disk-io.c 122 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "free-space-tree.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #include "qgroup.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int rw;
  119. int mirror_num;
  120. unsigned long bio_flags;
  121. /*
  122. * bio_offset is optional, can be used if the pages in the bio
  123. * can't tell us where in the file the bio should go
  124. */
  125. u64 bio_offset;
  126. struct btrfs_work work;
  127. int error;
  128. };
  129. /*
  130. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  131. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  132. * the level the eb occupies in the tree.
  133. *
  134. * Different roots are used for different purposes and may nest inside each
  135. * other and they require separate keysets. As lockdep keys should be
  136. * static, assign keysets according to the purpose of the root as indicated
  137. * by btrfs_root->objectid. This ensures that all special purpose roots
  138. * have separate keysets.
  139. *
  140. * Lock-nesting across peer nodes is always done with the immediate parent
  141. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  142. * subclass to avoid triggering lockdep warning in such cases.
  143. *
  144. * The key is set by the readpage_end_io_hook after the buffer has passed
  145. * csum validation but before the pages are unlocked. It is also set by
  146. * btrfs_init_new_buffer on freshly allocated blocks.
  147. *
  148. * We also add a check to make sure the highest level of the tree is the
  149. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  150. * needs update as well.
  151. */
  152. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  153. # if BTRFS_MAX_LEVEL != 8
  154. # error
  155. # endif
  156. static struct btrfs_lockdep_keyset {
  157. u64 id; /* root objectid */
  158. const char *name_stem; /* lock name stem */
  159. char names[BTRFS_MAX_LEVEL + 1][20];
  160. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  161. } btrfs_lockdep_keysets[] = {
  162. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  163. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  164. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  165. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  166. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  167. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  168. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  169. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  170. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  171. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  172. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  173. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  174. { .id = 0, .name_stem = "tree" },
  175. };
  176. void __init btrfs_init_lockdep(void)
  177. {
  178. int i, j;
  179. /* initialize lockdep class names */
  180. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  181. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  182. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  183. snprintf(ks->names[j], sizeof(ks->names[j]),
  184. "btrfs-%s-%02d", ks->name_stem, j);
  185. }
  186. }
  187. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  188. int level)
  189. {
  190. struct btrfs_lockdep_keyset *ks;
  191. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  192. /* find the matching keyset, id 0 is the default entry */
  193. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  194. if (ks->id == objectid)
  195. break;
  196. lockdep_set_class_and_name(&eb->lock,
  197. &ks->keys[level], ks->names[level]);
  198. }
  199. #endif
  200. /*
  201. * extents on the btree inode are pretty simple, there's one extent
  202. * that covers the entire device
  203. */
  204. static struct extent_map *btree_get_extent(struct inode *inode,
  205. struct page *page, size_t pg_offset, u64 start, u64 len,
  206. int create)
  207. {
  208. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  209. struct extent_map *em;
  210. int ret;
  211. read_lock(&em_tree->lock);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (em) {
  214. em->bdev =
  215. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  216. read_unlock(&em_tree->lock);
  217. goto out;
  218. }
  219. read_unlock(&em_tree->lock);
  220. em = alloc_extent_map();
  221. if (!em) {
  222. em = ERR_PTR(-ENOMEM);
  223. goto out;
  224. }
  225. em->start = 0;
  226. em->len = (u64)-1;
  227. em->block_len = (u64)-1;
  228. em->block_start = 0;
  229. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  230. write_lock(&em_tree->lock);
  231. ret = add_extent_mapping(em_tree, em, 0);
  232. if (ret == -EEXIST) {
  233. free_extent_map(em);
  234. em = lookup_extent_mapping(em_tree, start, len);
  235. if (!em)
  236. em = ERR_PTR(-EIO);
  237. } else if (ret) {
  238. free_extent_map(em);
  239. em = ERR_PTR(ret);
  240. }
  241. write_unlock(&em_tree->lock);
  242. out:
  243. return em;
  244. }
  245. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  246. {
  247. return btrfs_crc32c(seed, data, len);
  248. }
  249. void btrfs_csum_final(u32 crc, char *result)
  250. {
  251. put_unaligned_le32(~crc, result);
  252. }
  253. /*
  254. * compute the csum for a btree block, and either verify it or write it
  255. * into the csum field of the block.
  256. */
  257. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  258. struct extent_buffer *buf,
  259. int verify)
  260. {
  261. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  262. char *result = NULL;
  263. unsigned long len;
  264. unsigned long cur_len;
  265. unsigned long offset = BTRFS_CSUM_SIZE;
  266. char *kaddr;
  267. unsigned long map_start;
  268. unsigned long map_len;
  269. int err;
  270. u32 crc = ~(u32)0;
  271. unsigned long inline_result;
  272. len = buf->len - offset;
  273. while (len > 0) {
  274. err = map_private_extent_buffer(buf, offset, 32,
  275. &kaddr, &map_start, &map_len);
  276. if (err)
  277. return 1;
  278. cur_len = min(len, map_len - (offset - map_start));
  279. crc = btrfs_csum_data(kaddr + offset - map_start,
  280. crc, cur_len);
  281. len -= cur_len;
  282. offset += cur_len;
  283. }
  284. if (csum_size > sizeof(inline_result)) {
  285. result = kzalloc(csum_size, GFP_NOFS);
  286. if (!result)
  287. return 1;
  288. } else {
  289. result = (char *)&inline_result;
  290. }
  291. btrfs_csum_final(crc, result);
  292. if (verify) {
  293. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  294. u32 val;
  295. u32 found = 0;
  296. memcpy(&found, result, csum_size);
  297. read_extent_buffer(buf, &val, 0, csum_size);
  298. btrfs_warn_rl(fs_info,
  299. "%s checksum verify failed on %llu wanted %X found %X "
  300. "level %d",
  301. fs_info->sb->s_id, buf->start,
  302. val, found, btrfs_header_level(buf));
  303. if (result != (char *)&inline_result)
  304. kfree(result);
  305. return 1;
  306. }
  307. } else {
  308. write_extent_buffer(buf, result, 0, csum_size);
  309. }
  310. if (result != (char *)&inline_result)
  311. kfree(result);
  312. return 0;
  313. }
  314. /*
  315. * we can't consider a given block up to date unless the transid of the
  316. * block matches the transid in the parent node's pointer. This is how we
  317. * detect blocks that either didn't get written at all or got written
  318. * in the wrong place.
  319. */
  320. static int verify_parent_transid(struct extent_io_tree *io_tree,
  321. struct extent_buffer *eb, u64 parent_transid,
  322. int atomic)
  323. {
  324. struct extent_state *cached_state = NULL;
  325. int ret;
  326. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  327. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  328. return 0;
  329. if (atomic)
  330. return -EAGAIN;
  331. if (need_lock) {
  332. btrfs_tree_read_lock(eb);
  333. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  334. }
  335. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  336. &cached_state);
  337. if (extent_buffer_uptodate(eb) &&
  338. btrfs_header_generation(eb) == parent_transid) {
  339. ret = 0;
  340. goto out;
  341. }
  342. btrfs_err_rl(eb->fs_info,
  343. "parent transid verify failed on %llu wanted %llu found %llu",
  344. eb->start,
  345. parent_transid, btrfs_header_generation(eb));
  346. ret = 1;
  347. /*
  348. * Things reading via commit roots that don't have normal protection,
  349. * like send, can have a really old block in cache that may point at a
  350. * block that has been free'd and re-allocated. So don't clear uptodate
  351. * if we find an eb that is under IO (dirty/writeback) because we could
  352. * end up reading in the stale data and then writing it back out and
  353. * making everybody very sad.
  354. */
  355. if (!extent_buffer_under_io(eb))
  356. clear_extent_buffer_uptodate(eb);
  357. out:
  358. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  359. &cached_state, GFP_NOFS);
  360. if (need_lock)
  361. btrfs_tree_read_unlock_blocking(eb);
  362. return ret;
  363. }
  364. /*
  365. * Return 0 if the superblock checksum type matches the checksum value of that
  366. * algorithm. Pass the raw disk superblock data.
  367. */
  368. static int btrfs_check_super_csum(char *raw_disk_sb)
  369. {
  370. struct btrfs_super_block *disk_sb =
  371. (struct btrfs_super_block *)raw_disk_sb;
  372. u16 csum_type = btrfs_super_csum_type(disk_sb);
  373. int ret = 0;
  374. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  375. u32 crc = ~(u32)0;
  376. const int csum_size = sizeof(crc);
  377. char result[csum_size];
  378. /*
  379. * The super_block structure does not span the whole
  380. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  381. * is filled with zeros and is included in the checkum.
  382. */
  383. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  384. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  385. btrfs_csum_final(crc, result);
  386. if (memcmp(raw_disk_sb, result, csum_size))
  387. ret = 1;
  388. }
  389. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  390. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  391. csum_type);
  392. ret = 1;
  393. }
  394. return ret;
  395. }
  396. /*
  397. * helper to read a given tree block, doing retries as required when
  398. * the checksums don't match and we have alternate mirrors to try.
  399. */
  400. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  401. struct extent_buffer *eb,
  402. u64 start, u64 parent_transid)
  403. {
  404. struct extent_io_tree *io_tree;
  405. int failed = 0;
  406. int ret;
  407. int num_copies = 0;
  408. int mirror_num = 0;
  409. int failed_mirror = 0;
  410. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  411. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  412. while (1) {
  413. ret = read_extent_buffer_pages(io_tree, eb, start,
  414. WAIT_COMPLETE,
  415. btree_get_extent, mirror_num);
  416. if (!ret) {
  417. if (!verify_parent_transid(io_tree, eb,
  418. parent_transid, 0))
  419. break;
  420. else
  421. ret = -EIO;
  422. }
  423. /*
  424. * This buffer's crc is fine, but its contents are corrupted, so
  425. * there is no reason to read the other copies, they won't be
  426. * any less wrong.
  427. */
  428. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  429. break;
  430. num_copies = btrfs_num_copies(root->fs_info,
  431. eb->start, eb->len);
  432. if (num_copies == 1)
  433. break;
  434. if (!failed_mirror) {
  435. failed = 1;
  436. failed_mirror = eb->read_mirror;
  437. }
  438. mirror_num++;
  439. if (mirror_num == failed_mirror)
  440. mirror_num++;
  441. if (mirror_num > num_copies)
  442. break;
  443. }
  444. if (failed && !ret && failed_mirror)
  445. repair_eb_io_failure(root, eb, failed_mirror);
  446. return ret;
  447. }
  448. /*
  449. * checksum a dirty tree block before IO. This has extra checks to make sure
  450. * we only fill in the checksum field in the first page of a multi-page block
  451. */
  452. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  453. {
  454. u64 start = page_offset(page);
  455. u64 found_start;
  456. struct extent_buffer *eb;
  457. eb = (struct extent_buffer *)page->private;
  458. if (page != eb->pages[0])
  459. return 0;
  460. found_start = btrfs_header_bytenr(eb);
  461. if (WARN_ON(found_start != start || !PageUptodate(page)))
  462. return 0;
  463. csum_tree_block(fs_info, eb, 0);
  464. return 0;
  465. }
  466. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  467. struct extent_buffer *eb)
  468. {
  469. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  470. u8 fsid[BTRFS_UUID_SIZE];
  471. int ret = 1;
  472. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  473. while (fs_devices) {
  474. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  475. ret = 0;
  476. break;
  477. }
  478. fs_devices = fs_devices->seed;
  479. }
  480. return ret;
  481. }
  482. #define CORRUPT(reason, eb, root, slot) \
  483. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  484. "root=%llu, slot=%d", reason, \
  485. btrfs_header_bytenr(eb), root->objectid, slot)
  486. static noinline int check_leaf(struct btrfs_root *root,
  487. struct extent_buffer *leaf)
  488. {
  489. struct btrfs_key key;
  490. struct btrfs_key leaf_key;
  491. u32 nritems = btrfs_header_nritems(leaf);
  492. int slot;
  493. if (nritems == 0)
  494. return 0;
  495. /* Check the 0 item */
  496. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  497. BTRFS_LEAF_DATA_SIZE(root)) {
  498. CORRUPT("invalid item offset size pair", leaf, root, 0);
  499. return -EIO;
  500. }
  501. /*
  502. * Check to make sure each items keys are in the correct order and their
  503. * offsets make sense. We only have to loop through nritems-1 because
  504. * we check the current slot against the next slot, which verifies the
  505. * next slot's offset+size makes sense and that the current's slot
  506. * offset is correct.
  507. */
  508. for (slot = 0; slot < nritems - 1; slot++) {
  509. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  510. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  511. /* Make sure the keys are in the right order */
  512. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  513. CORRUPT("bad key order", leaf, root, slot);
  514. return -EIO;
  515. }
  516. /*
  517. * Make sure the offset and ends are right, remember that the
  518. * item data starts at the end of the leaf and grows towards the
  519. * front.
  520. */
  521. if (btrfs_item_offset_nr(leaf, slot) !=
  522. btrfs_item_end_nr(leaf, slot + 1)) {
  523. CORRUPT("slot offset bad", leaf, root, slot);
  524. return -EIO;
  525. }
  526. /*
  527. * Check to make sure that we don't point outside of the leaf,
  528. * just incase all the items are consistent to eachother, but
  529. * all point outside of the leaf.
  530. */
  531. if (btrfs_item_end_nr(leaf, slot) >
  532. BTRFS_LEAF_DATA_SIZE(root)) {
  533. CORRUPT("slot end outside of leaf", leaf, root, slot);
  534. return -EIO;
  535. }
  536. }
  537. return 0;
  538. }
  539. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  540. u64 phy_offset, struct page *page,
  541. u64 start, u64 end, int mirror)
  542. {
  543. u64 found_start;
  544. int found_level;
  545. struct extent_buffer *eb;
  546. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  547. struct btrfs_fs_info *fs_info = root->fs_info;
  548. int ret = 0;
  549. int reads_done;
  550. if (!page->private)
  551. goto out;
  552. eb = (struct extent_buffer *)page->private;
  553. /* the pending IO might have been the only thing that kept this buffer
  554. * in memory. Make sure we have a ref for all this other checks
  555. */
  556. extent_buffer_get(eb);
  557. reads_done = atomic_dec_and_test(&eb->io_pages);
  558. if (!reads_done)
  559. goto err;
  560. eb->read_mirror = mirror;
  561. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  562. ret = -EIO;
  563. goto err;
  564. }
  565. found_start = btrfs_header_bytenr(eb);
  566. if (found_start != eb->start) {
  567. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  568. found_start, eb->start);
  569. ret = -EIO;
  570. goto err;
  571. }
  572. if (check_tree_block_fsid(fs_info, eb)) {
  573. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  574. eb->start);
  575. ret = -EIO;
  576. goto err;
  577. }
  578. found_level = btrfs_header_level(eb);
  579. if (found_level >= BTRFS_MAX_LEVEL) {
  580. btrfs_err(fs_info, "bad tree block level %d",
  581. (int)btrfs_header_level(eb));
  582. ret = -EIO;
  583. goto err;
  584. }
  585. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  586. eb, found_level);
  587. ret = csum_tree_block(fs_info, eb, 1);
  588. if (ret) {
  589. ret = -EIO;
  590. goto err;
  591. }
  592. /*
  593. * If this is a leaf block and it is corrupt, set the corrupt bit so
  594. * that we don't try and read the other copies of this block, just
  595. * return -EIO.
  596. */
  597. if (found_level == 0 && check_leaf(root, eb)) {
  598. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  599. ret = -EIO;
  600. }
  601. if (!ret)
  602. set_extent_buffer_uptodate(eb);
  603. err:
  604. if (reads_done &&
  605. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  606. btree_readahead_hook(fs_info, eb, eb->start, ret);
  607. if (ret) {
  608. /*
  609. * our io error hook is going to dec the io pages
  610. * again, we have to make sure it has something
  611. * to decrement
  612. */
  613. atomic_inc(&eb->io_pages);
  614. clear_extent_buffer_uptodate(eb);
  615. }
  616. free_extent_buffer(eb);
  617. out:
  618. return ret;
  619. }
  620. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  621. {
  622. struct extent_buffer *eb;
  623. eb = (struct extent_buffer *)page->private;
  624. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  625. eb->read_mirror = failed_mirror;
  626. atomic_dec(&eb->io_pages);
  627. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  628. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  629. return -EIO; /* we fixed nothing */
  630. }
  631. static void end_workqueue_bio(struct bio *bio)
  632. {
  633. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  634. struct btrfs_fs_info *fs_info;
  635. struct btrfs_workqueue *wq;
  636. btrfs_work_func_t func;
  637. fs_info = end_io_wq->info;
  638. end_io_wq->error = bio->bi_error;
  639. if (bio->bi_rw & REQ_WRITE) {
  640. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  641. wq = fs_info->endio_meta_write_workers;
  642. func = btrfs_endio_meta_write_helper;
  643. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  644. wq = fs_info->endio_freespace_worker;
  645. func = btrfs_freespace_write_helper;
  646. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  647. wq = fs_info->endio_raid56_workers;
  648. func = btrfs_endio_raid56_helper;
  649. } else {
  650. wq = fs_info->endio_write_workers;
  651. func = btrfs_endio_write_helper;
  652. }
  653. } else {
  654. if (unlikely(end_io_wq->metadata ==
  655. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  656. wq = fs_info->endio_repair_workers;
  657. func = btrfs_endio_repair_helper;
  658. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  659. wq = fs_info->endio_raid56_workers;
  660. func = btrfs_endio_raid56_helper;
  661. } else if (end_io_wq->metadata) {
  662. wq = fs_info->endio_meta_workers;
  663. func = btrfs_endio_meta_helper;
  664. } else {
  665. wq = fs_info->endio_workers;
  666. func = btrfs_endio_helper;
  667. }
  668. }
  669. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  670. btrfs_queue_work(wq, &end_io_wq->work);
  671. }
  672. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  673. enum btrfs_wq_endio_type metadata)
  674. {
  675. struct btrfs_end_io_wq *end_io_wq;
  676. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  677. if (!end_io_wq)
  678. return -ENOMEM;
  679. end_io_wq->private = bio->bi_private;
  680. end_io_wq->end_io = bio->bi_end_io;
  681. end_io_wq->info = info;
  682. end_io_wq->error = 0;
  683. end_io_wq->bio = bio;
  684. end_io_wq->metadata = metadata;
  685. bio->bi_private = end_io_wq;
  686. bio->bi_end_io = end_workqueue_bio;
  687. return 0;
  688. }
  689. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  690. {
  691. unsigned long limit = min_t(unsigned long,
  692. info->thread_pool_size,
  693. info->fs_devices->open_devices);
  694. return 256 * limit;
  695. }
  696. static void run_one_async_start(struct btrfs_work *work)
  697. {
  698. struct async_submit_bio *async;
  699. int ret;
  700. async = container_of(work, struct async_submit_bio, work);
  701. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  702. async->mirror_num, async->bio_flags,
  703. async->bio_offset);
  704. if (ret)
  705. async->error = ret;
  706. }
  707. static void run_one_async_done(struct btrfs_work *work)
  708. {
  709. struct btrfs_fs_info *fs_info;
  710. struct async_submit_bio *async;
  711. int limit;
  712. async = container_of(work, struct async_submit_bio, work);
  713. fs_info = BTRFS_I(async->inode)->root->fs_info;
  714. limit = btrfs_async_submit_limit(fs_info);
  715. limit = limit * 2 / 3;
  716. /*
  717. * atomic_dec_return implies a barrier for waitqueue_active
  718. */
  719. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  720. waitqueue_active(&fs_info->async_submit_wait))
  721. wake_up(&fs_info->async_submit_wait);
  722. /* If an error occured we just want to clean up the bio and move on */
  723. if (async->error) {
  724. async->bio->bi_error = async->error;
  725. bio_endio(async->bio);
  726. return;
  727. }
  728. async->submit_bio_done(async->inode, async->rw, async->bio,
  729. async->mirror_num, async->bio_flags,
  730. async->bio_offset);
  731. }
  732. static void run_one_async_free(struct btrfs_work *work)
  733. {
  734. struct async_submit_bio *async;
  735. async = container_of(work, struct async_submit_bio, work);
  736. kfree(async);
  737. }
  738. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  739. int rw, struct bio *bio, int mirror_num,
  740. unsigned long bio_flags,
  741. u64 bio_offset,
  742. extent_submit_bio_hook_t *submit_bio_start,
  743. extent_submit_bio_hook_t *submit_bio_done)
  744. {
  745. struct async_submit_bio *async;
  746. async = kmalloc(sizeof(*async), GFP_NOFS);
  747. if (!async)
  748. return -ENOMEM;
  749. async->inode = inode;
  750. async->rw = rw;
  751. async->bio = bio;
  752. async->mirror_num = mirror_num;
  753. async->submit_bio_start = submit_bio_start;
  754. async->submit_bio_done = submit_bio_done;
  755. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  756. run_one_async_done, run_one_async_free);
  757. async->bio_flags = bio_flags;
  758. async->bio_offset = bio_offset;
  759. async->error = 0;
  760. atomic_inc(&fs_info->nr_async_submits);
  761. if (rw & REQ_SYNC)
  762. btrfs_set_work_high_priority(&async->work);
  763. btrfs_queue_work(fs_info->workers, &async->work);
  764. while (atomic_read(&fs_info->async_submit_draining) &&
  765. atomic_read(&fs_info->nr_async_submits)) {
  766. wait_event(fs_info->async_submit_wait,
  767. (atomic_read(&fs_info->nr_async_submits) == 0));
  768. }
  769. return 0;
  770. }
  771. static int btree_csum_one_bio(struct bio *bio)
  772. {
  773. struct bio_vec *bvec;
  774. struct btrfs_root *root;
  775. int i, ret = 0;
  776. bio_for_each_segment_all(bvec, bio, i) {
  777. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  778. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  779. if (ret)
  780. break;
  781. }
  782. return ret;
  783. }
  784. static int __btree_submit_bio_start(struct inode *inode, int rw,
  785. struct bio *bio, int mirror_num,
  786. unsigned long bio_flags,
  787. u64 bio_offset)
  788. {
  789. /*
  790. * when we're called for a write, we're already in the async
  791. * submission context. Just jump into btrfs_map_bio
  792. */
  793. return btree_csum_one_bio(bio);
  794. }
  795. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  796. int mirror_num, unsigned long bio_flags,
  797. u64 bio_offset)
  798. {
  799. int ret;
  800. /*
  801. * when we're called for a write, we're already in the async
  802. * submission context. Just jump into btrfs_map_bio
  803. */
  804. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  805. if (ret) {
  806. bio->bi_error = ret;
  807. bio_endio(bio);
  808. }
  809. return ret;
  810. }
  811. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  812. {
  813. if (bio_flags & EXTENT_BIO_TREE_LOG)
  814. return 0;
  815. #ifdef CONFIG_X86
  816. if (static_cpu_has_safe(X86_FEATURE_XMM4_2))
  817. return 0;
  818. #endif
  819. return 1;
  820. }
  821. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  822. int mirror_num, unsigned long bio_flags,
  823. u64 bio_offset)
  824. {
  825. int async = check_async_write(inode, bio_flags);
  826. int ret;
  827. if (!(rw & REQ_WRITE)) {
  828. /*
  829. * called for a read, do the setup so that checksum validation
  830. * can happen in the async kernel threads
  831. */
  832. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  833. bio, BTRFS_WQ_ENDIO_METADATA);
  834. if (ret)
  835. goto out_w_error;
  836. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  837. mirror_num, 0);
  838. } else if (!async) {
  839. ret = btree_csum_one_bio(bio);
  840. if (ret)
  841. goto out_w_error;
  842. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  843. mirror_num, 0);
  844. } else {
  845. /*
  846. * kthread helpers are used to submit writes so that
  847. * checksumming can happen in parallel across all CPUs
  848. */
  849. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  850. inode, rw, bio, mirror_num, 0,
  851. bio_offset,
  852. __btree_submit_bio_start,
  853. __btree_submit_bio_done);
  854. }
  855. if (ret)
  856. goto out_w_error;
  857. return 0;
  858. out_w_error:
  859. bio->bi_error = ret;
  860. bio_endio(bio);
  861. return ret;
  862. }
  863. #ifdef CONFIG_MIGRATION
  864. static int btree_migratepage(struct address_space *mapping,
  865. struct page *newpage, struct page *page,
  866. enum migrate_mode mode)
  867. {
  868. /*
  869. * we can't safely write a btree page from here,
  870. * we haven't done the locking hook
  871. */
  872. if (PageDirty(page))
  873. return -EAGAIN;
  874. /*
  875. * Buffers may be managed in a filesystem specific way.
  876. * We must have no buffers or drop them.
  877. */
  878. if (page_has_private(page) &&
  879. !try_to_release_page(page, GFP_KERNEL))
  880. return -EAGAIN;
  881. return migrate_page(mapping, newpage, page, mode);
  882. }
  883. #endif
  884. static int btree_writepages(struct address_space *mapping,
  885. struct writeback_control *wbc)
  886. {
  887. struct btrfs_fs_info *fs_info;
  888. int ret;
  889. if (wbc->sync_mode == WB_SYNC_NONE) {
  890. if (wbc->for_kupdate)
  891. return 0;
  892. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  893. /* this is a bit racy, but that's ok */
  894. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  895. BTRFS_DIRTY_METADATA_THRESH);
  896. if (ret < 0)
  897. return 0;
  898. }
  899. return btree_write_cache_pages(mapping, wbc);
  900. }
  901. static int btree_readpage(struct file *file, struct page *page)
  902. {
  903. struct extent_io_tree *tree;
  904. tree = &BTRFS_I(page->mapping->host)->io_tree;
  905. return extent_read_full_page(tree, page, btree_get_extent, 0);
  906. }
  907. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  908. {
  909. if (PageWriteback(page) || PageDirty(page))
  910. return 0;
  911. return try_release_extent_buffer(page);
  912. }
  913. static void btree_invalidatepage(struct page *page, unsigned int offset,
  914. unsigned int length)
  915. {
  916. struct extent_io_tree *tree;
  917. tree = &BTRFS_I(page->mapping->host)->io_tree;
  918. extent_invalidatepage(tree, page, offset);
  919. btree_releasepage(page, GFP_NOFS);
  920. if (PagePrivate(page)) {
  921. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  922. "page private not zero on page %llu",
  923. (unsigned long long)page_offset(page));
  924. ClearPagePrivate(page);
  925. set_page_private(page, 0);
  926. page_cache_release(page);
  927. }
  928. }
  929. static int btree_set_page_dirty(struct page *page)
  930. {
  931. #ifdef DEBUG
  932. struct extent_buffer *eb;
  933. BUG_ON(!PagePrivate(page));
  934. eb = (struct extent_buffer *)page->private;
  935. BUG_ON(!eb);
  936. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  937. BUG_ON(!atomic_read(&eb->refs));
  938. btrfs_assert_tree_locked(eb);
  939. #endif
  940. return __set_page_dirty_nobuffers(page);
  941. }
  942. static const struct address_space_operations btree_aops = {
  943. .readpage = btree_readpage,
  944. .writepages = btree_writepages,
  945. .releasepage = btree_releasepage,
  946. .invalidatepage = btree_invalidatepage,
  947. #ifdef CONFIG_MIGRATION
  948. .migratepage = btree_migratepage,
  949. #endif
  950. .set_page_dirty = btree_set_page_dirty,
  951. };
  952. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  953. {
  954. struct extent_buffer *buf = NULL;
  955. struct inode *btree_inode = root->fs_info->btree_inode;
  956. buf = btrfs_find_create_tree_block(root, bytenr);
  957. if (!buf)
  958. return;
  959. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  960. buf, 0, WAIT_NONE, btree_get_extent, 0);
  961. free_extent_buffer(buf);
  962. }
  963. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  964. int mirror_num, struct extent_buffer **eb)
  965. {
  966. struct extent_buffer *buf = NULL;
  967. struct inode *btree_inode = root->fs_info->btree_inode;
  968. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  969. int ret;
  970. buf = btrfs_find_create_tree_block(root, bytenr);
  971. if (!buf)
  972. return 0;
  973. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  974. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  975. btree_get_extent, mirror_num);
  976. if (ret) {
  977. free_extent_buffer(buf);
  978. return ret;
  979. }
  980. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  981. free_extent_buffer(buf);
  982. return -EIO;
  983. } else if (extent_buffer_uptodate(buf)) {
  984. *eb = buf;
  985. } else {
  986. free_extent_buffer(buf);
  987. }
  988. return 0;
  989. }
  990. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  991. u64 bytenr)
  992. {
  993. return find_extent_buffer(fs_info, bytenr);
  994. }
  995. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  996. u64 bytenr)
  997. {
  998. if (btrfs_test_is_dummy_root(root))
  999. return alloc_test_extent_buffer(root->fs_info, bytenr);
  1000. return alloc_extent_buffer(root->fs_info, bytenr);
  1001. }
  1002. int btrfs_write_tree_block(struct extent_buffer *buf)
  1003. {
  1004. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1005. buf->start + buf->len - 1);
  1006. }
  1007. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1008. {
  1009. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1010. buf->start, buf->start + buf->len - 1);
  1011. }
  1012. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1013. u64 parent_transid)
  1014. {
  1015. struct extent_buffer *buf = NULL;
  1016. int ret;
  1017. buf = btrfs_find_create_tree_block(root, bytenr);
  1018. if (!buf)
  1019. return ERR_PTR(-ENOMEM);
  1020. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1021. if (ret) {
  1022. free_extent_buffer(buf);
  1023. return ERR_PTR(ret);
  1024. }
  1025. return buf;
  1026. }
  1027. void clean_tree_block(struct btrfs_trans_handle *trans,
  1028. struct btrfs_fs_info *fs_info,
  1029. struct extent_buffer *buf)
  1030. {
  1031. if (btrfs_header_generation(buf) ==
  1032. fs_info->running_transaction->transid) {
  1033. btrfs_assert_tree_locked(buf);
  1034. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1035. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1036. -buf->len,
  1037. fs_info->dirty_metadata_batch);
  1038. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1039. btrfs_set_lock_blocking(buf);
  1040. clear_extent_buffer_dirty(buf);
  1041. }
  1042. }
  1043. }
  1044. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1045. {
  1046. struct btrfs_subvolume_writers *writers;
  1047. int ret;
  1048. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1049. if (!writers)
  1050. return ERR_PTR(-ENOMEM);
  1051. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1052. if (ret < 0) {
  1053. kfree(writers);
  1054. return ERR_PTR(ret);
  1055. }
  1056. init_waitqueue_head(&writers->wait);
  1057. return writers;
  1058. }
  1059. static void
  1060. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1061. {
  1062. percpu_counter_destroy(&writers->counter);
  1063. kfree(writers);
  1064. }
  1065. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1066. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1067. u64 objectid)
  1068. {
  1069. root->node = NULL;
  1070. root->commit_root = NULL;
  1071. root->sectorsize = sectorsize;
  1072. root->nodesize = nodesize;
  1073. root->stripesize = stripesize;
  1074. root->state = 0;
  1075. root->orphan_cleanup_state = 0;
  1076. root->objectid = objectid;
  1077. root->last_trans = 0;
  1078. root->highest_objectid = 0;
  1079. root->nr_delalloc_inodes = 0;
  1080. root->nr_ordered_extents = 0;
  1081. root->name = NULL;
  1082. root->inode_tree = RB_ROOT;
  1083. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1084. root->block_rsv = NULL;
  1085. root->orphan_block_rsv = NULL;
  1086. INIT_LIST_HEAD(&root->dirty_list);
  1087. INIT_LIST_HEAD(&root->root_list);
  1088. INIT_LIST_HEAD(&root->delalloc_inodes);
  1089. INIT_LIST_HEAD(&root->delalloc_root);
  1090. INIT_LIST_HEAD(&root->ordered_extents);
  1091. INIT_LIST_HEAD(&root->ordered_root);
  1092. INIT_LIST_HEAD(&root->logged_list[0]);
  1093. INIT_LIST_HEAD(&root->logged_list[1]);
  1094. spin_lock_init(&root->orphan_lock);
  1095. spin_lock_init(&root->inode_lock);
  1096. spin_lock_init(&root->delalloc_lock);
  1097. spin_lock_init(&root->ordered_extent_lock);
  1098. spin_lock_init(&root->accounting_lock);
  1099. spin_lock_init(&root->log_extents_lock[0]);
  1100. spin_lock_init(&root->log_extents_lock[1]);
  1101. mutex_init(&root->objectid_mutex);
  1102. mutex_init(&root->log_mutex);
  1103. mutex_init(&root->ordered_extent_mutex);
  1104. mutex_init(&root->delalloc_mutex);
  1105. init_waitqueue_head(&root->log_writer_wait);
  1106. init_waitqueue_head(&root->log_commit_wait[0]);
  1107. init_waitqueue_head(&root->log_commit_wait[1]);
  1108. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1109. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1110. atomic_set(&root->log_commit[0], 0);
  1111. atomic_set(&root->log_commit[1], 0);
  1112. atomic_set(&root->log_writers, 0);
  1113. atomic_set(&root->log_batch, 0);
  1114. atomic_set(&root->orphan_inodes, 0);
  1115. atomic_set(&root->refs, 1);
  1116. atomic_set(&root->will_be_snapshoted, 0);
  1117. atomic_set(&root->qgroup_meta_rsv, 0);
  1118. root->log_transid = 0;
  1119. root->log_transid_committed = -1;
  1120. root->last_log_commit = 0;
  1121. if (fs_info)
  1122. extent_io_tree_init(&root->dirty_log_pages,
  1123. fs_info->btree_inode->i_mapping);
  1124. memset(&root->root_key, 0, sizeof(root->root_key));
  1125. memset(&root->root_item, 0, sizeof(root->root_item));
  1126. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1127. if (fs_info)
  1128. root->defrag_trans_start = fs_info->generation;
  1129. else
  1130. root->defrag_trans_start = 0;
  1131. root->root_key.objectid = objectid;
  1132. root->anon_dev = 0;
  1133. spin_lock_init(&root->root_item_lock);
  1134. }
  1135. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1136. gfp_t flags)
  1137. {
  1138. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1139. if (root)
  1140. root->fs_info = fs_info;
  1141. return root;
  1142. }
  1143. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1144. /* Should only be used by the testing infrastructure */
  1145. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1146. {
  1147. struct btrfs_root *root;
  1148. root = btrfs_alloc_root(NULL, GFP_KERNEL);
  1149. if (!root)
  1150. return ERR_PTR(-ENOMEM);
  1151. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1152. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1153. root->alloc_bytenr = 0;
  1154. return root;
  1155. }
  1156. #endif
  1157. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1158. struct btrfs_fs_info *fs_info,
  1159. u64 objectid)
  1160. {
  1161. struct extent_buffer *leaf;
  1162. struct btrfs_root *tree_root = fs_info->tree_root;
  1163. struct btrfs_root *root;
  1164. struct btrfs_key key;
  1165. int ret = 0;
  1166. uuid_le uuid;
  1167. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1168. if (!root)
  1169. return ERR_PTR(-ENOMEM);
  1170. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1171. tree_root->stripesize, root, fs_info, objectid);
  1172. root->root_key.objectid = objectid;
  1173. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1174. root->root_key.offset = 0;
  1175. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1176. if (IS_ERR(leaf)) {
  1177. ret = PTR_ERR(leaf);
  1178. leaf = NULL;
  1179. goto fail;
  1180. }
  1181. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1182. btrfs_set_header_bytenr(leaf, leaf->start);
  1183. btrfs_set_header_generation(leaf, trans->transid);
  1184. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1185. btrfs_set_header_owner(leaf, objectid);
  1186. root->node = leaf;
  1187. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1188. BTRFS_FSID_SIZE);
  1189. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1190. btrfs_header_chunk_tree_uuid(leaf),
  1191. BTRFS_UUID_SIZE);
  1192. btrfs_mark_buffer_dirty(leaf);
  1193. root->commit_root = btrfs_root_node(root);
  1194. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1195. root->root_item.flags = 0;
  1196. root->root_item.byte_limit = 0;
  1197. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1198. btrfs_set_root_generation(&root->root_item, trans->transid);
  1199. btrfs_set_root_level(&root->root_item, 0);
  1200. btrfs_set_root_refs(&root->root_item, 1);
  1201. btrfs_set_root_used(&root->root_item, leaf->len);
  1202. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1203. btrfs_set_root_dirid(&root->root_item, 0);
  1204. uuid_le_gen(&uuid);
  1205. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1206. root->root_item.drop_level = 0;
  1207. key.objectid = objectid;
  1208. key.type = BTRFS_ROOT_ITEM_KEY;
  1209. key.offset = 0;
  1210. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1211. if (ret)
  1212. goto fail;
  1213. btrfs_tree_unlock(leaf);
  1214. return root;
  1215. fail:
  1216. if (leaf) {
  1217. btrfs_tree_unlock(leaf);
  1218. free_extent_buffer(root->commit_root);
  1219. free_extent_buffer(leaf);
  1220. }
  1221. kfree(root);
  1222. return ERR_PTR(ret);
  1223. }
  1224. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1225. struct btrfs_fs_info *fs_info)
  1226. {
  1227. struct btrfs_root *root;
  1228. struct btrfs_root *tree_root = fs_info->tree_root;
  1229. struct extent_buffer *leaf;
  1230. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1231. if (!root)
  1232. return ERR_PTR(-ENOMEM);
  1233. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1234. tree_root->stripesize, root, fs_info,
  1235. BTRFS_TREE_LOG_OBJECTID);
  1236. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1237. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1238. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1239. /*
  1240. * DON'T set REF_COWS for log trees
  1241. *
  1242. * log trees do not get reference counted because they go away
  1243. * before a real commit is actually done. They do store pointers
  1244. * to file data extents, and those reference counts still get
  1245. * updated (along with back refs to the log tree).
  1246. */
  1247. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1248. NULL, 0, 0, 0);
  1249. if (IS_ERR(leaf)) {
  1250. kfree(root);
  1251. return ERR_CAST(leaf);
  1252. }
  1253. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1254. btrfs_set_header_bytenr(leaf, leaf->start);
  1255. btrfs_set_header_generation(leaf, trans->transid);
  1256. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1257. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1258. root->node = leaf;
  1259. write_extent_buffer(root->node, root->fs_info->fsid,
  1260. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1261. btrfs_mark_buffer_dirty(root->node);
  1262. btrfs_tree_unlock(root->node);
  1263. return root;
  1264. }
  1265. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1266. struct btrfs_fs_info *fs_info)
  1267. {
  1268. struct btrfs_root *log_root;
  1269. log_root = alloc_log_tree(trans, fs_info);
  1270. if (IS_ERR(log_root))
  1271. return PTR_ERR(log_root);
  1272. WARN_ON(fs_info->log_root_tree);
  1273. fs_info->log_root_tree = log_root;
  1274. return 0;
  1275. }
  1276. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1277. struct btrfs_root *root)
  1278. {
  1279. struct btrfs_root *log_root;
  1280. struct btrfs_inode_item *inode_item;
  1281. log_root = alloc_log_tree(trans, root->fs_info);
  1282. if (IS_ERR(log_root))
  1283. return PTR_ERR(log_root);
  1284. log_root->last_trans = trans->transid;
  1285. log_root->root_key.offset = root->root_key.objectid;
  1286. inode_item = &log_root->root_item.inode;
  1287. btrfs_set_stack_inode_generation(inode_item, 1);
  1288. btrfs_set_stack_inode_size(inode_item, 3);
  1289. btrfs_set_stack_inode_nlink(inode_item, 1);
  1290. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1291. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1292. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1293. WARN_ON(root->log_root);
  1294. root->log_root = log_root;
  1295. root->log_transid = 0;
  1296. root->log_transid_committed = -1;
  1297. root->last_log_commit = 0;
  1298. return 0;
  1299. }
  1300. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1301. struct btrfs_key *key)
  1302. {
  1303. struct btrfs_root *root;
  1304. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1305. struct btrfs_path *path;
  1306. u64 generation;
  1307. int ret;
  1308. path = btrfs_alloc_path();
  1309. if (!path)
  1310. return ERR_PTR(-ENOMEM);
  1311. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1312. if (!root) {
  1313. ret = -ENOMEM;
  1314. goto alloc_fail;
  1315. }
  1316. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1317. tree_root->stripesize, root, fs_info, key->objectid);
  1318. ret = btrfs_find_root(tree_root, key, path,
  1319. &root->root_item, &root->root_key);
  1320. if (ret) {
  1321. if (ret > 0)
  1322. ret = -ENOENT;
  1323. goto find_fail;
  1324. }
  1325. generation = btrfs_root_generation(&root->root_item);
  1326. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1327. generation);
  1328. if (IS_ERR(root->node)) {
  1329. ret = PTR_ERR(root->node);
  1330. goto find_fail;
  1331. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1332. ret = -EIO;
  1333. free_extent_buffer(root->node);
  1334. goto find_fail;
  1335. }
  1336. root->commit_root = btrfs_root_node(root);
  1337. out:
  1338. btrfs_free_path(path);
  1339. return root;
  1340. find_fail:
  1341. kfree(root);
  1342. alloc_fail:
  1343. root = ERR_PTR(ret);
  1344. goto out;
  1345. }
  1346. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1347. struct btrfs_key *location)
  1348. {
  1349. struct btrfs_root *root;
  1350. root = btrfs_read_tree_root(tree_root, location);
  1351. if (IS_ERR(root))
  1352. return root;
  1353. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1354. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1355. btrfs_check_and_init_root_item(&root->root_item);
  1356. }
  1357. return root;
  1358. }
  1359. int btrfs_init_fs_root(struct btrfs_root *root)
  1360. {
  1361. int ret;
  1362. struct btrfs_subvolume_writers *writers;
  1363. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1364. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1365. GFP_NOFS);
  1366. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1367. ret = -ENOMEM;
  1368. goto fail;
  1369. }
  1370. writers = btrfs_alloc_subvolume_writers();
  1371. if (IS_ERR(writers)) {
  1372. ret = PTR_ERR(writers);
  1373. goto fail;
  1374. }
  1375. root->subv_writers = writers;
  1376. btrfs_init_free_ino_ctl(root);
  1377. spin_lock_init(&root->ino_cache_lock);
  1378. init_waitqueue_head(&root->ino_cache_wait);
  1379. ret = get_anon_bdev(&root->anon_dev);
  1380. if (ret)
  1381. goto free_writers;
  1382. mutex_lock(&root->objectid_mutex);
  1383. ret = btrfs_find_highest_objectid(root,
  1384. &root->highest_objectid);
  1385. if (ret) {
  1386. mutex_unlock(&root->objectid_mutex);
  1387. goto free_root_dev;
  1388. }
  1389. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1390. mutex_unlock(&root->objectid_mutex);
  1391. return 0;
  1392. free_root_dev:
  1393. free_anon_bdev(root->anon_dev);
  1394. free_writers:
  1395. btrfs_free_subvolume_writers(root->subv_writers);
  1396. fail:
  1397. kfree(root->free_ino_ctl);
  1398. kfree(root->free_ino_pinned);
  1399. return ret;
  1400. }
  1401. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1402. u64 root_id)
  1403. {
  1404. struct btrfs_root *root;
  1405. spin_lock(&fs_info->fs_roots_radix_lock);
  1406. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1407. (unsigned long)root_id);
  1408. spin_unlock(&fs_info->fs_roots_radix_lock);
  1409. return root;
  1410. }
  1411. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1412. struct btrfs_root *root)
  1413. {
  1414. int ret;
  1415. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1416. if (ret)
  1417. return ret;
  1418. spin_lock(&fs_info->fs_roots_radix_lock);
  1419. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1420. (unsigned long)root->root_key.objectid,
  1421. root);
  1422. if (ret == 0)
  1423. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1424. spin_unlock(&fs_info->fs_roots_radix_lock);
  1425. radix_tree_preload_end();
  1426. return ret;
  1427. }
  1428. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1429. struct btrfs_key *location,
  1430. bool check_ref)
  1431. {
  1432. struct btrfs_root *root;
  1433. struct btrfs_path *path;
  1434. struct btrfs_key key;
  1435. int ret;
  1436. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1437. return fs_info->tree_root;
  1438. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1439. return fs_info->extent_root;
  1440. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1441. return fs_info->chunk_root;
  1442. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1443. return fs_info->dev_root;
  1444. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1445. return fs_info->csum_root;
  1446. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1447. return fs_info->quota_root ? fs_info->quota_root :
  1448. ERR_PTR(-ENOENT);
  1449. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1450. return fs_info->uuid_root ? fs_info->uuid_root :
  1451. ERR_PTR(-ENOENT);
  1452. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1453. return fs_info->free_space_root ? fs_info->free_space_root :
  1454. ERR_PTR(-ENOENT);
  1455. again:
  1456. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1457. if (root) {
  1458. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1459. return ERR_PTR(-ENOENT);
  1460. return root;
  1461. }
  1462. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1463. if (IS_ERR(root))
  1464. return root;
  1465. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1466. ret = -ENOENT;
  1467. goto fail;
  1468. }
  1469. ret = btrfs_init_fs_root(root);
  1470. if (ret)
  1471. goto fail;
  1472. path = btrfs_alloc_path();
  1473. if (!path) {
  1474. ret = -ENOMEM;
  1475. goto fail;
  1476. }
  1477. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1478. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1479. key.offset = location->objectid;
  1480. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1481. btrfs_free_path(path);
  1482. if (ret < 0)
  1483. goto fail;
  1484. if (ret == 0)
  1485. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1486. ret = btrfs_insert_fs_root(fs_info, root);
  1487. if (ret) {
  1488. if (ret == -EEXIST) {
  1489. free_fs_root(root);
  1490. goto again;
  1491. }
  1492. goto fail;
  1493. }
  1494. return root;
  1495. fail:
  1496. free_fs_root(root);
  1497. return ERR_PTR(ret);
  1498. }
  1499. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1500. {
  1501. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1502. int ret = 0;
  1503. struct btrfs_device *device;
  1504. struct backing_dev_info *bdi;
  1505. rcu_read_lock();
  1506. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1507. if (!device->bdev)
  1508. continue;
  1509. bdi = blk_get_backing_dev_info(device->bdev);
  1510. if (bdi_congested(bdi, bdi_bits)) {
  1511. ret = 1;
  1512. break;
  1513. }
  1514. }
  1515. rcu_read_unlock();
  1516. return ret;
  1517. }
  1518. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1519. {
  1520. int err;
  1521. err = bdi_setup_and_register(bdi, "btrfs");
  1522. if (err)
  1523. return err;
  1524. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1525. bdi->congested_fn = btrfs_congested_fn;
  1526. bdi->congested_data = info;
  1527. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1528. return 0;
  1529. }
  1530. /*
  1531. * called by the kthread helper functions to finally call the bio end_io
  1532. * functions. This is where read checksum verification actually happens
  1533. */
  1534. static void end_workqueue_fn(struct btrfs_work *work)
  1535. {
  1536. struct bio *bio;
  1537. struct btrfs_end_io_wq *end_io_wq;
  1538. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1539. bio = end_io_wq->bio;
  1540. bio->bi_error = end_io_wq->error;
  1541. bio->bi_private = end_io_wq->private;
  1542. bio->bi_end_io = end_io_wq->end_io;
  1543. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1544. bio_endio(bio);
  1545. }
  1546. static int cleaner_kthread(void *arg)
  1547. {
  1548. struct btrfs_root *root = arg;
  1549. int again;
  1550. struct btrfs_trans_handle *trans;
  1551. do {
  1552. again = 0;
  1553. /* Make the cleaner go to sleep early. */
  1554. if (btrfs_need_cleaner_sleep(root))
  1555. goto sleep;
  1556. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1557. goto sleep;
  1558. /*
  1559. * Avoid the problem that we change the status of the fs
  1560. * during the above check and trylock.
  1561. */
  1562. if (btrfs_need_cleaner_sleep(root)) {
  1563. mutex_unlock(&root->fs_info->cleaner_mutex);
  1564. goto sleep;
  1565. }
  1566. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1567. btrfs_run_delayed_iputs(root);
  1568. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1569. again = btrfs_clean_one_deleted_snapshot(root);
  1570. mutex_unlock(&root->fs_info->cleaner_mutex);
  1571. /*
  1572. * The defragger has dealt with the R/O remount and umount,
  1573. * needn't do anything special here.
  1574. */
  1575. btrfs_run_defrag_inodes(root->fs_info);
  1576. /*
  1577. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1578. * with relocation (btrfs_relocate_chunk) and relocation
  1579. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1580. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1581. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1582. * unused block groups.
  1583. */
  1584. btrfs_delete_unused_bgs(root->fs_info);
  1585. sleep:
  1586. if (!try_to_freeze() && !again) {
  1587. set_current_state(TASK_INTERRUPTIBLE);
  1588. if (!kthread_should_stop())
  1589. schedule();
  1590. __set_current_state(TASK_RUNNING);
  1591. }
  1592. } while (!kthread_should_stop());
  1593. /*
  1594. * Transaction kthread is stopped before us and wakes us up.
  1595. * However we might have started a new transaction and COWed some
  1596. * tree blocks when deleting unused block groups for example. So
  1597. * make sure we commit the transaction we started to have a clean
  1598. * shutdown when evicting the btree inode - if it has dirty pages
  1599. * when we do the final iput() on it, eviction will trigger a
  1600. * writeback for it which will fail with null pointer dereferences
  1601. * since work queues and other resources were already released and
  1602. * destroyed by the time the iput/eviction/writeback is made.
  1603. */
  1604. trans = btrfs_attach_transaction(root);
  1605. if (IS_ERR(trans)) {
  1606. if (PTR_ERR(trans) != -ENOENT)
  1607. btrfs_err(root->fs_info,
  1608. "cleaner transaction attach returned %ld",
  1609. PTR_ERR(trans));
  1610. } else {
  1611. int ret;
  1612. ret = btrfs_commit_transaction(trans, root);
  1613. if (ret)
  1614. btrfs_err(root->fs_info,
  1615. "cleaner open transaction commit returned %d",
  1616. ret);
  1617. }
  1618. return 0;
  1619. }
  1620. static int transaction_kthread(void *arg)
  1621. {
  1622. struct btrfs_root *root = arg;
  1623. struct btrfs_trans_handle *trans;
  1624. struct btrfs_transaction *cur;
  1625. u64 transid;
  1626. unsigned long now;
  1627. unsigned long delay;
  1628. bool cannot_commit;
  1629. do {
  1630. cannot_commit = false;
  1631. delay = HZ * root->fs_info->commit_interval;
  1632. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1633. spin_lock(&root->fs_info->trans_lock);
  1634. cur = root->fs_info->running_transaction;
  1635. if (!cur) {
  1636. spin_unlock(&root->fs_info->trans_lock);
  1637. goto sleep;
  1638. }
  1639. now = get_seconds();
  1640. if (cur->state < TRANS_STATE_BLOCKED &&
  1641. (now < cur->start_time ||
  1642. now - cur->start_time < root->fs_info->commit_interval)) {
  1643. spin_unlock(&root->fs_info->trans_lock);
  1644. delay = HZ * 5;
  1645. goto sleep;
  1646. }
  1647. transid = cur->transid;
  1648. spin_unlock(&root->fs_info->trans_lock);
  1649. /* If the file system is aborted, this will always fail. */
  1650. trans = btrfs_attach_transaction(root);
  1651. if (IS_ERR(trans)) {
  1652. if (PTR_ERR(trans) != -ENOENT)
  1653. cannot_commit = true;
  1654. goto sleep;
  1655. }
  1656. if (transid == trans->transid) {
  1657. btrfs_commit_transaction(trans, root);
  1658. } else {
  1659. btrfs_end_transaction(trans, root);
  1660. }
  1661. sleep:
  1662. wake_up_process(root->fs_info->cleaner_kthread);
  1663. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1664. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1665. &root->fs_info->fs_state)))
  1666. btrfs_cleanup_transaction(root);
  1667. if (!try_to_freeze()) {
  1668. set_current_state(TASK_INTERRUPTIBLE);
  1669. if (!kthread_should_stop() &&
  1670. (!btrfs_transaction_blocked(root->fs_info) ||
  1671. cannot_commit))
  1672. schedule_timeout(delay);
  1673. __set_current_state(TASK_RUNNING);
  1674. }
  1675. } while (!kthread_should_stop());
  1676. return 0;
  1677. }
  1678. /*
  1679. * this will find the highest generation in the array of
  1680. * root backups. The index of the highest array is returned,
  1681. * or -1 if we can't find anything.
  1682. *
  1683. * We check to make sure the array is valid by comparing the
  1684. * generation of the latest root in the array with the generation
  1685. * in the super block. If they don't match we pitch it.
  1686. */
  1687. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1688. {
  1689. u64 cur;
  1690. int newest_index = -1;
  1691. struct btrfs_root_backup *root_backup;
  1692. int i;
  1693. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1694. root_backup = info->super_copy->super_roots + i;
  1695. cur = btrfs_backup_tree_root_gen(root_backup);
  1696. if (cur == newest_gen)
  1697. newest_index = i;
  1698. }
  1699. /* check to see if we actually wrapped around */
  1700. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1701. root_backup = info->super_copy->super_roots;
  1702. cur = btrfs_backup_tree_root_gen(root_backup);
  1703. if (cur == newest_gen)
  1704. newest_index = 0;
  1705. }
  1706. return newest_index;
  1707. }
  1708. /*
  1709. * find the oldest backup so we know where to store new entries
  1710. * in the backup array. This will set the backup_root_index
  1711. * field in the fs_info struct
  1712. */
  1713. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1714. u64 newest_gen)
  1715. {
  1716. int newest_index = -1;
  1717. newest_index = find_newest_super_backup(info, newest_gen);
  1718. /* if there was garbage in there, just move along */
  1719. if (newest_index == -1) {
  1720. info->backup_root_index = 0;
  1721. } else {
  1722. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1723. }
  1724. }
  1725. /*
  1726. * copy all the root pointers into the super backup array.
  1727. * this will bump the backup pointer by one when it is
  1728. * done
  1729. */
  1730. static void backup_super_roots(struct btrfs_fs_info *info)
  1731. {
  1732. int next_backup;
  1733. struct btrfs_root_backup *root_backup;
  1734. int last_backup;
  1735. next_backup = info->backup_root_index;
  1736. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1737. BTRFS_NUM_BACKUP_ROOTS;
  1738. /*
  1739. * just overwrite the last backup if we're at the same generation
  1740. * this happens only at umount
  1741. */
  1742. root_backup = info->super_for_commit->super_roots + last_backup;
  1743. if (btrfs_backup_tree_root_gen(root_backup) ==
  1744. btrfs_header_generation(info->tree_root->node))
  1745. next_backup = last_backup;
  1746. root_backup = info->super_for_commit->super_roots + next_backup;
  1747. /*
  1748. * make sure all of our padding and empty slots get zero filled
  1749. * regardless of which ones we use today
  1750. */
  1751. memset(root_backup, 0, sizeof(*root_backup));
  1752. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1753. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1754. btrfs_set_backup_tree_root_gen(root_backup,
  1755. btrfs_header_generation(info->tree_root->node));
  1756. btrfs_set_backup_tree_root_level(root_backup,
  1757. btrfs_header_level(info->tree_root->node));
  1758. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1759. btrfs_set_backup_chunk_root_gen(root_backup,
  1760. btrfs_header_generation(info->chunk_root->node));
  1761. btrfs_set_backup_chunk_root_level(root_backup,
  1762. btrfs_header_level(info->chunk_root->node));
  1763. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1764. btrfs_set_backup_extent_root_gen(root_backup,
  1765. btrfs_header_generation(info->extent_root->node));
  1766. btrfs_set_backup_extent_root_level(root_backup,
  1767. btrfs_header_level(info->extent_root->node));
  1768. /*
  1769. * we might commit during log recovery, which happens before we set
  1770. * the fs_root. Make sure it is valid before we fill it in.
  1771. */
  1772. if (info->fs_root && info->fs_root->node) {
  1773. btrfs_set_backup_fs_root(root_backup,
  1774. info->fs_root->node->start);
  1775. btrfs_set_backup_fs_root_gen(root_backup,
  1776. btrfs_header_generation(info->fs_root->node));
  1777. btrfs_set_backup_fs_root_level(root_backup,
  1778. btrfs_header_level(info->fs_root->node));
  1779. }
  1780. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1781. btrfs_set_backup_dev_root_gen(root_backup,
  1782. btrfs_header_generation(info->dev_root->node));
  1783. btrfs_set_backup_dev_root_level(root_backup,
  1784. btrfs_header_level(info->dev_root->node));
  1785. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1786. btrfs_set_backup_csum_root_gen(root_backup,
  1787. btrfs_header_generation(info->csum_root->node));
  1788. btrfs_set_backup_csum_root_level(root_backup,
  1789. btrfs_header_level(info->csum_root->node));
  1790. btrfs_set_backup_total_bytes(root_backup,
  1791. btrfs_super_total_bytes(info->super_copy));
  1792. btrfs_set_backup_bytes_used(root_backup,
  1793. btrfs_super_bytes_used(info->super_copy));
  1794. btrfs_set_backup_num_devices(root_backup,
  1795. btrfs_super_num_devices(info->super_copy));
  1796. /*
  1797. * if we don't copy this out to the super_copy, it won't get remembered
  1798. * for the next commit
  1799. */
  1800. memcpy(&info->super_copy->super_roots,
  1801. &info->super_for_commit->super_roots,
  1802. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1803. }
  1804. /*
  1805. * this copies info out of the root backup array and back into
  1806. * the in-memory super block. It is meant to help iterate through
  1807. * the array, so you send it the number of backups you've already
  1808. * tried and the last backup index you used.
  1809. *
  1810. * this returns -1 when it has tried all the backups
  1811. */
  1812. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1813. struct btrfs_super_block *super,
  1814. int *num_backups_tried, int *backup_index)
  1815. {
  1816. struct btrfs_root_backup *root_backup;
  1817. int newest = *backup_index;
  1818. if (*num_backups_tried == 0) {
  1819. u64 gen = btrfs_super_generation(super);
  1820. newest = find_newest_super_backup(info, gen);
  1821. if (newest == -1)
  1822. return -1;
  1823. *backup_index = newest;
  1824. *num_backups_tried = 1;
  1825. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1826. /* we've tried all the backups, all done */
  1827. return -1;
  1828. } else {
  1829. /* jump to the next oldest backup */
  1830. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1831. BTRFS_NUM_BACKUP_ROOTS;
  1832. *backup_index = newest;
  1833. *num_backups_tried += 1;
  1834. }
  1835. root_backup = super->super_roots + newest;
  1836. btrfs_set_super_generation(super,
  1837. btrfs_backup_tree_root_gen(root_backup));
  1838. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1839. btrfs_set_super_root_level(super,
  1840. btrfs_backup_tree_root_level(root_backup));
  1841. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1842. /*
  1843. * fixme: the total bytes and num_devices need to match or we should
  1844. * need a fsck
  1845. */
  1846. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1847. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1848. return 0;
  1849. }
  1850. /* helper to cleanup workers */
  1851. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1852. {
  1853. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1854. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1855. btrfs_destroy_workqueue(fs_info->workers);
  1856. btrfs_destroy_workqueue(fs_info->endio_workers);
  1857. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1858. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1859. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1860. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1861. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1862. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1863. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1864. btrfs_destroy_workqueue(fs_info->submit_workers);
  1865. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1866. btrfs_destroy_workqueue(fs_info->caching_workers);
  1867. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1868. btrfs_destroy_workqueue(fs_info->flush_workers);
  1869. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1870. btrfs_destroy_workqueue(fs_info->extent_workers);
  1871. }
  1872. static void free_root_extent_buffers(struct btrfs_root *root)
  1873. {
  1874. if (root) {
  1875. free_extent_buffer(root->node);
  1876. free_extent_buffer(root->commit_root);
  1877. root->node = NULL;
  1878. root->commit_root = NULL;
  1879. }
  1880. }
  1881. /* helper to cleanup tree roots */
  1882. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1883. {
  1884. free_root_extent_buffers(info->tree_root);
  1885. free_root_extent_buffers(info->dev_root);
  1886. free_root_extent_buffers(info->extent_root);
  1887. free_root_extent_buffers(info->csum_root);
  1888. free_root_extent_buffers(info->quota_root);
  1889. free_root_extent_buffers(info->uuid_root);
  1890. if (chunk_root)
  1891. free_root_extent_buffers(info->chunk_root);
  1892. free_root_extent_buffers(info->free_space_root);
  1893. }
  1894. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1895. {
  1896. int ret;
  1897. struct btrfs_root *gang[8];
  1898. int i;
  1899. while (!list_empty(&fs_info->dead_roots)) {
  1900. gang[0] = list_entry(fs_info->dead_roots.next,
  1901. struct btrfs_root, root_list);
  1902. list_del(&gang[0]->root_list);
  1903. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1904. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1905. } else {
  1906. free_extent_buffer(gang[0]->node);
  1907. free_extent_buffer(gang[0]->commit_root);
  1908. btrfs_put_fs_root(gang[0]);
  1909. }
  1910. }
  1911. while (1) {
  1912. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1913. (void **)gang, 0,
  1914. ARRAY_SIZE(gang));
  1915. if (!ret)
  1916. break;
  1917. for (i = 0; i < ret; i++)
  1918. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1919. }
  1920. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1921. btrfs_free_log_root_tree(NULL, fs_info);
  1922. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1923. fs_info->pinned_extents);
  1924. }
  1925. }
  1926. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1927. {
  1928. mutex_init(&fs_info->scrub_lock);
  1929. atomic_set(&fs_info->scrubs_running, 0);
  1930. atomic_set(&fs_info->scrub_pause_req, 0);
  1931. atomic_set(&fs_info->scrubs_paused, 0);
  1932. atomic_set(&fs_info->scrub_cancel_req, 0);
  1933. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1934. fs_info->scrub_workers_refcnt = 0;
  1935. }
  1936. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1937. {
  1938. spin_lock_init(&fs_info->balance_lock);
  1939. mutex_init(&fs_info->balance_mutex);
  1940. atomic_set(&fs_info->balance_running, 0);
  1941. atomic_set(&fs_info->balance_pause_req, 0);
  1942. atomic_set(&fs_info->balance_cancel_req, 0);
  1943. fs_info->balance_ctl = NULL;
  1944. init_waitqueue_head(&fs_info->balance_wait_q);
  1945. }
  1946. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1947. struct btrfs_root *tree_root)
  1948. {
  1949. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1950. set_nlink(fs_info->btree_inode, 1);
  1951. /*
  1952. * we set the i_size on the btree inode to the max possible int.
  1953. * the real end of the address space is determined by all of
  1954. * the devices in the system
  1955. */
  1956. fs_info->btree_inode->i_size = OFFSET_MAX;
  1957. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1958. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1959. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1960. fs_info->btree_inode->i_mapping);
  1961. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1962. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1963. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1964. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1965. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1966. sizeof(struct btrfs_key));
  1967. set_bit(BTRFS_INODE_DUMMY,
  1968. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1969. btrfs_insert_inode_hash(fs_info->btree_inode);
  1970. }
  1971. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1972. {
  1973. fs_info->dev_replace.lock_owner = 0;
  1974. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1975. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1976. rwlock_init(&fs_info->dev_replace.lock);
  1977. atomic_set(&fs_info->dev_replace.read_locks, 0);
  1978. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  1979. init_waitqueue_head(&fs_info->replace_wait);
  1980. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  1981. }
  1982. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1983. {
  1984. spin_lock_init(&fs_info->qgroup_lock);
  1985. mutex_init(&fs_info->qgroup_ioctl_lock);
  1986. fs_info->qgroup_tree = RB_ROOT;
  1987. fs_info->qgroup_op_tree = RB_ROOT;
  1988. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1989. fs_info->qgroup_seq = 1;
  1990. fs_info->quota_enabled = 0;
  1991. fs_info->pending_quota_state = 0;
  1992. fs_info->qgroup_ulist = NULL;
  1993. mutex_init(&fs_info->qgroup_rescan_lock);
  1994. }
  1995. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1996. struct btrfs_fs_devices *fs_devices)
  1997. {
  1998. int max_active = fs_info->thread_pool_size;
  1999. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2000. fs_info->workers =
  2001. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2002. max_active, 16);
  2003. fs_info->delalloc_workers =
  2004. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2005. fs_info->flush_workers =
  2006. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2007. fs_info->caching_workers =
  2008. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2009. /*
  2010. * a higher idle thresh on the submit workers makes it much more
  2011. * likely that bios will be send down in a sane order to the
  2012. * devices
  2013. */
  2014. fs_info->submit_workers =
  2015. btrfs_alloc_workqueue("submit", flags,
  2016. min_t(u64, fs_devices->num_devices,
  2017. max_active), 64);
  2018. fs_info->fixup_workers =
  2019. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2020. /*
  2021. * endios are largely parallel and should have a very
  2022. * low idle thresh
  2023. */
  2024. fs_info->endio_workers =
  2025. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2026. fs_info->endio_meta_workers =
  2027. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2028. fs_info->endio_meta_write_workers =
  2029. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2030. fs_info->endio_raid56_workers =
  2031. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2032. fs_info->endio_repair_workers =
  2033. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2034. fs_info->rmw_workers =
  2035. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2036. fs_info->endio_write_workers =
  2037. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2038. fs_info->endio_freespace_worker =
  2039. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2040. fs_info->delayed_workers =
  2041. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2042. fs_info->readahead_workers =
  2043. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2044. fs_info->qgroup_rescan_workers =
  2045. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2046. fs_info->extent_workers =
  2047. btrfs_alloc_workqueue("extent-refs", flags,
  2048. min_t(u64, fs_devices->num_devices,
  2049. max_active), 8);
  2050. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2051. fs_info->submit_workers && fs_info->flush_workers &&
  2052. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2053. fs_info->endio_meta_write_workers &&
  2054. fs_info->endio_repair_workers &&
  2055. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2056. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2057. fs_info->caching_workers && fs_info->readahead_workers &&
  2058. fs_info->fixup_workers && fs_info->delayed_workers &&
  2059. fs_info->extent_workers &&
  2060. fs_info->qgroup_rescan_workers)) {
  2061. return -ENOMEM;
  2062. }
  2063. return 0;
  2064. }
  2065. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2066. struct btrfs_fs_devices *fs_devices)
  2067. {
  2068. int ret;
  2069. struct btrfs_root *tree_root = fs_info->tree_root;
  2070. struct btrfs_root *log_tree_root;
  2071. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2072. u64 bytenr = btrfs_super_log_root(disk_super);
  2073. if (fs_devices->rw_devices == 0) {
  2074. btrfs_warn(fs_info, "log replay required on RO media");
  2075. return -EIO;
  2076. }
  2077. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2078. if (!log_tree_root)
  2079. return -ENOMEM;
  2080. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2081. tree_root->stripesize, log_tree_root, fs_info,
  2082. BTRFS_TREE_LOG_OBJECTID);
  2083. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2084. fs_info->generation + 1);
  2085. if (IS_ERR(log_tree_root->node)) {
  2086. btrfs_warn(fs_info, "failed to read log tree");
  2087. ret = PTR_ERR(log_tree_root->node);
  2088. kfree(log_tree_root);
  2089. return ret;
  2090. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2091. btrfs_err(fs_info, "failed to read log tree");
  2092. free_extent_buffer(log_tree_root->node);
  2093. kfree(log_tree_root);
  2094. return -EIO;
  2095. }
  2096. /* returns with log_tree_root freed on success */
  2097. ret = btrfs_recover_log_trees(log_tree_root);
  2098. if (ret) {
  2099. btrfs_std_error(tree_root->fs_info, ret,
  2100. "Failed to recover log tree");
  2101. free_extent_buffer(log_tree_root->node);
  2102. kfree(log_tree_root);
  2103. return ret;
  2104. }
  2105. if (fs_info->sb->s_flags & MS_RDONLY) {
  2106. ret = btrfs_commit_super(tree_root);
  2107. if (ret)
  2108. return ret;
  2109. }
  2110. return 0;
  2111. }
  2112. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2113. struct btrfs_root *tree_root)
  2114. {
  2115. struct btrfs_root *root;
  2116. struct btrfs_key location;
  2117. int ret;
  2118. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2119. location.type = BTRFS_ROOT_ITEM_KEY;
  2120. location.offset = 0;
  2121. root = btrfs_read_tree_root(tree_root, &location);
  2122. if (IS_ERR(root))
  2123. return PTR_ERR(root);
  2124. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2125. fs_info->extent_root = root;
  2126. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2127. root = btrfs_read_tree_root(tree_root, &location);
  2128. if (IS_ERR(root))
  2129. return PTR_ERR(root);
  2130. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2131. fs_info->dev_root = root;
  2132. btrfs_init_devices_late(fs_info);
  2133. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2134. root = btrfs_read_tree_root(tree_root, &location);
  2135. if (IS_ERR(root))
  2136. return PTR_ERR(root);
  2137. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2138. fs_info->csum_root = root;
  2139. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2140. root = btrfs_read_tree_root(tree_root, &location);
  2141. if (!IS_ERR(root)) {
  2142. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2143. fs_info->quota_enabled = 1;
  2144. fs_info->pending_quota_state = 1;
  2145. fs_info->quota_root = root;
  2146. }
  2147. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2148. root = btrfs_read_tree_root(tree_root, &location);
  2149. if (IS_ERR(root)) {
  2150. ret = PTR_ERR(root);
  2151. if (ret != -ENOENT)
  2152. return ret;
  2153. } else {
  2154. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2155. fs_info->uuid_root = root;
  2156. }
  2157. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2158. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2159. root = btrfs_read_tree_root(tree_root, &location);
  2160. if (IS_ERR(root))
  2161. return PTR_ERR(root);
  2162. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2163. fs_info->free_space_root = root;
  2164. }
  2165. return 0;
  2166. }
  2167. int open_ctree(struct super_block *sb,
  2168. struct btrfs_fs_devices *fs_devices,
  2169. char *options)
  2170. {
  2171. u32 sectorsize;
  2172. u32 nodesize;
  2173. u32 stripesize;
  2174. u64 generation;
  2175. u64 features;
  2176. struct btrfs_key location;
  2177. struct buffer_head *bh;
  2178. struct btrfs_super_block *disk_super;
  2179. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2180. struct btrfs_root *tree_root;
  2181. struct btrfs_root *chunk_root;
  2182. int ret;
  2183. int err = -EINVAL;
  2184. int num_backups_tried = 0;
  2185. int backup_index = 0;
  2186. int max_active;
  2187. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2188. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2189. if (!tree_root || !chunk_root) {
  2190. err = -ENOMEM;
  2191. goto fail;
  2192. }
  2193. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2194. if (ret) {
  2195. err = ret;
  2196. goto fail;
  2197. }
  2198. ret = setup_bdi(fs_info, &fs_info->bdi);
  2199. if (ret) {
  2200. err = ret;
  2201. goto fail_srcu;
  2202. }
  2203. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2204. if (ret) {
  2205. err = ret;
  2206. goto fail_bdi;
  2207. }
  2208. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2209. (1 + ilog2(nr_cpu_ids));
  2210. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2211. if (ret) {
  2212. err = ret;
  2213. goto fail_dirty_metadata_bytes;
  2214. }
  2215. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2216. if (ret) {
  2217. err = ret;
  2218. goto fail_delalloc_bytes;
  2219. }
  2220. fs_info->btree_inode = new_inode(sb);
  2221. if (!fs_info->btree_inode) {
  2222. err = -ENOMEM;
  2223. goto fail_bio_counter;
  2224. }
  2225. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2226. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2227. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2228. INIT_LIST_HEAD(&fs_info->trans_list);
  2229. INIT_LIST_HEAD(&fs_info->dead_roots);
  2230. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2231. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2232. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2233. spin_lock_init(&fs_info->delalloc_root_lock);
  2234. spin_lock_init(&fs_info->trans_lock);
  2235. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2236. spin_lock_init(&fs_info->delayed_iput_lock);
  2237. spin_lock_init(&fs_info->defrag_inodes_lock);
  2238. spin_lock_init(&fs_info->free_chunk_lock);
  2239. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2240. spin_lock_init(&fs_info->super_lock);
  2241. spin_lock_init(&fs_info->qgroup_op_lock);
  2242. spin_lock_init(&fs_info->buffer_lock);
  2243. spin_lock_init(&fs_info->unused_bgs_lock);
  2244. rwlock_init(&fs_info->tree_mod_log_lock);
  2245. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2246. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2247. mutex_init(&fs_info->reloc_mutex);
  2248. mutex_init(&fs_info->delalloc_root_mutex);
  2249. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2250. seqlock_init(&fs_info->profiles_lock);
  2251. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2252. INIT_LIST_HEAD(&fs_info->space_info);
  2253. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2254. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2255. btrfs_mapping_init(&fs_info->mapping_tree);
  2256. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2257. BTRFS_BLOCK_RSV_GLOBAL);
  2258. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2259. BTRFS_BLOCK_RSV_DELALLOC);
  2260. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2261. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2262. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2263. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2264. BTRFS_BLOCK_RSV_DELOPS);
  2265. atomic_set(&fs_info->nr_async_submits, 0);
  2266. atomic_set(&fs_info->async_delalloc_pages, 0);
  2267. atomic_set(&fs_info->async_submit_draining, 0);
  2268. atomic_set(&fs_info->nr_async_bios, 0);
  2269. atomic_set(&fs_info->defrag_running, 0);
  2270. atomic_set(&fs_info->qgroup_op_seq, 0);
  2271. atomic_set(&fs_info->reada_works_cnt, 0);
  2272. atomic64_set(&fs_info->tree_mod_seq, 0);
  2273. fs_info->sb = sb;
  2274. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2275. fs_info->metadata_ratio = 0;
  2276. fs_info->defrag_inodes = RB_ROOT;
  2277. fs_info->free_chunk_space = 0;
  2278. fs_info->tree_mod_log = RB_ROOT;
  2279. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2280. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2281. /* readahead state */
  2282. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2283. spin_lock_init(&fs_info->reada_lock);
  2284. fs_info->thread_pool_size = min_t(unsigned long,
  2285. num_online_cpus() + 2, 8);
  2286. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2287. spin_lock_init(&fs_info->ordered_root_lock);
  2288. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2289. GFP_KERNEL);
  2290. if (!fs_info->delayed_root) {
  2291. err = -ENOMEM;
  2292. goto fail_iput;
  2293. }
  2294. btrfs_init_delayed_root(fs_info->delayed_root);
  2295. btrfs_init_scrub(fs_info);
  2296. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2297. fs_info->check_integrity_print_mask = 0;
  2298. #endif
  2299. btrfs_init_balance(fs_info);
  2300. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2301. sb->s_blocksize = 4096;
  2302. sb->s_blocksize_bits = blksize_bits(4096);
  2303. sb->s_bdi = &fs_info->bdi;
  2304. btrfs_init_btree_inode(fs_info, tree_root);
  2305. spin_lock_init(&fs_info->block_group_cache_lock);
  2306. fs_info->block_group_cache_tree = RB_ROOT;
  2307. fs_info->first_logical_byte = (u64)-1;
  2308. extent_io_tree_init(&fs_info->freed_extents[0],
  2309. fs_info->btree_inode->i_mapping);
  2310. extent_io_tree_init(&fs_info->freed_extents[1],
  2311. fs_info->btree_inode->i_mapping);
  2312. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2313. fs_info->do_barriers = 1;
  2314. mutex_init(&fs_info->ordered_operations_mutex);
  2315. mutex_init(&fs_info->tree_log_mutex);
  2316. mutex_init(&fs_info->chunk_mutex);
  2317. mutex_init(&fs_info->transaction_kthread_mutex);
  2318. mutex_init(&fs_info->cleaner_mutex);
  2319. mutex_init(&fs_info->volume_mutex);
  2320. mutex_init(&fs_info->ro_block_group_mutex);
  2321. init_rwsem(&fs_info->commit_root_sem);
  2322. init_rwsem(&fs_info->cleanup_work_sem);
  2323. init_rwsem(&fs_info->subvol_sem);
  2324. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2325. btrfs_init_dev_replace_locks(fs_info);
  2326. btrfs_init_qgroup(fs_info);
  2327. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2328. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2329. init_waitqueue_head(&fs_info->transaction_throttle);
  2330. init_waitqueue_head(&fs_info->transaction_wait);
  2331. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2332. init_waitqueue_head(&fs_info->async_submit_wait);
  2333. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2334. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2335. if (ret) {
  2336. err = ret;
  2337. goto fail_alloc;
  2338. }
  2339. __setup_root(4096, 4096, 4096, tree_root,
  2340. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2341. invalidate_bdev(fs_devices->latest_bdev);
  2342. /*
  2343. * Read super block and check the signature bytes only
  2344. */
  2345. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2346. if (IS_ERR(bh)) {
  2347. err = PTR_ERR(bh);
  2348. goto fail_alloc;
  2349. }
  2350. /*
  2351. * We want to check superblock checksum, the type is stored inside.
  2352. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2353. */
  2354. if (btrfs_check_super_csum(bh->b_data)) {
  2355. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2356. err = -EINVAL;
  2357. brelse(bh);
  2358. goto fail_alloc;
  2359. }
  2360. /*
  2361. * super_copy is zeroed at allocation time and we never touch the
  2362. * following bytes up to INFO_SIZE, the checksum is calculated from
  2363. * the whole block of INFO_SIZE
  2364. */
  2365. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2366. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2367. sizeof(*fs_info->super_for_commit));
  2368. brelse(bh);
  2369. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2370. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2371. if (ret) {
  2372. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2373. err = -EINVAL;
  2374. goto fail_alloc;
  2375. }
  2376. disk_super = fs_info->super_copy;
  2377. if (!btrfs_super_root(disk_super))
  2378. goto fail_alloc;
  2379. /* check FS state, whether FS is broken. */
  2380. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2381. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2382. /*
  2383. * run through our array of backup supers and setup
  2384. * our ring pointer to the oldest one
  2385. */
  2386. generation = btrfs_super_generation(disk_super);
  2387. find_oldest_super_backup(fs_info, generation);
  2388. /*
  2389. * In the long term, we'll store the compression type in the super
  2390. * block, and it'll be used for per file compression control.
  2391. */
  2392. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2393. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2394. if (ret) {
  2395. err = ret;
  2396. goto fail_alloc;
  2397. }
  2398. features = btrfs_super_incompat_flags(disk_super) &
  2399. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2400. if (features) {
  2401. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2402. "unsupported optional features (%Lx).\n",
  2403. features);
  2404. err = -EINVAL;
  2405. goto fail_alloc;
  2406. }
  2407. features = btrfs_super_incompat_flags(disk_super);
  2408. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2409. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2410. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2411. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2412. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2413. /*
  2414. * flag our filesystem as having big metadata blocks if
  2415. * they are bigger than the page size
  2416. */
  2417. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2418. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2419. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2420. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2421. }
  2422. nodesize = btrfs_super_nodesize(disk_super);
  2423. sectorsize = btrfs_super_sectorsize(disk_super);
  2424. stripesize = btrfs_super_stripesize(disk_super);
  2425. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2426. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2427. /*
  2428. * mixed block groups end up with duplicate but slightly offset
  2429. * extent buffers for the same range. It leads to corruptions
  2430. */
  2431. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2432. (sectorsize != nodesize)) {
  2433. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2434. "are not allowed for mixed block groups on %s\n",
  2435. sb->s_id);
  2436. goto fail_alloc;
  2437. }
  2438. /*
  2439. * Needn't use the lock because there is no other task which will
  2440. * update the flag.
  2441. */
  2442. btrfs_set_super_incompat_flags(disk_super, features);
  2443. features = btrfs_super_compat_ro_flags(disk_super) &
  2444. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2445. if (!(sb->s_flags & MS_RDONLY) && features) {
  2446. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2447. "unsupported option features (%Lx).\n",
  2448. features);
  2449. err = -EINVAL;
  2450. goto fail_alloc;
  2451. }
  2452. max_active = fs_info->thread_pool_size;
  2453. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2454. if (ret) {
  2455. err = ret;
  2456. goto fail_sb_buffer;
  2457. }
  2458. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2459. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2460. SZ_4M / PAGE_CACHE_SIZE);
  2461. tree_root->nodesize = nodesize;
  2462. tree_root->sectorsize = sectorsize;
  2463. tree_root->stripesize = stripesize;
  2464. sb->s_blocksize = sectorsize;
  2465. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2466. mutex_lock(&fs_info->chunk_mutex);
  2467. ret = btrfs_read_sys_array(tree_root);
  2468. mutex_unlock(&fs_info->chunk_mutex);
  2469. if (ret) {
  2470. printk(KERN_ERR "BTRFS: failed to read the system "
  2471. "array on %s\n", sb->s_id);
  2472. goto fail_sb_buffer;
  2473. }
  2474. generation = btrfs_super_chunk_root_generation(disk_super);
  2475. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2476. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2477. chunk_root->node = read_tree_block(chunk_root,
  2478. btrfs_super_chunk_root(disk_super),
  2479. generation);
  2480. if (IS_ERR(chunk_root->node) ||
  2481. !extent_buffer_uptodate(chunk_root->node)) {
  2482. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2483. sb->s_id);
  2484. if (!IS_ERR(chunk_root->node))
  2485. free_extent_buffer(chunk_root->node);
  2486. chunk_root->node = NULL;
  2487. goto fail_tree_roots;
  2488. }
  2489. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2490. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2491. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2492. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2493. ret = btrfs_read_chunk_tree(chunk_root);
  2494. if (ret) {
  2495. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2496. sb->s_id);
  2497. goto fail_tree_roots;
  2498. }
  2499. /*
  2500. * keep the device that is marked to be the target device for the
  2501. * dev_replace procedure
  2502. */
  2503. btrfs_close_extra_devices(fs_devices, 0);
  2504. if (!fs_devices->latest_bdev) {
  2505. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2506. sb->s_id);
  2507. goto fail_tree_roots;
  2508. }
  2509. retry_root_backup:
  2510. generation = btrfs_super_generation(disk_super);
  2511. tree_root->node = read_tree_block(tree_root,
  2512. btrfs_super_root(disk_super),
  2513. generation);
  2514. if (IS_ERR(tree_root->node) ||
  2515. !extent_buffer_uptodate(tree_root->node)) {
  2516. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2517. sb->s_id);
  2518. if (!IS_ERR(tree_root->node))
  2519. free_extent_buffer(tree_root->node);
  2520. tree_root->node = NULL;
  2521. goto recovery_tree_root;
  2522. }
  2523. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2524. tree_root->commit_root = btrfs_root_node(tree_root);
  2525. btrfs_set_root_refs(&tree_root->root_item, 1);
  2526. mutex_lock(&tree_root->objectid_mutex);
  2527. ret = btrfs_find_highest_objectid(tree_root,
  2528. &tree_root->highest_objectid);
  2529. if (ret) {
  2530. mutex_unlock(&tree_root->objectid_mutex);
  2531. goto recovery_tree_root;
  2532. }
  2533. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2534. mutex_unlock(&tree_root->objectid_mutex);
  2535. ret = btrfs_read_roots(fs_info, tree_root);
  2536. if (ret)
  2537. goto recovery_tree_root;
  2538. fs_info->generation = generation;
  2539. fs_info->last_trans_committed = generation;
  2540. ret = btrfs_recover_balance(fs_info);
  2541. if (ret) {
  2542. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2543. goto fail_block_groups;
  2544. }
  2545. ret = btrfs_init_dev_stats(fs_info);
  2546. if (ret) {
  2547. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2548. ret);
  2549. goto fail_block_groups;
  2550. }
  2551. ret = btrfs_init_dev_replace(fs_info);
  2552. if (ret) {
  2553. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2554. goto fail_block_groups;
  2555. }
  2556. btrfs_close_extra_devices(fs_devices, 1);
  2557. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2558. if (ret) {
  2559. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2560. goto fail_block_groups;
  2561. }
  2562. ret = btrfs_sysfs_add_device(fs_devices);
  2563. if (ret) {
  2564. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2565. goto fail_fsdev_sysfs;
  2566. }
  2567. ret = btrfs_sysfs_add_mounted(fs_info);
  2568. if (ret) {
  2569. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2570. goto fail_fsdev_sysfs;
  2571. }
  2572. ret = btrfs_init_space_info(fs_info);
  2573. if (ret) {
  2574. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2575. goto fail_sysfs;
  2576. }
  2577. ret = btrfs_read_block_groups(fs_info->extent_root);
  2578. if (ret) {
  2579. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2580. goto fail_sysfs;
  2581. }
  2582. fs_info->num_tolerated_disk_barrier_failures =
  2583. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2584. if (fs_info->fs_devices->missing_devices >
  2585. fs_info->num_tolerated_disk_barrier_failures &&
  2586. !(sb->s_flags & MS_RDONLY)) {
  2587. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2588. fs_info->fs_devices->missing_devices,
  2589. fs_info->num_tolerated_disk_barrier_failures);
  2590. goto fail_sysfs;
  2591. }
  2592. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2593. "btrfs-cleaner");
  2594. if (IS_ERR(fs_info->cleaner_kthread))
  2595. goto fail_sysfs;
  2596. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2597. tree_root,
  2598. "btrfs-transaction");
  2599. if (IS_ERR(fs_info->transaction_kthread))
  2600. goto fail_cleaner;
  2601. if (!btrfs_test_opt(tree_root, SSD) &&
  2602. !btrfs_test_opt(tree_root, NOSSD) &&
  2603. !fs_info->fs_devices->rotating) {
  2604. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2605. "mode\n");
  2606. btrfs_set_opt(fs_info->mount_opt, SSD);
  2607. }
  2608. /*
  2609. * Mount does not set all options immediatelly, we can do it now and do
  2610. * not have to wait for transaction commit
  2611. */
  2612. btrfs_apply_pending_changes(fs_info);
  2613. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2614. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2615. ret = btrfsic_mount(tree_root, fs_devices,
  2616. btrfs_test_opt(tree_root,
  2617. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2618. 1 : 0,
  2619. fs_info->check_integrity_print_mask);
  2620. if (ret)
  2621. printk(KERN_WARNING "BTRFS: failed to initialize"
  2622. " integrity check module %s\n", sb->s_id);
  2623. }
  2624. #endif
  2625. ret = btrfs_read_qgroup_config(fs_info);
  2626. if (ret)
  2627. goto fail_trans_kthread;
  2628. /* do not make disk changes in broken FS or nologreplay is given */
  2629. if (btrfs_super_log_root(disk_super) != 0 &&
  2630. !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
  2631. ret = btrfs_replay_log(fs_info, fs_devices);
  2632. if (ret) {
  2633. err = ret;
  2634. goto fail_qgroup;
  2635. }
  2636. }
  2637. ret = btrfs_find_orphan_roots(tree_root);
  2638. if (ret)
  2639. goto fail_qgroup;
  2640. if (!(sb->s_flags & MS_RDONLY)) {
  2641. ret = btrfs_cleanup_fs_roots(fs_info);
  2642. if (ret)
  2643. goto fail_qgroup;
  2644. mutex_lock(&fs_info->cleaner_mutex);
  2645. ret = btrfs_recover_relocation(tree_root);
  2646. mutex_unlock(&fs_info->cleaner_mutex);
  2647. if (ret < 0) {
  2648. printk(KERN_WARNING
  2649. "BTRFS: failed to recover relocation\n");
  2650. err = -EINVAL;
  2651. goto fail_qgroup;
  2652. }
  2653. }
  2654. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2655. location.type = BTRFS_ROOT_ITEM_KEY;
  2656. location.offset = 0;
  2657. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2658. if (IS_ERR(fs_info->fs_root)) {
  2659. err = PTR_ERR(fs_info->fs_root);
  2660. goto fail_qgroup;
  2661. }
  2662. if (sb->s_flags & MS_RDONLY)
  2663. return 0;
  2664. if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
  2665. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2666. pr_info("BTRFS: creating free space tree\n");
  2667. ret = btrfs_create_free_space_tree(fs_info);
  2668. if (ret) {
  2669. pr_warn("BTRFS: failed to create free space tree %d\n",
  2670. ret);
  2671. close_ctree(tree_root);
  2672. return ret;
  2673. }
  2674. }
  2675. down_read(&fs_info->cleanup_work_sem);
  2676. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2677. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2678. up_read(&fs_info->cleanup_work_sem);
  2679. close_ctree(tree_root);
  2680. return ret;
  2681. }
  2682. up_read(&fs_info->cleanup_work_sem);
  2683. ret = btrfs_resume_balance_async(fs_info);
  2684. if (ret) {
  2685. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2686. close_ctree(tree_root);
  2687. return ret;
  2688. }
  2689. ret = btrfs_resume_dev_replace_async(fs_info);
  2690. if (ret) {
  2691. pr_warn("BTRFS: failed to resume dev_replace\n");
  2692. close_ctree(tree_root);
  2693. return ret;
  2694. }
  2695. btrfs_qgroup_rescan_resume(fs_info);
  2696. if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
  2697. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2698. pr_info("BTRFS: clearing free space tree\n");
  2699. ret = btrfs_clear_free_space_tree(fs_info);
  2700. if (ret) {
  2701. pr_warn("BTRFS: failed to clear free space tree %d\n",
  2702. ret);
  2703. close_ctree(tree_root);
  2704. return ret;
  2705. }
  2706. }
  2707. if (!fs_info->uuid_root) {
  2708. pr_info("BTRFS: creating UUID tree\n");
  2709. ret = btrfs_create_uuid_tree(fs_info);
  2710. if (ret) {
  2711. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2712. ret);
  2713. close_ctree(tree_root);
  2714. return ret;
  2715. }
  2716. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2717. fs_info->generation !=
  2718. btrfs_super_uuid_tree_generation(disk_super)) {
  2719. pr_info("BTRFS: checking UUID tree\n");
  2720. ret = btrfs_check_uuid_tree(fs_info);
  2721. if (ret) {
  2722. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2723. ret);
  2724. close_ctree(tree_root);
  2725. return ret;
  2726. }
  2727. } else {
  2728. fs_info->update_uuid_tree_gen = 1;
  2729. }
  2730. fs_info->open = 1;
  2731. /*
  2732. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2733. * no need to keep the flag
  2734. */
  2735. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2736. return 0;
  2737. fail_qgroup:
  2738. btrfs_free_qgroup_config(fs_info);
  2739. fail_trans_kthread:
  2740. kthread_stop(fs_info->transaction_kthread);
  2741. btrfs_cleanup_transaction(fs_info->tree_root);
  2742. btrfs_free_fs_roots(fs_info);
  2743. fail_cleaner:
  2744. kthread_stop(fs_info->cleaner_kthread);
  2745. /*
  2746. * make sure we're done with the btree inode before we stop our
  2747. * kthreads
  2748. */
  2749. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2750. fail_sysfs:
  2751. btrfs_sysfs_remove_mounted(fs_info);
  2752. fail_fsdev_sysfs:
  2753. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2754. fail_block_groups:
  2755. btrfs_put_block_group_cache(fs_info);
  2756. btrfs_free_block_groups(fs_info);
  2757. fail_tree_roots:
  2758. free_root_pointers(fs_info, 1);
  2759. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2760. fail_sb_buffer:
  2761. btrfs_stop_all_workers(fs_info);
  2762. fail_alloc:
  2763. fail_iput:
  2764. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2765. iput(fs_info->btree_inode);
  2766. fail_bio_counter:
  2767. percpu_counter_destroy(&fs_info->bio_counter);
  2768. fail_delalloc_bytes:
  2769. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2770. fail_dirty_metadata_bytes:
  2771. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2772. fail_bdi:
  2773. bdi_destroy(&fs_info->bdi);
  2774. fail_srcu:
  2775. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2776. fail:
  2777. btrfs_free_stripe_hash_table(fs_info);
  2778. btrfs_close_devices(fs_info->fs_devices);
  2779. return err;
  2780. recovery_tree_root:
  2781. if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
  2782. goto fail_tree_roots;
  2783. free_root_pointers(fs_info, 0);
  2784. /* don't use the log in recovery mode, it won't be valid */
  2785. btrfs_set_super_log_root(disk_super, 0);
  2786. /* we can't trust the free space cache either */
  2787. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2788. ret = next_root_backup(fs_info, fs_info->super_copy,
  2789. &num_backups_tried, &backup_index);
  2790. if (ret == -1)
  2791. goto fail_block_groups;
  2792. goto retry_root_backup;
  2793. }
  2794. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2795. {
  2796. if (uptodate) {
  2797. set_buffer_uptodate(bh);
  2798. } else {
  2799. struct btrfs_device *device = (struct btrfs_device *)
  2800. bh->b_private;
  2801. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2802. "lost page write due to IO error on %s",
  2803. rcu_str_deref(device->name));
  2804. /* note, we dont' set_buffer_write_io_error because we have
  2805. * our own ways of dealing with the IO errors
  2806. */
  2807. clear_buffer_uptodate(bh);
  2808. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2809. }
  2810. unlock_buffer(bh);
  2811. put_bh(bh);
  2812. }
  2813. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2814. struct buffer_head **bh_ret)
  2815. {
  2816. struct buffer_head *bh;
  2817. struct btrfs_super_block *super;
  2818. u64 bytenr;
  2819. bytenr = btrfs_sb_offset(copy_num);
  2820. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2821. return -EINVAL;
  2822. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2823. /*
  2824. * If we fail to read from the underlying devices, as of now
  2825. * the best option we have is to mark it EIO.
  2826. */
  2827. if (!bh)
  2828. return -EIO;
  2829. super = (struct btrfs_super_block *)bh->b_data;
  2830. if (btrfs_super_bytenr(super) != bytenr ||
  2831. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2832. brelse(bh);
  2833. return -EINVAL;
  2834. }
  2835. *bh_ret = bh;
  2836. return 0;
  2837. }
  2838. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2839. {
  2840. struct buffer_head *bh;
  2841. struct buffer_head *latest = NULL;
  2842. struct btrfs_super_block *super;
  2843. int i;
  2844. u64 transid = 0;
  2845. int ret = -EINVAL;
  2846. /* we would like to check all the supers, but that would make
  2847. * a btrfs mount succeed after a mkfs from a different FS.
  2848. * So, we need to add a special mount option to scan for
  2849. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2850. */
  2851. for (i = 0; i < 1; i++) {
  2852. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2853. if (ret)
  2854. continue;
  2855. super = (struct btrfs_super_block *)bh->b_data;
  2856. if (!latest || btrfs_super_generation(super) > transid) {
  2857. brelse(latest);
  2858. latest = bh;
  2859. transid = btrfs_super_generation(super);
  2860. } else {
  2861. brelse(bh);
  2862. }
  2863. }
  2864. if (!latest)
  2865. return ERR_PTR(ret);
  2866. return latest;
  2867. }
  2868. /*
  2869. * this should be called twice, once with wait == 0 and
  2870. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2871. * we write are pinned.
  2872. *
  2873. * They are released when wait == 1 is done.
  2874. * max_mirrors must be the same for both runs, and it indicates how
  2875. * many supers on this one device should be written.
  2876. *
  2877. * max_mirrors == 0 means to write them all.
  2878. */
  2879. static int write_dev_supers(struct btrfs_device *device,
  2880. struct btrfs_super_block *sb,
  2881. int do_barriers, int wait, int max_mirrors)
  2882. {
  2883. struct buffer_head *bh;
  2884. int i;
  2885. int ret;
  2886. int errors = 0;
  2887. u32 crc;
  2888. u64 bytenr;
  2889. if (max_mirrors == 0)
  2890. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2891. for (i = 0; i < max_mirrors; i++) {
  2892. bytenr = btrfs_sb_offset(i);
  2893. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2894. device->commit_total_bytes)
  2895. break;
  2896. if (wait) {
  2897. bh = __find_get_block(device->bdev, bytenr / 4096,
  2898. BTRFS_SUPER_INFO_SIZE);
  2899. if (!bh) {
  2900. errors++;
  2901. continue;
  2902. }
  2903. wait_on_buffer(bh);
  2904. if (!buffer_uptodate(bh))
  2905. errors++;
  2906. /* drop our reference */
  2907. brelse(bh);
  2908. /* drop the reference from the wait == 0 run */
  2909. brelse(bh);
  2910. continue;
  2911. } else {
  2912. btrfs_set_super_bytenr(sb, bytenr);
  2913. crc = ~(u32)0;
  2914. crc = btrfs_csum_data((char *)sb +
  2915. BTRFS_CSUM_SIZE, crc,
  2916. BTRFS_SUPER_INFO_SIZE -
  2917. BTRFS_CSUM_SIZE);
  2918. btrfs_csum_final(crc, sb->csum);
  2919. /*
  2920. * one reference for us, and we leave it for the
  2921. * caller
  2922. */
  2923. bh = __getblk(device->bdev, bytenr / 4096,
  2924. BTRFS_SUPER_INFO_SIZE);
  2925. if (!bh) {
  2926. btrfs_err(device->dev_root->fs_info,
  2927. "couldn't get super buffer head for bytenr %llu",
  2928. bytenr);
  2929. errors++;
  2930. continue;
  2931. }
  2932. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2933. /* one reference for submit_bh */
  2934. get_bh(bh);
  2935. set_buffer_uptodate(bh);
  2936. lock_buffer(bh);
  2937. bh->b_end_io = btrfs_end_buffer_write_sync;
  2938. bh->b_private = device;
  2939. }
  2940. /*
  2941. * we fua the first super. The others we allow
  2942. * to go down lazy.
  2943. */
  2944. if (i == 0)
  2945. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2946. else
  2947. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2948. if (ret)
  2949. errors++;
  2950. }
  2951. return errors < i ? 0 : -1;
  2952. }
  2953. /*
  2954. * endio for the write_dev_flush, this will wake anyone waiting
  2955. * for the barrier when it is done
  2956. */
  2957. static void btrfs_end_empty_barrier(struct bio *bio)
  2958. {
  2959. if (bio->bi_private)
  2960. complete(bio->bi_private);
  2961. bio_put(bio);
  2962. }
  2963. /*
  2964. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2965. * sent down. With wait == 1, it waits for the previous flush.
  2966. *
  2967. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2968. * capable
  2969. */
  2970. static int write_dev_flush(struct btrfs_device *device, int wait)
  2971. {
  2972. struct bio *bio;
  2973. int ret = 0;
  2974. if (device->nobarriers)
  2975. return 0;
  2976. if (wait) {
  2977. bio = device->flush_bio;
  2978. if (!bio)
  2979. return 0;
  2980. wait_for_completion(&device->flush_wait);
  2981. if (bio->bi_error) {
  2982. ret = bio->bi_error;
  2983. btrfs_dev_stat_inc_and_print(device,
  2984. BTRFS_DEV_STAT_FLUSH_ERRS);
  2985. }
  2986. /* drop the reference from the wait == 0 run */
  2987. bio_put(bio);
  2988. device->flush_bio = NULL;
  2989. return ret;
  2990. }
  2991. /*
  2992. * one reference for us, and we leave it for the
  2993. * caller
  2994. */
  2995. device->flush_bio = NULL;
  2996. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2997. if (!bio)
  2998. return -ENOMEM;
  2999. bio->bi_end_io = btrfs_end_empty_barrier;
  3000. bio->bi_bdev = device->bdev;
  3001. init_completion(&device->flush_wait);
  3002. bio->bi_private = &device->flush_wait;
  3003. device->flush_bio = bio;
  3004. bio_get(bio);
  3005. btrfsic_submit_bio(WRITE_FLUSH, bio);
  3006. return 0;
  3007. }
  3008. /*
  3009. * send an empty flush down to each device in parallel,
  3010. * then wait for them
  3011. */
  3012. static int barrier_all_devices(struct btrfs_fs_info *info)
  3013. {
  3014. struct list_head *head;
  3015. struct btrfs_device *dev;
  3016. int errors_send = 0;
  3017. int errors_wait = 0;
  3018. int ret;
  3019. /* send down all the barriers */
  3020. head = &info->fs_devices->devices;
  3021. list_for_each_entry_rcu(dev, head, dev_list) {
  3022. if (dev->missing)
  3023. continue;
  3024. if (!dev->bdev) {
  3025. errors_send++;
  3026. continue;
  3027. }
  3028. if (!dev->in_fs_metadata || !dev->writeable)
  3029. continue;
  3030. ret = write_dev_flush(dev, 0);
  3031. if (ret)
  3032. errors_send++;
  3033. }
  3034. /* wait for all the barriers */
  3035. list_for_each_entry_rcu(dev, head, dev_list) {
  3036. if (dev->missing)
  3037. continue;
  3038. if (!dev->bdev) {
  3039. errors_wait++;
  3040. continue;
  3041. }
  3042. if (!dev->in_fs_metadata || !dev->writeable)
  3043. continue;
  3044. ret = write_dev_flush(dev, 1);
  3045. if (ret)
  3046. errors_wait++;
  3047. }
  3048. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3049. errors_wait > info->num_tolerated_disk_barrier_failures)
  3050. return -EIO;
  3051. return 0;
  3052. }
  3053. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3054. {
  3055. int raid_type;
  3056. int min_tolerated = INT_MAX;
  3057. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3058. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3059. min_tolerated = min(min_tolerated,
  3060. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3061. tolerated_failures);
  3062. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3063. if (raid_type == BTRFS_RAID_SINGLE)
  3064. continue;
  3065. if (!(flags & btrfs_raid_group[raid_type]))
  3066. continue;
  3067. min_tolerated = min(min_tolerated,
  3068. btrfs_raid_array[raid_type].
  3069. tolerated_failures);
  3070. }
  3071. if (min_tolerated == INT_MAX) {
  3072. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3073. min_tolerated = 0;
  3074. }
  3075. return min_tolerated;
  3076. }
  3077. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3078. struct btrfs_fs_info *fs_info)
  3079. {
  3080. struct btrfs_ioctl_space_info space;
  3081. struct btrfs_space_info *sinfo;
  3082. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3083. BTRFS_BLOCK_GROUP_SYSTEM,
  3084. BTRFS_BLOCK_GROUP_METADATA,
  3085. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3086. int i;
  3087. int c;
  3088. int num_tolerated_disk_barrier_failures =
  3089. (int)fs_info->fs_devices->num_devices;
  3090. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3091. struct btrfs_space_info *tmp;
  3092. sinfo = NULL;
  3093. rcu_read_lock();
  3094. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3095. if (tmp->flags == types[i]) {
  3096. sinfo = tmp;
  3097. break;
  3098. }
  3099. }
  3100. rcu_read_unlock();
  3101. if (!sinfo)
  3102. continue;
  3103. down_read(&sinfo->groups_sem);
  3104. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3105. u64 flags;
  3106. if (list_empty(&sinfo->block_groups[c]))
  3107. continue;
  3108. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3109. &space);
  3110. if (space.total_bytes == 0 || space.used_bytes == 0)
  3111. continue;
  3112. flags = space.flags;
  3113. num_tolerated_disk_barrier_failures = min(
  3114. num_tolerated_disk_barrier_failures,
  3115. btrfs_get_num_tolerated_disk_barrier_failures(
  3116. flags));
  3117. }
  3118. up_read(&sinfo->groups_sem);
  3119. }
  3120. return num_tolerated_disk_barrier_failures;
  3121. }
  3122. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3123. {
  3124. struct list_head *head;
  3125. struct btrfs_device *dev;
  3126. struct btrfs_super_block *sb;
  3127. struct btrfs_dev_item *dev_item;
  3128. int ret;
  3129. int do_barriers;
  3130. int max_errors;
  3131. int total_errors = 0;
  3132. u64 flags;
  3133. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3134. backup_super_roots(root->fs_info);
  3135. sb = root->fs_info->super_for_commit;
  3136. dev_item = &sb->dev_item;
  3137. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3138. head = &root->fs_info->fs_devices->devices;
  3139. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3140. if (do_barriers) {
  3141. ret = barrier_all_devices(root->fs_info);
  3142. if (ret) {
  3143. mutex_unlock(
  3144. &root->fs_info->fs_devices->device_list_mutex);
  3145. btrfs_std_error(root->fs_info, ret,
  3146. "errors while submitting device barriers.");
  3147. return ret;
  3148. }
  3149. }
  3150. list_for_each_entry_rcu(dev, head, dev_list) {
  3151. if (!dev->bdev) {
  3152. total_errors++;
  3153. continue;
  3154. }
  3155. if (!dev->in_fs_metadata || !dev->writeable)
  3156. continue;
  3157. btrfs_set_stack_device_generation(dev_item, 0);
  3158. btrfs_set_stack_device_type(dev_item, dev->type);
  3159. btrfs_set_stack_device_id(dev_item, dev->devid);
  3160. btrfs_set_stack_device_total_bytes(dev_item,
  3161. dev->commit_total_bytes);
  3162. btrfs_set_stack_device_bytes_used(dev_item,
  3163. dev->commit_bytes_used);
  3164. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3165. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3166. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3167. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3168. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3169. flags = btrfs_super_flags(sb);
  3170. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3171. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3172. if (ret)
  3173. total_errors++;
  3174. }
  3175. if (total_errors > max_errors) {
  3176. btrfs_err(root->fs_info, "%d errors while writing supers",
  3177. total_errors);
  3178. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3179. /* FUA is masked off if unsupported and can't be the reason */
  3180. btrfs_std_error(root->fs_info, -EIO,
  3181. "%d errors while writing supers", total_errors);
  3182. return -EIO;
  3183. }
  3184. total_errors = 0;
  3185. list_for_each_entry_rcu(dev, head, dev_list) {
  3186. if (!dev->bdev)
  3187. continue;
  3188. if (!dev->in_fs_metadata || !dev->writeable)
  3189. continue;
  3190. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3191. if (ret)
  3192. total_errors++;
  3193. }
  3194. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3195. if (total_errors > max_errors) {
  3196. btrfs_std_error(root->fs_info, -EIO,
  3197. "%d errors while writing supers", total_errors);
  3198. return -EIO;
  3199. }
  3200. return 0;
  3201. }
  3202. int write_ctree_super(struct btrfs_trans_handle *trans,
  3203. struct btrfs_root *root, int max_mirrors)
  3204. {
  3205. return write_all_supers(root, max_mirrors);
  3206. }
  3207. /* Drop a fs root from the radix tree and free it. */
  3208. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3209. struct btrfs_root *root)
  3210. {
  3211. spin_lock(&fs_info->fs_roots_radix_lock);
  3212. radix_tree_delete(&fs_info->fs_roots_radix,
  3213. (unsigned long)root->root_key.objectid);
  3214. spin_unlock(&fs_info->fs_roots_radix_lock);
  3215. if (btrfs_root_refs(&root->root_item) == 0)
  3216. synchronize_srcu(&fs_info->subvol_srcu);
  3217. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3218. btrfs_free_log(NULL, root);
  3219. if (root->free_ino_pinned)
  3220. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3221. if (root->free_ino_ctl)
  3222. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3223. free_fs_root(root);
  3224. }
  3225. static void free_fs_root(struct btrfs_root *root)
  3226. {
  3227. iput(root->ino_cache_inode);
  3228. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3229. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3230. root->orphan_block_rsv = NULL;
  3231. if (root->anon_dev)
  3232. free_anon_bdev(root->anon_dev);
  3233. if (root->subv_writers)
  3234. btrfs_free_subvolume_writers(root->subv_writers);
  3235. free_extent_buffer(root->node);
  3236. free_extent_buffer(root->commit_root);
  3237. kfree(root->free_ino_ctl);
  3238. kfree(root->free_ino_pinned);
  3239. kfree(root->name);
  3240. btrfs_put_fs_root(root);
  3241. }
  3242. void btrfs_free_fs_root(struct btrfs_root *root)
  3243. {
  3244. free_fs_root(root);
  3245. }
  3246. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3247. {
  3248. u64 root_objectid = 0;
  3249. struct btrfs_root *gang[8];
  3250. int i = 0;
  3251. int err = 0;
  3252. unsigned int ret = 0;
  3253. int index;
  3254. while (1) {
  3255. index = srcu_read_lock(&fs_info->subvol_srcu);
  3256. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3257. (void **)gang, root_objectid,
  3258. ARRAY_SIZE(gang));
  3259. if (!ret) {
  3260. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3261. break;
  3262. }
  3263. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3264. for (i = 0; i < ret; i++) {
  3265. /* Avoid to grab roots in dead_roots */
  3266. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3267. gang[i] = NULL;
  3268. continue;
  3269. }
  3270. /* grab all the search result for later use */
  3271. gang[i] = btrfs_grab_fs_root(gang[i]);
  3272. }
  3273. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3274. for (i = 0; i < ret; i++) {
  3275. if (!gang[i])
  3276. continue;
  3277. root_objectid = gang[i]->root_key.objectid;
  3278. err = btrfs_orphan_cleanup(gang[i]);
  3279. if (err)
  3280. break;
  3281. btrfs_put_fs_root(gang[i]);
  3282. }
  3283. root_objectid++;
  3284. }
  3285. /* release the uncleaned roots due to error */
  3286. for (; i < ret; i++) {
  3287. if (gang[i])
  3288. btrfs_put_fs_root(gang[i]);
  3289. }
  3290. return err;
  3291. }
  3292. int btrfs_commit_super(struct btrfs_root *root)
  3293. {
  3294. struct btrfs_trans_handle *trans;
  3295. mutex_lock(&root->fs_info->cleaner_mutex);
  3296. btrfs_run_delayed_iputs(root);
  3297. mutex_unlock(&root->fs_info->cleaner_mutex);
  3298. wake_up_process(root->fs_info->cleaner_kthread);
  3299. /* wait until ongoing cleanup work done */
  3300. down_write(&root->fs_info->cleanup_work_sem);
  3301. up_write(&root->fs_info->cleanup_work_sem);
  3302. trans = btrfs_join_transaction(root);
  3303. if (IS_ERR(trans))
  3304. return PTR_ERR(trans);
  3305. return btrfs_commit_transaction(trans, root);
  3306. }
  3307. void close_ctree(struct btrfs_root *root)
  3308. {
  3309. struct btrfs_fs_info *fs_info = root->fs_info;
  3310. int ret;
  3311. fs_info->closing = 1;
  3312. smp_mb();
  3313. /* wait for the qgroup rescan worker to stop */
  3314. btrfs_qgroup_wait_for_completion(fs_info);
  3315. /* wait for the uuid_scan task to finish */
  3316. down(&fs_info->uuid_tree_rescan_sem);
  3317. /* avoid complains from lockdep et al., set sem back to initial state */
  3318. up(&fs_info->uuid_tree_rescan_sem);
  3319. /* pause restriper - we want to resume on mount */
  3320. btrfs_pause_balance(fs_info);
  3321. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3322. btrfs_scrub_cancel(fs_info);
  3323. /* wait for any defraggers to finish */
  3324. wait_event(fs_info->transaction_wait,
  3325. (atomic_read(&fs_info->defrag_running) == 0));
  3326. /* clear out the rbtree of defraggable inodes */
  3327. btrfs_cleanup_defrag_inodes(fs_info);
  3328. cancel_work_sync(&fs_info->async_reclaim_work);
  3329. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3330. /*
  3331. * If the cleaner thread is stopped and there are
  3332. * block groups queued for removal, the deletion will be
  3333. * skipped when we quit the cleaner thread.
  3334. */
  3335. btrfs_delete_unused_bgs(root->fs_info);
  3336. ret = btrfs_commit_super(root);
  3337. if (ret)
  3338. btrfs_err(fs_info, "commit super ret %d", ret);
  3339. }
  3340. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3341. btrfs_error_commit_super(root);
  3342. kthread_stop(fs_info->transaction_kthread);
  3343. kthread_stop(fs_info->cleaner_kthread);
  3344. fs_info->closing = 2;
  3345. smp_mb();
  3346. btrfs_free_qgroup_config(fs_info);
  3347. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3348. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3349. percpu_counter_sum(&fs_info->delalloc_bytes));
  3350. }
  3351. btrfs_sysfs_remove_mounted(fs_info);
  3352. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3353. btrfs_free_fs_roots(fs_info);
  3354. btrfs_put_block_group_cache(fs_info);
  3355. btrfs_free_block_groups(fs_info);
  3356. /*
  3357. * we must make sure there is not any read request to
  3358. * submit after we stopping all workers.
  3359. */
  3360. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3361. btrfs_stop_all_workers(fs_info);
  3362. fs_info->open = 0;
  3363. free_root_pointers(fs_info, 1);
  3364. iput(fs_info->btree_inode);
  3365. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3366. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3367. btrfsic_unmount(root, fs_info->fs_devices);
  3368. #endif
  3369. btrfs_close_devices(fs_info->fs_devices);
  3370. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3371. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3372. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3373. percpu_counter_destroy(&fs_info->bio_counter);
  3374. bdi_destroy(&fs_info->bdi);
  3375. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3376. btrfs_free_stripe_hash_table(fs_info);
  3377. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3378. root->orphan_block_rsv = NULL;
  3379. lock_chunks(root);
  3380. while (!list_empty(&fs_info->pinned_chunks)) {
  3381. struct extent_map *em;
  3382. em = list_first_entry(&fs_info->pinned_chunks,
  3383. struct extent_map, list);
  3384. list_del_init(&em->list);
  3385. free_extent_map(em);
  3386. }
  3387. unlock_chunks(root);
  3388. }
  3389. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3390. int atomic)
  3391. {
  3392. int ret;
  3393. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3394. ret = extent_buffer_uptodate(buf);
  3395. if (!ret)
  3396. return ret;
  3397. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3398. parent_transid, atomic);
  3399. if (ret == -EAGAIN)
  3400. return ret;
  3401. return !ret;
  3402. }
  3403. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3404. {
  3405. struct btrfs_root *root;
  3406. u64 transid = btrfs_header_generation(buf);
  3407. int was_dirty;
  3408. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3409. /*
  3410. * This is a fast path so only do this check if we have sanity tests
  3411. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3412. * outside of the sanity tests.
  3413. */
  3414. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3415. return;
  3416. #endif
  3417. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3418. btrfs_assert_tree_locked(buf);
  3419. if (transid != root->fs_info->generation)
  3420. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3421. "found %llu running %llu\n",
  3422. buf->start, transid, root->fs_info->generation);
  3423. was_dirty = set_extent_buffer_dirty(buf);
  3424. if (!was_dirty)
  3425. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3426. buf->len,
  3427. root->fs_info->dirty_metadata_batch);
  3428. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3429. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3430. btrfs_print_leaf(root, buf);
  3431. ASSERT(0);
  3432. }
  3433. #endif
  3434. }
  3435. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3436. int flush_delayed)
  3437. {
  3438. /*
  3439. * looks as though older kernels can get into trouble with
  3440. * this code, they end up stuck in balance_dirty_pages forever
  3441. */
  3442. int ret;
  3443. if (current->flags & PF_MEMALLOC)
  3444. return;
  3445. if (flush_delayed)
  3446. btrfs_balance_delayed_items(root);
  3447. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3448. BTRFS_DIRTY_METADATA_THRESH);
  3449. if (ret > 0) {
  3450. balance_dirty_pages_ratelimited(
  3451. root->fs_info->btree_inode->i_mapping);
  3452. }
  3453. }
  3454. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3455. {
  3456. __btrfs_btree_balance_dirty(root, 1);
  3457. }
  3458. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3459. {
  3460. __btrfs_btree_balance_dirty(root, 0);
  3461. }
  3462. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3463. {
  3464. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3465. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3466. }
  3467. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3468. int read_only)
  3469. {
  3470. struct btrfs_super_block *sb = fs_info->super_copy;
  3471. u64 nodesize = btrfs_super_nodesize(sb);
  3472. u64 sectorsize = btrfs_super_sectorsize(sb);
  3473. int ret = 0;
  3474. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3475. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3476. ret = -EINVAL;
  3477. }
  3478. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3479. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3480. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3481. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3482. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3483. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3484. ret = -EINVAL;
  3485. }
  3486. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3487. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3488. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3489. ret = -EINVAL;
  3490. }
  3491. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3492. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3493. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3494. ret = -EINVAL;
  3495. }
  3496. /*
  3497. * Check sectorsize and nodesize first, other check will need it.
  3498. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3499. */
  3500. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3501. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3502. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3503. ret = -EINVAL;
  3504. }
  3505. /* Only PAGE SIZE is supported yet */
  3506. if (sectorsize != PAGE_CACHE_SIZE) {
  3507. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3508. sectorsize, PAGE_CACHE_SIZE);
  3509. ret = -EINVAL;
  3510. }
  3511. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3512. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3513. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3514. ret = -EINVAL;
  3515. }
  3516. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3517. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3518. le32_to_cpu(sb->__unused_leafsize),
  3519. nodesize);
  3520. ret = -EINVAL;
  3521. }
  3522. /* Root alignment check */
  3523. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3524. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3525. btrfs_super_root(sb));
  3526. ret = -EINVAL;
  3527. }
  3528. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3529. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3530. btrfs_super_chunk_root(sb));
  3531. ret = -EINVAL;
  3532. }
  3533. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3534. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3535. btrfs_super_log_root(sb));
  3536. ret = -EINVAL;
  3537. }
  3538. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3539. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3540. fs_info->fsid, sb->dev_item.fsid);
  3541. ret = -EINVAL;
  3542. }
  3543. /*
  3544. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3545. * done later
  3546. */
  3547. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3548. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3549. btrfs_super_num_devices(sb));
  3550. if (btrfs_super_num_devices(sb) == 0) {
  3551. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3552. ret = -EINVAL;
  3553. }
  3554. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3555. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3556. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3557. ret = -EINVAL;
  3558. }
  3559. /*
  3560. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3561. * and one chunk
  3562. */
  3563. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3564. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3565. btrfs_super_sys_array_size(sb),
  3566. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3567. ret = -EINVAL;
  3568. }
  3569. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3570. + sizeof(struct btrfs_chunk)) {
  3571. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3572. btrfs_super_sys_array_size(sb),
  3573. sizeof(struct btrfs_disk_key)
  3574. + sizeof(struct btrfs_chunk));
  3575. ret = -EINVAL;
  3576. }
  3577. /*
  3578. * The generation is a global counter, we'll trust it more than the others
  3579. * but it's still possible that it's the one that's wrong.
  3580. */
  3581. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3582. printk(KERN_WARNING
  3583. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3584. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3585. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3586. && btrfs_super_cache_generation(sb) != (u64)-1)
  3587. printk(KERN_WARNING
  3588. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3589. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3590. return ret;
  3591. }
  3592. static void btrfs_error_commit_super(struct btrfs_root *root)
  3593. {
  3594. mutex_lock(&root->fs_info->cleaner_mutex);
  3595. btrfs_run_delayed_iputs(root);
  3596. mutex_unlock(&root->fs_info->cleaner_mutex);
  3597. down_write(&root->fs_info->cleanup_work_sem);
  3598. up_write(&root->fs_info->cleanup_work_sem);
  3599. /* cleanup FS via transaction */
  3600. btrfs_cleanup_transaction(root);
  3601. }
  3602. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3603. {
  3604. struct btrfs_ordered_extent *ordered;
  3605. spin_lock(&root->ordered_extent_lock);
  3606. /*
  3607. * This will just short circuit the ordered completion stuff which will
  3608. * make sure the ordered extent gets properly cleaned up.
  3609. */
  3610. list_for_each_entry(ordered, &root->ordered_extents,
  3611. root_extent_list)
  3612. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3613. spin_unlock(&root->ordered_extent_lock);
  3614. }
  3615. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3616. {
  3617. struct btrfs_root *root;
  3618. struct list_head splice;
  3619. INIT_LIST_HEAD(&splice);
  3620. spin_lock(&fs_info->ordered_root_lock);
  3621. list_splice_init(&fs_info->ordered_roots, &splice);
  3622. while (!list_empty(&splice)) {
  3623. root = list_first_entry(&splice, struct btrfs_root,
  3624. ordered_root);
  3625. list_move_tail(&root->ordered_root,
  3626. &fs_info->ordered_roots);
  3627. spin_unlock(&fs_info->ordered_root_lock);
  3628. btrfs_destroy_ordered_extents(root);
  3629. cond_resched();
  3630. spin_lock(&fs_info->ordered_root_lock);
  3631. }
  3632. spin_unlock(&fs_info->ordered_root_lock);
  3633. }
  3634. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3635. struct btrfs_root *root)
  3636. {
  3637. struct rb_node *node;
  3638. struct btrfs_delayed_ref_root *delayed_refs;
  3639. struct btrfs_delayed_ref_node *ref;
  3640. int ret = 0;
  3641. delayed_refs = &trans->delayed_refs;
  3642. spin_lock(&delayed_refs->lock);
  3643. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3644. spin_unlock(&delayed_refs->lock);
  3645. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3646. return ret;
  3647. }
  3648. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3649. struct btrfs_delayed_ref_head *head;
  3650. struct btrfs_delayed_ref_node *tmp;
  3651. bool pin_bytes = false;
  3652. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3653. href_node);
  3654. if (!mutex_trylock(&head->mutex)) {
  3655. atomic_inc(&head->node.refs);
  3656. spin_unlock(&delayed_refs->lock);
  3657. mutex_lock(&head->mutex);
  3658. mutex_unlock(&head->mutex);
  3659. btrfs_put_delayed_ref(&head->node);
  3660. spin_lock(&delayed_refs->lock);
  3661. continue;
  3662. }
  3663. spin_lock(&head->lock);
  3664. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3665. list) {
  3666. ref->in_tree = 0;
  3667. list_del(&ref->list);
  3668. atomic_dec(&delayed_refs->num_entries);
  3669. btrfs_put_delayed_ref(ref);
  3670. }
  3671. if (head->must_insert_reserved)
  3672. pin_bytes = true;
  3673. btrfs_free_delayed_extent_op(head->extent_op);
  3674. delayed_refs->num_heads--;
  3675. if (head->processing == 0)
  3676. delayed_refs->num_heads_ready--;
  3677. atomic_dec(&delayed_refs->num_entries);
  3678. head->node.in_tree = 0;
  3679. rb_erase(&head->href_node, &delayed_refs->href_root);
  3680. spin_unlock(&head->lock);
  3681. spin_unlock(&delayed_refs->lock);
  3682. mutex_unlock(&head->mutex);
  3683. if (pin_bytes)
  3684. btrfs_pin_extent(root, head->node.bytenr,
  3685. head->node.num_bytes, 1);
  3686. btrfs_put_delayed_ref(&head->node);
  3687. cond_resched();
  3688. spin_lock(&delayed_refs->lock);
  3689. }
  3690. spin_unlock(&delayed_refs->lock);
  3691. return ret;
  3692. }
  3693. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3694. {
  3695. struct btrfs_inode *btrfs_inode;
  3696. struct list_head splice;
  3697. INIT_LIST_HEAD(&splice);
  3698. spin_lock(&root->delalloc_lock);
  3699. list_splice_init(&root->delalloc_inodes, &splice);
  3700. while (!list_empty(&splice)) {
  3701. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3702. delalloc_inodes);
  3703. list_del_init(&btrfs_inode->delalloc_inodes);
  3704. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3705. &btrfs_inode->runtime_flags);
  3706. spin_unlock(&root->delalloc_lock);
  3707. btrfs_invalidate_inodes(btrfs_inode->root);
  3708. spin_lock(&root->delalloc_lock);
  3709. }
  3710. spin_unlock(&root->delalloc_lock);
  3711. }
  3712. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3713. {
  3714. struct btrfs_root *root;
  3715. struct list_head splice;
  3716. INIT_LIST_HEAD(&splice);
  3717. spin_lock(&fs_info->delalloc_root_lock);
  3718. list_splice_init(&fs_info->delalloc_roots, &splice);
  3719. while (!list_empty(&splice)) {
  3720. root = list_first_entry(&splice, struct btrfs_root,
  3721. delalloc_root);
  3722. list_del_init(&root->delalloc_root);
  3723. root = btrfs_grab_fs_root(root);
  3724. BUG_ON(!root);
  3725. spin_unlock(&fs_info->delalloc_root_lock);
  3726. btrfs_destroy_delalloc_inodes(root);
  3727. btrfs_put_fs_root(root);
  3728. spin_lock(&fs_info->delalloc_root_lock);
  3729. }
  3730. spin_unlock(&fs_info->delalloc_root_lock);
  3731. }
  3732. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3733. struct extent_io_tree *dirty_pages,
  3734. int mark)
  3735. {
  3736. int ret;
  3737. struct extent_buffer *eb;
  3738. u64 start = 0;
  3739. u64 end;
  3740. while (1) {
  3741. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3742. mark, NULL);
  3743. if (ret)
  3744. break;
  3745. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3746. while (start <= end) {
  3747. eb = btrfs_find_tree_block(root->fs_info, start);
  3748. start += root->nodesize;
  3749. if (!eb)
  3750. continue;
  3751. wait_on_extent_buffer_writeback(eb);
  3752. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3753. &eb->bflags))
  3754. clear_extent_buffer_dirty(eb);
  3755. free_extent_buffer_stale(eb);
  3756. }
  3757. }
  3758. return ret;
  3759. }
  3760. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3761. struct extent_io_tree *pinned_extents)
  3762. {
  3763. struct extent_io_tree *unpin;
  3764. u64 start;
  3765. u64 end;
  3766. int ret;
  3767. bool loop = true;
  3768. unpin = pinned_extents;
  3769. again:
  3770. while (1) {
  3771. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3772. EXTENT_DIRTY, NULL);
  3773. if (ret)
  3774. break;
  3775. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3776. btrfs_error_unpin_extent_range(root, start, end);
  3777. cond_resched();
  3778. }
  3779. if (loop) {
  3780. if (unpin == &root->fs_info->freed_extents[0])
  3781. unpin = &root->fs_info->freed_extents[1];
  3782. else
  3783. unpin = &root->fs_info->freed_extents[0];
  3784. loop = false;
  3785. goto again;
  3786. }
  3787. return 0;
  3788. }
  3789. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3790. struct btrfs_root *root)
  3791. {
  3792. btrfs_destroy_delayed_refs(cur_trans, root);
  3793. cur_trans->state = TRANS_STATE_COMMIT_START;
  3794. wake_up(&root->fs_info->transaction_blocked_wait);
  3795. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3796. wake_up(&root->fs_info->transaction_wait);
  3797. btrfs_destroy_delayed_inodes(root);
  3798. btrfs_assert_delayed_root_empty(root);
  3799. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3800. EXTENT_DIRTY);
  3801. btrfs_destroy_pinned_extent(root,
  3802. root->fs_info->pinned_extents);
  3803. cur_trans->state =TRANS_STATE_COMPLETED;
  3804. wake_up(&cur_trans->commit_wait);
  3805. /*
  3806. memset(cur_trans, 0, sizeof(*cur_trans));
  3807. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3808. */
  3809. }
  3810. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3811. {
  3812. struct btrfs_transaction *t;
  3813. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3814. spin_lock(&root->fs_info->trans_lock);
  3815. while (!list_empty(&root->fs_info->trans_list)) {
  3816. t = list_first_entry(&root->fs_info->trans_list,
  3817. struct btrfs_transaction, list);
  3818. if (t->state >= TRANS_STATE_COMMIT_START) {
  3819. atomic_inc(&t->use_count);
  3820. spin_unlock(&root->fs_info->trans_lock);
  3821. btrfs_wait_for_commit(root, t->transid);
  3822. btrfs_put_transaction(t);
  3823. spin_lock(&root->fs_info->trans_lock);
  3824. continue;
  3825. }
  3826. if (t == root->fs_info->running_transaction) {
  3827. t->state = TRANS_STATE_COMMIT_DOING;
  3828. spin_unlock(&root->fs_info->trans_lock);
  3829. /*
  3830. * We wait for 0 num_writers since we don't hold a trans
  3831. * handle open currently for this transaction.
  3832. */
  3833. wait_event(t->writer_wait,
  3834. atomic_read(&t->num_writers) == 0);
  3835. } else {
  3836. spin_unlock(&root->fs_info->trans_lock);
  3837. }
  3838. btrfs_cleanup_one_transaction(t, root);
  3839. spin_lock(&root->fs_info->trans_lock);
  3840. if (t == root->fs_info->running_transaction)
  3841. root->fs_info->running_transaction = NULL;
  3842. list_del_init(&t->list);
  3843. spin_unlock(&root->fs_info->trans_lock);
  3844. btrfs_put_transaction(t);
  3845. trace_btrfs_transaction_commit(root);
  3846. spin_lock(&root->fs_info->trans_lock);
  3847. }
  3848. spin_unlock(&root->fs_info->trans_lock);
  3849. btrfs_destroy_all_ordered_extents(root->fs_info);
  3850. btrfs_destroy_delayed_inodes(root);
  3851. btrfs_assert_delayed_root_empty(root);
  3852. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3853. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3854. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3855. return 0;
  3856. }
  3857. static const struct extent_io_ops btree_extent_io_ops = {
  3858. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3859. .readpage_io_failed_hook = btree_io_failed_hook,
  3860. .submit_bio_hook = btree_submit_bio_hook,
  3861. /* note we're sharing with inode.c for the merge bio hook */
  3862. .merge_bio_hook = btrfs_merge_bio_hook,
  3863. };