mm.h 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. struct mempolicy;
  24. struct anon_vma;
  25. struct anon_vma_chain;
  26. struct file_ra_state;
  27. struct user_struct;
  28. struct writeback_control;
  29. struct bdi_writeback;
  30. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  31. extern unsigned long max_mapnr;
  32. static inline void set_max_mapnr(unsigned long limit)
  33. {
  34. max_mapnr = limit;
  35. }
  36. #else
  37. static inline void set_max_mapnr(unsigned long limit) { }
  38. #endif
  39. extern unsigned long totalram_pages;
  40. extern void * high_memory;
  41. extern int page_cluster;
  42. #ifdef CONFIG_SYSCTL
  43. extern int sysctl_legacy_va_layout;
  44. #else
  45. #define sysctl_legacy_va_layout 0
  46. #endif
  47. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  48. extern const int mmap_rnd_bits_min;
  49. extern const int mmap_rnd_bits_max;
  50. extern int mmap_rnd_bits __read_mostly;
  51. #endif
  52. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  53. extern const int mmap_rnd_compat_bits_min;
  54. extern const int mmap_rnd_compat_bits_max;
  55. extern int mmap_rnd_compat_bits __read_mostly;
  56. #endif
  57. #include <asm/page.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/processor.h>
  60. #ifndef __pa_symbol
  61. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  62. #endif
  63. #ifndef page_to_virt
  64. #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
  65. #endif
  66. #ifndef lm_alias
  67. #define lm_alias(x) __va(__pa_symbol(x))
  68. #endif
  69. /*
  70. * To prevent common memory management code establishing
  71. * a zero page mapping on a read fault.
  72. * This macro should be defined within <asm/pgtable.h>.
  73. * s390 does this to prevent multiplexing of hardware bits
  74. * related to the physical page in case of virtualization.
  75. */
  76. #ifndef mm_forbids_zeropage
  77. #define mm_forbids_zeropage(X) (0)
  78. #endif
  79. /*
  80. * Default maximum number of active map areas, this limits the number of vmas
  81. * per mm struct. Users can overwrite this number by sysctl but there is a
  82. * problem.
  83. *
  84. * When a program's coredump is generated as ELF format, a section is created
  85. * per a vma. In ELF, the number of sections is represented in unsigned short.
  86. * This means the number of sections should be smaller than 65535 at coredump.
  87. * Because the kernel adds some informative sections to a image of program at
  88. * generating coredump, we need some margin. The number of extra sections is
  89. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  90. *
  91. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  92. * not a hard limit any more. Although some userspace tools can be surprised by
  93. * that.
  94. */
  95. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  96. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  97. extern int sysctl_max_map_count;
  98. extern unsigned long sysctl_user_reserve_kbytes;
  99. extern unsigned long sysctl_admin_reserve_kbytes;
  100. extern int sysctl_overcommit_memory;
  101. extern int sysctl_overcommit_ratio;
  102. extern unsigned long sysctl_overcommit_kbytes;
  103. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  104. size_t *, loff_t *);
  105. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  106. size_t *, loff_t *);
  107. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  108. /* to align the pointer to the (next) page boundary */
  109. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  110. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  111. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
  112. /*
  113. * Linux kernel virtual memory manager primitives.
  114. * The idea being to have a "virtual" mm in the same way
  115. * we have a virtual fs - giving a cleaner interface to the
  116. * mm details, and allowing different kinds of memory mappings
  117. * (from shared memory to executable loading to arbitrary
  118. * mmap() functions).
  119. */
  120. extern struct kmem_cache *vm_area_cachep;
  121. #ifndef CONFIG_MMU
  122. extern struct rb_root nommu_region_tree;
  123. extern struct rw_semaphore nommu_region_sem;
  124. extern unsigned int kobjsize(const void *objp);
  125. #endif
  126. /*
  127. * vm_flags in vm_area_struct, see mm_types.h.
  128. * When changing, update also include/trace/events/mmflags.h
  129. */
  130. #define VM_NONE 0x00000000
  131. #define VM_READ 0x00000001 /* currently active flags */
  132. #define VM_WRITE 0x00000002
  133. #define VM_EXEC 0x00000004
  134. #define VM_SHARED 0x00000008
  135. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  136. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  137. #define VM_MAYWRITE 0x00000020
  138. #define VM_MAYEXEC 0x00000040
  139. #define VM_MAYSHARE 0x00000080
  140. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  141. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  142. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  143. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  144. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  145. #define VM_LOCKED 0x00002000
  146. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  147. /* Used by sys_madvise() */
  148. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  149. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  150. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  151. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  152. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  153. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  154. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  155. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  156. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  157. #define VM_ARCH_2 0x02000000
  158. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  159. #ifdef CONFIG_MEM_SOFT_DIRTY
  160. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  161. #else
  162. # define VM_SOFTDIRTY 0
  163. #endif
  164. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  165. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  166. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  167. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  168. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  169. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  170. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  171. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  172. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  173. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  174. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  175. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  176. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  177. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  178. #if defined(CONFIG_X86)
  179. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  180. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  181. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  182. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  183. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  184. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  185. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  186. #endif
  187. #elif defined(CONFIG_PPC)
  188. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  189. #elif defined(CONFIG_PARISC)
  190. # define VM_GROWSUP VM_ARCH_1
  191. #elif defined(CONFIG_METAG)
  192. # define VM_GROWSUP VM_ARCH_1
  193. #elif defined(CONFIG_IA64)
  194. # define VM_GROWSUP VM_ARCH_1
  195. #elif !defined(CONFIG_MMU)
  196. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  197. #endif
  198. #if defined(CONFIG_X86)
  199. /* MPX specific bounds table or bounds directory */
  200. # define VM_MPX VM_ARCH_2
  201. #endif
  202. #ifndef VM_GROWSUP
  203. # define VM_GROWSUP VM_NONE
  204. #endif
  205. /* Bits set in the VMA until the stack is in its final location */
  206. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  207. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  208. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  209. #endif
  210. #ifdef CONFIG_STACK_GROWSUP
  211. #define VM_STACK VM_GROWSUP
  212. #else
  213. #define VM_STACK VM_GROWSDOWN
  214. #endif
  215. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  216. /*
  217. * Special vmas that are non-mergable, non-mlock()able.
  218. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  219. */
  220. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  221. /* This mask defines which mm->def_flags a process can inherit its parent */
  222. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  223. /* This mask is used to clear all the VMA flags used by mlock */
  224. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  225. /*
  226. * mapping from the currently active vm_flags protection bits (the
  227. * low four bits) to a page protection mask..
  228. */
  229. extern pgprot_t protection_map[16];
  230. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  231. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  232. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  233. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  234. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  235. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  236. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  237. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  238. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  239. #define FAULT_FLAG_TRACE \
  240. { FAULT_FLAG_WRITE, "WRITE" }, \
  241. { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
  242. { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
  243. { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
  244. { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
  245. { FAULT_FLAG_TRIED, "TRIED" }, \
  246. { FAULT_FLAG_USER, "USER" }, \
  247. { FAULT_FLAG_REMOTE, "REMOTE" }, \
  248. { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
  249. /*
  250. * vm_fault is filled by the the pagefault handler and passed to the vma's
  251. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  252. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  253. *
  254. * MM layer fills up gfp_mask for page allocations but fault handler might
  255. * alter it if its implementation requires a different allocation context.
  256. *
  257. * pgoff should be used in favour of virtual_address, if possible.
  258. */
  259. struct vm_fault {
  260. struct vm_area_struct *vma; /* Target VMA */
  261. unsigned int flags; /* FAULT_FLAG_xxx flags */
  262. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  263. pgoff_t pgoff; /* Logical page offset based on vma */
  264. unsigned long address; /* Faulting virtual address */
  265. pmd_t *pmd; /* Pointer to pmd entry matching
  266. * the 'address' */
  267. pud_t *pud; /* Pointer to pud entry matching
  268. * the 'address'
  269. */
  270. pte_t orig_pte; /* Value of PTE at the time of fault */
  271. struct page *cow_page; /* Page handler may use for COW fault */
  272. struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
  273. struct page *page; /* ->fault handlers should return a
  274. * page here, unless VM_FAULT_NOPAGE
  275. * is set (which is also implied by
  276. * VM_FAULT_ERROR).
  277. */
  278. /* These three entries are valid only while holding ptl lock */
  279. pte_t *pte; /* Pointer to pte entry matching
  280. * the 'address'. NULL if the page
  281. * table hasn't been allocated.
  282. */
  283. spinlock_t *ptl; /* Page table lock.
  284. * Protects pte page table if 'pte'
  285. * is not NULL, otherwise pmd.
  286. */
  287. pgtable_t prealloc_pte; /* Pre-allocated pte page table.
  288. * vm_ops->map_pages() calls
  289. * alloc_set_pte() from atomic context.
  290. * do_fault_around() pre-allocates
  291. * page table to avoid allocation from
  292. * atomic context.
  293. */
  294. };
  295. /* page entry size for vm->huge_fault() */
  296. enum page_entry_size {
  297. PE_SIZE_PTE = 0,
  298. PE_SIZE_PMD,
  299. PE_SIZE_PUD,
  300. };
  301. /*
  302. * These are the virtual MM functions - opening of an area, closing and
  303. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  304. * to the functions called when a no-page or a wp-page exception occurs.
  305. */
  306. struct vm_operations_struct {
  307. void (*open)(struct vm_area_struct * area);
  308. void (*close)(struct vm_area_struct * area);
  309. int (*mremap)(struct vm_area_struct * area);
  310. int (*fault)(struct vm_fault *vmf);
  311. int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
  312. void (*map_pages)(struct vm_fault *vmf,
  313. pgoff_t start_pgoff, pgoff_t end_pgoff);
  314. /* notification that a previously read-only page is about to become
  315. * writable, if an error is returned it will cause a SIGBUS */
  316. int (*page_mkwrite)(struct vm_fault *vmf);
  317. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  318. int (*pfn_mkwrite)(struct vm_fault *vmf);
  319. /* called by access_process_vm when get_user_pages() fails, typically
  320. * for use by special VMAs that can switch between memory and hardware
  321. */
  322. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  323. void *buf, int len, int write);
  324. /* Called by the /proc/PID/maps code to ask the vma whether it
  325. * has a special name. Returning non-NULL will also cause this
  326. * vma to be dumped unconditionally. */
  327. const char *(*name)(struct vm_area_struct *vma);
  328. #ifdef CONFIG_NUMA
  329. /*
  330. * set_policy() op must add a reference to any non-NULL @new mempolicy
  331. * to hold the policy upon return. Caller should pass NULL @new to
  332. * remove a policy and fall back to surrounding context--i.e. do not
  333. * install a MPOL_DEFAULT policy, nor the task or system default
  334. * mempolicy.
  335. */
  336. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  337. /*
  338. * get_policy() op must add reference [mpol_get()] to any policy at
  339. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  340. * in mm/mempolicy.c will do this automatically.
  341. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  342. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  343. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  344. * must return NULL--i.e., do not "fallback" to task or system default
  345. * policy.
  346. */
  347. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  348. unsigned long addr);
  349. #endif
  350. /*
  351. * Called by vm_normal_page() for special PTEs to find the
  352. * page for @addr. This is useful if the default behavior
  353. * (using pte_page()) would not find the correct page.
  354. */
  355. struct page *(*find_special_page)(struct vm_area_struct *vma,
  356. unsigned long addr);
  357. };
  358. struct mmu_gather;
  359. struct inode;
  360. #define page_private(page) ((page)->private)
  361. #define set_page_private(page, v) ((page)->private = (v))
  362. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  363. static inline int pmd_devmap(pmd_t pmd)
  364. {
  365. return 0;
  366. }
  367. static inline int pud_devmap(pud_t pud)
  368. {
  369. return 0;
  370. }
  371. #endif
  372. /*
  373. * FIXME: take this include out, include page-flags.h in
  374. * files which need it (119 of them)
  375. */
  376. #include <linux/page-flags.h>
  377. #include <linux/huge_mm.h>
  378. /*
  379. * Methods to modify the page usage count.
  380. *
  381. * What counts for a page usage:
  382. * - cache mapping (page->mapping)
  383. * - private data (page->private)
  384. * - page mapped in a task's page tables, each mapping
  385. * is counted separately
  386. *
  387. * Also, many kernel routines increase the page count before a critical
  388. * routine so they can be sure the page doesn't go away from under them.
  389. */
  390. /*
  391. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  392. */
  393. static inline int put_page_testzero(struct page *page)
  394. {
  395. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  396. return page_ref_dec_and_test(page);
  397. }
  398. /*
  399. * Try to grab a ref unless the page has a refcount of zero, return false if
  400. * that is the case.
  401. * This can be called when MMU is off so it must not access
  402. * any of the virtual mappings.
  403. */
  404. static inline int get_page_unless_zero(struct page *page)
  405. {
  406. return page_ref_add_unless(page, 1, 0);
  407. }
  408. extern int page_is_ram(unsigned long pfn);
  409. enum {
  410. REGION_INTERSECTS,
  411. REGION_DISJOINT,
  412. REGION_MIXED,
  413. };
  414. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  415. unsigned long desc);
  416. /* Support for virtually mapped pages */
  417. struct page *vmalloc_to_page(const void *addr);
  418. unsigned long vmalloc_to_pfn(const void *addr);
  419. /*
  420. * Determine if an address is within the vmalloc range
  421. *
  422. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  423. * is no special casing required.
  424. */
  425. static inline bool is_vmalloc_addr(const void *x)
  426. {
  427. #ifdef CONFIG_MMU
  428. unsigned long addr = (unsigned long)x;
  429. return addr >= VMALLOC_START && addr < VMALLOC_END;
  430. #else
  431. return false;
  432. #endif
  433. }
  434. #ifdef CONFIG_MMU
  435. extern int is_vmalloc_or_module_addr(const void *x);
  436. #else
  437. static inline int is_vmalloc_or_module_addr(const void *x)
  438. {
  439. return 0;
  440. }
  441. #endif
  442. extern void kvfree(const void *addr);
  443. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  444. {
  445. return &page[1].compound_mapcount;
  446. }
  447. static inline int compound_mapcount(struct page *page)
  448. {
  449. VM_BUG_ON_PAGE(!PageCompound(page), page);
  450. page = compound_head(page);
  451. return atomic_read(compound_mapcount_ptr(page)) + 1;
  452. }
  453. /*
  454. * The atomic page->_mapcount, starts from -1: so that transitions
  455. * both from it and to it can be tracked, using atomic_inc_and_test
  456. * and atomic_add_negative(-1).
  457. */
  458. static inline void page_mapcount_reset(struct page *page)
  459. {
  460. atomic_set(&(page)->_mapcount, -1);
  461. }
  462. int __page_mapcount(struct page *page);
  463. static inline int page_mapcount(struct page *page)
  464. {
  465. VM_BUG_ON_PAGE(PageSlab(page), page);
  466. if (unlikely(PageCompound(page)))
  467. return __page_mapcount(page);
  468. return atomic_read(&page->_mapcount) + 1;
  469. }
  470. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  471. int total_mapcount(struct page *page);
  472. int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
  473. #else
  474. static inline int total_mapcount(struct page *page)
  475. {
  476. return page_mapcount(page);
  477. }
  478. static inline int page_trans_huge_mapcount(struct page *page,
  479. int *total_mapcount)
  480. {
  481. int mapcount = page_mapcount(page);
  482. if (total_mapcount)
  483. *total_mapcount = mapcount;
  484. return mapcount;
  485. }
  486. #endif
  487. static inline struct page *virt_to_head_page(const void *x)
  488. {
  489. struct page *page = virt_to_page(x);
  490. return compound_head(page);
  491. }
  492. void __put_page(struct page *page);
  493. void put_pages_list(struct list_head *pages);
  494. void split_page(struct page *page, unsigned int order);
  495. /*
  496. * Compound pages have a destructor function. Provide a
  497. * prototype for that function and accessor functions.
  498. * These are _only_ valid on the head of a compound page.
  499. */
  500. typedef void compound_page_dtor(struct page *);
  501. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  502. enum compound_dtor_id {
  503. NULL_COMPOUND_DTOR,
  504. COMPOUND_PAGE_DTOR,
  505. #ifdef CONFIG_HUGETLB_PAGE
  506. HUGETLB_PAGE_DTOR,
  507. #endif
  508. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  509. TRANSHUGE_PAGE_DTOR,
  510. #endif
  511. NR_COMPOUND_DTORS,
  512. };
  513. extern compound_page_dtor * const compound_page_dtors[];
  514. static inline void set_compound_page_dtor(struct page *page,
  515. enum compound_dtor_id compound_dtor)
  516. {
  517. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  518. page[1].compound_dtor = compound_dtor;
  519. }
  520. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  521. {
  522. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  523. return compound_page_dtors[page[1].compound_dtor];
  524. }
  525. static inline unsigned int compound_order(struct page *page)
  526. {
  527. if (!PageHead(page))
  528. return 0;
  529. return page[1].compound_order;
  530. }
  531. static inline void set_compound_order(struct page *page, unsigned int order)
  532. {
  533. page[1].compound_order = order;
  534. }
  535. void free_compound_page(struct page *page);
  536. #ifdef CONFIG_MMU
  537. /*
  538. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  539. * servicing faults for write access. In the normal case, do always want
  540. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  541. * that do not have writing enabled, when used by access_process_vm.
  542. */
  543. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  544. {
  545. if (likely(vma->vm_flags & VM_WRITE))
  546. pte = pte_mkwrite(pte);
  547. return pte;
  548. }
  549. int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
  550. struct page *page);
  551. int finish_fault(struct vm_fault *vmf);
  552. int finish_mkwrite_fault(struct vm_fault *vmf);
  553. #endif
  554. /*
  555. * Multiple processes may "see" the same page. E.g. for untouched
  556. * mappings of /dev/null, all processes see the same page full of
  557. * zeroes, and text pages of executables and shared libraries have
  558. * only one copy in memory, at most, normally.
  559. *
  560. * For the non-reserved pages, page_count(page) denotes a reference count.
  561. * page_count() == 0 means the page is free. page->lru is then used for
  562. * freelist management in the buddy allocator.
  563. * page_count() > 0 means the page has been allocated.
  564. *
  565. * Pages are allocated by the slab allocator in order to provide memory
  566. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  567. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  568. * unless a particular usage is carefully commented. (the responsibility of
  569. * freeing the kmalloc memory is the caller's, of course).
  570. *
  571. * A page may be used by anyone else who does a __get_free_page().
  572. * In this case, page_count still tracks the references, and should only
  573. * be used through the normal accessor functions. The top bits of page->flags
  574. * and page->virtual store page management information, but all other fields
  575. * are unused and could be used privately, carefully. The management of this
  576. * page is the responsibility of the one who allocated it, and those who have
  577. * subsequently been given references to it.
  578. *
  579. * The other pages (we may call them "pagecache pages") are completely
  580. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  581. * The following discussion applies only to them.
  582. *
  583. * A pagecache page contains an opaque `private' member, which belongs to the
  584. * page's address_space. Usually, this is the address of a circular list of
  585. * the page's disk buffers. PG_private must be set to tell the VM to call
  586. * into the filesystem to release these pages.
  587. *
  588. * A page may belong to an inode's memory mapping. In this case, page->mapping
  589. * is the pointer to the inode, and page->index is the file offset of the page,
  590. * in units of PAGE_SIZE.
  591. *
  592. * If pagecache pages are not associated with an inode, they are said to be
  593. * anonymous pages. These may become associated with the swapcache, and in that
  594. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  595. *
  596. * In either case (swapcache or inode backed), the pagecache itself holds one
  597. * reference to the page. Setting PG_private should also increment the
  598. * refcount. The each user mapping also has a reference to the page.
  599. *
  600. * The pagecache pages are stored in a per-mapping radix tree, which is
  601. * rooted at mapping->page_tree, and indexed by offset.
  602. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  603. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  604. *
  605. * All pagecache pages may be subject to I/O:
  606. * - inode pages may need to be read from disk,
  607. * - inode pages which have been modified and are MAP_SHARED may need
  608. * to be written back to the inode on disk,
  609. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  610. * modified may need to be swapped out to swap space and (later) to be read
  611. * back into memory.
  612. */
  613. /*
  614. * The zone field is never updated after free_area_init_core()
  615. * sets it, so none of the operations on it need to be atomic.
  616. */
  617. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  618. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  619. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  620. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  621. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  622. /*
  623. * Define the bit shifts to access each section. For non-existent
  624. * sections we define the shift as 0; that plus a 0 mask ensures
  625. * the compiler will optimise away reference to them.
  626. */
  627. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  628. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  629. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  630. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  631. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  632. #ifdef NODE_NOT_IN_PAGE_FLAGS
  633. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  634. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  635. SECTIONS_PGOFF : ZONES_PGOFF)
  636. #else
  637. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  638. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  639. NODES_PGOFF : ZONES_PGOFF)
  640. #endif
  641. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  642. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  643. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  644. #endif
  645. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  646. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  647. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  648. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  649. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  650. static inline enum zone_type page_zonenum(const struct page *page)
  651. {
  652. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  653. }
  654. #ifdef CONFIG_ZONE_DEVICE
  655. void get_zone_device_page(struct page *page);
  656. void put_zone_device_page(struct page *page);
  657. static inline bool is_zone_device_page(const struct page *page)
  658. {
  659. return page_zonenum(page) == ZONE_DEVICE;
  660. }
  661. #else
  662. static inline void get_zone_device_page(struct page *page)
  663. {
  664. }
  665. static inline void put_zone_device_page(struct page *page)
  666. {
  667. }
  668. static inline bool is_zone_device_page(const struct page *page)
  669. {
  670. return false;
  671. }
  672. #endif
  673. static inline void get_page(struct page *page)
  674. {
  675. page = compound_head(page);
  676. /*
  677. * Getting a normal page or the head of a compound page
  678. * requires to already have an elevated page->_refcount.
  679. */
  680. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  681. page_ref_inc(page);
  682. if (unlikely(is_zone_device_page(page)))
  683. get_zone_device_page(page);
  684. }
  685. static inline void put_page(struct page *page)
  686. {
  687. page = compound_head(page);
  688. if (put_page_testzero(page))
  689. __put_page(page);
  690. if (unlikely(is_zone_device_page(page)))
  691. put_zone_device_page(page);
  692. }
  693. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  694. #define SECTION_IN_PAGE_FLAGS
  695. #endif
  696. /*
  697. * The identification function is mainly used by the buddy allocator for
  698. * determining if two pages could be buddies. We are not really identifying
  699. * the zone since we could be using the section number id if we do not have
  700. * node id available in page flags.
  701. * We only guarantee that it will return the same value for two combinable
  702. * pages in a zone.
  703. */
  704. static inline int page_zone_id(struct page *page)
  705. {
  706. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  707. }
  708. static inline int zone_to_nid(struct zone *zone)
  709. {
  710. #ifdef CONFIG_NUMA
  711. return zone->node;
  712. #else
  713. return 0;
  714. #endif
  715. }
  716. #ifdef NODE_NOT_IN_PAGE_FLAGS
  717. extern int page_to_nid(const struct page *page);
  718. #else
  719. static inline int page_to_nid(const struct page *page)
  720. {
  721. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  722. }
  723. #endif
  724. #ifdef CONFIG_NUMA_BALANCING
  725. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  726. {
  727. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  728. }
  729. static inline int cpupid_to_pid(int cpupid)
  730. {
  731. return cpupid & LAST__PID_MASK;
  732. }
  733. static inline int cpupid_to_cpu(int cpupid)
  734. {
  735. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  736. }
  737. static inline int cpupid_to_nid(int cpupid)
  738. {
  739. return cpu_to_node(cpupid_to_cpu(cpupid));
  740. }
  741. static inline bool cpupid_pid_unset(int cpupid)
  742. {
  743. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  744. }
  745. static inline bool cpupid_cpu_unset(int cpupid)
  746. {
  747. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  748. }
  749. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  750. {
  751. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  752. }
  753. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  754. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  755. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  756. {
  757. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  758. }
  759. static inline int page_cpupid_last(struct page *page)
  760. {
  761. return page->_last_cpupid;
  762. }
  763. static inline void page_cpupid_reset_last(struct page *page)
  764. {
  765. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  766. }
  767. #else
  768. static inline int page_cpupid_last(struct page *page)
  769. {
  770. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  771. }
  772. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  773. static inline void page_cpupid_reset_last(struct page *page)
  774. {
  775. page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
  776. }
  777. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  778. #else /* !CONFIG_NUMA_BALANCING */
  779. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  780. {
  781. return page_to_nid(page); /* XXX */
  782. }
  783. static inline int page_cpupid_last(struct page *page)
  784. {
  785. return page_to_nid(page); /* XXX */
  786. }
  787. static inline int cpupid_to_nid(int cpupid)
  788. {
  789. return -1;
  790. }
  791. static inline int cpupid_to_pid(int cpupid)
  792. {
  793. return -1;
  794. }
  795. static inline int cpupid_to_cpu(int cpupid)
  796. {
  797. return -1;
  798. }
  799. static inline int cpu_pid_to_cpupid(int nid, int pid)
  800. {
  801. return -1;
  802. }
  803. static inline bool cpupid_pid_unset(int cpupid)
  804. {
  805. return 1;
  806. }
  807. static inline void page_cpupid_reset_last(struct page *page)
  808. {
  809. }
  810. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  811. {
  812. return false;
  813. }
  814. #endif /* CONFIG_NUMA_BALANCING */
  815. static inline struct zone *page_zone(const struct page *page)
  816. {
  817. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  818. }
  819. static inline pg_data_t *page_pgdat(const struct page *page)
  820. {
  821. return NODE_DATA(page_to_nid(page));
  822. }
  823. #ifdef SECTION_IN_PAGE_FLAGS
  824. static inline void set_page_section(struct page *page, unsigned long section)
  825. {
  826. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  827. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  828. }
  829. static inline unsigned long page_to_section(const struct page *page)
  830. {
  831. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  832. }
  833. #endif
  834. static inline void set_page_zone(struct page *page, enum zone_type zone)
  835. {
  836. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  837. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  838. }
  839. static inline void set_page_node(struct page *page, unsigned long node)
  840. {
  841. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  842. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  843. }
  844. static inline void set_page_links(struct page *page, enum zone_type zone,
  845. unsigned long node, unsigned long pfn)
  846. {
  847. set_page_zone(page, zone);
  848. set_page_node(page, node);
  849. #ifdef SECTION_IN_PAGE_FLAGS
  850. set_page_section(page, pfn_to_section_nr(pfn));
  851. #endif
  852. }
  853. #ifdef CONFIG_MEMCG
  854. static inline struct mem_cgroup *page_memcg(struct page *page)
  855. {
  856. return page->mem_cgroup;
  857. }
  858. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  859. {
  860. WARN_ON_ONCE(!rcu_read_lock_held());
  861. return READ_ONCE(page->mem_cgroup);
  862. }
  863. #else
  864. static inline struct mem_cgroup *page_memcg(struct page *page)
  865. {
  866. return NULL;
  867. }
  868. static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
  869. {
  870. WARN_ON_ONCE(!rcu_read_lock_held());
  871. return NULL;
  872. }
  873. #endif
  874. /*
  875. * Some inline functions in vmstat.h depend on page_zone()
  876. */
  877. #include <linux/vmstat.h>
  878. static __always_inline void *lowmem_page_address(const struct page *page)
  879. {
  880. return page_to_virt(page);
  881. }
  882. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  883. #define HASHED_PAGE_VIRTUAL
  884. #endif
  885. #if defined(WANT_PAGE_VIRTUAL)
  886. static inline void *page_address(const struct page *page)
  887. {
  888. return page->virtual;
  889. }
  890. static inline void set_page_address(struct page *page, void *address)
  891. {
  892. page->virtual = address;
  893. }
  894. #define page_address_init() do { } while(0)
  895. #endif
  896. #if defined(HASHED_PAGE_VIRTUAL)
  897. void *page_address(const struct page *page);
  898. void set_page_address(struct page *page, void *virtual);
  899. void page_address_init(void);
  900. #endif
  901. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  902. #define page_address(page) lowmem_page_address(page)
  903. #define set_page_address(page, address) do { } while(0)
  904. #define page_address_init() do { } while(0)
  905. #endif
  906. extern void *page_rmapping(struct page *page);
  907. extern struct anon_vma *page_anon_vma(struct page *page);
  908. extern struct address_space *page_mapping(struct page *page);
  909. extern struct address_space *__page_file_mapping(struct page *);
  910. static inline
  911. struct address_space *page_file_mapping(struct page *page)
  912. {
  913. if (unlikely(PageSwapCache(page)))
  914. return __page_file_mapping(page);
  915. return page->mapping;
  916. }
  917. extern pgoff_t __page_file_index(struct page *page);
  918. /*
  919. * Return the pagecache index of the passed page. Regular pagecache pages
  920. * use ->index whereas swapcache pages use swp_offset(->private)
  921. */
  922. static inline pgoff_t page_index(struct page *page)
  923. {
  924. if (unlikely(PageSwapCache(page)))
  925. return __page_file_index(page);
  926. return page->index;
  927. }
  928. bool page_mapped(struct page *page);
  929. struct address_space *page_mapping(struct page *page);
  930. /*
  931. * Return true only if the page has been allocated with
  932. * ALLOC_NO_WATERMARKS and the low watermark was not
  933. * met implying that the system is under some pressure.
  934. */
  935. static inline bool page_is_pfmemalloc(struct page *page)
  936. {
  937. /*
  938. * Page index cannot be this large so this must be
  939. * a pfmemalloc page.
  940. */
  941. return page->index == -1UL;
  942. }
  943. /*
  944. * Only to be called by the page allocator on a freshly allocated
  945. * page.
  946. */
  947. static inline void set_page_pfmemalloc(struct page *page)
  948. {
  949. page->index = -1UL;
  950. }
  951. static inline void clear_page_pfmemalloc(struct page *page)
  952. {
  953. page->index = 0;
  954. }
  955. /*
  956. * Different kinds of faults, as returned by handle_mm_fault().
  957. * Used to decide whether a process gets delivered SIGBUS or
  958. * just gets major/minor fault counters bumped up.
  959. */
  960. #define VM_FAULT_OOM 0x0001
  961. #define VM_FAULT_SIGBUS 0x0002
  962. #define VM_FAULT_MAJOR 0x0004
  963. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  964. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  965. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  966. #define VM_FAULT_SIGSEGV 0x0040
  967. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  968. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  969. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  970. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  971. #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
  972. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  973. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  974. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  975. VM_FAULT_FALLBACK)
  976. #define VM_FAULT_RESULT_TRACE \
  977. { VM_FAULT_OOM, "OOM" }, \
  978. { VM_FAULT_SIGBUS, "SIGBUS" }, \
  979. { VM_FAULT_MAJOR, "MAJOR" }, \
  980. { VM_FAULT_WRITE, "WRITE" }, \
  981. { VM_FAULT_HWPOISON, "HWPOISON" }, \
  982. { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
  983. { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
  984. { VM_FAULT_NOPAGE, "NOPAGE" }, \
  985. { VM_FAULT_LOCKED, "LOCKED" }, \
  986. { VM_FAULT_RETRY, "RETRY" }, \
  987. { VM_FAULT_FALLBACK, "FALLBACK" }, \
  988. { VM_FAULT_DONE_COW, "DONE_COW" }
  989. /* Encode hstate index for a hwpoisoned large page */
  990. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  991. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  992. /*
  993. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  994. */
  995. extern void pagefault_out_of_memory(void);
  996. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  997. /*
  998. * Flags passed to show_mem() and show_free_areas() to suppress output in
  999. * various contexts.
  1000. */
  1001. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  1002. extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
  1003. extern bool can_do_mlock(void);
  1004. extern int user_shm_lock(size_t, struct user_struct *);
  1005. extern void user_shm_unlock(size_t, struct user_struct *);
  1006. /*
  1007. * Parameter block passed down to zap_pte_range in exceptional cases.
  1008. */
  1009. struct zap_details {
  1010. struct address_space *check_mapping; /* Check page->mapping if set */
  1011. pgoff_t first_index; /* Lowest page->index to unmap */
  1012. pgoff_t last_index; /* Highest page->index to unmap */
  1013. };
  1014. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  1015. pte_t pte);
  1016. struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
  1017. pmd_t pmd);
  1018. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1019. unsigned long size);
  1020. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1021. unsigned long size);
  1022. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  1023. unsigned long start, unsigned long end);
  1024. /**
  1025. * mm_walk - callbacks for walk_page_range
  1026. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  1027. * this handler should only handle pud_trans_huge() puds.
  1028. * the pmd_entry or pte_entry callbacks will be used for
  1029. * regular PUDs.
  1030. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  1031. * this handler is required to be able to handle
  1032. * pmd_trans_huge() pmds. They may simply choose to
  1033. * split_huge_page() instead of handling it explicitly.
  1034. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  1035. * @pte_hole: if set, called for each hole at all levels
  1036. * @hugetlb_entry: if set, called for each hugetlb entry
  1037. * @test_walk: caller specific callback function to determine whether
  1038. * we walk over the current vma or not. Returning 0
  1039. * value means "do page table walk over the current vma,"
  1040. * and a negative one means "abort current page table walk
  1041. * right now." 1 means "skip the current vma."
  1042. * @mm: mm_struct representing the target process of page table walk
  1043. * @vma: vma currently walked (NULL if walking outside vmas)
  1044. * @private: private data for callbacks' usage
  1045. *
  1046. * (see the comment on walk_page_range() for more details)
  1047. */
  1048. struct mm_walk {
  1049. int (*pud_entry)(pud_t *pud, unsigned long addr,
  1050. unsigned long next, struct mm_walk *walk);
  1051. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1052. unsigned long next, struct mm_walk *walk);
  1053. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1054. unsigned long next, struct mm_walk *walk);
  1055. int (*pte_hole)(unsigned long addr, unsigned long next,
  1056. struct mm_walk *walk);
  1057. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1058. unsigned long addr, unsigned long next,
  1059. struct mm_walk *walk);
  1060. int (*test_walk)(unsigned long addr, unsigned long next,
  1061. struct mm_walk *walk);
  1062. struct mm_struct *mm;
  1063. struct vm_area_struct *vma;
  1064. void *private;
  1065. };
  1066. int walk_page_range(unsigned long addr, unsigned long end,
  1067. struct mm_walk *walk);
  1068. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1069. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1070. unsigned long end, unsigned long floor, unsigned long ceiling);
  1071. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1072. struct vm_area_struct *vma);
  1073. void unmap_mapping_range(struct address_space *mapping,
  1074. loff_t const holebegin, loff_t const holelen, int even_cows);
  1075. int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
  1076. pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
  1077. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1078. unsigned long *pfn);
  1079. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1080. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1081. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1082. void *buf, int len, int write);
  1083. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1084. loff_t const holebegin, loff_t const holelen)
  1085. {
  1086. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1087. }
  1088. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1089. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1090. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1091. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1092. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1093. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1094. int invalidate_inode_page(struct page *page);
  1095. #ifdef CONFIG_MMU
  1096. extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
  1097. unsigned int flags);
  1098. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1099. unsigned long address, unsigned int fault_flags,
  1100. bool *unlocked);
  1101. #else
  1102. static inline int handle_mm_fault(struct vm_area_struct *vma,
  1103. unsigned long address, unsigned int flags)
  1104. {
  1105. /* should never happen if there's no MMU */
  1106. BUG();
  1107. return VM_FAULT_SIGBUS;
  1108. }
  1109. static inline int fixup_user_fault(struct task_struct *tsk,
  1110. struct mm_struct *mm, unsigned long address,
  1111. unsigned int fault_flags, bool *unlocked)
  1112. {
  1113. /* should never happen if there's no MMU */
  1114. BUG();
  1115. return -EFAULT;
  1116. }
  1117. #endif
  1118. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
  1119. unsigned int gup_flags);
  1120. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1121. void *buf, int len, unsigned int gup_flags);
  1122. extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  1123. unsigned long addr, void *buf, int len, unsigned int gup_flags);
  1124. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1125. unsigned long start, unsigned long nr_pages,
  1126. unsigned int gup_flags, struct page **pages,
  1127. struct vm_area_struct **vmas, int *locked);
  1128. long get_user_pages(unsigned long start, unsigned long nr_pages,
  1129. unsigned int gup_flags, struct page **pages,
  1130. struct vm_area_struct **vmas);
  1131. long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
  1132. unsigned int gup_flags, struct page **pages, int *locked);
  1133. long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
  1134. struct page **pages, unsigned int gup_flags);
  1135. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1136. struct page **pages);
  1137. /* Container for pinned pfns / pages */
  1138. struct frame_vector {
  1139. unsigned int nr_allocated; /* Number of frames we have space for */
  1140. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1141. bool got_ref; /* Did we pin pages by getting page ref? */
  1142. bool is_pfns; /* Does array contain pages or pfns? */
  1143. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1144. * pfns_vector_pages() or pfns_vector_pfns()
  1145. * for access */
  1146. };
  1147. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1148. void frame_vector_destroy(struct frame_vector *vec);
  1149. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1150. unsigned int gup_flags, struct frame_vector *vec);
  1151. void put_vaddr_frames(struct frame_vector *vec);
  1152. int frame_vector_to_pages(struct frame_vector *vec);
  1153. void frame_vector_to_pfns(struct frame_vector *vec);
  1154. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1155. {
  1156. return vec->nr_frames;
  1157. }
  1158. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1159. {
  1160. if (vec->is_pfns) {
  1161. int err = frame_vector_to_pages(vec);
  1162. if (err)
  1163. return ERR_PTR(err);
  1164. }
  1165. return (struct page **)(vec->ptrs);
  1166. }
  1167. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1168. {
  1169. if (!vec->is_pfns)
  1170. frame_vector_to_pfns(vec);
  1171. return (unsigned long *)(vec->ptrs);
  1172. }
  1173. struct kvec;
  1174. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1175. struct page **pages);
  1176. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1177. struct page *get_dump_page(unsigned long addr);
  1178. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1179. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1180. unsigned int length);
  1181. int __set_page_dirty_nobuffers(struct page *page);
  1182. int __set_page_dirty_no_writeback(struct page *page);
  1183. int redirty_page_for_writepage(struct writeback_control *wbc,
  1184. struct page *page);
  1185. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1186. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1187. struct bdi_writeback *wb);
  1188. int set_page_dirty(struct page *page);
  1189. int set_page_dirty_lock(struct page *page);
  1190. void cancel_dirty_page(struct page *page);
  1191. int clear_page_dirty_for_io(struct page *page);
  1192. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1193. /* Is the vma a continuation of the stack vma above it? */
  1194. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1195. {
  1196. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1197. }
  1198. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1199. {
  1200. return !vma->vm_ops;
  1201. }
  1202. #ifdef CONFIG_SHMEM
  1203. /*
  1204. * The vma_is_shmem is not inline because it is used only by slow
  1205. * paths in userfault.
  1206. */
  1207. bool vma_is_shmem(struct vm_area_struct *vma);
  1208. #else
  1209. static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
  1210. #endif
  1211. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1212. unsigned long addr)
  1213. {
  1214. return (vma->vm_flags & VM_GROWSDOWN) &&
  1215. (vma->vm_start == addr) &&
  1216. !vma_growsdown(vma->vm_prev, addr);
  1217. }
  1218. /* Is the vma a continuation of the stack vma below it? */
  1219. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1220. {
  1221. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1222. }
  1223. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1224. unsigned long addr)
  1225. {
  1226. return (vma->vm_flags & VM_GROWSUP) &&
  1227. (vma->vm_end == addr) &&
  1228. !vma_growsup(vma->vm_next, addr);
  1229. }
  1230. int vma_is_stack_for_current(struct vm_area_struct *vma);
  1231. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1232. unsigned long old_addr, struct vm_area_struct *new_vma,
  1233. unsigned long new_addr, unsigned long len,
  1234. bool need_rmap_locks);
  1235. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1236. unsigned long end, pgprot_t newprot,
  1237. int dirty_accountable, int prot_numa);
  1238. extern int mprotect_fixup(struct vm_area_struct *vma,
  1239. struct vm_area_struct **pprev, unsigned long start,
  1240. unsigned long end, unsigned long newflags);
  1241. /*
  1242. * doesn't attempt to fault and will return short.
  1243. */
  1244. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1245. struct page **pages);
  1246. /*
  1247. * per-process(per-mm_struct) statistics.
  1248. */
  1249. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1250. {
  1251. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1252. #ifdef SPLIT_RSS_COUNTING
  1253. /*
  1254. * counter is updated in asynchronous manner and may go to minus.
  1255. * But it's never be expected number for users.
  1256. */
  1257. if (val < 0)
  1258. val = 0;
  1259. #endif
  1260. return (unsigned long)val;
  1261. }
  1262. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1263. {
  1264. atomic_long_add(value, &mm->rss_stat.count[member]);
  1265. }
  1266. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1267. {
  1268. atomic_long_inc(&mm->rss_stat.count[member]);
  1269. }
  1270. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1271. {
  1272. atomic_long_dec(&mm->rss_stat.count[member]);
  1273. }
  1274. /* Optimized variant when page is already known not to be PageAnon */
  1275. static inline int mm_counter_file(struct page *page)
  1276. {
  1277. if (PageSwapBacked(page))
  1278. return MM_SHMEMPAGES;
  1279. return MM_FILEPAGES;
  1280. }
  1281. static inline int mm_counter(struct page *page)
  1282. {
  1283. if (PageAnon(page))
  1284. return MM_ANONPAGES;
  1285. return mm_counter_file(page);
  1286. }
  1287. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1288. {
  1289. return get_mm_counter(mm, MM_FILEPAGES) +
  1290. get_mm_counter(mm, MM_ANONPAGES) +
  1291. get_mm_counter(mm, MM_SHMEMPAGES);
  1292. }
  1293. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1294. {
  1295. return max(mm->hiwater_rss, get_mm_rss(mm));
  1296. }
  1297. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1298. {
  1299. return max(mm->hiwater_vm, mm->total_vm);
  1300. }
  1301. static inline void update_hiwater_rss(struct mm_struct *mm)
  1302. {
  1303. unsigned long _rss = get_mm_rss(mm);
  1304. if ((mm)->hiwater_rss < _rss)
  1305. (mm)->hiwater_rss = _rss;
  1306. }
  1307. static inline void update_hiwater_vm(struct mm_struct *mm)
  1308. {
  1309. if (mm->hiwater_vm < mm->total_vm)
  1310. mm->hiwater_vm = mm->total_vm;
  1311. }
  1312. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1313. {
  1314. mm->hiwater_rss = get_mm_rss(mm);
  1315. }
  1316. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1317. struct mm_struct *mm)
  1318. {
  1319. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1320. if (*maxrss < hiwater_rss)
  1321. *maxrss = hiwater_rss;
  1322. }
  1323. #if defined(SPLIT_RSS_COUNTING)
  1324. void sync_mm_rss(struct mm_struct *mm);
  1325. #else
  1326. static inline void sync_mm_rss(struct mm_struct *mm)
  1327. {
  1328. }
  1329. #endif
  1330. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1331. static inline int pte_devmap(pte_t pte)
  1332. {
  1333. return 0;
  1334. }
  1335. #endif
  1336. int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
  1337. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1338. spinlock_t **ptl);
  1339. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1340. spinlock_t **ptl)
  1341. {
  1342. pte_t *ptep;
  1343. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1344. return ptep;
  1345. }
  1346. #ifdef __PAGETABLE_P4D_FOLDED
  1347. static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1348. unsigned long address)
  1349. {
  1350. return 0;
  1351. }
  1352. #else
  1353. int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1354. #endif
  1355. #ifdef __PAGETABLE_PUD_FOLDED
  1356. static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1357. unsigned long address)
  1358. {
  1359. return 0;
  1360. }
  1361. #else
  1362. int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
  1363. #endif
  1364. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1365. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1366. unsigned long address)
  1367. {
  1368. return 0;
  1369. }
  1370. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1371. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1372. {
  1373. return 0;
  1374. }
  1375. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1376. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1377. #else
  1378. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1379. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1380. {
  1381. atomic_long_set(&mm->nr_pmds, 0);
  1382. }
  1383. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1384. {
  1385. return atomic_long_read(&mm->nr_pmds);
  1386. }
  1387. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1388. {
  1389. atomic_long_inc(&mm->nr_pmds);
  1390. }
  1391. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1392. {
  1393. atomic_long_dec(&mm->nr_pmds);
  1394. }
  1395. #endif
  1396. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1397. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1398. /*
  1399. * The following ifdef needed to get the 4level-fixup.h header to work.
  1400. * Remove it when 4level-fixup.h has been removed.
  1401. */
  1402. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1403. #ifndef __ARCH_HAS_5LEVEL_HACK
  1404. static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
  1405. unsigned long address)
  1406. {
  1407. return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
  1408. NULL : p4d_offset(pgd, address);
  1409. }
  1410. static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
  1411. unsigned long address)
  1412. {
  1413. return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
  1414. NULL : pud_offset(p4d, address);
  1415. }
  1416. #endif /* !__ARCH_HAS_5LEVEL_HACK */
  1417. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1418. {
  1419. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1420. NULL: pmd_offset(pud, address);
  1421. }
  1422. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1423. #if USE_SPLIT_PTE_PTLOCKS
  1424. #if ALLOC_SPLIT_PTLOCKS
  1425. void __init ptlock_cache_init(void);
  1426. extern bool ptlock_alloc(struct page *page);
  1427. extern void ptlock_free(struct page *page);
  1428. static inline spinlock_t *ptlock_ptr(struct page *page)
  1429. {
  1430. return page->ptl;
  1431. }
  1432. #else /* ALLOC_SPLIT_PTLOCKS */
  1433. static inline void ptlock_cache_init(void)
  1434. {
  1435. }
  1436. static inline bool ptlock_alloc(struct page *page)
  1437. {
  1438. return true;
  1439. }
  1440. static inline void ptlock_free(struct page *page)
  1441. {
  1442. }
  1443. static inline spinlock_t *ptlock_ptr(struct page *page)
  1444. {
  1445. return &page->ptl;
  1446. }
  1447. #endif /* ALLOC_SPLIT_PTLOCKS */
  1448. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1449. {
  1450. return ptlock_ptr(pmd_page(*pmd));
  1451. }
  1452. static inline bool ptlock_init(struct page *page)
  1453. {
  1454. /*
  1455. * prep_new_page() initialize page->private (and therefore page->ptl)
  1456. * with 0. Make sure nobody took it in use in between.
  1457. *
  1458. * It can happen if arch try to use slab for page table allocation:
  1459. * slab code uses page->slab_cache, which share storage with page->ptl.
  1460. */
  1461. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1462. if (!ptlock_alloc(page))
  1463. return false;
  1464. spin_lock_init(ptlock_ptr(page));
  1465. return true;
  1466. }
  1467. /* Reset page->mapping so free_pages_check won't complain. */
  1468. static inline void pte_lock_deinit(struct page *page)
  1469. {
  1470. page->mapping = NULL;
  1471. ptlock_free(page);
  1472. }
  1473. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1474. /*
  1475. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1476. */
  1477. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1478. {
  1479. return &mm->page_table_lock;
  1480. }
  1481. static inline void ptlock_cache_init(void) {}
  1482. static inline bool ptlock_init(struct page *page) { return true; }
  1483. static inline void pte_lock_deinit(struct page *page) {}
  1484. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1485. static inline void pgtable_init(void)
  1486. {
  1487. ptlock_cache_init();
  1488. pgtable_cache_init();
  1489. }
  1490. static inline bool pgtable_page_ctor(struct page *page)
  1491. {
  1492. if (!ptlock_init(page))
  1493. return false;
  1494. inc_zone_page_state(page, NR_PAGETABLE);
  1495. return true;
  1496. }
  1497. static inline void pgtable_page_dtor(struct page *page)
  1498. {
  1499. pte_lock_deinit(page);
  1500. dec_zone_page_state(page, NR_PAGETABLE);
  1501. }
  1502. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1503. ({ \
  1504. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1505. pte_t *__pte = pte_offset_map(pmd, address); \
  1506. *(ptlp) = __ptl; \
  1507. spin_lock(__ptl); \
  1508. __pte; \
  1509. })
  1510. #define pte_unmap_unlock(pte, ptl) do { \
  1511. spin_unlock(ptl); \
  1512. pte_unmap(pte); \
  1513. } while (0)
  1514. #define pte_alloc(mm, pmd, address) \
  1515. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1516. #define pte_alloc_map(mm, pmd, address) \
  1517. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1518. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1519. (pte_alloc(mm, pmd, address) ? \
  1520. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1521. #define pte_alloc_kernel(pmd, address) \
  1522. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1523. NULL: pte_offset_kernel(pmd, address))
  1524. #if USE_SPLIT_PMD_PTLOCKS
  1525. static struct page *pmd_to_page(pmd_t *pmd)
  1526. {
  1527. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1528. return virt_to_page((void *)((unsigned long) pmd & mask));
  1529. }
  1530. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1531. {
  1532. return ptlock_ptr(pmd_to_page(pmd));
  1533. }
  1534. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1535. {
  1536. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1537. page->pmd_huge_pte = NULL;
  1538. #endif
  1539. return ptlock_init(page);
  1540. }
  1541. static inline void pgtable_pmd_page_dtor(struct page *page)
  1542. {
  1543. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1544. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1545. #endif
  1546. ptlock_free(page);
  1547. }
  1548. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1549. #else
  1550. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1551. {
  1552. return &mm->page_table_lock;
  1553. }
  1554. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1555. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1556. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1557. #endif
  1558. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1559. {
  1560. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1561. spin_lock(ptl);
  1562. return ptl;
  1563. }
  1564. /*
  1565. * No scalability reason to split PUD locks yet, but follow the same pattern
  1566. * as the PMD locks to make it easier if we decide to. The VM should not be
  1567. * considered ready to switch to split PUD locks yet; there may be places
  1568. * which need to be converted from page_table_lock.
  1569. */
  1570. static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
  1571. {
  1572. return &mm->page_table_lock;
  1573. }
  1574. static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
  1575. {
  1576. spinlock_t *ptl = pud_lockptr(mm, pud);
  1577. spin_lock(ptl);
  1578. return ptl;
  1579. }
  1580. extern void __init pagecache_init(void);
  1581. extern void free_area_init(unsigned long * zones_size);
  1582. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1583. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1584. extern void free_initmem(void);
  1585. /*
  1586. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1587. * into the buddy system. The freed pages will be poisoned with pattern
  1588. * "poison" if it's within range [0, UCHAR_MAX].
  1589. * Return pages freed into the buddy system.
  1590. */
  1591. extern unsigned long free_reserved_area(void *start, void *end,
  1592. int poison, char *s);
  1593. #ifdef CONFIG_HIGHMEM
  1594. /*
  1595. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1596. * and totalram_pages.
  1597. */
  1598. extern void free_highmem_page(struct page *page);
  1599. #endif
  1600. extern void adjust_managed_page_count(struct page *page, long count);
  1601. extern void mem_init_print_info(const char *str);
  1602. extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
  1603. /* Free the reserved page into the buddy system, so it gets managed. */
  1604. static inline void __free_reserved_page(struct page *page)
  1605. {
  1606. ClearPageReserved(page);
  1607. init_page_count(page);
  1608. __free_page(page);
  1609. }
  1610. static inline void free_reserved_page(struct page *page)
  1611. {
  1612. __free_reserved_page(page);
  1613. adjust_managed_page_count(page, 1);
  1614. }
  1615. static inline void mark_page_reserved(struct page *page)
  1616. {
  1617. SetPageReserved(page);
  1618. adjust_managed_page_count(page, -1);
  1619. }
  1620. /*
  1621. * Default method to free all the __init memory into the buddy system.
  1622. * The freed pages will be poisoned with pattern "poison" if it's within
  1623. * range [0, UCHAR_MAX].
  1624. * Return pages freed into the buddy system.
  1625. */
  1626. static inline unsigned long free_initmem_default(int poison)
  1627. {
  1628. extern char __init_begin[], __init_end[];
  1629. return free_reserved_area(&__init_begin, &__init_end,
  1630. poison, "unused kernel");
  1631. }
  1632. static inline unsigned long get_num_physpages(void)
  1633. {
  1634. int nid;
  1635. unsigned long phys_pages = 0;
  1636. for_each_online_node(nid)
  1637. phys_pages += node_present_pages(nid);
  1638. return phys_pages;
  1639. }
  1640. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1641. /*
  1642. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1643. * zones, allocate the backing mem_map and account for memory holes in a more
  1644. * architecture independent manner. This is a substitute for creating the
  1645. * zone_sizes[] and zholes_size[] arrays and passing them to
  1646. * free_area_init_node()
  1647. *
  1648. * An architecture is expected to register range of page frames backed by
  1649. * physical memory with memblock_add[_node]() before calling
  1650. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1651. * usage, an architecture is expected to do something like
  1652. *
  1653. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1654. * max_highmem_pfn};
  1655. * for_each_valid_physical_page_range()
  1656. * memblock_add_node(base, size, nid)
  1657. * free_area_init_nodes(max_zone_pfns);
  1658. *
  1659. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1660. * registered physical page range. Similarly
  1661. * sparse_memory_present_with_active_regions() calls memory_present() for
  1662. * each range when SPARSEMEM is enabled.
  1663. *
  1664. * See mm/page_alloc.c for more information on each function exposed by
  1665. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1666. */
  1667. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1668. unsigned long node_map_pfn_alignment(void);
  1669. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1670. unsigned long end_pfn);
  1671. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1672. unsigned long end_pfn);
  1673. extern void get_pfn_range_for_nid(unsigned int nid,
  1674. unsigned long *start_pfn, unsigned long *end_pfn);
  1675. extern unsigned long find_min_pfn_with_active_regions(void);
  1676. extern void free_bootmem_with_active_regions(int nid,
  1677. unsigned long max_low_pfn);
  1678. extern void sparse_memory_present_with_active_regions(int nid);
  1679. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1680. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1681. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1682. static inline int __early_pfn_to_nid(unsigned long pfn,
  1683. struct mminit_pfnnid_cache *state)
  1684. {
  1685. return 0;
  1686. }
  1687. #else
  1688. /* please see mm/page_alloc.c */
  1689. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1690. /* there is a per-arch backend function. */
  1691. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1692. struct mminit_pfnnid_cache *state);
  1693. #endif
  1694. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1695. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1696. unsigned long, enum memmap_context);
  1697. extern void setup_per_zone_wmarks(void);
  1698. extern int __meminit init_per_zone_wmark_min(void);
  1699. extern void mem_init(void);
  1700. extern void __init mmap_init(void);
  1701. extern void show_mem(unsigned int flags, nodemask_t *nodemask);
  1702. extern long si_mem_available(void);
  1703. extern void si_meminfo(struct sysinfo * val);
  1704. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1705. #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
  1706. extern unsigned long arch_reserved_kernel_pages(void);
  1707. #endif
  1708. extern __printf(3, 4)
  1709. void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
  1710. extern void setup_per_cpu_pageset(void);
  1711. extern void zone_pcp_update(struct zone *zone);
  1712. extern void zone_pcp_reset(struct zone *zone);
  1713. /* page_alloc.c */
  1714. extern int min_free_kbytes;
  1715. extern int watermark_scale_factor;
  1716. /* nommu.c */
  1717. extern atomic_long_t mmap_pages_allocated;
  1718. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1719. /* interval_tree.c */
  1720. void vma_interval_tree_insert(struct vm_area_struct *node,
  1721. struct rb_root *root);
  1722. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1723. struct vm_area_struct *prev,
  1724. struct rb_root *root);
  1725. void vma_interval_tree_remove(struct vm_area_struct *node,
  1726. struct rb_root *root);
  1727. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1728. unsigned long start, unsigned long last);
  1729. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1730. unsigned long start, unsigned long last);
  1731. #define vma_interval_tree_foreach(vma, root, start, last) \
  1732. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1733. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1734. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1735. struct rb_root *root);
  1736. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1737. struct rb_root *root);
  1738. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1739. struct rb_root *root, unsigned long start, unsigned long last);
  1740. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1741. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1742. #ifdef CONFIG_DEBUG_VM_RB
  1743. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1744. #endif
  1745. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1746. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1747. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1748. /* mmap.c */
  1749. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1750. extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1751. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
  1752. struct vm_area_struct *expand);
  1753. static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1754. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  1755. {
  1756. return __vma_adjust(vma, start, end, pgoff, insert, NULL);
  1757. }
  1758. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1759. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1760. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1761. struct mempolicy *, struct vm_userfaultfd_ctx);
  1762. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1763. extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
  1764. unsigned long addr, int new_below);
  1765. extern int split_vma(struct mm_struct *, struct vm_area_struct *,
  1766. unsigned long addr, int new_below);
  1767. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1768. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1769. struct rb_node **, struct rb_node *);
  1770. extern void unlink_file_vma(struct vm_area_struct *);
  1771. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1772. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1773. bool *need_rmap_locks);
  1774. extern void exit_mmap(struct mm_struct *);
  1775. static inline int check_data_rlimit(unsigned long rlim,
  1776. unsigned long new,
  1777. unsigned long start,
  1778. unsigned long end_data,
  1779. unsigned long start_data)
  1780. {
  1781. if (rlim < RLIM_INFINITY) {
  1782. if (((new - start) + (end_data - start_data)) > rlim)
  1783. return -ENOSPC;
  1784. }
  1785. return 0;
  1786. }
  1787. extern int mm_take_all_locks(struct mm_struct *mm);
  1788. extern void mm_drop_all_locks(struct mm_struct *mm);
  1789. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1790. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1791. extern struct file *get_task_exe_file(struct task_struct *task);
  1792. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1793. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1794. extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
  1795. const struct vm_special_mapping *sm);
  1796. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1797. unsigned long addr, unsigned long len,
  1798. unsigned long flags,
  1799. const struct vm_special_mapping *spec);
  1800. /* This is an obsolete alternative to _install_special_mapping. */
  1801. extern int install_special_mapping(struct mm_struct *mm,
  1802. unsigned long addr, unsigned long len,
  1803. unsigned long flags, struct page **pages);
  1804. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1805. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1806. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
  1807. struct list_head *uf);
  1808. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1809. unsigned long len, unsigned long prot, unsigned long flags,
  1810. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
  1811. struct list_head *uf);
  1812. extern int do_munmap(struct mm_struct *, unsigned long, size_t,
  1813. struct list_head *uf);
  1814. static inline unsigned long
  1815. do_mmap_pgoff(struct file *file, unsigned long addr,
  1816. unsigned long len, unsigned long prot, unsigned long flags,
  1817. unsigned long pgoff, unsigned long *populate,
  1818. struct list_head *uf)
  1819. {
  1820. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
  1821. }
  1822. #ifdef CONFIG_MMU
  1823. extern int __mm_populate(unsigned long addr, unsigned long len,
  1824. int ignore_errors);
  1825. static inline void mm_populate(unsigned long addr, unsigned long len)
  1826. {
  1827. /* Ignore errors */
  1828. (void) __mm_populate(addr, len, 1);
  1829. }
  1830. #else
  1831. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1832. #endif
  1833. /* These take the mm semaphore themselves */
  1834. extern int __must_check vm_brk(unsigned long, unsigned long);
  1835. extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
  1836. extern int vm_munmap(unsigned long, size_t);
  1837. extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
  1838. unsigned long, unsigned long,
  1839. unsigned long, unsigned long);
  1840. struct vm_unmapped_area_info {
  1841. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1842. unsigned long flags;
  1843. unsigned long length;
  1844. unsigned long low_limit;
  1845. unsigned long high_limit;
  1846. unsigned long align_mask;
  1847. unsigned long align_offset;
  1848. };
  1849. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1850. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1851. /*
  1852. * Search for an unmapped address range.
  1853. *
  1854. * We are looking for a range that:
  1855. * - does not intersect with any VMA;
  1856. * - is contained within the [low_limit, high_limit) interval;
  1857. * - is at least the desired size.
  1858. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1859. */
  1860. static inline unsigned long
  1861. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1862. {
  1863. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1864. return unmapped_area_topdown(info);
  1865. else
  1866. return unmapped_area(info);
  1867. }
  1868. /* truncate.c */
  1869. extern void truncate_inode_pages(struct address_space *, loff_t);
  1870. extern void truncate_inode_pages_range(struct address_space *,
  1871. loff_t lstart, loff_t lend);
  1872. extern void truncate_inode_pages_final(struct address_space *);
  1873. /* generic vm_area_ops exported for stackable file systems */
  1874. extern int filemap_fault(struct vm_fault *vmf);
  1875. extern void filemap_map_pages(struct vm_fault *vmf,
  1876. pgoff_t start_pgoff, pgoff_t end_pgoff);
  1877. extern int filemap_page_mkwrite(struct vm_fault *vmf);
  1878. /* mm/page-writeback.c */
  1879. int write_one_page(struct page *page, int wait);
  1880. void task_dirty_inc(struct task_struct *tsk);
  1881. /* readahead.c */
  1882. #define VM_MAX_READAHEAD 128 /* kbytes */
  1883. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1884. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1885. pgoff_t offset, unsigned long nr_to_read);
  1886. void page_cache_sync_readahead(struct address_space *mapping,
  1887. struct file_ra_state *ra,
  1888. struct file *filp,
  1889. pgoff_t offset,
  1890. unsigned long size);
  1891. void page_cache_async_readahead(struct address_space *mapping,
  1892. struct file_ra_state *ra,
  1893. struct file *filp,
  1894. struct page *pg,
  1895. pgoff_t offset,
  1896. unsigned long size);
  1897. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1898. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1899. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1900. extern int expand_downwards(struct vm_area_struct *vma,
  1901. unsigned long address);
  1902. #if VM_GROWSUP
  1903. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1904. #else
  1905. #define expand_upwards(vma, address) (0)
  1906. #endif
  1907. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1908. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1909. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1910. struct vm_area_struct **pprev);
  1911. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1912. NULL if none. Assume start_addr < end_addr. */
  1913. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1914. {
  1915. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1916. if (vma && end_addr <= vma->vm_start)
  1917. vma = NULL;
  1918. return vma;
  1919. }
  1920. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1921. {
  1922. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1923. }
  1924. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1925. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1926. unsigned long vm_start, unsigned long vm_end)
  1927. {
  1928. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1929. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1930. vma = NULL;
  1931. return vma;
  1932. }
  1933. #ifdef CONFIG_MMU
  1934. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1935. void vma_set_page_prot(struct vm_area_struct *vma);
  1936. #else
  1937. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1938. {
  1939. return __pgprot(0);
  1940. }
  1941. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1942. {
  1943. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1944. }
  1945. #endif
  1946. #ifdef CONFIG_NUMA_BALANCING
  1947. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1948. unsigned long start, unsigned long end);
  1949. #endif
  1950. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1951. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1952. unsigned long pfn, unsigned long size, pgprot_t);
  1953. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1954. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1955. unsigned long pfn);
  1956. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1957. unsigned long pfn, pgprot_t pgprot);
  1958. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1959. pfn_t pfn);
  1960. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1961. struct page *follow_page_mask(struct vm_area_struct *vma,
  1962. unsigned long address, unsigned int foll_flags,
  1963. unsigned int *page_mask);
  1964. static inline struct page *follow_page(struct vm_area_struct *vma,
  1965. unsigned long address, unsigned int foll_flags)
  1966. {
  1967. unsigned int unused_page_mask;
  1968. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1969. }
  1970. #define FOLL_WRITE 0x01 /* check pte is writable */
  1971. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1972. #define FOLL_GET 0x04 /* do get_page on page */
  1973. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1974. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1975. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1976. * and return without waiting upon it */
  1977. #define FOLL_POPULATE 0x40 /* fault in page */
  1978. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1979. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1980. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1981. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1982. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1983. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1984. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1985. #define FOLL_COW 0x4000 /* internal GUP flag */
  1986. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1987. void *data);
  1988. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1989. unsigned long size, pte_fn_t fn, void *data);
  1990. #ifdef CONFIG_PAGE_POISONING
  1991. extern bool page_poisoning_enabled(void);
  1992. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1993. extern bool page_is_poisoned(struct page *page);
  1994. #else
  1995. static inline bool page_poisoning_enabled(void) { return false; }
  1996. static inline void kernel_poison_pages(struct page *page, int numpages,
  1997. int enable) { }
  1998. static inline bool page_is_poisoned(struct page *page) { return false; }
  1999. #endif
  2000. #ifdef CONFIG_DEBUG_PAGEALLOC
  2001. extern bool _debug_pagealloc_enabled;
  2002. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  2003. static inline bool debug_pagealloc_enabled(void)
  2004. {
  2005. return _debug_pagealloc_enabled;
  2006. }
  2007. static inline void
  2008. kernel_map_pages(struct page *page, int numpages, int enable)
  2009. {
  2010. if (!debug_pagealloc_enabled())
  2011. return;
  2012. __kernel_map_pages(page, numpages, enable);
  2013. }
  2014. #ifdef CONFIG_HIBERNATION
  2015. extern bool kernel_page_present(struct page *page);
  2016. #endif /* CONFIG_HIBERNATION */
  2017. #else /* CONFIG_DEBUG_PAGEALLOC */
  2018. static inline void
  2019. kernel_map_pages(struct page *page, int numpages, int enable) {}
  2020. #ifdef CONFIG_HIBERNATION
  2021. static inline bool kernel_page_present(struct page *page) { return true; }
  2022. #endif /* CONFIG_HIBERNATION */
  2023. static inline bool debug_pagealloc_enabled(void)
  2024. {
  2025. return false;
  2026. }
  2027. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2028. #ifdef __HAVE_ARCH_GATE_AREA
  2029. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  2030. extern int in_gate_area_no_mm(unsigned long addr);
  2031. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  2032. #else
  2033. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  2034. {
  2035. return NULL;
  2036. }
  2037. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  2038. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  2039. {
  2040. return 0;
  2041. }
  2042. #endif /* __HAVE_ARCH_GATE_AREA */
  2043. extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
  2044. #ifdef CONFIG_SYSCTL
  2045. extern int sysctl_drop_caches;
  2046. int drop_caches_sysctl_handler(struct ctl_table *, int,
  2047. void __user *, size_t *, loff_t *);
  2048. #endif
  2049. void drop_slab(void);
  2050. void drop_slab_node(int nid);
  2051. #ifndef CONFIG_MMU
  2052. #define randomize_va_space 0
  2053. #else
  2054. extern int randomize_va_space;
  2055. #endif
  2056. const char * arch_vma_name(struct vm_area_struct *vma);
  2057. void print_vma_addr(char *prefix, unsigned long rip);
  2058. void sparse_mem_maps_populate_node(struct page **map_map,
  2059. unsigned long pnum_begin,
  2060. unsigned long pnum_end,
  2061. unsigned long map_count,
  2062. int nodeid);
  2063. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  2064. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2065. p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
  2066. pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
  2067. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2068. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2069. void *vmemmap_alloc_block(unsigned long size, int node);
  2070. struct vmem_altmap;
  2071. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  2072. struct vmem_altmap *altmap);
  2073. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  2074. {
  2075. return __vmemmap_alloc_block_buf(size, node, NULL);
  2076. }
  2077. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2078. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2079. int node);
  2080. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2081. void vmemmap_populate_print_last(void);
  2082. #ifdef CONFIG_MEMORY_HOTPLUG
  2083. void vmemmap_free(unsigned long start, unsigned long end);
  2084. #endif
  2085. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2086. unsigned long size);
  2087. enum mf_flags {
  2088. MF_COUNT_INCREASED = 1 << 0,
  2089. MF_ACTION_REQUIRED = 1 << 1,
  2090. MF_MUST_KILL = 1 << 2,
  2091. MF_SOFT_OFFLINE = 1 << 3,
  2092. };
  2093. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2094. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2095. extern int unpoison_memory(unsigned long pfn);
  2096. extern int get_hwpoison_page(struct page *page);
  2097. #define put_hwpoison_page(page) put_page(page)
  2098. extern int sysctl_memory_failure_early_kill;
  2099. extern int sysctl_memory_failure_recovery;
  2100. extern void shake_page(struct page *p, int access);
  2101. extern atomic_long_t num_poisoned_pages;
  2102. extern int soft_offline_page(struct page *page, int flags);
  2103. /*
  2104. * Error handlers for various types of pages.
  2105. */
  2106. enum mf_result {
  2107. MF_IGNORED, /* Error: cannot be handled */
  2108. MF_FAILED, /* Error: handling failed */
  2109. MF_DELAYED, /* Will be handled later */
  2110. MF_RECOVERED, /* Successfully recovered */
  2111. };
  2112. enum mf_action_page_type {
  2113. MF_MSG_KERNEL,
  2114. MF_MSG_KERNEL_HIGH_ORDER,
  2115. MF_MSG_SLAB,
  2116. MF_MSG_DIFFERENT_COMPOUND,
  2117. MF_MSG_POISONED_HUGE,
  2118. MF_MSG_HUGE,
  2119. MF_MSG_FREE_HUGE,
  2120. MF_MSG_UNMAP_FAILED,
  2121. MF_MSG_DIRTY_SWAPCACHE,
  2122. MF_MSG_CLEAN_SWAPCACHE,
  2123. MF_MSG_DIRTY_MLOCKED_LRU,
  2124. MF_MSG_CLEAN_MLOCKED_LRU,
  2125. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2126. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2127. MF_MSG_DIRTY_LRU,
  2128. MF_MSG_CLEAN_LRU,
  2129. MF_MSG_TRUNCATED_LRU,
  2130. MF_MSG_BUDDY,
  2131. MF_MSG_BUDDY_2ND,
  2132. MF_MSG_UNKNOWN,
  2133. };
  2134. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2135. extern void clear_huge_page(struct page *page,
  2136. unsigned long addr,
  2137. unsigned int pages_per_huge_page);
  2138. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2139. unsigned long addr, struct vm_area_struct *vma,
  2140. unsigned int pages_per_huge_page);
  2141. extern long copy_huge_page_from_user(struct page *dst_page,
  2142. const void __user *usr_src,
  2143. unsigned int pages_per_huge_page,
  2144. bool allow_pagefault);
  2145. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2146. extern struct page_ext_operations debug_guardpage_ops;
  2147. extern struct page_ext_operations page_poisoning_ops;
  2148. #ifdef CONFIG_DEBUG_PAGEALLOC
  2149. extern unsigned int _debug_guardpage_minorder;
  2150. extern bool _debug_guardpage_enabled;
  2151. static inline unsigned int debug_guardpage_minorder(void)
  2152. {
  2153. return _debug_guardpage_minorder;
  2154. }
  2155. static inline bool debug_guardpage_enabled(void)
  2156. {
  2157. return _debug_guardpage_enabled;
  2158. }
  2159. static inline bool page_is_guard(struct page *page)
  2160. {
  2161. struct page_ext *page_ext;
  2162. if (!debug_guardpage_enabled())
  2163. return false;
  2164. page_ext = lookup_page_ext(page);
  2165. if (unlikely(!page_ext))
  2166. return false;
  2167. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2168. }
  2169. #else
  2170. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2171. static inline bool debug_guardpage_enabled(void) { return false; }
  2172. static inline bool page_is_guard(struct page *page) { return false; }
  2173. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2174. #if MAX_NUMNODES > 1
  2175. void __init setup_nr_node_ids(void);
  2176. #else
  2177. static inline void setup_nr_node_ids(void) {}
  2178. #endif
  2179. #endif /* __KERNEL__ */
  2180. #endif /* _LINUX_MM_H */