time.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <linux/suspend.h>
  58. #include <asm/trace.h>
  59. #include <asm/io.h>
  60. #include <asm/processor.h>
  61. #include <asm/nvram.h>
  62. #include <asm/cache.h>
  63. #include <asm/machdep.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/time.h>
  66. #include <asm/prom.h>
  67. #include <asm/irq.h>
  68. #include <asm/div64.h>
  69. #include <asm/smp.h>
  70. #include <asm/vdso_datapage.h>
  71. #include <asm/firmware.h>
  72. #include <asm/cputime.h>
  73. /* powerpc clocksource/clockevent code */
  74. #include <linux/clockchips.h>
  75. #include <linux/timekeeper_internal.h>
  76. static cycle_t rtc_read(struct clocksource *);
  77. static struct clocksource clocksource_rtc = {
  78. .name = "rtc",
  79. .rating = 400,
  80. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  81. .mask = CLOCKSOURCE_MASK(64),
  82. .read = rtc_read,
  83. };
  84. static cycle_t timebase_read(struct clocksource *);
  85. static struct clocksource clocksource_timebase = {
  86. .name = "timebase",
  87. .rating = 400,
  88. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  89. .mask = CLOCKSOURCE_MASK(64),
  90. .read = timebase_read,
  91. };
  92. #define DECREMENTER_MAX 0x7fffffff
  93. static int decrementer_set_next_event(unsigned long evt,
  94. struct clock_event_device *dev);
  95. static int decrementer_shutdown(struct clock_event_device *evt);
  96. struct clock_event_device decrementer_clockevent = {
  97. .name = "decrementer",
  98. .rating = 200,
  99. .irq = 0,
  100. .set_next_event = decrementer_set_next_event,
  101. .set_state_shutdown = decrementer_shutdown,
  102. .tick_resume = decrementer_shutdown,
  103. .features = CLOCK_EVT_FEAT_ONESHOT |
  104. CLOCK_EVT_FEAT_C3STOP,
  105. };
  106. EXPORT_SYMBOL(decrementer_clockevent);
  107. DEFINE_PER_CPU(u64, decrementers_next_tb);
  108. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  109. #define XSEC_PER_SEC (1024*1024)
  110. #ifdef CONFIG_PPC64
  111. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  112. #else
  113. /* compute ((xsec << 12) * max) >> 32 */
  114. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  115. #endif
  116. unsigned long tb_ticks_per_jiffy;
  117. unsigned long tb_ticks_per_usec = 100; /* sane default */
  118. EXPORT_SYMBOL(tb_ticks_per_usec);
  119. unsigned long tb_ticks_per_sec;
  120. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  121. DEFINE_SPINLOCK(rtc_lock);
  122. EXPORT_SYMBOL_GPL(rtc_lock);
  123. static u64 tb_to_ns_scale __read_mostly;
  124. static unsigned tb_to_ns_shift __read_mostly;
  125. static u64 boot_tb __read_mostly;
  126. extern struct timezone sys_tz;
  127. static long timezone_offset;
  128. unsigned long ppc_proc_freq;
  129. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  130. unsigned long ppc_tb_freq;
  131. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  132. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  133. /*
  134. * Factors for converting from cputime_t (timebase ticks) to
  135. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  136. * These are all stored as 0.64 fixed-point binary fractions.
  137. */
  138. u64 __cputime_jiffies_factor;
  139. EXPORT_SYMBOL(__cputime_jiffies_factor);
  140. u64 __cputime_usec_factor;
  141. EXPORT_SYMBOL(__cputime_usec_factor);
  142. u64 __cputime_sec_factor;
  143. EXPORT_SYMBOL(__cputime_sec_factor);
  144. u64 __cputime_clockt_factor;
  145. EXPORT_SYMBOL(__cputime_clockt_factor);
  146. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  147. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  148. cputime_t cputime_one_jiffy;
  149. void (*dtl_consumer)(struct dtl_entry *, u64);
  150. static void calc_cputime_factors(void)
  151. {
  152. struct div_result res;
  153. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  154. __cputime_jiffies_factor = res.result_low;
  155. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  156. __cputime_usec_factor = res.result_low;
  157. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  158. __cputime_sec_factor = res.result_low;
  159. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  160. __cputime_clockt_factor = res.result_low;
  161. }
  162. /*
  163. * Read the SPURR on systems that have it, otherwise the PURR,
  164. * or if that doesn't exist return the timebase value passed in.
  165. */
  166. static u64 read_spurr(u64 tb)
  167. {
  168. if (cpu_has_feature(CPU_FTR_SPURR))
  169. return mfspr(SPRN_SPURR);
  170. if (cpu_has_feature(CPU_FTR_PURR))
  171. return mfspr(SPRN_PURR);
  172. return tb;
  173. }
  174. #ifdef CONFIG_PPC_SPLPAR
  175. /*
  176. * Scan the dispatch trace log and count up the stolen time.
  177. * Should be called with interrupts disabled.
  178. */
  179. static u64 scan_dispatch_log(u64 stop_tb)
  180. {
  181. u64 i = local_paca->dtl_ridx;
  182. struct dtl_entry *dtl = local_paca->dtl_curr;
  183. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  184. struct lppaca *vpa = local_paca->lppaca_ptr;
  185. u64 tb_delta;
  186. u64 stolen = 0;
  187. u64 dtb;
  188. if (!dtl)
  189. return 0;
  190. if (i == be64_to_cpu(vpa->dtl_idx))
  191. return 0;
  192. while (i < be64_to_cpu(vpa->dtl_idx)) {
  193. dtb = be64_to_cpu(dtl->timebase);
  194. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  195. be32_to_cpu(dtl->ready_to_enqueue_time);
  196. barrier();
  197. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  198. /* buffer has overflowed */
  199. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  200. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  201. continue;
  202. }
  203. if (dtb > stop_tb)
  204. break;
  205. if (dtl_consumer)
  206. dtl_consumer(dtl, i);
  207. stolen += tb_delta;
  208. ++i;
  209. ++dtl;
  210. if (dtl == dtl_end)
  211. dtl = local_paca->dispatch_log;
  212. }
  213. local_paca->dtl_ridx = i;
  214. local_paca->dtl_curr = dtl;
  215. return stolen;
  216. }
  217. /*
  218. * Accumulate stolen time by scanning the dispatch trace log.
  219. * Called on entry from user mode.
  220. */
  221. void accumulate_stolen_time(void)
  222. {
  223. u64 sst, ust;
  224. u8 save_soft_enabled = local_paca->soft_enabled;
  225. /* We are called early in the exception entry, before
  226. * soft/hard_enabled are sync'ed to the expected state
  227. * for the exception. We are hard disabled but the PACA
  228. * needs to reflect that so various debug stuff doesn't
  229. * complain
  230. */
  231. local_paca->soft_enabled = 0;
  232. sst = scan_dispatch_log(local_paca->starttime_user);
  233. ust = scan_dispatch_log(local_paca->starttime);
  234. local_paca->system_time -= sst;
  235. local_paca->user_time -= ust;
  236. local_paca->stolen_time += ust + sst;
  237. local_paca->soft_enabled = save_soft_enabled;
  238. }
  239. static inline u64 calculate_stolen_time(u64 stop_tb)
  240. {
  241. u64 stolen = 0;
  242. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  243. stolen = scan_dispatch_log(stop_tb);
  244. get_paca()->system_time -= stolen;
  245. }
  246. stolen += get_paca()->stolen_time;
  247. get_paca()->stolen_time = 0;
  248. return stolen;
  249. }
  250. #else /* CONFIG_PPC_SPLPAR */
  251. static inline u64 calculate_stolen_time(u64 stop_tb)
  252. {
  253. return 0;
  254. }
  255. #endif /* CONFIG_PPC_SPLPAR */
  256. /*
  257. * Account time for a transition between system, hard irq
  258. * or soft irq state.
  259. */
  260. static u64 vtime_delta(struct task_struct *tsk,
  261. u64 *sys_scaled, u64 *stolen)
  262. {
  263. u64 now, nowscaled, deltascaled;
  264. u64 udelta, delta, user_scaled;
  265. WARN_ON_ONCE(!irqs_disabled());
  266. now = mftb();
  267. nowscaled = read_spurr(now);
  268. get_paca()->system_time += now - get_paca()->starttime;
  269. get_paca()->starttime = now;
  270. deltascaled = nowscaled - get_paca()->startspurr;
  271. get_paca()->startspurr = nowscaled;
  272. *stolen = calculate_stolen_time(now);
  273. delta = get_paca()->system_time;
  274. get_paca()->system_time = 0;
  275. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  276. get_paca()->utime_sspurr = get_paca()->user_time;
  277. /*
  278. * Because we don't read the SPURR on every kernel entry/exit,
  279. * deltascaled includes both user and system SPURR ticks.
  280. * Apportion these ticks to system SPURR ticks and user
  281. * SPURR ticks in the same ratio as the system time (delta)
  282. * and user time (udelta) values obtained from the timebase
  283. * over the same interval. The system ticks get accounted here;
  284. * the user ticks get saved up in paca->user_time_scaled to be
  285. * used by account_process_tick.
  286. */
  287. *sys_scaled = delta;
  288. user_scaled = udelta;
  289. if (deltascaled != delta + udelta) {
  290. if (udelta) {
  291. *sys_scaled = deltascaled * delta / (delta + udelta);
  292. user_scaled = deltascaled - *sys_scaled;
  293. } else {
  294. *sys_scaled = deltascaled;
  295. }
  296. }
  297. get_paca()->user_time_scaled += user_scaled;
  298. return delta;
  299. }
  300. void vtime_account_system(struct task_struct *tsk)
  301. {
  302. u64 delta, sys_scaled, stolen;
  303. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  304. account_system_time(tsk, 0, delta, sys_scaled);
  305. if (stolen)
  306. account_steal_time(stolen);
  307. }
  308. EXPORT_SYMBOL_GPL(vtime_account_system);
  309. void vtime_account_idle(struct task_struct *tsk)
  310. {
  311. u64 delta, sys_scaled, stolen;
  312. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  313. account_idle_time(delta + stolen);
  314. }
  315. /*
  316. * Transfer the user time accumulated in the paca
  317. * by the exception entry and exit code to the generic
  318. * process user time records.
  319. * Must be called with interrupts disabled.
  320. * Assumes that vtime_account_system/idle() has been called
  321. * recently (i.e. since the last entry from usermode) so that
  322. * get_paca()->user_time_scaled is up to date.
  323. */
  324. void vtime_account_user(struct task_struct *tsk)
  325. {
  326. cputime_t utime, utimescaled;
  327. utime = get_paca()->user_time;
  328. utimescaled = get_paca()->user_time_scaled;
  329. get_paca()->user_time = 0;
  330. get_paca()->user_time_scaled = 0;
  331. get_paca()->utime_sspurr = 0;
  332. account_user_time(tsk, utime, utimescaled);
  333. }
  334. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  335. #define calc_cputime_factors()
  336. #endif
  337. void __delay(unsigned long loops)
  338. {
  339. unsigned long start;
  340. int diff;
  341. if (__USE_RTC()) {
  342. start = get_rtcl();
  343. do {
  344. /* the RTCL register wraps at 1000000000 */
  345. diff = get_rtcl() - start;
  346. if (diff < 0)
  347. diff += 1000000000;
  348. } while (diff < loops);
  349. } else {
  350. start = get_tbl();
  351. while (get_tbl() - start < loops)
  352. HMT_low();
  353. HMT_medium();
  354. }
  355. }
  356. EXPORT_SYMBOL(__delay);
  357. void udelay(unsigned long usecs)
  358. {
  359. __delay(tb_ticks_per_usec * usecs);
  360. }
  361. EXPORT_SYMBOL(udelay);
  362. #ifdef CONFIG_SMP
  363. unsigned long profile_pc(struct pt_regs *regs)
  364. {
  365. unsigned long pc = instruction_pointer(regs);
  366. if (in_lock_functions(pc))
  367. return regs->link;
  368. return pc;
  369. }
  370. EXPORT_SYMBOL(profile_pc);
  371. #endif
  372. #ifdef CONFIG_IRQ_WORK
  373. /*
  374. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  375. */
  376. #ifdef CONFIG_PPC64
  377. static inline unsigned long test_irq_work_pending(void)
  378. {
  379. unsigned long x;
  380. asm volatile("lbz %0,%1(13)"
  381. : "=r" (x)
  382. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  383. return x;
  384. }
  385. static inline void set_irq_work_pending_flag(void)
  386. {
  387. asm volatile("stb %0,%1(13)" : :
  388. "r" (1),
  389. "i" (offsetof(struct paca_struct, irq_work_pending)));
  390. }
  391. static inline void clear_irq_work_pending(void)
  392. {
  393. asm volatile("stb %0,%1(13)" : :
  394. "r" (0),
  395. "i" (offsetof(struct paca_struct, irq_work_pending)));
  396. }
  397. #else /* 32-bit */
  398. DEFINE_PER_CPU(u8, irq_work_pending);
  399. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  400. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  401. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  402. #endif /* 32 vs 64 bit */
  403. void arch_irq_work_raise(void)
  404. {
  405. preempt_disable();
  406. set_irq_work_pending_flag();
  407. set_dec(1);
  408. preempt_enable();
  409. }
  410. #else /* CONFIG_IRQ_WORK */
  411. #define test_irq_work_pending() 0
  412. #define clear_irq_work_pending()
  413. #endif /* CONFIG_IRQ_WORK */
  414. static void __timer_interrupt(void)
  415. {
  416. struct pt_regs *regs = get_irq_regs();
  417. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  418. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  419. u64 now;
  420. trace_timer_interrupt_entry(regs);
  421. if (test_irq_work_pending()) {
  422. clear_irq_work_pending();
  423. irq_work_run();
  424. }
  425. now = get_tb_or_rtc();
  426. if (now >= *next_tb) {
  427. *next_tb = ~(u64)0;
  428. if (evt->event_handler)
  429. evt->event_handler(evt);
  430. __this_cpu_inc(irq_stat.timer_irqs_event);
  431. } else {
  432. now = *next_tb - now;
  433. if (now <= DECREMENTER_MAX)
  434. set_dec((int)now);
  435. /* We may have raced with new irq work */
  436. if (test_irq_work_pending())
  437. set_dec(1);
  438. __this_cpu_inc(irq_stat.timer_irqs_others);
  439. }
  440. #ifdef CONFIG_PPC64
  441. /* collect purr register values often, for accurate calculations */
  442. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  443. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  444. cu->current_tb = mfspr(SPRN_PURR);
  445. }
  446. #endif
  447. trace_timer_interrupt_exit(regs);
  448. }
  449. /*
  450. * timer_interrupt - gets called when the decrementer overflows,
  451. * with interrupts disabled.
  452. */
  453. void timer_interrupt(struct pt_regs * regs)
  454. {
  455. struct pt_regs *old_regs;
  456. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  457. /* Ensure a positive value is written to the decrementer, or else
  458. * some CPUs will continue to take decrementer exceptions.
  459. */
  460. set_dec(DECREMENTER_MAX);
  461. /* Some implementations of hotplug will get timer interrupts while
  462. * offline, just ignore these and we also need to set
  463. * decrementers_next_tb as MAX to make sure __check_irq_replay
  464. * don't replay timer interrupt when return, otherwise we'll trap
  465. * here infinitely :(
  466. */
  467. if (!cpu_online(smp_processor_id())) {
  468. *next_tb = ~(u64)0;
  469. return;
  470. }
  471. /* Conditionally hard-enable interrupts now that the DEC has been
  472. * bumped to its maximum value
  473. */
  474. may_hard_irq_enable();
  475. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  476. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  477. do_IRQ(regs);
  478. #endif
  479. old_regs = set_irq_regs(regs);
  480. irq_enter();
  481. __timer_interrupt();
  482. irq_exit();
  483. set_irq_regs(old_regs);
  484. }
  485. /*
  486. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  487. * left pending on exit from a KVM guest. We don't need to do anything
  488. * to clear them, as they are edge-triggered.
  489. */
  490. void hdec_interrupt(struct pt_regs *regs)
  491. {
  492. }
  493. #ifdef CONFIG_SUSPEND
  494. static void generic_suspend_disable_irqs(void)
  495. {
  496. /* Disable the decrementer, so that it doesn't interfere
  497. * with suspending.
  498. */
  499. set_dec(DECREMENTER_MAX);
  500. local_irq_disable();
  501. set_dec(DECREMENTER_MAX);
  502. }
  503. static void generic_suspend_enable_irqs(void)
  504. {
  505. local_irq_enable();
  506. }
  507. /* Overrides the weak version in kernel/power/main.c */
  508. void arch_suspend_disable_irqs(void)
  509. {
  510. if (ppc_md.suspend_disable_irqs)
  511. ppc_md.suspend_disable_irqs();
  512. generic_suspend_disable_irqs();
  513. }
  514. /* Overrides the weak version in kernel/power/main.c */
  515. void arch_suspend_enable_irqs(void)
  516. {
  517. generic_suspend_enable_irqs();
  518. if (ppc_md.suspend_enable_irqs)
  519. ppc_md.suspend_enable_irqs();
  520. }
  521. #endif
  522. unsigned long long tb_to_ns(unsigned long long ticks)
  523. {
  524. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  525. }
  526. EXPORT_SYMBOL_GPL(tb_to_ns);
  527. /*
  528. * Scheduler clock - returns current time in nanosec units.
  529. *
  530. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  531. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  532. * are 64-bit unsigned numbers.
  533. */
  534. unsigned long long sched_clock(void)
  535. {
  536. if (__USE_RTC())
  537. return get_rtc();
  538. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  539. }
  540. #ifdef CONFIG_PPC_PSERIES
  541. /*
  542. * Running clock - attempts to give a view of time passing for a virtualised
  543. * kernels.
  544. * Uses the VTB register if available otherwise a next best guess.
  545. */
  546. unsigned long long running_clock(void)
  547. {
  548. /*
  549. * Don't read the VTB as a host since KVM does not switch in host
  550. * timebase into the VTB when it takes a guest off the CPU, reading the
  551. * VTB would result in reading 'last switched out' guest VTB.
  552. *
  553. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  554. * would be unsafe to rely only on the #ifdef above.
  555. */
  556. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  557. cpu_has_feature(CPU_FTR_ARCH_207S))
  558. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  559. /*
  560. * This is a next best approximation without a VTB.
  561. * On a host which is running bare metal there should never be any stolen
  562. * time and on a host which doesn't do any virtualisation TB *should* equal
  563. * VTB so it makes no difference anyway.
  564. */
  565. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  566. }
  567. #endif
  568. static int __init get_freq(char *name, int cells, unsigned long *val)
  569. {
  570. struct device_node *cpu;
  571. const __be32 *fp;
  572. int found = 0;
  573. /* The cpu node should have timebase and clock frequency properties */
  574. cpu = of_find_node_by_type(NULL, "cpu");
  575. if (cpu) {
  576. fp = of_get_property(cpu, name, NULL);
  577. if (fp) {
  578. found = 1;
  579. *val = of_read_ulong(fp, cells);
  580. }
  581. of_node_put(cpu);
  582. }
  583. return found;
  584. }
  585. static void start_cpu_decrementer(void)
  586. {
  587. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  588. /* Clear any pending timer interrupts */
  589. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  590. /* Enable decrementer interrupt */
  591. mtspr(SPRN_TCR, TCR_DIE);
  592. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  593. }
  594. void __init generic_calibrate_decr(void)
  595. {
  596. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  597. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  598. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  599. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  600. "(not found)\n");
  601. }
  602. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  603. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  604. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  605. printk(KERN_ERR "WARNING: Estimating processor frequency "
  606. "(not found)\n");
  607. }
  608. }
  609. int update_persistent_clock(struct timespec now)
  610. {
  611. struct rtc_time tm;
  612. if (!ppc_md.set_rtc_time)
  613. return -ENODEV;
  614. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  615. tm.tm_year -= 1900;
  616. tm.tm_mon -= 1;
  617. return ppc_md.set_rtc_time(&tm);
  618. }
  619. static void __read_persistent_clock(struct timespec *ts)
  620. {
  621. struct rtc_time tm;
  622. static int first = 1;
  623. ts->tv_nsec = 0;
  624. /* XXX this is a litle fragile but will work okay in the short term */
  625. if (first) {
  626. first = 0;
  627. if (ppc_md.time_init)
  628. timezone_offset = ppc_md.time_init();
  629. /* get_boot_time() isn't guaranteed to be safe to call late */
  630. if (ppc_md.get_boot_time) {
  631. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  632. return;
  633. }
  634. }
  635. if (!ppc_md.get_rtc_time) {
  636. ts->tv_sec = 0;
  637. return;
  638. }
  639. ppc_md.get_rtc_time(&tm);
  640. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  641. tm.tm_hour, tm.tm_min, tm.tm_sec);
  642. }
  643. void read_persistent_clock(struct timespec *ts)
  644. {
  645. __read_persistent_clock(ts);
  646. /* Sanitize it in case real time clock is set below EPOCH */
  647. if (ts->tv_sec < 0) {
  648. ts->tv_sec = 0;
  649. ts->tv_nsec = 0;
  650. }
  651. }
  652. /* clocksource code */
  653. static cycle_t rtc_read(struct clocksource *cs)
  654. {
  655. return (cycle_t)get_rtc();
  656. }
  657. static cycle_t timebase_read(struct clocksource *cs)
  658. {
  659. return (cycle_t)get_tb();
  660. }
  661. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  662. struct clocksource *clock, u32 mult, cycle_t cycle_last)
  663. {
  664. u64 new_tb_to_xs, new_stamp_xsec;
  665. u32 frac_sec;
  666. if (clock != &clocksource_timebase)
  667. return;
  668. /* Make userspace gettimeofday spin until we're done. */
  669. ++vdso_data->tb_update_count;
  670. smp_mb();
  671. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  672. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  673. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  674. do_div(new_stamp_xsec, 1000000000);
  675. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  676. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  677. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  678. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  679. /*
  680. * tb_update_count is used to allow the userspace gettimeofday code
  681. * to assure itself that it sees a consistent view of the tb_to_xs and
  682. * stamp_xsec variables. It reads the tb_update_count, then reads
  683. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  684. * the two values of tb_update_count match and are even then the
  685. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  686. * loops back and reads them again until this criteria is met.
  687. * We expect the caller to have done the first increment of
  688. * vdso_data->tb_update_count already.
  689. */
  690. vdso_data->tb_orig_stamp = cycle_last;
  691. vdso_data->stamp_xsec = new_stamp_xsec;
  692. vdso_data->tb_to_xs = new_tb_to_xs;
  693. vdso_data->wtom_clock_sec = wtm->tv_sec;
  694. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  695. vdso_data->stamp_xtime = *wall_time;
  696. vdso_data->stamp_sec_fraction = frac_sec;
  697. smp_wmb();
  698. ++(vdso_data->tb_update_count);
  699. }
  700. void update_vsyscall_tz(void)
  701. {
  702. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  703. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  704. }
  705. static void __init clocksource_init(void)
  706. {
  707. struct clocksource *clock;
  708. if (__USE_RTC())
  709. clock = &clocksource_rtc;
  710. else
  711. clock = &clocksource_timebase;
  712. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  713. printk(KERN_ERR "clocksource: %s is already registered\n",
  714. clock->name);
  715. return;
  716. }
  717. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  718. clock->name, clock->mult, clock->shift);
  719. }
  720. static int decrementer_set_next_event(unsigned long evt,
  721. struct clock_event_device *dev)
  722. {
  723. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  724. set_dec(evt);
  725. /* We may have raced with new irq work */
  726. if (test_irq_work_pending())
  727. set_dec(1);
  728. return 0;
  729. }
  730. static int decrementer_shutdown(struct clock_event_device *dev)
  731. {
  732. decrementer_set_next_event(DECREMENTER_MAX, dev);
  733. return 0;
  734. }
  735. /* Interrupt handler for the timer broadcast IPI */
  736. void tick_broadcast_ipi_handler(void)
  737. {
  738. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  739. *next_tb = get_tb_or_rtc();
  740. __timer_interrupt();
  741. }
  742. static void register_decrementer_clockevent(int cpu)
  743. {
  744. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  745. *dec = decrementer_clockevent;
  746. dec->cpumask = cpumask_of(cpu);
  747. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  748. dec->name, dec->mult, dec->shift, cpu);
  749. clockevents_register_device(dec);
  750. }
  751. static void __init init_decrementer_clockevent(void)
  752. {
  753. int cpu = smp_processor_id();
  754. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  755. decrementer_clockevent.max_delta_ns =
  756. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  757. decrementer_clockevent.min_delta_ns =
  758. clockevent_delta2ns(2, &decrementer_clockevent);
  759. register_decrementer_clockevent(cpu);
  760. }
  761. void secondary_cpu_time_init(void)
  762. {
  763. /* Start the decrementer on CPUs that have manual control
  764. * such as BookE
  765. */
  766. start_cpu_decrementer();
  767. /* FIME: Should make unrelatred change to move snapshot_timebase
  768. * call here ! */
  769. register_decrementer_clockevent(smp_processor_id());
  770. }
  771. /* This function is only called on the boot processor */
  772. void __init time_init(void)
  773. {
  774. struct div_result res;
  775. u64 scale;
  776. unsigned shift;
  777. if (__USE_RTC()) {
  778. /* 601 processor: dec counts down by 128 every 128ns */
  779. ppc_tb_freq = 1000000000;
  780. } else {
  781. /* Normal PowerPC with timebase register */
  782. ppc_md.calibrate_decr();
  783. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  784. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  785. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  786. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  787. }
  788. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  789. tb_ticks_per_sec = ppc_tb_freq;
  790. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  791. calc_cputime_factors();
  792. setup_cputime_one_jiffy();
  793. /*
  794. * Compute scale factor for sched_clock.
  795. * The calibrate_decr() function has set tb_ticks_per_sec,
  796. * which is the timebase frequency.
  797. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  798. * the 128-bit result as a 64.64 fixed-point number.
  799. * We then shift that number right until it is less than 1.0,
  800. * giving us the scale factor and shift count to use in
  801. * sched_clock().
  802. */
  803. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  804. scale = res.result_low;
  805. for (shift = 0; res.result_high != 0; ++shift) {
  806. scale = (scale >> 1) | (res.result_high << 63);
  807. res.result_high >>= 1;
  808. }
  809. tb_to_ns_scale = scale;
  810. tb_to_ns_shift = shift;
  811. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  812. boot_tb = get_tb_or_rtc();
  813. /* If platform provided a timezone (pmac), we correct the time */
  814. if (timezone_offset) {
  815. sys_tz.tz_minuteswest = -timezone_offset / 60;
  816. sys_tz.tz_dsttime = 0;
  817. }
  818. vdso_data->tb_update_count = 0;
  819. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  820. /* Start the decrementer on CPUs that have manual control
  821. * such as BookE
  822. */
  823. start_cpu_decrementer();
  824. /* Register the clocksource */
  825. clocksource_init();
  826. init_decrementer_clockevent();
  827. tick_setup_hrtimer_broadcast();
  828. #ifdef CONFIG_COMMON_CLK
  829. of_clk_init(NULL);
  830. #endif
  831. }
  832. #define FEBRUARY 2
  833. #define STARTOFTIME 1970
  834. #define SECDAY 86400L
  835. #define SECYR (SECDAY * 365)
  836. #define leapyear(year) ((year) % 4 == 0 && \
  837. ((year) % 100 != 0 || (year) % 400 == 0))
  838. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  839. #define days_in_month(a) (month_days[(a) - 1])
  840. static int month_days[12] = {
  841. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  842. };
  843. void to_tm(int tim, struct rtc_time * tm)
  844. {
  845. register int i;
  846. register long hms, day;
  847. day = tim / SECDAY;
  848. hms = tim % SECDAY;
  849. /* Hours, minutes, seconds are easy */
  850. tm->tm_hour = hms / 3600;
  851. tm->tm_min = (hms % 3600) / 60;
  852. tm->tm_sec = (hms % 3600) % 60;
  853. /* Number of years in days */
  854. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  855. day -= days_in_year(i);
  856. tm->tm_year = i;
  857. /* Number of months in days left */
  858. if (leapyear(tm->tm_year))
  859. days_in_month(FEBRUARY) = 29;
  860. for (i = 1; day >= days_in_month(i); i++)
  861. day -= days_in_month(i);
  862. days_in_month(FEBRUARY) = 28;
  863. tm->tm_mon = i;
  864. /* Days are what is left over (+1) from all that. */
  865. tm->tm_mday = day + 1;
  866. /*
  867. * No-one uses the day of the week.
  868. */
  869. tm->tm_wday = -1;
  870. }
  871. EXPORT_SYMBOL(to_tm);
  872. /*
  873. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  874. * result.
  875. */
  876. void div128_by_32(u64 dividend_high, u64 dividend_low,
  877. unsigned divisor, struct div_result *dr)
  878. {
  879. unsigned long a, b, c, d;
  880. unsigned long w, x, y, z;
  881. u64 ra, rb, rc;
  882. a = dividend_high >> 32;
  883. b = dividend_high & 0xffffffff;
  884. c = dividend_low >> 32;
  885. d = dividend_low & 0xffffffff;
  886. w = a / divisor;
  887. ra = ((u64)(a - (w * divisor)) << 32) + b;
  888. rb = ((u64) do_div(ra, divisor) << 32) + c;
  889. x = ra;
  890. rc = ((u64) do_div(rb, divisor) << 32) + d;
  891. y = rb;
  892. do_div(rc, divisor);
  893. z = rc;
  894. dr->result_high = ((u64)w << 32) + x;
  895. dr->result_low = ((u64)y << 32) + z;
  896. }
  897. /* We don't need to calibrate delay, we use the CPU timebase for that */
  898. void calibrate_delay(void)
  899. {
  900. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  901. * as the number of __delay(1) in a jiffy, so make it so
  902. */
  903. loops_per_jiffy = tb_ticks_per_jiffy;
  904. }
  905. static int __init rtc_init(void)
  906. {
  907. struct platform_device *pdev;
  908. if (!ppc_md.get_rtc_time)
  909. return -ENODEV;
  910. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  911. return PTR_ERR_OR_ZERO(pdev);
  912. }
  913. device_initcall(rtc_init);