delayed-inode.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. kmem_cache_destroy(delayed_node_cache);
  42. }
  43. static inline void btrfs_init_delayed_node(
  44. struct btrfs_delayed_node *delayed_node,
  45. struct btrfs_root *root, u64 inode_id)
  46. {
  47. delayed_node->root = root;
  48. delayed_node->inode_id = inode_id;
  49. atomic_set(&delayed_node->refs, 0);
  50. delayed_node->ins_root = RB_ROOT;
  51. delayed_node->del_root = RB_ROOT;
  52. mutex_init(&delayed_node->mutex);
  53. INIT_LIST_HEAD(&delayed_node->n_list);
  54. INIT_LIST_HEAD(&delayed_node->p_list);
  55. }
  56. static inline int btrfs_is_continuous_delayed_item(
  57. struct btrfs_delayed_item *item1,
  58. struct btrfs_delayed_item *item2)
  59. {
  60. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  61. item1->key.objectid == item2->key.objectid &&
  62. item1->key.type == item2->key.type &&
  63. item1->key.offset + 1 == item2->key.offset)
  64. return 1;
  65. return 0;
  66. }
  67. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  68. struct btrfs_root *root)
  69. {
  70. return root->fs_info->delayed_root;
  71. }
  72. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  73. {
  74. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  75. struct btrfs_root *root = btrfs_inode->root;
  76. u64 ino = btrfs_ino(inode);
  77. struct btrfs_delayed_node *node;
  78. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  79. if (node) {
  80. atomic_inc(&node->refs);
  81. return node;
  82. }
  83. spin_lock(&root->inode_lock);
  84. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  85. if (node) {
  86. if (btrfs_inode->delayed_node) {
  87. atomic_inc(&node->refs); /* can be accessed */
  88. BUG_ON(btrfs_inode->delayed_node != node);
  89. spin_unlock(&root->inode_lock);
  90. return node;
  91. }
  92. btrfs_inode->delayed_node = node;
  93. /* can be accessed and cached in the inode */
  94. atomic_add(2, &node->refs);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. spin_unlock(&root->inode_lock);
  99. return NULL;
  100. }
  101. /* Will return either the node or PTR_ERR(-ENOMEM) */
  102. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  103. struct inode *inode)
  104. {
  105. struct btrfs_delayed_node *node;
  106. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  107. struct btrfs_root *root = btrfs_inode->root;
  108. u64 ino = btrfs_ino(inode);
  109. int ret;
  110. again:
  111. node = btrfs_get_delayed_node(inode);
  112. if (node)
  113. return node;
  114. node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
  115. if (!node)
  116. return ERR_PTR(-ENOMEM);
  117. btrfs_init_delayed_node(node, root, ino);
  118. /* cached in the btrfs inode and can be accessed */
  119. atomic_add(2, &node->refs);
  120. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  121. if (ret) {
  122. kmem_cache_free(delayed_node_cache, node);
  123. return ERR_PTR(ret);
  124. }
  125. spin_lock(&root->inode_lock);
  126. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  127. if (ret == -EEXIST) {
  128. spin_unlock(&root->inode_lock);
  129. kmem_cache_free(delayed_node_cache, node);
  130. radix_tree_preload_end();
  131. goto again;
  132. }
  133. btrfs_inode->delayed_node = node;
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. return node;
  137. }
  138. /*
  139. * Call it when holding delayed_node->mutex
  140. *
  141. * If mod = 1, add this node into the prepared list.
  142. */
  143. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  144. struct btrfs_delayed_node *node,
  145. int mod)
  146. {
  147. spin_lock(&root->lock);
  148. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  149. if (!list_empty(&node->p_list))
  150. list_move_tail(&node->p_list, &root->prepare_list);
  151. else if (mod)
  152. list_add_tail(&node->p_list, &root->prepare_list);
  153. } else {
  154. list_add_tail(&node->n_list, &root->node_list);
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. atomic_inc(&node->refs); /* inserted into list */
  157. root->nodes++;
  158. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  159. }
  160. spin_unlock(&root->lock);
  161. }
  162. /* Call it when holding delayed_node->mutex */
  163. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  164. struct btrfs_delayed_node *node)
  165. {
  166. spin_lock(&root->lock);
  167. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  168. root->nodes--;
  169. atomic_dec(&node->refs); /* not in the list */
  170. list_del_init(&node->n_list);
  171. if (!list_empty(&node->p_list))
  172. list_del_init(&node->p_list);
  173. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  174. }
  175. spin_unlock(&root->lock);
  176. }
  177. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  178. struct btrfs_delayed_root *delayed_root)
  179. {
  180. struct list_head *p;
  181. struct btrfs_delayed_node *node = NULL;
  182. spin_lock(&delayed_root->lock);
  183. if (list_empty(&delayed_root->node_list))
  184. goto out;
  185. p = delayed_root->node_list.next;
  186. node = list_entry(p, struct btrfs_delayed_node, n_list);
  187. atomic_inc(&node->refs);
  188. out:
  189. spin_unlock(&delayed_root->lock);
  190. return node;
  191. }
  192. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  193. struct btrfs_delayed_node *node)
  194. {
  195. struct btrfs_delayed_root *delayed_root;
  196. struct list_head *p;
  197. struct btrfs_delayed_node *next = NULL;
  198. delayed_root = node->root->fs_info->delayed_root;
  199. spin_lock(&delayed_root->lock);
  200. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  201. /* not in the list */
  202. if (list_empty(&delayed_root->node_list))
  203. goto out;
  204. p = delayed_root->node_list.next;
  205. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  206. goto out;
  207. else
  208. p = node->n_list.next;
  209. next = list_entry(p, struct btrfs_delayed_node, n_list);
  210. atomic_inc(&next->refs);
  211. out:
  212. spin_unlock(&delayed_root->lock);
  213. return next;
  214. }
  215. static void __btrfs_release_delayed_node(
  216. struct btrfs_delayed_node *delayed_node,
  217. int mod)
  218. {
  219. struct btrfs_delayed_root *delayed_root;
  220. if (!delayed_node)
  221. return;
  222. delayed_root = delayed_node->root->fs_info->delayed_root;
  223. mutex_lock(&delayed_node->mutex);
  224. if (delayed_node->count)
  225. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  226. else
  227. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  228. mutex_unlock(&delayed_node->mutex);
  229. if (atomic_dec_and_test(&delayed_node->refs)) {
  230. bool free = false;
  231. struct btrfs_root *root = delayed_node->root;
  232. spin_lock(&root->inode_lock);
  233. if (atomic_read(&delayed_node->refs) == 0) {
  234. radix_tree_delete(&root->delayed_nodes_tree,
  235. delayed_node->inode_id);
  236. free = true;
  237. }
  238. spin_unlock(&root->inode_lock);
  239. if (free)
  240. kmem_cache_free(delayed_node_cache, delayed_node);
  241. }
  242. }
  243. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  244. {
  245. __btrfs_release_delayed_node(node, 0);
  246. }
  247. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  248. struct btrfs_delayed_root *delayed_root)
  249. {
  250. struct list_head *p;
  251. struct btrfs_delayed_node *node = NULL;
  252. spin_lock(&delayed_root->lock);
  253. if (list_empty(&delayed_root->prepare_list))
  254. goto out;
  255. p = delayed_root->prepare_list.next;
  256. list_del_init(p);
  257. node = list_entry(p, struct btrfs_delayed_node, p_list);
  258. atomic_inc(&node->refs);
  259. out:
  260. spin_unlock(&delayed_root->lock);
  261. return node;
  262. }
  263. static inline void btrfs_release_prepared_delayed_node(
  264. struct btrfs_delayed_node *node)
  265. {
  266. __btrfs_release_delayed_node(node, 1);
  267. }
  268. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  269. {
  270. struct btrfs_delayed_item *item;
  271. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  272. if (item) {
  273. item->data_len = data_len;
  274. item->ins_or_del = 0;
  275. item->bytes_reserved = 0;
  276. item->delayed_node = NULL;
  277. atomic_set(&item->refs, 1);
  278. }
  279. return item;
  280. }
  281. /*
  282. * __btrfs_lookup_delayed_item - look up the delayed item by key
  283. * @delayed_node: pointer to the delayed node
  284. * @key: the key to look up
  285. * @prev: used to store the prev item if the right item isn't found
  286. * @next: used to store the next item if the right item isn't found
  287. *
  288. * Note: if we don't find the right item, we will return the prev item and
  289. * the next item.
  290. */
  291. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  292. struct rb_root *root,
  293. struct btrfs_key *key,
  294. struct btrfs_delayed_item **prev,
  295. struct btrfs_delayed_item **next)
  296. {
  297. struct rb_node *node, *prev_node = NULL;
  298. struct btrfs_delayed_item *delayed_item = NULL;
  299. int ret = 0;
  300. node = root->rb_node;
  301. while (node) {
  302. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  303. rb_node);
  304. prev_node = node;
  305. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  306. if (ret < 0)
  307. node = node->rb_right;
  308. else if (ret > 0)
  309. node = node->rb_left;
  310. else
  311. return delayed_item;
  312. }
  313. if (prev) {
  314. if (!prev_node)
  315. *prev = NULL;
  316. else if (ret < 0)
  317. *prev = delayed_item;
  318. else if ((node = rb_prev(prev_node)) != NULL) {
  319. *prev = rb_entry(node, struct btrfs_delayed_item,
  320. rb_node);
  321. } else
  322. *prev = NULL;
  323. }
  324. if (next) {
  325. if (!prev_node)
  326. *next = NULL;
  327. else if (ret > 0)
  328. *next = delayed_item;
  329. else if ((node = rb_next(prev_node)) != NULL) {
  330. *next = rb_entry(node, struct btrfs_delayed_item,
  331. rb_node);
  332. } else
  333. *next = NULL;
  334. }
  335. return NULL;
  336. }
  337. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  338. struct btrfs_delayed_node *delayed_node,
  339. struct btrfs_key *key)
  340. {
  341. struct btrfs_delayed_item *item;
  342. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  343. NULL, NULL);
  344. return item;
  345. }
  346. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_delayed_item *ins,
  348. int action)
  349. {
  350. struct rb_node **p, *node;
  351. struct rb_node *parent_node = NULL;
  352. struct rb_root *root;
  353. struct btrfs_delayed_item *item;
  354. int cmp;
  355. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  356. root = &delayed_node->ins_root;
  357. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  358. root = &delayed_node->del_root;
  359. else
  360. BUG();
  361. p = &root->rb_node;
  362. node = &ins->rb_node;
  363. while (*p) {
  364. parent_node = *p;
  365. item = rb_entry(parent_node, struct btrfs_delayed_item,
  366. rb_node);
  367. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  368. if (cmp < 0)
  369. p = &(*p)->rb_right;
  370. else if (cmp > 0)
  371. p = &(*p)->rb_left;
  372. else
  373. return -EEXIST;
  374. }
  375. rb_link_node(node, parent_node, p);
  376. rb_insert_color(node, root);
  377. ins->delayed_node = delayed_node;
  378. ins->ins_or_del = action;
  379. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  380. action == BTRFS_DELAYED_INSERTION_ITEM &&
  381. ins->key.offset >= delayed_node->index_cnt)
  382. delayed_node->index_cnt = ins->key.offset + 1;
  383. delayed_node->count++;
  384. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  385. return 0;
  386. }
  387. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  388. struct btrfs_delayed_item *item)
  389. {
  390. return __btrfs_add_delayed_item(node, item,
  391. BTRFS_DELAYED_INSERTION_ITEM);
  392. }
  393. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  394. struct btrfs_delayed_item *item)
  395. {
  396. return __btrfs_add_delayed_item(node, item,
  397. BTRFS_DELAYED_DELETION_ITEM);
  398. }
  399. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  400. {
  401. int seq = atomic_inc_return(&delayed_root->items_seq);
  402. /*
  403. * atomic_dec_return implies a barrier for waitqueue_active
  404. */
  405. if ((atomic_dec_return(&delayed_root->items) <
  406. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  407. waitqueue_active(&delayed_root->wait))
  408. wake_up(&delayed_root->wait);
  409. }
  410. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  411. {
  412. struct rb_root *root;
  413. struct btrfs_delayed_root *delayed_root;
  414. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  415. BUG_ON(!delayed_root);
  416. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  417. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  418. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  419. root = &delayed_item->delayed_node->ins_root;
  420. else
  421. root = &delayed_item->delayed_node->del_root;
  422. rb_erase(&delayed_item->rb_node, root);
  423. delayed_item->delayed_node->count--;
  424. finish_one_item(delayed_root);
  425. }
  426. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  427. {
  428. if (item) {
  429. __btrfs_remove_delayed_item(item);
  430. if (atomic_dec_and_test(&item->refs))
  431. kfree(item);
  432. }
  433. }
  434. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  435. struct btrfs_delayed_node *delayed_node)
  436. {
  437. struct rb_node *p;
  438. struct btrfs_delayed_item *item = NULL;
  439. p = rb_first(&delayed_node->ins_root);
  440. if (p)
  441. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  442. return item;
  443. }
  444. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  445. struct btrfs_delayed_node *delayed_node)
  446. {
  447. struct rb_node *p;
  448. struct btrfs_delayed_item *item = NULL;
  449. p = rb_first(&delayed_node->del_root);
  450. if (p)
  451. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  452. return item;
  453. }
  454. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  455. struct btrfs_delayed_item *item)
  456. {
  457. struct rb_node *p;
  458. struct btrfs_delayed_item *next = NULL;
  459. p = rb_next(&item->rb_node);
  460. if (p)
  461. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  462. return next;
  463. }
  464. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  465. struct btrfs_root *root,
  466. struct btrfs_delayed_item *item)
  467. {
  468. struct btrfs_block_rsv *src_rsv;
  469. struct btrfs_block_rsv *dst_rsv;
  470. u64 num_bytes;
  471. int ret;
  472. if (!trans->bytes_reserved)
  473. return 0;
  474. src_rsv = trans->block_rsv;
  475. dst_rsv = &root->fs_info->delayed_block_rsv;
  476. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  477. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  478. if (!ret) {
  479. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  480. item->key.objectid,
  481. num_bytes, 1);
  482. item->bytes_reserved = num_bytes;
  483. }
  484. return ret;
  485. }
  486. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  487. struct btrfs_delayed_item *item)
  488. {
  489. struct btrfs_block_rsv *rsv;
  490. if (!item->bytes_reserved)
  491. return;
  492. rsv = &root->fs_info->delayed_block_rsv;
  493. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  494. item->key.objectid, item->bytes_reserved,
  495. 0);
  496. btrfs_block_rsv_release(root, rsv,
  497. item->bytes_reserved);
  498. }
  499. static int btrfs_delayed_inode_reserve_metadata(
  500. struct btrfs_trans_handle *trans,
  501. struct btrfs_root *root,
  502. struct inode *inode,
  503. struct btrfs_delayed_node *node)
  504. {
  505. struct btrfs_block_rsv *src_rsv;
  506. struct btrfs_block_rsv *dst_rsv;
  507. u64 num_bytes;
  508. int ret;
  509. bool release = false;
  510. src_rsv = trans->block_rsv;
  511. dst_rsv = &root->fs_info->delayed_block_rsv;
  512. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  513. /*
  514. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  515. * which doesn't reserve space for speed. This is a problem since we
  516. * still need to reserve space for this update, so try to reserve the
  517. * space.
  518. *
  519. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  520. * we're accounted for.
  521. */
  522. if (!src_rsv || (!trans->bytes_reserved &&
  523. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  524. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  525. BTRFS_RESERVE_NO_FLUSH);
  526. /*
  527. * Since we're under a transaction reserve_metadata_bytes could
  528. * try to commit the transaction which will make it return
  529. * EAGAIN to make us stop the transaction we have, so return
  530. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  531. */
  532. if (ret == -EAGAIN)
  533. ret = -ENOSPC;
  534. if (!ret) {
  535. node->bytes_reserved = num_bytes;
  536. trace_btrfs_space_reservation(root->fs_info,
  537. "delayed_inode",
  538. btrfs_ino(inode),
  539. num_bytes, 1);
  540. }
  541. return ret;
  542. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  543. spin_lock(&BTRFS_I(inode)->lock);
  544. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  545. &BTRFS_I(inode)->runtime_flags)) {
  546. spin_unlock(&BTRFS_I(inode)->lock);
  547. release = true;
  548. goto migrate;
  549. }
  550. spin_unlock(&BTRFS_I(inode)->lock);
  551. /* Ok we didn't have space pre-reserved. This shouldn't happen
  552. * too often but it can happen if we do delalloc to an existing
  553. * inode which gets dirtied because of the time update, and then
  554. * isn't touched again until after the transaction commits and
  555. * then we try to write out the data. First try to be nice and
  556. * reserve something strictly for us. If not be a pain and try
  557. * to steal from the delalloc block rsv.
  558. */
  559. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  560. BTRFS_RESERVE_NO_FLUSH);
  561. if (!ret)
  562. goto out;
  563. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  564. if (!WARN_ON(ret))
  565. goto out;
  566. /*
  567. * Ok this is a problem, let's just steal from the global rsv
  568. * since this really shouldn't happen that often.
  569. */
  570. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  571. dst_rsv, num_bytes);
  572. goto out;
  573. }
  574. migrate:
  575. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  576. out:
  577. /*
  578. * Migrate only takes a reservation, it doesn't touch the size of the
  579. * block_rsv. This is to simplify people who don't normally have things
  580. * migrated from their block rsv. If they go to release their
  581. * reservation, that will decrease the size as well, so if migrate
  582. * reduced size we'd end up with a negative size. But for the
  583. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  584. * but we could in fact do this reserve/migrate dance several times
  585. * between the time we did the original reservation and we'd clean it
  586. * up. So to take care of this, release the space for the meta
  587. * reservation here. I think it may be time for a documentation page on
  588. * how block rsvs. work.
  589. */
  590. if (!ret) {
  591. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  592. btrfs_ino(inode), num_bytes, 1);
  593. node->bytes_reserved = num_bytes;
  594. }
  595. if (release) {
  596. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  597. btrfs_ino(inode), num_bytes, 0);
  598. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  599. }
  600. return ret;
  601. }
  602. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  603. struct btrfs_delayed_node *node)
  604. {
  605. struct btrfs_block_rsv *rsv;
  606. if (!node->bytes_reserved)
  607. return;
  608. rsv = &root->fs_info->delayed_block_rsv;
  609. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  610. node->inode_id, node->bytes_reserved, 0);
  611. btrfs_block_rsv_release(root, rsv,
  612. node->bytes_reserved);
  613. node->bytes_reserved = 0;
  614. }
  615. /*
  616. * This helper will insert some continuous items into the same leaf according
  617. * to the free space of the leaf.
  618. */
  619. static int btrfs_batch_insert_items(struct btrfs_root *root,
  620. struct btrfs_path *path,
  621. struct btrfs_delayed_item *item)
  622. {
  623. struct btrfs_delayed_item *curr, *next;
  624. int free_space;
  625. int total_data_size = 0, total_size = 0;
  626. struct extent_buffer *leaf;
  627. char *data_ptr;
  628. struct btrfs_key *keys;
  629. u32 *data_size;
  630. struct list_head head;
  631. int slot;
  632. int nitems;
  633. int i;
  634. int ret = 0;
  635. BUG_ON(!path->nodes[0]);
  636. leaf = path->nodes[0];
  637. free_space = btrfs_leaf_free_space(root, leaf);
  638. INIT_LIST_HEAD(&head);
  639. next = item;
  640. nitems = 0;
  641. /*
  642. * count the number of the continuous items that we can insert in batch
  643. */
  644. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  645. free_space) {
  646. total_data_size += next->data_len;
  647. total_size += next->data_len + sizeof(struct btrfs_item);
  648. list_add_tail(&next->tree_list, &head);
  649. nitems++;
  650. curr = next;
  651. next = __btrfs_next_delayed_item(curr);
  652. if (!next)
  653. break;
  654. if (!btrfs_is_continuous_delayed_item(curr, next))
  655. break;
  656. }
  657. if (!nitems) {
  658. ret = 0;
  659. goto out;
  660. }
  661. /*
  662. * we need allocate some memory space, but it might cause the task
  663. * to sleep, so we set all locked nodes in the path to blocking locks
  664. * first.
  665. */
  666. btrfs_set_path_blocking(path);
  667. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  668. if (!keys) {
  669. ret = -ENOMEM;
  670. goto out;
  671. }
  672. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  673. if (!data_size) {
  674. ret = -ENOMEM;
  675. goto error;
  676. }
  677. /* get keys of all the delayed items */
  678. i = 0;
  679. list_for_each_entry(next, &head, tree_list) {
  680. keys[i] = next->key;
  681. data_size[i] = next->data_len;
  682. i++;
  683. }
  684. /* reset all the locked nodes in the patch to spinning locks. */
  685. btrfs_clear_path_blocking(path, NULL, 0);
  686. /* insert the keys of the items */
  687. setup_items_for_insert(root, path, keys, data_size,
  688. total_data_size, total_size, nitems);
  689. /* insert the dir index items */
  690. slot = path->slots[0];
  691. list_for_each_entry_safe(curr, next, &head, tree_list) {
  692. data_ptr = btrfs_item_ptr(leaf, slot, char);
  693. write_extent_buffer(leaf, &curr->data,
  694. (unsigned long)data_ptr,
  695. curr->data_len);
  696. slot++;
  697. btrfs_delayed_item_release_metadata(root, curr);
  698. list_del(&curr->tree_list);
  699. btrfs_release_delayed_item(curr);
  700. }
  701. error:
  702. kfree(data_size);
  703. kfree(keys);
  704. out:
  705. return ret;
  706. }
  707. /*
  708. * This helper can just do simple insertion that needn't extend item for new
  709. * data, such as directory name index insertion, inode insertion.
  710. */
  711. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  712. struct btrfs_root *root,
  713. struct btrfs_path *path,
  714. struct btrfs_delayed_item *delayed_item)
  715. {
  716. struct extent_buffer *leaf;
  717. char *ptr;
  718. int ret;
  719. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  720. delayed_item->data_len);
  721. if (ret < 0 && ret != -EEXIST)
  722. return ret;
  723. leaf = path->nodes[0];
  724. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  725. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  726. delayed_item->data_len);
  727. btrfs_mark_buffer_dirty(leaf);
  728. btrfs_delayed_item_release_metadata(root, delayed_item);
  729. return 0;
  730. }
  731. /*
  732. * we insert an item first, then if there are some continuous items, we try
  733. * to insert those items into the same leaf.
  734. */
  735. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  736. struct btrfs_path *path,
  737. struct btrfs_root *root,
  738. struct btrfs_delayed_node *node)
  739. {
  740. struct btrfs_delayed_item *curr, *prev;
  741. int ret = 0;
  742. do_again:
  743. mutex_lock(&node->mutex);
  744. curr = __btrfs_first_delayed_insertion_item(node);
  745. if (!curr)
  746. goto insert_end;
  747. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  748. if (ret < 0) {
  749. btrfs_release_path(path);
  750. goto insert_end;
  751. }
  752. prev = curr;
  753. curr = __btrfs_next_delayed_item(prev);
  754. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  755. /* insert the continuous items into the same leaf */
  756. path->slots[0]++;
  757. btrfs_batch_insert_items(root, path, curr);
  758. }
  759. btrfs_release_delayed_item(prev);
  760. btrfs_mark_buffer_dirty(path->nodes[0]);
  761. btrfs_release_path(path);
  762. mutex_unlock(&node->mutex);
  763. goto do_again;
  764. insert_end:
  765. mutex_unlock(&node->mutex);
  766. return ret;
  767. }
  768. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  769. struct btrfs_root *root,
  770. struct btrfs_path *path,
  771. struct btrfs_delayed_item *item)
  772. {
  773. struct btrfs_delayed_item *curr, *next;
  774. struct extent_buffer *leaf;
  775. struct btrfs_key key;
  776. struct list_head head;
  777. int nitems, i, last_item;
  778. int ret = 0;
  779. BUG_ON(!path->nodes[0]);
  780. leaf = path->nodes[0];
  781. i = path->slots[0];
  782. last_item = btrfs_header_nritems(leaf) - 1;
  783. if (i > last_item)
  784. return -ENOENT; /* FIXME: Is errno suitable? */
  785. next = item;
  786. INIT_LIST_HEAD(&head);
  787. btrfs_item_key_to_cpu(leaf, &key, i);
  788. nitems = 0;
  789. /*
  790. * count the number of the dir index items that we can delete in batch
  791. */
  792. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  793. list_add_tail(&next->tree_list, &head);
  794. nitems++;
  795. curr = next;
  796. next = __btrfs_next_delayed_item(curr);
  797. if (!next)
  798. break;
  799. if (!btrfs_is_continuous_delayed_item(curr, next))
  800. break;
  801. i++;
  802. if (i > last_item)
  803. break;
  804. btrfs_item_key_to_cpu(leaf, &key, i);
  805. }
  806. if (!nitems)
  807. return 0;
  808. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  809. if (ret)
  810. goto out;
  811. list_for_each_entry_safe(curr, next, &head, tree_list) {
  812. btrfs_delayed_item_release_metadata(root, curr);
  813. list_del(&curr->tree_list);
  814. btrfs_release_delayed_item(curr);
  815. }
  816. out:
  817. return ret;
  818. }
  819. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  820. struct btrfs_path *path,
  821. struct btrfs_root *root,
  822. struct btrfs_delayed_node *node)
  823. {
  824. struct btrfs_delayed_item *curr, *prev;
  825. int ret = 0;
  826. do_again:
  827. mutex_lock(&node->mutex);
  828. curr = __btrfs_first_delayed_deletion_item(node);
  829. if (!curr)
  830. goto delete_fail;
  831. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  832. if (ret < 0)
  833. goto delete_fail;
  834. else if (ret > 0) {
  835. /*
  836. * can't find the item which the node points to, so this node
  837. * is invalid, just drop it.
  838. */
  839. prev = curr;
  840. curr = __btrfs_next_delayed_item(prev);
  841. btrfs_release_delayed_item(prev);
  842. ret = 0;
  843. btrfs_release_path(path);
  844. if (curr) {
  845. mutex_unlock(&node->mutex);
  846. goto do_again;
  847. } else
  848. goto delete_fail;
  849. }
  850. btrfs_batch_delete_items(trans, root, path, curr);
  851. btrfs_release_path(path);
  852. mutex_unlock(&node->mutex);
  853. goto do_again;
  854. delete_fail:
  855. btrfs_release_path(path);
  856. mutex_unlock(&node->mutex);
  857. return ret;
  858. }
  859. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  860. {
  861. struct btrfs_delayed_root *delayed_root;
  862. if (delayed_node &&
  863. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  864. BUG_ON(!delayed_node->root);
  865. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  866. delayed_node->count--;
  867. delayed_root = delayed_node->root->fs_info->delayed_root;
  868. finish_one_item(delayed_root);
  869. }
  870. }
  871. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  872. {
  873. struct btrfs_delayed_root *delayed_root;
  874. ASSERT(delayed_node->root);
  875. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  876. delayed_node->count--;
  877. delayed_root = delayed_node->root->fs_info->delayed_root;
  878. finish_one_item(delayed_root);
  879. }
  880. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  881. struct btrfs_root *root,
  882. struct btrfs_path *path,
  883. struct btrfs_delayed_node *node)
  884. {
  885. struct btrfs_key key;
  886. struct btrfs_inode_item *inode_item;
  887. struct extent_buffer *leaf;
  888. int mod;
  889. int ret;
  890. key.objectid = node->inode_id;
  891. key.type = BTRFS_INODE_ITEM_KEY;
  892. key.offset = 0;
  893. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  894. mod = -1;
  895. else
  896. mod = 1;
  897. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  898. if (ret > 0) {
  899. btrfs_release_path(path);
  900. return -ENOENT;
  901. } else if (ret < 0) {
  902. return ret;
  903. }
  904. leaf = path->nodes[0];
  905. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  906. struct btrfs_inode_item);
  907. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  908. sizeof(struct btrfs_inode_item));
  909. btrfs_mark_buffer_dirty(leaf);
  910. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  911. goto no_iref;
  912. path->slots[0]++;
  913. if (path->slots[0] >= btrfs_header_nritems(leaf))
  914. goto search;
  915. again:
  916. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  917. if (key.objectid != node->inode_id)
  918. goto out;
  919. if (key.type != BTRFS_INODE_REF_KEY &&
  920. key.type != BTRFS_INODE_EXTREF_KEY)
  921. goto out;
  922. /*
  923. * Delayed iref deletion is for the inode who has only one link,
  924. * so there is only one iref. The case that several irefs are
  925. * in the same item doesn't exist.
  926. */
  927. btrfs_del_item(trans, root, path);
  928. out:
  929. btrfs_release_delayed_iref(node);
  930. no_iref:
  931. btrfs_release_path(path);
  932. err_out:
  933. btrfs_delayed_inode_release_metadata(root, node);
  934. btrfs_release_delayed_inode(node);
  935. return ret;
  936. search:
  937. btrfs_release_path(path);
  938. key.type = BTRFS_INODE_EXTREF_KEY;
  939. key.offset = -1;
  940. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  941. if (ret < 0)
  942. goto err_out;
  943. ASSERT(ret);
  944. ret = 0;
  945. leaf = path->nodes[0];
  946. path->slots[0]--;
  947. goto again;
  948. }
  949. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  950. struct btrfs_root *root,
  951. struct btrfs_path *path,
  952. struct btrfs_delayed_node *node)
  953. {
  954. int ret;
  955. mutex_lock(&node->mutex);
  956. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  957. mutex_unlock(&node->mutex);
  958. return 0;
  959. }
  960. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  961. mutex_unlock(&node->mutex);
  962. return ret;
  963. }
  964. static inline int
  965. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  966. struct btrfs_path *path,
  967. struct btrfs_delayed_node *node)
  968. {
  969. int ret;
  970. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  971. if (ret)
  972. return ret;
  973. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  974. if (ret)
  975. return ret;
  976. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  977. return ret;
  978. }
  979. /*
  980. * Called when committing the transaction.
  981. * Returns 0 on success.
  982. * Returns < 0 on error and returns with an aborted transaction with any
  983. * outstanding delayed items cleaned up.
  984. */
  985. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  986. struct btrfs_root *root, int nr)
  987. {
  988. struct btrfs_delayed_root *delayed_root;
  989. struct btrfs_delayed_node *curr_node, *prev_node;
  990. struct btrfs_path *path;
  991. struct btrfs_block_rsv *block_rsv;
  992. int ret = 0;
  993. bool count = (nr > 0);
  994. if (trans->aborted)
  995. return -EIO;
  996. path = btrfs_alloc_path();
  997. if (!path)
  998. return -ENOMEM;
  999. path->leave_spinning = 1;
  1000. block_rsv = trans->block_rsv;
  1001. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1002. delayed_root = btrfs_get_delayed_root(root);
  1003. curr_node = btrfs_first_delayed_node(delayed_root);
  1004. while (curr_node && (!count || (count && nr--))) {
  1005. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1006. curr_node);
  1007. if (ret) {
  1008. btrfs_release_delayed_node(curr_node);
  1009. curr_node = NULL;
  1010. btrfs_abort_transaction(trans, root, ret);
  1011. break;
  1012. }
  1013. prev_node = curr_node;
  1014. curr_node = btrfs_next_delayed_node(curr_node);
  1015. btrfs_release_delayed_node(prev_node);
  1016. }
  1017. if (curr_node)
  1018. btrfs_release_delayed_node(curr_node);
  1019. btrfs_free_path(path);
  1020. trans->block_rsv = block_rsv;
  1021. return ret;
  1022. }
  1023. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1024. struct btrfs_root *root)
  1025. {
  1026. return __btrfs_run_delayed_items(trans, root, -1);
  1027. }
  1028. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1029. struct btrfs_root *root, int nr)
  1030. {
  1031. return __btrfs_run_delayed_items(trans, root, nr);
  1032. }
  1033. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1034. struct inode *inode)
  1035. {
  1036. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1037. struct btrfs_path *path;
  1038. struct btrfs_block_rsv *block_rsv;
  1039. int ret;
  1040. if (!delayed_node)
  1041. return 0;
  1042. mutex_lock(&delayed_node->mutex);
  1043. if (!delayed_node->count) {
  1044. mutex_unlock(&delayed_node->mutex);
  1045. btrfs_release_delayed_node(delayed_node);
  1046. return 0;
  1047. }
  1048. mutex_unlock(&delayed_node->mutex);
  1049. path = btrfs_alloc_path();
  1050. if (!path) {
  1051. btrfs_release_delayed_node(delayed_node);
  1052. return -ENOMEM;
  1053. }
  1054. path->leave_spinning = 1;
  1055. block_rsv = trans->block_rsv;
  1056. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1057. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1058. btrfs_release_delayed_node(delayed_node);
  1059. btrfs_free_path(path);
  1060. trans->block_rsv = block_rsv;
  1061. return ret;
  1062. }
  1063. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1064. {
  1065. struct btrfs_trans_handle *trans;
  1066. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1067. struct btrfs_path *path;
  1068. struct btrfs_block_rsv *block_rsv;
  1069. int ret;
  1070. if (!delayed_node)
  1071. return 0;
  1072. mutex_lock(&delayed_node->mutex);
  1073. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1074. mutex_unlock(&delayed_node->mutex);
  1075. btrfs_release_delayed_node(delayed_node);
  1076. return 0;
  1077. }
  1078. mutex_unlock(&delayed_node->mutex);
  1079. trans = btrfs_join_transaction(delayed_node->root);
  1080. if (IS_ERR(trans)) {
  1081. ret = PTR_ERR(trans);
  1082. goto out;
  1083. }
  1084. path = btrfs_alloc_path();
  1085. if (!path) {
  1086. ret = -ENOMEM;
  1087. goto trans_out;
  1088. }
  1089. path->leave_spinning = 1;
  1090. block_rsv = trans->block_rsv;
  1091. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1092. mutex_lock(&delayed_node->mutex);
  1093. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1094. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1095. path, delayed_node);
  1096. else
  1097. ret = 0;
  1098. mutex_unlock(&delayed_node->mutex);
  1099. btrfs_free_path(path);
  1100. trans->block_rsv = block_rsv;
  1101. trans_out:
  1102. btrfs_end_transaction(trans, delayed_node->root);
  1103. btrfs_btree_balance_dirty(delayed_node->root);
  1104. out:
  1105. btrfs_release_delayed_node(delayed_node);
  1106. return ret;
  1107. }
  1108. void btrfs_remove_delayed_node(struct inode *inode)
  1109. {
  1110. struct btrfs_delayed_node *delayed_node;
  1111. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1112. if (!delayed_node)
  1113. return;
  1114. BTRFS_I(inode)->delayed_node = NULL;
  1115. btrfs_release_delayed_node(delayed_node);
  1116. }
  1117. struct btrfs_async_delayed_work {
  1118. struct btrfs_delayed_root *delayed_root;
  1119. int nr;
  1120. struct btrfs_work work;
  1121. };
  1122. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1123. {
  1124. struct btrfs_async_delayed_work *async_work;
  1125. struct btrfs_delayed_root *delayed_root;
  1126. struct btrfs_trans_handle *trans;
  1127. struct btrfs_path *path;
  1128. struct btrfs_delayed_node *delayed_node = NULL;
  1129. struct btrfs_root *root;
  1130. struct btrfs_block_rsv *block_rsv;
  1131. int total_done = 0;
  1132. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1133. delayed_root = async_work->delayed_root;
  1134. path = btrfs_alloc_path();
  1135. if (!path)
  1136. goto out;
  1137. again:
  1138. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1139. goto free_path;
  1140. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1141. if (!delayed_node)
  1142. goto free_path;
  1143. path->leave_spinning = 1;
  1144. root = delayed_node->root;
  1145. trans = btrfs_join_transaction(root);
  1146. if (IS_ERR(trans))
  1147. goto release_path;
  1148. block_rsv = trans->block_rsv;
  1149. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1150. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1151. trans->block_rsv = block_rsv;
  1152. btrfs_end_transaction(trans, root);
  1153. btrfs_btree_balance_dirty_nodelay(root);
  1154. release_path:
  1155. btrfs_release_path(path);
  1156. total_done++;
  1157. btrfs_release_prepared_delayed_node(delayed_node);
  1158. if (async_work->nr == 0 || total_done < async_work->nr)
  1159. goto again;
  1160. free_path:
  1161. btrfs_free_path(path);
  1162. out:
  1163. wake_up(&delayed_root->wait);
  1164. kfree(async_work);
  1165. }
  1166. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1167. struct btrfs_fs_info *fs_info, int nr)
  1168. {
  1169. struct btrfs_async_delayed_work *async_work;
  1170. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1171. return 0;
  1172. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1173. if (!async_work)
  1174. return -ENOMEM;
  1175. async_work->delayed_root = delayed_root;
  1176. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1177. btrfs_async_run_delayed_root, NULL, NULL);
  1178. async_work->nr = nr;
  1179. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1180. return 0;
  1181. }
  1182. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1183. {
  1184. struct btrfs_delayed_root *delayed_root;
  1185. delayed_root = btrfs_get_delayed_root(root);
  1186. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1187. }
  1188. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1189. {
  1190. int val = atomic_read(&delayed_root->items_seq);
  1191. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1192. return 1;
  1193. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1194. return 1;
  1195. return 0;
  1196. }
  1197. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1198. {
  1199. struct btrfs_delayed_root *delayed_root;
  1200. struct btrfs_fs_info *fs_info = root->fs_info;
  1201. delayed_root = btrfs_get_delayed_root(root);
  1202. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1203. return;
  1204. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1205. int seq;
  1206. int ret;
  1207. seq = atomic_read(&delayed_root->items_seq);
  1208. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1209. if (ret)
  1210. return;
  1211. wait_event_interruptible(delayed_root->wait,
  1212. could_end_wait(delayed_root, seq));
  1213. return;
  1214. }
  1215. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1216. }
  1217. /* Will return 0 or -ENOMEM */
  1218. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1219. struct btrfs_root *root, const char *name,
  1220. int name_len, struct inode *dir,
  1221. struct btrfs_disk_key *disk_key, u8 type,
  1222. u64 index)
  1223. {
  1224. struct btrfs_delayed_node *delayed_node;
  1225. struct btrfs_delayed_item *delayed_item;
  1226. struct btrfs_dir_item *dir_item;
  1227. int ret;
  1228. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1229. if (IS_ERR(delayed_node))
  1230. return PTR_ERR(delayed_node);
  1231. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1232. if (!delayed_item) {
  1233. ret = -ENOMEM;
  1234. goto release_node;
  1235. }
  1236. delayed_item->key.objectid = btrfs_ino(dir);
  1237. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1238. delayed_item->key.offset = index;
  1239. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1240. dir_item->location = *disk_key;
  1241. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1242. btrfs_set_stack_dir_data_len(dir_item, 0);
  1243. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1244. btrfs_set_stack_dir_type(dir_item, type);
  1245. memcpy((char *)(dir_item + 1), name, name_len);
  1246. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1247. /*
  1248. * we have reserved enough space when we start a new transaction,
  1249. * so reserving metadata failure is impossible
  1250. */
  1251. BUG_ON(ret);
  1252. mutex_lock(&delayed_node->mutex);
  1253. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1254. if (unlikely(ret)) {
  1255. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1256. "into the insertion tree of the delayed node"
  1257. "(root id: %llu, inode id: %llu, errno: %d)",
  1258. name_len, name, delayed_node->root->objectid,
  1259. delayed_node->inode_id, ret);
  1260. BUG();
  1261. }
  1262. mutex_unlock(&delayed_node->mutex);
  1263. release_node:
  1264. btrfs_release_delayed_node(delayed_node);
  1265. return ret;
  1266. }
  1267. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1268. struct btrfs_delayed_node *node,
  1269. struct btrfs_key *key)
  1270. {
  1271. struct btrfs_delayed_item *item;
  1272. mutex_lock(&node->mutex);
  1273. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1274. if (!item) {
  1275. mutex_unlock(&node->mutex);
  1276. return 1;
  1277. }
  1278. btrfs_delayed_item_release_metadata(root, item);
  1279. btrfs_release_delayed_item(item);
  1280. mutex_unlock(&node->mutex);
  1281. return 0;
  1282. }
  1283. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1284. struct btrfs_root *root, struct inode *dir,
  1285. u64 index)
  1286. {
  1287. struct btrfs_delayed_node *node;
  1288. struct btrfs_delayed_item *item;
  1289. struct btrfs_key item_key;
  1290. int ret;
  1291. node = btrfs_get_or_create_delayed_node(dir);
  1292. if (IS_ERR(node))
  1293. return PTR_ERR(node);
  1294. item_key.objectid = btrfs_ino(dir);
  1295. item_key.type = BTRFS_DIR_INDEX_KEY;
  1296. item_key.offset = index;
  1297. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1298. if (!ret)
  1299. goto end;
  1300. item = btrfs_alloc_delayed_item(0);
  1301. if (!item) {
  1302. ret = -ENOMEM;
  1303. goto end;
  1304. }
  1305. item->key = item_key;
  1306. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1307. /*
  1308. * we have reserved enough space when we start a new transaction,
  1309. * so reserving metadata failure is impossible.
  1310. */
  1311. BUG_ON(ret);
  1312. mutex_lock(&node->mutex);
  1313. ret = __btrfs_add_delayed_deletion_item(node, item);
  1314. if (unlikely(ret)) {
  1315. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1316. "into the deletion tree of the delayed node"
  1317. "(root id: %llu, inode id: %llu, errno: %d)",
  1318. index, node->root->objectid, node->inode_id,
  1319. ret);
  1320. BUG();
  1321. }
  1322. mutex_unlock(&node->mutex);
  1323. end:
  1324. btrfs_release_delayed_node(node);
  1325. return ret;
  1326. }
  1327. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1328. {
  1329. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1330. if (!delayed_node)
  1331. return -ENOENT;
  1332. /*
  1333. * Since we have held i_mutex of this directory, it is impossible that
  1334. * a new directory index is added into the delayed node and index_cnt
  1335. * is updated now. So we needn't lock the delayed node.
  1336. */
  1337. if (!delayed_node->index_cnt) {
  1338. btrfs_release_delayed_node(delayed_node);
  1339. return -EINVAL;
  1340. }
  1341. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1342. btrfs_release_delayed_node(delayed_node);
  1343. return 0;
  1344. }
  1345. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1346. struct list_head *del_list)
  1347. {
  1348. struct btrfs_delayed_node *delayed_node;
  1349. struct btrfs_delayed_item *item;
  1350. delayed_node = btrfs_get_delayed_node(inode);
  1351. if (!delayed_node)
  1352. return;
  1353. mutex_lock(&delayed_node->mutex);
  1354. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1355. while (item) {
  1356. atomic_inc(&item->refs);
  1357. list_add_tail(&item->readdir_list, ins_list);
  1358. item = __btrfs_next_delayed_item(item);
  1359. }
  1360. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1361. while (item) {
  1362. atomic_inc(&item->refs);
  1363. list_add_tail(&item->readdir_list, del_list);
  1364. item = __btrfs_next_delayed_item(item);
  1365. }
  1366. mutex_unlock(&delayed_node->mutex);
  1367. /*
  1368. * This delayed node is still cached in the btrfs inode, so refs
  1369. * must be > 1 now, and we needn't check it is going to be freed
  1370. * or not.
  1371. *
  1372. * Besides that, this function is used to read dir, we do not
  1373. * insert/delete delayed items in this period. So we also needn't
  1374. * requeue or dequeue this delayed node.
  1375. */
  1376. atomic_dec(&delayed_node->refs);
  1377. }
  1378. void btrfs_put_delayed_items(struct list_head *ins_list,
  1379. struct list_head *del_list)
  1380. {
  1381. struct btrfs_delayed_item *curr, *next;
  1382. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1383. list_del(&curr->readdir_list);
  1384. if (atomic_dec_and_test(&curr->refs))
  1385. kfree(curr);
  1386. }
  1387. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1388. list_del(&curr->readdir_list);
  1389. if (atomic_dec_and_test(&curr->refs))
  1390. kfree(curr);
  1391. }
  1392. }
  1393. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1394. u64 index)
  1395. {
  1396. struct btrfs_delayed_item *curr, *next;
  1397. int ret;
  1398. if (list_empty(del_list))
  1399. return 0;
  1400. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1401. if (curr->key.offset > index)
  1402. break;
  1403. list_del(&curr->readdir_list);
  1404. ret = (curr->key.offset == index);
  1405. if (atomic_dec_and_test(&curr->refs))
  1406. kfree(curr);
  1407. if (ret)
  1408. return 1;
  1409. else
  1410. continue;
  1411. }
  1412. return 0;
  1413. }
  1414. /*
  1415. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1416. *
  1417. */
  1418. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1419. struct list_head *ins_list, bool *emitted)
  1420. {
  1421. struct btrfs_dir_item *di;
  1422. struct btrfs_delayed_item *curr, *next;
  1423. struct btrfs_key location;
  1424. char *name;
  1425. int name_len;
  1426. int over = 0;
  1427. unsigned char d_type;
  1428. if (list_empty(ins_list))
  1429. return 0;
  1430. /*
  1431. * Changing the data of the delayed item is impossible. So
  1432. * we needn't lock them. And we have held i_mutex of the
  1433. * directory, nobody can delete any directory indexes now.
  1434. */
  1435. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1436. list_del(&curr->readdir_list);
  1437. if (curr->key.offset < ctx->pos) {
  1438. if (atomic_dec_and_test(&curr->refs))
  1439. kfree(curr);
  1440. continue;
  1441. }
  1442. ctx->pos = curr->key.offset;
  1443. di = (struct btrfs_dir_item *)curr->data;
  1444. name = (char *)(di + 1);
  1445. name_len = btrfs_stack_dir_name_len(di);
  1446. d_type = btrfs_filetype_table[di->type];
  1447. btrfs_disk_key_to_cpu(&location, &di->location);
  1448. over = !dir_emit(ctx, name, name_len,
  1449. location.objectid, d_type);
  1450. if (atomic_dec_and_test(&curr->refs))
  1451. kfree(curr);
  1452. if (over)
  1453. return 1;
  1454. *emitted = true;
  1455. }
  1456. return 0;
  1457. }
  1458. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1459. struct btrfs_inode_item *inode_item,
  1460. struct inode *inode)
  1461. {
  1462. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1463. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1464. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1465. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1466. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1467. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1468. btrfs_set_stack_inode_generation(inode_item,
  1469. BTRFS_I(inode)->generation);
  1470. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1471. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1472. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1473. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1474. btrfs_set_stack_inode_block_group(inode_item, 0);
  1475. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1476. inode->i_atime.tv_sec);
  1477. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1478. inode->i_atime.tv_nsec);
  1479. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1480. inode->i_mtime.tv_sec);
  1481. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1482. inode->i_mtime.tv_nsec);
  1483. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1484. inode->i_ctime.tv_sec);
  1485. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1486. inode->i_ctime.tv_nsec);
  1487. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1488. BTRFS_I(inode)->i_otime.tv_sec);
  1489. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1490. BTRFS_I(inode)->i_otime.tv_nsec);
  1491. }
  1492. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1493. {
  1494. struct btrfs_delayed_node *delayed_node;
  1495. struct btrfs_inode_item *inode_item;
  1496. delayed_node = btrfs_get_delayed_node(inode);
  1497. if (!delayed_node)
  1498. return -ENOENT;
  1499. mutex_lock(&delayed_node->mutex);
  1500. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1501. mutex_unlock(&delayed_node->mutex);
  1502. btrfs_release_delayed_node(delayed_node);
  1503. return -ENOENT;
  1504. }
  1505. inode_item = &delayed_node->inode_item;
  1506. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1507. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1508. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1509. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1510. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1511. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1512. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1513. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1514. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1515. inode->i_rdev = 0;
  1516. *rdev = btrfs_stack_inode_rdev(inode_item);
  1517. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1518. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1519. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1520. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1521. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1522. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1523. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1524. BTRFS_I(inode)->i_otime.tv_sec =
  1525. btrfs_stack_timespec_sec(&inode_item->otime);
  1526. BTRFS_I(inode)->i_otime.tv_nsec =
  1527. btrfs_stack_timespec_nsec(&inode_item->otime);
  1528. inode->i_generation = BTRFS_I(inode)->generation;
  1529. BTRFS_I(inode)->index_cnt = (u64)-1;
  1530. mutex_unlock(&delayed_node->mutex);
  1531. btrfs_release_delayed_node(delayed_node);
  1532. return 0;
  1533. }
  1534. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1535. struct btrfs_root *root, struct inode *inode)
  1536. {
  1537. struct btrfs_delayed_node *delayed_node;
  1538. int ret = 0;
  1539. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1540. if (IS_ERR(delayed_node))
  1541. return PTR_ERR(delayed_node);
  1542. mutex_lock(&delayed_node->mutex);
  1543. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1544. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1545. goto release_node;
  1546. }
  1547. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1548. delayed_node);
  1549. if (ret)
  1550. goto release_node;
  1551. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1552. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1553. delayed_node->count++;
  1554. atomic_inc(&root->fs_info->delayed_root->items);
  1555. release_node:
  1556. mutex_unlock(&delayed_node->mutex);
  1557. btrfs_release_delayed_node(delayed_node);
  1558. return ret;
  1559. }
  1560. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1561. {
  1562. struct btrfs_delayed_node *delayed_node;
  1563. /*
  1564. * we don't do delayed inode updates during log recovery because it
  1565. * leads to enospc problems. This means we also can't do
  1566. * delayed inode refs
  1567. */
  1568. if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
  1569. return -EAGAIN;
  1570. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1571. if (IS_ERR(delayed_node))
  1572. return PTR_ERR(delayed_node);
  1573. /*
  1574. * We don't reserve space for inode ref deletion is because:
  1575. * - We ONLY do async inode ref deletion for the inode who has only
  1576. * one link(i_nlink == 1), it means there is only one inode ref.
  1577. * And in most case, the inode ref and the inode item are in the
  1578. * same leaf, and we will deal with them at the same time.
  1579. * Since we are sure we will reserve the space for the inode item,
  1580. * it is unnecessary to reserve space for inode ref deletion.
  1581. * - If the inode ref and the inode item are not in the same leaf,
  1582. * We also needn't worry about enospc problem, because we reserve
  1583. * much more space for the inode update than it needs.
  1584. * - At the worst, we can steal some space from the global reservation.
  1585. * It is very rare.
  1586. */
  1587. mutex_lock(&delayed_node->mutex);
  1588. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1589. goto release_node;
  1590. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1591. delayed_node->count++;
  1592. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1593. release_node:
  1594. mutex_unlock(&delayed_node->mutex);
  1595. btrfs_release_delayed_node(delayed_node);
  1596. return 0;
  1597. }
  1598. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1599. {
  1600. struct btrfs_root *root = delayed_node->root;
  1601. struct btrfs_delayed_item *curr_item, *prev_item;
  1602. mutex_lock(&delayed_node->mutex);
  1603. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1604. while (curr_item) {
  1605. btrfs_delayed_item_release_metadata(root, curr_item);
  1606. prev_item = curr_item;
  1607. curr_item = __btrfs_next_delayed_item(prev_item);
  1608. btrfs_release_delayed_item(prev_item);
  1609. }
  1610. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1611. while (curr_item) {
  1612. btrfs_delayed_item_release_metadata(root, curr_item);
  1613. prev_item = curr_item;
  1614. curr_item = __btrfs_next_delayed_item(prev_item);
  1615. btrfs_release_delayed_item(prev_item);
  1616. }
  1617. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1618. btrfs_release_delayed_iref(delayed_node);
  1619. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1620. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1621. btrfs_release_delayed_inode(delayed_node);
  1622. }
  1623. mutex_unlock(&delayed_node->mutex);
  1624. }
  1625. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1626. {
  1627. struct btrfs_delayed_node *delayed_node;
  1628. delayed_node = btrfs_get_delayed_node(inode);
  1629. if (!delayed_node)
  1630. return;
  1631. __btrfs_kill_delayed_node(delayed_node);
  1632. btrfs_release_delayed_node(delayed_node);
  1633. }
  1634. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1635. {
  1636. u64 inode_id = 0;
  1637. struct btrfs_delayed_node *delayed_nodes[8];
  1638. int i, n;
  1639. while (1) {
  1640. spin_lock(&root->inode_lock);
  1641. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1642. (void **)delayed_nodes, inode_id,
  1643. ARRAY_SIZE(delayed_nodes));
  1644. if (!n) {
  1645. spin_unlock(&root->inode_lock);
  1646. break;
  1647. }
  1648. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1649. for (i = 0; i < n; i++)
  1650. atomic_inc(&delayed_nodes[i]->refs);
  1651. spin_unlock(&root->inode_lock);
  1652. for (i = 0; i < n; i++) {
  1653. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1654. btrfs_release_delayed_node(delayed_nodes[i]);
  1655. }
  1656. }
  1657. }
  1658. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1659. {
  1660. struct btrfs_delayed_root *delayed_root;
  1661. struct btrfs_delayed_node *curr_node, *prev_node;
  1662. delayed_root = btrfs_get_delayed_root(root);
  1663. curr_node = btrfs_first_delayed_node(delayed_root);
  1664. while (curr_node) {
  1665. __btrfs_kill_delayed_node(curr_node);
  1666. prev_node = curr_node;
  1667. curr_node = btrfs_next_delayed_node(curr_node);
  1668. btrfs_release_delayed_node(prev_node);
  1669. }
  1670. }