intel_dp.c 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /*
  61. * CHV supports eDP 1.4 that have more link rates.
  62. * Below only provides the fixed rate but exclude variable rate.
  63. */
  64. static const struct dp_link_dpll chv_dpll[] = {
  65. /*
  66. * CHV requires to program fractional division for m2.
  67. * m2 is stored in fixed point format using formula below
  68. * (m2_int << 22) | m2_fraction
  69. */
  70. { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
  71. { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
  72. { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
  73. { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
  74. { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
  75. { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
  76. };
  77. /**
  78. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  79. * @intel_dp: DP struct
  80. *
  81. * If a CPU or PCH DP output is attached to an eDP panel, this function
  82. * will return true, and false otherwise.
  83. */
  84. static bool is_edp(struct intel_dp *intel_dp)
  85. {
  86. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  87. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  88. }
  89. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  90. {
  91. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  92. return intel_dig_port->base.base.dev;
  93. }
  94. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95. {
  96. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  97. }
  98. static void intel_dp_link_down(struct intel_dp *intel_dp);
  99. static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
  100. static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  101. static int
  102. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  103. {
  104. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  105. struct drm_device *dev = intel_dp->attached_connector->base.dev;
  106. switch (max_link_bw) {
  107. case DP_LINK_BW_1_62:
  108. case DP_LINK_BW_2_7:
  109. break;
  110. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  111. if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
  112. intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
  113. max_link_bw = DP_LINK_BW_5_4;
  114. else
  115. max_link_bw = DP_LINK_BW_2_7;
  116. break;
  117. default:
  118. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  119. max_link_bw);
  120. max_link_bw = DP_LINK_BW_1_62;
  121. break;
  122. }
  123. return max_link_bw;
  124. }
  125. /*
  126. * The units on the numbers in the next two are... bizarre. Examples will
  127. * make it clearer; this one parallels an example in the eDP spec.
  128. *
  129. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  130. *
  131. * 270000 * 1 * 8 / 10 == 216000
  132. *
  133. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  134. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  135. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  136. * 119000. At 18bpp that's 2142000 kilobits per second.
  137. *
  138. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  139. * get the result in decakilobits instead of kilobits.
  140. */
  141. static int
  142. intel_dp_link_required(int pixel_clock, int bpp)
  143. {
  144. return (pixel_clock * bpp + 9) / 10;
  145. }
  146. static int
  147. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  148. {
  149. return (max_link_clock * max_lanes * 8) / 10;
  150. }
  151. static enum drm_mode_status
  152. intel_dp_mode_valid(struct drm_connector *connector,
  153. struct drm_display_mode *mode)
  154. {
  155. struct intel_dp *intel_dp = intel_attached_dp(connector);
  156. struct intel_connector *intel_connector = to_intel_connector(connector);
  157. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  158. int target_clock = mode->clock;
  159. int max_rate, mode_rate, max_lanes, max_link_clock;
  160. if (is_edp(intel_dp) && fixed_mode) {
  161. if (mode->hdisplay > fixed_mode->hdisplay)
  162. return MODE_PANEL;
  163. if (mode->vdisplay > fixed_mode->vdisplay)
  164. return MODE_PANEL;
  165. target_clock = fixed_mode->clock;
  166. }
  167. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  168. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  169. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  170. mode_rate = intel_dp_link_required(target_clock, 18);
  171. if (mode_rate > max_rate)
  172. return MODE_CLOCK_HIGH;
  173. if (mode->clock < 10000)
  174. return MODE_CLOCK_LOW;
  175. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  176. return MODE_H_ILLEGAL;
  177. return MODE_OK;
  178. }
  179. static uint32_t
  180. pack_aux(uint8_t *src, int src_bytes)
  181. {
  182. int i;
  183. uint32_t v = 0;
  184. if (src_bytes > 4)
  185. src_bytes = 4;
  186. for (i = 0; i < src_bytes; i++)
  187. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  188. return v;
  189. }
  190. static void
  191. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  192. {
  193. int i;
  194. if (dst_bytes > 4)
  195. dst_bytes = 4;
  196. for (i = 0; i < dst_bytes; i++)
  197. dst[i] = src >> ((3-i) * 8);
  198. }
  199. /* hrawclock is 1/4 the FSB frequency */
  200. static int
  201. intel_hrawclk(struct drm_device *dev)
  202. {
  203. struct drm_i915_private *dev_priv = dev->dev_private;
  204. uint32_t clkcfg;
  205. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  206. if (IS_VALLEYVIEW(dev))
  207. return 200;
  208. clkcfg = I915_READ(CLKCFG);
  209. switch (clkcfg & CLKCFG_FSB_MASK) {
  210. case CLKCFG_FSB_400:
  211. return 100;
  212. case CLKCFG_FSB_533:
  213. return 133;
  214. case CLKCFG_FSB_667:
  215. return 166;
  216. case CLKCFG_FSB_800:
  217. return 200;
  218. case CLKCFG_FSB_1067:
  219. return 266;
  220. case CLKCFG_FSB_1333:
  221. return 333;
  222. /* these two are just a guess; one of them might be right */
  223. case CLKCFG_FSB_1600:
  224. case CLKCFG_FSB_1600_ALT:
  225. return 400;
  226. default:
  227. return 133;
  228. }
  229. }
  230. static void
  231. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  232. struct intel_dp *intel_dp,
  233. struct edp_power_seq *out);
  234. static void
  235. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  236. struct intel_dp *intel_dp,
  237. struct edp_power_seq *out);
  238. static enum pipe
  239. vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
  240. {
  241. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  242. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  243. struct drm_device *dev = intel_dig_port->base.base.dev;
  244. struct drm_i915_private *dev_priv = dev->dev_private;
  245. enum port port = intel_dig_port->port;
  246. enum pipe pipe;
  247. /* modeset should have pipe */
  248. if (crtc)
  249. return to_intel_crtc(crtc)->pipe;
  250. /* init time, try to find a pipe with this port selected */
  251. for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
  252. u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
  253. PANEL_PORT_SELECT_MASK;
  254. if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
  255. return pipe;
  256. if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
  257. return pipe;
  258. }
  259. /* shrug */
  260. return PIPE_A;
  261. }
  262. static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
  263. {
  264. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  265. if (HAS_PCH_SPLIT(dev))
  266. return PCH_PP_CONTROL;
  267. else
  268. return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
  269. }
  270. static u32 _pp_stat_reg(struct intel_dp *intel_dp)
  271. {
  272. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  273. if (HAS_PCH_SPLIT(dev))
  274. return PCH_PP_STATUS;
  275. else
  276. return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
  277. }
  278. static bool edp_have_panel_power(struct intel_dp *intel_dp)
  279. {
  280. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
  283. }
  284. static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
  285. {
  286. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  287. struct drm_i915_private *dev_priv = dev->dev_private;
  288. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  289. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  290. enum intel_display_power_domain power_domain;
  291. power_domain = intel_display_port_power_domain(intel_encoder);
  292. return intel_display_power_enabled(dev_priv, power_domain) &&
  293. (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
  294. }
  295. static void
  296. intel_dp_check_edp(struct intel_dp *intel_dp)
  297. {
  298. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. if (!is_edp(intel_dp))
  301. return;
  302. if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
  303. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  304. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  305. I915_READ(_pp_stat_reg(intel_dp)),
  306. I915_READ(_pp_ctrl_reg(intel_dp)));
  307. }
  308. }
  309. static uint32_t
  310. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  311. {
  312. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  313. struct drm_device *dev = intel_dig_port->base.base.dev;
  314. struct drm_i915_private *dev_priv = dev->dev_private;
  315. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  316. uint32_t status;
  317. bool done;
  318. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  319. if (has_aux_irq)
  320. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  321. msecs_to_jiffies_timeout(10));
  322. else
  323. done = wait_for_atomic(C, 10) == 0;
  324. if (!done)
  325. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  326. has_aux_irq);
  327. #undef C
  328. return status;
  329. }
  330. static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  331. {
  332. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  333. struct drm_device *dev = intel_dig_port->base.base.dev;
  334. /*
  335. * The clock divider is based off the hrawclk, and would like to run at
  336. * 2MHz. So, take the hrawclk value and divide by 2 and use that
  337. */
  338. return index ? 0 : intel_hrawclk(dev) / 2;
  339. }
  340. static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  341. {
  342. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  343. struct drm_device *dev = intel_dig_port->base.base.dev;
  344. if (index)
  345. return 0;
  346. if (intel_dig_port->port == PORT_A) {
  347. if (IS_GEN6(dev) || IS_GEN7(dev))
  348. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  349. else
  350. return 225; /* eDP input clock at 450Mhz */
  351. } else {
  352. return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  353. }
  354. }
  355. static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  356. {
  357. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  358. struct drm_device *dev = intel_dig_port->base.base.dev;
  359. struct drm_i915_private *dev_priv = dev->dev_private;
  360. if (intel_dig_port->port == PORT_A) {
  361. if (index)
  362. return 0;
  363. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  364. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  365. /* Workaround for non-ULT HSW */
  366. switch (index) {
  367. case 0: return 63;
  368. case 1: return 72;
  369. default: return 0;
  370. }
  371. } else {
  372. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  373. }
  374. }
  375. static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  376. {
  377. return index ? 0 : 100;
  378. }
  379. static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
  380. bool has_aux_irq,
  381. int send_bytes,
  382. uint32_t aux_clock_divider)
  383. {
  384. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  385. struct drm_device *dev = intel_dig_port->base.base.dev;
  386. uint32_t precharge, timeout;
  387. if (IS_GEN6(dev))
  388. precharge = 3;
  389. else
  390. precharge = 5;
  391. if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
  392. timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
  393. else
  394. timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
  395. return DP_AUX_CH_CTL_SEND_BUSY |
  396. DP_AUX_CH_CTL_DONE |
  397. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  398. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  399. timeout |
  400. DP_AUX_CH_CTL_RECEIVE_ERROR |
  401. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  402. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  403. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
  404. }
  405. static int
  406. intel_dp_aux_ch(struct intel_dp *intel_dp,
  407. uint8_t *send, int send_bytes,
  408. uint8_t *recv, int recv_size)
  409. {
  410. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  411. struct drm_device *dev = intel_dig_port->base.base.dev;
  412. struct drm_i915_private *dev_priv = dev->dev_private;
  413. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  414. uint32_t ch_data = ch_ctl + 4;
  415. uint32_t aux_clock_divider;
  416. int i, ret, recv_bytes;
  417. uint32_t status;
  418. int try, clock = 0;
  419. bool has_aux_irq = HAS_AUX_IRQ(dev);
  420. bool vdd;
  421. vdd = _edp_panel_vdd_on(intel_dp);
  422. /* dp aux is extremely sensitive to irq latency, hence request the
  423. * lowest possible wakeup latency and so prevent the cpu from going into
  424. * deep sleep states.
  425. */
  426. pm_qos_update_request(&dev_priv->pm_qos, 0);
  427. intel_dp_check_edp(intel_dp);
  428. intel_aux_display_runtime_get(dev_priv);
  429. /* Try to wait for any previous AUX channel activity */
  430. for (try = 0; try < 3; try++) {
  431. status = I915_READ_NOTRACE(ch_ctl);
  432. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  433. break;
  434. msleep(1);
  435. }
  436. if (try == 3) {
  437. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  438. I915_READ(ch_ctl));
  439. ret = -EBUSY;
  440. goto out;
  441. }
  442. /* Only 5 data registers! */
  443. if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
  444. ret = -E2BIG;
  445. goto out;
  446. }
  447. while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
  448. u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
  449. has_aux_irq,
  450. send_bytes,
  451. aux_clock_divider);
  452. /* Must try at least 3 times according to DP spec */
  453. for (try = 0; try < 5; try++) {
  454. /* Load the send data into the aux channel data registers */
  455. for (i = 0; i < send_bytes; i += 4)
  456. I915_WRITE(ch_data + i,
  457. pack_aux(send + i, send_bytes - i));
  458. /* Send the command and wait for it to complete */
  459. I915_WRITE(ch_ctl, send_ctl);
  460. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  461. /* Clear done status and any errors */
  462. I915_WRITE(ch_ctl,
  463. status |
  464. DP_AUX_CH_CTL_DONE |
  465. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  466. DP_AUX_CH_CTL_RECEIVE_ERROR);
  467. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  468. DP_AUX_CH_CTL_RECEIVE_ERROR))
  469. continue;
  470. if (status & DP_AUX_CH_CTL_DONE)
  471. break;
  472. }
  473. if (status & DP_AUX_CH_CTL_DONE)
  474. break;
  475. }
  476. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  477. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  478. ret = -EBUSY;
  479. goto out;
  480. }
  481. /* Check for timeout or receive error.
  482. * Timeouts occur when the sink is not connected
  483. */
  484. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  485. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  486. ret = -EIO;
  487. goto out;
  488. }
  489. /* Timeouts occur when the device isn't connected, so they're
  490. * "normal" -- don't fill the kernel log with these */
  491. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  492. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  493. ret = -ETIMEDOUT;
  494. goto out;
  495. }
  496. /* Unload any bytes sent back from the other side */
  497. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  498. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  499. if (recv_bytes > recv_size)
  500. recv_bytes = recv_size;
  501. for (i = 0; i < recv_bytes; i += 4)
  502. unpack_aux(I915_READ(ch_data + i),
  503. recv + i, recv_bytes - i);
  504. ret = recv_bytes;
  505. out:
  506. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  507. intel_aux_display_runtime_put(dev_priv);
  508. if (vdd)
  509. edp_panel_vdd_off(intel_dp, false);
  510. return ret;
  511. }
  512. #define BARE_ADDRESS_SIZE 3
  513. #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
  514. static ssize_t
  515. intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
  516. {
  517. struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
  518. uint8_t txbuf[20], rxbuf[20];
  519. size_t txsize, rxsize;
  520. int ret;
  521. txbuf[0] = msg->request << 4;
  522. txbuf[1] = msg->address >> 8;
  523. txbuf[2] = msg->address & 0xff;
  524. txbuf[3] = msg->size - 1;
  525. switch (msg->request & ~DP_AUX_I2C_MOT) {
  526. case DP_AUX_NATIVE_WRITE:
  527. case DP_AUX_I2C_WRITE:
  528. txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
  529. rxsize = 1;
  530. if (WARN_ON(txsize > 20))
  531. return -E2BIG;
  532. memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
  533. ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
  534. if (ret > 0) {
  535. msg->reply = rxbuf[0] >> 4;
  536. /* Return payload size. */
  537. ret = msg->size;
  538. }
  539. break;
  540. case DP_AUX_NATIVE_READ:
  541. case DP_AUX_I2C_READ:
  542. txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
  543. rxsize = msg->size + 1;
  544. if (WARN_ON(rxsize > 20))
  545. return -E2BIG;
  546. ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
  547. if (ret > 0) {
  548. msg->reply = rxbuf[0] >> 4;
  549. /*
  550. * Assume happy day, and copy the data. The caller is
  551. * expected to check msg->reply before touching it.
  552. *
  553. * Return payload size.
  554. */
  555. ret--;
  556. memcpy(msg->buffer, rxbuf + 1, ret);
  557. }
  558. break;
  559. default:
  560. ret = -EINVAL;
  561. break;
  562. }
  563. return ret;
  564. }
  565. static void
  566. intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
  567. {
  568. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  569. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  570. enum port port = intel_dig_port->port;
  571. const char *name = NULL;
  572. int ret;
  573. switch (port) {
  574. case PORT_A:
  575. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  576. name = "DPDDC-A";
  577. break;
  578. case PORT_B:
  579. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  580. name = "DPDDC-B";
  581. break;
  582. case PORT_C:
  583. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  584. name = "DPDDC-C";
  585. break;
  586. case PORT_D:
  587. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  588. name = "DPDDC-D";
  589. break;
  590. default:
  591. BUG();
  592. }
  593. if (!HAS_DDI(dev))
  594. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  595. intel_dp->aux.name = name;
  596. intel_dp->aux.dev = dev->dev;
  597. intel_dp->aux.transfer = intel_dp_aux_transfer;
  598. DRM_DEBUG_KMS("registering %s bus for %s\n", name,
  599. connector->base.kdev->kobj.name);
  600. ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
  601. if (ret < 0) {
  602. DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
  603. name, ret);
  604. return;
  605. }
  606. ret = sysfs_create_link(&connector->base.kdev->kobj,
  607. &intel_dp->aux.ddc.dev.kobj,
  608. intel_dp->aux.ddc.dev.kobj.name);
  609. if (ret < 0) {
  610. DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
  611. drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
  612. }
  613. }
  614. static void
  615. intel_dp_connector_unregister(struct intel_connector *intel_connector)
  616. {
  617. struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
  618. sysfs_remove_link(&intel_connector->base.kdev->kobj,
  619. intel_dp->aux.ddc.dev.kobj.name);
  620. intel_connector_unregister(intel_connector);
  621. }
  622. static void
  623. intel_dp_set_clock(struct intel_encoder *encoder,
  624. struct intel_crtc_config *pipe_config, int link_bw)
  625. {
  626. struct drm_device *dev = encoder->base.dev;
  627. const struct dp_link_dpll *divisor = NULL;
  628. int i, count = 0;
  629. if (IS_G4X(dev)) {
  630. divisor = gen4_dpll;
  631. count = ARRAY_SIZE(gen4_dpll);
  632. } else if (IS_HASWELL(dev)) {
  633. /* Haswell has special-purpose DP DDI clocks. */
  634. } else if (HAS_PCH_SPLIT(dev)) {
  635. divisor = pch_dpll;
  636. count = ARRAY_SIZE(pch_dpll);
  637. } else if (IS_CHERRYVIEW(dev)) {
  638. divisor = chv_dpll;
  639. count = ARRAY_SIZE(chv_dpll);
  640. } else if (IS_VALLEYVIEW(dev)) {
  641. divisor = vlv_dpll;
  642. count = ARRAY_SIZE(vlv_dpll);
  643. }
  644. if (divisor && count) {
  645. for (i = 0; i < count; i++) {
  646. if (link_bw == divisor[i].link_bw) {
  647. pipe_config->dpll = divisor[i].dpll;
  648. pipe_config->clock_set = true;
  649. break;
  650. }
  651. }
  652. }
  653. }
  654. static void
  655. intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
  656. {
  657. struct drm_device *dev = crtc->base.dev;
  658. struct drm_i915_private *dev_priv = dev->dev_private;
  659. enum transcoder transcoder = crtc->config.cpu_transcoder;
  660. I915_WRITE(PIPE_DATA_M2(transcoder),
  661. TU_SIZE(m_n->tu) | m_n->gmch_m);
  662. I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
  663. I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
  664. I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
  665. }
  666. bool
  667. intel_dp_compute_config(struct intel_encoder *encoder,
  668. struct intel_crtc_config *pipe_config)
  669. {
  670. struct drm_device *dev = encoder->base.dev;
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  673. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  674. enum port port = dp_to_dig_port(intel_dp)->port;
  675. struct intel_crtc *intel_crtc = encoder->new_crtc;
  676. struct intel_connector *intel_connector = intel_dp->attached_connector;
  677. int lane_count, clock;
  678. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  679. /* Conveniently, the link BW constants become indices with a shift...*/
  680. int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
  681. int bpp, mode_rate;
  682. static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
  683. int link_avail, link_clock;
  684. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  685. pipe_config->has_pch_encoder = true;
  686. pipe_config->has_dp_encoder = true;
  687. pipe_config->has_audio = intel_dp->has_audio;
  688. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  689. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  690. adjusted_mode);
  691. if (!HAS_PCH_SPLIT(dev))
  692. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  693. intel_connector->panel.fitting_mode);
  694. else
  695. intel_pch_panel_fitting(intel_crtc, pipe_config,
  696. intel_connector->panel.fitting_mode);
  697. }
  698. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  699. return false;
  700. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  701. "max bw %02x pixel clock %iKHz\n",
  702. max_lane_count, bws[max_clock],
  703. adjusted_mode->crtc_clock);
  704. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  705. * bpc in between. */
  706. bpp = pipe_config->pipe_bpp;
  707. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
  708. dev_priv->vbt.edp_bpp < bpp) {
  709. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  710. dev_priv->vbt.edp_bpp);
  711. bpp = dev_priv->vbt.edp_bpp;
  712. }
  713. for (; bpp >= 6*3; bpp -= 2*3) {
  714. mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
  715. bpp);
  716. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  717. for (clock = 0; clock <= max_clock; clock++) {
  718. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  719. link_avail = intel_dp_max_data_rate(link_clock,
  720. lane_count);
  721. if (mode_rate <= link_avail) {
  722. goto found;
  723. }
  724. }
  725. }
  726. }
  727. return false;
  728. found:
  729. if (intel_dp->color_range_auto) {
  730. /*
  731. * See:
  732. * CEA-861-E - 5.1 Default Encoding Parameters
  733. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  734. */
  735. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  736. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  737. else
  738. intel_dp->color_range = 0;
  739. }
  740. if (intel_dp->color_range)
  741. pipe_config->limited_color_range = true;
  742. intel_dp->link_bw = bws[clock];
  743. intel_dp->lane_count = lane_count;
  744. pipe_config->pipe_bpp = bpp;
  745. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  746. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  747. intel_dp->link_bw, intel_dp->lane_count,
  748. pipe_config->port_clock, bpp);
  749. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  750. mode_rate, link_avail);
  751. intel_link_compute_m_n(bpp, lane_count,
  752. adjusted_mode->crtc_clock,
  753. pipe_config->port_clock,
  754. &pipe_config->dp_m_n);
  755. if (intel_connector->panel.downclock_mode != NULL &&
  756. intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
  757. intel_link_compute_m_n(bpp, lane_count,
  758. intel_connector->panel.downclock_mode->clock,
  759. pipe_config->port_clock,
  760. &pipe_config->dp_m2_n2);
  761. }
  762. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  763. return true;
  764. }
  765. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  766. {
  767. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  768. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  769. struct drm_device *dev = crtc->base.dev;
  770. struct drm_i915_private *dev_priv = dev->dev_private;
  771. u32 dpa_ctl;
  772. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  773. dpa_ctl = I915_READ(DP_A);
  774. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  775. if (crtc->config.port_clock == 162000) {
  776. /* For a long time we've carried around a ILK-DevA w/a for the
  777. * 160MHz clock. If we're really unlucky, it's still required.
  778. */
  779. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  780. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  781. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  782. } else {
  783. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  784. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  785. }
  786. I915_WRITE(DP_A, dpa_ctl);
  787. POSTING_READ(DP_A);
  788. udelay(500);
  789. }
  790. static void intel_dp_prepare(struct intel_encoder *encoder)
  791. {
  792. struct drm_device *dev = encoder->base.dev;
  793. struct drm_i915_private *dev_priv = dev->dev_private;
  794. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  795. enum port port = dp_to_dig_port(intel_dp)->port;
  796. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  797. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  798. /*
  799. * There are four kinds of DP registers:
  800. *
  801. * IBX PCH
  802. * SNB CPU
  803. * IVB CPU
  804. * CPT PCH
  805. *
  806. * IBX PCH and CPU are the same for almost everything,
  807. * except that the CPU DP PLL is configured in this
  808. * register
  809. *
  810. * CPT PCH is quite different, having many bits moved
  811. * to the TRANS_DP_CTL register instead. That
  812. * configuration happens (oddly) in ironlake_pch_enable
  813. */
  814. /* Preserve the BIOS-computed detected bit. This is
  815. * supposed to be read-only.
  816. */
  817. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  818. /* Handle DP bits in common between all three register formats */
  819. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  820. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  821. if (crtc->config.has_audio) {
  822. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  823. pipe_name(crtc->pipe));
  824. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  825. intel_write_eld(&encoder->base, adjusted_mode);
  826. }
  827. /* Split out the IBX/CPU vs CPT settings */
  828. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  829. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  830. intel_dp->DP |= DP_SYNC_HS_HIGH;
  831. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  832. intel_dp->DP |= DP_SYNC_VS_HIGH;
  833. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  834. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  835. intel_dp->DP |= DP_ENHANCED_FRAMING;
  836. intel_dp->DP |= crtc->pipe << 29;
  837. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  838. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  839. intel_dp->DP |= intel_dp->color_range;
  840. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  841. intel_dp->DP |= DP_SYNC_HS_HIGH;
  842. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  843. intel_dp->DP |= DP_SYNC_VS_HIGH;
  844. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  845. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  846. intel_dp->DP |= DP_ENHANCED_FRAMING;
  847. if (!IS_CHERRYVIEW(dev)) {
  848. if (crtc->pipe == 1)
  849. intel_dp->DP |= DP_PIPEB_SELECT;
  850. } else {
  851. intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
  852. }
  853. } else {
  854. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  855. }
  856. }
  857. #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  858. #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  859. #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
  860. #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
  861. #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  862. #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  863. static void wait_panel_status(struct intel_dp *intel_dp,
  864. u32 mask,
  865. u32 value)
  866. {
  867. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  868. struct drm_i915_private *dev_priv = dev->dev_private;
  869. u32 pp_stat_reg, pp_ctrl_reg;
  870. pp_stat_reg = _pp_stat_reg(intel_dp);
  871. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  872. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  873. mask, value,
  874. I915_READ(pp_stat_reg),
  875. I915_READ(pp_ctrl_reg));
  876. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  877. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  878. I915_READ(pp_stat_reg),
  879. I915_READ(pp_ctrl_reg));
  880. }
  881. DRM_DEBUG_KMS("Wait complete\n");
  882. }
  883. static void wait_panel_on(struct intel_dp *intel_dp)
  884. {
  885. DRM_DEBUG_KMS("Wait for panel power on\n");
  886. wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  887. }
  888. static void wait_panel_off(struct intel_dp *intel_dp)
  889. {
  890. DRM_DEBUG_KMS("Wait for panel power off time\n");
  891. wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  892. }
  893. static void wait_panel_power_cycle(struct intel_dp *intel_dp)
  894. {
  895. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  896. /* When we disable the VDD override bit last we have to do the manual
  897. * wait. */
  898. wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
  899. intel_dp->panel_power_cycle_delay);
  900. wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  901. }
  902. static void wait_backlight_on(struct intel_dp *intel_dp)
  903. {
  904. wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
  905. intel_dp->backlight_on_delay);
  906. }
  907. static void edp_wait_backlight_off(struct intel_dp *intel_dp)
  908. {
  909. wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
  910. intel_dp->backlight_off_delay);
  911. }
  912. /* Read the current pp_control value, unlocking the register if it
  913. * is locked
  914. */
  915. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  916. {
  917. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. u32 control;
  920. control = I915_READ(_pp_ctrl_reg(intel_dp));
  921. control &= ~PANEL_UNLOCK_MASK;
  922. control |= PANEL_UNLOCK_REGS;
  923. return control;
  924. }
  925. static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
  926. {
  927. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  928. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  929. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  930. struct drm_i915_private *dev_priv = dev->dev_private;
  931. enum intel_display_power_domain power_domain;
  932. u32 pp;
  933. u32 pp_stat_reg, pp_ctrl_reg;
  934. bool need_to_disable = !intel_dp->want_panel_vdd;
  935. if (!is_edp(intel_dp))
  936. return false;
  937. intel_dp->want_panel_vdd = true;
  938. if (edp_have_panel_vdd(intel_dp))
  939. return need_to_disable;
  940. power_domain = intel_display_port_power_domain(intel_encoder);
  941. intel_display_power_get(dev_priv, power_domain);
  942. DRM_DEBUG_KMS("Turning eDP VDD on\n");
  943. if (!edp_have_panel_power(intel_dp))
  944. wait_panel_power_cycle(intel_dp);
  945. pp = ironlake_get_pp_control(intel_dp);
  946. pp |= EDP_FORCE_VDD;
  947. pp_stat_reg = _pp_stat_reg(intel_dp);
  948. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  949. I915_WRITE(pp_ctrl_reg, pp);
  950. POSTING_READ(pp_ctrl_reg);
  951. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  952. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  953. /*
  954. * If the panel wasn't on, delay before accessing aux channel
  955. */
  956. if (!edp_have_panel_power(intel_dp)) {
  957. DRM_DEBUG_KMS("eDP was not running\n");
  958. msleep(intel_dp->panel_power_up_delay);
  959. }
  960. return need_to_disable;
  961. }
  962. void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
  963. {
  964. if (is_edp(intel_dp)) {
  965. bool vdd = _edp_panel_vdd_on(intel_dp);
  966. WARN(!vdd, "eDP VDD already requested on\n");
  967. }
  968. }
  969. static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
  970. {
  971. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  972. struct drm_i915_private *dev_priv = dev->dev_private;
  973. u32 pp;
  974. u32 pp_stat_reg, pp_ctrl_reg;
  975. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  976. if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
  977. struct intel_digital_port *intel_dig_port =
  978. dp_to_dig_port(intel_dp);
  979. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  980. enum intel_display_power_domain power_domain;
  981. DRM_DEBUG_KMS("Turning eDP VDD off\n");
  982. pp = ironlake_get_pp_control(intel_dp);
  983. pp &= ~EDP_FORCE_VDD;
  984. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  985. pp_stat_reg = _pp_stat_reg(intel_dp);
  986. I915_WRITE(pp_ctrl_reg, pp);
  987. POSTING_READ(pp_ctrl_reg);
  988. /* Make sure sequencer is idle before allowing subsequent activity */
  989. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  990. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  991. if ((pp & POWER_TARGET_ON) == 0)
  992. intel_dp->last_power_cycle = jiffies;
  993. power_domain = intel_display_port_power_domain(intel_encoder);
  994. intel_display_power_put(dev_priv, power_domain);
  995. }
  996. }
  997. static void edp_panel_vdd_work(struct work_struct *__work)
  998. {
  999. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  1000. struct intel_dp, panel_vdd_work);
  1001. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1002. mutex_lock(&dev->mode_config.mutex);
  1003. edp_panel_vdd_off_sync(intel_dp);
  1004. mutex_unlock(&dev->mode_config.mutex);
  1005. }
  1006. static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  1007. {
  1008. if (!is_edp(intel_dp))
  1009. return;
  1010. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  1011. intel_dp->want_panel_vdd = false;
  1012. if (sync) {
  1013. edp_panel_vdd_off_sync(intel_dp);
  1014. } else {
  1015. /*
  1016. * Queue the timer to fire a long
  1017. * time from now (relative to the power down delay)
  1018. * to keep the panel power up across a sequence of operations
  1019. */
  1020. schedule_delayed_work(&intel_dp->panel_vdd_work,
  1021. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  1022. }
  1023. }
  1024. void intel_edp_panel_on(struct intel_dp *intel_dp)
  1025. {
  1026. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1027. struct drm_i915_private *dev_priv = dev->dev_private;
  1028. u32 pp;
  1029. u32 pp_ctrl_reg;
  1030. if (!is_edp(intel_dp))
  1031. return;
  1032. DRM_DEBUG_KMS("Turn eDP power on\n");
  1033. if (edp_have_panel_power(intel_dp)) {
  1034. DRM_DEBUG_KMS("eDP power already on\n");
  1035. return;
  1036. }
  1037. wait_panel_power_cycle(intel_dp);
  1038. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1039. pp = ironlake_get_pp_control(intel_dp);
  1040. if (IS_GEN5(dev)) {
  1041. /* ILK workaround: disable reset around power sequence */
  1042. pp &= ~PANEL_POWER_RESET;
  1043. I915_WRITE(pp_ctrl_reg, pp);
  1044. POSTING_READ(pp_ctrl_reg);
  1045. }
  1046. pp |= POWER_TARGET_ON;
  1047. if (!IS_GEN5(dev))
  1048. pp |= PANEL_POWER_RESET;
  1049. I915_WRITE(pp_ctrl_reg, pp);
  1050. POSTING_READ(pp_ctrl_reg);
  1051. wait_panel_on(intel_dp);
  1052. intel_dp->last_power_on = jiffies;
  1053. if (IS_GEN5(dev)) {
  1054. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1055. I915_WRITE(pp_ctrl_reg, pp);
  1056. POSTING_READ(pp_ctrl_reg);
  1057. }
  1058. }
  1059. void intel_edp_panel_off(struct intel_dp *intel_dp)
  1060. {
  1061. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1062. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1063. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1064. struct drm_i915_private *dev_priv = dev->dev_private;
  1065. enum intel_display_power_domain power_domain;
  1066. u32 pp;
  1067. u32 pp_ctrl_reg;
  1068. if (!is_edp(intel_dp))
  1069. return;
  1070. DRM_DEBUG_KMS("Turn eDP power off\n");
  1071. edp_wait_backlight_off(intel_dp);
  1072. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1073. pp = ironlake_get_pp_control(intel_dp);
  1074. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1075. * panels get very unhappy and cease to work. */
  1076. pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
  1077. EDP_BLC_ENABLE);
  1078. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1079. intel_dp->want_panel_vdd = false;
  1080. I915_WRITE(pp_ctrl_reg, pp);
  1081. POSTING_READ(pp_ctrl_reg);
  1082. intel_dp->last_power_cycle = jiffies;
  1083. wait_panel_off(intel_dp);
  1084. /* We got a reference when we enabled the VDD. */
  1085. power_domain = intel_display_port_power_domain(intel_encoder);
  1086. intel_display_power_put(dev_priv, power_domain);
  1087. }
  1088. void intel_edp_backlight_on(struct intel_dp *intel_dp)
  1089. {
  1090. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1091. struct drm_device *dev = intel_dig_port->base.base.dev;
  1092. struct drm_i915_private *dev_priv = dev->dev_private;
  1093. u32 pp;
  1094. u32 pp_ctrl_reg;
  1095. if (!is_edp(intel_dp))
  1096. return;
  1097. DRM_DEBUG_KMS("\n");
  1098. /*
  1099. * If we enable the backlight right away following a panel power
  1100. * on, we may see slight flicker as the panel syncs with the eDP
  1101. * link. So delay a bit to make sure the image is solid before
  1102. * allowing it to appear.
  1103. */
  1104. wait_backlight_on(intel_dp);
  1105. pp = ironlake_get_pp_control(intel_dp);
  1106. pp |= EDP_BLC_ENABLE;
  1107. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1108. I915_WRITE(pp_ctrl_reg, pp);
  1109. POSTING_READ(pp_ctrl_reg);
  1110. intel_panel_enable_backlight(intel_dp->attached_connector);
  1111. }
  1112. void intel_edp_backlight_off(struct intel_dp *intel_dp)
  1113. {
  1114. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1115. struct drm_i915_private *dev_priv = dev->dev_private;
  1116. u32 pp;
  1117. u32 pp_ctrl_reg;
  1118. if (!is_edp(intel_dp))
  1119. return;
  1120. intel_panel_disable_backlight(intel_dp->attached_connector);
  1121. DRM_DEBUG_KMS("\n");
  1122. pp = ironlake_get_pp_control(intel_dp);
  1123. pp &= ~EDP_BLC_ENABLE;
  1124. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1125. I915_WRITE(pp_ctrl_reg, pp);
  1126. POSTING_READ(pp_ctrl_reg);
  1127. intel_dp->last_backlight_off = jiffies;
  1128. }
  1129. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1130. {
  1131. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1132. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1133. struct drm_device *dev = crtc->dev;
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. u32 dpa_ctl;
  1136. assert_pipe_disabled(dev_priv,
  1137. to_intel_crtc(crtc)->pipe);
  1138. DRM_DEBUG_KMS("\n");
  1139. dpa_ctl = I915_READ(DP_A);
  1140. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1141. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1142. /* We don't adjust intel_dp->DP while tearing down the link, to
  1143. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1144. * enable bits here to ensure that we don't enable too much. */
  1145. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1146. intel_dp->DP |= DP_PLL_ENABLE;
  1147. I915_WRITE(DP_A, intel_dp->DP);
  1148. POSTING_READ(DP_A);
  1149. udelay(200);
  1150. }
  1151. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1152. {
  1153. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1154. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1155. struct drm_device *dev = crtc->dev;
  1156. struct drm_i915_private *dev_priv = dev->dev_private;
  1157. u32 dpa_ctl;
  1158. assert_pipe_disabled(dev_priv,
  1159. to_intel_crtc(crtc)->pipe);
  1160. dpa_ctl = I915_READ(DP_A);
  1161. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1162. "dp pll off, should be on\n");
  1163. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1164. /* We can't rely on the value tracked for the DP register in
  1165. * intel_dp->DP because link_down must not change that (otherwise link
  1166. * re-training will fail. */
  1167. dpa_ctl &= ~DP_PLL_ENABLE;
  1168. I915_WRITE(DP_A, dpa_ctl);
  1169. POSTING_READ(DP_A);
  1170. udelay(200);
  1171. }
  1172. /* If the sink supports it, try to set the power state appropriately */
  1173. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1174. {
  1175. int ret, i;
  1176. /* Should have a valid DPCD by this point */
  1177. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1178. return;
  1179. if (mode != DRM_MODE_DPMS_ON) {
  1180. ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
  1181. DP_SET_POWER_D3);
  1182. if (ret != 1)
  1183. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1184. } else {
  1185. /*
  1186. * When turning on, we need to retry for 1ms to give the sink
  1187. * time to wake up.
  1188. */
  1189. for (i = 0; i < 3; i++) {
  1190. ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
  1191. DP_SET_POWER_D0);
  1192. if (ret == 1)
  1193. break;
  1194. msleep(1);
  1195. }
  1196. }
  1197. }
  1198. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1199. enum pipe *pipe)
  1200. {
  1201. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1202. enum port port = dp_to_dig_port(intel_dp)->port;
  1203. struct drm_device *dev = encoder->base.dev;
  1204. struct drm_i915_private *dev_priv = dev->dev_private;
  1205. enum intel_display_power_domain power_domain;
  1206. u32 tmp;
  1207. power_domain = intel_display_port_power_domain(encoder);
  1208. if (!intel_display_power_enabled(dev_priv, power_domain))
  1209. return false;
  1210. tmp = I915_READ(intel_dp->output_reg);
  1211. if (!(tmp & DP_PORT_EN))
  1212. return false;
  1213. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1214. *pipe = PORT_TO_PIPE_CPT(tmp);
  1215. } else if (IS_CHERRYVIEW(dev)) {
  1216. *pipe = DP_PORT_TO_PIPE_CHV(tmp);
  1217. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1218. *pipe = PORT_TO_PIPE(tmp);
  1219. } else {
  1220. u32 trans_sel;
  1221. u32 trans_dp;
  1222. int i;
  1223. switch (intel_dp->output_reg) {
  1224. case PCH_DP_B:
  1225. trans_sel = TRANS_DP_PORT_SEL_B;
  1226. break;
  1227. case PCH_DP_C:
  1228. trans_sel = TRANS_DP_PORT_SEL_C;
  1229. break;
  1230. case PCH_DP_D:
  1231. trans_sel = TRANS_DP_PORT_SEL_D;
  1232. break;
  1233. default:
  1234. return true;
  1235. }
  1236. for_each_pipe(i) {
  1237. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1238. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1239. *pipe = i;
  1240. return true;
  1241. }
  1242. }
  1243. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1244. intel_dp->output_reg);
  1245. }
  1246. return true;
  1247. }
  1248. static void intel_dp_get_config(struct intel_encoder *encoder,
  1249. struct intel_crtc_config *pipe_config)
  1250. {
  1251. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1252. u32 tmp, flags = 0;
  1253. struct drm_device *dev = encoder->base.dev;
  1254. struct drm_i915_private *dev_priv = dev->dev_private;
  1255. enum port port = dp_to_dig_port(intel_dp)->port;
  1256. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1257. int dotclock;
  1258. tmp = I915_READ(intel_dp->output_reg);
  1259. if (tmp & DP_AUDIO_OUTPUT_ENABLE)
  1260. pipe_config->has_audio = true;
  1261. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1262. if (tmp & DP_SYNC_HS_HIGH)
  1263. flags |= DRM_MODE_FLAG_PHSYNC;
  1264. else
  1265. flags |= DRM_MODE_FLAG_NHSYNC;
  1266. if (tmp & DP_SYNC_VS_HIGH)
  1267. flags |= DRM_MODE_FLAG_PVSYNC;
  1268. else
  1269. flags |= DRM_MODE_FLAG_NVSYNC;
  1270. } else {
  1271. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1272. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1273. flags |= DRM_MODE_FLAG_PHSYNC;
  1274. else
  1275. flags |= DRM_MODE_FLAG_NHSYNC;
  1276. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1277. flags |= DRM_MODE_FLAG_PVSYNC;
  1278. else
  1279. flags |= DRM_MODE_FLAG_NVSYNC;
  1280. }
  1281. pipe_config->adjusted_mode.flags |= flags;
  1282. pipe_config->has_dp_encoder = true;
  1283. intel_dp_get_m_n(crtc, pipe_config);
  1284. if (port == PORT_A) {
  1285. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1286. pipe_config->port_clock = 162000;
  1287. else
  1288. pipe_config->port_clock = 270000;
  1289. }
  1290. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1291. &pipe_config->dp_m_n);
  1292. if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
  1293. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  1294. pipe_config->adjusted_mode.crtc_clock = dotclock;
  1295. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
  1296. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1297. /*
  1298. * This is a big fat ugly hack.
  1299. *
  1300. * Some machines in UEFI boot mode provide us a VBT that has 18
  1301. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1302. * unknown we fail to light up. Yet the same BIOS boots up with
  1303. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1304. * max, not what it tells us to use.
  1305. *
  1306. * Note: This will still be broken if the eDP panel is not lit
  1307. * up by the BIOS, and thus we can't get the mode at module
  1308. * load.
  1309. */
  1310. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1311. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1312. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1313. }
  1314. }
  1315. static bool is_edp_psr(struct drm_device *dev)
  1316. {
  1317. struct drm_i915_private *dev_priv = dev->dev_private;
  1318. return dev_priv->psr.sink_support;
  1319. }
  1320. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1321. {
  1322. struct drm_i915_private *dev_priv = dev->dev_private;
  1323. if (!HAS_PSR(dev))
  1324. return false;
  1325. return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1326. }
  1327. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1328. struct edp_vsc_psr *vsc_psr)
  1329. {
  1330. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1331. struct drm_device *dev = dig_port->base.base.dev;
  1332. struct drm_i915_private *dev_priv = dev->dev_private;
  1333. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1334. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1335. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1336. uint32_t *data = (uint32_t *) vsc_psr;
  1337. unsigned int i;
  1338. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1339. the video DIP being updated before program video DIP data buffer
  1340. registers for DIP being updated. */
  1341. I915_WRITE(ctl_reg, 0);
  1342. POSTING_READ(ctl_reg);
  1343. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1344. if (i < sizeof(struct edp_vsc_psr))
  1345. I915_WRITE(data_reg + i, *data++);
  1346. else
  1347. I915_WRITE(data_reg + i, 0);
  1348. }
  1349. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1350. POSTING_READ(ctl_reg);
  1351. }
  1352. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1353. {
  1354. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1355. struct drm_i915_private *dev_priv = dev->dev_private;
  1356. struct edp_vsc_psr psr_vsc;
  1357. if (intel_dp->psr_setup_done)
  1358. return;
  1359. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1360. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1361. psr_vsc.sdp_header.HB0 = 0;
  1362. psr_vsc.sdp_header.HB1 = 0x7;
  1363. psr_vsc.sdp_header.HB2 = 0x2;
  1364. psr_vsc.sdp_header.HB3 = 0x8;
  1365. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1366. /* Avoid continuous PSR exit by masking memup and hpd */
  1367. I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
  1368. EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
  1369. intel_dp->psr_setup_done = true;
  1370. }
  1371. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1372. {
  1373. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1374. struct drm_i915_private *dev_priv = dev->dev_private;
  1375. uint32_t aux_clock_divider;
  1376. int precharge = 0x3;
  1377. int msg_size = 5; /* Header(4) + Message(1) */
  1378. aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
  1379. /* Enable PSR in sink */
  1380. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1381. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
  1382. DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
  1383. else
  1384. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
  1385. DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
  1386. /* Setup AUX registers */
  1387. I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
  1388. I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
  1389. I915_WRITE(EDP_PSR_AUX_CTL(dev),
  1390. DP_AUX_CH_CTL_TIME_OUT_400us |
  1391. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1392. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1393. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1394. }
  1395. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1396. {
  1397. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1398. struct drm_i915_private *dev_priv = dev->dev_private;
  1399. uint32_t max_sleep_time = 0x1f;
  1400. uint32_t idle_frames = 1;
  1401. uint32_t val = 0x0;
  1402. const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
  1403. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1404. val |= EDP_PSR_LINK_STANDBY;
  1405. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1406. val |= EDP_PSR_TP1_TIME_0us;
  1407. val |= EDP_PSR_SKIP_AUX_EXIT;
  1408. } else
  1409. val |= EDP_PSR_LINK_DISABLE;
  1410. I915_WRITE(EDP_PSR_CTL(dev), val |
  1411. (IS_BROADWELL(dev) ? 0 : link_entry_time) |
  1412. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1413. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1414. EDP_PSR_ENABLE);
  1415. }
  1416. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1417. {
  1418. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1419. struct drm_device *dev = dig_port->base.base.dev;
  1420. struct drm_i915_private *dev_priv = dev->dev_private;
  1421. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1422. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1423. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
  1424. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1425. dev_priv->psr.source_ok = false;
  1426. if (!HAS_PSR(dev)) {
  1427. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1428. return false;
  1429. }
  1430. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1431. (dig_port->port != PORT_A)) {
  1432. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1433. return false;
  1434. }
  1435. if (!i915.enable_psr) {
  1436. DRM_DEBUG_KMS("PSR disable by flag\n");
  1437. return false;
  1438. }
  1439. crtc = dig_port->base.base.crtc;
  1440. if (crtc == NULL) {
  1441. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1442. return false;
  1443. }
  1444. intel_crtc = to_intel_crtc(crtc);
  1445. if (!intel_crtc_active(crtc)) {
  1446. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1447. return false;
  1448. }
  1449. obj = to_intel_framebuffer(crtc->primary->fb)->obj;
  1450. if (obj->tiling_mode != I915_TILING_X ||
  1451. obj->fence_reg == I915_FENCE_REG_NONE) {
  1452. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1453. return false;
  1454. }
  1455. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1456. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1457. return false;
  1458. }
  1459. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1460. S3D_ENABLE) {
  1461. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1462. return false;
  1463. }
  1464. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1465. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1466. return false;
  1467. }
  1468. dev_priv->psr.source_ok = true;
  1469. return true;
  1470. }
  1471. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1472. {
  1473. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1474. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1475. intel_edp_is_psr_enabled(dev))
  1476. return;
  1477. /* Setup PSR once */
  1478. intel_edp_psr_setup(intel_dp);
  1479. /* Enable PSR on the panel */
  1480. intel_edp_psr_enable_sink(intel_dp);
  1481. /* Enable PSR on the host */
  1482. intel_edp_psr_enable_source(intel_dp);
  1483. }
  1484. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1485. {
  1486. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1487. if (intel_edp_psr_match_conditions(intel_dp) &&
  1488. !intel_edp_is_psr_enabled(dev))
  1489. intel_edp_psr_do_enable(intel_dp);
  1490. }
  1491. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1492. {
  1493. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1494. struct drm_i915_private *dev_priv = dev->dev_private;
  1495. if (!intel_edp_is_psr_enabled(dev))
  1496. return;
  1497. I915_WRITE(EDP_PSR_CTL(dev),
  1498. I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
  1499. /* Wait till PSR is idle */
  1500. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
  1501. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1502. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1503. }
  1504. void intel_edp_psr_update(struct drm_device *dev)
  1505. {
  1506. struct intel_encoder *encoder;
  1507. struct intel_dp *intel_dp = NULL;
  1508. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1509. if (encoder->type == INTEL_OUTPUT_EDP) {
  1510. intel_dp = enc_to_intel_dp(&encoder->base);
  1511. if (!is_edp_psr(dev))
  1512. return;
  1513. if (!intel_edp_psr_match_conditions(intel_dp))
  1514. intel_edp_psr_disable(intel_dp);
  1515. else
  1516. if (!intel_edp_is_psr_enabled(dev))
  1517. intel_edp_psr_do_enable(intel_dp);
  1518. }
  1519. }
  1520. static void intel_disable_dp(struct intel_encoder *encoder)
  1521. {
  1522. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1523. enum port port = dp_to_dig_port(intel_dp)->port;
  1524. struct drm_device *dev = encoder->base.dev;
  1525. /* Make sure the panel is off before trying to change the mode. But also
  1526. * ensure that we have vdd while we switch off the panel. */
  1527. intel_edp_panel_vdd_on(intel_dp);
  1528. intel_edp_backlight_off(intel_dp);
  1529. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1530. intel_edp_panel_off(intel_dp);
  1531. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1532. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1533. intel_dp_link_down(intel_dp);
  1534. }
  1535. static void g4x_post_disable_dp(struct intel_encoder *encoder)
  1536. {
  1537. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1538. enum port port = dp_to_dig_port(intel_dp)->port;
  1539. if (port != PORT_A)
  1540. return;
  1541. intel_dp_link_down(intel_dp);
  1542. ironlake_edp_pll_off(intel_dp);
  1543. }
  1544. static void vlv_post_disable_dp(struct intel_encoder *encoder)
  1545. {
  1546. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1547. intel_dp_link_down(intel_dp);
  1548. }
  1549. static void chv_post_disable_dp(struct intel_encoder *encoder)
  1550. {
  1551. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1552. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1553. struct drm_device *dev = encoder->base.dev;
  1554. struct drm_i915_private *dev_priv = dev->dev_private;
  1555. struct intel_crtc *intel_crtc =
  1556. to_intel_crtc(encoder->base.crtc);
  1557. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1558. enum pipe pipe = intel_crtc->pipe;
  1559. u32 val;
  1560. intel_dp_link_down(intel_dp);
  1561. mutex_lock(&dev_priv->dpio_lock);
  1562. /* Propagate soft reset to data lane reset */
  1563. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1564. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1565. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1566. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1567. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1568. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1569. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1570. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1571. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1572. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1573. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1574. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1575. mutex_unlock(&dev_priv->dpio_lock);
  1576. }
  1577. static void intel_enable_dp(struct intel_encoder *encoder)
  1578. {
  1579. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1580. struct drm_device *dev = encoder->base.dev;
  1581. struct drm_i915_private *dev_priv = dev->dev_private;
  1582. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1583. if (WARN_ON(dp_reg & DP_PORT_EN))
  1584. return;
  1585. intel_edp_panel_vdd_on(intel_dp);
  1586. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1587. intel_dp_start_link_train(intel_dp);
  1588. intel_edp_panel_on(intel_dp);
  1589. edp_panel_vdd_off(intel_dp, true);
  1590. intel_dp_complete_link_train(intel_dp);
  1591. intel_dp_stop_link_train(intel_dp);
  1592. }
  1593. static void g4x_enable_dp(struct intel_encoder *encoder)
  1594. {
  1595. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1596. intel_enable_dp(encoder);
  1597. intel_edp_backlight_on(intel_dp);
  1598. }
  1599. static void vlv_enable_dp(struct intel_encoder *encoder)
  1600. {
  1601. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1602. intel_edp_backlight_on(intel_dp);
  1603. }
  1604. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1605. {
  1606. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1607. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1608. intel_dp_prepare(encoder);
  1609. /* Only ilk+ has port A */
  1610. if (dport->port == PORT_A) {
  1611. ironlake_set_pll_cpu_edp(intel_dp);
  1612. ironlake_edp_pll_on(intel_dp);
  1613. }
  1614. }
  1615. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1616. {
  1617. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1618. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1619. struct drm_device *dev = encoder->base.dev;
  1620. struct drm_i915_private *dev_priv = dev->dev_private;
  1621. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1622. enum dpio_channel port = vlv_dport_to_channel(dport);
  1623. int pipe = intel_crtc->pipe;
  1624. struct edp_power_seq power_seq;
  1625. u32 val;
  1626. mutex_lock(&dev_priv->dpio_lock);
  1627. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  1628. val = 0;
  1629. if (pipe)
  1630. val |= (1<<21);
  1631. else
  1632. val &= ~(1<<21);
  1633. val |= 0x001000c4;
  1634. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  1635. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1636. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1637. mutex_unlock(&dev_priv->dpio_lock);
  1638. if (is_edp(intel_dp)) {
  1639. /* init power sequencer on this pipe and port */
  1640. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1641. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1642. &power_seq);
  1643. }
  1644. intel_enable_dp(encoder);
  1645. vlv_wait_port_ready(dev_priv, dport);
  1646. }
  1647. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1648. {
  1649. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1650. struct drm_device *dev = encoder->base.dev;
  1651. struct drm_i915_private *dev_priv = dev->dev_private;
  1652. struct intel_crtc *intel_crtc =
  1653. to_intel_crtc(encoder->base.crtc);
  1654. enum dpio_channel port = vlv_dport_to_channel(dport);
  1655. int pipe = intel_crtc->pipe;
  1656. intel_dp_prepare(encoder);
  1657. /* Program Tx lane resets to default */
  1658. mutex_lock(&dev_priv->dpio_lock);
  1659. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1660. DPIO_PCS_TX_LANE2_RESET |
  1661. DPIO_PCS_TX_LANE1_RESET);
  1662. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1663. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1664. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1665. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1666. DPIO_PCS_CLK_SOFT_RESET);
  1667. /* Fix up inter-pair skew failure */
  1668. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1669. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1670. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1671. mutex_unlock(&dev_priv->dpio_lock);
  1672. }
  1673. static void chv_pre_enable_dp(struct intel_encoder *encoder)
  1674. {
  1675. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1676. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1677. struct drm_device *dev = encoder->base.dev;
  1678. struct drm_i915_private *dev_priv = dev->dev_private;
  1679. struct edp_power_seq power_seq;
  1680. struct intel_crtc *intel_crtc =
  1681. to_intel_crtc(encoder->base.crtc);
  1682. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1683. int pipe = intel_crtc->pipe;
  1684. int data, i;
  1685. u32 val;
  1686. mutex_lock(&dev_priv->dpio_lock);
  1687. /* Deassert soft data lane reset*/
  1688. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1689. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1690. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1691. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1692. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1693. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1694. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1695. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1696. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1697. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1698. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1699. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1700. /* Program Tx lane latency optimal setting*/
  1701. for (i = 0; i < 4; i++) {
  1702. /* Set the latency optimal bit */
  1703. data = (i == 1) ? 0x0 : 0x6;
  1704. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
  1705. data << DPIO_FRC_LATENCY_SHFIT);
  1706. /* Set the upar bit */
  1707. data = (i == 1) ? 0x0 : 0x1;
  1708. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1709. data << DPIO_UPAR_SHIFT);
  1710. }
  1711. /* Data lane stagger programming */
  1712. /* FIXME: Fix up value only after power analysis */
  1713. mutex_unlock(&dev_priv->dpio_lock);
  1714. if (is_edp(intel_dp)) {
  1715. /* init power sequencer on this pipe and port */
  1716. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1717. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1718. &power_seq);
  1719. }
  1720. intel_enable_dp(encoder);
  1721. vlv_wait_port_ready(dev_priv, dport);
  1722. }
  1723. /*
  1724. * Native read with retry for link status and receiver capability reads for
  1725. * cases where the sink may still be asleep.
  1726. *
  1727. * Sinks are *supposed* to come up within 1ms from an off state, but we're also
  1728. * supposed to retry 3 times per the spec.
  1729. */
  1730. static ssize_t
  1731. intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
  1732. void *buffer, size_t size)
  1733. {
  1734. ssize_t ret;
  1735. int i;
  1736. for (i = 0; i < 3; i++) {
  1737. ret = drm_dp_dpcd_read(aux, offset, buffer, size);
  1738. if (ret == size)
  1739. return ret;
  1740. msleep(1);
  1741. }
  1742. return ret;
  1743. }
  1744. /*
  1745. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1746. * link status information
  1747. */
  1748. static bool
  1749. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1750. {
  1751. return intel_dp_dpcd_read_wake(&intel_dp->aux,
  1752. DP_LANE0_1_STATUS,
  1753. link_status,
  1754. DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
  1755. }
  1756. /*
  1757. * These are source-specific values; current Intel hardware supports
  1758. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1759. */
  1760. static uint8_t
  1761. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1762. {
  1763. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1764. enum port port = dp_to_dig_port(intel_dp)->port;
  1765. if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
  1766. return DP_TRAIN_VOLTAGE_SWING_1200;
  1767. else if (IS_GEN7(dev) && port == PORT_A)
  1768. return DP_TRAIN_VOLTAGE_SWING_800;
  1769. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1770. return DP_TRAIN_VOLTAGE_SWING_1200;
  1771. else
  1772. return DP_TRAIN_VOLTAGE_SWING_800;
  1773. }
  1774. static uint8_t
  1775. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1776. {
  1777. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1778. enum port port = dp_to_dig_port(intel_dp)->port;
  1779. if (IS_BROADWELL(dev)) {
  1780. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1781. case DP_TRAIN_VOLTAGE_SWING_400:
  1782. case DP_TRAIN_VOLTAGE_SWING_600:
  1783. return DP_TRAIN_PRE_EMPHASIS_6;
  1784. case DP_TRAIN_VOLTAGE_SWING_800:
  1785. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1786. case DP_TRAIN_VOLTAGE_SWING_1200:
  1787. default:
  1788. return DP_TRAIN_PRE_EMPHASIS_0;
  1789. }
  1790. } else if (IS_HASWELL(dev)) {
  1791. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1792. case DP_TRAIN_VOLTAGE_SWING_400:
  1793. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1794. case DP_TRAIN_VOLTAGE_SWING_600:
  1795. return DP_TRAIN_PRE_EMPHASIS_6;
  1796. case DP_TRAIN_VOLTAGE_SWING_800:
  1797. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1798. case DP_TRAIN_VOLTAGE_SWING_1200:
  1799. default:
  1800. return DP_TRAIN_PRE_EMPHASIS_0;
  1801. }
  1802. } else if (IS_VALLEYVIEW(dev)) {
  1803. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1804. case DP_TRAIN_VOLTAGE_SWING_400:
  1805. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1806. case DP_TRAIN_VOLTAGE_SWING_600:
  1807. return DP_TRAIN_PRE_EMPHASIS_6;
  1808. case DP_TRAIN_VOLTAGE_SWING_800:
  1809. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1810. case DP_TRAIN_VOLTAGE_SWING_1200:
  1811. default:
  1812. return DP_TRAIN_PRE_EMPHASIS_0;
  1813. }
  1814. } else if (IS_GEN7(dev) && port == PORT_A) {
  1815. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1816. case DP_TRAIN_VOLTAGE_SWING_400:
  1817. return DP_TRAIN_PRE_EMPHASIS_6;
  1818. case DP_TRAIN_VOLTAGE_SWING_600:
  1819. case DP_TRAIN_VOLTAGE_SWING_800:
  1820. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1821. default:
  1822. return DP_TRAIN_PRE_EMPHASIS_0;
  1823. }
  1824. } else {
  1825. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1826. case DP_TRAIN_VOLTAGE_SWING_400:
  1827. return DP_TRAIN_PRE_EMPHASIS_6;
  1828. case DP_TRAIN_VOLTAGE_SWING_600:
  1829. return DP_TRAIN_PRE_EMPHASIS_6;
  1830. case DP_TRAIN_VOLTAGE_SWING_800:
  1831. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1832. case DP_TRAIN_VOLTAGE_SWING_1200:
  1833. default:
  1834. return DP_TRAIN_PRE_EMPHASIS_0;
  1835. }
  1836. }
  1837. }
  1838. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1839. {
  1840. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1841. struct drm_i915_private *dev_priv = dev->dev_private;
  1842. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1843. struct intel_crtc *intel_crtc =
  1844. to_intel_crtc(dport->base.base.crtc);
  1845. unsigned long demph_reg_value, preemph_reg_value,
  1846. uniqtranscale_reg_value;
  1847. uint8_t train_set = intel_dp->train_set[0];
  1848. enum dpio_channel port = vlv_dport_to_channel(dport);
  1849. int pipe = intel_crtc->pipe;
  1850. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1851. case DP_TRAIN_PRE_EMPHASIS_0:
  1852. preemph_reg_value = 0x0004000;
  1853. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1854. case DP_TRAIN_VOLTAGE_SWING_400:
  1855. demph_reg_value = 0x2B405555;
  1856. uniqtranscale_reg_value = 0x552AB83A;
  1857. break;
  1858. case DP_TRAIN_VOLTAGE_SWING_600:
  1859. demph_reg_value = 0x2B404040;
  1860. uniqtranscale_reg_value = 0x5548B83A;
  1861. break;
  1862. case DP_TRAIN_VOLTAGE_SWING_800:
  1863. demph_reg_value = 0x2B245555;
  1864. uniqtranscale_reg_value = 0x5560B83A;
  1865. break;
  1866. case DP_TRAIN_VOLTAGE_SWING_1200:
  1867. demph_reg_value = 0x2B405555;
  1868. uniqtranscale_reg_value = 0x5598DA3A;
  1869. break;
  1870. default:
  1871. return 0;
  1872. }
  1873. break;
  1874. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1875. preemph_reg_value = 0x0002000;
  1876. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1877. case DP_TRAIN_VOLTAGE_SWING_400:
  1878. demph_reg_value = 0x2B404040;
  1879. uniqtranscale_reg_value = 0x5552B83A;
  1880. break;
  1881. case DP_TRAIN_VOLTAGE_SWING_600:
  1882. demph_reg_value = 0x2B404848;
  1883. uniqtranscale_reg_value = 0x5580B83A;
  1884. break;
  1885. case DP_TRAIN_VOLTAGE_SWING_800:
  1886. demph_reg_value = 0x2B404040;
  1887. uniqtranscale_reg_value = 0x55ADDA3A;
  1888. break;
  1889. default:
  1890. return 0;
  1891. }
  1892. break;
  1893. case DP_TRAIN_PRE_EMPHASIS_6:
  1894. preemph_reg_value = 0x0000000;
  1895. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1896. case DP_TRAIN_VOLTAGE_SWING_400:
  1897. demph_reg_value = 0x2B305555;
  1898. uniqtranscale_reg_value = 0x5570B83A;
  1899. break;
  1900. case DP_TRAIN_VOLTAGE_SWING_600:
  1901. demph_reg_value = 0x2B2B4040;
  1902. uniqtranscale_reg_value = 0x55ADDA3A;
  1903. break;
  1904. default:
  1905. return 0;
  1906. }
  1907. break;
  1908. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1909. preemph_reg_value = 0x0006000;
  1910. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1911. case DP_TRAIN_VOLTAGE_SWING_400:
  1912. demph_reg_value = 0x1B405555;
  1913. uniqtranscale_reg_value = 0x55ADDA3A;
  1914. break;
  1915. default:
  1916. return 0;
  1917. }
  1918. break;
  1919. default:
  1920. return 0;
  1921. }
  1922. mutex_lock(&dev_priv->dpio_lock);
  1923. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
  1924. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
  1925. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
  1926. uniqtranscale_reg_value);
  1927. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
  1928. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  1929. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
  1930. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
  1931. mutex_unlock(&dev_priv->dpio_lock);
  1932. return 0;
  1933. }
  1934. static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
  1935. {
  1936. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1937. struct drm_i915_private *dev_priv = dev->dev_private;
  1938. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1939. struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
  1940. u32 deemph_reg_value, margin_reg_value, val;
  1941. uint8_t train_set = intel_dp->train_set[0];
  1942. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1943. enum pipe pipe = intel_crtc->pipe;
  1944. int i;
  1945. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1946. case DP_TRAIN_PRE_EMPHASIS_0:
  1947. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1948. case DP_TRAIN_VOLTAGE_SWING_400:
  1949. deemph_reg_value = 128;
  1950. margin_reg_value = 52;
  1951. break;
  1952. case DP_TRAIN_VOLTAGE_SWING_600:
  1953. deemph_reg_value = 128;
  1954. margin_reg_value = 77;
  1955. break;
  1956. case DP_TRAIN_VOLTAGE_SWING_800:
  1957. deemph_reg_value = 128;
  1958. margin_reg_value = 102;
  1959. break;
  1960. case DP_TRAIN_VOLTAGE_SWING_1200:
  1961. deemph_reg_value = 128;
  1962. margin_reg_value = 154;
  1963. /* FIXME extra to set for 1200 */
  1964. break;
  1965. default:
  1966. return 0;
  1967. }
  1968. break;
  1969. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1970. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1971. case DP_TRAIN_VOLTAGE_SWING_400:
  1972. deemph_reg_value = 85;
  1973. margin_reg_value = 78;
  1974. break;
  1975. case DP_TRAIN_VOLTAGE_SWING_600:
  1976. deemph_reg_value = 85;
  1977. margin_reg_value = 116;
  1978. break;
  1979. case DP_TRAIN_VOLTAGE_SWING_800:
  1980. deemph_reg_value = 85;
  1981. margin_reg_value = 154;
  1982. break;
  1983. default:
  1984. return 0;
  1985. }
  1986. break;
  1987. case DP_TRAIN_PRE_EMPHASIS_6:
  1988. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1989. case DP_TRAIN_VOLTAGE_SWING_400:
  1990. deemph_reg_value = 64;
  1991. margin_reg_value = 104;
  1992. break;
  1993. case DP_TRAIN_VOLTAGE_SWING_600:
  1994. deemph_reg_value = 64;
  1995. margin_reg_value = 154;
  1996. break;
  1997. default:
  1998. return 0;
  1999. }
  2000. break;
  2001. case DP_TRAIN_PRE_EMPHASIS_9_5:
  2002. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2003. case DP_TRAIN_VOLTAGE_SWING_400:
  2004. deemph_reg_value = 43;
  2005. margin_reg_value = 154;
  2006. break;
  2007. default:
  2008. return 0;
  2009. }
  2010. break;
  2011. default:
  2012. return 0;
  2013. }
  2014. mutex_lock(&dev_priv->dpio_lock);
  2015. /* Clear calc init */
  2016. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  2017. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  2018. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  2019. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  2020. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  2021. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  2022. /* Program swing deemph */
  2023. for (i = 0; i < 4; i++) {
  2024. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  2025. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  2026. val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
  2027. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  2028. }
  2029. /* Program swing margin */
  2030. for (i = 0; i < 4; i++) {
  2031. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  2032. val &= ~DPIO_SWING_MARGIN_MASK;
  2033. val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
  2034. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  2035. }
  2036. /* Disable unique transition scale */
  2037. for (i = 0; i < 4; i++) {
  2038. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  2039. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  2040. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  2041. }
  2042. if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
  2043. == DP_TRAIN_PRE_EMPHASIS_0) &&
  2044. ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
  2045. == DP_TRAIN_VOLTAGE_SWING_1200)) {
  2046. /*
  2047. * The document said it needs to set bit 27 for ch0 and bit 26
  2048. * for ch1. Might be a typo in the doc.
  2049. * For now, for this unique transition scale selection, set bit
  2050. * 27 for ch0 and ch1.
  2051. */
  2052. for (i = 0; i < 4; i++) {
  2053. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  2054. val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
  2055. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  2056. }
  2057. for (i = 0; i < 4; i++) {
  2058. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  2059. val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
  2060. val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
  2061. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  2062. }
  2063. }
  2064. /* Start swing calculation */
  2065. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  2066. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  2067. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  2068. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  2069. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  2070. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  2071. /* LRC Bypass */
  2072. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
  2073. val |= DPIO_LRC_BYPASS;
  2074. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
  2075. mutex_unlock(&dev_priv->dpio_lock);
  2076. return 0;
  2077. }
  2078. static void
  2079. intel_get_adjust_train(struct intel_dp *intel_dp,
  2080. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  2081. {
  2082. uint8_t v = 0;
  2083. uint8_t p = 0;
  2084. int lane;
  2085. uint8_t voltage_max;
  2086. uint8_t preemph_max;
  2087. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  2088. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  2089. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  2090. if (this_v > v)
  2091. v = this_v;
  2092. if (this_p > p)
  2093. p = this_p;
  2094. }
  2095. voltage_max = intel_dp_voltage_max(intel_dp);
  2096. if (v >= voltage_max)
  2097. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  2098. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  2099. if (p >= preemph_max)
  2100. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  2101. for (lane = 0; lane < 4; lane++)
  2102. intel_dp->train_set[lane] = v | p;
  2103. }
  2104. static uint32_t
  2105. intel_gen4_signal_levels(uint8_t train_set)
  2106. {
  2107. uint32_t signal_levels = 0;
  2108. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  2109. case DP_TRAIN_VOLTAGE_SWING_400:
  2110. default:
  2111. signal_levels |= DP_VOLTAGE_0_4;
  2112. break;
  2113. case DP_TRAIN_VOLTAGE_SWING_600:
  2114. signal_levels |= DP_VOLTAGE_0_6;
  2115. break;
  2116. case DP_TRAIN_VOLTAGE_SWING_800:
  2117. signal_levels |= DP_VOLTAGE_0_8;
  2118. break;
  2119. case DP_TRAIN_VOLTAGE_SWING_1200:
  2120. signal_levels |= DP_VOLTAGE_1_2;
  2121. break;
  2122. }
  2123. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  2124. case DP_TRAIN_PRE_EMPHASIS_0:
  2125. default:
  2126. signal_levels |= DP_PRE_EMPHASIS_0;
  2127. break;
  2128. case DP_TRAIN_PRE_EMPHASIS_3_5:
  2129. signal_levels |= DP_PRE_EMPHASIS_3_5;
  2130. break;
  2131. case DP_TRAIN_PRE_EMPHASIS_6:
  2132. signal_levels |= DP_PRE_EMPHASIS_6;
  2133. break;
  2134. case DP_TRAIN_PRE_EMPHASIS_9_5:
  2135. signal_levels |= DP_PRE_EMPHASIS_9_5;
  2136. break;
  2137. }
  2138. return signal_levels;
  2139. }
  2140. /* Gen6's DP voltage swing and pre-emphasis control */
  2141. static uint32_t
  2142. intel_gen6_edp_signal_levels(uint8_t train_set)
  2143. {
  2144. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2145. DP_TRAIN_PRE_EMPHASIS_MASK);
  2146. switch (signal_levels) {
  2147. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2148. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2149. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  2150. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2151. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  2152. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2153. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  2154. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  2155. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2156. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2157. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  2158. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2159. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  2160. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  2161. default:
  2162. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2163. "0x%x\n", signal_levels);
  2164. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  2165. }
  2166. }
  2167. /* Gen7's DP voltage swing and pre-emphasis control */
  2168. static uint32_t
  2169. intel_gen7_edp_signal_levels(uint8_t train_set)
  2170. {
  2171. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2172. DP_TRAIN_PRE_EMPHASIS_MASK);
  2173. switch (signal_levels) {
  2174. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2175. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  2176. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2177. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  2178. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2179. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  2180. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2181. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  2182. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2183. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  2184. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2185. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  2186. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2187. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  2188. default:
  2189. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2190. "0x%x\n", signal_levels);
  2191. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  2192. }
  2193. }
  2194. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  2195. static uint32_t
  2196. intel_hsw_signal_levels(uint8_t train_set)
  2197. {
  2198. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2199. DP_TRAIN_PRE_EMPHASIS_MASK);
  2200. switch (signal_levels) {
  2201. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2202. return DDI_BUF_EMP_400MV_0DB_HSW;
  2203. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2204. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  2205. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2206. return DDI_BUF_EMP_400MV_6DB_HSW;
  2207. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  2208. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  2209. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2210. return DDI_BUF_EMP_600MV_0DB_HSW;
  2211. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2212. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  2213. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  2214. return DDI_BUF_EMP_600MV_6DB_HSW;
  2215. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2216. return DDI_BUF_EMP_800MV_0DB_HSW;
  2217. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2218. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  2219. default:
  2220. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2221. "0x%x\n", signal_levels);
  2222. return DDI_BUF_EMP_400MV_0DB_HSW;
  2223. }
  2224. }
  2225. static uint32_t
  2226. intel_bdw_signal_levels(uint8_t train_set)
  2227. {
  2228. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  2229. DP_TRAIN_PRE_EMPHASIS_MASK);
  2230. switch (signal_levels) {
  2231. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  2232. return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
  2233. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2234. return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
  2235. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  2236. return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
  2237. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  2238. return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
  2239. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2240. return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
  2241. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  2242. return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
  2243. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  2244. return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
  2245. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  2246. return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
  2247. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  2248. return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
  2249. default:
  2250. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  2251. "0x%x\n", signal_levels);
  2252. return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
  2253. }
  2254. }
  2255. /* Properly updates "DP" with the correct signal levels. */
  2256. static void
  2257. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  2258. {
  2259. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2260. enum port port = intel_dig_port->port;
  2261. struct drm_device *dev = intel_dig_port->base.base.dev;
  2262. uint32_t signal_levels, mask;
  2263. uint8_t train_set = intel_dp->train_set[0];
  2264. if (IS_BROADWELL(dev)) {
  2265. signal_levels = intel_bdw_signal_levels(train_set);
  2266. mask = DDI_BUF_EMP_MASK;
  2267. } else if (IS_HASWELL(dev)) {
  2268. signal_levels = intel_hsw_signal_levels(train_set);
  2269. mask = DDI_BUF_EMP_MASK;
  2270. } else if (IS_CHERRYVIEW(dev)) {
  2271. signal_levels = intel_chv_signal_levels(intel_dp);
  2272. mask = 0;
  2273. } else if (IS_VALLEYVIEW(dev)) {
  2274. signal_levels = intel_vlv_signal_levels(intel_dp);
  2275. mask = 0;
  2276. } else if (IS_GEN7(dev) && port == PORT_A) {
  2277. signal_levels = intel_gen7_edp_signal_levels(train_set);
  2278. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  2279. } else if (IS_GEN6(dev) && port == PORT_A) {
  2280. signal_levels = intel_gen6_edp_signal_levels(train_set);
  2281. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  2282. } else {
  2283. signal_levels = intel_gen4_signal_levels(train_set);
  2284. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  2285. }
  2286. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  2287. *DP = (*DP & ~mask) | signal_levels;
  2288. }
  2289. static bool
  2290. intel_dp_set_link_train(struct intel_dp *intel_dp,
  2291. uint32_t *DP,
  2292. uint8_t dp_train_pat)
  2293. {
  2294. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2295. struct drm_device *dev = intel_dig_port->base.base.dev;
  2296. struct drm_i915_private *dev_priv = dev->dev_private;
  2297. enum port port = intel_dig_port->port;
  2298. uint8_t buf[sizeof(intel_dp->train_set) + 1];
  2299. int ret, len;
  2300. if (HAS_DDI(dev)) {
  2301. uint32_t temp = I915_READ(DP_TP_CTL(port));
  2302. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  2303. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  2304. else
  2305. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  2306. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2307. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2308. case DP_TRAINING_PATTERN_DISABLE:
  2309. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  2310. break;
  2311. case DP_TRAINING_PATTERN_1:
  2312. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2313. break;
  2314. case DP_TRAINING_PATTERN_2:
  2315. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  2316. break;
  2317. case DP_TRAINING_PATTERN_3:
  2318. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  2319. break;
  2320. }
  2321. I915_WRITE(DP_TP_CTL(port), temp);
  2322. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2323. *DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2324. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2325. case DP_TRAINING_PATTERN_DISABLE:
  2326. *DP |= DP_LINK_TRAIN_OFF_CPT;
  2327. break;
  2328. case DP_TRAINING_PATTERN_1:
  2329. *DP |= DP_LINK_TRAIN_PAT_1_CPT;
  2330. break;
  2331. case DP_TRAINING_PATTERN_2:
  2332. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2333. break;
  2334. case DP_TRAINING_PATTERN_3:
  2335. DRM_ERROR("DP training pattern 3 not supported\n");
  2336. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2337. break;
  2338. }
  2339. } else {
  2340. *DP &= ~DP_LINK_TRAIN_MASK;
  2341. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2342. case DP_TRAINING_PATTERN_DISABLE:
  2343. *DP |= DP_LINK_TRAIN_OFF;
  2344. break;
  2345. case DP_TRAINING_PATTERN_1:
  2346. *DP |= DP_LINK_TRAIN_PAT_1;
  2347. break;
  2348. case DP_TRAINING_PATTERN_2:
  2349. *DP |= DP_LINK_TRAIN_PAT_2;
  2350. break;
  2351. case DP_TRAINING_PATTERN_3:
  2352. DRM_ERROR("DP training pattern 3 not supported\n");
  2353. *DP |= DP_LINK_TRAIN_PAT_2;
  2354. break;
  2355. }
  2356. }
  2357. I915_WRITE(intel_dp->output_reg, *DP);
  2358. POSTING_READ(intel_dp->output_reg);
  2359. buf[0] = dp_train_pat;
  2360. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
  2361. DP_TRAINING_PATTERN_DISABLE) {
  2362. /* don't write DP_TRAINING_LANEx_SET on disable */
  2363. len = 1;
  2364. } else {
  2365. /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
  2366. memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
  2367. len = intel_dp->lane_count + 1;
  2368. }
  2369. ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
  2370. buf, len);
  2371. return ret == len;
  2372. }
  2373. static bool
  2374. intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2375. uint8_t dp_train_pat)
  2376. {
  2377. memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
  2378. intel_dp_set_signal_levels(intel_dp, DP);
  2379. return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
  2380. }
  2381. static bool
  2382. intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2383. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  2384. {
  2385. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2386. struct drm_device *dev = intel_dig_port->base.base.dev;
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. int ret;
  2389. intel_get_adjust_train(intel_dp, link_status);
  2390. intel_dp_set_signal_levels(intel_dp, DP);
  2391. I915_WRITE(intel_dp->output_reg, *DP);
  2392. POSTING_READ(intel_dp->output_reg);
  2393. ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
  2394. intel_dp->train_set, intel_dp->lane_count);
  2395. return ret == intel_dp->lane_count;
  2396. }
  2397. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  2398. {
  2399. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2400. struct drm_device *dev = intel_dig_port->base.base.dev;
  2401. struct drm_i915_private *dev_priv = dev->dev_private;
  2402. enum port port = intel_dig_port->port;
  2403. uint32_t val;
  2404. if (!HAS_DDI(dev))
  2405. return;
  2406. val = I915_READ(DP_TP_CTL(port));
  2407. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2408. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  2409. I915_WRITE(DP_TP_CTL(port), val);
  2410. /*
  2411. * On PORT_A we can have only eDP in SST mode. There the only reason
  2412. * we need to set idle transmission mode is to work around a HW issue
  2413. * where we enable the pipe while not in idle link-training mode.
  2414. * In this case there is requirement to wait for a minimum number of
  2415. * idle patterns to be sent.
  2416. */
  2417. if (port == PORT_A)
  2418. return;
  2419. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2420. 1))
  2421. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2422. }
  2423. /* Enable corresponding port and start training pattern 1 */
  2424. void
  2425. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2426. {
  2427. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2428. struct drm_device *dev = encoder->dev;
  2429. int i;
  2430. uint8_t voltage;
  2431. int voltage_tries, loop_tries;
  2432. uint32_t DP = intel_dp->DP;
  2433. uint8_t link_config[2];
  2434. if (HAS_DDI(dev))
  2435. intel_ddi_prepare_link_retrain(encoder);
  2436. /* Write the link configuration data */
  2437. link_config[0] = intel_dp->link_bw;
  2438. link_config[1] = intel_dp->lane_count;
  2439. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2440. link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  2441. drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
  2442. link_config[0] = 0;
  2443. link_config[1] = DP_SET_ANSI_8B10B;
  2444. drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
  2445. DP |= DP_PORT_EN;
  2446. /* clock recovery */
  2447. if (!intel_dp_reset_link_train(intel_dp, &DP,
  2448. DP_TRAINING_PATTERN_1 |
  2449. DP_LINK_SCRAMBLING_DISABLE)) {
  2450. DRM_ERROR("failed to enable link training\n");
  2451. return;
  2452. }
  2453. voltage = 0xff;
  2454. voltage_tries = 0;
  2455. loop_tries = 0;
  2456. for (;;) {
  2457. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2458. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2459. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2460. DRM_ERROR("failed to get link status\n");
  2461. break;
  2462. }
  2463. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2464. DRM_DEBUG_KMS("clock recovery OK\n");
  2465. break;
  2466. }
  2467. /* Check to see if we've tried the max voltage */
  2468. for (i = 0; i < intel_dp->lane_count; i++)
  2469. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2470. break;
  2471. if (i == intel_dp->lane_count) {
  2472. ++loop_tries;
  2473. if (loop_tries == 5) {
  2474. DRM_ERROR("too many full retries, give up\n");
  2475. break;
  2476. }
  2477. intel_dp_reset_link_train(intel_dp, &DP,
  2478. DP_TRAINING_PATTERN_1 |
  2479. DP_LINK_SCRAMBLING_DISABLE);
  2480. voltage_tries = 0;
  2481. continue;
  2482. }
  2483. /* Check to see if we've tried the same voltage 5 times */
  2484. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2485. ++voltage_tries;
  2486. if (voltage_tries == 5) {
  2487. DRM_ERROR("too many voltage retries, give up\n");
  2488. break;
  2489. }
  2490. } else
  2491. voltage_tries = 0;
  2492. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2493. /* Update training set as requested by target */
  2494. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2495. DRM_ERROR("failed to update link training\n");
  2496. break;
  2497. }
  2498. }
  2499. intel_dp->DP = DP;
  2500. }
  2501. void
  2502. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2503. {
  2504. bool channel_eq = false;
  2505. int tries, cr_tries;
  2506. uint32_t DP = intel_dp->DP;
  2507. uint32_t training_pattern = DP_TRAINING_PATTERN_2;
  2508. /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
  2509. if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
  2510. training_pattern = DP_TRAINING_PATTERN_3;
  2511. /* channel equalization */
  2512. if (!intel_dp_set_link_train(intel_dp, &DP,
  2513. training_pattern |
  2514. DP_LINK_SCRAMBLING_DISABLE)) {
  2515. DRM_ERROR("failed to start channel equalization\n");
  2516. return;
  2517. }
  2518. tries = 0;
  2519. cr_tries = 0;
  2520. channel_eq = false;
  2521. for (;;) {
  2522. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2523. if (cr_tries > 5) {
  2524. DRM_ERROR("failed to train DP, aborting\n");
  2525. break;
  2526. }
  2527. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2528. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2529. DRM_ERROR("failed to get link status\n");
  2530. break;
  2531. }
  2532. /* Make sure clock is still ok */
  2533. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2534. intel_dp_start_link_train(intel_dp);
  2535. intel_dp_set_link_train(intel_dp, &DP,
  2536. training_pattern |
  2537. DP_LINK_SCRAMBLING_DISABLE);
  2538. cr_tries++;
  2539. continue;
  2540. }
  2541. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2542. channel_eq = true;
  2543. break;
  2544. }
  2545. /* Try 5 times, then try clock recovery if that fails */
  2546. if (tries > 5) {
  2547. intel_dp_link_down(intel_dp);
  2548. intel_dp_start_link_train(intel_dp);
  2549. intel_dp_set_link_train(intel_dp, &DP,
  2550. training_pattern |
  2551. DP_LINK_SCRAMBLING_DISABLE);
  2552. tries = 0;
  2553. cr_tries++;
  2554. continue;
  2555. }
  2556. /* Update training set as requested by target */
  2557. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2558. DRM_ERROR("failed to update link training\n");
  2559. break;
  2560. }
  2561. ++tries;
  2562. }
  2563. intel_dp_set_idle_link_train(intel_dp);
  2564. intel_dp->DP = DP;
  2565. if (channel_eq)
  2566. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2567. }
  2568. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2569. {
  2570. intel_dp_set_link_train(intel_dp, &intel_dp->DP,
  2571. DP_TRAINING_PATTERN_DISABLE);
  2572. }
  2573. static void
  2574. intel_dp_link_down(struct intel_dp *intel_dp)
  2575. {
  2576. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2577. enum port port = intel_dig_port->port;
  2578. struct drm_device *dev = intel_dig_port->base.base.dev;
  2579. struct drm_i915_private *dev_priv = dev->dev_private;
  2580. struct intel_crtc *intel_crtc =
  2581. to_intel_crtc(intel_dig_port->base.base.crtc);
  2582. uint32_t DP = intel_dp->DP;
  2583. if (WARN_ON(HAS_DDI(dev)))
  2584. return;
  2585. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2586. return;
  2587. DRM_DEBUG_KMS("\n");
  2588. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2589. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2590. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2591. } else {
  2592. DP &= ~DP_LINK_TRAIN_MASK;
  2593. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2594. }
  2595. POSTING_READ(intel_dp->output_reg);
  2596. if (HAS_PCH_IBX(dev) &&
  2597. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2598. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2599. /* Hardware workaround: leaving our transcoder select
  2600. * set to transcoder B while it's off will prevent the
  2601. * corresponding HDMI output on transcoder A.
  2602. *
  2603. * Combine this with another hardware workaround:
  2604. * transcoder select bit can only be cleared while the
  2605. * port is enabled.
  2606. */
  2607. DP &= ~DP_PIPEB_SELECT;
  2608. I915_WRITE(intel_dp->output_reg, DP);
  2609. /* Changes to enable or select take place the vblank
  2610. * after being written.
  2611. */
  2612. if (WARN_ON(crtc == NULL)) {
  2613. /* We should never try to disable a port without a crtc
  2614. * attached. For paranoia keep the code around for a
  2615. * bit. */
  2616. POSTING_READ(intel_dp->output_reg);
  2617. msleep(50);
  2618. } else
  2619. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2620. }
  2621. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2622. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2623. POSTING_READ(intel_dp->output_reg);
  2624. msleep(intel_dp->panel_power_down_delay);
  2625. }
  2626. static bool
  2627. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2628. {
  2629. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  2630. struct drm_device *dev = dig_port->base.base.dev;
  2631. struct drm_i915_private *dev_priv = dev->dev_private;
  2632. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2633. if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
  2634. sizeof(intel_dp->dpcd)) < 0)
  2635. return false; /* aux transfer failed */
  2636. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2637. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2638. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2639. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2640. return false; /* DPCD not present */
  2641. /* Check if the panel supports PSR */
  2642. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2643. if (is_edp(intel_dp)) {
  2644. intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
  2645. intel_dp->psr_dpcd,
  2646. sizeof(intel_dp->psr_dpcd));
  2647. if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
  2648. dev_priv->psr.sink_support = true;
  2649. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2650. }
  2651. }
  2652. /* Training Pattern 3 support */
  2653. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
  2654. intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
  2655. intel_dp->use_tps3 = true;
  2656. DRM_DEBUG_KMS("Displayport TPS3 supported");
  2657. } else
  2658. intel_dp->use_tps3 = false;
  2659. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2660. DP_DWN_STRM_PORT_PRESENT))
  2661. return true; /* native DP sink */
  2662. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2663. return true; /* no per-port downstream info */
  2664. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
  2665. intel_dp->downstream_ports,
  2666. DP_MAX_DOWNSTREAM_PORTS) < 0)
  2667. return false; /* downstream port status fetch failed */
  2668. return true;
  2669. }
  2670. static void
  2671. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2672. {
  2673. u8 buf[3];
  2674. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2675. return;
  2676. intel_edp_panel_vdd_on(intel_dp);
  2677. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
  2678. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2679. buf[0], buf[1], buf[2]);
  2680. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
  2681. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2682. buf[0], buf[1], buf[2]);
  2683. edp_panel_vdd_off(intel_dp, false);
  2684. }
  2685. int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
  2686. {
  2687. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2688. struct drm_device *dev = intel_dig_port->base.base.dev;
  2689. struct intel_crtc *intel_crtc =
  2690. to_intel_crtc(intel_dig_port->base.base.crtc);
  2691. u8 buf[1];
  2692. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
  2693. return -EAGAIN;
  2694. if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
  2695. return -ENOTTY;
  2696. if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
  2697. DP_TEST_SINK_START) < 0)
  2698. return -EAGAIN;
  2699. /* Wait 2 vblanks to be sure we will have the correct CRC value */
  2700. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2701. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2702. if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
  2703. return -EAGAIN;
  2704. drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
  2705. return 0;
  2706. }
  2707. static bool
  2708. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2709. {
  2710. return intel_dp_dpcd_read_wake(&intel_dp->aux,
  2711. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2712. sink_irq_vector, 1) == 1;
  2713. }
  2714. static void
  2715. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2716. {
  2717. /* NAK by default */
  2718. drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
  2719. }
  2720. /*
  2721. * According to DP spec
  2722. * 5.1.2:
  2723. * 1. Read DPCD
  2724. * 2. Configure link according to Receiver Capabilities
  2725. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2726. * 4. Check link status on receipt of hot-plug interrupt
  2727. */
  2728. void
  2729. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2730. {
  2731. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2732. u8 sink_irq_vector;
  2733. u8 link_status[DP_LINK_STATUS_SIZE];
  2734. if (!intel_encoder->connectors_active)
  2735. return;
  2736. if (WARN_ON(!intel_encoder->base.crtc))
  2737. return;
  2738. /* Try to read receiver status if the link appears to be up */
  2739. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2740. return;
  2741. }
  2742. /* Now read the DPCD to see if it's actually running */
  2743. if (!intel_dp_get_dpcd(intel_dp)) {
  2744. return;
  2745. }
  2746. /* Try to read the source of the interrupt */
  2747. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2748. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2749. /* Clear interrupt source */
  2750. drm_dp_dpcd_writeb(&intel_dp->aux,
  2751. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2752. sink_irq_vector);
  2753. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2754. intel_dp_handle_test_request(intel_dp);
  2755. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2756. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2757. }
  2758. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2759. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2760. drm_get_encoder_name(&intel_encoder->base));
  2761. intel_dp_start_link_train(intel_dp);
  2762. intel_dp_complete_link_train(intel_dp);
  2763. intel_dp_stop_link_train(intel_dp);
  2764. }
  2765. }
  2766. /* XXX this is probably wrong for multiple downstream ports */
  2767. static enum drm_connector_status
  2768. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2769. {
  2770. uint8_t *dpcd = intel_dp->dpcd;
  2771. uint8_t type;
  2772. if (!intel_dp_get_dpcd(intel_dp))
  2773. return connector_status_disconnected;
  2774. /* if there's no downstream port, we're done */
  2775. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2776. return connector_status_connected;
  2777. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2778. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2779. intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
  2780. uint8_t reg;
  2781. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
  2782. &reg, 1) < 0)
  2783. return connector_status_unknown;
  2784. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2785. : connector_status_disconnected;
  2786. }
  2787. /* If no HPD, poke DDC gently */
  2788. if (drm_probe_ddc(&intel_dp->aux.ddc))
  2789. return connector_status_connected;
  2790. /* Well we tried, say unknown for unreliable port types */
  2791. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  2792. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2793. if (type == DP_DS_PORT_TYPE_VGA ||
  2794. type == DP_DS_PORT_TYPE_NON_EDID)
  2795. return connector_status_unknown;
  2796. } else {
  2797. type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2798. DP_DWN_STRM_PORT_TYPE_MASK;
  2799. if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
  2800. type == DP_DWN_STRM_PORT_TYPE_OTHER)
  2801. return connector_status_unknown;
  2802. }
  2803. /* Anything else is out of spec, warn and ignore */
  2804. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2805. return connector_status_disconnected;
  2806. }
  2807. static enum drm_connector_status
  2808. ironlake_dp_detect(struct intel_dp *intel_dp)
  2809. {
  2810. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2811. struct drm_i915_private *dev_priv = dev->dev_private;
  2812. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2813. enum drm_connector_status status;
  2814. /* Can't disconnect eDP, but you can close the lid... */
  2815. if (is_edp(intel_dp)) {
  2816. status = intel_panel_detect(dev);
  2817. if (status == connector_status_unknown)
  2818. status = connector_status_connected;
  2819. return status;
  2820. }
  2821. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2822. return connector_status_disconnected;
  2823. return intel_dp_detect_dpcd(intel_dp);
  2824. }
  2825. static enum drm_connector_status
  2826. g4x_dp_detect(struct intel_dp *intel_dp)
  2827. {
  2828. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2829. struct drm_i915_private *dev_priv = dev->dev_private;
  2830. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2831. uint32_t bit;
  2832. /* Can't disconnect eDP, but you can close the lid... */
  2833. if (is_edp(intel_dp)) {
  2834. enum drm_connector_status status;
  2835. status = intel_panel_detect(dev);
  2836. if (status == connector_status_unknown)
  2837. status = connector_status_connected;
  2838. return status;
  2839. }
  2840. if (IS_VALLEYVIEW(dev)) {
  2841. switch (intel_dig_port->port) {
  2842. case PORT_B:
  2843. bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
  2844. break;
  2845. case PORT_C:
  2846. bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
  2847. break;
  2848. case PORT_D:
  2849. bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
  2850. break;
  2851. default:
  2852. return connector_status_unknown;
  2853. }
  2854. } else {
  2855. switch (intel_dig_port->port) {
  2856. case PORT_B:
  2857. bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
  2858. break;
  2859. case PORT_C:
  2860. bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
  2861. break;
  2862. case PORT_D:
  2863. bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
  2864. break;
  2865. default:
  2866. return connector_status_unknown;
  2867. }
  2868. }
  2869. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2870. return connector_status_disconnected;
  2871. return intel_dp_detect_dpcd(intel_dp);
  2872. }
  2873. static struct edid *
  2874. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2875. {
  2876. struct intel_connector *intel_connector = to_intel_connector(connector);
  2877. /* use cached edid if we have one */
  2878. if (intel_connector->edid) {
  2879. /* invalid edid */
  2880. if (IS_ERR(intel_connector->edid))
  2881. return NULL;
  2882. return drm_edid_duplicate(intel_connector->edid);
  2883. }
  2884. return drm_get_edid(connector, adapter);
  2885. }
  2886. static int
  2887. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2888. {
  2889. struct intel_connector *intel_connector = to_intel_connector(connector);
  2890. /* use cached edid if we have one */
  2891. if (intel_connector->edid) {
  2892. /* invalid edid */
  2893. if (IS_ERR(intel_connector->edid))
  2894. return 0;
  2895. return intel_connector_update_modes(connector,
  2896. intel_connector->edid);
  2897. }
  2898. return intel_ddc_get_modes(connector, adapter);
  2899. }
  2900. static enum drm_connector_status
  2901. intel_dp_detect(struct drm_connector *connector, bool force)
  2902. {
  2903. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2904. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2905. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2906. struct drm_device *dev = connector->dev;
  2907. struct drm_i915_private *dev_priv = dev->dev_private;
  2908. enum drm_connector_status status;
  2909. enum intel_display_power_domain power_domain;
  2910. struct edid *edid = NULL;
  2911. intel_runtime_pm_get(dev_priv);
  2912. power_domain = intel_display_port_power_domain(intel_encoder);
  2913. intel_display_power_get(dev_priv, power_domain);
  2914. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2915. connector->base.id, connector->name);
  2916. intel_dp->has_audio = false;
  2917. if (HAS_PCH_SPLIT(dev))
  2918. status = ironlake_dp_detect(intel_dp);
  2919. else
  2920. status = g4x_dp_detect(intel_dp);
  2921. if (status != connector_status_connected)
  2922. goto out;
  2923. intel_dp_probe_oui(intel_dp);
  2924. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2925. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2926. } else {
  2927. edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
  2928. if (edid) {
  2929. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2930. kfree(edid);
  2931. }
  2932. }
  2933. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2934. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2935. status = connector_status_connected;
  2936. out:
  2937. intel_display_power_put(dev_priv, power_domain);
  2938. intel_runtime_pm_put(dev_priv);
  2939. return status;
  2940. }
  2941. static int intel_dp_get_modes(struct drm_connector *connector)
  2942. {
  2943. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2944. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2945. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2946. struct intel_connector *intel_connector = to_intel_connector(connector);
  2947. struct drm_device *dev = connector->dev;
  2948. struct drm_i915_private *dev_priv = dev->dev_private;
  2949. enum intel_display_power_domain power_domain;
  2950. int ret;
  2951. /* We should parse the EDID data and find out if it has an audio sink
  2952. */
  2953. power_domain = intel_display_port_power_domain(intel_encoder);
  2954. intel_display_power_get(dev_priv, power_domain);
  2955. ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
  2956. intel_display_power_put(dev_priv, power_domain);
  2957. if (ret)
  2958. return ret;
  2959. /* if eDP has no EDID, fall back to fixed mode */
  2960. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2961. struct drm_display_mode *mode;
  2962. mode = drm_mode_duplicate(dev,
  2963. intel_connector->panel.fixed_mode);
  2964. if (mode) {
  2965. drm_mode_probed_add(connector, mode);
  2966. return 1;
  2967. }
  2968. }
  2969. return 0;
  2970. }
  2971. static bool
  2972. intel_dp_detect_audio(struct drm_connector *connector)
  2973. {
  2974. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2975. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2976. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2977. struct drm_device *dev = connector->dev;
  2978. struct drm_i915_private *dev_priv = dev->dev_private;
  2979. enum intel_display_power_domain power_domain;
  2980. struct edid *edid;
  2981. bool has_audio = false;
  2982. power_domain = intel_display_port_power_domain(intel_encoder);
  2983. intel_display_power_get(dev_priv, power_domain);
  2984. edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
  2985. if (edid) {
  2986. has_audio = drm_detect_monitor_audio(edid);
  2987. kfree(edid);
  2988. }
  2989. intel_display_power_put(dev_priv, power_domain);
  2990. return has_audio;
  2991. }
  2992. static int
  2993. intel_dp_set_property(struct drm_connector *connector,
  2994. struct drm_property *property,
  2995. uint64_t val)
  2996. {
  2997. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2998. struct intel_connector *intel_connector = to_intel_connector(connector);
  2999. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  3000. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  3001. int ret;
  3002. ret = drm_object_property_set_value(&connector->base, property, val);
  3003. if (ret)
  3004. return ret;
  3005. if (property == dev_priv->force_audio_property) {
  3006. int i = val;
  3007. bool has_audio;
  3008. if (i == intel_dp->force_audio)
  3009. return 0;
  3010. intel_dp->force_audio = i;
  3011. if (i == HDMI_AUDIO_AUTO)
  3012. has_audio = intel_dp_detect_audio(connector);
  3013. else
  3014. has_audio = (i == HDMI_AUDIO_ON);
  3015. if (has_audio == intel_dp->has_audio)
  3016. return 0;
  3017. intel_dp->has_audio = has_audio;
  3018. goto done;
  3019. }
  3020. if (property == dev_priv->broadcast_rgb_property) {
  3021. bool old_auto = intel_dp->color_range_auto;
  3022. uint32_t old_range = intel_dp->color_range;
  3023. switch (val) {
  3024. case INTEL_BROADCAST_RGB_AUTO:
  3025. intel_dp->color_range_auto = true;
  3026. break;
  3027. case INTEL_BROADCAST_RGB_FULL:
  3028. intel_dp->color_range_auto = false;
  3029. intel_dp->color_range = 0;
  3030. break;
  3031. case INTEL_BROADCAST_RGB_LIMITED:
  3032. intel_dp->color_range_auto = false;
  3033. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  3034. break;
  3035. default:
  3036. return -EINVAL;
  3037. }
  3038. if (old_auto == intel_dp->color_range_auto &&
  3039. old_range == intel_dp->color_range)
  3040. return 0;
  3041. goto done;
  3042. }
  3043. if (is_edp(intel_dp) &&
  3044. property == connector->dev->mode_config.scaling_mode_property) {
  3045. if (val == DRM_MODE_SCALE_NONE) {
  3046. DRM_DEBUG_KMS("no scaling not supported\n");
  3047. return -EINVAL;
  3048. }
  3049. if (intel_connector->panel.fitting_mode == val) {
  3050. /* the eDP scaling property is not changed */
  3051. return 0;
  3052. }
  3053. intel_connector->panel.fitting_mode = val;
  3054. goto done;
  3055. }
  3056. return -EINVAL;
  3057. done:
  3058. if (intel_encoder->base.crtc)
  3059. intel_crtc_restore_mode(intel_encoder->base.crtc);
  3060. return 0;
  3061. }
  3062. static void
  3063. intel_dp_connector_destroy(struct drm_connector *connector)
  3064. {
  3065. struct intel_connector *intel_connector = to_intel_connector(connector);
  3066. if (!IS_ERR_OR_NULL(intel_connector->edid))
  3067. kfree(intel_connector->edid);
  3068. /* Can't call is_edp() since the encoder may have been destroyed
  3069. * already. */
  3070. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  3071. intel_panel_fini(&intel_connector->panel);
  3072. drm_connector_cleanup(connector);
  3073. kfree(connector);
  3074. }
  3075. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  3076. {
  3077. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  3078. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3079. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  3080. drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
  3081. drm_encoder_cleanup(encoder);
  3082. if (is_edp(intel_dp)) {
  3083. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3084. mutex_lock(&dev->mode_config.mutex);
  3085. edp_panel_vdd_off_sync(intel_dp);
  3086. mutex_unlock(&dev->mode_config.mutex);
  3087. }
  3088. kfree(intel_dig_port);
  3089. }
  3090. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  3091. .dpms = intel_connector_dpms,
  3092. .detect = intel_dp_detect,
  3093. .fill_modes = drm_helper_probe_single_connector_modes,
  3094. .set_property = intel_dp_set_property,
  3095. .destroy = intel_dp_connector_destroy,
  3096. };
  3097. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  3098. .get_modes = intel_dp_get_modes,
  3099. .mode_valid = intel_dp_mode_valid,
  3100. .best_encoder = intel_best_encoder,
  3101. };
  3102. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  3103. .destroy = intel_dp_encoder_destroy,
  3104. };
  3105. static void
  3106. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  3107. {
  3108. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  3109. intel_dp_check_link_status(intel_dp);
  3110. }
  3111. /* Return which DP Port should be selected for Transcoder DP control */
  3112. int
  3113. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  3114. {
  3115. struct drm_device *dev = crtc->dev;
  3116. struct intel_encoder *intel_encoder;
  3117. struct intel_dp *intel_dp;
  3118. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3119. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  3120. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  3121. intel_encoder->type == INTEL_OUTPUT_EDP)
  3122. return intel_dp->output_reg;
  3123. }
  3124. return -1;
  3125. }
  3126. /* check the VBT to see whether the eDP is on DP-D port */
  3127. bool intel_dp_is_edp(struct drm_device *dev, enum port port)
  3128. {
  3129. struct drm_i915_private *dev_priv = dev->dev_private;
  3130. union child_device_config *p_child;
  3131. int i;
  3132. static const short port_mapping[] = {
  3133. [PORT_B] = PORT_IDPB,
  3134. [PORT_C] = PORT_IDPC,
  3135. [PORT_D] = PORT_IDPD,
  3136. };
  3137. if (port == PORT_A)
  3138. return true;
  3139. if (!dev_priv->vbt.child_dev_num)
  3140. return false;
  3141. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  3142. p_child = dev_priv->vbt.child_dev + i;
  3143. if (p_child->common.dvo_port == port_mapping[port] &&
  3144. (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
  3145. (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
  3146. return true;
  3147. }
  3148. return false;
  3149. }
  3150. static void
  3151. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  3152. {
  3153. struct intel_connector *intel_connector = to_intel_connector(connector);
  3154. intel_attach_force_audio_property(connector);
  3155. intel_attach_broadcast_rgb_property(connector);
  3156. intel_dp->color_range_auto = true;
  3157. if (is_edp(intel_dp)) {
  3158. drm_mode_create_scaling_mode_property(connector->dev);
  3159. drm_object_attach_property(
  3160. &connector->base,
  3161. connector->dev->mode_config.scaling_mode_property,
  3162. DRM_MODE_SCALE_ASPECT);
  3163. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  3164. }
  3165. }
  3166. static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
  3167. {
  3168. intel_dp->last_power_cycle = jiffies;
  3169. intel_dp->last_power_on = jiffies;
  3170. intel_dp->last_backlight_off = jiffies;
  3171. }
  3172. static void
  3173. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  3174. struct intel_dp *intel_dp,
  3175. struct edp_power_seq *out)
  3176. {
  3177. struct drm_i915_private *dev_priv = dev->dev_private;
  3178. struct edp_power_seq cur, vbt, spec, final;
  3179. u32 pp_on, pp_off, pp_div, pp;
  3180. int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  3181. if (HAS_PCH_SPLIT(dev)) {
  3182. pp_ctrl_reg = PCH_PP_CONTROL;
  3183. pp_on_reg = PCH_PP_ON_DELAYS;
  3184. pp_off_reg = PCH_PP_OFF_DELAYS;
  3185. pp_div_reg = PCH_PP_DIVISOR;
  3186. } else {
  3187. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  3188. pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
  3189. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  3190. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  3191. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  3192. }
  3193. /* Workaround: Need to write PP_CONTROL with the unlock key as
  3194. * the very first thing. */
  3195. pp = ironlake_get_pp_control(intel_dp);
  3196. I915_WRITE(pp_ctrl_reg, pp);
  3197. pp_on = I915_READ(pp_on_reg);
  3198. pp_off = I915_READ(pp_off_reg);
  3199. pp_div = I915_READ(pp_div_reg);
  3200. /* Pull timing values out of registers */
  3201. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  3202. PANEL_POWER_UP_DELAY_SHIFT;
  3203. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  3204. PANEL_LIGHT_ON_DELAY_SHIFT;
  3205. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  3206. PANEL_LIGHT_OFF_DELAY_SHIFT;
  3207. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  3208. PANEL_POWER_DOWN_DELAY_SHIFT;
  3209. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  3210. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  3211. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  3212. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  3213. vbt = dev_priv->vbt.edp_pps;
  3214. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  3215. * our hw here, which are all in 100usec. */
  3216. spec.t1_t3 = 210 * 10;
  3217. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  3218. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  3219. spec.t10 = 500 * 10;
  3220. /* This one is special and actually in units of 100ms, but zero
  3221. * based in the hw (so we need to add 100 ms). But the sw vbt
  3222. * table multiplies it with 1000 to make it in units of 100usec,
  3223. * too. */
  3224. spec.t11_t12 = (510 + 100) * 10;
  3225. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  3226. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  3227. /* Use the max of the register settings and vbt. If both are
  3228. * unset, fall back to the spec limits. */
  3229. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  3230. spec.field : \
  3231. max(cur.field, vbt.field))
  3232. assign_final(t1_t3);
  3233. assign_final(t8);
  3234. assign_final(t9);
  3235. assign_final(t10);
  3236. assign_final(t11_t12);
  3237. #undef assign_final
  3238. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  3239. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  3240. intel_dp->backlight_on_delay = get_delay(t8);
  3241. intel_dp->backlight_off_delay = get_delay(t9);
  3242. intel_dp->panel_power_down_delay = get_delay(t10);
  3243. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  3244. #undef get_delay
  3245. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  3246. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  3247. intel_dp->panel_power_cycle_delay);
  3248. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  3249. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  3250. if (out)
  3251. *out = final;
  3252. }
  3253. static void
  3254. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  3255. struct intel_dp *intel_dp,
  3256. struct edp_power_seq *seq)
  3257. {
  3258. struct drm_i915_private *dev_priv = dev->dev_private;
  3259. u32 pp_on, pp_off, pp_div, port_sel = 0;
  3260. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  3261. int pp_on_reg, pp_off_reg, pp_div_reg;
  3262. if (HAS_PCH_SPLIT(dev)) {
  3263. pp_on_reg = PCH_PP_ON_DELAYS;
  3264. pp_off_reg = PCH_PP_OFF_DELAYS;
  3265. pp_div_reg = PCH_PP_DIVISOR;
  3266. } else {
  3267. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  3268. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  3269. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  3270. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  3271. }
  3272. /*
  3273. * And finally store the new values in the power sequencer. The
  3274. * backlight delays are set to 1 because we do manual waits on them. For
  3275. * T8, even BSpec recommends doing it. For T9, if we don't do this,
  3276. * we'll end up waiting for the backlight off delay twice: once when we
  3277. * do the manual sleep, and once when we disable the panel and wait for
  3278. * the PP_STATUS bit to become zero.
  3279. */
  3280. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  3281. (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
  3282. pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  3283. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  3284. /* Compute the divisor for the pp clock, simply match the Bspec
  3285. * formula. */
  3286. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  3287. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  3288. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  3289. /* Haswell doesn't have any port selection bits for the panel
  3290. * power sequencer any more. */
  3291. if (IS_VALLEYVIEW(dev)) {
  3292. if (dp_to_dig_port(intel_dp)->port == PORT_B)
  3293. port_sel = PANEL_PORT_SELECT_DPB_VLV;
  3294. else
  3295. port_sel = PANEL_PORT_SELECT_DPC_VLV;
  3296. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  3297. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  3298. port_sel = PANEL_PORT_SELECT_DPA;
  3299. else
  3300. port_sel = PANEL_PORT_SELECT_DPD;
  3301. }
  3302. pp_on |= port_sel;
  3303. I915_WRITE(pp_on_reg, pp_on);
  3304. I915_WRITE(pp_off_reg, pp_off);
  3305. I915_WRITE(pp_div_reg, pp_div);
  3306. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  3307. I915_READ(pp_on_reg),
  3308. I915_READ(pp_off_reg),
  3309. I915_READ(pp_div_reg));
  3310. }
  3311. void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
  3312. {
  3313. struct drm_i915_private *dev_priv = dev->dev_private;
  3314. struct intel_encoder *encoder;
  3315. struct intel_dp *intel_dp = NULL;
  3316. struct intel_crtc_config *config = NULL;
  3317. struct intel_crtc *intel_crtc = NULL;
  3318. struct intel_connector *intel_connector = dev_priv->drrs.connector;
  3319. u32 reg, val;
  3320. enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
  3321. if (refresh_rate <= 0) {
  3322. DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
  3323. return;
  3324. }
  3325. if (intel_connector == NULL) {
  3326. DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
  3327. return;
  3328. }
  3329. if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
  3330. DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
  3331. return;
  3332. }
  3333. encoder = intel_attached_encoder(&intel_connector->base);
  3334. intel_dp = enc_to_intel_dp(&encoder->base);
  3335. intel_crtc = encoder->new_crtc;
  3336. if (!intel_crtc) {
  3337. DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
  3338. return;
  3339. }
  3340. config = &intel_crtc->config;
  3341. if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
  3342. DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
  3343. return;
  3344. }
  3345. if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
  3346. index = DRRS_LOW_RR;
  3347. if (index == intel_dp->drrs_state.refresh_rate_type) {
  3348. DRM_DEBUG_KMS(
  3349. "DRRS requested for previously set RR...ignoring\n");
  3350. return;
  3351. }
  3352. if (!intel_crtc->active) {
  3353. DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
  3354. return;
  3355. }
  3356. if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
  3357. reg = PIPECONF(intel_crtc->config.cpu_transcoder);
  3358. val = I915_READ(reg);
  3359. if (index > DRRS_HIGH_RR) {
  3360. val |= PIPECONF_EDP_RR_MODE_SWITCH;
  3361. intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
  3362. } else {
  3363. val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
  3364. }
  3365. I915_WRITE(reg, val);
  3366. }
  3367. /*
  3368. * mutex taken to ensure that there is no race between differnt
  3369. * drrs calls trying to update refresh rate. This scenario may occur
  3370. * in future when idleness detection based DRRS in kernel and
  3371. * possible calls from user space to set differnt RR are made.
  3372. */
  3373. mutex_lock(&intel_dp->drrs_state.mutex);
  3374. intel_dp->drrs_state.refresh_rate_type = index;
  3375. mutex_unlock(&intel_dp->drrs_state.mutex);
  3376. DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
  3377. }
  3378. static struct drm_display_mode *
  3379. intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
  3380. struct intel_connector *intel_connector,
  3381. struct drm_display_mode *fixed_mode)
  3382. {
  3383. struct drm_connector *connector = &intel_connector->base;
  3384. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3385. struct drm_device *dev = intel_dig_port->base.base.dev;
  3386. struct drm_i915_private *dev_priv = dev->dev_private;
  3387. struct drm_display_mode *downclock_mode = NULL;
  3388. if (INTEL_INFO(dev)->gen <= 6) {
  3389. DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
  3390. return NULL;
  3391. }
  3392. if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
  3393. DRM_INFO("VBT doesn't support DRRS\n");
  3394. return NULL;
  3395. }
  3396. downclock_mode = intel_find_panel_downclock
  3397. (dev, fixed_mode, connector);
  3398. if (!downclock_mode) {
  3399. DRM_INFO("DRRS not supported\n");
  3400. return NULL;
  3401. }
  3402. dev_priv->drrs.connector = intel_connector;
  3403. mutex_init(&intel_dp->drrs_state.mutex);
  3404. intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
  3405. intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
  3406. DRM_INFO("seamless DRRS supported for eDP panel.\n");
  3407. return downclock_mode;
  3408. }
  3409. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  3410. struct intel_connector *intel_connector,
  3411. struct edp_power_seq *power_seq)
  3412. {
  3413. struct drm_connector *connector = &intel_connector->base;
  3414. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  3415. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3416. struct drm_device *dev = intel_encoder->base.dev;
  3417. struct drm_i915_private *dev_priv = dev->dev_private;
  3418. struct drm_display_mode *fixed_mode = NULL;
  3419. struct drm_display_mode *downclock_mode = NULL;
  3420. bool has_dpcd;
  3421. struct drm_display_mode *scan;
  3422. struct edid *edid;
  3423. intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
  3424. if (!is_edp(intel_dp))
  3425. return true;
  3426. /* The VDD bit needs a power domain reference, so if the bit is already
  3427. * enabled when we boot, grab this reference. */
  3428. if (edp_have_panel_vdd(intel_dp)) {
  3429. enum intel_display_power_domain power_domain;
  3430. power_domain = intel_display_port_power_domain(intel_encoder);
  3431. intel_display_power_get(dev_priv, power_domain);
  3432. }
  3433. /* Cache DPCD and EDID for edp. */
  3434. intel_edp_panel_vdd_on(intel_dp);
  3435. has_dpcd = intel_dp_get_dpcd(intel_dp);
  3436. edp_panel_vdd_off(intel_dp, false);
  3437. if (has_dpcd) {
  3438. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  3439. dev_priv->no_aux_handshake =
  3440. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  3441. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  3442. } else {
  3443. /* if this fails, presume the device is a ghost */
  3444. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  3445. return false;
  3446. }
  3447. /* We now know it's not a ghost, init power sequence regs. */
  3448. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
  3449. mutex_lock(&dev->mode_config.mutex);
  3450. edid = drm_get_edid(connector, &intel_dp->aux.ddc);
  3451. if (edid) {
  3452. if (drm_add_edid_modes(connector, edid)) {
  3453. drm_mode_connector_update_edid_property(connector,
  3454. edid);
  3455. drm_edid_to_eld(connector, edid);
  3456. } else {
  3457. kfree(edid);
  3458. edid = ERR_PTR(-EINVAL);
  3459. }
  3460. } else {
  3461. edid = ERR_PTR(-ENOENT);
  3462. }
  3463. intel_connector->edid = edid;
  3464. /* prefer fixed mode from EDID if available */
  3465. list_for_each_entry(scan, &connector->probed_modes, head) {
  3466. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  3467. fixed_mode = drm_mode_duplicate(dev, scan);
  3468. downclock_mode = intel_dp_drrs_init(
  3469. intel_dig_port,
  3470. intel_connector, fixed_mode);
  3471. break;
  3472. }
  3473. }
  3474. /* fallback to VBT if available for eDP */
  3475. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  3476. fixed_mode = drm_mode_duplicate(dev,
  3477. dev_priv->vbt.lfp_lvds_vbt_mode);
  3478. if (fixed_mode)
  3479. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  3480. }
  3481. mutex_unlock(&dev->mode_config.mutex);
  3482. intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
  3483. intel_panel_setup_backlight(connector);
  3484. return true;
  3485. }
  3486. bool
  3487. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  3488. struct intel_connector *intel_connector)
  3489. {
  3490. struct drm_connector *connector = &intel_connector->base;
  3491. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3492. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3493. struct drm_device *dev = intel_encoder->base.dev;
  3494. struct drm_i915_private *dev_priv = dev->dev_private;
  3495. enum port port = intel_dig_port->port;
  3496. struct edp_power_seq power_seq = { 0 };
  3497. int type;
  3498. /* intel_dp vfuncs */
  3499. if (IS_VALLEYVIEW(dev))
  3500. intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
  3501. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3502. intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
  3503. else if (HAS_PCH_SPLIT(dev))
  3504. intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
  3505. else
  3506. intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
  3507. intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
  3508. /* Preserve the current hw state. */
  3509. intel_dp->DP = I915_READ(intel_dp->output_reg);
  3510. intel_dp->attached_connector = intel_connector;
  3511. if (intel_dp_is_edp(dev, port))
  3512. type = DRM_MODE_CONNECTOR_eDP;
  3513. else
  3514. type = DRM_MODE_CONNECTOR_DisplayPort;
  3515. /*
  3516. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  3517. * for DP the encoder type can be set by the caller to
  3518. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  3519. */
  3520. if (type == DRM_MODE_CONNECTOR_eDP)
  3521. intel_encoder->type = INTEL_OUTPUT_EDP;
  3522. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  3523. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  3524. port_name(port));
  3525. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  3526. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  3527. connector->interlace_allowed = true;
  3528. connector->doublescan_allowed = 0;
  3529. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  3530. edp_panel_vdd_work);
  3531. intel_connector_attach_encoder(intel_connector, intel_encoder);
  3532. drm_sysfs_connector_add(connector);
  3533. if (HAS_DDI(dev))
  3534. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  3535. else
  3536. intel_connector->get_hw_state = intel_connector_get_hw_state;
  3537. intel_connector->unregister = intel_dp_connector_unregister;
  3538. /* Set up the hotplug pin. */
  3539. switch (port) {
  3540. case PORT_A:
  3541. intel_encoder->hpd_pin = HPD_PORT_A;
  3542. break;
  3543. case PORT_B:
  3544. intel_encoder->hpd_pin = HPD_PORT_B;
  3545. break;
  3546. case PORT_C:
  3547. intel_encoder->hpd_pin = HPD_PORT_C;
  3548. break;
  3549. case PORT_D:
  3550. intel_encoder->hpd_pin = HPD_PORT_D;
  3551. break;
  3552. default:
  3553. BUG();
  3554. }
  3555. if (is_edp(intel_dp)) {
  3556. intel_dp_init_panel_power_timestamps(intel_dp);
  3557. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  3558. }
  3559. intel_dp_aux_init(intel_dp, intel_connector);
  3560. intel_dp->psr_setup_done = false;
  3561. if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
  3562. drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
  3563. if (is_edp(intel_dp)) {
  3564. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3565. mutex_lock(&dev->mode_config.mutex);
  3566. edp_panel_vdd_off_sync(intel_dp);
  3567. mutex_unlock(&dev->mode_config.mutex);
  3568. }
  3569. drm_sysfs_connector_remove(connector);
  3570. drm_connector_cleanup(connector);
  3571. return false;
  3572. }
  3573. intel_dp_add_properties(intel_dp, connector);
  3574. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  3575. * 0xd. Failure to do so will result in spurious interrupts being
  3576. * generated on the port when a cable is not attached.
  3577. */
  3578. if (IS_G4X(dev) && !IS_GM45(dev)) {
  3579. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  3580. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  3581. }
  3582. return true;
  3583. }
  3584. void
  3585. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  3586. {
  3587. struct intel_digital_port *intel_dig_port;
  3588. struct intel_encoder *intel_encoder;
  3589. struct drm_encoder *encoder;
  3590. struct intel_connector *intel_connector;
  3591. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3592. if (!intel_dig_port)
  3593. return;
  3594. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  3595. if (!intel_connector) {
  3596. kfree(intel_dig_port);
  3597. return;
  3598. }
  3599. intel_encoder = &intel_dig_port->base;
  3600. encoder = &intel_encoder->base;
  3601. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3602. DRM_MODE_ENCODER_TMDS);
  3603. intel_encoder->compute_config = intel_dp_compute_config;
  3604. intel_encoder->disable = intel_disable_dp;
  3605. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3606. intel_encoder->get_config = intel_dp_get_config;
  3607. if (IS_CHERRYVIEW(dev)) {
  3608. intel_encoder->pre_enable = chv_pre_enable_dp;
  3609. intel_encoder->enable = vlv_enable_dp;
  3610. intel_encoder->post_disable = chv_post_disable_dp;
  3611. } else if (IS_VALLEYVIEW(dev)) {
  3612. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3613. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3614. intel_encoder->enable = vlv_enable_dp;
  3615. intel_encoder->post_disable = vlv_post_disable_dp;
  3616. } else {
  3617. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3618. intel_encoder->enable = g4x_enable_dp;
  3619. intel_encoder->post_disable = g4x_post_disable_dp;
  3620. }
  3621. intel_dig_port->port = port;
  3622. intel_dig_port->dp.output_reg = output_reg;
  3623. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3624. if (IS_CHERRYVIEW(dev)) {
  3625. if (port == PORT_D)
  3626. intel_encoder->crtc_mask = 1 << 2;
  3627. else
  3628. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  3629. } else {
  3630. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3631. }
  3632. intel_encoder->cloneable = 0;
  3633. intel_encoder->hot_plug = intel_dp_hot_plug;
  3634. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3635. drm_encoder_cleanup(encoder);
  3636. kfree(intel_dig_port);
  3637. kfree(intel_connector);
  3638. }
  3639. }