itself.
  1121. */
  1122. reclen = htonl(0x80000000|((xbufp->len ) - 4));
  1123. memcpy(xbufp->head[0].iov_base, &reclen, 4);
  1124. if (test_bit(XPT_DEAD, &rqstp->rq_sock->sk_xprt.xpt_flags))
  1125. return -ENOTCONN;
  1126. sent = svc_sendto(rqstp, &rqstp->rq_res);
  1127. if (sent != xbufp->len) {
  1128. printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
  1129. rqstp->rq_sock->sk_xprt.xpt_server->sv_name,
  1130. (sent<0)?"got error":"sent only",
  1131. sent, xbufp->len);
  1132. set_bit(XPT_CLOSE, &rqstp->rq_sock->sk_xprt.xpt_flags);
  1133. svc_xprt_enqueue(rqstp->rq_xprt);
  1134. sent = -EAGAIN;
  1135. }
  1136. return sent;
  1137. }
  1138. /*
  1139. * Setup response header. TCP has a 4B record length field.
  1140. */
  1141. static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
  1142. {
  1143. struct kvec *resv = &rqstp->rq_res.head[0];
  1144. /* tcp needs a space for the record length... */
  1145. svc_putnl(resv, 0);
  1146. }
  1147. static int svc_tcp_has_wspace(struct svc_xprt *xprt)
  1148. {
  1149. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1150. struct svc_serv *serv = svsk->sk_xprt.xpt_server;
  1151. int required;
  1152. int wspace;
  1153. /*
  1154. * Set the SOCK_NOSPACE flag before checking the available
  1155. * sock space.
  1156. */
  1157. set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1158. required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
  1159. wspace = sk_stream_wspace(svsk->sk_sk);
  1160. if (wspace < sk_stream_min_wspace(svsk->sk_sk))
  1161. return 0;
  1162. if (required * 2 > wspace)
  1163. return 0;
  1164. clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
  1165. return 1;
  1166. }
  1167. static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
  1168. struct sockaddr *sa, int salen,
  1169. int flags)
  1170. {
  1171. return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
  1172. }
  1173. static struct svc_xprt_ops svc_tcp_ops = {
  1174. .xpo_create = svc_tcp_create,
  1175. .xpo_recvfrom = svc_tcp_recvfrom,
  1176. .xpo_sendto = svc_tcp_sendto,
  1177. .xpo_release_rqst = svc_release_skb,
  1178. .xpo_detach = svc_sock_detach,
  1179. .xpo_free = svc_sock_free,
  1180. .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
  1181. .xpo_has_wspace = svc_tcp_has_wspace,
  1182. .xpo_accept = svc_tcp_accept,
  1183. };
  1184. static struct svc_xprt_class svc_tcp_class = {
  1185. .xcl_name = "tcp",
  1186. .xcl_owner = THIS_MODULE,
  1187. .xcl_ops = &svc_tcp_ops,
  1188. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  1189. };
  1190. void svc_init_xprt_sock(void)
  1191. {
  1192. svc_reg_xprt_class(&svc_tcp_class);
  1193. svc_reg_xprt_class(&svc_udp_class);
  1194. }
  1195. void svc_cleanup_xprt_sock(void)
  1196. {
  1197. svc_unreg_xprt_class(&svc_tcp_class);
  1198. svc_unreg_xprt_class(&svc_udp_class);
  1199. }
  1200. static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
  1201. {
  1202. struct sock *sk = svsk->sk_sk;
  1203. struct tcp_sock *tp = tcp_sk(sk);
  1204. svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
  1205. set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
  1206. if (sk->sk_state == TCP_LISTEN) {
  1207. dprintk("setting up TCP socket for listening\n");
  1208. set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
  1209. sk->sk_data_ready = svc_tcp_listen_data_ready;
  1210. set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
  1211. } else {
  1212. dprintk("setting up TCP socket for reading\n");
  1213. sk->sk_state_change = svc_tcp_state_change;
  1214. sk->sk_data_ready = svc_tcp_data_ready;
  1215. sk->sk_write_space = svc_write_space;
  1216. svsk->sk_reclen = 0;
  1217. svsk->sk_tcplen = 0;
  1218. tp->nonagle = 1; /* disable Nagle's algorithm */
  1219. /* initialise setting must have enough space to
  1220. * receive and respond to one request.
  1221. * svc_tcp_recvfrom will re-adjust if necessary
  1222. */
  1223. svc_sock_setbufsize(svsk->sk_sock,
  1224. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
  1225. 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
  1226. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1227. set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
  1228. if (sk->sk_state != TCP_ESTABLISHED)
  1229. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1230. }
  1231. }
  1232. void
  1233. svc_sock_update_bufs(struct svc_serv *serv)
  1234. {
  1235. /*
  1236. * The number of server threads has changed. Update
  1237. * rcvbuf and sndbuf accordingly on all sockets
  1238. */
  1239. struct list_head *le;
  1240. spin_lock_bh(&serv->sv_lock);
  1241. list_for_each(le, &serv->sv_permsocks) {
  1242. struct svc_sock *svsk =
  1243. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1244. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1245. }
  1246. list_for_each(le, &serv->sv_tempsocks) {
  1247. struct svc_sock *svsk =
  1248. list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1249. set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
  1250. }
  1251. spin_unlock_bh(&serv->sv_lock);
  1252. }
  1253. /*
  1254. * Make sure that we don't have too many active connections. If we
  1255. * have, something must be dropped.
  1256. *
  1257. * There's no point in trying to do random drop here for DoS
  1258. * prevention. The NFS clients does 1 reconnect in 15 seconds. An
  1259. * attacker can easily beat that.
  1260. *
  1261. * The only somewhat efficient mechanism would be if drop old
  1262. * connections from the same IP first. But right now we don't even
  1263. * record the client IP in svc_sock.
  1264. */
  1265. static void svc_check_conn_limits(struct svc_serv *serv)
  1266. {
  1267. if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
  1268. struct svc_sock *svsk = NULL;
  1269. spin_lock_bh(&serv->sv_lock);
  1270. if (!list_empty(&serv->sv_tempsocks)) {
  1271. if (net_ratelimit()) {
  1272. /* Try to help the admin */
  1273. printk(KERN_NOTICE "%s: too many open TCP "
  1274. "sockets, consider increasing the "
  1275. "number of nfsd threads\n",
  1276. serv->sv_name);
  1277. }
  1278. /*
  1279. * Always select the oldest socket. It's not fair,
  1280. * but so is life
  1281. */
  1282. svsk = list_entry(serv->sv_tempsocks.prev,
  1283. struct svc_sock,
  1284. sk_xprt.xpt_list);
  1285. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1286. svc_xprt_get(&svsk->sk_xprt);
  1287. }
  1288. spin_unlock_bh(&serv->sv_lock);
  1289. if (svsk) {
  1290. svc_xprt_enqueue(&svsk->sk_xprt);
  1291. svc_xprt_put(&svsk->sk_xprt);
  1292. }
  1293. }
  1294. }
  1295. /*
  1296. * Receive the next request on any socket. This code is carefully
  1297. * organised not to touch any cachelines in the shared svc_serv
  1298. * structure, only cachelines in the local svc_pool.
  1299. */
  1300. int
  1301. svc_recv(struct svc_rqst *rqstp, long timeout)
  1302. {
  1303. struct svc_xprt *xprt = NULL;
  1304. struct svc_serv *serv = rqstp->rq_server;
  1305. struct svc_pool *pool = rqstp->rq_pool;
  1306. int len, i;
  1307. int pages;
  1308. struct xdr_buf *arg;
  1309. DECLARE_WAITQUEUE(wait, current);
  1310. dprintk("svc: server %p waiting for data (to = %ld)\n",
  1311. rqstp, timeout);
  1312. if (rqstp->rq_xprt)
  1313. printk(KERN_ERR
  1314. "svc_recv: service %p, transport not NULL!\n",
  1315. rqstp);
  1316. if (waitqueue_active(&rqstp->rq_wait))
  1317. printk(KERN_ERR
  1318. "svc_recv: service %p, wait queue active!\n",
  1319. rqstp);
  1320. /* now allocate needed pages. If we get a failure, sleep briefly */
  1321. pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
  1322. for (i=0; i < pages ; i++)
  1323. while (rqstp->rq_pages[i] == NULL) {
  1324. struct page *p = alloc_page(GFP_KERNEL);
  1325. if (!p)
  1326. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  1327. rqstp->rq_pages[i] = p;
  1328. }
  1329. rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
  1330. BUG_ON(pages >= RPCSVC_MAXPAGES);
  1331. /* Make arg->head point to first page and arg->pages point to rest */
  1332. arg = &rqstp->rq_arg;
  1333. arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
  1334. arg->head[0].iov_len = PAGE_SIZE;
  1335. arg->pages = rqstp->rq_pages + 1;
  1336. arg->page_base = 0;
  1337. /* save at least one page for response */
  1338. arg->page_len = (pages-2)*PAGE_SIZE;
  1339. arg->len = (pages-1)*PAGE_SIZE;
  1340. arg->tail[0].iov_len = 0;
  1341. try_to_freeze();
  1342. cond_resched();
  1343. if (signalled())
  1344. return -EINTR;
  1345. spin_lock_bh(&pool->sp_lock);
  1346. xprt = svc_xprt_dequeue(pool);
  1347. if (xprt) {
  1348. rqstp->rq_xprt = xprt;
  1349. svc_xprt_get(xprt);
  1350. rqstp->rq_reserved = serv->sv_max_mesg;
  1351. atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
  1352. } else {
  1353. /* No data pending. Go to sleep */
  1354. svc_thread_enqueue(pool, rqstp);
  1355. /*
  1356. * We have to be able to interrupt this wait
  1357. * to bring down the daemons ...
  1358. */
  1359. set_current_state(TASK_INTERRUPTIBLE);
  1360. add_wait_queue(&rqstp->rq_wait, &wait);
  1361. spin_unlock_bh(&pool->sp_lock);
  1362. schedule_timeout(timeout);
  1363. try_to_freeze();
  1364. spin_lock_bh(&pool->sp_lock);
  1365. remove_wait_queue(&rqstp->rq_wait, &wait);
  1366. xprt = rqstp->rq_xprt;
  1367. if (!xprt) {
  1368. svc_thread_dequeue(pool, rqstp);
  1369. spin_unlock_bh(&pool->sp_lock);
  1370. dprintk("svc: server %p, no data yet\n", rqstp);
  1371. return signalled()? -EINTR : -EAGAIN;
  1372. }
  1373. }
  1374. spin_unlock_bh(&pool->sp_lock);
  1375. len = 0;
  1376. if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
  1377. dprintk("svc_recv: found XPT_CLOSE\n");
  1378. svc_delete_xprt(xprt);
  1379. } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
  1380. struct svc_xprt *newxpt;
  1381. newxpt = xprt->xpt_ops->xpo_accept(xprt);
  1382. if (newxpt) {
  1383. /*
  1384. * We know this module_get will succeed because the
  1385. * listener holds a reference too
  1386. */
  1387. __module_get(newxpt->xpt_class->xcl_owner);
  1388. svc_check_conn_limits(xprt->xpt_server);
  1389. svc_xprt_received(newxpt);
  1390. }
  1391. svc_xprt_received(xprt);
  1392. } else {
  1393. dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
  1394. rqstp, pool->sp_id, xprt,
  1395. atomic_read(&xprt->xpt_ref.refcount));
  1396. rqstp->rq_deferred = svc_deferred_dequeue(xprt);
  1397. if (rqstp->rq_deferred) {
  1398. svc_xprt_received(xprt);
  1399. len = svc_deferred_recv(rqstp);
  1400. } else
  1401. len = xprt->xpt_ops->xpo_recvfrom(rqstp);
  1402. dprintk("svc: got len=%d\n", len);
  1403. }
  1404. /* No data, incomplete (TCP) read, or accept() */
  1405. if (len == 0 || len == -EAGAIN) {
  1406. rqstp->rq_res.len = 0;
  1407. svc_xprt_release(rqstp);
  1408. return -EAGAIN;
  1409. }
  1410. clear_bit(XPT_OLD, &xprt->xpt_flags);
  1411. rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
  1412. rqstp->rq_chandle.defer = svc_defer;
  1413. if (serv->sv_stats)
  1414. serv->sv_stats->netcnt++;
  1415. return len;
  1416. }
  1417. /*
  1418. * Drop request
  1419. */
  1420. void
  1421. svc_drop(struct svc_rqst *rqstp)
  1422. {
  1423. dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
  1424. svc_xprt_release(rqstp);
  1425. }
  1426. /*
  1427. * Return reply to client.
  1428. */
  1429. int
  1430. svc_send(struct svc_rqst *rqstp)
  1431. {
  1432. struct svc_xprt *xprt;
  1433. int len;
  1434. struct xdr_buf *xb;
  1435. xprt = rqstp->rq_xprt;
  1436. if (!xprt)
  1437. return -EFAULT;
  1438. /* release the receive skb before sending the reply */
  1439. rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
  1440. /* calculate over-all length */
  1441. xb = & rqstp->rq_res;
  1442. xb->len = xb->head[0].iov_len +
  1443. xb->page_len +
  1444. xb->tail[0].iov_len;
  1445. /* Grab mutex to serialize outgoing data. */
  1446. mutex_lock(&xprt->xpt_mutex);
  1447. if (test_bit(XPT_DEAD, &xprt->xpt_flags))
  1448. len = -ENOTCONN;
  1449. else
  1450. len = xprt->xpt_ops->xpo_sendto(rqstp);
  1451. mutex_unlock(&xprt->xpt_mutex);
  1452. svc_xprt_release(rqstp);
  1453. if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
  1454. return 0;
  1455. return len;
  1456. }
  1457. /*
  1458. * Timer function to close old temporary sockets, using
  1459. * a mark-and-sweep algorithm.
  1460. */
  1461. static void
  1462. svc_age_temp_sockets(unsigned long closure)
  1463. {
  1464. struct svc_serv *serv = (struct svc_serv *)closure;
  1465. struct svc_sock *svsk;
  1466. struct list_head *le, *next;
  1467. LIST_HEAD(to_be_aged);
  1468. dprintk("svc_age_temp_sockets\n");
  1469. if (!spin_trylock_bh(&serv->sv_lock)) {
  1470. /* busy, try again 1 sec later */
  1471. dprintk("svc_age_temp_sockets: busy\n");
  1472. mod_timer(&serv->sv_temptimer, jiffies + HZ);
  1473. return;
  1474. }
  1475. list_for_each_safe(le, next, &serv->sv_tempsocks) {
  1476. svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1477. if (!test_and_set_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags))
  1478. continue;
  1479. if (atomic_read(&svsk->sk_xprt.xpt_ref.refcount) > 1
  1480. || test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags))
  1481. continue;
  1482. svc_xprt_get(&svsk->sk_xprt);
  1483. list_move(le, &to_be_aged);
  1484. set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
  1485. set_bit(XPT_DETACHED, &svsk->sk_xprt.xpt_flags);
  1486. }
  1487. spin_unlock_bh(&serv->sv_lock);
  1488. while (!list_empty(&to_be_aged)) {
  1489. le = to_be_aged.next;
  1490. /* fiddling the sk_xprt.xpt_list node is safe 'cos we're XPT_DETACHED */
  1491. list_del_init(le);
  1492. svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
  1493. dprintk("queuing svsk %p for closing\n", svsk);
  1494. /* a thread will dequeue and close it soon */
  1495. svc_xprt_enqueue(&svsk->sk_xprt);
  1496. svc_xprt_put(&svsk->sk_xprt);
  1497. }
  1498. mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
  1499. }
  1500. /*
  1501. * Initialize socket for RPC use and create svc_sock struct
  1502. * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
  1503. */
  1504. static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
  1505. struct socket *sock,
  1506. int *errp, int flags)
  1507. {
  1508. struct svc_sock *svsk;
  1509. struct sock *inet;
  1510. int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
  1511. int is_temporary = flags & SVC_SOCK_TEMPORARY;
  1512. dprintk("svc: svc_setup_socket %p\n", sock);
  1513. if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
  1514. *errp = -ENOMEM;
  1515. return NULL;
  1516. }
  1517. inet = sock->sk;
  1518. /* Register socket with portmapper */
  1519. if (*errp >= 0 && pmap_register)
  1520. *errp = svc_register(serv, inet->sk_protocol,
  1521. ntohs(inet_sk(inet)->sport));
  1522. if (*errp < 0) {
  1523. kfree(svsk);
  1524. return NULL;
  1525. }
  1526. set_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags);
  1527. inet->sk_user_data = svsk;
  1528. svsk->sk_sock = sock;
  1529. svsk->sk_sk = inet;
  1530. svsk->sk_ostate = inet->sk_state_change;
  1531. svsk->sk_odata = inet->sk_data_ready;
  1532. svsk->sk_owspace = inet->sk_write_space;
  1533. /* Initialize the socket */
  1534. if (sock->type == SOCK_DGRAM)
  1535. svc_udp_init(svsk, serv);
  1536. else
  1537. svc_tcp_init(svsk, serv);
  1538. spin_lock_bh(&serv->sv_lock);
  1539. if (is_temporary) {
  1540. set_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1541. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_tempsocks);
  1542. serv->sv_tmpcnt++;
  1543. if (serv->sv_temptimer.function == NULL) {
  1544. /* setup timer to age temp sockets */
  1545. setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
  1546. (unsigned long)serv);
  1547. mod_timer(&serv->sv_temptimer,
  1548. jiffies + svc_conn_age_period * HZ);
  1549. }
  1550. } else {
  1551. clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
  1552. list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
  1553. }
  1554. spin_unlock_bh(&serv->sv_lock);
  1555. dprintk("svc: svc_setup_socket created %p (inet %p)\n",
  1556. svsk, svsk->sk_sk);
  1557. return svsk;
  1558. }
  1559. int svc_addsock(struct svc_serv *serv,
  1560. int fd,
  1561. char *name_return,
  1562. int *proto)
  1563. {
  1564. int err = 0;
  1565. struct socket *so = sockfd_lookup(fd, &err);
  1566. struct svc_sock *svsk = NULL;
  1567. if (!so)
  1568. return err;
  1569. if (so->sk->sk_family != AF_INET)
  1570. err = -EAFNOSUPPORT;
  1571. else if (so->sk->sk_protocol != IPPROTO_TCP &&
  1572. so->sk->sk_protocol != IPPROTO_UDP)
  1573. err = -EPROTONOSUPPORT;
  1574. else if (so->state > SS_UNCONNECTED)
  1575. err = -EISCONN;
  1576. else {
  1577. svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
  1578. if (svsk) {
  1579. struct sockaddr_storage addr;
  1580. struct sockaddr *sin = (struct sockaddr *)&addr;
  1581. int salen;
  1582. if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
  1583. svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
  1584. svc_xprt_received(&svsk->sk_xprt);
  1585. err = 0;
  1586. }
  1587. }
  1588. if (err) {
  1589. sockfd_put(so);
  1590. return err;
  1591. }
  1592. if (proto) *proto = so->sk->sk_protocol;
  1593. return one_sock_name(name_return, svsk);
  1594. }
  1595. EXPORT_SYMBOL_GPL(svc_addsock);
  1596. /*
  1597. * Create socket for RPC service.
  1598. */
  1599. static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
  1600. int protocol,
  1601. struct sockaddr *sin, int len,
  1602. int flags)
  1603. {
  1604. struct svc_sock *svsk;
  1605. struct socket *sock;
  1606. int error;
  1607. int type;
  1608. char buf[RPC_MAX_ADDRBUFLEN];
  1609. struct sockaddr_storage addr;
  1610. struct sockaddr *newsin = (struct sockaddr *)&addr;
  1611. int newlen;
  1612. dprintk("svc: svc_create_socket(%s, %d, %s)\n",
  1613. serv->sv_program->pg_name, protocol,
  1614. __svc_print_addr(sin, buf, sizeof(buf)));
  1615. if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
  1616. printk(KERN_WARNING "svc: only UDP and TCP "
  1617. "sockets supported\n");
  1618. return ERR_PTR(-EINVAL);
  1619. }
  1620. type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
  1621. error = sock_create_kern(sin->sa_family, type, protocol, &sock);
  1622. if (error < 0)
  1623. return ERR_PTR(error);
  1624. svc_reclassify_socket(sock);
  1625. if (type == SOCK_STREAM)
  1626. sock->sk->sk_reuse = 1; /* allow address reuse */
  1627. error = kernel_bind(sock, sin, len);
  1628. if (error < 0)
  1629. goto bummer;
  1630. newlen = len;
  1631. error = kernel_getsockname(sock, newsin, &newlen);
  1632. if (error < 0)
  1633. goto bummer;
  1634. if (protocol == IPPROTO_TCP) {
  1635. if ((error = kernel_listen(sock, 64)) < 0)
  1636. goto bummer;
  1637. }
  1638. if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
  1639. svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
  1640. svc_xprt_received(&svsk->sk_xprt);
  1641. return (struct svc_xprt *)svsk;
  1642. }
  1643. bummer:
  1644. dprintk("svc: svc_create_socket error = %d\n", -error);
  1645. sock_release(sock);
  1646. return ERR_PTR(error);
  1647. }
  1648. /*
  1649. * Detach the svc_sock from the socket so that no
  1650. * more callbacks occur.
  1651. */
  1652. static void svc_sock_detach(struct svc_xprt *xprt)
  1653. {
  1654. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1655. struct sock *sk = svsk->sk_sk;
  1656. dprintk("svc: svc_sock_detach(%p)\n", svsk);
  1657. /* put back the old socket callbacks */
  1658. sk->sk_state_change = svsk->sk_ostate;
  1659. sk->sk_data_ready = svsk->sk_odata;
  1660. sk->sk_write_space = svsk->sk_owspace;
  1661. }
  1662. /*
  1663. * Free the svc_sock's socket resources and the svc_sock itself.
  1664. */
  1665. static void svc_sock_free(struct svc_xprt *xprt)
  1666. {
  1667. struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
  1668. dprintk("svc: svc_sock_free(%p)\n", svsk);
  1669. if (svsk->sk_sock->file)
  1670. sockfd_put(svsk->sk_sock);
  1671. else
  1672. sock_release(svsk->sk_sock);
  1673. kfree(svsk);
  1674. }
  1675. /*
  1676. * Remove a dead transport
  1677. */
  1678. static void svc_delete_xprt(struct svc_xprt *xprt)
  1679. {
  1680. struct svc_serv *serv = xprt->xpt_server;
  1681. dprintk("svc: svc_delete_xprt(%p)\n", xprt);
  1682. xprt->xpt_ops->xpo_detach(xprt);
  1683. spin_lock_bh(&serv->sv_lock);
  1684. if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
  1685. list_del_init(&xprt->xpt_list);
  1686. /*
  1687. * We used to delete the transport from whichever list
  1688. * it's sk_xprt.xpt_ready node was on, but we don't actually
  1689. * need to. This is because the only time we're called
  1690. * while still attached to a queue, the queue itself
  1691. * is about to be destroyed (in svc_destroy).
  1692. */
  1693. if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
  1694. BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
  1695. if (test_bit(XPT_TEMP, &xprt->xpt_flags))
  1696. serv->sv_tmpcnt--;
  1697. svc_xprt_put(xprt);
  1698. }
  1699. spin_unlock_bh(&serv->sv_lock);
  1700. }
  1701. static void svc_close_xprt(struct svc_xprt *xprt)
  1702. {
  1703. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  1704. if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
  1705. /* someone else will have to effect the close */
  1706. return;
  1707. svc_xprt_get(xprt);
  1708. svc_delete_xprt(xprt);
  1709. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  1710. svc_xprt_put(xprt);
  1711. }
  1712. void svc_close_all(struct list_head *xprt_list)
  1713. {
  1714. struct svc_xprt *xprt;
  1715. struct svc_xprt *tmp;
  1716. list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
  1717. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  1718. if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
  1719. /* Waiting to be processed, but no threads left,
  1720. * So just remove it from the waiting list
  1721. */
  1722. list_del_init(&xprt->xpt_ready);
  1723. clear_bit(XPT_BUSY, &xprt->xpt_flags);
  1724. }
  1725. svc_close_xprt(xprt);
  1726. }
  1727. }
  1728. /*
  1729. * Handle defer and revisit of requests
  1730. */
  1731. static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
  1732. {
  1733. struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
  1734. struct svc_xprt *xprt = dr->xprt;
  1735. if (too_many) {
  1736. svc_xprt_put(xprt);
  1737. kfree(dr);
  1738. return;
  1739. }
  1740. dprintk("revisit queued\n");
  1741. dr->xprt = NULL;
  1742. spin_lock(&xprt->xpt_lock);
  1743. list_add(&dr->handle.recent, &xprt->xpt_deferred);
  1744. spin_unlock(&xprt->xpt_lock);
  1745. set_bit(XPT_DEFERRED, &xprt->xpt_flags);
  1746. svc_xprt_enqueue(xprt);
  1747. svc_xprt_put(xprt);
  1748. }
  1749. static struct cache_deferred_req *
  1750. svc_defer(struct cache_req *req)
  1751. {
  1752. struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
  1753. int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
  1754. struct svc_deferred_req *dr;
  1755. if (rqstp->rq_arg.page_len)
  1756. return NULL; /* if more than a page, give up FIXME */
  1757. if (rqstp->rq_deferred) {
  1758. dr = rqstp->rq_deferred;
  1759. rqstp->rq_deferred = NULL;
  1760. } else {
  1761. int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
  1762. /* FIXME maybe discard if size too large */
  1763. dr = kmalloc(size, GFP_KERNEL);
  1764. if (dr == NULL)
  1765. return NULL;
  1766. dr->handle.owner = rqstp->rq_server;
  1767. dr->prot = rqstp->rq_prot;
  1768. memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
  1769. dr->addrlen = rqstp->rq_addrlen;
  1770. dr->daddr = rqstp->rq_daddr;
  1771. dr->argslen = rqstp->rq_arg.len >> 2;
  1772. memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
  1773. }
  1774. svc_xprt_get(rqstp->rq_xprt);
  1775. dr->xprt = rqstp->rq_xprt;
  1776. dr->handle.revisit = svc_revisit;
  1777. return &dr->handle;
  1778. }
  1779. /*
  1780. * recv data from a deferred request into an active one
  1781. */
  1782. static int svc_deferred_recv(struct svc_rqst *rqstp)
  1783. {
  1784. struct svc_deferred_req *dr = rqstp->rq_deferred;
  1785. rqstp->rq_arg.head[0].iov_base = dr->args;
  1786. rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
  1787. rqstp->rq_arg.page_len = 0;
  1788. rqstp->rq_arg.len = dr->argslen<<2;
  1789. rqstp->rq_prot = dr->prot;
  1790. memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
  1791. rqstp->rq_addrlen = dr->addrlen;
  1792. rqstp->rq_daddr = dr->daddr;
  1793. rqstp->rq_respages = rqstp->rq_pages;
  1794. return dr->argslen<<2;
  1795. }
  1796. static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
  1797. {
  1798. struct svc_deferred_req *dr = NULL;
  1799. if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
  1800. return NULL;
  1801. spin_lock(&xprt->xpt_lock);
  1802. clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
  1803. if (!list_empty(&xprt->xpt_deferred)) {
  1804. dr = list_entry(xprt->xpt_deferred.next,
  1805. struct svc_deferred_req,
  1806. handle.recent);
  1807. list_del_init(&dr->handle.recent);
  1808. set_bit(XPT_DEFERRED, &xprt->xpt_flags);
  1809. }
  1810. spin_unlock(&xprt->xpt_lock);
  1811. return dr;
  1812. }