cafe_nand.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * The data sheet for this device can be found at:
  5. * http://wiki.laptop.org/go/Datasheets
  6. *
  7. * Copyright © 2006 Red Hat, Inc.
  8. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  9. */
  10. #define DEBUG
  11. #include <linux/device.h>
  12. #undef DEBUG
  13. #include <linux/mtd/mtd.h>
  14. #include <linux/mtd/rawnand.h>
  15. #include <linux/mtd/partitions.h>
  16. #include <linux/rslib.h>
  17. #include <linux/pci.h>
  18. #include <linux/delay.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/slab.h>
  22. #include <linux/module.h>
  23. #include <asm/io.h>
  24. #define CAFE_NAND_CTRL1 0x00
  25. #define CAFE_NAND_CTRL2 0x04
  26. #define CAFE_NAND_CTRL3 0x08
  27. #define CAFE_NAND_STATUS 0x0c
  28. #define CAFE_NAND_IRQ 0x10
  29. #define CAFE_NAND_IRQ_MASK 0x14
  30. #define CAFE_NAND_DATA_LEN 0x18
  31. #define CAFE_NAND_ADDR1 0x1c
  32. #define CAFE_NAND_ADDR2 0x20
  33. #define CAFE_NAND_TIMING1 0x24
  34. #define CAFE_NAND_TIMING2 0x28
  35. #define CAFE_NAND_TIMING3 0x2c
  36. #define CAFE_NAND_NONMEM 0x30
  37. #define CAFE_NAND_ECC_RESULT 0x3C
  38. #define CAFE_NAND_DMA_CTRL 0x40
  39. #define CAFE_NAND_DMA_ADDR0 0x44
  40. #define CAFE_NAND_DMA_ADDR1 0x48
  41. #define CAFE_NAND_ECC_SYN01 0x50
  42. #define CAFE_NAND_ECC_SYN23 0x54
  43. #define CAFE_NAND_ECC_SYN45 0x58
  44. #define CAFE_NAND_ECC_SYN67 0x5c
  45. #define CAFE_NAND_READ_DATA 0x1000
  46. #define CAFE_NAND_WRITE_DATA 0x2000
  47. #define CAFE_GLOBAL_CTRL 0x3004
  48. #define CAFE_GLOBAL_IRQ 0x3008
  49. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  50. #define CAFE_NAND_RESET 0x3034
  51. /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  52. #define CTRL1_CHIPSELECT (1<<19)
  53. struct cafe_priv {
  54. struct nand_chip nand;
  55. struct pci_dev *pdev;
  56. void __iomem *mmio;
  57. struct rs_control *rs;
  58. uint32_t ctl1;
  59. uint32_t ctl2;
  60. int datalen;
  61. int nr_data;
  62. int data_pos;
  63. int page_addr;
  64. bool usedma;
  65. dma_addr_t dmaaddr;
  66. unsigned char *dmabuf;
  67. };
  68. static int usedma = 1;
  69. module_param(usedma, int, 0644);
  70. static int skipbbt = 0;
  71. module_param(skipbbt, int, 0644);
  72. static int debug = 0;
  73. module_param(debug, int, 0644);
  74. static int regdebug = 0;
  75. module_param(regdebug, int, 0644);
  76. static int checkecc = 1;
  77. module_param(checkecc, int, 0644);
  78. static unsigned int numtimings;
  79. static int timing[3];
  80. module_param_array(timing, int, &numtimings, 0644);
  81. static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
  82. /* Hrm. Why isn't this already conditional on something in the struct device? */
  83. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  84. /* Make it easier to switch to PIO if we need to */
  85. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  86. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  87. static int cafe_device_ready(struct mtd_info *mtd)
  88. {
  89. struct nand_chip *chip = mtd_to_nand(mtd);
  90. struct cafe_priv *cafe = nand_get_controller_data(chip);
  91. int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
  92. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  93. cafe_writel(cafe, irqs, NAND_IRQ);
  94. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  95. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  96. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  97. return result;
  98. }
  99. static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  100. {
  101. struct nand_chip *chip = mtd_to_nand(mtd);
  102. struct cafe_priv *cafe = nand_get_controller_data(chip);
  103. if (cafe->usedma)
  104. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  105. else
  106. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  107. cafe->datalen += len;
  108. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  109. len, cafe->datalen);
  110. }
  111. static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  112. {
  113. struct nand_chip *chip = mtd_to_nand(mtd);
  114. struct cafe_priv *cafe = nand_get_controller_data(chip);
  115. if (cafe->usedma)
  116. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  117. else
  118. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  119. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  120. len, cafe->datalen);
  121. cafe->datalen += len;
  122. }
  123. static uint8_t cafe_read_byte(struct mtd_info *mtd)
  124. {
  125. struct nand_chip *chip = mtd_to_nand(mtd);
  126. struct cafe_priv *cafe = nand_get_controller_data(chip);
  127. uint8_t d;
  128. cafe_read_buf(mtd, &d, 1);
  129. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  130. return d;
  131. }
  132. static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  133. int column, int page_addr)
  134. {
  135. struct nand_chip *chip = mtd_to_nand(mtd);
  136. struct cafe_priv *cafe = nand_get_controller_data(chip);
  137. int adrbytes = 0;
  138. uint32_t ctl1;
  139. uint32_t doneint = 0x80000000;
  140. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  141. command, column, page_addr);
  142. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  143. /* Second half of a command we already calculated */
  144. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  145. ctl1 = cafe->ctl1;
  146. cafe->ctl2 &= ~(1<<30);
  147. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  148. cafe->ctl1, cafe->nr_data);
  149. goto do_command;
  150. }
  151. /* Reset ECC engine */
  152. cafe_writel(cafe, 0, NAND_CTRL2);
  153. /* Emulate NAND_CMD_READOOB on large-page chips */
  154. if (mtd->writesize > 512 &&
  155. command == NAND_CMD_READOOB) {
  156. column += mtd->writesize;
  157. command = NAND_CMD_READ0;
  158. }
  159. /* FIXME: Do we need to send read command before sending data
  160. for small-page chips, to position the buffer correctly? */
  161. if (column != -1) {
  162. cafe_writel(cafe, column, NAND_ADDR1);
  163. adrbytes = 2;
  164. if (page_addr != -1)
  165. goto write_adr2;
  166. } else if (page_addr != -1) {
  167. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  168. page_addr >>= 16;
  169. write_adr2:
  170. cafe_writel(cafe, page_addr, NAND_ADDR2);
  171. adrbytes += 2;
  172. if (mtd->size > mtd->writesize << 16)
  173. adrbytes++;
  174. }
  175. cafe->data_pos = cafe->datalen = 0;
  176. /* Set command valid bit, mask in the chip select bit */
  177. ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
  178. /* Set RD or WR bits as appropriate */
  179. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  180. ctl1 |= (1<<26); /* rd */
  181. /* Always 5 bytes, for now */
  182. cafe->datalen = 4;
  183. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  184. adrbytes = 1;
  185. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  186. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  187. ctl1 |= 1<<26; /* rd */
  188. /* For now, assume just read to end of page */
  189. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  190. } else if (command == NAND_CMD_SEQIN)
  191. ctl1 |= 1<<25; /* wr */
  192. /* Set number of address bytes */
  193. if (adrbytes)
  194. ctl1 |= ((adrbytes-1)|8) << 27;
  195. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  196. /* Ignore the first command of a pair; the hardware
  197. deals with them both at once, later */
  198. cafe->ctl1 = ctl1;
  199. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  200. cafe->ctl1, cafe->datalen);
  201. return;
  202. }
  203. /* RNDOUT and READ0 commands need a following byte */
  204. if (command == NAND_CMD_RNDOUT)
  205. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  206. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  207. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  208. do_command:
  209. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  210. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  211. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  212. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  213. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  214. if (cafe->usedma && (ctl1 & (3<<25))) {
  215. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  216. /* If WR or RD bits set, set up DMA */
  217. if (ctl1 & (1<<26)) {
  218. /* It's a read */
  219. dmactl |= (1<<29);
  220. /* ... so it's done when the DMA is done, not just
  221. the command. */
  222. doneint = 0x10000000;
  223. }
  224. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  225. }
  226. cafe->datalen = 0;
  227. if (unlikely(regdebug)) {
  228. int i;
  229. printk("About to write command %08x to register 0\n", ctl1);
  230. for (i=4; i< 0x5c; i+=4)
  231. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  232. }
  233. cafe_writel(cafe, ctl1, NAND_CTRL1);
  234. /* Apply this short delay always to ensure that we do wait tWB in
  235. * any case on any machine. */
  236. ndelay(100);
  237. if (1) {
  238. int c;
  239. uint32_t irqs;
  240. for (c = 500000; c != 0; c--) {
  241. irqs = cafe_readl(cafe, NAND_IRQ);
  242. if (irqs & doneint)
  243. break;
  244. udelay(1);
  245. if (!(c % 100000))
  246. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  247. cpu_relax();
  248. }
  249. cafe_writel(cafe, doneint, NAND_IRQ);
  250. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  251. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  252. }
  253. WARN_ON(cafe->ctl2 & (1<<30));
  254. switch (command) {
  255. case NAND_CMD_CACHEDPROG:
  256. case NAND_CMD_PAGEPROG:
  257. case NAND_CMD_ERASE1:
  258. case NAND_CMD_ERASE2:
  259. case NAND_CMD_SEQIN:
  260. case NAND_CMD_RNDIN:
  261. case NAND_CMD_STATUS:
  262. case NAND_CMD_RNDOUT:
  263. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  264. return;
  265. }
  266. nand_wait_ready(mtd);
  267. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  268. }
  269. static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
  270. {
  271. struct nand_chip *chip = mtd_to_nand(mtd);
  272. struct cafe_priv *cafe = nand_get_controller_data(chip);
  273. cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  274. /* Mask the appropriate bit into the stored value of ctl1
  275. which will be used by cafe_nand_cmdfunc() */
  276. if (chipnr)
  277. cafe->ctl1 |= CTRL1_CHIPSELECT;
  278. else
  279. cafe->ctl1 &= ~CTRL1_CHIPSELECT;
  280. }
  281. static irqreturn_t cafe_nand_interrupt(int irq, void *id)
  282. {
  283. struct mtd_info *mtd = id;
  284. struct nand_chip *chip = mtd_to_nand(mtd);
  285. struct cafe_priv *cafe = nand_get_controller_data(chip);
  286. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  287. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  288. if (!irqs)
  289. return IRQ_NONE;
  290. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  291. return IRQ_HANDLED;
  292. }
  293. static int cafe_nand_write_oob(struct mtd_info *mtd,
  294. struct nand_chip *chip, int page)
  295. {
  296. return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
  297. mtd->oobsize);
  298. }
  299. /* Don't use -- use nand_read_oob_std for now */
  300. static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
  301. int page)
  302. {
  303. return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
  304. }
  305. /**
  306. * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
  307. * @mtd: mtd info structure
  308. * @chip: nand chip info structure
  309. * @buf: buffer to store read data
  310. * @oob_required: caller expects OOB data read to chip->oob_poi
  311. *
  312. * The hw generator calculates the error syndrome automatically. Therefore
  313. * we need a special oob layout and handling.
  314. */
  315. static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  316. uint8_t *buf, int oob_required, int page)
  317. {
  318. struct cafe_priv *cafe = nand_get_controller_data(chip);
  319. unsigned int max_bitflips = 0;
  320. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  321. cafe_readl(cafe, NAND_ECC_RESULT),
  322. cafe_readl(cafe, NAND_ECC_SYN01));
  323. nand_read_page_op(chip, page, 0, buf, mtd->writesize);
  324. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  325. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  326. unsigned short syn[8], pat[4];
  327. int pos[4];
  328. u8 *oob = chip->oob_poi;
  329. int i, n;
  330. for (i=0; i<8; i+=2) {
  331. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  332. syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
  333. syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
  334. }
  335. n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
  336. pat);
  337. for (i = 0; i < n; i++) {
  338. int p = pos[i];
  339. /* The 12-bit symbols are mapped to bytes here */
  340. if (p > 1374) {
  341. /* out of range */
  342. n = -1374;
  343. } else if (p == 0) {
  344. /* high four bits do not correspond to data */
  345. if (pat[i] > 0xff)
  346. n = -2048;
  347. else
  348. buf[0] ^= pat[i];
  349. } else if (p == 1365) {
  350. buf[2047] ^= pat[i] >> 4;
  351. oob[0] ^= pat[i] << 4;
  352. } else if (p > 1365) {
  353. if ((p & 1) == 1) {
  354. oob[3*p/2 - 2048] ^= pat[i] >> 4;
  355. oob[3*p/2 - 2047] ^= pat[i] << 4;
  356. } else {
  357. oob[3*p/2 - 2049] ^= pat[i] >> 8;
  358. oob[3*p/2 - 2048] ^= pat[i];
  359. }
  360. } else if ((p & 1) == 1) {
  361. buf[3*p/2] ^= pat[i] >> 4;
  362. buf[3*p/2 + 1] ^= pat[i] << 4;
  363. } else {
  364. buf[3*p/2 - 1] ^= pat[i] >> 8;
  365. buf[3*p/2] ^= pat[i];
  366. }
  367. }
  368. if (n < 0) {
  369. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  370. cafe_readl(cafe, NAND_ADDR2) * 2048);
  371. for (i = 0; i < 0x5c; i += 4)
  372. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  373. mtd->ecc_stats.failed++;
  374. } else {
  375. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
  376. mtd->ecc_stats.corrected += n;
  377. max_bitflips = max_t(unsigned int, max_bitflips, n);
  378. }
  379. }
  380. return max_bitflips;
  381. }
  382. static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
  383. struct mtd_oob_region *oobregion)
  384. {
  385. struct nand_chip *chip = mtd_to_nand(mtd);
  386. if (section)
  387. return -ERANGE;
  388. oobregion->offset = 0;
  389. oobregion->length = chip->ecc.total;
  390. return 0;
  391. }
  392. static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
  393. struct mtd_oob_region *oobregion)
  394. {
  395. struct nand_chip *chip = mtd_to_nand(mtd);
  396. if (section)
  397. return -ERANGE;
  398. oobregion->offset = chip->ecc.total;
  399. oobregion->length = mtd->oobsize - chip->ecc.total;
  400. return 0;
  401. }
  402. static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
  403. .ecc = cafe_ooblayout_ecc,
  404. .free = cafe_ooblayout_free,
  405. };
  406. /* Ick. The BBT code really ought to be able to work this bit out
  407. for itself from the above, at least for the 2KiB case */
  408. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  409. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  410. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  411. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  412. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  413. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  414. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  415. .offs = 14,
  416. .len = 4,
  417. .veroffs = 18,
  418. .maxblocks = 4,
  419. .pattern = cafe_bbt_pattern_2048
  420. };
  421. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  422. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  423. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  424. .offs = 14,
  425. .len = 4,
  426. .veroffs = 18,
  427. .maxblocks = 4,
  428. .pattern = cafe_mirror_pattern_2048
  429. };
  430. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  431. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  432. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  433. .offs = 14,
  434. .len = 1,
  435. .veroffs = 15,
  436. .maxblocks = 4,
  437. .pattern = cafe_bbt_pattern_512
  438. };
  439. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  440. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  441. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  442. .offs = 14,
  443. .len = 1,
  444. .veroffs = 15,
  445. .maxblocks = 4,
  446. .pattern = cafe_mirror_pattern_512
  447. };
  448. static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
  449. struct nand_chip *chip,
  450. const uint8_t *buf, int oob_required,
  451. int page)
  452. {
  453. struct cafe_priv *cafe = nand_get_controller_data(chip);
  454. nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
  455. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  456. /* Set up ECC autogeneration */
  457. cafe->ctl2 |= (1<<30);
  458. return nand_prog_page_end_op(chip);
  459. }
  460. static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
  461. {
  462. return 0;
  463. }
  464. /* F_2[X]/(X**6+X+1) */
  465. static unsigned short gf64_mul(u8 a, u8 b)
  466. {
  467. u8 c;
  468. unsigned int i;
  469. c = 0;
  470. for (i = 0; i < 6; i++) {
  471. if (a & 1)
  472. c ^= b;
  473. a >>= 1;
  474. b <<= 1;
  475. if ((b & 0x40) != 0)
  476. b ^= 0x43;
  477. }
  478. return c;
  479. }
  480. /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
  481. static u16 gf4096_mul(u16 a, u16 b)
  482. {
  483. u8 ah, al, bh, bl, ch, cl;
  484. ah = a >> 6;
  485. al = a & 0x3f;
  486. bh = b >> 6;
  487. bl = b & 0x3f;
  488. ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
  489. cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
  490. return (ch << 6) ^ cl;
  491. }
  492. static int cafe_mul(int x)
  493. {
  494. if (x == 0)
  495. return 1;
  496. return gf4096_mul(x, 0xe01);
  497. }
  498. static int cafe_nand_attach_chip(struct nand_chip *chip)
  499. {
  500. struct mtd_info *mtd = nand_to_mtd(chip);
  501. struct cafe_priv *cafe = nand_get_controller_data(chip);
  502. int err = 0;
  503. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
  504. &cafe->dmaaddr, GFP_KERNEL);
  505. if (!cafe->dmabuf)
  506. return -ENOMEM;
  507. /* Set up DMA address */
  508. cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
  509. cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
  510. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  511. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  512. /* Restore the DMA flag */
  513. cafe->usedma = usedma;
  514. cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
  515. if (mtd->writesize == 2048)
  516. cafe->ctl2 |= BIT(29); /* 2KiB page size */
  517. /* Set up ECC according to the type of chip we found */
  518. mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
  519. if (mtd->writesize == 2048) {
  520. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  521. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  522. } else if (mtd->writesize == 512) {
  523. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  524. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  525. } else {
  526. dev_warn(&cafe->pdev->dev,
  527. "Unexpected NAND flash writesize %d. Aborting\n",
  528. mtd->writesize);
  529. err = -ENOTSUPP;
  530. goto out_free_dma;
  531. }
  532. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  533. cafe->nand.ecc.size = mtd->writesize;
  534. cafe->nand.ecc.bytes = 14;
  535. cafe->nand.ecc.strength = 4;
  536. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  537. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  538. cafe->nand.ecc.read_page = cafe_nand_read_page;
  539. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  540. return 0;
  541. out_free_dma:
  542. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  543. return err;
  544. }
  545. static void cafe_nand_detach_chip(struct nand_chip *chip)
  546. {
  547. struct cafe_priv *cafe = nand_get_controller_data(chip);
  548. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  549. }
  550. static const struct nand_controller_ops cafe_nand_controller_ops = {
  551. .attach_chip = cafe_nand_attach_chip,
  552. .detach_chip = cafe_nand_detach_chip,
  553. };
  554. static int cafe_nand_probe(struct pci_dev *pdev,
  555. const struct pci_device_id *ent)
  556. {
  557. struct mtd_info *mtd;
  558. struct cafe_priv *cafe;
  559. uint32_t ctrl;
  560. int err = 0;
  561. /* Very old versions shared the same PCI ident for all three
  562. functions on the chip. Verify the class too... */
  563. if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
  564. return -ENODEV;
  565. err = pci_enable_device(pdev);
  566. if (err)
  567. return err;
  568. pci_set_master(pdev);
  569. cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
  570. if (!cafe)
  571. return -ENOMEM;
  572. mtd = nand_to_mtd(&cafe->nand);
  573. mtd->dev.parent = &pdev->dev;
  574. nand_set_controller_data(&cafe->nand, cafe);
  575. cafe->pdev = pdev;
  576. cafe->mmio = pci_iomap(pdev, 0, 0);
  577. if (!cafe->mmio) {
  578. dev_warn(&pdev->dev, "failed to iomap\n");
  579. err = -ENOMEM;
  580. goto out_free_mtd;
  581. }
  582. cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
  583. if (!cafe->rs) {
  584. err = -ENOMEM;
  585. goto out_ior;
  586. }
  587. cafe->nand.cmdfunc = cafe_nand_cmdfunc;
  588. cafe->nand.dev_ready = cafe_device_ready;
  589. cafe->nand.read_byte = cafe_read_byte;
  590. cafe->nand.read_buf = cafe_read_buf;
  591. cafe->nand.write_buf = cafe_write_buf;
  592. cafe->nand.select_chip = cafe_select_chip;
  593. cafe->nand.set_features = nand_get_set_features_notsupp;
  594. cafe->nand.get_features = nand_get_set_features_notsupp;
  595. cafe->nand.chip_delay = 0;
  596. /* Enable the following for a flash based bad block table */
  597. cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
  598. if (skipbbt) {
  599. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  600. cafe->nand.block_bad = cafe_nand_block_bad;
  601. }
  602. if (numtimings && numtimings != 3) {
  603. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  604. }
  605. if (numtimings == 3) {
  606. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  607. timing[0], timing[1], timing[2]);
  608. } else {
  609. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  610. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  611. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  612. if (timing[0] | timing[1] | timing[2]) {
  613. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  614. timing[0], timing[1], timing[2]);
  615. } else {
  616. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  617. timing[0] = timing[1] = timing[2] = 0xffffffff;
  618. }
  619. }
  620. /* Start off by resetting the NAND controller completely */
  621. cafe_writel(cafe, 1, NAND_RESET);
  622. cafe_writel(cafe, 0, NAND_RESET);
  623. cafe_writel(cafe, timing[0], NAND_TIMING1);
  624. cafe_writel(cafe, timing[1], NAND_TIMING2);
  625. cafe_writel(cafe, timing[2], NAND_TIMING3);
  626. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  627. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  628. "CAFE NAND", mtd);
  629. if (err) {
  630. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  631. goto out_ior;
  632. }
  633. /* Disable master reset, enable NAND clock */
  634. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  635. ctrl &= 0xffffeff0;
  636. ctrl |= 0x00007000;
  637. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  638. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  639. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  640. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  641. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  642. /* Enable NAND IRQ in global IRQ mask register */
  643. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  644. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  645. cafe_readl(cafe, GLOBAL_CTRL),
  646. cafe_readl(cafe, GLOBAL_IRQ_MASK));
  647. /* Do not use the DMA during the NAND identification */
  648. cafe->usedma = 0;
  649. /* Scan to find existence of the device */
  650. cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
  651. err = nand_scan(mtd, 2);
  652. if (err)
  653. goto out_irq;
  654. pci_set_drvdata(pdev, mtd);
  655. mtd->name = "cafe_nand";
  656. err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
  657. if (err)
  658. goto out_cleanup_nand;
  659. goto out;
  660. out_cleanup_nand:
  661. nand_cleanup(&cafe->nand);
  662. out_irq:
  663. /* Disable NAND IRQ in global IRQ mask register */
  664. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  665. free_irq(pdev->irq, mtd);
  666. out_ior:
  667. pci_iounmap(pdev, cafe->mmio);
  668. out_free_mtd:
  669. kfree(cafe);
  670. out:
  671. return err;
  672. }
  673. static void cafe_nand_remove(struct pci_dev *pdev)
  674. {
  675. struct mtd_info *mtd = pci_get_drvdata(pdev);
  676. struct nand_chip *chip = mtd_to_nand(mtd);
  677. struct cafe_priv *cafe = nand_get_controller_data(chip);
  678. /* Disable NAND IRQ in global IRQ mask register */
  679. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  680. free_irq(pdev->irq, mtd);
  681. nand_release(mtd);
  682. free_rs(cafe->rs);
  683. pci_iounmap(pdev, cafe->mmio);
  684. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  685. kfree(cafe);
  686. }
  687. static const struct pci_device_id cafe_nand_tbl[] = {
  688. { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
  689. PCI_ANY_ID, PCI_ANY_ID },
  690. { }
  691. };
  692. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  693. static int cafe_nand_resume(struct pci_dev *pdev)
  694. {
  695. uint32_t ctrl;
  696. struct mtd_info *mtd = pci_get_drvdata(pdev);
  697. struct nand_chip *chip = mtd_to_nand(mtd);
  698. struct cafe_priv *cafe = nand_get_controller_data(chip);
  699. /* Start off by resetting the NAND controller completely */
  700. cafe_writel(cafe, 1, NAND_RESET);
  701. cafe_writel(cafe, 0, NAND_RESET);
  702. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  703. /* Restore timing configuration */
  704. cafe_writel(cafe, timing[0], NAND_TIMING1);
  705. cafe_writel(cafe, timing[1], NAND_TIMING2);
  706. cafe_writel(cafe, timing[2], NAND_TIMING3);
  707. /* Disable master reset, enable NAND clock */
  708. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  709. ctrl &= 0xffffeff0;
  710. ctrl |= 0x00007000;
  711. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  712. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  713. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  714. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  715. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  716. /* Set up DMA address */
  717. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  718. if (sizeof(cafe->dmaaddr) > 4)
  719. /* Shift in two parts to shut the compiler up */
  720. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  721. else
  722. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  723. /* Enable NAND IRQ in global IRQ mask register */
  724. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  725. return 0;
  726. }
  727. static struct pci_driver cafe_nand_pci_driver = {
  728. .name = "CAFÉ NAND",
  729. .id_table = cafe_nand_tbl,
  730. .probe = cafe_nand_probe,
  731. .remove = cafe_nand_remove,
  732. .resume = cafe_nand_resume,
  733. };
  734. module_pci_driver(cafe_nand_pci_driver);
  735. MODULE_LICENSE("GPL");
  736. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  737. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");