i915_debugfs.c 150 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static char get_active_flag(struct drm_i915_gem_object *obj)
  82. {
  83. return i915_gem_object_is_active(obj) ? '*' : ' ';
  84. }
  85. static char get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. return obj->pin_display ? 'p' : ' ';
  88. }
  89. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  90. {
  91. switch (i915_gem_object_get_tiling(obj)) {
  92. default:
  93. case I915_TILING_NONE: return ' ';
  94. case I915_TILING_X: return 'X';
  95. case I915_TILING_Y: return 'Y';
  96. }
  97. }
  98. static char get_global_flag(struct drm_i915_gem_object *obj)
  99. {
  100. return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
  101. }
  102. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  103. {
  104. return obj->mapping ? 'M' : ' ';
  105. }
  106. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  107. {
  108. u64 size = 0;
  109. struct i915_vma *vma;
  110. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  111. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  112. size += vma->node.size;
  113. }
  114. return size;
  115. }
  116. static void
  117. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  118. {
  119. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  120. struct intel_engine_cs *engine;
  121. struct i915_vma *vma;
  122. unsigned int frontbuffer_bits;
  123. int pin_count = 0;
  124. enum intel_engine_id id;
  125. lockdep_assert_held(&obj->base.dev->struct_mutex);
  126. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
  127. &obj->base,
  128. get_active_flag(obj),
  129. get_pin_flag(obj),
  130. get_tiling_flag(obj),
  131. get_global_flag(obj),
  132. get_pin_mapped_flag(obj),
  133. obj->base.size / 1024,
  134. obj->base.read_domains,
  135. obj->base.write_domain);
  136. for_each_engine_id(engine, dev_priv, id)
  137. seq_printf(m, "%x ",
  138. i915_gem_active_get_seqno(&obj->last_read[id],
  139. &obj->base.dev->struct_mutex));
  140. seq_printf(m, "] %x %x%s%s%s",
  141. i915_gem_active_get_seqno(&obj->last_write,
  142. &obj->base.dev->struct_mutex),
  143. i915_gem_active_get_seqno(&obj->last_fence,
  144. &obj->base.dev->struct_mutex),
  145. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  146. obj->dirty ? " dirty" : "",
  147. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  148. if (obj->base.name)
  149. seq_printf(m, " (name: %d)", obj->base.name);
  150. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  151. if (i915_vma_is_pinned(vma))
  152. pin_count++;
  153. }
  154. seq_printf(m, " (pinned x %d)", pin_count);
  155. if (obj->pin_display)
  156. seq_printf(m, " (display)");
  157. if (obj->fence_reg != I915_FENCE_REG_NONE)
  158. seq_printf(m, " (fence: %d)", obj->fence_reg);
  159. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  160. if (!drm_mm_node_allocated(&vma->node))
  161. continue;
  162. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  163. i915_vma_is_ggtt(vma) ? "g" : "pp",
  164. vma->node.start, vma->node.size);
  165. if (i915_vma_is_ggtt(vma))
  166. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  167. seq_puts(m, ")");
  168. }
  169. if (obj->stolen)
  170. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  171. if (obj->pin_display || obj->fault_mappable) {
  172. char s[3], *t = s;
  173. if (obj->pin_display)
  174. *t++ = 'p';
  175. if (obj->fault_mappable)
  176. *t++ = 'f';
  177. *t = '\0';
  178. seq_printf(m, " (%s mappable)", s);
  179. }
  180. engine = i915_gem_active_get_engine(&obj->last_write,
  181. &obj->base.dev->struct_mutex);
  182. if (engine)
  183. seq_printf(m, " (%s)", engine->name);
  184. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  185. if (frontbuffer_bits)
  186. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  187. }
  188. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  189. {
  190. struct drm_info_node *node = m->private;
  191. uintptr_t list = (uintptr_t) node->info_ent->data;
  192. struct list_head *head;
  193. struct drm_device *dev = node->minor->dev;
  194. struct drm_i915_private *dev_priv = to_i915(dev);
  195. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  196. struct i915_vma *vma;
  197. u64 total_obj_size, total_gtt_size;
  198. int count, ret;
  199. ret = mutex_lock_interruptible(&dev->struct_mutex);
  200. if (ret)
  201. return ret;
  202. /* FIXME: the user of this interface might want more than just GGTT */
  203. switch (list) {
  204. case ACTIVE_LIST:
  205. seq_puts(m, "Active:\n");
  206. head = &ggtt->base.active_list;
  207. break;
  208. case INACTIVE_LIST:
  209. seq_puts(m, "Inactive:\n");
  210. head = &ggtt->base.inactive_list;
  211. break;
  212. default:
  213. mutex_unlock(&dev->struct_mutex);
  214. return -EINVAL;
  215. }
  216. total_obj_size = total_gtt_size = count = 0;
  217. list_for_each_entry(vma, head, vm_link) {
  218. seq_printf(m, " ");
  219. describe_obj(m, vma->obj);
  220. seq_printf(m, "\n");
  221. total_obj_size += vma->obj->base.size;
  222. total_gtt_size += vma->node.size;
  223. count++;
  224. }
  225. mutex_unlock(&dev->struct_mutex);
  226. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  227. count, total_obj_size, total_gtt_size);
  228. return 0;
  229. }
  230. static int obj_rank_by_stolen(void *priv,
  231. struct list_head *A, struct list_head *B)
  232. {
  233. struct drm_i915_gem_object *a =
  234. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  235. struct drm_i915_gem_object *b =
  236. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  237. if (a->stolen->start < b->stolen->start)
  238. return -1;
  239. if (a->stolen->start > b->stolen->start)
  240. return 1;
  241. return 0;
  242. }
  243. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  244. {
  245. struct drm_info_node *node = m->private;
  246. struct drm_device *dev = node->minor->dev;
  247. struct drm_i915_private *dev_priv = to_i915(dev);
  248. struct drm_i915_gem_object *obj;
  249. u64 total_obj_size, total_gtt_size;
  250. LIST_HEAD(stolen);
  251. int count, ret;
  252. ret = mutex_lock_interruptible(&dev->struct_mutex);
  253. if (ret)
  254. return ret;
  255. total_obj_size = total_gtt_size = count = 0;
  256. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  257. if (obj->stolen == NULL)
  258. continue;
  259. list_add(&obj->obj_exec_link, &stolen);
  260. total_obj_size += obj->base.size;
  261. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  262. count++;
  263. }
  264. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  265. if (obj->stolen == NULL)
  266. continue;
  267. list_add(&obj->obj_exec_link, &stolen);
  268. total_obj_size += obj->base.size;
  269. count++;
  270. }
  271. list_sort(NULL, &stolen, obj_rank_by_stolen);
  272. seq_puts(m, "Stolen:\n");
  273. while (!list_empty(&stolen)) {
  274. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  275. seq_puts(m, " ");
  276. describe_obj(m, obj);
  277. seq_putc(m, '\n');
  278. list_del_init(&obj->obj_exec_link);
  279. }
  280. mutex_unlock(&dev->struct_mutex);
  281. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  282. count, total_obj_size, total_gtt_size);
  283. return 0;
  284. }
  285. #define count_objects(list, member) do { \
  286. list_for_each_entry(obj, list, member) { \
  287. size += i915_gem_obj_total_ggtt_size(obj); \
  288. ++count; \
  289. if (obj->map_and_fenceable) { \
  290. mappable_size += i915_gem_obj_ggtt_size(obj); \
  291. ++mappable_count; \
  292. } \
  293. } \
  294. } while (0)
  295. struct file_stats {
  296. struct drm_i915_file_private *file_priv;
  297. unsigned long count;
  298. u64 total, unbound;
  299. u64 global, shared;
  300. u64 active, inactive;
  301. };
  302. static int per_file_stats(int id, void *ptr, void *data)
  303. {
  304. struct drm_i915_gem_object *obj = ptr;
  305. struct file_stats *stats = data;
  306. struct i915_vma *vma;
  307. stats->count++;
  308. stats->total += obj->base.size;
  309. if (!obj->bind_count)
  310. stats->unbound += obj->base.size;
  311. if (obj->base.name || obj->base.dma_buf)
  312. stats->shared += obj->base.size;
  313. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  314. if (!drm_mm_node_allocated(&vma->node))
  315. continue;
  316. if (i915_vma_is_ggtt(vma)) {
  317. stats->global += vma->node.size;
  318. } else {
  319. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  320. if (ppgtt->base.file != stats->file_priv)
  321. continue;
  322. }
  323. if (i915_vma_is_active(vma))
  324. stats->active += vma->node.size;
  325. else
  326. stats->inactive += vma->node.size;
  327. }
  328. return 0;
  329. }
  330. #define print_file_stats(m, name, stats) do { \
  331. if (stats.count) \
  332. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  333. name, \
  334. stats.count, \
  335. stats.total, \
  336. stats.active, \
  337. stats.inactive, \
  338. stats.global, \
  339. stats.shared, \
  340. stats.unbound); \
  341. } while (0)
  342. static void print_batch_pool_stats(struct seq_file *m,
  343. struct drm_i915_private *dev_priv)
  344. {
  345. struct drm_i915_gem_object *obj;
  346. struct file_stats stats;
  347. struct intel_engine_cs *engine;
  348. int j;
  349. memset(&stats, 0, sizeof(stats));
  350. for_each_engine(engine, dev_priv) {
  351. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  352. list_for_each_entry(obj,
  353. &engine->batch_pool.cache_list[j],
  354. batch_pool_link)
  355. per_file_stats(0, obj, &stats);
  356. }
  357. }
  358. print_file_stats(m, "[k]batch pool", stats);
  359. }
  360. static int per_file_ctx_stats(int id, void *ptr, void *data)
  361. {
  362. struct i915_gem_context *ctx = ptr;
  363. int n;
  364. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  365. if (ctx->engine[n].state)
  366. per_file_stats(0, ctx->engine[n].state, data);
  367. if (ctx->engine[n].ring)
  368. per_file_stats(0, ctx->engine[n].ring->obj, data);
  369. }
  370. return 0;
  371. }
  372. static void print_context_stats(struct seq_file *m,
  373. struct drm_i915_private *dev_priv)
  374. {
  375. struct file_stats stats;
  376. struct drm_file *file;
  377. memset(&stats, 0, sizeof(stats));
  378. mutex_lock(&dev_priv->drm.struct_mutex);
  379. if (dev_priv->kernel_context)
  380. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  381. list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
  382. struct drm_i915_file_private *fpriv = file->driver_priv;
  383. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  384. }
  385. mutex_unlock(&dev_priv->drm.struct_mutex);
  386. print_file_stats(m, "[k]contexts", stats);
  387. }
  388. #define count_vmas(list, member) do { \
  389. list_for_each_entry(vma, list, member) { \
  390. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  391. ++count; \
  392. if (vma->obj->map_and_fenceable) { \
  393. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  394. ++mappable_count; \
  395. } \
  396. } \
  397. } while (0)
  398. static int i915_gem_object_info(struct seq_file *m, void* data)
  399. {
  400. struct drm_info_node *node = m->private;
  401. struct drm_device *dev = node->minor->dev;
  402. struct drm_i915_private *dev_priv = to_i915(dev);
  403. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  404. u32 count, mappable_count, purgeable_count;
  405. u64 size, mappable_size, purgeable_size;
  406. unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
  407. u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
  408. struct drm_i915_gem_object *obj;
  409. struct drm_file *file;
  410. struct i915_vma *vma;
  411. int ret;
  412. ret = mutex_lock_interruptible(&dev->struct_mutex);
  413. if (ret)
  414. return ret;
  415. seq_printf(m, "%u objects, %zu bytes\n",
  416. dev_priv->mm.object_count,
  417. dev_priv->mm.object_memory);
  418. size = count = mappable_size = mappable_count = 0;
  419. count_objects(&dev_priv->mm.bound_list, global_list);
  420. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  421. count, mappable_count, size, mappable_size);
  422. size = count = mappable_size = mappable_count = 0;
  423. count_vmas(&ggtt->base.active_list, vm_link);
  424. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  425. count, mappable_count, size, mappable_size);
  426. size = count = mappable_size = mappable_count = 0;
  427. count_vmas(&ggtt->base.inactive_list, vm_link);
  428. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  429. count, mappable_count, size, mappable_size);
  430. size = count = purgeable_size = purgeable_count = 0;
  431. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  432. size += obj->base.size, ++count;
  433. if (obj->madv == I915_MADV_DONTNEED)
  434. purgeable_size += obj->base.size, ++purgeable_count;
  435. if (obj->mapping) {
  436. pin_mapped_count++;
  437. pin_mapped_size += obj->base.size;
  438. if (obj->pages_pin_count == 0) {
  439. pin_mapped_purgeable_count++;
  440. pin_mapped_purgeable_size += obj->base.size;
  441. }
  442. }
  443. }
  444. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  445. size = count = mappable_size = mappable_count = 0;
  446. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  447. if (obj->fault_mappable) {
  448. size += i915_gem_obj_ggtt_size(obj);
  449. ++count;
  450. }
  451. if (obj->pin_display) {
  452. mappable_size += i915_gem_obj_ggtt_size(obj);
  453. ++mappable_count;
  454. }
  455. if (obj->madv == I915_MADV_DONTNEED) {
  456. purgeable_size += obj->base.size;
  457. ++purgeable_count;
  458. }
  459. if (obj->mapping) {
  460. pin_mapped_count++;
  461. pin_mapped_size += obj->base.size;
  462. if (obj->pages_pin_count == 0) {
  463. pin_mapped_purgeable_count++;
  464. pin_mapped_purgeable_size += obj->base.size;
  465. }
  466. }
  467. }
  468. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  469. purgeable_count, purgeable_size);
  470. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  471. mappable_count, mappable_size);
  472. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  473. count, size);
  474. seq_printf(m,
  475. "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
  476. pin_mapped_count, pin_mapped_purgeable_count,
  477. pin_mapped_size, pin_mapped_purgeable_size);
  478. seq_printf(m, "%llu [%llu] gtt total\n",
  479. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  480. seq_putc(m, '\n');
  481. print_batch_pool_stats(m, dev_priv);
  482. mutex_unlock(&dev->struct_mutex);
  483. mutex_lock(&dev->filelist_mutex);
  484. print_context_stats(m, dev_priv);
  485. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  486. struct file_stats stats;
  487. struct task_struct *task;
  488. memset(&stats, 0, sizeof(stats));
  489. stats.file_priv = file->driver_priv;
  490. spin_lock(&file->table_lock);
  491. idr_for_each(&file->object_idr, per_file_stats, &stats);
  492. spin_unlock(&file->table_lock);
  493. /*
  494. * Although we have a valid reference on file->pid, that does
  495. * not guarantee that the task_struct who called get_pid() is
  496. * still alive (e.g. get_pid(current) => fork() => exit()).
  497. * Therefore, we need to protect this ->comm access using RCU.
  498. */
  499. rcu_read_lock();
  500. task = pid_task(file->pid, PIDTYPE_PID);
  501. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  502. rcu_read_unlock();
  503. }
  504. mutex_unlock(&dev->filelist_mutex);
  505. return 0;
  506. }
  507. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  508. {
  509. struct drm_info_node *node = m->private;
  510. struct drm_device *dev = node->minor->dev;
  511. uintptr_t list = (uintptr_t) node->info_ent->data;
  512. struct drm_i915_private *dev_priv = to_i915(dev);
  513. struct drm_i915_gem_object *obj;
  514. u64 total_obj_size, total_gtt_size;
  515. int count, ret;
  516. ret = mutex_lock_interruptible(&dev->struct_mutex);
  517. if (ret)
  518. return ret;
  519. total_obj_size = total_gtt_size = count = 0;
  520. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  521. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  522. continue;
  523. seq_puts(m, " ");
  524. describe_obj(m, obj);
  525. seq_putc(m, '\n');
  526. total_obj_size += obj->base.size;
  527. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  528. count++;
  529. }
  530. mutex_unlock(&dev->struct_mutex);
  531. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  532. count, total_obj_size, total_gtt_size);
  533. return 0;
  534. }
  535. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  536. {
  537. struct drm_info_node *node = m->private;
  538. struct drm_device *dev = node->minor->dev;
  539. struct drm_i915_private *dev_priv = to_i915(dev);
  540. struct intel_crtc *crtc;
  541. int ret;
  542. ret = mutex_lock_interruptible(&dev->struct_mutex);
  543. if (ret)
  544. return ret;
  545. for_each_intel_crtc(dev, crtc) {
  546. const char pipe = pipe_name(crtc->pipe);
  547. const char plane = plane_name(crtc->plane);
  548. struct intel_flip_work *work;
  549. spin_lock_irq(&dev->event_lock);
  550. work = crtc->flip_work;
  551. if (work == NULL) {
  552. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  553. pipe, plane);
  554. } else {
  555. u32 pending;
  556. u32 addr;
  557. pending = atomic_read(&work->pending);
  558. if (pending) {
  559. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  560. pipe, plane);
  561. } else {
  562. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  563. pipe, plane);
  564. }
  565. if (work->flip_queued_req) {
  566. struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
  567. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  568. engine->name,
  569. i915_gem_request_get_seqno(work->flip_queued_req),
  570. dev_priv->next_seqno,
  571. intel_engine_get_seqno(engine),
  572. i915_gem_request_completed(work->flip_queued_req));
  573. } else
  574. seq_printf(m, "Flip not associated with any ring\n");
  575. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  576. work->flip_queued_vblank,
  577. work->flip_ready_vblank,
  578. intel_crtc_get_vblank_counter(crtc));
  579. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  580. if (INTEL_INFO(dev)->gen >= 4)
  581. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  582. else
  583. addr = I915_READ(DSPADDR(crtc->plane));
  584. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  585. if (work->pending_flip_obj) {
  586. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  587. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  588. }
  589. }
  590. spin_unlock_irq(&dev->event_lock);
  591. }
  592. mutex_unlock(&dev->struct_mutex);
  593. return 0;
  594. }
  595. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  596. {
  597. struct drm_info_node *node = m->private;
  598. struct drm_device *dev = node->minor->dev;
  599. struct drm_i915_private *dev_priv = to_i915(dev);
  600. struct drm_i915_gem_object *obj;
  601. struct intel_engine_cs *engine;
  602. int total = 0;
  603. int ret, j;
  604. ret = mutex_lock_interruptible(&dev->struct_mutex);
  605. if (ret)
  606. return ret;
  607. for_each_engine(engine, dev_priv) {
  608. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  609. int count;
  610. count = 0;
  611. list_for_each_entry(obj,
  612. &engine->batch_pool.cache_list[j],
  613. batch_pool_link)
  614. count++;
  615. seq_printf(m, "%s cache[%d]: %d objects\n",
  616. engine->name, j, count);
  617. list_for_each_entry(obj,
  618. &engine->batch_pool.cache_list[j],
  619. batch_pool_link) {
  620. seq_puts(m, " ");
  621. describe_obj(m, obj);
  622. seq_putc(m, '\n');
  623. }
  624. total += count;
  625. }
  626. }
  627. seq_printf(m, "total: %d\n", total);
  628. mutex_unlock(&dev->struct_mutex);
  629. return 0;
  630. }
  631. static int i915_gem_request_info(struct seq_file *m, void *data)
  632. {
  633. struct drm_info_node *node = m->private;
  634. struct drm_device *dev = node->minor->dev;
  635. struct drm_i915_private *dev_priv = to_i915(dev);
  636. struct intel_engine_cs *engine;
  637. struct drm_i915_gem_request *req;
  638. int ret, any;
  639. ret = mutex_lock_interruptible(&dev->struct_mutex);
  640. if (ret)
  641. return ret;
  642. any = 0;
  643. for_each_engine(engine, dev_priv) {
  644. int count;
  645. count = 0;
  646. list_for_each_entry(req, &engine->request_list, link)
  647. count++;
  648. if (count == 0)
  649. continue;
  650. seq_printf(m, "%s requests: %d\n", engine->name, count);
  651. list_for_each_entry(req, &engine->request_list, link) {
  652. struct task_struct *task;
  653. rcu_read_lock();
  654. task = NULL;
  655. if (req->pid)
  656. task = pid_task(req->pid, PIDTYPE_PID);
  657. seq_printf(m, " %x @ %d: %s [%d]\n",
  658. req->fence.seqno,
  659. (int) (jiffies - req->emitted_jiffies),
  660. task ? task->comm : "<unknown>",
  661. task ? task->pid : -1);
  662. rcu_read_unlock();
  663. }
  664. any++;
  665. }
  666. mutex_unlock(&dev->struct_mutex);
  667. if (any == 0)
  668. seq_puts(m, "No requests\n");
  669. return 0;
  670. }
  671. static void i915_ring_seqno_info(struct seq_file *m,
  672. struct intel_engine_cs *engine)
  673. {
  674. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  675. struct rb_node *rb;
  676. seq_printf(m, "Current sequence (%s): %x\n",
  677. engine->name, intel_engine_get_seqno(engine));
  678. spin_lock(&b->lock);
  679. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  680. struct intel_wait *w = container_of(rb, typeof(*w), node);
  681. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  682. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  683. }
  684. spin_unlock(&b->lock);
  685. }
  686. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  687. {
  688. struct drm_info_node *node = m->private;
  689. struct drm_device *dev = node->minor->dev;
  690. struct drm_i915_private *dev_priv = to_i915(dev);
  691. struct intel_engine_cs *engine;
  692. int ret;
  693. ret = mutex_lock_interruptible(&dev->struct_mutex);
  694. if (ret)
  695. return ret;
  696. intel_runtime_pm_get(dev_priv);
  697. for_each_engine(engine, dev_priv)
  698. i915_ring_seqno_info(m, engine);
  699. intel_runtime_pm_put(dev_priv);
  700. mutex_unlock(&dev->struct_mutex);
  701. return 0;
  702. }
  703. static int i915_interrupt_info(struct seq_file *m, void *data)
  704. {
  705. struct drm_info_node *node = m->private;
  706. struct drm_device *dev = node->minor->dev;
  707. struct drm_i915_private *dev_priv = to_i915(dev);
  708. struct intel_engine_cs *engine;
  709. int ret, i, pipe;
  710. ret = mutex_lock_interruptible(&dev->struct_mutex);
  711. if (ret)
  712. return ret;
  713. intel_runtime_pm_get(dev_priv);
  714. if (IS_CHERRYVIEW(dev)) {
  715. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  716. I915_READ(GEN8_MASTER_IRQ));
  717. seq_printf(m, "Display IER:\t%08x\n",
  718. I915_READ(VLV_IER));
  719. seq_printf(m, "Display IIR:\t%08x\n",
  720. I915_READ(VLV_IIR));
  721. seq_printf(m, "Display IIR_RW:\t%08x\n",
  722. I915_READ(VLV_IIR_RW));
  723. seq_printf(m, "Display IMR:\t%08x\n",
  724. I915_READ(VLV_IMR));
  725. for_each_pipe(dev_priv, pipe)
  726. seq_printf(m, "Pipe %c stat:\t%08x\n",
  727. pipe_name(pipe),
  728. I915_READ(PIPESTAT(pipe)));
  729. seq_printf(m, "Port hotplug:\t%08x\n",
  730. I915_READ(PORT_HOTPLUG_EN));
  731. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  732. I915_READ(VLV_DPFLIPSTAT));
  733. seq_printf(m, "DPINVGTT:\t%08x\n",
  734. I915_READ(DPINVGTT));
  735. for (i = 0; i < 4; i++) {
  736. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  737. i, I915_READ(GEN8_GT_IMR(i)));
  738. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  739. i, I915_READ(GEN8_GT_IIR(i)));
  740. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  741. i, I915_READ(GEN8_GT_IER(i)));
  742. }
  743. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  744. I915_READ(GEN8_PCU_IMR));
  745. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  746. I915_READ(GEN8_PCU_IIR));
  747. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  748. I915_READ(GEN8_PCU_IER));
  749. } else if (INTEL_INFO(dev)->gen >= 8) {
  750. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  751. I915_READ(GEN8_MASTER_IRQ));
  752. for (i = 0; i < 4; i++) {
  753. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  754. i, I915_READ(GEN8_GT_IMR(i)));
  755. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  756. i, I915_READ(GEN8_GT_IIR(i)));
  757. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  758. i, I915_READ(GEN8_GT_IER(i)));
  759. }
  760. for_each_pipe(dev_priv, pipe) {
  761. enum intel_display_power_domain power_domain;
  762. power_domain = POWER_DOMAIN_PIPE(pipe);
  763. if (!intel_display_power_get_if_enabled(dev_priv,
  764. power_domain)) {
  765. seq_printf(m, "Pipe %c power disabled\n",
  766. pipe_name(pipe));
  767. continue;
  768. }
  769. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  770. pipe_name(pipe),
  771. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  772. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  773. pipe_name(pipe),
  774. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  775. seq_printf(m, "Pipe %c IER:\t%08x\n",
  776. pipe_name(pipe),
  777. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  778. intel_display_power_put(dev_priv, power_domain);
  779. }
  780. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  781. I915_READ(GEN8_DE_PORT_IMR));
  782. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  783. I915_READ(GEN8_DE_PORT_IIR));
  784. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  785. I915_READ(GEN8_DE_PORT_IER));
  786. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  787. I915_READ(GEN8_DE_MISC_IMR));
  788. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  789. I915_READ(GEN8_DE_MISC_IIR));
  790. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  791. I915_READ(GEN8_DE_MISC_IER));
  792. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  793. I915_READ(GEN8_PCU_IMR));
  794. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  795. I915_READ(GEN8_PCU_IIR));
  796. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  797. I915_READ(GEN8_PCU_IER));
  798. } else if (IS_VALLEYVIEW(dev)) {
  799. seq_printf(m, "Display IER:\t%08x\n",
  800. I915_READ(VLV_IER));
  801. seq_printf(m, "Display IIR:\t%08x\n",
  802. I915_READ(VLV_IIR));
  803. seq_printf(m, "Display IIR_RW:\t%08x\n",
  804. I915_READ(VLV_IIR_RW));
  805. seq_printf(m, "Display IMR:\t%08x\n",
  806. I915_READ(VLV_IMR));
  807. for_each_pipe(dev_priv, pipe)
  808. seq_printf(m, "Pipe %c stat:\t%08x\n",
  809. pipe_name(pipe),
  810. I915_READ(PIPESTAT(pipe)));
  811. seq_printf(m, "Master IER:\t%08x\n",
  812. I915_READ(VLV_MASTER_IER));
  813. seq_printf(m, "Render IER:\t%08x\n",
  814. I915_READ(GTIER));
  815. seq_printf(m, "Render IIR:\t%08x\n",
  816. I915_READ(GTIIR));
  817. seq_printf(m, "Render IMR:\t%08x\n",
  818. I915_READ(GTIMR));
  819. seq_printf(m, "PM IER:\t\t%08x\n",
  820. I915_READ(GEN6_PMIER));
  821. seq_printf(m, "PM IIR:\t\t%08x\n",
  822. I915_READ(GEN6_PMIIR));
  823. seq_printf(m, "PM IMR:\t\t%08x\n",
  824. I915_READ(GEN6_PMIMR));
  825. seq_printf(m, "Port hotplug:\t%08x\n",
  826. I915_READ(PORT_HOTPLUG_EN));
  827. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  828. I915_READ(VLV_DPFLIPSTAT));
  829. seq_printf(m, "DPINVGTT:\t%08x\n",
  830. I915_READ(DPINVGTT));
  831. } else if (!HAS_PCH_SPLIT(dev)) {
  832. seq_printf(m, "Interrupt enable: %08x\n",
  833. I915_READ(IER));
  834. seq_printf(m, "Interrupt identity: %08x\n",
  835. I915_READ(IIR));
  836. seq_printf(m, "Interrupt mask: %08x\n",
  837. I915_READ(IMR));
  838. for_each_pipe(dev_priv, pipe)
  839. seq_printf(m, "Pipe %c stat: %08x\n",
  840. pipe_name(pipe),
  841. I915_READ(PIPESTAT(pipe)));
  842. } else {
  843. seq_printf(m, "North Display Interrupt enable: %08x\n",
  844. I915_READ(DEIER));
  845. seq_printf(m, "North Display Interrupt identity: %08x\n",
  846. I915_READ(DEIIR));
  847. seq_printf(m, "North Display Interrupt mask: %08x\n",
  848. I915_READ(DEIMR));
  849. seq_printf(m, "South Display Interrupt enable: %08x\n",
  850. I915_READ(SDEIER));
  851. seq_printf(m, "South Display Interrupt identity: %08x\n",
  852. I915_READ(SDEIIR));
  853. seq_printf(m, "South Display Interrupt mask: %08x\n",
  854. I915_READ(SDEIMR));
  855. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  856. I915_READ(GTIER));
  857. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  858. I915_READ(GTIIR));
  859. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  860. I915_READ(GTIMR));
  861. }
  862. for_each_engine(engine, dev_priv) {
  863. if (INTEL_INFO(dev)->gen >= 6) {
  864. seq_printf(m,
  865. "Graphics Interrupt mask (%s): %08x\n",
  866. engine->name, I915_READ_IMR(engine));
  867. }
  868. i915_ring_seqno_info(m, engine);
  869. }
  870. intel_runtime_pm_put(dev_priv);
  871. mutex_unlock(&dev->struct_mutex);
  872. return 0;
  873. }
  874. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  875. {
  876. struct drm_info_node *node = m->private;
  877. struct drm_device *dev = node->minor->dev;
  878. struct drm_i915_private *dev_priv = to_i915(dev);
  879. int i, ret;
  880. ret = mutex_lock_interruptible(&dev->struct_mutex);
  881. if (ret)
  882. return ret;
  883. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  884. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  885. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  886. seq_printf(m, "Fence %d, pin count = %d, object = ",
  887. i, dev_priv->fence_regs[i].pin_count);
  888. if (obj == NULL)
  889. seq_puts(m, "unused");
  890. else
  891. describe_obj(m, obj);
  892. seq_putc(m, '\n');
  893. }
  894. mutex_unlock(&dev->struct_mutex);
  895. return 0;
  896. }
  897. static int i915_hws_info(struct seq_file *m, void *data)
  898. {
  899. struct drm_info_node *node = m->private;
  900. struct drm_device *dev = node->minor->dev;
  901. struct drm_i915_private *dev_priv = to_i915(dev);
  902. struct intel_engine_cs *engine;
  903. const u32 *hws;
  904. int i;
  905. engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
  906. hws = engine->status_page.page_addr;
  907. if (hws == NULL)
  908. return 0;
  909. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  910. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  911. i * 4,
  912. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  913. }
  914. return 0;
  915. }
  916. static ssize_t
  917. i915_error_state_write(struct file *filp,
  918. const char __user *ubuf,
  919. size_t cnt,
  920. loff_t *ppos)
  921. {
  922. struct i915_error_state_file_priv *error_priv = filp->private_data;
  923. struct drm_device *dev = error_priv->dev;
  924. int ret;
  925. DRM_DEBUG_DRIVER("Resetting error state\n");
  926. ret = mutex_lock_interruptible(&dev->struct_mutex);
  927. if (ret)
  928. return ret;
  929. i915_destroy_error_state(dev);
  930. mutex_unlock(&dev->struct_mutex);
  931. return cnt;
  932. }
  933. static int i915_error_state_open(struct inode *inode, struct file *file)
  934. {
  935. struct drm_device *dev = inode->i_private;
  936. struct i915_error_state_file_priv *error_priv;
  937. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  938. if (!error_priv)
  939. return -ENOMEM;
  940. error_priv->dev = dev;
  941. i915_error_state_get(dev, error_priv);
  942. file->private_data = error_priv;
  943. return 0;
  944. }
  945. static int i915_error_state_release(struct inode *inode, struct file *file)
  946. {
  947. struct i915_error_state_file_priv *error_priv = file->private_data;
  948. i915_error_state_put(error_priv);
  949. kfree(error_priv);
  950. return 0;
  951. }
  952. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  953. size_t count, loff_t *pos)
  954. {
  955. struct i915_error_state_file_priv *error_priv = file->private_data;
  956. struct drm_i915_error_state_buf error_str;
  957. loff_t tmp_pos = 0;
  958. ssize_t ret_count = 0;
  959. int ret;
  960. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  961. if (ret)
  962. return ret;
  963. ret = i915_error_state_to_str(&error_str, error_priv);
  964. if (ret)
  965. goto out;
  966. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  967. error_str.buf,
  968. error_str.bytes);
  969. if (ret_count < 0)
  970. ret = ret_count;
  971. else
  972. *pos = error_str.start + ret_count;
  973. out:
  974. i915_error_state_buf_release(&error_str);
  975. return ret ?: ret_count;
  976. }
  977. static const struct file_operations i915_error_state_fops = {
  978. .owner = THIS_MODULE,
  979. .open = i915_error_state_open,
  980. .read = i915_error_state_read,
  981. .write = i915_error_state_write,
  982. .llseek = default_llseek,
  983. .release = i915_error_state_release,
  984. };
  985. static int
  986. i915_next_seqno_get(void *data, u64 *val)
  987. {
  988. struct drm_device *dev = data;
  989. struct drm_i915_private *dev_priv = to_i915(dev);
  990. int ret;
  991. ret = mutex_lock_interruptible(&dev->struct_mutex);
  992. if (ret)
  993. return ret;
  994. *val = dev_priv->next_seqno;
  995. mutex_unlock(&dev->struct_mutex);
  996. return 0;
  997. }
  998. static int
  999. i915_next_seqno_set(void *data, u64 val)
  1000. {
  1001. struct drm_device *dev = data;
  1002. int ret;
  1003. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1004. if (ret)
  1005. return ret;
  1006. ret = i915_gem_set_seqno(dev, val);
  1007. mutex_unlock(&dev->struct_mutex);
  1008. return ret;
  1009. }
  1010. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  1011. i915_next_seqno_get, i915_next_seqno_set,
  1012. "0x%llx\n");
  1013. static int i915_frequency_info(struct seq_file *m, void *unused)
  1014. {
  1015. struct drm_info_node *node = m->private;
  1016. struct drm_device *dev = node->minor->dev;
  1017. struct drm_i915_private *dev_priv = to_i915(dev);
  1018. int ret = 0;
  1019. intel_runtime_pm_get(dev_priv);
  1020. if (IS_GEN5(dev)) {
  1021. u16 rgvswctl = I915_READ16(MEMSWCTL);
  1022. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  1023. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  1024. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  1025. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  1026. MEMSTAT_VID_SHIFT);
  1027. seq_printf(m, "Current P-state: %d\n",
  1028. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  1029. } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  1030. u32 freq_sts;
  1031. mutex_lock(&dev_priv->rps.hw_lock);
  1032. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1033. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1034. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1035. seq_printf(m, "actual GPU freq: %d MHz\n",
  1036. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1037. seq_printf(m, "current GPU freq: %d MHz\n",
  1038. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1039. seq_printf(m, "max GPU freq: %d MHz\n",
  1040. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1041. seq_printf(m, "min GPU freq: %d MHz\n",
  1042. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1043. seq_printf(m, "idle GPU freq: %d MHz\n",
  1044. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1045. seq_printf(m,
  1046. "efficient (RPe) frequency: %d MHz\n",
  1047. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1048. mutex_unlock(&dev_priv->rps.hw_lock);
  1049. } else if (INTEL_INFO(dev)->gen >= 6) {
  1050. u32 rp_state_limits;
  1051. u32 gt_perf_status;
  1052. u32 rp_state_cap;
  1053. u32 rpmodectl, rpinclimit, rpdeclimit;
  1054. u32 rpstat, cagf, reqf;
  1055. u32 rpupei, rpcurup, rpprevup;
  1056. u32 rpdownei, rpcurdown, rpprevdown;
  1057. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  1058. int max_freq;
  1059. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  1060. if (IS_BROXTON(dev)) {
  1061. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  1062. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  1063. } else {
  1064. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  1065. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  1066. }
  1067. /* RPSTAT1 is in the GT power well */
  1068. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1069. if (ret)
  1070. goto out;
  1071. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1072. reqf = I915_READ(GEN6_RPNSWREQ);
  1073. if (IS_GEN9(dev))
  1074. reqf >>= 23;
  1075. else {
  1076. reqf &= ~GEN6_TURBO_DISABLE;
  1077. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1078. reqf >>= 24;
  1079. else
  1080. reqf >>= 25;
  1081. }
  1082. reqf = intel_gpu_freq(dev_priv, reqf);
  1083. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1084. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1085. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1086. rpstat = I915_READ(GEN6_RPSTAT1);
  1087. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  1088. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  1089. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  1090. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  1091. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  1092. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  1093. if (IS_GEN9(dev))
  1094. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1095. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1096. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1097. else
  1098. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1099. cagf = intel_gpu_freq(dev_priv, cagf);
  1100. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1101. mutex_unlock(&dev->struct_mutex);
  1102. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1103. pm_ier = I915_READ(GEN6_PMIER);
  1104. pm_imr = I915_READ(GEN6_PMIMR);
  1105. pm_isr = I915_READ(GEN6_PMISR);
  1106. pm_iir = I915_READ(GEN6_PMIIR);
  1107. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1108. } else {
  1109. pm_ier = I915_READ(GEN8_GT_IER(2));
  1110. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1111. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1112. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1113. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1114. }
  1115. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1116. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1117. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1118. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1119. seq_printf(m, "Render p-state ratio: %d\n",
  1120. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1121. seq_printf(m, "Render p-state VID: %d\n",
  1122. gt_perf_status & 0xff);
  1123. seq_printf(m, "Render p-state limit: %d\n",
  1124. rp_state_limits & 0xff);
  1125. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1126. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1127. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1128. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1129. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1130. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1131. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1132. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1133. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1134. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1135. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1136. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1137. seq_printf(m, "Up threshold: %d%%\n",
  1138. dev_priv->rps.up_threshold);
  1139. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1140. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1141. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1142. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1143. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1144. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1145. seq_printf(m, "Down threshold: %d%%\n",
  1146. dev_priv->rps.down_threshold);
  1147. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1148. rp_state_cap >> 16) & 0xff;
  1149. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1150. GEN9_FREQ_SCALER : 1);
  1151. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1152. intel_gpu_freq(dev_priv, max_freq));
  1153. max_freq = (rp_state_cap & 0xff00) >> 8;
  1154. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1155. GEN9_FREQ_SCALER : 1);
  1156. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1157. intel_gpu_freq(dev_priv, max_freq));
  1158. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1159. rp_state_cap >> 0) & 0xff;
  1160. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1161. GEN9_FREQ_SCALER : 1);
  1162. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1163. intel_gpu_freq(dev_priv, max_freq));
  1164. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1165. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1166. seq_printf(m, "Current freq: %d MHz\n",
  1167. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1168. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1169. seq_printf(m, "Idle freq: %d MHz\n",
  1170. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1171. seq_printf(m, "Min freq: %d MHz\n",
  1172. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1173. seq_printf(m, "Boost freq: %d MHz\n",
  1174. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1175. seq_printf(m, "Max freq: %d MHz\n",
  1176. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1177. seq_printf(m,
  1178. "efficient (RPe) frequency: %d MHz\n",
  1179. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1180. } else {
  1181. seq_puts(m, "no P-state info available\n");
  1182. }
  1183. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1184. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1185. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1186. out:
  1187. intel_runtime_pm_put(dev_priv);
  1188. return ret;
  1189. }
  1190. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1191. {
  1192. struct drm_info_node *node = m->private;
  1193. struct drm_device *dev = node->minor->dev;
  1194. struct drm_i915_private *dev_priv = to_i915(dev);
  1195. struct intel_engine_cs *engine;
  1196. u64 acthd[I915_NUM_ENGINES];
  1197. u32 seqno[I915_NUM_ENGINES];
  1198. u32 instdone[I915_NUM_INSTDONE_REG];
  1199. enum intel_engine_id id;
  1200. int j;
  1201. if (!i915.enable_hangcheck) {
  1202. seq_printf(m, "Hangcheck disabled\n");
  1203. return 0;
  1204. }
  1205. intel_runtime_pm_get(dev_priv);
  1206. for_each_engine_id(engine, dev_priv, id) {
  1207. acthd[id] = intel_engine_get_active_head(engine);
  1208. seqno[id] = intel_engine_get_seqno(engine);
  1209. }
  1210. i915_get_extra_instdone(dev_priv, instdone);
  1211. intel_runtime_pm_put(dev_priv);
  1212. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1213. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1214. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1215. jiffies));
  1216. } else
  1217. seq_printf(m, "Hangcheck inactive\n");
  1218. for_each_engine_id(engine, dev_priv, id) {
  1219. seq_printf(m, "%s:\n", engine->name);
  1220. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1221. engine->hangcheck.seqno,
  1222. seqno[id],
  1223. engine->last_submitted_seqno);
  1224. seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
  1225. yesno(intel_engine_has_waiter(engine)),
  1226. yesno(test_bit(engine->id,
  1227. &dev_priv->gpu_error.missed_irq_rings)));
  1228. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1229. (long long)engine->hangcheck.acthd,
  1230. (long long)acthd[id]);
  1231. seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
  1232. seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
  1233. if (engine->id == RCS) {
  1234. seq_puts(m, "\tinstdone read =");
  1235. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1236. seq_printf(m, " 0x%08x", instdone[j]);
  1237. seq_puts(m, "\n\tinstdone accu =");
  1238. for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
  1239. seq_printf(m, " 0x%08x",
  1240. engine->hangcheck.instdone[j]);
  1241. seq_puts(m, "\n");
  1242. }
  1243. }
  1244. return 0;
  1245. }
  1246. static int ironlake_drpc_info(struct seq_file *m)
  1247. {
  1248. struct drm_info_node *node = m->private;
  1249. struct drm_device *dev = node->minor->dev;
  1250. struct drm_i915_private *dev_priv = to_i915(dev);
  1251. u32 rgvmodectl, rstdbyctl;
  1252. u16 crstandvid;
  1253. int ret;
  1254. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1255. if (ret)
  1256. return ret;
  1257. intel_runtime_pm_get(dev_priv);
  1258. rgvmodectl = I915_READ(MEMMODECTL);
  1259. rstdbyctl = I915_READ(RSTDBYCTL);
  1260. crstandvid = I915_READ16(CRSTANDVID);
  1261. intel_runtime_pm_put(dev_priv);
  1262. mutex_unlock(&dev->struct_mutex);
  1263. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1264. seq_printf(m, "Boost freq: %d\n",
  1265. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1266. MEMMODE_BOOST_FREQ_SHIFT);
  1267. seq_printf(m, "HW control enabled: %s\n",
  1268. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1269. seq_printf(m, "SW control enabled: %s\n",
  1270. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1271. seq_printf(m, "Gated voltage change: %s\n",
  1272. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1273. seq_printf(m, "Starting frequency: P%d\n",
  1274. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1275. seq_printf(m, "Max P-state: P%d\n",
  1276. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1277. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1278. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1279. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1280. seq_printf(m, "Render standby enabled: %s\n",
  1281. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1282. seq_puts(m, "Current RS state: ");
  1283. switch (rstdbyctl & RSX_STATUS_MASK) {
  1284. case RSX_STATUS_ON:
  1285. seq_puts(m, "on\n");
  1286. break;
  1287. case RSX_STATUS_RC1:
  1288. seq_puts(m, "RC1\n");
  1289. break;
  1290. case RSX_STATUS_RC1E:
  1291. seq_puts(m, "RC1E\n");
  1292. break;
  1293. case RSX_STATUS_RS1:
  1294. seq_puts(m, "RS1\n");
  1295. break;
  1296. case RSX_STATUS_RS2:
  1297. seq_puts(m, "RS2 (RC6)\n");
  1298. break;
  1299. case RSX_STATUS_RS3:
  1300. seq_puts(m, "RC3 (RC6+)\n");
  1301. break;
  1302. default:
  1303. seq_puts(m, "unknown\n");
  1304. break;
  1305. }
  1306. return 0;
  1307. }
  1308. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1309. {
  1310. struct drm_info_node *node = m->private;
  1311. struct drm_device *dev = node->minor->dev;
  1312. struct drm_i915_private *dev_priv = to_i915(dev);
  1313. struct intel_uncore_forcewake_domain *fw_domain;
  1314. spin_lock_irq(&dev_priv->uncore.lock);
  1315. for_each_fw_domain(fw_domain, dev_priv) {
  1316. seq_printf(m, "%s.wake_count = %u\n",
  1317. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1318. fw_domain->wake_count);
  1319. }
  1320. spin_unlock_irq(&dev_priv->uncore.lock);
  1321. return 0;
  1322. }
  1323. static int vlv_drpc_info(struct seq_file *m)
  1324. {
  1325. struct drm_info_node *node = m->private;
  1326. struct drm_device *dev = node->minor->dev;
  1327. struct drm_i915_private *dev_priv = to_i915(dev);
  1328. u32 rpmodectl1, rcctl1, pw_status;
  1329. intel_runtime_pm_get(dev_priv);
  1330. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1331. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1332. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1333. intel_runtime_pm_put(dev_priv);
  1334. seq_printf(m, "Video Turbo Mode: %s\n",
  1335. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1336. seq_printf(m, "Turbo enabled: %s\n",
  1337. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1338. seq_printf(m, "HW control enabled: %s\n",
  1339. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1340. seq_printf(m, "SW control enabled: %s\n",
  1341. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1342. GEN6_RP_MEDIA_SW_MODE));
  1343. seq_printf(m, "RC6 Enabled: %s\n",
  1344. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1345. GEN6_RC_CTL_EI_MODE(1))));
  1346. seq_printf(m, "Render Power Well: %s\n",
  1347. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1348. seq_printf(m, "Media Power Well: %s\n",
  1349. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1350. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1351. I915_READ(VLV_GT_RENDER_RC6));
  1352. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1353. I915_READ(VLV_GT_MEDIA_RC6));
  1354. return i915_forcewake_domains(m, NULL);
  1355. }
  1356. static int gen6_drpc_info(struct seq_file *m)
  1357. {
  1358. struct drm_info_node *node = m->private;
  1359. struct drm_device *dev = node->minor->dev;
  1360. struct drm_i915_private *dev_priv = to_i915(dev);
  1361. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1362. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1363. unsigned forcewake_count;
  1364. int count = 0, ret;
  1365. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1366. if (ret)
  1367. return ret;
  1368. intel_runtime_pm_get(dev_priv);
  1369. spin_lock_irq(&dev_priv->uncore.lock);
  1370. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1371. spin_unlock_irq(&dev_priv->uncore.lock);
  1372. if (forcewake_count) {
  1373. seq_puts(m, "RC information inaccurate because somebody "
  1374. "holds a forcewake reference \n");
  1375. } else {
  1376. /* NB: we cannot use forcewake, else we read the wrong values */
  1377. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1378. udelay(10);
  1379. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1380. }
  1381. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1382. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1383. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1384. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1385. if (INTEL_INFO(dev)->gen >= 9) {
  1386. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1387. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1388. }
  1389. mutex_unlock(&dev->struct_mutex);
  1390. mutex_lock(&dev_priv->rps.hw_lock);
  1391. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1392. mutex_unlock(&dev_priv->rps.hw_lock);
  1393. intel_runtime_pm_put(dev_priv);
  1394. seq_printf(m, "Video Turbo Mode: %s\n",
  1395. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1396. seq_printf(m, "HW control enabled: %s\n",
  1397. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1398. seq_printf(m, "SW control enabled: %s\n",
  1399. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1400. GEN6_RP_MEDIA_SW_MODE));
  1401. seq_printf(m, "RC1e Enabled: %s\n",
  1402. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1403. seq_printf(m, "RC6 Enabled: %s\n",
  1404. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1405. if (INTEL_INFO(dev)->gen >= 9) {
  1406. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1407. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1408. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1409. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1410. }
  1411. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1412. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1413. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1414. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1415. seq_puts(m, "Current RC state: ");
  1416. switch (gt_core_status & GEN6_RCn_MASK) {
  1417. case GEN6_RC0:
  1418. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1419. seq_puts(m, "Core Power Down\n");
  1420. else
  1421. seq_puts(m, "on\n");
  1422. break;
  1423. case GEN6_RC3:
  1424. seq_puts(m, "RC3\n");
  1425. break;
  1426. case GEN6_RC6:
  1427. seq_puts(m, "RC6\n");
  1428. break;
  1429. case GEN6_RC7:
  1430. seq_puts(m, "RC7\n");
  1431. break;
  1432. default:
  1433. seq_puts(m, "Unknown\n");
  1434. break;
  1435. }
  1436. seq_printf(m, "Core Power Down: %s\n",
  1437. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1438. if (INTEL_INFO(dev)->gen >= 9) {
  1439. seq_printf(m, "Render Power Well: %s\n",
  1440. (gen9_powergate_status &
  1441. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1442. seq_printf(m, "Media Power Well: %s\n",
  1443. (gen9_powergate_status &
  1444. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1445. }
  1446. /* Not exactly sure what this is */
  1447. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1448. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1449. seq_printf(m, "RC6 residency since boot: %u\n",
  1450. I915_READ(GEN6_GT_GFX_RC6));
  1451. seq_printf(m, "RC6+ residency since boot: %u\n",
  1452. I915_READ(GEN6_GT_GFX_RC6p));
  1453. seq_printf(m, "RC6++ residency since boot: %u\n",
  1454. I915_READ(GEN6_GT_GFX_RC6pp));
  1455. seq_printf(m, "RC6 voltage: %dmV\n",
  1456. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1457. seq_printf(m, "RC6+ voltage: %dmV\n",
  1458. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1459. seq_printf(m, "RC6++ voltage: %dmV\n",
  1460. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1461. return i915_forcewake_domains(m, NULL);
  1462. }
  1463. static int i915_drpc_info(struct seq_file *m, void *unused)
  1464. {
  1465. struct drm_info_node *node = m->private;
  1466. struct drm_device *dev = node->minor->dev;
  1467. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1468. return vlv_drpc_info(m);
  1469. else if (INTEL_INFO(dev)->gen >= 6)
  1470. return gen6_drpc_info(m);
  1471. else
  1472. return ironlake_drpc_info(m);
  1473. }
  1474. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1475. {
  1476. struct drm_info_node *node = m->private;
  1477. struct drm_device *dev = node->minor->dev;
  1478. struct drm_i915_private *dev_priv = to_i915(dev);
  1479. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1480. dev_priv->fb_tracking.busy_bits);
  1481. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1482. dev_priv->fb_tracking.flip_bits);
  1483. return 0;
  1484. }
  1485. static int i915_fbc_status(struct seq_file *m, void *unused)
  1486. {
  1487. struct drm_info_node *node = m->private;
  1488. struct drm_device *dev = node->minor->dev;
  1489. struct drm_i915_private *dev_priv = to_i915(dev);
  1490. if (!HAS_FBC(dev)) {
  1491. seq_puts(m, "FBC unsupported on this chipset\n");
  1492. return 0;
  1493. }
  1494. intel_runtime_pm_get(dev_priv);
  1495. mutex_lock(&dev_priv->fbc.lock);
  1496. if (intel_fbc_is_active(dev_priv))
  1497. seq_puts(m, "FBC enabled\n");
  1498. else
  1499. seq_printf(m, "FBC disabled: %s\n",
  1500. dev_priv->fbc.no_fbc_reason);
  1501. if (INTEL_INFO(dev_priv)->gen >= 7)
  1502. seq_printf(m, "Compressing: %s\n",
  1503. yesno(I915_READ(FBC_STATUS2) &
  1504. FBC_COMPRESSION_MASK));
  1505. mutex_unlock(&dev_priv->fbc.lock);
  1506. intel_runtime_pm_put(dev_priv);
  1507. return 0;
  1508. }
  1509. static int i915_fbc_fc_get(void *data, u64 *val)
  1510. {
  1511. struct drm_device *dev = data;
  1512. struct drm_i915_private *dev_priv = to_i915(dev);
  1513. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1514. return -ENODEV;
  1515. *val = dev_priv->fbc.false_color;
  1516. return 0;
  1517. }
  1518. static int i915_fbc_fc_set(void *data, u64 val)
  1519. {
  1520. struct drm_device *dev = data;
  1521. struct drm_i915_private *dev_priv = to_i915(dev);
  1522. u32 reg;
  1523. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1524. return -ENODEV;
  1525. mutex_lock(&dev_priv->fbc.lock);
  1526. reg = I915_READ(ILK_DPFC_CONTROL);
  1527. dev_priv->fbc.false_color = val;
  1528. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1529. (reg | FBC_CTL_FALSE_COLOR) :
  1530. (reg & ~FBC_CTL_FALSE_COLOR));
  1531. mutex_unlock(&dev_priv->fbc.lock);
  1532. return 0;
  1533. }
  1534. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1535. i915_fbc_fc_get, i915_fbc_fc_set,
  1536. "%llu\n");
  1537. static int i915_ips_status(struct seq_file *m, void *unused)
  1538. {
  1539. struct drm_info_node *node = m->private;
  1540. struct drm_device *dev = node->minor->dev;
  1541. struct drm_i915_private *dev_priv = to_i915(dev);
  1542. if (!HAS_IPS(dev)) {
  1543. seq_puts(m, "not supported\n");
  1544. return 0;
  1545. }
  1546. intel_runtime_pm_get(dev_priv);
  1547. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1548. yesno(i915.enable_ips));
  1549. if (INTEL_INFO(dev)->gen >= 8) {
  1550. seq_puts(m, "Currently: unknown\n");
  1551. } else {
  1552. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1553. seq_puts(m, "Currently: enabled\n");
  1554. else
  1555. seq_puts(m, "Currently: disabled\n");
  1556. }
  1557. intel_runtime_pm_put(dev_priv);
  1558. return 0;
  1559. }
  1560. static int i915_sr_status(struct seq_file *m, void *unused)
  1561. {
  1562. struct drm_info_node *node = m->private;
  1563. struct drm_device *dev = node->minor->dev;
  1564. struct drm_i915_private *dev_priv = to_i915(dev);
  1565. bool sr_enabled = false;
  1566. intel_runtime_pm_get(dev_priv);
  1567. if (HAS_PCH_SPLIT(dev))
  1568. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1569. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1570. IS_I945G(dev) || IS_I945GM(dev))
  1571. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1572. else if (IS_I915GM(dev))
  1573. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1574. else if (IS_PINEVIEW(dev))
  1575. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1576. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1577. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1578. intel_runtime_pm_put(dev_priv);
  1579. seq_printf(m, "self-refresh: %s\n",
  1580. sr_enabled ? "enabled" : "disabled");
  1581. return 0;
  1582. }
  1583. static int i915_emon_status(struct seq_file *m, void *unused)
  1584. {
  1585. struct drm_info_node *node = m->private;
  1586. struct drm_device *dev = node->minor->dev;
  1587. struct drm_i915_private *dev_priv = to_i915(dev);
  1588. unsigned long temp, chipset, gfx;
  1589. int ret;
  1590. if (!IS_GEN5(dev))
  1591. return -ENODEV;
  1592. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1593. if (ret)
  1594. return ret;
  1595. temp = i915_mch_val(dev_priv);
  1596. chipset = i915_chipset_val(dev_priv);
  1597. gfx = i915_gfx_val(dev_priv);
  1598. mutex_unlock(&dev->struct_mutex);
  1599. seq_printf(m, "GMCH temp: %ld\n", temp);
  1600. seq_printf(m, "Chipset power: %ld\n", chipset);
  1601. seq_printf(m, "GFX power: %ld\n", gfx);
  1602. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1603. return 0;
  1604. }
  1605. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1606. {
  1607. struct drm_info_node *node = m->private;
  1608. struct drm_device *dev = node->minor->dev;
  1609. struct drm_i915_private *dev_priv = to_i915(dev);
  1610. int ret = 0;
  1611. int gpu_freq, ia_freq;
  1612. unsigned int max_gpu_freq, min_gpu_freq;
  1613. if (!HAS_CORE_RING_FREQ(dev)) {
  1614. seq_puts(m, "unsupported on this chipset\n");
  1615. return 0;
  1616. }
  1617. intel_runtime_pm_get(dev_priv);
  1618. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1619. if (ret)
  1620. goto out;
  1621. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1622. /* Convert GT frequency to 50 HZ units */
  1623. min_gpu_freq =
  1624. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1625. max_gpu_freq =
  1626. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1627. } else {
  1628. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1629. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1630. }
  1631. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1632. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1633. ia_freq = gpu_freq;
  1634. sandybridge_pcode_read(dev_priv,
  1635. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1636. &ia_freq);
  1637. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1638. intel_gpu_freq(dev_priv, (gpu_freq *
  1639. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1640. GEN9_FREQ_SCALER : 1))),
  1641. ((ia_freq >> 0) & 0xff) * 100,
  1642. ((ia_freq >> 8) & 0xff) * 100);
  1643. }
  1644. mutex_unlock(&dev_priv->rps.hw_lock);
  1645. out:
  1646. intel_runtime_pm_put(dev_priv);
  1647. return ret;
  1648. }
  1649. static int i915_opregion(struct seq_file *m, void *unused)
  1650. {
  1651. struct drm_info_node *node = m->private;
  1652. struct drm_device *dev = node->minor->dev;
  1653. struct drm_i915_private *dev_priv = to_i915(dev);
  1654. struct intel_opregion *opregion = &dev_priv->opregion;
  1655. int ret;
  1656. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1657. if (ret)
  1658. goto out;
  1659. if (opregion->header)
  1660. seq_write(m, opregion->header, OPREGION_SIZE);
  1661. mutex_unlock(&dev->struct_mutex);
  1662. out:
  1663. return 0;
  1664. }
  1665. static int i915_vbt(struct seq_file *m, void *unused)
  1666. {
  1667. struct drm_info_node *node = m->private;
  1668. struct drm_device *dev = node->minor->dev;
  1669. struct drm_i915_private *dev_priv = to_i915(dev);
  1670. struct intel_opregion *opregion = &dev_priv->opregion;
  1671. if (opregion->vbt)
  1672. seq_write(m, opregion->vbt, opregion->vbt_size);
  1673. return 0;
  1674. }
  1675. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1676. {
  1677. struct drm_info_node *node = m->private;
  1678. struct drm_device *dev = node->minor->dev;
  1679. struct intel_framebuffer *fbdev_fb = NULL;
  1680. struct drm_framebuffer *drm_fb;
  1681. int ret;
  1682. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1683. if (ret)
  1684. return ret;
  1685. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1686. if (to_i915(dev)->fbdev) {
  1687. fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
  1688. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1689. fbdev_fb->base.width,
  1690. fbdev_fb->base.height,
  1691. fbdev_fb->base.depth,
  1692. fbdev_fb->base.bits_per_pixel,
  1693. fbdev_fb->base.modifier[0],
  1694. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1695. describe_obj(m, fbdev_fb->obj);
  1696. seq_putc(m, '\n');
  1697. }
  1698. #endif
  1699. mutex_lock(&dev->mode_config.fb_lock);
  1700. drm_for_each_fb(drm_fb, dev) {
  1701. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1702. if (fb == fbdev_fb)
  1703. continue;
  1704. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1705. fb->base.width,
  1706. fb->base.height,
  1707. fb->base.depth,
  1708. fb->base.bits_per_pixel,
  1709. fb->base.modifier[0],
  1710. drm_framebuffer_read_refcount(&fb->base));
  1711. describe_obj(m, fb->obj);
  1712. seq_putc(m, '\n');
  1713. }
  1714. mutex_unlock(&dev->mode_config.fb_lock);
  1715. mutex_unlock(&dev->struct_mutex);
  1716. return 0;
  1717. }
  1718. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1719. {
  1720. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1721. ring->space, ring->head, ring->tail,
  1722. ring->last_retired_head);
  1723. }
  1724. static int i915_context_status(struct seq_file *m, void *unused)
  1725. {
  1726. struct drm_info_node *node = m->private;
  1727. struct drm_device *dev = node->minor->dev;
  1728. struct drm_i915_private *dev_priv = to_i915(dev);
  1729. struct intel_engine_cs *engine;
  1730. struct i915_gem_context *ctx;
  1731. int ret;
  1732. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1733. if (ret)
  1734. return ret;
  1735. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1736. seq_printf(m, "HW context %u ", ctx->hw_id);
  1737. if (IS_ERR(ctx->file_priv)) {
  1738. seq_puts(m, "(deleted) ");
  1739. } else if (ctx->file_priv) {
  1740. struct pid *pid = ctx->file_priv->file->pid;
  1741. struct task_struct *task;
  1742. task = get_pid_task(pid, PIDTYPE_PID);
  1743. if (task) {
  1744. seq_printf(m, "(%s [%d]) ",
  1745. task->comm, task->pid);
  1746. put_task_struct(task);
  1747. }
  1748. } else {
  1749. seq_puts(m, "(kernel) ");
  1750. }
  1751. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1752. seq_putc(m, '\n');
  1753. for_each_engine(engine, dev_priv) {
  1754. struct intel_context *ce = &ctx->engine[engine->id];
  1755. seq_printf(m, "%s: ", engine->name);
  1756. seq_putc(m, ce->initialised ? 'I' : 'i');
  1757. if (ce->state)
  1758. describe_obj(m, ce->state);
  1759. if (ce->ring)
  1760. describe_ctx_ring(m, ce->ring);
  1761. seq_putc(m, '\n');
  1762. }
  1763. seq_putc(m, '\n');
  1764. }
  1765. mutex_unlock(&dev->struct_mutex);
  1766. return 0;
  1767. }
  1768. static void i915_dump_lrc_obj(struct seq_file *m,
  1769. struct i915_gem_context *ctx,
  1770. struct intel_engine_cs *engine)
  1771. {
  1772. struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
  1773. struct page *page;
  1774. uint32_t *reg_state;
  1775. int j;
  1776. unsigned long ggtt_offset = 0;
  1777. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1778. if (ctx_obj == NULL) {
  1779. seq_puts(m, "\tNot allocated\n");
  1780. return;
  1781. }
  1782. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1783. seq_puts(m, "\tNot bound in GGTT\n");
  1784. else
  1785. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1786. if (i915_gem_object_get_pages(ctx_obj)) {
  1787. seq_puts(m, "\tFailed to get pages for context object\n");
  1788. return;
  1789. }
  1790. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1791. if (!WARN_ON(page == NULL)) {
  1792. reg_state = kmap_atomic(page);
  1793. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1794. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1795. ggtt_offset + 4096 + (j * 4),
  1796. reg_state[j], reg_state[j + 1],
  1797. reg_state[j + 2], reg_state[j + 3]);
  1798. }
  1799. kunmap_atomic(reg_state);
  1800. }
  1801. seq_putc(m, '\n');
  1802. }
  1803. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1804. {
  1805. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1806. struct drm_device *dev = node->minor->dev;
  1807. struct drm_i915_private *dev_priv = to_i915(dev);
  1808. struct intel_engine_cs *engine;
  1809. struct i915_gem_context *ctx;
  1810. int ret;
  1811. if (!i915.enable_execlists) {
  1812. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1813. return 0;
  1814. }
  1815. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1816. if (ret)
  1817. return ret;
  1818. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1819. for_each_engine(engine, dev_priv)
  1820. i915_dump_lrc_obj(m, ctx, engine);
  1821. mutex_unlock(&dev->struct_mutex);
  1822. return 0;
  1823. }
  1824. static int i915_execlists(struct seq_file *m, void *data)
  1825. {
  1826. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1827. struct drm_device *dev = node->minor->dev;
  1828. struct drm_i915_private *dev_priv = to_i915(dev);
  1829. struct intel_engine_cs *engine;
  1830. u32 status_pointer;
  1831. u8 read_pointer;
  1832. u8 write_pointer;
  1833. u32 status;
  1834. u32 ctx_id;
  1835. struct list_head *cursor;
  1836. int i, ret;
  1837. if (!i915.enable_execlists) {
  1838. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1839. return 0;
  1840. }
  1841. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1842. if (ret)
  1843. return ret;
  1844. intel_runtime_pm_get(dev_priv);
  1845. for_each_engine(engine, dev_priv) {
  1846. struct drm_i915_gem_request *head_req = NULL;
  1847. int count = 0;
  1848. seq_printf(m, "%s\n", engine->name);
  1849. status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
  1850. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
  1851. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1852. status, ctx_id);
  1853. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  1854. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1855. read_pointer = engine->next_context_status_buffer;
  1856. write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
  1857. if (read_pointer > write_pointer)
  1858. write_pointer += GEN8_CSB_ENTRIES;
  1859. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1860. read_pointer, write_pointer);
  1861. for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
  1862. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
  1863. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
  1864. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1865. i, status, ctx_id);
  1866. }
  1867. spin_lock_bh(&engine->execlist_lock);
  1868. list_for_each(cursor, &engine->execlist_queue)
  1869. count++;
  1870. head_req = list_first_entry_or_null(&engine->execlist_queue,
  1871. struct drm_i915_gem_request,
  1872. execlist_link);
  1873. spin_unlock_bh(&engine->execlist_lock);
  1874. seq_printf(m, "\t%d requests in queue\n", count);
  1875. if (head_req) {
  1876. seq_printf(m, "\tHead request context: %u\n",
  1877. head_req->ctx->hw_id);
  1878. seq_printf(m, "\tHead request tail: %u\n",
  1879. head_req->tail);
  1880. }
  1881. seq_putc(m, '\n');
  1882. }
  1883. intel_runtime_pm_put(dev_priv);
  1884. mutex_unlock(&dev->struct_mutex);
  1885. return 0;
  1886. }
  1887. static const char *swizzle_string(unsigned swizzle)
  1888. {
  1889. switch (swizzle) {
  1890. case I915_BIT_6_SWIZZLE_NONE:
  1891. return "none";
  1892. case I915_BIT_6_SWIZZLE_9:
  1893. return "bit9";
  1894. case I915_BIT_6_SWIZZLE_9_10:
  1895. return "bit9/bit10";
  1896. case I915_BIT_6_SWIZZLE_9_11:
  1897. return "bit9/bit11";
  1898. case I915_BIT_6_SWIZZLE_9_10_11:
  1899. return "bit9/bit10/bit11";
  1900. case I915_BIT_6_SWIZZLE_9_17:
  1901. return "bit9/bit17";
  1902. case I915_BIT_6_SWIZZLE_9_10_17:
  1903. return "bit9/bit10/bit17";
  1904. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1905. return "unknown";
  1906. }
  1907. return "bug";
  1908. }
  1909. static int i915_swizzle_info(struct seq_file *m, void *data)
  1910. {
  1911. struct drm_info_node *node = m->private;
  1912. struct drm_device *dev = node->minor->dev;
  1913. struct drm_i915_private *dev_priv = to_i915(dev);
  1914. int ret;
  1915. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1916. if (ret)
  1917. return ret;
  1918. intel_runtime_pm_get(dev_priv);
  1919. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1920. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1921. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1922. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1923. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1924. seq_printf(m, "DDC = 0x%08x\n",
  1925. I915_READ(DCC));
  1926. seq_printf(m, "DDC2 = 0x%08x\n",
  1927. I915_READ(DCC2));
  1928. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1929. I915_READ16(C0DRB3));
  1930. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1931. I915_READ16(C1DRB3));
  1932. } else if (INTEL_INFO(dev)->gen >= 6) {
  1933. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1934. I915_READ(MAD_DIMM_C0));
  1935. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1936. I915_READ(MAD_DIMM_C1));
  1937. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1938. I915_READ(MAD_DIMM_C2));
  1939. seq_printf(m, "TILECTL = 0x%08x\n",
  1940. I915_READ(TILECTL));
  1941. if (INTEL_INFO(dev)->gen >= 8)
  1942. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1943. I915_READ(GAMTARBMODE));
  1944. else
  1945. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1946. I915_READ(ARB_MODE));
  1947. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1948. I915_READ(DISP_ARB_CTL));
  1949. }
  1950. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1951. seq_puts(m, "L-shaped memory detected\n");
  1952. intel_runtime_pm_put(dev_priv);
  1953. mutex_unlock(&dev->struct_mutex);
  1954. return 0;
  1955. }
  1956. static int per_file_ctx(int id, void *ptr, void *data)
  1957. {
  1958. struct i915_gem_context *ctx = ptr;
  1959. struct seq_file *m = data;
  1960. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1961. if (!ppgtt) {
  1962. seq_printf(m, " no ppgtt for context %d\n",
  1963. ctx->user_handle);
  1964. return 0;
  1965. }
  1966. if (i915_gem_context_is_default(ctx))
  1967. seq_puts(m, " default context:\n");
  1968. else
  1969. seq_printf(m, " context %d:\n", ctx->user_handle);
  1970. ppgtt->debug_dump(ppgtt, m);
  1971. return 0;
  1972. }
  1973. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1974. {
  1975. struct drm_i915_private *dev_priv = to_i915(dev);
  1976. struct intel_engine_cs *engine;
  1977. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1978. int i;
  1979. if (!ppgtt)
  1980. return;
  1981. for_each_engine(engine, dev_priv) {
  1982. seq_printf(m, "%s\n", engine->name);
  1983. for (i = 0; i < 4; i++) {
  1984. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1985. pdp <<= 32;
  1986. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1987. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1988. }
  1989. }
  1990. }
  1991. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1992. {
  1993. struct drm_i915_private *dev_priv = to_i915(dev);
  1994. struct intel_engine_cs *engine;
  1995. if (IS_GEN6(dev_priv))
  1996. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1997. for_each_engine(engine, dev_priv) {
  1998. seq_printf(m, "%s\n", engine->name);
  1999. if (IS_GEN7(dev_priv))
  2000. seq_printf(m, "GFX_MODE: 0x%08x\n",
  2001. I915_READ(RING_MODE_GEN7(engine)));
  2002. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  2003. I915_READ(RING_PP_DIR_BASE(engine)));
  2004. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  2005. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2006. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  2007. I915_READ(RING_PP_DIR_DCLV(engine)));
  2008. }
  2009. if (dev_priv->mm.aliasing_ppgtt) {
  2010. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  2011. seq_puts(m, "aliasing PPGTT:\n");
  2012. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  2013. ppgtt->debug_dump(ppgtt, m);
  2014. }
  2015. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  2016. }
  2017. static int i915_ppgtt_info(struct seq_file *m, void *data)
  2018. {
  2019. struct drm_info_node *node = m->private;
  2020. struct drm_device *dev = node->minor->dev;
  2021. struct drm_i915_private *dev_priv = to_i915(dev);
  2022. struct drm_file *file;
  2023. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  2024. if (ret)
  2025. return ret;
  2026. intel_runtime_pm_get(dev_priv);
  2027. if (INTEL_INFO(dev)->gen >= 8)
  2028. gen8_ppgtt_info(m, dev);
  2029. else if (INTEL_INFO(dev)->gen >= 6)
  2030. gen6_ppgtt_info(m, dev);
  2031. mutex_lock(&dev->filelist_mutex);
  2032. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2033. struct drm_i915_file_private *file_priv = file->driver_priv;
  2034. struct task_struct *task;
  2035. task = get_pid_task(file->pid, PIDTYPE_PID);
  2036. if (!task) {
  2037. ret = -ESRCH;
  2038. goto out_unlock;
  2039. }
  2040. seq_printf(m, "\nproc: %s\n", task->comm);
  2041. put_task_struct(task);
  2042. idr_for_each(&file_priv->context_idr, per_file_ctx,
  2043. (void *)(unsigned long)m);
  2044. }
  2045. out_unlock:
  2046. mutex_unlock(&dev->filelist_mutex);
  2047. intel_runtime_pm_put(dev_priv);
  2048. mutex_unlock(&dev->struct_mutex);
  2049. return ret;
  2050. }
  2051. static int count_irq_waiters(struct drm_i915_private *i915)
  2052. {
  2053. struct intel_engine_cs *engine;
  2054. int count = 0;
  2055. for_each_engine(engine, i915)
  2056. count += intel_engine_has_waiter(engine);
  2057. return count;
  2058. }
  2059. static int i915_rps_boost_info(struct seq_file *m, void *data)
  2060. {
  2061. struct drm_info_node *node = m->private;
  2062. struct drm_device *dev = node->minor->dev;
  2063. struct drm_i915_private *dev_priv = to_i915(dev);
  2064. struct drm_file *file;
  2065. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  2066. seq_printf(m, "GPU busy? %s [%x]\n",
  2067. yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
  2068. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  2069. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  2070. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  2071. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  2072. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  2073. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  2074. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  2075. mutex_lock(&dev->filelist_mutex);
  2076. spin_lock(&dev_priv->rps.client_lock);
  2077. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  2078. struct drm_i915_file_private *file_priv = file->driver_priv;
  2079. struct task_struct *task;
  2080. rcu_read_lock();
  2081. task = pid_task(file->pid, PIDTYPE_PID);
  2082. seq_printf(m, "%s [%d]: %d boosts%s\n",
  2083. task ? task->comm : "<unknown>",
  2084. task ? task->pid : -1,
  2085. file_priv->rps.boosts,
  2086. list_empty(&file_priv->rps.link) ? "" : ", active");
  2087. rcu_read_unlock();
  2088. }
  2089. seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
  2090. spin_unlock(&dev_priv->rps.client_lock);
  2091. mutex_unlock(&dev->filelist_mutex);
  2092. return 0;
  2093. }
  2094. static int i915_llc(struct seq_file *m, void *data)
  2095. {
  2096. struct drm_info_node *node = m->private;
  2097. struct drm_device *dev = node->minor->dev;
  2098. struct drm_i915_private *dev_priv = to_i915(dev);
  2099. const bool edram = INTEL_GEN(dev_priv) > 8;
  2100. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2101. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  2102. intel_uncore_edram_size(dev_priv)/1024/1024);
  2103. return 0;
  2104. }
  2105. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2106. {
  2107. struct drm_info_node *node = m->private;
  2108. struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
  2109. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2110. u32 tmp, i;
  2111. if (!HAS_GUC_UCODE(dev_priv))
  2112. return 0;
  2113. seq_printf(m, "GuC firmware status:\n");
  2114. seq_printf(m, "\tpath: %s\n",
  2115. guc_fw->guc_fw_path);
  2116. seq_printf(m, "\tfetch: %s\n",
  2117. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2118. seq_printf(m, "\tload: %s\n",
  2119. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2120. seq_printf(m, "\tversion wanted: %d.%d\n",
  2121. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2122. seq_printf(m, "\tversion found: %d.%d\n",
  2123. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2124. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2125. guc_fw->header_offset, guc_fw->header_size);
  2126. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2127. guc_fw->ucode_offset, guc_fw->ucode_size);
  2128. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2129. guc_fw->rsa_offset, guc_fw->rsa_size);
  2130. tmp = I915_READ(GUC_STATUS);
  2131. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2132. seq_printf(m, "\tBootrom status = 0x%x\n",
  2133. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2134. seq_printf(m, "\tuKernel status = 0x%x\n",
  2135. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2136. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2137. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2138. seq_puts(m, "\nScratch registers:\n");
  2139. for (i = 0; i < 16; i++)
  2140. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2141. return 0;
  2142. }
  2143. static void i915_guc_client_info(struct seq_file *m,
  2144. struct drm_i915_private *dev_priv,
  2145. struct i915_guc_client *client)
  2146. {
  2147. struct intel_engine_cs *engine;
  2148. enum intel_engine_id id;
  2149. uint64_t tot = 0;
  2150. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2151. client->priority, client->ctx_index, client->proc_desc_offset);
  2152. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2153. client->doorbell_id, client->doorbell_offset, client->cookie);
  2154. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2155. client->wq_size, client->wq_offset, client->wq_tail);
  2156. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2157. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2158. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2159. for_each_engine_id(engine, dev_priv, id) {
  2160. u64 submissions = client->submissions[id];
  2161. tot += submissions;
  2162. seq_printf(m, "\tSubmissions: %llu %s\n",
  2163. submissions, engine->name);
  2164. }
  2165. seq_printf(m, "\tTotal: %llu\n", tot);
  2166. }
  2167. static int i915_guc_info(struct seq_file *m, void *data)
  2168. {
  2169. struct drm_info_node *node = m->private;
  2170. struct drm_device *dev = node->minor->dev;
  2171. struct drm_i915_private *dev_priv = to_i915(dev);
  2172. struct intel_guc guc;
  2173. struct i915_guc_client client = {};
  2174. struct intel_engine_cs *engine;
  2175. enum intel_engine_id id;
  2176. u64 total = 0;
  2177. if (!HAS_GUC_SCHED(dev_priv))
  2178. return 0;
  2179. if (mutex_lock_interruptible(&dev->struct_mutex))
  2180. return 0;
  2181. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2182. guc = dev_priv->guc;
  2183. if (guc.execbuf_client)
  2184. client = *guc.execbuf_client;
  2185. mutex_unlock(&dev->struct_mutex);
  2186. seq_printf(m, "Doorbell map:\n");
  2187. seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
  2188. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
  2189. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2190. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2191. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2192. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2193. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2194. seq_printf(m, "\nGuC submissions:\n");
  2195. for_each_engine_id(engine, dev_priv, id) {
  2196. u64 submissions = guc.submissions[id];
  2197. total += submissions;
  2198. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2199. engine->name, submissions, guc.last_seqno[id]);
  2200. }
  2201. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2202. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2203. i915_guc_client_info(m, dev_priv, &client);
  2204. /* Add more as required ... */
  2205. return 0;
  2206. }
  2207. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2208. {
  2209. struct drm_info_node *node = m->private;
  2210. struct drm_device *dev = node->minor->dev;
  2211. struct drm_i915_private *dev_priv = to_i915(dev);
  2212. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2213. u32 *log;
  2214. int i = 0, pg;
  2215. if (!log_obj)
  2216. return 0;
  2217. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2218. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2219. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2220. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2221. *(log + i), *(log + i + 1),
  2222. *(log + i + 2), *(log + i + 3));
  2223. kunmap_atomic(log);
  2224. }
  2225. seq_putc(m, '\n');
  2226. return 0;
  2227. }
  2228. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2229. {
  2230. struct drm_info_node *node = m->private;
  2231. struct drm_device *dev = node->minor->dev;
  2232. struct drm_i915_private *dev_priv = to_i915(dev);
  2233. u32 psrperf = 0;
  2234. u32 stat[3];
  2235. enum pipe pipe;
  2236. bool enabled = false;
  2237. if (!HAS_PSR(dev)) {
  2238. seq_puts(m, "PSR not supported\n");
  2239. return 0;
  2240. }
  2241. intel_runtime_pm_get(dev_priv);
  2242. mutex_lock(&dev_priv->psr.lock);
  2243. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2244. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2245. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2246. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2247. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2248. dev_priv->psr.busy_frontbuffer_bits);
  2249. seq_printf(m, "Re-enable work scheduled: %s\n",
  2250. yesno(work_busy(&dev_priv->psr.work.work)));
  2251. if (HAS_DDI(dev))
  2252. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2253. else {
  2254. for_each_pipe(dev_priv, pipe) {
  2255. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2256. VLV_EDP_PSR_CURR_STATE_MASK;
  2257. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2258. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2259. enabled = true;
  2260. }
  2261. }
  2262. seq_printf(m, "Main link in standby mode: %s\n",
  2263. yesno(dev_priv->psr.link_standby));
  2264. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2265. if (!HAS_DDI(dev))
  2266. for_each_pipe(dev_priv, pipe) {
  2267. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2268. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2269. seq_printf(m, " pipe %c", pipe_name(pipe));
  2270. }
  2271. seq_puts(m, "\n");
  2272. /*
  2273. * VLV/CHV PSR has no kind of performance counter
  2274. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2275. */
  2276. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2277. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2278. EDP_PSR_PERF_CNT_MASK;
  2279. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2280. }
  2281. mutex_unlock(&dev_priv->psr.lock);
  2282. intel_runtime_pm_put(dev_priv);
  2283. return 0;
  2284. }
  2285. static int i915_sink_crc(struct seq_file *m, void *data)
  2286. {
  2287. struct drm_info_node *node = m->private;
  2288. struct drm_device *dev = node->minor->dev;
  2289. struct intel_connector *connector;
  2290. struct intel_dp *intel_dp = NULL;
  2291. int ret;
  2292. u8 crc[6];
  2293. drm_modeset_lock_all(dev);
  2294. for_each_intel_connector(dev, connector) {
  2295. struct drm_crtc *crtc;
  2296. if (!connector->base.state->best_encoder)
  2297. continue;
  2298. crtc = connector->base.state->crtc;
  2299. if (!crtc->state->active)
  2300. continue;
  2301. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2302. continue;
  2303. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2304. ret = intel_dp_sink_crc(intel_dp, crc);
  2305. if (ret)
  2306. goto out;
  2307. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2308. crc[0], crc[1], crc[2],
  2309. crc[3], crc[4], crc[5]);
  2310. goto out;
  2311. }
  2312. ret = -ENODEV;
  2313. out:
  2314. drm_modeset_unlock_all(dev);
  2315. return ret;
  2316. }
  2317. static int i915_energy_uJ(struct seq_file *m, void *data)
  2318. {
  2319. struct drm_info_node *node = m->private;
  2320. struct drm_device *dev = node->minor->dev;
  2321. struct drm_i915_private *dev_priv = to_i915(dev);
  2322. u64 power;
  2323. u32 units;
  2324. if (INTEL_INFO(dev)->gen < 6)
  2325. return -ENODEV;
  2326. intel_runtime_pm_get(dev_priv);
  2327. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2328. power = (power & 0x1f00) >> 8;
  2329. units = 1000000 / (1 << power); /* convert to uJ */
  2330. power = I915_READ(MCH_SECP_NRG_STTS);
  2331. power *= units;
  2332. intel_runtime_pm_put(dev_priv);
  2333. seq_printf(m, "%llu", (long long unsigned)power);
  2334. return 0;
  2335. }
  2336. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2337. {
  2338. struct drm_info_node *node = m->private;
  2339. struct drm_device *dev = node->minor->dev;
  2340. struct drm_i915_private *dev_priv = to_i915(dev);
  2341. if (!HAS_RUNTIME_PM(dev_priv))
  2342. seq_puts(m, "Runtime power management not supported\n");
  2343. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2344. seq_printf(m, "IRQs disabled: %s\n",
  2345. yesno(!intel_irqs_enabled(dev_priv)));
  2346. #ifdef CONFIG_PM
  2347. seq_printf(m, "Usage count: %d\n",
  2348. atomic_read(&dev->dev->power.usage_count));
  2349. #else
  2350. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2351. #endif
  2352. seq_printf(m, "PCI device power state: %s [%d]\n",
  2353. pci_power_name(dev_priv->drm.pdev->current_state),
  2354. dev_priv->drm.pdev->current_state);
  2355. return 0;
  2356. }
  2357. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2358. {
  2359. struct drm_info_node *node = m->private;
  2360. struct drm_device *dev = node->minor->dev;
  2361. struct drm_i915_private *dev_priv = to_i915(dev);
  2362. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2363. int i;
  2364. mutex_lock(&power_domains->lock);
  2365. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2366. for (i = 0; i < power_domains->power_well_count; i++) {
  2367. struct i915_power_well *power_well;
  2368. enum intel_display_power_domain power_domain;
  2369. power_well = &power_domains->power_wells[i];
  2370. seq_printf(m, "%-25s %d\n", power_well->name,
  2371. power_well->count);
  2372. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2373. power_domain++) {
  2374. if (!(BIT(power_domain) & power_well->domains))
  2375. continue;
  2376. seq_printf(m, " %-23s %d\n",
  2377. intel_display_power_domain_str(power_domain),
  2378. power_domains->domain_use_count[power_domain]);
  2379. }
  2380. }
  2381. mutex_unlock(&power_domains->lock);
  2382. return 0;
  2383. }
  2384. static int i915_dmc_info(struct seq_file *m, void *unused)
  2385. {
  2386. struct drm_info_node *node = m->private;
  2387. struct drm_device *dev = node->minor->dev;
  2388. struct drm_i915_private *dev_priv = to_i915(dev);
  2389. struct intel_csr *csr;
  2390. if (!HAS_CSR(dev)) {
  2391. seq_puts(m, "not supported\n");
  2392. return 0;
  2393. }
  2394. csr = &dev_priv->csr;
  2395. intel_runtime_pm_get(dev_priv);
  2396. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2397. seq_printf(m, "path: %s\n", csr->fw_path);
  2398. if (!csr->dmc_payload)
  2399. goto out;
  2400. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2401. CSR_VERSION_MINOR(csr->version));
  2402. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2403. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2404. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2405. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2406. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2407. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2408. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2409. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2410. }
  2411. out:
  2412. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2413. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2414. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2415. intel_runtime_pm_put(dev_priv);
  2416. return 0;
  2417. }
  2418. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2419. struct drm_display_mode *mode)
  2420. {
  2421. int i;
  2422. for (i = 0; i < tabs; i++)
  2423. seq_putc(m, '\t');
  2424. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2425. mode->base.id, mode->name,
  2426. mode->vrefresh, mode->clock,
  2427. mode->hdisplay, mode->hsync_start,
  2428. mode->hsync_end, mode->htotal,
  2429. mode->vdisplay, mode->vsync_start,
  2430. mode->vsync_end, mode->vtotal,
  2431. mode->type, mode->flags);
  2432. }
  2433. static void intel_encoder_info(struct seq_file *m,
  2434. struct intel_crtc *intel_crtc,
  2435. struct intel_encoder *intel_encoder)
  2436. {
  2437. struct drm_info_node *node = m->private;
  2438. struct drm_device *dev = node->minor->dev;
  2439. struct drm_crtc *crtc = &intel_crtc->base;
  2440. struct intel_connector *intel_connector;
  2441. struct drm_encoder *encoder;
  2442. encoder = &intel_encoder->base;
  2443. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2444. encoder->base.id, encoder->name);
  2445. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2446. struct drm_connector *connector = &intel_connector->base;
  2447. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2448. connector->base.id,
  2449. connector->name,
  2450. drm_get_connector_status_name(connector->status));
  2451. if (connector->status == connector_status_connected) {
  2452. struct drm_display_mode *mode = &crtc->mode;
  2453. seq_printf(m, ", mode:\n");
  2454. intel_seq_print_mode(m, 2, mode);
  2455. } else {
  2456. seq_putc(m, '\n');
  2457. }
  2458. }
  2459. }
  2460. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2461. {
  2462. struct drm_info_node *node = m->private;
  2463. struct drm_device *dev = node->minor->dev;
  2464. struct drm_crtc *crtc = &intel_crtc->base;
  2465. struct intel_encoder *intel_encoder;
  2466. struct drm_plane_state *plane_state = crtc->primary->state;
  2467. struct drm_framebuffer *fb = plane_state->fb;
  2468. if (fb)
  2469. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2470. fb->base.id, plane_state->src_x >> 16,
  2471. plane_state->src_y >> 16, fb->width, fb->height);
  2472. else
  2473. seq_puts(m, "\tprimary plane disabled\n");
  2474. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2475. intel_encoder_info(m, intel_crtc, intel_encoder);
  2476. }
  2477. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2478. {
  2479. struct drm_display_mode *mode = panel->fixed_mode;
  2480. seq_printf(m, "\tfixed mode:\n");
  2481. intel_seq_print_mode(m, 2, mode);
  2482. }
  2483. static void intel_dp_info(struct seq_file *m,
  2484. struct intel_connector *intel_connector)
  2485. {
  2486. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2487. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2488. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2489. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2490. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2491. intel_panel_info(m, &intel_connector->panel);
  2492. }
  2493. static void intel_hdmi_info(struct seq_file *m,
  2494. struct intel_connector *intel_connector)
  2495. {
  2496. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2497. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2498. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2499. }
  2500. static void intel_lvds_info(struct seq_file *m,
  2501. struct intel_connector *intel_connector)
  2502. {
  2503. intel_panel_info(m, &intel_connector->panel);
  2504. }
  2505. static void intel_connector_info(struct seq_file *m,
  2506. struct drm_connector *connector)
  2507. {
  2508. struct intel_connector *intel_connector = to_intel_connector(connector);
  2509. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2510. struct drm_display_mode *mode;
  2511. seq_printf(m, "connector %d: type %s, status: %s\n",
  2512. connector->base.id, connector->name,
  2513. drm_get_connector_status_name(connector->status));
  2514. if (connector->status == connector_status_connected) {
  2515. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2516. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2517. connector->display_info.width_mm,
  2518. connector->display_info.height_mm);
  2519. seq_printf(m, "\tsubpixel order: %s\n",
  2520. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2521. seq_printf(m, "\tCEA rev: %d\n",
  2522. connector->display_info.cea_rev);
  2523. }
  2524. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2525. return;
  2526. switch (connector->connector_type) {
  2527. case DRM_MODE_CONNECTOR_DisplayPort:
  2528. case DRM_MODE_CONNECTOR_eDP:
  2529. intel_dp_info(m, intel_connector);
  2530. break;
  2531. case DRM_MODE_CONNECTOR_LVDS:
  2532. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2533. intel_lvds_info(m, intel_connector);
  2534. break;
  2535. case DRM_MODE_CONNECTOR_HDMIA:
  2536. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2537. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2538. intel_hdmi_info(m, intel_connector);
  2539. break;
  2540. default:
  2541. break;
  2542. }
  2543. seq_printf(m, "\tmodes:\n");
  2544. list_for_each_entry(mode, &connector->modes, head)
  2545. intel_seq_print_mode(m, 2, mode);
  2546. }
  2547. static bool cursor_active(struct drm_device *dev, int pipe)
  2548. {
  2549. struct drm_i915_private *dev_priv = to_i915(dev);
  2550. u32 state;
  2551. if (IS_845G(dev) || IS_I865G(dev))
  2552. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2553. else
  2554. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2555. return state;
  2556. }
  2557. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2558. {
  2559. struct drm_i915_private *dev_priv = to_i915(dev);
  2560. u32 pos;
  2561. pos = I915_READ(CURPOS(pipe));
  2562. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2563. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2564. *x = -*x;
  2565. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2566. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2567. *y = -*y;
  2568. return cursor_active(dev, pipe);
  2569. }
  2570. static const char *plane_type(enum drm_plane_type type)
  2571. {
  2572. switch (type) {
  2573. case DRM_PLANE_TYPE_OVERLAY:
  2574. return "OVL";
  2575. case DRM_PLANE_TYPE_PRIMARY:
  2576. return "PRI";
  2577. case DRM_PLANE_TYPE_CURSOR:
  2578. return "CUR";
  2579. /*
  2580. * Deliberately omitting default: to generate compiler warnings
  2581. * when a new drm_plane_type gets added.
  2582. */
  2583. }
  2584. return "unknown";
  2585. }
  2586. static const char *plane_rotation(unsigned int rotation)
  2587. {
  2588. static char buf[48];
  2589. /*
  2590. * According to doc only one DRM_ROTATE_ is allowed but this
  2591. * will print them all to visualize if the values are misused
  2592. */
  2593. snprintf(buf, sizeof(buf),
  2594. "%s%s%s%s%s%s(0x%08x)",
  2595. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2596. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2597. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2598. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2599. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2600. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2601. rotation);
  2602. return buf;
  2603. }
  2604. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2605. {
  2606. struct drm_info_node *node = m->private;
  2607. struct drm_device *dev = node->minor->dev;
  2608. struct intel_plane *intel_plane;
  2609. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2610. struct drm_plane_state *state;
  2611. struct drm_plane *plane = &intel_plane->base;
  2612. if (!plane->state) {
  2613. seq_puts(m, "plane->state is NULL!\n");
  2614. continue;
  2615. }
  2616. state = plane->state;
  2617. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2618. plane->base.id,
  2619. plane_type(intel_plane->base.type),
  2620. state->crtc_x, state->crtc_y,
  2621. state->crtc_w, state->crtc_h,
  2622. (state->src_x >> 16),
  2623. ((state->src_x & 0xffff) * 15625) >> 10,
  2624. (state->src_y >> 16),
  2625. ((state->src_y & 0xffff) * 15625) >> 10,
  2626. (state->src_w >> 16),
  2627. ((state->src_w & 0xffff) * 15625) >> 10,
  2628. (state->src_h >> 16),
  2629. ((state->src_h & 0xffff) * 15625) >> 10,
  2630. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2631. plane_rotation(state->rotation));
  2632. }
  2633. }
  2634. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2635. {
  2636. struct intel_crtc_state *pipe_config;
  2637. int num_scalers = intel_crtc->num_scalers;
  2638. int i;
  2639. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2640. /* Not all platformas have a scaler */
  2641. if (num_scalers) {
  2642. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2643. num_scalers,
  2644. pipe_config->scaler_state.scaler_users,
  2645. pipe_config->scaler_state.scaler_id);
  2646. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2647. struct intel_scaler *sc =
  2648. &pipe_config->scaler_state.scalers[i];
  2649. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2650. i, yesno(sc->in_use), sc->mode);
  2651. }
  2652. seq_puts(m, "\n");
  2653. } else {
  2654. seq_puts(m, "\tNo scalers available on this platform\n");
  2655. }
  2656. }
  2657. static int i915_display_info(struct seq_file *m, void *unused)
  2658. {
  2659. struct drm_info_node *node = m->private;
  2660. struct drm_device *dev = node->minor->dev;
  2661. struct drm_i915_private *dev_priv = to_i915(dev);
  2662. struct intel_crtc *crtc;
  2663. struct drm_connector *connector;
  2664. intel_runtime_pm_get(dev_priv);
  2665. drm_modeset_lock_all(dev);
  2666. seq_printf(m, "CRTC info\n");
  2667. seq_printf(m, "---------\n");
  2668. for_each_intel_crtc(dev, crtc) {
  2669. bool active;
  2670. struct intel_crtc_state *pipe_config;
  2671. int x, y;
  2672. pipe_config = to_intel_crtc_state(crtc->base.state);
  2673. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2674. crtc->base.base.id, pipe_name(crtc->pipe),
  2675. yesno(pipe_config->base.active),
  2676. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2677. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2678. if (pipe_config->base.active) {
  2679. intel_crtc_info(m, crtc);
  2680. active = cursor_position(dev, crtc->pipe, &x, &y);
  2681. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2682. yesno(crtc->cursor_base),
  2683. x, y, crtc->base.cursor->state->crtc_w,
  2684. crtc->base.cursor->state->crtc_h,
  2685. crtc->cursor_addr, yesno(active));
  2686. intel_scaler_info(m, crtc);
  2687. intel_plane_info(m, crtc);
  2688. }
  2689. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2690. yesno(!crtc->cpu_fifo_underrun_disabled),
  2691. yesno(!crtc->pch_fifo_underrun_disabled));
  2692. }
  2693. seq_printf(m, "\n");
  2694. seq_printf(m, "Connector info\n");
  2695. seq_printf(m, "--------------\n");
  2696. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2697. intel_connector_info(m, connector);
  2698. }
  2699. drm_modeset_unlock_all(dev);
  2700. intel_runtime_pm_put(dev_priv);
  2701. return 0;
  2702. }
  2703. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2704. {
  2705. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2706. struct drm_device *dev = node->minor->dev;
  2707. struct drm_i915_private *dev_priv = to_i915(dev);
  2708. struct intel_engine_cs *engine;
  2709. int num_rings = INTEL_INFO(dev)->num_rings;
  2710. enum intel_engine_id id;
  2711. int j, ret;
  2712. if (!i915.semaphores) {
  2713. seq_puts(m, "Semaphores are disabled\n");
  2714. return 0;
  2715. }
  2716. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2717. if (ret)
  2718. return ret;
  2719. intel_runtime_pm_get(dev_priv);
  2720. if (IS_BROADWELL(dev)) {
  2721. struct page *page;
  2722. uint64_t *seqno;
  2723. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2724. seqno = (uint64_t *)kmap_atomic(page);
  2725. for_each_engine_id(engine, dev_priv, id) {
  2726. uint64_t offset;
  2727. seq_printf(m, "%s\n", engine->name);
  2728. seq_puts(m, " Last signal:");
  2729. for (j = 0; j < num_rings; j++) {
  2730. offset = id * I915_NUM_ENGINES + j;
  2731. seq_printf(m, "0x%08llx (0x%02llx) ",
  2732. seqno[offset], offset * 8);
  2733. }
  2734. seq_putc(m, '\n');
  2735. seq_puts(m, " Last wait: ");
  2736. for (j = 0; j < num_rings; j++) {
  2737. offset = id + (j * I915_NUM_ENGINES);
  2738. seq_printf(m, "0x%08llx (0x%02llx) ",
  2739. seqno[offset], offset * 8);
  2740. }
  2741. seq_putc(m, '\n');
  2742. }
  2743. kunmap_atomic(seqno);
  2744. } else {
  2745. seq_puts(m, " Last signal:");
  2746. for_each_engine(engine, dev_priv)
  2747. for (j = 0; j < num_rings; j++)
  2748. seq_printf(m, "0x%08x\n",
  2749. I915_READ(engine->semaphore.mbox.signal[j]));
  2750. seq_putc(m, '\n');
  2751. }
  2752. seq_puts(m, "\nSync seqno:\n");
  2753. for_each_engine(engine, dev_priv) {
  2754. for (j = 0; j < num_rings; j++)
  2755. seq_printf(m, " 0x%08x ",
  2756. engine->semaphore.sync_seqno[j]);
  2757. seq_putc(m, '\n');
  2758. }
  2759. seq_putc(m, '\n');
  2760. intel_runtime_pm_put(dev_priv);
  2761. mutex_unlock(&dev->struct_mutex);
  2762. return 0;
  2763. }
  2764. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2765. {
  2766. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2767. struct drm_device *dev = node->minor->dev;
  2768. struct drm_i915_private *dev_priv = to_i915(dev);
  2769. int i;
  2770. drm_modeset_lock_all(dev);
  2771. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2772. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2773. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2774. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2775. pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
  2776. seq_printf(m, " tracked hardware state:\n");
  2777. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2778. seq_printf(m, " dpll_md: 0x%08x\n",
  2779. pll->config.hw_state.dpll_md);
  2780. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2781. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2782. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2783. }
  2784. drm_modeset_unlock_all(dev);
  2785. return 0;
  2786. }
  2787. static int i915_wa_registers(struct seq_file *m, void *unused)
  2788. {
  2789. int i;
  2790. int ret;
  2791. struct intel_engine_cs *engine;
  2792. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2793. struct drm_device *dev = node->minor->dev;
  2794. struct drm_i915_private *dev_priv = to_i915(dev);
  2795. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2796. enum intel_engine_id id;
  2797. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2798. if (ret)
  2799. return ret;
  2800. intel_runtime_pm_get(dev_priv);
  2801. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2802. for_each_engine_id(engine, dev_priv, id)
  2803. seq_printf(m, "HW whitelist count for %s: %d\n",
  2804. engine->name, workarounds->hw_whitelist_count[id]);
  2805. for (i = 0; i < workarounds->count; ++i) {
  2806. i915_reg_t addr;
  2807. u32 mask, value, read;
  2808. bool ok;
  2809. addr = workarounds->reg[i].addr;
  2810. mask = workarounds->reg[i].mask;
  2811. value = workarounds->reg[i].value;
  2812. read = I915_READ(addr);
  2813. ok = (value & mask) == (read & mask);
  2814. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2815. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2816. }
  2817. intel_runtime_pm_put(dev_priv);
  2818. mutex_unlock(&dev->struct_mutex);
  2819. return 0;
  2820. }
  2821. static int i915_ddb_info(struct seq_file *m, void *unused)
  2822. {
  2823. struct drm_info_node *node = m->private;
  2824. struct drm_device *dev = node->minor->dev;
  2825. struct drm_i915_private *dev_priv = to_i915(dev);
  2826. struct skl_ddb_allocation *ddb;
  2827. struct skl_ddb_entry *entry;
  2828. enum pipe pipe;
  2829. int plane;
  2830. if (INTEL_INFO(dev)->gen < 9)
  2831. return 0;
  2832. drm_modeset_lock_all(dev);
  2833. ddb = &dev_priv->wm.skl_hw.ddb;
  2834. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2835. for_each_pipe(dev_priv, pipe) {
  2836. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2837. for_each_plane(dev_priv, pipe, plane) {
  2838. entry = &ddb->plane[pipe][plane];
  2839. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2840. entry->start, entry->end,
  2841. skl_ddb_entry_size(entry));
  2842. }
  2843. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2844. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2845. entry->end, skl_ddb_entry_size(entry));
  2846. }
  2847. drm_modeset_unlock_all(dev);
  2848. return 0;
  2849. }
  2850. static void drrs_status_per_crtc(struct seq_file *m,
  2851. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2852. {
  2853. struct drm_i915_private *dev_priv = to_i915(dev);
  2854. struct i915_drrs *drrs = &dev_priv->drrs;
  2855. int vrefresh = 0;
  2856. struct drm_connector *connector;
  2857. drm_for_each_connector(connector, dev) {
  2858. if (connector->state->crtc != &intel_crtc->base)
  2859. continue;
  2860. seq_printf(m, "%s:\n", connector->name);
  2861. }
  2862. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2863. seq_puts(m, "\tVBT: DRRS_type: Static");
  2864. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2865. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2866. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2867. seq_puts(m, "\tVBT: DRRS_type: None");
  2868. else
  2869. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2870. seq_puts(m, "\n\n");
  2871. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2872. struct intel_panel *panel;
  2873. mutex_lock(&drrs->mutex);
  2874. /* DRRS Supported */
  2875. seq_puts(m, "\tDRRS Supported: Yes\n");
  2876. /* disable_drrs() will make drrs->dp NULL */
  2877. if (!drrs->dp) {
  2878. seq_puts(m, "Idleness DRRS: Disabled");
  2879. mutex_unlock(&drrs->mutex);
  2880. return;
  2881. }
  2882. panel = &drrs->dp->attached_connector->panel;
  2883. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2884. drrs->busy_frontbuffer_bits);
  2885. seq_puts(m, "\n\t\t");
  2886. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2887. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2888. vrefresh = panel->fixed_mode->vrefresh;
  2889. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2890. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2891. vrefresh = panel->downclock_mode->vrefresh;
  2892. } else {
  2893. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2894. drrs->refresh_rate_type);
  2895. mutex_unlock(&drrs->mutex);
  2896. return;
  2897. }
  2898. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2899. seq_puts(m, "\n\t\t");
  2900. mutex_unlock(&drrs->mutex);
  2901. } else {
  2902. /* DRRS not supported. Print the VBT parameter*/
  2903. seq_puts(m, "\tDRRS Supported : No");
  2904. }
  2905. seq_puts(m, "\n");
  2906. }
  2907. static int i915_drrs_status(struct seq_file *m, void *unused)
  2908. {
  2909. struct drm_info_node *node = m->private;
  2910. struct drm_device *dev = node->minor->dev;
  2911. struct intel_crtc *intel_crtc;
  2912. int active_crtc_cnt = 0;
  2913. drm_modeset_lock_all(dev);
  2914. for_each_intel_crtc(dev, intel_crtc) {
  2915. if (intel_crtc->base.state->active) {
  2916. active_crtc_cnt++;
  2917. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2918. drrs_status_per_crtc(m, dev, intel_crtc);
  2919. }
  2920. }
  2921. drm_modeset_unlock_all(dev);
  2922. if (!active_crtc_cnt)
  2923. seq_puts(m, "No active crtc found\n");
  2924. return 0;
  2925. }
  2926. struct pipe_crc_info {
  2927. const char *name;
  2928. struct drm_device *dev;
  2929. enum pipe pipe;
  2930. };
  2931. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2932. {
  2933. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2934. struct drm_device *dev = node->minor->dev;
  2935. struct intel_encoder *intel_encoder;
  2936. struct intel_digital_port *intel_dig_port;
  2937. struct drm_connector *connector;
  2938. drm_modeset_lock_all(dev);
  2939. drm_for_each_connector(connector, dev) {
  2940. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2941. continue;
  2942. intel_encoder = intel_attached_encoder(connector);
  2943. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2944. continue;
  2945. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2946. if (!intel_dig_port->dp.can_mst)
  2947. continue;
  2948. seq_printf(m, "MST Source Port %c\n",
  2949. port_name(intel_dig_port->port));
  2950. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2951. }
  2952. drm_modeset_unlock_all(dev);
  2953. return 0;
  2954. }
  2955. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2956. {
  2957. struct pipe_crc_info *info = inode->i_private;
  2958. struct drm_i915_private *dev_priv = to_i915(info->dev);
  2959. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2960. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2961. return -ENODEV;
  2962. spin_lock_irq(&pipe_crc->lock);
  2963. if (pipe_crc->opened) {
  2964. spin_unlock_irq(&pipe_crc->lock);
  2965. return -EBUSY; /* already open */
  2966. }
  2967. pipe_crc->opened = true;
  2968. filep->private_data = inode->i_private;
  2969. spin_unlock_irq(&pipe_crc->lock);
  2970. return 0;
  2971. }
  2972. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2973. {
  2974. struct pipe_crc_info *info = inode->i_private;
  2975. struct drm_i915_private *dev_priv = to_i915(info->dev);
  2976. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2977. spin_lock_irq(&pipe_crc->lock);
  2978. pipe_crc->opened = false;
  2979. spin_unlock_irq(&pipe_crc->lock);
  2980. return 0;
  2981. }
  2982. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2983. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2984. /* account for \'0' */
  2985. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2986. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2987. {
  2988. assert_spin_locked(&pipe_crc->lock);
  2989. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2990. INTEL_PIPE_CRC_ENTRIES_NR);
  2991. }
  2992. static ssize_t
  2993. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2994. loff_t *pos)
  2995. {
  2996. struct pipe_crc_info *info = filep->private_data;
  2997. struct drm_device *dev = info->dev;
  2998. struct drm_i915_private *dev_priv = to_i915(dev);
  2999. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  3000. char buf[PIPE_CRC_BUFFER_LEN];
  3001. int n_entries;
  3002. ssize_t bytes_read;
  3003. /*
  3004. * Don't allow user space to provide buffers not big enough to hold
  3005. * a line of data.
  3006. */
  3007. if (count < PIPE_CRC_LINE_LEN)
  3008. return -EINVAL;
  3009. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  3010. return 0;
  3011. /* nothing to read */
  3012. spin_lock_irq(&pipe_crc->lock);
  3013. while (pipe_crc_data_count(pipe_crc) == 0) {
  3014. int ret;
  3015. if (filep->f_flags & O_NONBLOCK) {
  3016. spin_unlock_irq(&pipe_crc->lock);
  3017. return -EAGAIN;
  3018. }
  3019. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  3020. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  3021. if (ret) {
  3022. spin_unlock_irq(&pipe_crc->lock);
  3023. return ret;
  3024. }
  3025. }
  3026. /* We now have one or more entries to read */
  3027. n_entries = count / PIPE_CRC_LINE_LEN;
  3028. bytes_read = 0;
  3029. while (n_entries > 0) {
  3030. struct intel_pipe_crc_entry *entry =
  3031. &pipe_crc->entries[pipe_crc->tail];
  3032. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  3033. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  3034. break;
  3035. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  3036. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  3037. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  3038. "%8u %8x %8x %8x %8x %8x\n",
  3039. entry->frame, entry->crc[0],
  3040. entry->crc[1], entry->crc[2],
  3041. entry->crc[3], entry->crc[4]);
  3042. spin_unlock_irq(&pipe_crc->lock);
  3043. if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
  3044. return -EFAULT;
  3045. user_buf += PIPE_CRC_LINE_LEN;
  3046. n_entries--;
  3047. spin_lock_irq(&pipe_crc->lock);
  3048. }
  3049. spin_unlock_irq(&pipe_crc->lock);
  3050. return bytes_read;
  3051. }
  3052. static const struct file_operations i915_pipe_crc_fops = {
  3053. .owner = THIS_MODULE,
  3054. .open = i915_pipe_crc_open,
  3055. .read = i915_pipe_crc_read,
  3056. .release = i915_pipe_crc_release,
  3057. };
  3058. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  3059. {
  3060. .name = "i915_pipe_A_crc",
  3061. .pipe = PIPE_A,
  3062. },
  3063. {
  3064. .name = "i915_pipe_B_crc",
  3065. .pipe = PIPE_B,
  3066. },
  3067. {
  3068. .name = "i915_pipe_C_crc",
  3069. .pipe = PIPE_C,
  3070. },
  3071. };
  3072. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3073. enum pipe pipe)
  3074. {
  3075. struct drm_device *dev = minor->dev;
  3076. struct dentry *ent;
  3077. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3078. info->dev = dev;
  3079. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3080. &i915_pipe_crc_fops);
  3081. if (!ent)
  3082. return -ENOMEM;
  3083. return drm_add_fake_info_node(minor, ent, info);
  3084. }
  3085. static const char * const pipe_crc_sources[] = {
  3086. "none",
  3087. "plane1",
  3088. "plane2",
  3089. "pf",
  3090. "pipe",
  3091. "TV",
  3092. "DP-B",
  3093. "DP-C",
  3094. "DP-D",
  3095. "auto",
  3096. };
  3097. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3098. {
  3099. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3100. return pipe_crc_sources[source];
  3101. }
  3102. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3103. {
  3104. struct drm_device *dev = m->private;
  3105. struct drm_i915_private *dev_priv = to_i915(dev);
  3106. int i;
  3107. for (i = 0; i < I915_MAX_PIPES; i++)
  3108. seq_printf(m, "%c %s\n", pipe_name(i),
  3109. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3110. return 0;
  3111. }
  3112. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3113. {
  3114. struct drm_device *dev = inode->i_private;
  3115. return single_open(file, display_crc_ctl_show, dev);
  3116. }
  3117. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3118. uint32_t *val)
  3119. {
  3120. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3121. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3122. switch (*source) {
  3123. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3124. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3125. break;
  3126. case INTEL_PIPE_CRC_SOURCE_NONE:
  3127. *val = 0;
  3128. break;
  3129. default:
  3130. return -EINVAL;
  3131. }
  3132. return 0;
  3133. }
  3134. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3135. enum intel_pipe_crc_source *source)
  3136. {
  3137. struct intel_encoder *encoder;
  3138. struct intel_crtc *crtc;
  3139. struct intel_digital_port *dig_port;
  3140. int ret = 0;
  3141. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3142. drm_modeset_lock_all(dev);
  3143. for_each_intel_encoder(dev, encoder) {
  3144. if (!encoder->base.crtc)
  3145. continue;
  3146. crtc = to_intel_crtc(encoder->base.crtc);
  3147. if (crtc->pipe != pipe)
  3148. continue;
  3149. switch (encoder->type) {
  3150. case INTEL_OUTPUT_TVOUT:
  3151. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3152. break;
  3153. case INTEL_OUTPUT_DP:
  3154. case INTEL_OUTPUT_EDP:
  3155. dig_port = enc_to_dig_port(&encoder->base);
  3156. switch (dig_port->port) {
  3157. case PORT_B:
  3158. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3159. break;
  3160. case PORT_C:
  3161. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3162. break;
  3163. case PORT_D:
  3164. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3165. break;
  3166. default:
  3167. WARN(1, "nonexisting DP port %c\n",
  3168. port_name(dig_port->port));
  3169. break;
  3170. }
  3171. break;
  3172. default:
  3173. break;
  3174. }
  3175. }
  3176. drm_modeset_unlock_all(dev);
  3177. return ret;
  3178. }
  3179. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3180. enum pipe pipe,
  3181. enum intel_pipe_crc_source *source,
  3182. uint32_t *val)
  3183. {
  3184. struct drm_i915_private *dev_priv = to_i915(dev);
  3185. bool need_stable_symbols = false;
  3186. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3187. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3188. if (ret)
  3189. return ret;
  3190. }
  3191. switch (*source) {
  3192. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3193. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3194. break;
  3195. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3196. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3197. need_stable_symbols = true;
  3198. break;
  3199. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3200. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3201. need_stable_symbols = true;
  3202. break;
  3203. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3204. if (!IS_CHERRYVIEW(dev))
  3205. return -EINVAL;
  3206. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3207. need_stable_symbols = true;
  3208. break;
  3209. case INTEL_PIPE_CRC_SOURCE_NONE:
  3210. *val = 0;
  3211. break;
  3212. default:
  3213. return -EINVAL;
  3214. }
  3215. /*
  3216. * When the pipe CRC tap point is after the transcoders we need
  3217. * to tweak symbol-level features to produce a deterministic series of
  3218. * symbols for a given frame. We need to reset those features only once
  3219. * a frame (instead of every nth symbol):
  3220. * - DC-balance: used to ensure a better clock recovery from the data
  3221. * link (SDVO)
  3222. * - DisplayPort scrambling: used for EMI reduction
  3223. */
  3224. if (need_stable_symbols) {
  3225. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3226. tmp |= DC_BALANCE_RESET_VLV;
  3227. switch (pipe) {
  3228. case PIPE_A:
  3229. tmp |= PIPE_A_SCRAMBLE_RESET;
  3230. break;
  3231. case PIPE_B:
  3232. tmp |= PIPE_B_SCRAMBLE_RESET;
  3233. break;
  3234. case PIPE_C:
  3235. tmp |= PIPE_C_SCRAMBLE_RESET;
  3236. break;
  3237. default:
  3238. return -EINVAL;
  3239. }
  3240. I915_WRITE(PORT_DFT2_G4X, tmp);
  3241. }
  3242. return 0;
  3243. }
  3244. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3245. enum pipe pipe,
  3246. enum intel_pipe_crc_source *source,
  3247. uint32_t *val)
  3248. {
  3249. struct drm_i915_private *dev_priv = to_i915(dev);
  3250. bool need_stable_symbols = false;
  3251. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3252. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3253. if (ret)
  3254. return ret;
  3255. }
  3256. switch (*source) {
  3257. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3258. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3259. break;
  3260. case INTEL_PIPE_CRC_SOURCE_TV:
  3261. if (!SUPPORTS_TV(dev))
  3262. return -EINVAL;
  3263. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3264. break;
  3265. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3266. if (!IS_G4X(dev))
  3267. return -EINVAL;
  3268. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3269. need_stable_symbols = true;
  3270. break;
  3271. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3272. if (!IS_G4X(dev))
  3273. return -EINVAL;
  3274. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3275. need_stable_symbols = true;
  3276. break;
  3277. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3278. if (!IS_G4X(dev))
  3279. return -EINVAL;
  3280. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3281. need_stable_symbols = true;
  3282. break;
  3283. case INTEL_PIPE_CRC_SOURCE_NONE:
  3284. *val = 0;
  3285. break;
  3286. default:
  3287. return -EINVAL;
  3288. }
  3289. /*
  3290. * When the pipe CRC tap point is after the transcoders we need
  3291. * to tweak symbol-level features to produce a deterministic series of
  3292. * symbols for a given frame. We need to reset those features only once
  3293. * a frame (instead of every nth symbol):
  3294. * - DC-balance: used to ensure a better clock recovery from the data
  3295. * link (SDVO)
  3296. * - DisplayPort scrambling: used for EMI reduction
  3297. */
  3298. if (need_stable_symbols) {
  3299. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3300. WARN_ON(!IS_G4X(dev));
  3301. I915_WRITE(PORT_DFT_I9XX,
  3302. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3303. if (pipe == PIPE_A)
  3304. tmp |= PIPE_A_SCRAMBLE_RESET;
  3305. else
  3306. tmp |= PIPE_B_SCRAMBLE_RESET;
  3307. I915_WRITE(PORT_DFT2_G4X, tmp);
  3308. }
  3309. return 0;
  3310. }
  3311. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3312. enum pipe pipe)
  3313. {
  3314. struct drm_i915_private *dev_priv = to_i915(dev);
  3315. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3316. switch (pipe) {
  3317. case PIPE_A:
  3318. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3319. break;
  3320. case PIPE_B:
  3321. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3322. break;
  3323. case PIPE_C:
  3324. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3325. break;
  3326. default:
  3327. return;
  3328. }
  3329. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3330. tmp &= ~DC_BALANCE_RESET_VLV;
  3331. I915_WRITE(PORT_DFT2_G4X, tmp);
  3332. }
  3333. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3334. enum pipe pipe)
  3335. {
  3336. struct drm_i915_private *dev_priv = to_i915(dev);
  3337. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3338. if (pipe == PIPE_A)
  3339. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3340. else
  3341. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3342. I915_WRITE(PORT_DFT2_G4X, tmp);
  3343. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3344. I915_WRITE(PORT_DFT_I9XX,
  3345. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3346. }
  3347. }
  3348. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3349. uint32_t *val)
  3350. {
  3351. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3352. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3353. switch (*source) {
  3354. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3355. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3356. break;
  3357. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3358. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3359. break;
  3360. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3361. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3362. break;
  3363. case INTEL_PIPE_CRC_SOURCE_NONE:
  3364. *val = 0;
  3365. break;
  3366. default:
  3367. return -EINVAL;
  3368. }
  3369. return 0;
  3370. }
  3371. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3372. {
  3373. struct drm_i915_private *dev_priv = to_i915(dev);
  3374. struct intel_crtc *crtc =
  3375. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3376. struct intel_crtc_state *pipe_config;
  3377. struct drm_atomic_state *state;
  3378. int ret = 0;
  3379. drm_modeset_lock_all(dev);
  3380. state = drm_atomic_state_alloc(dev);
  3381. if (!state) {
  3382. ret = -ENOMEM;
  3383. goto out;
  3384. }
  3385. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3386. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3387. if (IS_ERR(pipe_config)) {
  3388. ret = PTR_ERR(pipe_config);
  3389. goto out;
  3390. }
  3391. pipe_config->pch_pfit.force_thru = enable;
  3392. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3393. pipe_config->pch_pfit.enabled != enable)
  3394. pipe_config->base.connectors_changed = true;
  3395. ret = drm_atomic_commit(state);
  3396. out:
  3397. drm_modeset_unlock_all(dev);
  3398. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3399. if (ret)
  3400. drm_atomic_state_free(state);
  3401. }
  3402. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3403. enum pipe pipe,
  3404. enum intel_pipe_crc_source *source,
  3405. uint32_t *val)
  3406. {
  3407. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3408. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3409. switch (*source) {
  3410. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3411. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3412. break;
  3413. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3414. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3415. break;
  3416. case INTEL_PIPE_CRC_SOURCE_PF:
  3417. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3418. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3419. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3420. break;
  3421. case INTEL_PIPE_CRC_SOURCE_NONE:
  3422. *val = 0;
  3423. break;
  3424. default:
  3425. return -EINVAL;
  3426. }
  3427. return 0;
  3428. }
  3429. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3430. enum intel_pipe_crc_source source)
  3431. {
  3432. struct drm_i915_private *dev_priv = to_i915(dev);
  3433. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3434. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3435. pipe));
  3436. enum intel_display_power_domain power_domain;
  3437. u32 val = 0; /* shut up gcc */
  3438. int ret;
  3439. if (pipe_crc->source == source)
  3440. return 0;
  3441. /* forbid changing the source without going back to 'none' */
  3442. if (pipe_crc->source && source)
  3443. return -EINVAL;
  3444. power_domain = POWER_DOMAIN_PIPE(pipe);
  3445. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3446. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3447. return -EIO;
  3448. }
  3449. if (IS_GEN2(dev))
  3450. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3451. else if (INTEL_INFO(dev)->gen < 5)
  3452. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3453. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3454. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3455. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3456. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3457. else
  3458. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3459. if (ret != 0)
  3460. goto out;
  3461. /* none -> real source transition */
  3462. if (source) {
  3463. struct intel_pipe_crc_entry *entries;
  3464. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3465. pipe_name(pipe), pipe_crc_source_name(source));
  3466. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3467. sizeof(pipe_crc->entries[0]),
  3468. GFP_KERNEL);
  3469. if (!entries) {
  3470. ret = -ENOMEM;
  3471. goto out;
  3472. }
  3473. /*
  3474. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3475. * enabled and disabled dynamically based on package C states,
  3476. * user space can't make reliable use of the CRCs, so let's just
  3477. * completely disable it.
  3478. */
  3479. hsw_disable_ips(crtc);
  3480. spin_lock_irq(&pipe_crc->lock);
  3481. kfree(pipe_crc->entries);
  3482. pipe_crc->entries = entries;
  3483. pipe_crc->head = 0;
  3484. pipe_crc->tail = 0;
  3485. spin_unlock_irq(&pipe_crc->lock);
  3486. }
  3487. pipe_crc->source = source;
  3488. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3489. POSTING_READ(PIPE_CRC_CTL(pipe));
  3490. /* real source -> none transition */
  3491. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3492. struct intel_pipe_crc_entry *entries;
  3493. struct intel_crtc *crtc =
  3494. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3495. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3496. pipe_name(pipe));
  3497. drm_modeset_lock(&crtc->base.mutex, NULL);
  3498. if (crtc->base.state->active)
  3499. intel_wait_for_vblank(dev, pipe);
  3500. drm_modeset_unlock(&crtc->base.mutex);
  3501. spin_lock_irq(&pipe_crc->lock);
  3502. entries = pipe_crc->entries;
  3503. pipe_crc->entries = NULL;
  3504. pipe_crc->head = 0;
  3505. pipe_crc->tail = 0;
  3506. spin_unlock_irq(&pipe_crc->lock);
  3507. kfree(entries);
  3508. if (IS_G4X(dev))
  3509. g4x_undo_pipe_scramble_reset(dev, pipe);
  3510. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3511. vlv_undo_pipe_scramble_reset(dev, pipe);
  3512. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3513. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3514. hsw_enable_ips(crtc);
  3515. }
  3516. ret = 0;
  3517. out:
  3518. intel_display_power_put(dev_priv, power_domain);
  3519. return ret;
  3520. }
  3521. /*
  3522. * Parse pipe CRC command strings:
  3523. * command: wsp* object wsp+ name wsp+ source wsp*
  3524. * object: 'pipe'
  3525. * name: (A | B | C)
  3526. * source: (none | plane1 | plane2 | pf)
  3527. * wsp: (#0x20 | #0x9 | #0xA)+
  3528. *
  3529. * eg.:
  3530. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3531. * "pipe A none" -> Stop CRC
  3532. */
  3533. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3534. {
  3535. int n_words = 0;
  3536. while (*buf) {
  3537. char *end;
  3538. /* skip leading white space */
  3539. buf = skip_spaces(buf);
  3540. if (!*buf)
  3541. break; /* end of buffer */
  3542. /* find end of word */
  3543. for (end = buf; *end && !isspace(*end); end++)
  3544. ;
  3545. if (n_words == max_words) {
  3546. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3547. max_words);
  3548. return -EINVAL; /* ran out of words[] before bytes */
  3549. }
  3550. if (*end)
  3551. *end++ = '\0';
  3552. words[n_words++] = buf;
  3553. buf = end;
  3554. }
  3555. return n_words;
  3556. }
  3557. enum intel_pipe_crc_object {
  3558. PIPE_CRC_OBJECT_PIPE,
  3559. };
  3560. static const char * const pipe_crc_objects[] = {
  3561. "pipe",
  3562. };
  3563. static int
  3564. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3565. {
  3566. int i;
  3567. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3568. if (!strcmp(buf, pipe_crc_objects[i])) {
  3569. *o = i;
  3570. return 0;
  3571. }
  3572. return -EINVAL;
  3573. }
  3574. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3575. {
  3576. const char name = buf[0];
  3577. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3578. return -EINVAL;
  3579. *pipe = name - 'A';
  3580. return 0;
  3581. }
  3582. static int
  3583. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3584. {
  3585. int i;
  3586. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3587. if (!strcmp(buf, pipe_crc_sources[i])) {
  3588. *s = i;
  3589. return 0;
  3590. }
  3591. return -EINVAL;
  3592. }
  3593. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3594. {
  3595. #define N_WORDS 3
  3596. int n_words;
  3597. char *words[N_WORDS];
  3598. enum pipe pipe;
  3599. enum intel_pipe_crc_object object;
  3600. enum intel_pipe_crc_source source;
  3601. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3602. if (n_words != N_WORDS) {
  3603. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3604. N_WORDS);
  3605. return -EINVAL;
  3606. }
  3607. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3608. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3609. return -EINVAL;
  3610. }
  3611. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3612. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3613. return -EINVAL;
  3614. }
  3615. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3616. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3617. return -EINVAL;
  3618. }
  3619. return pipe_crc_set_source(dev, pipe, source);
  3620. }
  3621. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3622. size_t len, loff_t *offp)
  3623. {
  3624. struct seq_file *m = file->private_data;
  3625. struct drm_device *dev = m->private;
  3626. char *tmpbuf;
  3627. int ret;
  3628. if (len == 0)
  3629. return 0;
  3630. if (len > PAGE_SIZE - 1) {
  3631. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3632. PAGE_SIZE);
  3633. return -E2BIG;
  3634. }
  3635. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3636. if (!tmpbuf)
  3637. return -ENOMEM;
  3638. if (copy_from_user(tmpbuf, ubuf, len)) {
  3639. ret = -EFAULT;
  3640. goto out;
  3641. }
  3642. tmpbuf[len] = '\0';
  3643. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3644. out:
  3645. kfree(tmpbuf);
  3646. if (ret < 0)
  3647. return ret;
  3648. *offp += len;
  3649. return len;
  3650. }
  3651. static const struct file_operations i915_display_crc_ctl_fops = {
  3652. .owner = THIS_MODULE,
  3653. .open = display_crc_ctl_open,
  3654. .read = seq_read,
  3655. .llseek = seq_lseek,
  3656. .release = single_release,
  3657. .write = display_crc_ctl_write
  3658. };
  3659. static ssize_t i915_displayport_test_active_write(struct file *file,
  3660. const char __user *ubuf,
  3661. size_t len, loff_t *offp)
  3662. {
  3663. char *input_buffer;
  3664. int status = 0;
  3665. struct drm_device *dev;
  3666. struct drm_connector *connector;
  3667. struct list_head *connector_list;
  3668. struct intel_dp *intel_dp;
  3669. int val = 0;
  3670. dev = ((struct seq_file *)file->private_data)->private;
  3671. connector_list = &dev->mode_config.connector_list;
  3672. if (len == 0)
  3673. return 0;
  3674. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3675. if (!input_buffer)
  3676. return -ENOMEM;
  3677. if (copy_from_user(input_buffer, ubuf, len)) {
  3678. status = -EFAULT;
  3679. goto out;
  3680. }
  3681. input_buffer[len] = '\0';
  3682. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3683. list_for_each_entry(connector, connector_list, head) {
  3684. if (connector->connector_type !=
  3685. DRM_MODE_CONNECTOR_DisplayPort)
  3686. continue;
  3687. if (connector->status == connector_status_connected &&
  3688. connector->encoder != NULL) {
  3689. intel_dp = enc_to_intel_dp(connector->encoder);
  3690. status = kstrtoint(input_buffer, 10, &val);
  3691. if (status < 0)
  3692. goto out;
  3693. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3694. /* To prevent erroneous activation of the compliance
  3695. * testing code, only accept an actual value of 1 here
  3696. */
  3697. if (val == 1)
  3698. intel_dp->compliance_test_active = 1;
  3699. else
  3700. intel_dp->compliance_test_active = 0;
  3701. }
  3702. }
  3703. out:
  3704. kfree(input_buffer);
  3705. if (status < 0)
  3706. return status;
  3707. *offp += len;
  3708. return len;
  3709. }
  3710. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3711. {
  3712. struct drm_device *dev = m->private;
  3713. struct drm_connector *connector;
  3714. struct list_head *connector_list = &dev->mode_config.connector_list;
  3715. struct intel_dp *intel_dp;
  3716. list_for_each_entry(connector, connector_list, head) {
  3717. if (connector->connector_type !=
  3718. DRM_MODE_CONNECTOR_DisplayPort)
  3719. continue;
  3720. if (connector->status == connector_status_connected &&
  3721. connector->encoder != NULL) {
  3722. intel_dp = enc_to_intel_dp(connector->encoder);
  3723. if (intel_dp->compliance_test_active)
  3724. seq_puts(m, "1");
  3725. else
  3726. seq_puts(m, "0");
  3727. } else
  3728. seq_puts(m, "0");
  3729. }
  3730. return 0;
  3731. }
  3732. static int i915_displayport_test_active_open(struct inode *inode,
  3733. struct file *file)
  3734. {
  3735. struct drm_device *dev = inode->i_private;
  3736. return single_open(file, i915_displayport_test_active_show, dev);
  3737. }
  3738. static const struct file_operations i915_displayport_test_active_fops = {
  3739. .owner = THIS_MODULE,
  3740. .open = i915_displayport_test_active_open,
  3741. .read = seq_read,
  3742. .llseek = seq_lseek,
  3743. .release = single_release,
  3744. .write = i915_displayport_test_active_write
  3745. };
  3746. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3747. {
  3748. struct drm_device *dev = m->private;
  3749. struct drm_connector *connector;
  3750. struct list_head *connector_list = &dev->mode_config.connector_list;
  3751. struct intel_dp *intel_dp;
  3752. list_for_each_entry(connector, connector_list, head) {
  3753. if (connector->connector_type !=
  3754. DRM_MODE_CONNECTOR_DisplayPort)
  3755. continue;
  3756. if (connector->status == connector_status_connected &&
  3757. connector->encoder != NULL) {
  3758. intel_dp = enc_to_intel_dp(connector->encoder);
  3759. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3760. } else
  3761. seq_puts(m, "0");
  3762. }
  3763. return 0;
  3764. }
  3765. static int i915_displayport_test_data_open(struct inode *inode,
  3766. struct file *file)
  3767. {
  3768. struct drm_device *dev = inode->i_private;
  3769. return single_open(file, i915_displayport_test_data_show, dev);
  3770. }
  3771. static const struct file_operations i915_displayport_test_data_fops = {
  3772. .owner = THIS_MODULE,
  3773. .open = i915_displayport_test_data_open,
  3774. .read = seq_read,
  3775. .llseek = seq_lseek,
  3776. .release = single_release
  3777. };
  3778. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3779. {
  3780. struct drm_device *dev = m->private;
  3781. struct drm_connector *connector;
  3782. struct list_head *connector_list = &dev->mode_config.connector_list;
  3783. struct intel_dp *intel_dp;
  3784. list_for_each_entry(connector, connector_list, head) {
  3785. if (connector->connector_type !=
  3786. DRM_MODE_CONNECTOR_DisplayPort)
  3787. continue;
  3788. if (connector->status == connector_status_connected &&
  3789. connector->encoder != NULL) {
  3790. intel_dp = enc_to_intel_dp(connector->encoder);
  3791. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3792. } else
  3793. seq_puts(m, "0");
  3794. }
  3795. return 0;
  3796. }
  3797. static int i915_displayport_test_type_open(struct inode *inode,
  3798. struct file *file)
  3799. {
  3800. struct drm_device *dev = inode->i_private;
  3801. return single_open(file, i915_displayport_test_type_show, dev);
  3802. }
  3803. static const struct file_operations i915_displayport_test_type_fops = {
  3804. .owner = THIS_MODULE,
  3805. .open = i915_displayport_test_type_open,
  3806. .read = seq_read,
  3807. .llseek = seq_lseek,
  3808. .release = single_release
  3809. };
  3810. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3811. {
  3812. struct drm_device *dev = m->private;
  3813. int level;
  3814. int num_levels;
  3815. if (IS_CHERRYVIEW(dev))
  3816. num_levels = 3;
  3817. else if (IS_VALLEYVIEW(dev))
  3818. num_levels = 1;
  3819. else
  3820. num_levels = ilk_wm_max_level(dev) + 1;
  3821. drm_modeset_lock_all(dev);
  3822. for (level = 0; level < num_levels; level++) {
  3823. unsigned int latency = wm[level];
  3824. /*
  3825. * - WM1+ latency values in 0.5us units
  3826. * - latencies are in us on gen9/vlv/chv
  3827. */
  3828. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
  3829. IS_CHERRYVIEW(dev))
  3830. latency *= 10;
  3831. else if (level > 0)
  3832. latency *= 5;
  3833. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3834. level, wm[level], latency / 10, latency % 10);
  3835. }
  3836. drm_modeset_unlock_all(dev);
  3837. }
  3838. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3839. {
  3840. struct drm_device *dev = m->private;
  3841. struct drm_i915_private *dev_priv = to_i915(dev);
  3842. const uint16_t *latencies;
  3843. if (INTEL_INFO(dev)->gen >= 9)
  3844. latencies = dev_priv->wm.skl_latency;
  3845. else
  3846. latencies = to_i915(dev)->wm.pri_latency;
  3847. wm_latency_show(m, latencies);
  3848. return 0;
  3849. }
  3850. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3851. {
  3852. struct drm_device *dev = m->private;
  3853. struct drm_i915_private *dev_priv = to_i915(dev);
  3854. const uint16_t *latencies;
  3855. if (INTEL_INFO(dev)->gen >= 9)
  3856. latencies = dev_priv->wm.skl_latency;
  3857. else
  3858. latencies = to_i915(dev)->wm.spr_latency;
  3859. wm_latency_show(m, latencies);
  3860. return 0;
  3861. }
  3862. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3863. {
  3864. struct drm_device *dev = m->private;
  3865. struct drm_i915_private *dev_priv = to_i915(dev);
  3866. const uint16_t *latencies;
  3867. if (INTEL_INFO(dev)->gen >= 9)
  3868. latencies = dev_priv->wm.skl_latency;
  3869. else
  3870. latencies = to_i915(dev)->wm.cur_latency;
  3871. wm_latency_show(m, latencies);
  3872. return 0;
  3873. }
  3874. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3875. {
  3876. struct drm_device *dev = inode->i_private;
  3877. if (INTEL_INFO(dev)->gen < 5)
  3878. return -ENODEV;
  3879. return single_open(file, pri_wm_latency_show, dev);
  3880. }
  3881. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3882. {
  3883. struct drm_device *dev = inode->i_private;
  3884. if (HAS_GMCH_DISPLAY(dev))
  3885. return -ENODEV;
  3886. return single_open(file, spr_wm_latency_show, dev);
  3887. }
  3888. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3889. {
  3890. struct drm_device *dev = inode->i_private;
  3891. if (HAS_GMCH_DISPLAY(dev))
  3892. return -ENODEV;
  3893. return single_open(file, cur_wm_latency_show, dev);
  3894. }
  3895. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3896. size_t len, loff_t *offp, uint16_t wm[8])
  3897. {
  3898. struct seq_file *m = file->private_data;
  3899. struct drm_device *dev = m->private;
  3900. uint16_t new[8] = { 0 };
  3901. int num_levels;
  3902. int level;
  3903. int ret;
  3904. char tmp[32];
  3905. if (IS_CHERRYVIEW(dev))
  3906. num_levels = 3;
  3907. else if (IS_VALLEYVIEW(dev))
  3908. num_levels = 1;
  3909. else
  3910. num_levels = ilk_wm_max_level(dev) + 1;
  3911. if (len >= sizeof(tmp))
  3912. return -EINVAL;
  3913. if (copy_from_user(tmp, ubuf, len))
  3914. return -EFAULT;
  3915. tmp[len] = '\0';
  3916. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3917. &new[0], &new[1], &new[2], &new[3],
  3918. &new[4], &new[5], &new[6], &new[7]);
  3919. if (ret != num_levels)
  3920. return -EINVAL;
  3921. drm_modeset_lock_all(dev);
  3922. for (level = 0; level < num_levels; level++)
  3923. wm[level] = new[level];
  3924. drm_modeset_unlock_all(dev);
  3925. return len;
  3926. }
  3927. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3928. size_t len, loff_t *offp)
  3929. {
  3930. struct seq_file *m = file->private_data;
  3931. struct drm_device *dev = m->private;
  3932. struct drm_i915_private *dev_priv = to_i915(dev);
  3933. uint16_t *latencies;
  3934. if (INTEL_INFO(dev)->gen >= 9)
  3935. latencies = dev_priv->wm.skl_latency;
  3936. else
  3937. latencies = to_i915(dev)->wm.pri_latency;
  3938. return wm_latency_write(file, ubuf, len, offp, latencies);
  3939. }
  3940. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3941. size_t len, loff_t *offp)
  3942. {
  3943. struct seq_file *m = file->private_data;
  3944. struct drm_device *dev = m->private;
  3945. struct drm_i915_private *dev_priv = to_i915(dev);
  3946. uint16_t *latencies;
  3947. if (INTEL_INFO(dev)->gen >= 9)
  3948. latencies = dev_priv->wm.skl_latency;
  3949. else
  3950. latencies = to_i915(dev)->wm.spr_latency;
  3951. return wm_latency_write(file, ubuf, len, offp, latencies);
  3952. }
  3953. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3954. size_t len, loff_t *offp)
  3955. {
  3956. struct seq_file *m = file->private_data;
  3957. struct drm_device *dev = m->private;
  3958. struct drm_i915_private *dev_priv = to_i915(dev);
  3959. uint16_t *latencies;
  3960. if (INTEL_INFO(dev)->gen >= 9)
  3961. latencies = dev_priv->wm.skl_latency;
  3962. else
  3963. latencies = to_i915(dev)->wm.cur_latency;
  3964. return wm_latency_write(file, ubuf, len, offp, latencies);
  3965. }
  3966. static const struct file_operations i915_pri_wm_latency_fops = {
  3967. .owner = THIS_MODULE,
  3968. .open = pri_wm_latency_open,
  3969. .read = seq_read,
  3970. .llseek = seq_lseek,
  3971. .release = single_release,
  3972. .write = pri_wm_latency_write
  3973. };
  3974. static const struct file_operations i915_spr_wm_latency_fops = {
  3975. .owner = THIS_MODULE,
  3976. .open = spr_wm_latency_open,
  3977. .read = seq_read,
  3978. .llseek = seq_lseek,
  3979. .release = single_release,
  3980. .write = spr_wm_latency_write
  3981. };
  3982. static const struct file_operations i915_cur_wm_latency_fops = {
  3983. .owner = THIS_MODULE,
  3984. .open = cur_wm_latency_open,
  3985. .read = seq_read,
  3986. .llseek = seq_lseek,
  3987. .release = single_release,
  3988. .write = cur_wm_latency_write
  3989. };
  3990. static int
  3991. i915_wedged_get(void *data, u64 *val)
  3992. {
  3993. struct drm_device *dev = data;
  3994. struct drm_i915_private *dev_priv = to_i915(dev);
  3995. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  3996. return 0;
  3997. }
  3998. static int
  3999. i915_wedged_set(void *data, u64 val)
  4000. {
  4001. struct drm_device *dev = data;
  4002. struct drm_i915_private *dev_priv = to_i915(dev);
  4003. /*
  4004. * There is no safeguard against this debugfs entry colliding
  4005. * with the hangcheck calling same i915_handle_error() in
  4006. * parallel, causing an explosion. For now we assume that the
  4007. * test harness is responsible enough not to inject gpu hangs
  4008. * while it is writing to 'i915_wedged'
  4009. */
  4010. if (i915_reset_in_progress(&dev_priv->gpu_error))
  4011. return -EAGAIN;
  4012. intel_runtime_pm_get(dev_priv);
  4013. i915_handle_error(dev_priv, val,
  4014. "Manually setting wedged to %llu", val);
  4015. intel_runtime_pm_put(dev_priv);
  4016. return 0;
  4017. }
  4018. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  4019. i915_wedged_get, i915_wedged_set,
  4020. "%llu\n");
  4021. static int
  4022. i915_ring_missed_irq_get(void *data, u64 *val)
  4023. {
  4024. struct drm_device *dev = data;
  4025. struct drm_i915_private *dev_priv = to_i915(dev);
  4026. *val = dev_priv->gpu_error.missed_irq_rings;
  4027. return 0;
  4028. }
  4029. static int
  4030. i915_ring_missed_irq_set(void *data, u64 val)
  4031. {
  4032. struct drm_device *dev = data;
  4033. struct drm_i915_private *dev_priv = to_i915(dev);
  4034. int ret;
  4035. /* Lock against concurrent debugfs callers */
  4036. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4037. if (ret)
  4038. return ret;
  4039. dev_priv->gpu_error.missed_irq_rings = val;
  4040. mutex_unlock(&dev->struct_mutex);
  4041. return 0;
  4042. }
  4043. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4044. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4045. "0x%08llx\n");
  4046. static int
  4047. i915_ring_test_irq_get(void *data, u64 *val)
  4048. {
  4049. struct drm_device *dev = data;
  4050. struct drm_i915_private *dev_priv = to_i915(dev);
  4051. *val = dev_priv->gpu_error.test_irq_rings;
  4052. return 0;
  4053. }
  4054. static int
  4055. i915_ring_test_irq_set(void *data, u64 val)
  4056. {
  4057. struct drm_device *dev = data;
  4058. struct drm_i915_private *dev_priv = to_i915(dev);
  4059. val &= INTEL_INFO(dev_priv)->ring_mask;
  4060. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4061. dev_priv->gpu_error.test_irq_rings = val;
  4062. return 0;
  4063. }
  4064. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4065. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4066. "0x%08llx\n");
  4067. #define DROP_UNBOUND 0x1
  4068. #define DROP_BOUND 0x2
  4069. #define DROP_RETIRE 0x4
  4070. #define DROP_ACTIVE 0x8
  4071. #define DROP_ALL (DROP_UNBOUND | \
  4072. DROP_BOUND | \
  4073. DROP_RETIRE | \
  4074. DROP_ACTIVE)
  4075. static int
  4076. i915_drop_caches_get(void *data, u64 *val)
  4077. {
  4078. *val = DROP_ALL;
  4079. return 0;
  4080. }
  4081. static int
  4082. i915_drop_caches_set(void *data, u64 val)
  4083. {
  4084. struct drm_device *dev = data;
  4085. struct drm_i915_private *dev_priv = to_i915(dev);
  4086. int ret;
  4087. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4088. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4089. * on ioctls on -EAGAIN. */
  4090. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4091. if (ret)
  4092. return ret;
  4093. if (val & DROP_ACTIVE) {
  4094. ret = i915_gem_wait_for_idle(dev_priv, true);
  4095. if (ret)
  4096. goto unlock;
  4097. }
  4098. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4099. i915_gem_retire_requests(dev_priv);
  4100. if (val & DROP_BOUND)
  4101. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4102. if (val & DROP_UNBOUND)
  4103. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4104. unlock:
  4105. mutex_unlock(&dev->struct_mutex);
  4106. return ret;
  4107. }
  4108. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4109. i915_drop_caches_get, i915_drop_caches_set,
  4110. "0x%08llx\n");
  4111. static int
  4112. i915_max_freq_get(void *data, u64 *val)
  4113. {
  4114. struct drm_device *dev = data;
  4115. struct drm_i915_private *dev_priv = to_i915(dev);
  4116. if (INTEL_INFO(dev)->gen < 6)
  4117. return -ENODEV;
  4118. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4119. return 0;
  4120. }
  4121. static int
  4122. i915_max_freq_set(void *data, u64 val)
  4123. {
  4124. struct drm_device *dev = data;
  4125. struct drm_i915_private *dev_priv = to_i915(dev);
  4126. u32 hw_max, hw_min;
  4127. int ret;
  4128. if (INTEL_INFO(dev)->gen < 6)
  4129. return -ENODEV;
  4130. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4131. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4132. if (ret)
  4133. return ret;
  4134. /*
  4135. * Turbo will still be enabled, but won't go above the set value.
  4136. */
  4137. val = intel_freq_opcode(dev_priv, val);
  4138. hw_max = dev_priv->rps.max_freq;
  4139. hw_min = dev_priv->rps.min_freq;
  4140. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4141. mutex_unlock(&dev_priv->rps.hw_lock);
  4142. return -EINVAL;
  4143. }
  4144. dev_priv->rps.max_freq_softlimit = val;
  4145. intel_set_rps(dev_priv, val);
  4146. mutex_unlock(&dev_priv->rps.hw_lock);
  4147. return 0;
  4148. }
  4149. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4150. i915_max_freq_get, i915_max_freq_set,
  4151. "%llu\n");
  4152. static int
  4153. i915_min_freq_get(void *data, u64 *val)
  4154. {
  4155. struct drm_device *dev = data;
  4156. struct drm_i915_private *dev_priv = to_i915(dev);
  4157. if (INTEL_GEN(dev_priv) < 6)
  4158. return -ENODEV;
  4159. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4160. return 0;
  4161. }
  4162. static int
  4163. i915_min_freq_set(void *data, u64 val)
  4164. {
  4165. struct drm_device *dev = data;
  4166. struct drm_i915_private *dev_priv = to_i915(dev);
  4167. u32 hw_max, hw_min;
  4168. int ret;
  4169. if (INTEL_GEN(dev_priv) < 6)
  4170. return -ENODEV;
  4171. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4172. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4173. if (ret)
  4174. return ret;
  4175. /*
  4176. * Turbo will still be enabled, but won't go below the set value.
  4177. */
  4178. val = intel_freq_opcode(dev_priv, val);
  4179. hw_max = dev_priv->rps.max_freq;
  4180. hw_min = dev_priv->rps.min_freq;
  4181. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4182. mutex_unlock(&dev_priv->rps.hw_lock);
  4183. return -EINVAL;
  4184. }
  4185. dev_priv->rps.min_freq_softlimit = val;
  4186. intel_set_rps(dev_priv, val);
  4187. mutex_unlock(&dev_priv->rps.hw_lock);
  4188. return 0;
  4189. }
  4190. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4191. i915_min_freq_get, i915_min_freq_set,
  4192. "%llu\n");
  4193. static int
  4194. i915_cache_sharing_get(void *data, u64 *val)
  4195. {
  4196. struct drm_device *dev = data;
  4197. struct drm_i915_private *dev_priv = to_i915(dev);
  4198. u32 snpcr;
  4199. int ret;
  4200. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4201. return -ENODEV;
  4202. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4203. if (ret)
  4204. return ret;
  4205. intel_runtime_pm_get(dev_priv);
  4206. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4207. intel_runtime_pm_put(dev_priv);
  4208. mutex_unlock(&dev_priv->drm.struct_mutex);
  4209. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4210. return 0;
  4211. }
  4212. static int
  4213. i915_cache_sharing_set(void *data, u64 val)
  4214. {
  4215. struct drm_device *dev = data;
  4216. struct drm_i915_private *dev_priv = to_i915(dev);
  4217. u32 snpcr;
  4218. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4219. return -ENODEV;
  4220. if (val > 3)
  4221. return -EINVAL;
  4222. intel_runtime_pm_get(dev_priv);
  4223. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4224. /* Update the cache sharing policy here as well */
  4225. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4226. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4227. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4228. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4229. intel_runtime_pm_put(dev_priv);
  4230. return 0;
  4231. }
  4232. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4233. i915_cache_sharing_get, i915_cache_sharing_set,
  4234. "%llu\n");
  4235. struct sseu_dev_status {
  4236. unsigned int slice_total;
  4237. unsigned int subslice_total;
  4238. unsigned int subslice_per_slice;
  4239. unsigned int eu_total;
  4240. unsigned int eu_per_subslice;
  4241. };
  4242. static void cherryview_sseu_device_status(struct drm_device *dev,
  4243. struct sseu_dev_status *stat)
  4244. {
  4245. struct drm_i915_private *dev_priv = to_i915(dev);
  4246. int ss_max = 2;
  4247. int ss;
  4248. u32 sig1[ss_max], sig2[ss_max];
  4249. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4250. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4251. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4252. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4253. for (ss = 0; ss < ss_max; ss++) {
  4254. unsigned int eu_cnt;
  4255. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4256. /* skip disabled subslice */
  4257. continue;
  4258. stat->slice_total = 1;
  4259. stat->subslice_per_slice++;
  4260. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4261. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4262. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4263. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4264. stat->eu_total += eu_cnt;
  4265. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4266. }
  4267. stat->subslice_total = stat->subslice_per_slice;
  4268. }
  4269. static void gen9_sseu_device_status(struct drm_device *dev,
  4270. struct sseu_dev_status *stat)
  4271. {
  4272. struct drm_i915_private *dev_priv = to_i915(dev);
  4273. int s_max = 3, ss_max = 4;
  4274. int s, ss;
  4275. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4276. /* BXT has a single slice and at most 3 subslices. */
  4277. if (IS_BROXTON(dev)) {
  4278. s_max = 1;
  4279. ss_max = 3;
  4280. }
  4281. for (s = 0; s < s_max; s++) {
  4282. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4283. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4284. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4285. }
  4286. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4287. GEN9_PGCTL_SSA_EU19_ACK |
  4288. GEN9_PGCTL_SSA_EU210_ACK |
  4289. GEN9_PGCTL_SSA_EU311_ACK;
  4290. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4291. GEN9_PGCTL_SSB_EU19_ACK |
  4292. GEN9_PGCTL_SSB_EU210_ACK |
  4293. GEN9_PGCTL_SSB_EU311_ACK;
  4294. for (s = 0; s < s_max; s++) {
  4295. unsigned int ss_cnt = 0;
  4296. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4297. /* skip disabled slice */
  4298. continue;
  4299. stat->slice_total++;
  4300. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4301. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4302. for (ss = 0; ss < ss_max; ss++) {
  4303. unsigned int eu_cnt;
  4304. if (IS_BROXTON(dev) &&
  4305. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4306. /* skip disabled subslice */
  4307. continue;
  4308. if (IS_BROXTON(dev))
  4309. ss_cnt++;
  4310. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4311. eu_mask[ss%2]);
  4312. stat->eu_total += eu_cnt;
  4313. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4314. eu_cnt);
  4315. }
  4316. stat->subslice_total += ss_cnt;
  4317. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4318. ss_cnt);
  4319. }
  4320. }
  4321. static void broadwell_sseu_device_status(struct drm_device *dev,
  4322. struct sseu_dev_status *stat)
  4323. {
  4324. struct drm_i915_private *dev_priv = to_i915(dev);
  4325. int s;
  4326. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4327. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4328. if (stat->slice_total) {
  4329. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4330. stat->subslice_total = stat->slice_total *
  4331. stat->subslice_per_slice;
  4332. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4333. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4334. /* subtract fused off EU(s) from enabled slice(s) */
  4335. for (s = 0; s < stat->slice_total; s++) {
  4336. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4337. stat->eu_total -= hweight8(subslice_7eu);
  4338. }
  4339. }
  4340. }
  4341. static int i915_sseu_status(struct seq_file *m, void *unused)
  4342. {
  4343. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4344. struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
  4345. struct drm_device *dev = &dev_priv->drm;
  4346. struct sseu_dev_status stat;
  4347. if (INTEL_INFO(dev)->gen < 8)
  4348. return -ENODEV;
  4349. seq_puts(m, "SSEU Device Info\n");
  4350. seq_printf(m, " Available Slice Total: %u\n",
  4351. INTEL_INFO(dev)->slice_total);
  4352. seq_printf(m, " Available Subslice Total: %u\n",
  4353. INTEL_INFO(dev)->subslice_total);
  4354. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4355. INTEL_INFO(dev)->subslice_per_slice);
  4356. seq_printf(m, " Available EU Total: %u\n",
  4357. INTEL_INFO(dev)->eu_total);
  4358. seq_printf(m, " Available EU Per Subslice: %u\n",
  4359. INTEL_INFO(dev)->eu_per_subslice);
  4360. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
  4361. if (HAS_POOLED_EU(dev))
  4362. seq_printf(m, " Min EU in pool: %u\n",
  4363. INTEL_INFO(dev)->min_eu_in_pool);
  4364. seq_printf(m, " Has Slice Power Gating: %s\n",
  4365. yesno(INTEL_INFO(dev)->has_slice_pg));
  4366. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4367. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4368. seq_printf(m, " Has EU Power Gating: %s\n",
  4369. yesno(INTEL_INFO(dev)->has_eu_pg));
  4370. seq_puts(m, "SSEU Device Status\n");
  4371. memset(&stat, 0, sizeof(stat));
  4372. intel_runtime_pm_get(dev_priv);
  4373. if (IS_CHERRYVIEW(dev)) {
  4374. cherryview_sseu_device_status(dev, &stat);
  4375. } else if (IS_BROADWELL(dev)) {
  4376. broadwell_sseu_device_status(dev, &stat);
  4377. } else if (INTEL_INFO(dev)->gen >= 9) {
  4378. gen9_sseu_device_status(dev, &stat);
  4379. }
  4380. intel_runtime_pm_put(dev_priv);
  4381. seq_printf(m, " Enabled Slice Total: %u\n",
  4382. stat.slice_total);
  4383. seq_printf(m, " Enabled Subslice Total: %u\n",
  4384. stat.subslice_total);
  4385. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4386. stat.subslice_per_slice);
  4387. seq_printf(m, " Enabled EU Total: %u\n",
  4388. stat.eu_total);
  4389. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4390. stat.eu_per_subslice);
  4391. return 0;
  4392. }
  4393. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4394. {
  4395. struct drm_device *dev = inode->i_private;
  4396. struct drm_i915_private *dev_priv = to_i915(dev);
  4397. if (INTEL_INFO(dev)->gen < 6)
  4398. return 0;
  4399. intel_runtime_pm_get(dev_priv);
  4400. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4401. return 0;
  4402. }
  4403. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4404. {
  4405. struct drm_device *dev = inode->i_private;
  4406. struct drm_i915_private *dev_priv = to_i915(dev);
  4407. if (INTEL_INFO(dev)->gen < 6)
  4408. return 0;
  4409. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4410. intel_runtime_pm_put(dev_priv);
  4411. return 0;
  4412. }
  4413. static const struct file_operations i915_forcewake_fops = {
  4414. .owner = THIS_MODULE,
  4415. .open = i915_forcewake_open,
  4416. .release = i915_forcewake_release,
  4417. };
  4418. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4419. {
  4420. struct drm_device *dev = minor->dev;
  4421. struct dentry *ent;
  4422. ent = debugfs_create_file("i915_forcewake_user",
  4423. S_IRUSR,
  4424. root, dev,
  4425. &i915_forcewake_fops);
  4426. if (!ent)
  4427. return -ENOMEM;
  4428. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4429. }
  4430. static int i915_debugfs_create(struct dentry *root,
  4431. struct drm_minor *minor,
  4432. const char *name,
  4433. const struct file_operations *fops)
  4434. {
  4435. struct drm_device *dev = minor->dev;
  4436. struct dentry *ent;
  4437. ent = debugfs_create_file(name,
  4438. S_IRUGO | S_IWUSR,
  4439. root, dev,
  4440. fops);
  4441. if (!ent)
  4442. return -ENOMEM;
  4443. return drm_add_fake_info_node(minor, ent, fops);
  4444. }
  4445. static const struct drm_info_list i915_debugfs_list[] = {
  4446. {"i915_capabilities", i915_capabilities, 0},
  4447. {"i915_gem_objects", i915_gem_object_info, 0},
  4448. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4449. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4450. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4451. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4452. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4453. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4454. {"i915_gem_request", i915_gem_request_info, 0},
  4455. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4456. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4457. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4458. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4459. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4460. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4461. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4462. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4463. {"i915_guc_info", i915_guc_info, 0},
  4464. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4465. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4466. {"i915_frequency_info", i915_frequency_info, 0},
  4467. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4468. {"i915_drpc_info", i915_drpc_info, 0},
  4469. {"i915_emon_status", i915_emon_status, 0},
  4470. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4471. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4472. {"i915_fbc_status", i915_fbc_status, 0},
  4473. {"i915_ips_status", i915_ips_status, 0},
  4474. {"i915_sr_status", i915_sr_status, 0},
  4475. {"i915_opregion", i915_opregion, 0},
  4476. {"i915_vbt", i915_vbt, 0},
  4477. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4478. {"i915_context_status", i915_context_status, 0},
  4479. {"i915_dump_lrc", i915_dump_lrc, 0},
  4480. {"i915_execlists", i915_execlists, 0},
  4481. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4482. {"i915_swizzle_info", i915_swizzle_info, 0},
  4483. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4484. {"i915_llc", i915_llc, 0},
  4485. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4486. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4487. {"i915_energy_uJ", i915_energy_uJ, 0},
  4488. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4489. {"i915_power_domain_info", i915_power_domain_info, 0},
  4490. {"i915_dmc_info", i915_dmc_info, 0},
  4491. {"i915_display_info", i915_display_info, 0},
  4492. {"i915_semaphore_status", i915_semaphore_status, 0},
  4493. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4494. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4495. {"i915_wa_registers", i915_wa_registers, 0},
  4496. {"i915_ddb_info", i915_ddb_info, 0},
  4497. {"i915_sseu_status", i915_sseu_status, 0},
  4498. {"i915_drrs_status", i915_drrs_status, 0},
  4499. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4500. };
  4501. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4502. static const struct i915_debugfs_files {
  4503. const char *name;
  4504. const struct file_operations *fops;
  4505. } i915_debugfs_files[] = {
  4506. {"i915_wedged", &i915_wedged_fops},
  4507. {"i915_max_freq", &i915_max_freq_fops},
  4508. {"i915_min_freq", &i915_min_freq_fops},
  4509. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4510. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4511. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4512. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4513. {"i915_error_state", &i915_error_state_fops},
  4514. {"i915_next_seqno", &i915_next_seqno_fops},
  4515. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4516. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4517. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4518. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4519. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4520. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4521. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4522. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4523. };
  4524. void intel_display_crc_init(struct drm_device *dev)
  4525. {
  4526. struct drm_i915_private *dev_priv = to_i915(dev);
  4527. enum pipe pipe;
  4528. for_each_pipe(dev_priv, pipe) {
  4529. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4530. pipe_crc->opened = false;
  4531. spin_lock_init(&pipe_crc->lock);
  4532. init_waitqueue_head(&pipe_crc->wq);
  4533. }
  4534. }
  4535. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4536. {
  4537. struct drm_minor *minor = dev_priv->drm.primary;
  4538. int ret, i;
  4539. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4540. if (ret)
  4541. return ret;
  4542. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4543. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4544. if (ret)
  4545. return ret;
  4546. }
  4547. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4548. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4549. i915_debugfs_files[i].name,
  4550. i915_debugfs_files[i].fops);
  4551. if (ret)
  4552. return ret;
  4553. }
  4554. return drm_debugfs_create_files(i915_debugfs_list,
  4555. I915_DEBUGFS_ENTRIES,
  4556. minor->debugfs_root, minor);
  4557. }
  4558. void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
  4559. {
  4560. struct drm_minor *minor = dev_priv->drm.primary;
  4561. int i;
  4562. drm_debugfs_remove_files(i915_debugfs_list,
  4563. I915_DEBUGFS_ENTRIES, minor);
  4564. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4565. 1, minor);
  4566. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4567. struct drm_info_list *info_list =
  4568. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4569. drm_debugfs_remove_files(info_list, 1, minor);
  4570. }
  4571. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4572. struct drm_info_list *info_list =
  4573. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4574. drm_debugfs_remove_files(info_list, 1, minor);
  4575. }
  4576. }
  4577. struct dpcd_block {
  4578. /* DPCD dump start address. */
  4579. unsigned int offset;
  4580. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4581. unsigned int end;
  4582. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4583. size_t size;
  4584. /* Only valid for eDP. */
  4585. bool edp;
  4586. };
  4587. static const struct dpcd_block i915_dpcd_debug[] = {
  4588. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4589. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4590. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4591. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4592. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4593. { .offset = DP_SET_POWER },
  4594. { .offset = DP_EDP_DPCD_REV },
  4595. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4596. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4597. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4598. };
  4599. static int i915_dpcd_show(struct seq_file *m, void *data)
  4600. {
  4601. struct drm_connector *connector = m->private;
  4602. struct intel_dp *intel_dp =
  4603. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4604. uint8_t buf[16];
  4605. ssize_t err;
  4606. int i;
  4607. if (connector->status != connector_status_connected)
  4608. return -ENODEV;
  4609. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4610. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4611. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4612. if (b->edp &&
  4613. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4614. continue;
  4615. /* low tech for now */
  4616. if (WARN_ON(size > sizeof(buf)))
  4617. continue;
  4618. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4619. if (err <= 0) {
  4620. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4621. size, b->offset, err);
  4622. continue;
  4623. }
  4624. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4625. }
  4626. return 0;
  4627. }
  4628. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4629. {
  4630. return single_open(file, i915_dpcd_show, inode->i_private);
  4631. }
  4632. static const struct file_operations i915_dpcd_fops = {
  4633. .owner = THIS_MODULE,
  4634. .open = i915_dpcd_open,
  4635. .read = seq_read,
  4636. .llseek = seq_lseek,
  4637. .release = single_release,
  4638. };
  4639. /**
  4640. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4641. * @connector: pointer to a registered drm_connector
  4642. *
  4643. * Cleanup will be done by drm_connector_unregister() through a call to
  4644. * drm_debugfs_connector_remove().
  4645. *
  4646. * Returns 0 on success, negative error codes on error.
  4647. */
  4648. int i915_debugfs_connector_add(struct drm_connector *connector)
  4649. {
  4650. struct dentry *root = connector->debugfs_entry;
  4651. /* The connector must have been registered beforehands. */
  4652. if (!root)
  4653. return -ENODEV;
  4654. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4655. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4656. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4657. &i915_dpcd_fops);
  4658. return 0;
  4659. }