book3s_hv_rm_mmu.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  34. static int global_invalidates(struct kvm *kvm, unsigned long flags)
  35. {
  36. int global;
  37. /*
  38. * If there is only one vcore, and it's currently running,
  39. * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
  40. * we can use tlbiel as long as we mark all other physical
  41. * cores as potentially having stale TLB entries for this lpid.
  42. * Otherwise, don't use tlbiel.
  43. */
  44. if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
  45. global = 0;
  46. else
  47. global = 1;
  48. if (!global) {
  49. /* any other core might now have stale TLB entries... */
  50. smp_wmb();
  51. cpumask_setall(&kvm->arch.need_tlb_flush);
  52. cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
  53. &kvm->arch.need_tlb_flush);
  54. }
  55. return global;
  56. }
  57. /*
  58. * Add this HPTE into the chain for the real page.
  59. * Must be called with the chain locked; it unlocks the chain.
  60. */
  61. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  62. unsigned long *rmap, long pte_index, int realmode)
  63. {
  64. struct revmap_entry *head, *tail;
  65. unsigned long i;
  66. if (*rmap & KVMPPC_RMAP_PRESENT) {
  67. i = *rmap & KVMPPC_RMAP_INDEX;
  68. head = &kvm->arch.revmap[i];
  69. if (realmode)
  70. head = real_vmalloc_addr(head);
  71. tail = &kvm->arch.revmap[head->back];
  72. if (realmode)
  73. tail = real_vmalloc_addr(tail);
  74. rev->forw = i;
  75. rev->back = head->back;
  76. tail->forw = pte_index;
  77. head->back = pte_index;
  78. } else {
  79. rev->forw = rev->back = pte_index;
  80. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
  81. pte_index | KVMPPC_RMAP_PRESENT;
  82. }
  83. unlock_rmap(rmap);
  84. }
  85. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  86. /* Remove this HPTE from the chain for a real page */
  87. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  88. struct revmap_entry *rev,
  89. unsigned long hpte_v, unsigned long hpte_r)
  90. {
  91. struct revmap_entry *next, *prev;
  92. unsigned long gfn, ptel, head;
  93. struct kvm_memory_slot *memslot;
  94. unsigned long *rmap;
  95. unsigned long rcbits;
  96. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  97. ptel = rev->guest_rpte |= rcbits;
  98. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  99. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  100. if (!memslot)
  101. return;
  102. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  103. lock_rmap(rmap);
  104. head = *rmap & KVMPPC_RMAP_INDEX;
  105. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  106. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  107. next->back = rev->back;
  108. prev->forw = rev->forw;
  109. if (head == pte_index) {
  110. head = rev->forw;
  111. if (head == pte_index)
  112. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  113. else
  114. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  115. }
  116. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  117. unlock_rmap(rmap);
  118. }
  119. static pte_t lookup_linux_pte_and_update(pgd_t *pgdir, unsigned long hva,
  120. int writing, unsigned long *pte_sizep)
  121. {
  122. pte_t *ptep;
  123. unsigned long ps = *pte_sizep;
  124. unsigned int hugepage_shift;
  125. ptep = find_linux_pte_or_hugepte(pgdir, hva, &hugepage_shift);
  126. if (!ptep)
  127. return __pte(0);
  128. if (hugepage_shift)
  129. *pte_sizep = 1ul << hugepage_shift;
  130. else
  131. *pte_sizep = PAGE_SIZE;
  132. if (ps > *pte_sizep)
  133. return __pte(0);
  134. return kvmppc_read_update_linux_pte(ptep, writing, hugepage_shift);
  135. }
  136. static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
  137. {
  138. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  139. hpte[0] = cpu_to_be64(hpte_v);
  140. }
  141. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  142. long pte_index, unsigned long pteh, unsigned long ptel,
  143. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  144. {
  145. unsigned long i, pa, gpa, gfn, psize;
  146. unsigned long slot_fn, hva;
  147. __be64 *hpte;
  148. struct revmap_entry *rev;
  149. unsigned long g_ptel;
  150. struct kvm_memory_slot *memslot;
  151. unsigned long pte_size;
  152. unsigned long is_io;
  153. unsigned long *rmap;
  154. pte_t pte;
  155. unsigned int writing;
  156. unsigned long mmu_seq;
  157. unsigned long rcbits;
  158. psize = hpte_page_size(pteh, ptel);
  159. if (!psize)
  160. return H_PARAMETER;
  161. writing = hpte_is_writable(ptel);
  162. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  163. ptel &= ~HPTE_GR_RESERVED;
  164. g_ptel = ptel;
  165. /* used later to detect if we might have been invalidated */
  166. mmu_seq = kvm->mmu_notifier_seq;
  167. smp_rmb();
  168. /* Find the memslot (if any) for this address */
  169. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  170. gfn = gpa >> PAGE_SHIFT;
  171. memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
  172. pa = 0;
  173. is_io = ~0ul;
  174. rmap = NULL;
  175. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  176. /* Emulated MMIO - mark this with key=31 */
  177. pteh |= HPTE_V_ABSENT;
  178. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  179. goto do_insert;
  180. }
  181. /* Check if the requested page fits entirely in the memslot. */
  182. if (!slot_is_aligned(memslot, psize))
  183. return H_PARAMETER;
  184. slot_fn = gfn - memslot->base_gfn;
  185. rmap = &memslot->arch.rmap[slot_fn];
  186. /* Translate to host virtual address */
  187. hva = __gfn_to_hva_memslot(memslot, gfn);
  188. /* Look up the Linux PTE for the backing page */
  189. pte_size = psize;
  190. pte = lookup_linux_pte_and_update(pgdir, hva, writing, &pte_size);
  191. if (pte_present(pte) && !pte_numa(pte)) {
  192. if (writing && !pte_write(pte))
  193. /* make the actual HPTE be read-only */
  194. ptel = hpte_make_readonly(ptel);
  195. is_io = hpte_cache_bits(pte_val(pte));
  196. pa = pte_pfn(pte) << PAGE_SHIFT;
  197. pa |= hva & (pte_size - 1);
  198. pa |= gpa & ~PAGE_MASK;
  199. }
  200. if (pte_size < psize)
  201. return H_PARAMETER;
  202. ptel &= ~(HPTE_R_PP0 - psize);
  203. ptel |= pa;
  204. if (pa)
  205. pteh |= HPTE_V_VALID;
  206. else
  207. pteh |= HPTE_V_ABSENT;
  208. /* Check WIMG */
  209. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  210. if (is_io)
  211. return H_PARAMETER;
  212. /*
  213. * Allow guest to map emulated device memory as
  214. * uncacheable, but actually make it cacheable.
  215. */
  216. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  217. ptel |= HPTE_R_M;
  218. }
  219. /* Find and lock the HPTEG slot to use */
  220. do_insert:
  221. if (pte_index >= kvm->arch.hpt_npte)
  222. return H_PARAMETER;
  223. if (likely((flags & H_EXACT) == 0)) {
  224. pte_index &= ~7UL;
  225. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  226. for (i = 0; i < 8; ++i) {
  227. if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
  228. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  229. HPTE_V_ABSENT))
  230. break;
  231. hpte += 2;
  232. }
  233. if (i == 8) {
  234. /*
  235. * Since try_lock_hpte doesn't retry (not even stdcx.
  236. * failures), it could be that there is a free slot
  237. * but we transiently failed to lock it. Try again,
  238. * actually locking each slot and checking it.
  239. */
  240. hpte -= 16;
  241. for (i = 0; i < 8; ++i) {
  242. u64 pte;
  243. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  244. cpu_relax();
  245. pte = be64_to_cpu(*hpte);
  246. if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  247. break;
  248. *hpte &= ~cpu_to_be64(HPTE_V_HVLOCK);
  249. hpte += 2;
  250. }
  251. if (i == 8)
  252. return H_PTEG_FULL;
  253. }
  254. pte_index += i;
  255. } else {
  256. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  257. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  258. HPTE_V_ABSENT)) {
  259. /* Lock the slot and check again */
  260. u64 pte;
  261. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  262. cpu_relax();
  263. pte = be64_to_cpu(*hpte);
  264. if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  265. *hpte &= ~cpu_to_be64(HPTE_V_HVLOCK);
  266. return H_PTEG_FULL;
  267. }
  268. }
  269. }
  270. /* Save away the guest's idea of the second HPTE dword */
  271. rev = &kvm->arch.revmap[pte_index];
  272. if (realmode)
  273. rev = real_vmalloc_addr(rev);
  274. if (rev) {
  275. rev->guest_rpte = g_ptel;
  276. note_hpte_modification(kvm, rev);
  277. }
  278. /* Link HPTE into reverse-map chain */
  279. if (pteh & HPTE_V_VALID) {
  280. if (realmode)
  281. rmap = real_vmalloc_addr(rmap);
  282. lock_rmap(rmap);
  283. /* Check for pending invalidations under the rmap chain lock */
  284. if (mmu_notifier_retry(kvm, mmu_seq)) {
  285. /* inval in progress, write a non-present HPTE */
  286. pteh |= HPTE_V_ABSENT;
  287. pteh &= ~HPTE_V_VALID;
  288. unlock_rmap(rmap);
  289. } else {
  290. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  291. realmode);
  292. /* Only set R/C in real HPTE if already set in *rmap */
  293. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  294. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  295. }
  296. }
  297. hpte[1] = cpu_to_be64(ptel);
  298. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  299. eieio();
  300. hpte[0] = cpu_to_be64(pteh);
  301. asm volatile("ptesync" : : : "memory");
  302. *pte_idx_ret = pte_index;
  303. return H_SUCCESS;
  304. }
  305. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  306. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  307. long pte_index, unsigned long pteh, unsigned long ptel)
  308. {
  309. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  310. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  311. }
  312. #ifdef __BIG_ENDIAN__
  313. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  314. #else
  315. #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
  316. #endif
  317. static inline int try_lock_tlbie(unsigned int *lock)
  318. {
  319. unsigned int tmp, old;
  320. unsigned int token = LOCK_TOKEN;
  321. asm volatile("1:lwarx %1,0,%2\n"
  322. " cmpwi cr0,%1,0\n"
  323. " bne 2f\n"
  324. " stwcx. %3,0,%2\n"
  325. " bne- 1b\n"
  326. " isync\n"
  327. "2:"
  328. : "=&r" (tmp), "=&r" (old)
  329. : "r" (lock), "r" (token)
  330. : "cc", "memory");
  331. return old == 0;
  332. }
  333. static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
  334. long npages, int global, bool need_sync)
  335. {
  336. long i;
  337. if (global) {
  338. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  339. cpu_relax();
  340. if (need_sync)
  341. asm volatile("ptesync" : : : "memory");
  342. for (i = 0; i < npages; ++i)
  343. asm volatile(PPC_TLBIE(%1,%0) : :
  344. "r" (rbvalues[i]), "r" (kvm->arch.lpid));
  345. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  346. kvm->arch.tlbie_lock = 0;
  347. } else {
  348. if (need_sync)
  349. asm volatile("ptesync" : : : "memory");
  350. for (i = 0; i < npages; ++i)
  351. asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
  352. asm volatile("ptesync" : : : "memory");
  353. }
  354. }
  355. long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
  356. unsigned long pte_index, unsigned long avpn,
  357. unsigned long *hpret)
  358. {
  359. __be64 *hpte;
  360. unsigned long v, r, rb;
  361. struct revmap_entry *rev;
  362. u64 pte;
  363. if (pte_index >= kvm->arch.hpt_npte)
  364. return H_PARAMETER;
  365. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  366. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  367. cpu_relax();
  368. pte = be64_to_cpu(hpte[0]);
  369. if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  370. ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
  371. ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
  372. hpte[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
  373. return H_NOT_FOUND;
  374. }
  375. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  376. v = pte & ~HPTE_V_HVLOCK;
  377. if (v & HPTE_V_VALID) {
  378. u64 pte1;
  379. pte1 = be64_to_cpu(hpte[1]);
  380. hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
  381. rb = compute_tlbie_rb(v, pte1, pte_index);
  382. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  383. /* Read PTE low word after tlbie to get final R/C values */
  384. remove_revmap_chain(kvm, pte_index, rev, v, pte1);
  385. }
  386. r = rev->guest_rpte & ~HPTE_GR_RESERVED;
  387. note_hpte_modification(kvm, rev);
  388. unlock_hpte(hpte, 0);
  389. hpret[0] = v;
  390. hpret[1] = r;
  391. return H_SUCCESS;
  392. }
  393. EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
  394. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  395. unsigned long pte_index, unsigned long avpn)
  396. {
  397. return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
  398. &vcpu->arch.gpr[4]);
  399. }
  400. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  401. {
  402. struct kvm *kvm = vcpu->kvm;
  403. unsigned long *args = &vcpu->arch.gpr[4];
  404. __be64 *hp, *hptes[4];
  405. unsigned long tlbrb[4];
  406. long int i, j, k, n, found, indexes[4];
  407. unsigned long flags, req, pte_index, rcbits;
  408. int global;
  409. long int ret = H_SUCCESS;
  410. struct revmap_entry *rev, *revs[4];
  411. u64 hp0;
  412. global = global_invalidates(kvm, 0);
  413. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  414. n = 0;
  415. for (; i < 4; ++i) {
  416. j = i * 2;
  417. pte_index = args[j];
  418. flags = pte_index >> 56;
  419. pte_index &= ((1ul << 56) - 1);
  420. req = flags >> 6;
  421. flags &= 3;
  422. if (req == 3) { /* no more requests */
  423. i = 4;
  424. break;
  425. }
  426. if (req != 1 || flags == 3 ||
  427. pte_index >= kvm->arch.hpt_npte) {
  428. /* parameter error */
  429. args[j] = ((0xa0 | flags) << 56) + pte_index;
  430. ret = H_PARAMETER;
  431. break;
  432. }
  433. hp = (__be64 *) (kvm->arch.hpt_virt + (pte_index << 4));
  434. /* to avoid deadlock, don't spin except for first */
  435. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  436. if (n)
  437. break;
  438. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  439. cpu_relax();
  440. }
  441. found = 0;
  442. hp0 = be64_to_cpu(hp[0]);
  443. if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  444. switch (flags & 3) {
  445. case 0: /* absolute */
  446. found = 1;
  447. break;
  448. case 1: /* andcond */
  449. if (!(hp0 & args[j + 1]))
  450. found = 1;
  451. break;
  452. case 2: /* AVPN */
  453. if ((hp0 & ~0x7fUL) == args[j + 1])
  454. found = 1;
  455. break;
  456. }
  457. }
  458. if (!found) {
  459. hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
  460. args[j] = ((0x90 | flags) << 56) + pte_index;
  461. continue;
  462. }
  463. args[j] = ((0x80 | flags) << 56) + pte_index;
  464. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  465. note_hpte_modification(kvm, rev);
  466. if (!(hp0 & HPTE_V_VALID)) {
  467. /* insert R and C bits from PTE */
  468. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  469. args[j] |= rcbits << (56 - 5);
  470. hp[0] = 0;
  471. continue;
  472. }
  473. /* leave it locked */
  474. hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
  475. tlbrb[n] = compute_tlbie_rb(be64_to_cpu(hp[0]),
  476. be64_to_cpu(hp[1]), pte_index);
  477. indexes[n] = j;
  478. hptes[n] = hp;
  479. revs[n] = rev;
  480. ++n;
  481. }
  482. if (!n)
  483. break;
  484. /* Now that we've collected a batch, do the tlbies */
  485. do_tlbies(kvm, tlbrb, n, global, true);
  486. /* Read PTE low words after tlbie to get final R/C values */
  487. for (k = 0; k < n; ++k) {
  488. j = indexes[k];
  489. pte_index = args[j] & ((1ul << 56) - 1);
  490. hp = hptes[k];
  491. rev = revs[k];
  492. remove_revmap_chain(kvm, pte_index, rev,
  493. be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
  494. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  495. args[j] |= rcbits << (56 - 5);
  496. hp[0] = 0;
  497. }
  498. }
  499. return ret;
  500. }
  501. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  502. unsigned long pte_index, unsigned long avpn,
  503. unsigned long va)
  504. {
  505. struct kvm *kvm = vcpu->kvm;
  506. __be64 *hpte;
  507. struct revmap_entry *rev;
  508. unsigned long v, r, rb, mask, bits;
  509. u64 pte;
  510. if (pte_index >= kvm->arch.hpt_npte)
  511. return H_PARAMETER;
  512. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  513. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  514. cpu_relax();
  515. pte = be64_to_cpu(hpte[0]);
  516. if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  517. ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn)) {
  518. hpte[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
  519. return H_NOT_FOUND;
  520. }
  521. v = pte;
  522. bits = (flags << 55) & HPTE_R_PP0;
  523. bits |= (flags << 48) & HPTE_R_KEY_HI;
  524. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  525. /* Update guest view of 2nd HPTE dword */
  526. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  527. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  528. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  529. if (rev) {
  530. r = (rev->guest_rpte & ~mask) | bits;
  531. rev->guest_rpte = r;
  532. note_hpte_modification(kvm, rev);
  533. }
  534. /* Update HPTE */
  535. if (v & HPTE_V_VALID) {
  536. /*
  537. * If the page is valid, don't let it transition from
  538. * readonly to writable. If it should be writable, we'll
  539. * take a trap and let the page fault code sort it out.
  540. */
  541. pte = be64_to_cpu(hpte[1]);
  542. r = (pte & ~mask) | bits;
  543. if (hpte_is_writable(r) && !hpte_is_writable(pte))
  544. r = hpte_make_readonly(r);
  545. /* If the PTE is changing, invalidate it first */
  546. if (r != pte) {
  547. rb = compute_tlbie_rb(v, r, pte_index);
  548. hpte[0] = cpu_to_be64((v & ~HPTE_V_VALID) |
  549. HPTE_V_ABSENT);
  550. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags),
  551. true);
  552. hpte[1] = cpu_to_be64(r);
  553. }
  554. }
  555. unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
  556. asm volatile("ptesync" : : : "memory");
  557. return H_SUCCESS;
  558. }
  559. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  560. unsigned long pte_index)
  561. {
  562. struct kvm *kvm = vcpu->kvm;
  563. __be64 *hpte;
  564. unsigned long v, r;
  565. int i, n = 1;
  566. struct revmap_entry *rev = NULL;
  567. if (pte_index >= kvm->arch.hpt_npte)
  568. return H_PARAMETER;
  569. if (flags & H_READ_4) {
  570. pte_index &= ~3;
  571. n = 4;
  572. }
  573. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  574. for (i = 0; i < n; ++i, ++pte_index) {
  575. hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
  576. v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
  577. r = be64_to_cpu(hpte[1]);
  578. if (v & HPTE_V_ABSENT) {
  579. v &= ~HPTE_V_ABSENT;
  580. v |= HPTE_V_VALID;
  581. }
  582. if (v & HPTE_V_VALID) {
  583. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  584. r &= ~HPTE_GR_RESERVED;
  585. }
  586. vcpu->arch.gpr[4 + i * 2] = v;
  587. vcpu->arch.gpr[5 + i * 2] = r;
  588. }
  589. return H_SUCCESS;
  590. }
  591. void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
  592. unsigned long pte_index)
  593. {
  594. unsigned long rb;
  595. hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
  596. rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
  597. pte_index);
  598. do_tlbies(kvm, &rb, 1, 1, true);
  599. }
  600. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  601. void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
  602. unsigned long pte_index)
  603. {
  604. unsigned long rb;
  605. unsigned char rbyte;
  606. rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
  607. pte_index);
  608. rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
  609. /* modify only the second-last byte, which contains the ref bit */
  610. *((char *)hptep + 14) = rbyte;
  611. do_tlbies(kvm, &rb, 1, 1, false);
  612. }
  613. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  614. static int slb_base_page_shift[4] = {
  615. 24, /* 16M */
  616. 16, /* 64k */
  617. 34, /* 16G */
  618. 20, /* 1M, unsupported */
  619. };
  620. /* When called from virtmode, this func should be protected by
  621. * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
  622. * can trigger deadlock issue.
  623. */
  624. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  625. unsigned long valid)
  626. {
  627. unsigned int i;
  628. unsigned int pshift;
  629. unsigned long somask;
  630. unsigned long vsid, hash;
  631. unsigned long avpn;
  632. __be64 *hpte;
  633. unsigned long mask, val;
  634. unsigned long v, r;
  635. /* Get page shift, work out hash and AVPN etc. */
  636. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  637. val = 0;
  638. pshift = 12;
  639. if (slb_v & SLB_VSID_L) {
  640. mask |= HPTE_V_LARGE;
  641. val |= HPTE_V_LARGE;
  642. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  643. }
  644. if (slb_v & SLB_VSID_B_1T) {
  645. somask = (1UL << 40) - 1;
  646. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  647. vsid ^= vsid << 25;
  648. } else {
  649. somask = (1UL << 28) - 1;
  650. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  651. }
  652. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  653. avpn = slb_v & ~(somask >> 16); /* also includes B */
  654. avpn |= (eaddr & somask) >> 16;
  655. if (pshift >= 24)
  656. avpn &= ~((1UL << (pshift - 16)) - 1);
  657. else
  658. avpn &= ~0x7fUL;
  659. val |= avpn;
  660. for (;;) {
  661. hpte = (__be64 *)(kvm->arch.hpt_virt + (hash << 7));
  662. for (i = 0; i < 16; i += 2) {
  663. /* Read the PTE racily */
  664. v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
  665. /* Check valid/absent, hash, segment size and AVPN */
  666. if (!(v & valid) || (v & mask) != val)
  667. continue;
  668. /* Lock the PTE and read it under the lock */
  669. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  670. cpu_relax();
  671. v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
  672. r = be64_to_cpu(hpte[i+1]);
  673. /*
  674. * Check the HPTE again, including base page size
  675. */
  676. if ((v & valid) && (v & mask) == val &&
  677. hpte_base_page_size(v, r) == (1ul << pshift))
  678. /* Return with the HPTE still locked */
  679. return (hash << 3) + (i >> 1);
  680. /* Unlock and move on */
  681. hpte[i] = cpu_to_be64(v);
  682. }
  683. if (val & HPTE_V_SECONDARY)
  684. break;
  685. val |= HPTE_V_SECONDARY;
  686. hash = hash ^ kvm->arch.hpt_mask;
  687. }
  688. return -1;
  689. }
  690. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  691. /*
  692. * Called in real mode to check whether an HPTE not found fault
  693. * is due to accessing a paged-out page or an emulated MMIO page,
  694. * or if a protection fault is due to accessing a page that the
  695. * guest wanted read/write access to but which we made read-only.
  696. * Returns a possibly modified status (DSISR) value if not
  697. * (i.e. pass the interrupt to the guest),
  698. * -1 to pass the fault up to host kernel mode code, -2 to do that
  699. * and also load the instruction word (for MMIO emulation),
  700. * or 0 if we should make the guest retry the access.
  701. */
  702. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  703. unsigned long slb_v, unsigned int status, bool data)
  704. {
  705. struct kvm *kvm = vcpu->kvm;
  706. long int index;
  707. unsigned long v, r, gr;
  708. __be64 *hpte;
  709. unsigned long valid;
  710. struct revmap_entry *rev;
  711. unsigned long pp, key;
  712. /* For protection fault, expect to find a valid HPTE */
  713. valid = HPTE_V_VALID;
  714. if (status & DSISR_NOHPTE)
  715. valid |= HPTE_V_ABSENT;
  716. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  717. if (index < 0) {
  718. if (status & DSISR_NOHPTE)
  719. return status; /* there really was no HPTE */
  720. return 0; /* for prot fault, HPTE disappeared */
  721. }
  722. hpte = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
  723. v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
  724. r = be64_to_cpu(hpte[1]);
  725. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  726. gr = rev->guest_rpte;
  727. unlock_hpte(hpte, v);
  728. /* For not found, if the HPTE is valid by now, retry the instruction */
  729. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  730. return 0;
  731. /* Check access permissions to the page */
  732. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  733. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  734. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  735. if (!data) {
  736. if (gr & (HPTE_R_N | HPTE_R_G))
  737. return status | SRR1_ISI_N_OR_G;
  738. if (!hpte_read_permission(pp, slb_v & key))
  739. return status | SRR1_ISI_PROT;
  740. } else if (status & DSISR_ISSTORE) {
  741. /* check write permission */
  742. if (!hpte_write_permission(pp, slb_v & key))
  743. return status | DSISR_PROTFAULT;
  744. } else {
  745. if (!hpte_read_permission(pp, slb_v & key))
  746. return status | DSISR_PROTFAULT;
  747. }
  748. /* Check storage key, if applicable */
  749. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  750. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  751. if (status & DSISR_ISSTORE)
  752. perm >>= 1;
  753. if (perm & 1)
  754. return status | DSISR_KEYFAULT;
  755. }
  756. /* Save HPTE info for virtual-mode handler */
  757. vcpu->arch.pgfault_addr = addr;
  758. vcpu->arch.pgfault_index = index;
  759. vcpu->arch.pgfault_hpte[0] = v;
  760. vcpu->arch.pgfault_hpte[1] = r;
  761. /* Check the storage key to see if it is possibly emulated MMIO */
  762. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  763. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  764. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  765. return -2; /* MMIO emulation - load instr word */
  766. return -1; /* send fault up to host kernel mode */
  767. }