tcp_input.c 182 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <linux/prefetch.h>
  69. #include <net/dst.h>
  70. #include <net/tcp.h>
  71. #include <net/inet_common.h>
  72. #include <linux/ipsec.h>
  73. #include <asm/unaligned.h>
  74. #include <linux/errqueue.h>
  75. int sysctl_tcp_fack __read_mostly;
  76. int sysctl_tcp_max_reordering __read_mostly = 300;
  77. int sysctl_tcp_dsack __read_mostly = 1;
  78. int sysctl_tcp_app_win __read_mostly = 31;
  79. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  80. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  81. /* rfc5961 challenge ack rate limiting */
  82. int sysctl_tcp_challenge_ack_limit = 1000;
  83. int sysctl_tcp_stdurg __read_mostly;
  84. int sysctl_tcp_rfc1337 __read_mostly;
  85. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  86. int sysctl_tcp_frto __read_mostly = 2;
  87. int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  88. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  89. int sysctl_tcp_early_retrans __read_mostly = 3;
  90. int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
  91. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  92. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  93. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  94. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  95. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  96. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  97. #define FLAG_ECE 0x40 /* ECE in this ACK */
  98. #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
  99. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  100. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  101. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  102. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  103. #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
  107. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  108. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  109. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  110. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  111. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  112. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  113. #define REXMIT_NONE 0 /* no loss recovery to do */
  114. #define REXMIT_LOST 1 /* retransmit packets marked lost */
  115. #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
  116. static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
  117. unsigned int len)
  118. {
  119. static bool __once __read_mostly;
  120. if (!__once) {
  121. struct net_device *dev;
  122. __once = true;
  123. rcu_read_lock();
  124. dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
  125. if (!dev || len >= dev->mtu)
  126. pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
  127. dev ? dev->name : "Unknown driver");
  128. rcu_read_unlock();
  129. }
  130. }
  131. /* Adapt the MSS value used to make delayed ack decision to the
  132. * real world.
  133. */
  134. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  135. {
  136. struct inet_connection_sock *icsk = inet_csk(sk);
  137. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  138. unsigned int len;
  139. icsk->icsk_ack.last_seg_size = 0;
  140. /* skb->len may jitter because of SACKs, even if peer
  141. * sends good full-sized frames.
  142. */
  143. len = skb_shinfo(skb)->gso_size ? : skb->len;
  144. if (len >= icsk->icsk_ack.rcv_mss) {
  145. icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
  146. tcp_sk(sk)->advmss);
  147. /* Account for possibly-removed options */
  148. if (unlikely(len > icsk->icsk_ack.rcv_mss +
  149. MAX_TCP_OPTION_SPACE))
  150. tcp_gro_dev_warn(sk, skb, len);
  151. } else {
  152. /* Otherwise, we make more careful check taking into account,
  153. * that SACKs block is variable.
  154. *
  155. * "len" is invariant segment length, including TCP header.
  156. */
  157. len += skb->data - skb_transport_header(skb);
  158. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  159. /* If PSH is not set, packet should be
  160. * full sized, provided peer TCP is not badly broken.
  161. * This observation (if it is correct 8)) allows
  162. * to handle super-low mtu links fairly.
  163. */
  164. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  165. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  166. /* Subtract also invariant (if peer is RFC compliant),
  167. * tcp header plus fixed timestamp option length.
  168. * Resulting "len" is MSS free of SACK jitter.
  169. */
  170. len -= tcp_sk(sk)->tcp_header_len;
  171. icsk->icsk_ack.last_seg_size = len;
  172. if (len == lss) {
  173. icsk->icsk_ack.rcv_mss = len;
  174. return;
  175. }
  176. }
  177. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  178. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  179. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  180. }
  181. }
  182. static void tcp_incr_quickack(struct sock *sk)
  183. {
  184. struct inet_connection_sock *icsk = inet_csk(sk);
  185. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  186. if (quickacks == 0)
  187. quickacks = 2;
  188. if (quickacks > icsk->icsk_ack.quick)
  189. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  190. }
  191. static void tcp_enter_quickack_mode(struct sock *sk)
  192. {
  193. struct inet_connection_sock *icsk = inet_csk(sk);
  194. tcp_incr_quickack(sk);
  195. icsk->icsk_ack.pingpong = 0;
  196. icsk->icsk_ack.ato = TCP_ATO_MIN;
  197. }
  198. /* Send ACKs quickly, if "quick" count is not exhausted
  199. * and the session is not interactive.
  200. */
  201. static bool tcp_in_quickack_mode(struct sock *sk)
  202. {
  203. const struct inet_connection_sock *icsk = inet_csk(sk);
  204. const struct dst_entry *dst = __sk_dst_get(sk);
  205. return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
  206. (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
  207. }
  208. static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
  209. {
  210. if (tp->ecn_flags & TCP_ECN_OK)
  211. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  212. }
  213. static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  214. {
  215. if (tcp_hdr(skb)->cwr)
  216. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  217. }
  218. static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
  219. {
  220. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  221. }
  222. static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  223. {
  224. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  225. case INET_ECN_NOT_ECT:
  226. /* Funny extension: if ECT is not set on a segment,
  227. * and we already seen ECT on a previous segment,
  228. * it is probably a retransmit.
  229. */
  230. if (tp->ecn_flags & TCP_ECN_SEEN)
  231. tcp_enter_quickack_mode((struct sock *)tp);
  232. break;
  233. case INET_ECN_CE:
  234. if (tcp_ca_needs_ecn((struct sock *)tp))
  235. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
  236. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  237. /* Better not delay acks, sender can have a very low cwnd */
  238. tcp_enter_quickack_mode((struct sock *)tp);
  239. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  240. }
  241. tp->ecn_flags |= TCP_ECN_SEEN;
  242. break;
  243. default:
  244. if (tcp_ca_needs_ecn((struct sock *)tp))
  245. tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
  246. tp->ecn_flags |= TCP_ECN_SEEN;
  247. break;
  248. }
  249. }
  250. static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  251. {
  252. if (tp->ecn_flags & TCP_ECN_OK)
  253. __tcp_ecn_check_ce(tp, skb);
  254. }
  255. static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  256. {
  257. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  258. tp->ecn_flags &= ~TCP_ECN_OK;
  259. }
  260. static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  261. {
  262. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  263. tp->ecn_flags &= ~TCP_ECN_OK;
  264. }
  265. static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  266. {
  267. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  268. return true;
  269. return false;
  270. }
  271. /* Buffer size and advertised window tuning.
  272. *
  273. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  274. */
  275. static void tcp_sndbuf_expand(struct sock *sk)
  276. {
  277. const struct tcp_sock *tp = tcp_sk(sk);
  278. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  279. int sndmem, per_mss;
  280. u32 nr_segs;
  281. /* Worst case is non GSO/TSO : each frame consumes one skb
  282. * and skb->head is kmalloced using power of two area of memory
  283. */
  284. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  285. MAX_TCP_HEADER +
  286. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  287. per_mss = roundup_pow_of_two(per_mss) +
  288. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  289. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  290. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  291. /* Fast Recovery (RFC 5681 3.2) :
  292. * Cubic needs 1.7 factor, rounded to 2 to include
  293. * extra cushion (application might react slowly to POLLOUT)
  294. */
  295. sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
  296. sndmem *= nr_segs * per_mss;
  297. if (sk->sk_sndbuf < sndmem)
  298. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  299. }
  300. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  301. *
  302. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  303. * forward and advertised in receiver window (tp->rcv_wnd) and
  304. * "application buffer", required to isolate scheduling/application
  305. * latencies from network.
  306. * window_clamp is maximal advertised window. It can be less than
  307. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  308. * is reserved for "application" buffer. The less window_clamp is
  309. * the smoother our behaviour from viewpoint of network, but the lower
  310. * throughput and the higher sensitivity of the connection to losses. 8)
  311. *
  312. * rcv_ssthresh is more strict window_clamp used at "slow start"
  313. * phase to predict further behaviour of this connection.
  314. * It is used for two goals:
  315. * - to enforce header prediction at sender, even when application
  316. * requires some significant "application buffer". It is check #1.
  317. * - to prevent pruning of receive queue because of misprediction
  318. * of receiver window. Check #2.
  319. *
  320. * The scheme does not work when sender sends good segments opening
  321. * window and then starts to feed us spaghetti. But it should work
  322. * in common situations. Otherwise, we have to rely on queue collapsing.
  323. */
  324. /* Slow part of check#2. */
  325. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  326. {
  327. struct tcp_sock *tp = tcp_sk(sk);
  328. /* Optimize this! */
  329. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  330. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  331. while (tp->rcv_ssthresh <= window) {
  332. if (truesize <= skb->len)
  333. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  334. truesize >>= 1;
  335. window >>= 1;
  336. }
  337. return 0;
  338. }
  339. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  340. {
  341. struct tcp_sock *tp = tcp_sk(sk);
  342. /* Check #1 */
  343. if (tp->rcv_ssthresh < tp->window_clamp &&
  344. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  345. !tcp_under_memory_pressure(sk)) {
  346. int incr;
  347. /* Check #2. Increase window, if skb with such overhead
  348. * will fit to rcvbuf in future.
  349. */
  350. if (tcp_win_from_space(skb->truesize) <= skb->len)
  351. incr = 2 * tp->advmss;
  352. else
  353. incr = __tcp_grow_window(sk, skb);
  354. if (incr) {
  355. incr = max_t(int, incr, 2 * skb->len);
  356. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  357. tp->window_clamp);
  358. inet_csk(sk)->icsk_ack.quick |= 1;
  359. }
  360. }
  361. }
  362. /* 3. Tuning rcvbuf, when connection enters established state. */
  363. static void tcp_fixup_rcvbuf(struct sock *sk)
  364. {
  365. u32 mss = tcp_sk(sk)->advmss;
  366. int rcvmem;
  367. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  368. tcp_default_init_rwnd(mss);
  369. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  370. * Allow enough cushion so that sender is not limited by our window
  371. */
  372. if (sysctl_tcp_moderate_rcvbuf)
  373. rcvmem <<= 2;
  374. if (sk->sk_rcvbuf < rcvmem)
  375. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  376. }
  377. /* 4. Try to fixup all. It is made immediately after connection enters
  378. * established state.
  379. */
  380. void tcp_init_buffer_space(struct sock *sk)
  381. {
  382. struct tcp_sock *tp = tcp_sk(sk);
  383. int maxwin;
  384. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  385. tcp_fixup_rcvbuf(sk);
  386. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  387. tcp_sndbuf_expand(sk);
  388. tp->rcvq_space.space = tp->rcv_wnd;
  389. tcp_mstamp_refresh(tp);
  390. tp->rcvq_space.time = tp->tcp_mstamp;
  391. tp->rcvq_space.seq = tp->copied_seq;
  392. maxwin = tcp_full_space(sk);
  393. if (tp->window_clamp >= maxwin) {
  394. tp->window_clamp = maxwin;
  395. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  396. tp->window_clamp = max(maxwin -
  397. (maxwin >> sysctl_tcp_app_win),
  398. 4 * tp->advmss);
  399. }
  400. /* Force reservation of one segment. */
  401. if (sysctl_tcp_app_win &&
  402. tp->window_clamp > 2 * tp->advmss &&
  403. tp->window_clamp + tp->advmss > maxwin)
  404. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  405. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  406. tp->snd_cwnd_stamp = tcp_jiffies32;
  407. }
  408. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  409. static void tcp_clamp_window(struct sock *sk)
  410. {
  411. struct tcp_sock *tp = tcp_sk(sk);
  412. struct inet_connection_sock *icsk = inet_csk(sk);
  413. icsk->icsk_ack.quick = 0;
  414. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  415. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  416. !tcp_under_memory_pressure(sk) &&
  417. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  418. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  419. sysctl_tcp_rmem[2]);
  420. }
  421. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  422. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  423. }
  424. /* Initialize RCV_MSS value.
  425. * RCV_MSS is an our guess about MSS used by the peer.
  426. * We haven't any direct information about the MSS.
  427. * It's better to underestimate the RCV_MSS rather than overestimate.
  428. * Overestimations make us ACKing less frequently than needed.
  429. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  430. */
  431. void tcp_initialize_rcv_mss(struct sock *sk)
  432. {
  433. const struct tcp_sock *tp = tcp_sk(sk);
  434. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  435. hint = min(hint, tp->rcv_wnd / 2);
  436. hint = min(hint, TCP_MSS_DEFAULT);
  437. hint = max(hint, TCP_MIN_MSS);
  438. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  439. }
  440. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  441. /* Receiver "autotuning" code.
  442. *
  443. * The algorithm for RTT estimation w/o timestamps is based on
  444. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  445. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  446. *
  447. * More detail on this code can be found at
  448. * <http://staff.psc.edu/jheffner/>,
  449. * though this reference is out of date. A new paper
  450. * is pending.
  451. */
  452. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  453. {
  454. u32 new_sample = tp->rcv_rtt_est.rtt_us;
  455. long m = sample;
  456. if (m == 0)
  457. m = 1;
  458. if (new_sample != 0) {
  459. /* If we sample in larger samples in the non-timestamp
  460. * case, we could grossly overestimate the RTT especially
  461. * with chatty applications or bulk transfer apps which
  462. * are stalled on filesystem I/O.
  463. *
  464. * Also, since we are only going for a minimum in the
  465. * non-timestamp case, we do not smooth things out
  466. * else with timestamps disabled convergence takes too
  467. * long.
  468. */
  469. if (!win_dep) {
  470. m -= (new_sample >> 3);
  471. new_sample += m;
  472. } else {
  473. m <<= 3;
  474. if (m < new_sample)
  475. new_sample = m;
  476. }
  477. } else {
  478. /* No previous measure. */
  479. new_sample = m << 3;
  480. }
  481. tp->rcv_rtt_est.rtt_us = new_sample;
  482. }
  483. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  484. {
  485. u32 delta_us;
  486. if (tp->rcv_rtt_est.time == 0)
  487. goto new_measure;
  488. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  489. return;
  490. delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
  491. tcp_rcv_rtt_update(tp, delta_us, 1);
  492. new_measure:
  493. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  494. tp->rcv_rtt_est.time = tp->tcp_mstamp;
  495. }
  496. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  497. const struct sk_buff *skb)
  498. {
  499. struct tcp_sock *tp = tcp_sk(sk);
  500. if (tp->rx_opt.rcv_tsecr &&
  501. (TCP_SKB_CB(skb)->end_seq -
  502. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
  503. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  504. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  505. tcp_rcv_rtt_update(tp, delta_us, 0);
  506. }
  507. }
  508. /*
  509. * This function should be called every time data is copied to user space.
  510. * It calculates the appropriate TCP receive buffer space.
  511. */
  512. void tcp_rcv_space_adjust(struct sock *sk)
  513. {
  514. struct tcp_sock *tp = tcp_sk(sk);
  515. int time;
  516. int copied;
  517. time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
  518. if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
  519. return;
  520. /* Number of bytes copied to user in last RTT */
  521. copied = tp->copied_seq - tp->rcvq_space.seq;
  522. if (copied <= tp->rcvq_space.space)
  523. goto new_measure;
  524. /* A bit of theory :
  525. * copied = bytes received in previous RTT, our base window
  526. * To cope with packet losses, we need a 2x factor
  527. * To cope with slow start, and sender growing its cwin by 100 %
  528. * every RTT, we need a 4x factor, because the ACK we are sending
  529. * now is for the next RTT, not the current one :
  530. * <prev RTT . ><current RTT .. ><next RTT .... >
  531. */
  532. if (sysctl_tcp_moderate_rcvbuf &&
  533. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  534. int rcvwin, rcvmem, rcvbuf;
  535. /* minimal window to cope with packet losses, assuming
  536. * steady state. Add some cushion because of small variations.
  537. */
  538. rcvwin = (copied << 1) + 16 * tp->advmss;
  539. /* If rate increased by 25%,
  540. * assume slow start, rcvwin = 3 * copied
  541. * If rate increased by 50%,
  542. * assume sender can use 2x growth, rcvwin = 4 * copied
  543. */
  544. if (copied >=
  545. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  546. if (copied >=
  547. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  548. rcvwin <<= 1;
  549. else
  550. rcvwin += (rcvwin >> 1);
  551. }
  552. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  553. while (tcp_win_from_space(rcvmem) < tp->advmss)
  554. rcvmem += 128;
  555. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  556. if (rcvbuf > sk->sk_rcvbuf) {
  557. sk->sk_rcvbuf = rcvbuf;
  558. /* Make the window clamp follow along. */
  559. tp->window_clamp = rcvwin;
  560. }
  561. }
  562. tp->rcvq_space.space = copied;
  563. new_measure:
  564. tp->rcvq_space.seq = tp->copied_seq;
  565. tp->rcvq_space.time = tp->tcp_mstamp;
  566. }
  567. /* There is something which you must keep in mind when you analyze the
  568. * behavior of the tp->ato delayed ack timeout interval. When a
  569. * connection starts up, we want to ack as quickly as possible. The
  570. * problem is that "good" TCP's do slow start at the beginning of data
  571. * transmission. The means that until we send the first few ACK's the
  572. * sender will sit on his end and only queue most of his data, because
  573. * he can only send snd_cwnd unacked packets at any given time. For
  574. * each ACK we send, he increments snd_cwnd and transmits more of his
  575. * queue. -DaveM
  576. */
  577. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  578. {
  579. struct tcp_sock *tp = tcp_sk(sk);
  580. struct inet_connection_sock *icsk = inet_csk(sk);
  581. u32 now;
  582. inet_csk_schedule_ack(sk);
  583. tcp_measure_rcv_mss(sk, skb);
  584. tcp_rcv_rtt_measure(tp);
  585. now = tcp_jiffies32;
  586. if (!icsk->icsk_ack.ato) {
  587. /* The _first_ data packet received, initialize
  588. * delayed ACK engine.
  589. */
  590. tcp_incr_quickack(sk);
  591. icsk->icsk_ack.ato = TCP_ATO_MIN;
  592. } else {
  593. int m = now - icsk->icsk_ack.lrcvtime;
  594. if (m <= TCP_ATO_MIN / 2) {
  595. /* The fastest case is the first. */
  596. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  597. } else if (m < icsk->icsk_ack.ato) {
  598. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  599. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  600. icsk->icsk_ack.ato = icsk->icsk_rto;
  601. } else if (m > icsk->icsk_rto) {
  602. /* Too long gap. Apparently sender failed to
  603. * restart window, so that we send ACKs quickly.
  604. */
  605. tcp_incr_quickack(sk);
  606. sk_mem_reclaim(sk);
  607. }
  608. }
  609. icsk->icsk_ack.lrcvtime = now;
  610. tcp_ecn_check_ce(tp, skb);
  611. if (skb->len >= 128)
  612. tcp_grow_window(sk, skb);
  613. }
  614. /* Called to compute a smoothed rtt estimate. The data fed to this
  615. * routine either comes from timestamps, or from segments that were
  616. * known _not_ to have been retransmitted [see Karn/Partridge
  617. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  618. * piece by Van Jacobson.
  619. * NOTE: the next three routines used to be one big routine.
  620. * To save cycles in the RFC 1323 implementation it was better to break
  621. * it up into three procedures. -- erics
  622. */
  623. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  624. {
  625. struct tcp_sock *tp = tcp_sk(sk);
  626. long m = mrtt_us; /* RTT */
  627. u32 srtt = tp->srtt_us;
  628. /* The following amusing code comes from Jacobson's
  629. * article in SIGCOMM '88. Note that rtt and mdev
  630. * are scaled versions of rtt and mean deviation.
  631. * This is designed to be as fast as possible
  632. * m stands for "measurement".
  633. *
  634. * On a 1990 paper the rto value is changed to:
  635. * RTO = rtt + 4 * mdev
  636. *
  637. * Funny. This algorithm seems to be very broken.
  638. * These formulae increase RTO, when it should be decreased, increase
  639. * too slowly, when it should be increased quickly, decrease too quickly
  640. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  641. * does not matter how to _calculate_ it. Seems, it was trap
  642. * that VJ failed to avoid. 8)
  643. */
  644. if (srtt != 0) {
  645. m -= (srtt >> 3); /* m is now error in rtt est */
  646. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  647. if (m < 0) {
  648. m = -m; /* m is now abs(error) */
  649. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  650. /* This is similar to one of Eifel findings.
  651. * Eifel blocks mdev updates when rtt decreases.
  652. * This solution is a bit different: we use finer gain
  653. * for mdev in this case (alpha*beta).
  654. * Like Eifel it also prevents growth of rto,
  655. * but also it limits too fast rto decreases,
  656. * happening in pure Eifel.
  657. */
  658. if (m > 0)
  659. m >>= 3;
  660. } else {
  661. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  662. }
  663. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  664. if (tp->mdev_us > tp->mdev_max_us) {
  665. tp->mdev_max_us = tp->mdev_us;
  666. if (tp->mdev_max_us > tp->rttvar_us)
  667. tp->rttvar_us = tp->mdev_max_us;
  668. }
  669. if (after(tp->snd_una, tp->rtt_seq)) {
  670. if (tp->mdev_max_us < tp->rttvar_us)
  671. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  672. tp->rtt_seq = tp->snd_nxt;
  673. tp->mdev_max_us = tcp_rto_min_us(sk);
  674. }
  675. } else {
  676. /* no previous measure. */
  677. srtt = m << 3; /* take the measured time to be rtt */
  678. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  679. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  680. tp->mdev_max_us = tp->rttvar_us;
  681. tp->rtt_seq = tp->snd_nxt;
  682. }
  683. tp->srtt_us = max(1U, srtt);
  684. }
  685. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  686. * Note: TCP stack does not yet implement pacing.
  687. * FQ packet scheduler can be used to implement cheap but effective
  688. * TCP pacing, to smooth the burst on large writes when packets
  689. * in flight is significantly lower than cwnd (or rwin)
  690. */
  691. int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
  692. int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
  693. static void tcp_update_pacing_rate(struct sock *sk)
  694. {
  695. const struct tcp_sock *tp = tcp_sk(sk);
  696. u64 rate;
  697. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  698. rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
  699. /* current rate is (cwnd * mss) / srtt
  700. * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
  701. * In Congestion Avoidance phase, set it to 120 % the current rate.
  702. *
  703. * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
  704. * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
  705. * end of slow start and should slow down.
  706. */
  707. if (tp->snd_cwnd < tp->snd_ssthresh / 2)
  708. rate *= sysctl_tcp_pacing_ss_ratio;
  709. else
  710. rate *= sysctl_tcp_pacing_ca_ratio;
  711. rate *= max(tp->snd_cwnd, tp->packets_out);
  712. if (likely(tp->srtt_us))
  713. do_div(rate, tp->srtt_us);
  714. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  715. * without any lock. We want to make sure compiler wont store
  716. * intermediate values in this location.
  717. */
  718. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  719. sk->sk_max_pacing_rate);
  720. }
  721. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  722. * routine referred to above.
  723. */
  724. static void tcp_set_rto(struct sock *sk)
  725. {
  726. const struct tcp_sock *tp = tcp_sk(sk);
  727. /* Old crap is replaced with new one. 8)
  728. *
  729. * More seriously:
  730. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  731. * It cannot be less due to utterly erratic ACK generation made
  732. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  733. * to do with delayed acks, because at cwnd>2 true delack timeout
  734. * is invisible. Actually, Linux-2.4 also generates erratic
  735. * ACKs in some circumstances.
  736. */
  737. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  738. /* 2. Fixups made earlier cannot be right.
  739. * If we do not estimate RTO correctly without them,
  740. * all the algo is pure shit and should be replaced
  741. * with correct one. It is exactly, which we pretend to do.
  742. */
  743. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  744. * guarantees that rto is higher.
  745. */
  746. tcp_bound_rto(sk);
  747. }
  748. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  749. {
  750. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  751. if (!cwnd)
  752. cwnd = TCP_INIT_CWND;
  753. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  754. }
  755. /*
  756. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  757. * disables it when reordering is detected
  758. */
  759. void tcp_disable_fack(struct tcp_sock *tp)
  760. {
  761. /* RFC3517 uses different metric in lost marker => reset on change */
  762. if (tcp_is_fack(tp))
  763. tp->lost_skb_hint = NULL;
  764. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  765. }
  766. /* Take a notice that peer is sending D-SACKs */
  767. static void tcp_dsack_seen(struct tcp_sock *tp)
  768. {
  769. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  770. }
  771. static void tcp_update_reordering(struct sock *sk, const int metric,
  772. const int ts)
  773. {
  774. struct tcp_sock *tp = tcp_sk(sk);
  775. int mib_idx;
  776. if (WARN_ON_ONCE(metric < 0))
  777. return;
  778. if (metric > tp->reordering) {
  779. tp->reordering = min(sysctl_tcp_max_reordering, metric);
  780. #if FASTRETRANS_DEBUG > 1
  781. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  782. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  783. tp->reordering,
  784. tp->fackets_out,
  785. tp->sacked_out,
  786. tp->undo_marker ? tp->undo_retrans : 0);
  787. #endif
  788. tcp_disable_fack(tp);
  789. }
  790. tp->rack.reord = 1;
  791. /* This exciting event is worth to be remembered. 8) */
  792. if (ts)
  793. mib_idx = LINUX_MIB_TCPTSREORDER;
  794. else if (tcp_is_reno(tp))
  795. mib_idx = LINUX_MIB_TCPRENOREORDER;
  796. else if (tcp_is_fack(tp))
  797. mib_idx = LINUX_MIB_TCPFACKREORDER;
  798. else
  799. mib_idx = LINUX_MIB_TCPSACKREORDER;
  800. NET_INC_STATS(sock_net(sk), mib_idx);
  801. }
  802. /* This must be called before lost_out is incremented */
  803. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  804. {
  805. if (!tp->retransmit_skb_hint ||
  806. before(TCP_SKB_CB(skb)->seq,
  807. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  808. tp->retransmit_skb_hint = skb;
  809. }
  810. /* Sum the number of packets on the wire we have marked as lost.
  811. * There are two cases we care about here:
  812. * a) Packet hasn't been marked lost (nor retransmitted),
  813. * and this is the first loss.
  814. * b) Packet has been marked both lost and retransmitted,
  815. * and this means we think it was lost again.
  816. */
  817. static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
  818. {
  819. __u8 sacked = TCP_SKB_CB(skb)->sacked;
  820. if (!(sacked & TCPCB_LOST) ||
  821. ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
  822. tp->lost += tcp_skb_pcount(skb);
  823. }
  824. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  825. {
  826. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  827. tcp_verify_retransmit_hint(tp, skb);
  828. tp->lost_out += tcp_skb_pcount(skb);
  829. tcp_sum_lost(tp, skb);
  830. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  831. }
  832. }
  833. void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
  834. {
  835. tcp_verify_retransmit_hint(tp, skb);
  836. tcp_sum_lost(tp, skb);
  837. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  838. tp->lost_out += tcp_skb_pcount(skb);
  839. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  840. }
  841. }
  842. /* This procedure tags the retransmission queue when SACKs arrive.
  843. *
  844. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  845. * Packets in queue with these bits set are counted in variables
  846. * sacked_out, retrans_out and lost_out, correspondingly.
  847. *
  848. * Valid combinations are:
  849. * Tag InFlight Description
  850. * 0 1 - orig segment is in flight.
  851. * S 0 - nothing flies, orig reached receiver.
  852. * L 0 - nothing flies, orig lost by net.
  853. * R 2 - both orig and retransmit are in flight.
  854. * L|R 1 - orig is lost, retransmit is in flight.
  855. * S|R 1 - orig reached receiver, retrans is still in flight.
  856. * (L|S|R is logically valid, it could occur when L|R is sacked,
  857. * but it is equivalent to plain S and code short-curcuits it to S.
  858. * L|S is logically invalid, it would mean -1 packet in flight 8))
  859. *
  860. * These 6 states form finite state machine, controlled by the following events:
  861. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  862. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  863. * 3. Loss detection event of two flavors:
  864. * A. Scoreboard estimator decided the packet is lost.
  865. * A'. Reno "three dupacks" marks head of queue lost.
  866. * A''. Its FACK modification, head until snd.fack is lost.
  867. * B. SACK arrives sacking SND.NXT at the moment, when the
  868. * segment was retransmitted.
  869. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  870. *
  871. * It is pleasant to note, that state diagram turns out to be commutative,
  872. * so that we are allowed not to be bothered by order of our actions,
  873. * when multiple events arrive simultaneously. (see the function below).
  874. *
  875. * Reordering detection.
  876. * --------------------
  877. * Reordering metric is maximal distance, which a packet can be displaced
  878. * in packet stream. With SACKs we can estimate it:
  879. *
  880. * 1. SACK fills old hole and the corresponding segment was not
  881. * ever retransmitted -> reordering. Alas, we cannot use it
  882. * when segment was retransmitted.
  883. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  884. * for retransmitted and already SACKed segment -> reordering..
  885. * Both of these heuristics are not used in Loss state, when we cannot
  886. * account for retransmits accurately.
  887. *
  888. * SACK block validation.
  889. * ----------------------
  890. *
  891. * SACK block range validation checks that the received SACK block fits to
  892. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  893. * Note that SND.UNA is not included to the range though being valid because
  894. * it means that the receiver is rather inconsistent with itself reporting
  895. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  896. * perfectly valid, however, in light of RFC2018 which explicitly states
  897. * that "SACK block MUST reflect the newest segment. Even if the newest
  898. * segment is going to be discarded ...", not that it looks very clever
  899. * in case of head skb. Due to potentional receiver driven attacks, we
  900. * choose to avoid immediate execution of a walk in write queue due to
  901. * reneging and defer head skb's loss recovery to standard loss recovery
  902. * procedure that will eventually trigger (nothing forbids us doing this).
  903. *
  904. * Implements also blockage to start_seq wrap-around. Problem lies in the
  905. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  906. * there's no guarantee that it will be before snd_nxt (n). The problem
  907. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  908. * wrap (s_w):
  909. *
  910. * <- outs wnd -> <- wrapzone ->
  911. * u e n u_w e_w s n_w
  912. * | | | | | | |
  913. * |<------------+------+----- TCP seqno space --------------+---------->|
  914. * ...-- <2^31 ->| |<--------...
  915. * ...---- >2^31 ------>| |<--------...
  916. *
  917. * Current code wouldn't be vulnerable but it's better still to discard such
  918. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  919. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  920. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  921. * equal to the ideal case (infinite seqno space without wrap caused issues).
  922. *
  923. * With D-SACK the lower bound is extended to cover sequence space below
  924. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  925. * again, D-SACK block must not to go across snd_una (for the same reason as
  926. * for the normal SACK blocks, explained above). But there all simplicity
  927. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  928. * fully below undo_marker they do not affect behavior in anyway and can
  929. * therefore be safely ignored. In rare cases (which are more or less
  930. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  931. * fragmentation and packet reordering past skb's retransmission. To consider
  932. * them correctly, the acceptable range must be extended even more though
  933. * the exact amount is rather hard to quantify. However, tp->max_window can
  934. * be used as an exaggerated estimate.
  935. */
  936. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  937. u32 start_seq, u32 end_seq)
  938. {
  939. /* Too far in future, or reversed (interpretation is ambiguous) */
  940. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  941. return false;
  942. /* Nasty start_seq wrap-around check (see comments above) */
  943. if (!before(start_seq, tp->snd_nxt))
  944. return false;
  945. /* In outstanding window? ...This is valid exit for D-SACKs too.
  946. * start_seq == snd_una is non-sensical (see comments above)
  947. */
  948. if (after(start_seq, tp->snd_una))
  949. return true;
  950. if (!is_dsack || !tp->undo_marker)
  951. return false;
  952. /* ...Then it's D-SACK, and must reside below snd_una completely */
  953. if (after(end_seq, tp->snd_una))
  954. return false;
  955. if (!before(start_seq, tp->undo_marker))
  956. return true;
  957. /* Too old */
  958. if (!after(end_seq, tp->undo_marker))
  959. return false;
  960. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  961. * start_seq < undo_marker and end_seq >= undo_marker.
  962. */
  963. return !before(start_seq, end_seq - tp->max_window);
  964. }
  965. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  966. struct tcp_sack_block_wire *sp, int num_sacks,
  967. u32 prior_snd_una)
  968. {
  969. struct tcp_sock *tp = tcp_sk(sk);
  970. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  971. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  972. bool dup_sack = false;
  973. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  974. dup_sack = true;
  975. tcp_dsack_seen(tp);
  976. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  977. } else if (num_sacks > 1) {
  978. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  979. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  980. if (!after(end_seq_0, end_seq_1) &&
  981. !before(start_seq_0, start_seq_1)) {
  982. dup_sack = true;
  983. tcp_dsack_seen(tp);
  984. NET_INC_STATS(sock_net(sk),
  985. LINUX_MIB_TCPDSACKOFORECV);
  986. }
  987. }
  988. /* D-SACK for already forgotten data... Do dumb counting. */
  989. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  990. !after(end_seq_0, prior_snd_una) &&
  991. after(end_seq_0, tp->undo_marker))
  992. tp->undo_retrans--;
  993. return dup_sack;
  994. }
  995. struct tcp_sacktag_state {
  996. int reord;
  997. int fack_count;
  998. /* Timestamps for earliest and latest never-retransmitted segment
  999. * that was SACKed. RTO needs the earliest RTT to stay conservative,
  1000. * but congestion control should still get an accurate delay signal.
  1001. */
  1002. u64 first_sackt;
  1003. u64 last_sackt;
  1004. struct rate_sample *rate;
  1005. int flag;
  1006. };
  1007. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1008. * the incoming SACK may not exactly match but we can find smaller MSS
  1009. * aligned portion of it that matches. Therefore we might need to fragment
  1010. * which may fail and creates some hassle (caller must handle error case
  1011. * returns).
  1012. *
  1013. * FIXME: this could be merged to shift decision code
  1014. */
  1015. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1016. u32 start_seq, u32 end_seq)
  1017. {
  1018. int err;
  1019. bool in_sack;
  1020. unsigned int pkt_len;
  1021. unsigned int mss;
  1022. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1023. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1024. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1025. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1026. mss = tcp_skb_mss(skb);
  1027. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1028. if (!in_sack) {
  1029. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1030. if (pkt_len < mss)
  1031. pkt_len = mss;
  1032. } else {
  1033. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1034. if (pkt_len < mss)
  1035. return -EINVAL;
  1036. }
  1037. /* Round if necessary so that SACKs cover only full MSSes
  1038. * and/or the remaining small portion (if present)
  1039. */
  1040. if (pkt_len > mss) {
  1041. unsigned int new_len = (pkt_len / mss) * mss;
  1042. if (!in_sack && new_len < pkt_len)
  1043. new_len += mss;
  1044. pkt_len = new_len;
  1045. }
  1046. if (pkt_len >= skb->len && !in_sack)
  1047. return 0;
  1048. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1049. if (err < 0)
  1050. return err;
  1051. }
  1052. return in_sack;
  1053. }
  1054. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1055. static u8 tcp_sacktag_one(struct sock *sk,
  1056. struct tcp_sacktag_state *state, u8 sacked,
  1057. u32 start_seq, u32 end_seq,
  1058. int dup_sack, int pcount,
  1059. u64 xmit_time)
  1060. {
  1061. struct tcp_sock *tp = tcp_sk(sk);
  1062. int fack_count = state->fack_count;
  1063. /* Account D-SACK for retransmitted packet. */
  1064. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1065. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1066. after(end_seq, tp->undo_marker))
  1067. tp->undo_retrans--;
  1068. if (sacked & TCPCB_SACKED_ACKED)
  1069. state->reord = min(fack_count, state->reord);
  1070. }
  1071. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1072. if (!after(end_seq, tp->snd_una))
  1073. return sacked;
  1074. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1075. tcp_rack_advance(tp, sacked, end_seq, xmit_time);
  1076. if (sacked & TCPCB_SACKED_RETRANS) {
  1077. /* If the segment is not tagged as lost,
  1078. * we do not clear RETRANS, believing
  1079. * that retransmission is still in flight.
  1080. */
  1081. if (sacked & TCPCB_LOST) {
  1082. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1083. tp->lost_out -= pcount;
  1084. tp->retrans_out -= pcount;
  1085. }
  1086. } else {
  1087. if (!(sacked & TCPCB_RETRANS)) {
  1088. /* New sack for not retransmitted frame,
  1089. * which was in hole. It is reordering.
  1090. */
  1091. if (before(start_seq,
  1092. tcp_highest_sack_seq(tp)))
  1093. state->reord = min(fack_count,
  1094. state->reord);
  1095. if (!after(end_seq, tp->high_seq))
  1096. state->flag |= FLAG_ORIG_SACK_ACKED;
  1097. if (state->first_sackt == 0)
  1098. state->first_sackt = xmit_time;
  1099. state->last_sackt = xmit_time;
  1100. }
  1101. if (sacked & TCPCB_LOST) {
  1102. sacked &= ~TCPCB_LOST;
  1103. tp->lost_out -= pcount;
  1104. }
  1105. }
  1106. sacked |= TCPCB_SACKED_ACKED;
  1107. state->flag |= FLAG_DATA_SACKED;
  1108. tp->sacked_out += pcount;
  1109. tp->delivered += pcount; /* Out-of-order packets delivered */
  1110. fack_count += pcount;
  1111. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1112. if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
  1113. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1114. tp->lost_cnt_hint += pcount;
  1115. if (fack_count > tp->fackets_out)
  1116. tp->fackets_out = fack_count;
  1117. }
  1118. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1119. * frames and clear it. undo_retrans is decreased above, L|R frames
  1120. * are accounted above as well.
  1121. */
  1122. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1123. sacked &= ~TCPCB_SACKED_RETRANS;
  1124. tp->retrans_out -= pcount;
  1125. }
  1126. return sacked;
  1127. }
  1128. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1129. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1130. */
  1131. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1132. struct tcp_sacktag_state *state,
  1133. unsigned int pcount, int shifted, int mss,
  1134. bool dup_sack)
  1135. {
  1136. struct tcp_sock *tp = tcp_sk(sk);
  1137. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1138. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1139. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1140. BUG_ON(!pcount);
  1141. /* Adjust counters and hints for the newly sacked sequence
  1142. * range but discard the return value since prev is already
  1143. * marked. We must tag the range first because the seq
  1144. * advancement below implicitly advances
  1145. * tcp_highest_sack_seq() when skb is highest_sack.
  1146. */
  1147. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1148. start_seq, end_seq, dup_sack, pcount,
  1149. skb->skb_mstamp);
  1150. tcp_rate_skb_delivered(sk, skb, state->rate);
  1151. if (skb == tp->lost_skb_hint)
  1152. tp->lost_cnt_hint += pcount;
  1153. TCP_SKB_CB(prev)->end_seq += shifted;
  1154. TCP_SKB_CB(skb)->seq += shifted;
  1155. tcp_skb_pcount_add(prev, pcount);
  1156. BUG_ON(tcp_skb_pcount(skb) < pcount);
  1157. tcp_skb_pcount_add(skb, -pcount);
  1158. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1159. * in theory this shouldn't be necessary but as long as DSACK
  1160. * code can come after this skb later on it's better to keep
  1161. * setting gso_size to something.
  1162. */
  1163. if (!TCP_SKB_CB(prev)->tcp_gso_size)
  1164. TCP_SKB_CB(prev)->tcp_gso_size = mss;
  1165. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1166. if (tcp_skb_pcount(skb) <= 1)
  1167. TCP_SKB_CB(skb)->tcp_gso_size = 0;
  1168. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1169. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1170. if (skb->len > 0) {
  1171. BUG_ON(!tcp_skb_pcount(skb));
  1172. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1173. return false;
  1174. }
  1175. /* Whole SKB was eaten :-) */
  1176. if (skb == tp->retransmit_skb_hint)
  1177. tp->retransmit_skb_hint = prev;
  1178. if (skb == tp->lost_skb_hint) {
  1179. tp->lost_skb_hint = prev;
  1180. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1181. }
  1182. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1183. TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
  1184. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1185. TCP_SKB_CB(prev)->end_seq++;
  1186. if (skb == tcp_highest_sack(sk))
  1187. tcp_advance_highest_sack(sk, skb);
  1188. tcp_skb_collapse_tstamp(prev, skb);
  1189. if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
  1190. TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
  1191. tcp_unlink_write_queue(skb, sk);
  1192. sk_wmem_free_skb(sk, skb);
  1193. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
  1194. return true;
  1195. }
  1196. /* I wish gso_size would have a bit more sane initialization than
  1197. * something-or-zero which complicates things
  1198. */
  1199. static int tcp_skb_seglen(const struct sk_buff *skb)
  1200. {
  1201. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1202. }
  1203. /* Shifting pages past head area doesn't work */
  1204. static int skb_can_shift(const struct sk_buff *skb)
  1205. {
  1206. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1207. }
  1208. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1209. * skb.
  1210. */
  1211. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1212. struct tcp_sacktag_state *state,
  1213. u32 start_seq, u32 end_seq,
  1214. bool dup_sack)
  1215. {
  1216. struct tcp_sock *tp = tcp_sk(sk);
  1217. struct sk_buff *prev;
  1218. int mss;
  1219. int pcount = 0;
  1220. int len;
  1221. int in_sack;
  1222. if (!sk_can_gso(sk))
  1223. goto fallback;
  1224. /* Normally R but no L won't result in plain S */
  1225. if (!dup_sack &&
  1226. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1227. goto fallback;
  1228. if (!skb_can_shift(skb))
  1229. goto fallback;
  1230. /* This frame is about to be dropped (was ACKed). */
  1231. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1232. goto fallback;
  1233. /* Can only happen with delayed DSACK + discard craziness */
  1234. if (unlikely(skb == tcp_write_queue_head(sk)))
  1235. goto fallback;
  1236. prev = tcp_write_queue_prev(sk, skb);
  1237. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1238. goto fallback;
  1239. if (!tcp_skb_can_collapse_to(prev))
  1240. goto fallback;
  1241. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1242. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1243. if (in_sack) {
  1244. len = skb->len;
  1245. pcount = tcp_skb_pcount(skb);
  1246. mss = tcp_skb_seglen(skb);
  1247. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1248. * drop this restriction as unnecessary
  1249. */
  1250. if (mss != tcp_skb_seglen(prev))
  1251. goto fallback;
  1252. } else {
  1253. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1254. goto noop;
  1255. /* CHECKME: This is non-MSS split case only?, this will
  1256. * cause skipped skbs due to advancing loop btw, original
  1257. * has that feature too
  1258. */
  1259. if (tcp_skb_pcount(skb) <= 1)
  1260. goto noop;
  1261. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1262. if (!in_sack) {
  1263. /* TODO: head merge to next could be attempted here
  1264. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1265. * though it might not be worth of the additional hassle
  1266. *
  1267. * ...we can probably just fallback to what was done
  1268. * previously. We could try merging non-SACKed ones
  1269. * as well but it probably isn't going to buy off
  1270. * because later SACKs might again split them, and
  1271. * it would make skb timestamp tracking considerably
  1272. * harder problem.
  1273. */
  1274. goto fallback;
  1275. }
  1276. len = end_seq - TCP_SKB_CB(skb)->seq;
  1277. BUG_ON(len < 0);
  1278. BUG_ON(len > skb->len);
  1279. /* MSS boundaries should be honoured or else pcount will
  1280. * severely break even though it makes things bit trickier.
  1281. * Optimize common case to avoid most of the divides
  1282. */
  1283. mss = tcp_skb_mss(skb);
  1284. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1285. * drop this restriction as unnecessary
  1286. */
  1287. if (mss != tcp_skb_seglen(prev))
  1288. goto fallback;
  1289. if (len == mss) {
  1290. pcount = 1;
  1291. } else if (len < mss) {
  1292. goto noop;
  1293. } else {
  1294. pcount = len / mss;
  1295. len = pcount * mss;
  1296. }
  1297. }
  1298. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1299. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1300. goto fallback;
  1301. if (!skb_shift(prev, skb, len))
  1302. goto fallback;
  1303. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1304. goto out;
  1305. /* Hole filled allows collapsing with the next as well, this is very
  1306. * useful when hole on every nth skb pattern happens
  1307. */
  1308. if (prev == tcp_write_queue_tail(sk))
  1309. goto out;
  1310. skb = tcp_write_queue_next(sk, prev);
  1311. if (!skb_can_shift(skb) ||
  1312. (skb == tcp_send_head(sk)) ||
  1313. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1314. (mss != tcp_skb_seglen(skb)))
  1315. goto out;
  1316. len = skb->len;
  1317. if (skb_shift(prev, skb, len)) {
  1318. pcount += tcp_skb_pcount(skb);
  1319. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1320. }
  1321. out:
  1322. state->fack_count += pcount;
  1323. return prev;
  1324. noop:
  1325. return skb;
  1326. fallback:
  1327. NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1328. return NULL;
  1329. }
  1330. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1331. struct tcp_sack_block *next_dup,
  1332. struct tcp_sacktag_state *state,
  1333. u32 start_seq, u32 end_seq,
  1334. bool dup_sack_in)
  1335. {
  1336. struct tcp_sock *tp = tcp_sk(sk);
  1337. struct sk_buff *tmp;
  1338. tcp_for_write_queue_from(skb, sk) {
  1339. int in_sack = 0;
  1340. bool dup_sack = dup_sack_in;
  1341. if (skb == tcp_send_head(sk))
  1342. break;
  1343. /* queue is in-order => we can short-circuit the walk early */
  1344. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1345. break;
  1346. if (next_dup &&
  1347. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1348. in_sack = tcp_match_skb_to_sack(sk, skb,
  1349. next_dup->start_seq,
  1350. next_dup->end_seq);
  1351. if (in_sack > 0)
  1352. dup_sack = true;
  1353. }
  1354. /* skb reference here is a bit tricky to get right, since
  1355. * shifting can eat and free both this skb and the next,
  1356. * so not even _safe variant of the loop is enough.
  1357. */
  1358. if (in_sack <= 0) {
  1359. tmp = tcp_shift_skb_data(sk, skb, state,
  1360. start_seq, end_seq, dup_sack);
  1361. if (tmp) {
  1362. if (tmp != skb) {
  1363. skb = tmp;
  1364. continue;
  1365. }
  1366. in_sack = 0;
  1367. } else {
  1368. in_sack = tcp_match_skb_to_sack(sk, skb,
  1369. start_seq,
  1370. end_seq);
  1371. }
  1372. }
  1373. if (unlikely(in_sack < 0))
  1374. break;
  1375. if (in_sack) {
  1376. TCP_SKB_CB(skb)->sacked =
  1377. tcp_sacktag_one(sk,
  1378. state,
  1379. TCP_SKB_CB(skb)->sacked,
  1380. TCP_SKB_CB(skb)->seq,
  1381. TCP_SKB_CB(skb)->end_seq,
  1382. dup_sack,
  1383. tcp_skb_pcount(skb),
  1384. skb->skb_mstamp);
  1385. tcp_rate_skb_delivered(sk, skb, state->rate);
  1386. if (!before(TCP_SKB_CB(skb)->seq,
  1387. tcp_highest_sack_seq(tp)))
  1388. tcp_advance_highest_sack(sk, skb);
  1389. }
  1390. state->fack_count += tcp_skb_pcount(skb);
  1391. }
  1392. return skb;
  1393. }
  1394. /* Avoid all extra work that is being done by sacktag while walking in
  1395. * a normal way
  1396. */
  1397. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1398. struct tcp_sacktag_state *state,
  1399. u32 skip_to_seq)
  1400. {
  1401. tcp_for_write_queue_from(skb, sk) {
  1402. if (skb == tcp_send_head(sk))
  1403. break;
  1404. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1405. break;
  1406. state->fack_count += tcp_skb_pcount(skb);
  1407. }
  1408. return skb;
  1409. }
  1410. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1411. struct sock *sk,
  1412. struct tcp_sack_block *next_dup,
  1413. struct tcp_sacktag_state *state,
  1414. u32 skip_to_seq)
  1415. {
  1416. if (!next_dup)
  1417. return skb;
  1418. if (before(next_dup->start_seq, skip_to_seq)) {
  1419. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1420. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1421. next_dup->start_seq, next_dup->end_seq,
  1422. 1);
  1423. }
  1424. return skb;
  1425. }
  1426. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1427. {
  1428. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1429. }
  1430. static int
  1431. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1432. u32 prior_snd_una, struct tcp_sacktag_state *state)
  1433. {
  1434. struct tcp_sock *tp = tcp_sk(sk);
  1435. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1436. TCP_SKB_CB(ack_skb)->sacked);
  1437. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1438. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1439. struct tcp_sack_block *cache;
  1440. struct sk_buff *skb;
  1441. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1442. int used_sacks;
  1443. bool found_dup_sack = false;
  1444. int i, j;
  1445. int first_sack_index;
  1446. state->flag = 0;
  1447. state->reord = tp->packets_out;
  1448. if (!tp->sacked_out) {
  1449. if (WARN_ON(tp->fackets_out))
  1450. tp->fackets_out = 0;
  1451. tcp_highest_sack_reset(sk);
  1452. }
  1453. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1454. num_sacks, prior_snd_una);
  1455. if (found_dup_sack) {
  1456. state->flag |= FLAG_DSACKING_ACK;
  1457. tp->delivered++; /* A spurious retransmission is delivered */
  1458. }
  1459. /* Eliminate too old ACKs, but take into
  1460. * account more or less fresh ones, they can
  1461. * contain valid SACK info.
  1462. */
  1463. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1464. return 0;
  1465. if (!tp->packets_out)
  1466. goto out;
  1467. used_sacks = 0;
  1468. first_sack_index = 0;
  1469. for (i = 0; i < num_sacks; i++) {
  1470. bool dup_sack = !i && found_dup_sack;
  1471. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1472. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1473. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1474. sp[used_sacks].start_seq,
  1475. sp[used_sacks].end_seq)) {
  1476. int mib_idx;
  1477. if (dup_sack) {
  1478. if (!tp->undo_marker)
  1479. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1480. else
  1481. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1482. } else {
  1483. /* Don't count olds caused by ACK reordering */
  1484. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1485. !after(sp[used_sacks].end_seq, tp->snd_una))
  1486. continue;
  1487. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1488. }
  1489. NET_INC_STATS(sock_net(sk), mib_idx);
  1490. if (i == 0)
  1491. first_sack_index = -1;
  1492. continue;
  1493. }
  1494. /* Ignore very old stuff early */
  1495. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1496. continue;
  1497. used_sacks++;
  1498. }
  1499. /* order SACK blocks to allow in order walk of the retrans queue */
  1500. for (i = used_sacks - 1; i > 0; i--) {
  1501. for (j = 0; j < i; j++) {
  1502. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1503. swap(sp[j], sp[j + 1]);
  1504. /* Track where the first SACK block goes to */
  1505. if (j == first_sack_index)
  1506. first_sack_index = j + 1;
  1507. }
  1508. }
  1509. }
  1510. skb = tcp_write_queue_head(sk);
  1511. state->fack_count = 0;
  1512. i = 0;
  1513. if (!tp->sacked_out) {
  1514. /* It's already past, so skip checking against it */
  1515. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1516. } else {
  1517. cache = tp->recv_sack_cache;
  1518. /* Skip empty blocks in at head of the cache */
  1519. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1520. !cache->end_seq)
  1521. cache++;
  1522. }
  1523. while (i < used_sacks) {
  1524. u32 start_seq = sp[i].start_seq;
  1525. u32 end_seq = sp[i].end_seq;
  1526. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1527. struct tcp_sack_block *next_dup = NULL;
  1528. if (found_dup_sack && ((i + 1) == first_sack_index))
  1529. next_dup = &sp[i + 1];
  1530. /* Skip too early cached blocks */
  1531. while (tcp_sack_cache_ok(tp, cache) &&
  1532. !before(start_seq, cache->end_seq))
  1533. cache++;
  1534. /* Can skip some work by looking recv_sack_cache? */
  1535. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1536. after(end_seq, cache->start_seq)) {
  1537. /* Head todo? */
  1538. if (before(start_seq, cache->start_seq)) {
  1539. skb = tcp_sacktag_skip(skb, sk, state,
  1540. start_seq);
  1541. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1542. state,
  1543. start_seq,
  1544. cache->start_seq,
  1545. dup_sack);
  1546. }
  1547. /* Rest of the block already fully processed? */
  1548. if (!after(end_seq, cache->end_seq))
  1549. goto advance_sp;
  1550. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1551. state,
  1552. cache->end_seq);
  1553. /* ...tail remains todo... */
  1554. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1555. /* ...but better entrypoint exists! */
  1556. skb = tcp_highest_sack(sk);
  1557. if (!skb)
  1558. break;
  1559. state->fack_count = tp->fackets_out;
  1560. cache++;
  1561. goto walk;
  1562. }
  1563. skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
  1564. /* Check overlap against next cached too (past this one already) */
  1565. cache++;
  1566. continue;
  1567. }
  1568. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1569. skb = tcp_highest_sack(sk);
  1570. if (!skb)
  1571. break;
  1572. state->fack_count = tp->fackets_out;
  1573. }
  1574. skb = tcp_sacktag_skip(skb, sk, state, start_seq);
  1575. walk:
  1576. skb = tcp_sacktag_walk(skb, sk, next_dup, state,
  1577. start_seq, end_seq, dup_sack);
  1578. advance_sp:
  1579. i++;
  1580. }
  1581. /* Clear the head of the cache sack blocks so we can skip it next time */
  1582. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1583. tp->recv_sack_cache[i].start_seq = 0;
  1584. tp->recv_sack_cache[i].end_seq = 0;
  1585. }
  1586. for (j = 0; j < used_sacks; j++)
  1587. tp->recv_sack_cache[i++] = sp[j];
  1588. if ((state->reord < tp->fackets_out) &&
  1589. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1590. tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
  1591. tcp_verify_left_out(tp);
  1592. out:
  1593. #if FASTRETRANS_DEBUG > 0
  1594. WARN_ON((int)tp->sacked_out < 0);
  1595. WARN_ON((int)tp->lost_out < 0);
  1596. WARN_ON((int)tp->retrans_out < 0);
  1597. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1598. #endif
  1599. return state->flag;
  1600. }
  1601. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1602. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1603. */
  1604. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1605. {
  1606. u32 holes;
  1607. holes = max(tp->lost_out, 1U);
  1608. holes = min(holes, tp->packets_out);
  1609. if ((tp->sacked_out + holes) > tp->packets_out) {
  1610. tp->sacked_out = tp->packets_out - holes;
  1611. return true;
  1612. }
  1613. return false;
  1614. }
  1615. /* If we receive more dupacks than we expected counting segments
  1616. * in assumption of absent reordering, interpret this as reordering.
  1617. * The only another reason could be bug in receiver TCP.
  1618. */
  1619. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1620. {
  1621. struct tcp_sock *tp = tcp_sk(sk);
  1622. if (tcp_limit_reno_sacked(tp))
  1623. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1624. }
  1625. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1626. static void tcp_add_reno_sack(struct sock *sk)
  1627. {
  1628. struct tcp_sock *tp = tcp_sk(sk);
  1629. u32 prior_sacked = tp->sacked_out;
  1630. tp->sacked_out++;
  1631. tcp_check_reno_reordering(sk, 0);
  1632. if (tp->sacked_out > prior_sacked)
  1633. tp->delivered++; /* Some out-of-order packet is delivered */
  1634. tcp_verify_left_out(tp);
  1635. }
  1636. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1637. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1638. {
  1639. struct tcp_sock *tp = tcp_sk(sk);
  1640. if (acked > 0) {
  1641. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1642. tp->delivered += max_t(int, acked - tp->sacked_out, 1);
  1643. if (acked - 1 >= tp->sacked_out)
  1644. tp->sacked_out = 0;
  1645. else
  1646. tp->sacked_out -= acked - 1;
  1647. }
  1648. tcp_check_reno_reordering(sk, acked);
  1649. tcp_verify_left_out(tp);
  1650. }
  1651. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1652. {
  1653. tp->sacked_out = 0;
  1654. }
  1655. void tcp_clear_retrans(struct tcp_sock *tp)
  1656. {
  1657. tp->retrans_out = 0;
  1658. tp->lost_out = 0;
  1659. tp->undo_marker = 0;
  1660. tp->undo_retrans = -1;
  1661. tp->fackets_out = 0;
  1662. tp->sacked_out = 0;
  1663. }
  1664. static inline void tcp_init_undo(struct tcp_sock *tp)
  1665. {
  1666. tp->undo_marker = tp->snd_una;
  1667. /* Retransmission still in flight may cause DSACKs later. */
  1668. tp->undo_retrans = tp->retrans_out ? : -1;
  1669. }
  1670. /* Enter Loss state. If we detect SACK reneging, forget all SACK information
  1671. * and reset tags completely, otherwise preserve SACKs. If receiver
  1672. * dropped its ofo queue, we will know this due to reneging detection.
  1673. */
  1674. void tcp_enter_loss(struct sock *sk)
  1675. {
  1676. const struct inet_connection_sock *icsk = inet_csk(sk);
  1677. struct tcp_sock *tp = tcp_sk(sk);
  1678. struct net *net = sock_net(sk);
  1679. struct sk_buff *skb;
  1680. bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
  1681. bool is_reneg; /* is receiver reneging on SACKs? */
  1682. bool mark_lost;
  1683. /* Reduce ssthresh if it has not yet been made inside this window. */
  1684. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1685. !after(tp->high_seq, tp->snd_una) ||
  1686. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1687. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1688. tp->prior_cwnd = tp->snd_cwnd;
  1689. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1690. tcp_ca_event(sk, CA_EVENT_LOSS);
  1691. tcp_init_undo(tp);
  1692. }
  1693. tp->snd_cwnd = 1;
  1694. tp->snd_cwnd_cnt = 0;
  1695. tp->snd_cwnd_stamp = tcp_jiffies32;
  1696. tp->retrans_out = 0;
  1697. tp->lost_out = 0;
  1698. if (tcp_is_reno(tp))
  1699. tcp_reset_reno_sack(tp);
  1700. skb = tcp_write_queue_head(sk);
  1701. is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
  1702. if (is_reneg) {
  1703. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1704. tp->sacked_out = 0;
  1705. tp->fackets_out = 0;
  1706. }
  1707. tcp_clear_all_retrans_hints(tp);
  1708. tcp_for_write_queue(skb, sk) {
  1709. if (skb == tcp_send_head(sk))
  1710. break;
  1711. mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1712. is_reneg);
  1713. if (mark_lost)
  1714. tcp_sum_lost(tp, skb);
  1715. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1716. if (mark_lost) {
  1717. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1718. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1719. tp->lost_out += tcp_skb_pcount(skb);
  1720. }
  1721. }
  1722. tcp_verify_left_out(tp);
  1723. /* Timeout in disordered state after receiving substantial DUPACKs
  1724. * suggests that the degree of reordering is over-estimated.
  1725. */
  1726. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1727. tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
  1728. tp->reordering = min_t(unsigned int, tp->reordering,
  1729. net->ipv4.sysctl_tcp_reordering);
  1730. tcp_set_ca_state(sk, TCP_CA_Loss);
  1731. tp->high_seq = tp->snd_nxt;
  1732. tcp_ecn_queue_cwr(tp);
  1733. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1734. * loss recovery is underway except recurring timeout(s) on
  1735. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1736. *
  1737. * In theory F-RTO can be used repeatedly during loss recovery.
  1738. * In practice this interacts badly with broken middle-boxes that
  1739. * falsely raise the receive window, which results in repeated
  1740. * timeouts and stop-and-go behavior.
  1741. */
  1742. tp->frto = sysctl_tcp_frto &&
  1743. (new_recovery || icsk->icsk_retransmits) &&
  1744. !inet_csk(sk)->icsk_mtup.probe_size;
  1745. }
  1746. /* If ACK arrived pointing to a remembered SACK, it means that our
  1747. * remembered SACKs do not reflect real state of receiver i.e.
  1748. * receiver _host_ is heavily congested (or buggy).
  1749. *
  1750. * To avoid big spurious retransmission bursts due to transient SACK
  1751. * scoreboard oddities that look like reneging, we give the receiver a
  1752. * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
  1753. * restore sanity to the SACK scoreboard. If the apparent reneging
  1754. * persists until this RTO then we'll clear the SACK scoreboard.
  1755. */
  1756. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1757. {
  1758. if (flag & FLAG_SACK_RENEGING) {
  1759. struct tcp_sock *tp = tcp_sk(sk);
  1760. unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
  1761. msecs_to_jiffies(10));
  1762. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1763. delay, TCP_RTO_MAX);
  1764. return true;
  1765. }
  1766. return false;
  1767. }
  1768. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1769. {
  1770. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1771. }
  1772. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1773. * counter when SACK is enabled (without SACK, sacked_out is used for
  1774. * that purpose).
  1775. *
  1776. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1777. * segments up to the highest received SACK block so far and holes in
  1778. * between them.
  1779. *
  1780. * With reordering, holes may still be in flight, so RFC3517 recovery
  1781. * uses pure sacked_out (total number of SACKed segments) even though
  1782. * it violates the RFC that uses duplicate ACKs, often these are equal
  1783. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1784. * they differ. Since neither occurs due to loss, TCP should really
  1785. * ignore them.
  1786. */
  1787. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1788. {
  1789. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1790. }
  1791. /* Linux NewReno/SACK/FACK/ECN state machine.
  1792. * --------------------------------------
  1793. *
  1794. * "Open" Normal state, no dubious events, fast path.
  1795. * "Disorder" In all the respects it is "Open",
  1796. * but requires a bit more attention. It is entered when
  1797. * we see some SACKs or dupacks. It is split of "Open"
  1798. * mainly to move some processing from fast path to slow one.
  1799. * "CWR" CWND was reduced due to some Congestion Notification event.
  1800. * It can be ECN, ICMP source quench, local device congestion.
  1801. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1802. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1803. *
  1804. * tcp_fastretrans_alert() is entered:
  1805. * - each incoming ACK, if state is not "Open"
  1806. * - when arrived ACK is unusual, namely:
  1807. * * SACK
  1808. * * Duplicate ACK.
  1809. * * ECN ECE.
  1810. *
  1811. * Counting packets in flight is pretty simple.
  1812. *
  1813. * in_flight = packets_out - left_out + retrans_out
  1814. *
  1815. * packets_out is SND.NXT-SND.UNA counted in packets.
  1816. *
  1817. * retrans_out is number of retransmitted segments.
  1818. *
  1819. * left_out is number of segments left network, but not ACKed yet.
  1820. *
  1821. * left_out = sacked_out + lost_out
  1822. *
  1823. * sacked_out: Packets, which arrived to receiver out of order
  1824. * and hence not ACKed. With SACKs this number is simply
  1825. * amount of SACKed data. Even without SACKs
  1826. * it is easy to give pretty reliable estimate of this number,
  1827. * counting duplicate ACKs.
  1828. *
  1829. * lost_out: Packets lost by network. TCP has no explicit
  1830. * "loss notification" feedback from network (for now).
  1831. * It means that this number can be only _guessed_.
  1832. * Actually, it is the heuristics to predict lossage that
  1833. * distinguishes different algorithms.
  1834. *
  1835. * F.e. after RTO, when all the queue is considered as lost,
  1836. * lost_out = packets_out and in_flight = retrans_out.
  1837. *
  1838. * Essentially, we have now a few algorithms detecting
  1839. * lost packets.
  1840. *
  1841. * If the receiver supports SACK:
  1842. *
  1843. * RFC6675/3517: It is the conventional algorithm. A packet is
  1844. * considered lost if the number of higher sequence packets
  1845. * SACKed is greater than or equal the DUPACK thoreshold
  1846. * (reordering). This is implemented in tcp_mark_head_lost and
  1847. * tcp_update_scoreboard.
  1848. *
  1849. * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
  1850. * (2017-) that checks timing instead of counting DUPACKs.
  1851. * Essentially a packet is considered lost if it's not S/ACKed
  1852. * after RTT + reordering_window, where both metrics are
  1853. * dynamically measured and adjusted. This is implemented in
  1854. * tcp_rack_mark_lost.
  1855. *
  1856. * FACK (Disabled by default. Subsumbed by RACK):
  1857. * It is the simplest heuristics. As soon as we decided
  1858. * that something is lost, we decide that _all_ not SACKed
  1859. * packets until the most forward SACK are lost. I.e.
  1860. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1861. * It is absolutely correct estimate, if network does not reorder
  1862. * packets. And it loses any connection to reality when reordering
  1863. * takes place. We use FACK by default until reordering
  1864. * is suspected on the path to this destination.
  1865. *
  1866. * If the receiver does not support SACK:
  1867. *
  1868. * NewReno (RFC6582): in Recovery we assume that one segment
  1869. * is lost (classic Reno). While we are in Recovery and
  1870. * a partial ACK arrives, we assume that one more packet
  1871. * is lost (NewReno). This heuristics are the same in NewReno
  1872. * and SACK.
  1873. *
  1874. * Really tricky (and requiring careful tuning) part of algorithm
  1875. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1876. * The first determines the moment _when_ we should reduce CWND and,
  1877. * hence, slow down forward transmission. In fact, it determines the moment
  1878. * when we decide that hole is caused by loss, rather than by a reorder.
  1879. *
  1880. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1881. * holes, caused by lost packets.
  1882. *
  1883. * And the most logically complicated part of algorithm is undo
  1884. * heuristics. We detect false retransmits due to both too early
  1885. * fast retransmit (reordering) and underestimated RTO, analyzing
  1886. * timestamps and D-SACKs. When we detect that some segments were
  1887. * retransmitted by mistake and CWND reduction was wrong, we undo
  1888. * window reduction and abort recovery phase. This logic is hidden
  1889. * inside several functions named tcp_try_undo_<something>.
  1890. */
  1891. /* This function decides, when we should leave Disordered state
  1892. * and enter Recovery phase, reducing congestion window.
  1893. *
  1894. * Main question: may we further continue forward transmission
  1895. * with the same cwnd?
  1896. */
  1897. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1898. {
  1899. struct tcp_sock *tp = tcp_sk(sk);
  1900. /* Trick#1: The loss is proven. */
  1901. if (tp->lost_out)
  1902. return true;
  1903. /* Not-A-Trick#2 : Classic rule... */
  1904. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1905. return true;
  1906. return false;
  1907. }
  1908. /* Detect loss in event "A" above by marking head of queue up as lost.
  1909. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1910. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1911. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1912. * the maximum SACKed segments to pass before reaching this limit.
  1913. */
  1914. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1915. {
  1916. struct tcp_sock *tp = tcp_sk(sk);
  1917. struct sk_buff *skb;
  1918. int cnt, oldcnt, lost;
  1919. unsigned int mss;
  1920. /* Use SACK to deduce losses of new sequences sent during recovery */
  1921. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1922. WARN_ON(packets > tp->packets_out);
  1923. if (tp->lost_skb_hint) {
  1924. skb = tp->lost_skb_hint;
  1925. cnt = tp->lost_cnt_hint;
  1926. /* Head already handled? */
  1927. if (mark_head && skb != tcp_write_queue_head(sk))
  1928. return;
  1929. } else {
  1930. skb = tcp_write_queue_head(sk);
  1931. cnt = 0;
  1932. }
  1933. tcp_for_write_queue_from(skb, sk) {
  1934. if (skb == tcp_send_head(sk))
  1935. break;
  1936. /* TODO: do this better */
  1937. /* this is not the most efficient way to do this... */
  1938. tp->lost_skb_hint = skb;
  1939. tp->lost_cnt_hint = cnt;
  1940. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1941. break;
  1942. oldcnt = cnt;
  1943. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1944. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1945. cnt += tcp_skb_pcount(skb);
  1946. if (cnt > packets) {
  1947. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1948. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1949. (oldcnt >= packets))
  1950. break;
  1951. mss = tcp_skb_mss(skb);
  1952. /* If needed, chop off the prefix to mark as lost. */
  1953. lost = (packets - oldcnt) * mss;
  1954. if (lost < skb->len &&
  1955. tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
  1956. break;
  1957. cnt = packets;
  1958. }
  1959. tcp_skb_mark_lost(tp, skb);
  1960. if (mark_head)
  1961. break;
  1962. }
  1963. tcp_verify_left_out(tp);
  1964. }
  1965. /* Account newly detected lost packet(s) */
  1966. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1967. {
  1968. struct tcp_sock *tp = tcp_sk(sk);
  1969. if (tcp_is_reno(tp)) {
  1970. tcp_mark_head_lost(sk, 1, 1);
  1971. } else if (tcp_is_fack(tp)) {
  1972. int lost = tp->fackets_out - tp->reordering;
  1973. if (lost <= 0)
  1974. lost = 1;
  1975. tcp_mark_head_lost(sk, lost, 0);
  1976. } else {
  1977. int sacked_upto = tp->sacked_out - tp->reordering;
  1978. if (sacked_upto >= 0)
  1979. tcp_mark_head_lost(sk, sacked_upto, 0);
  1980. else if (fast_rexmit)
  1981. tcp_mark_head_lost(sk, 1, 1);
  1982. }
  1983. }
  1984. static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
  1985. {
  1986. return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1987. before(tp->rx_opt.rcv_tsecr, when);
  1988. }
  1989. /* skb is spurious retransmitted if the returned timestamp echo
  1990. * reply is prior to the skb transmission time
  1991. */
  1992. static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
  1993. const struct sk_buff *skb)
  1994. {
  1995. return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
  1996. tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
  1997. }
  1998. /* Nothing was retransmitted or returned timestamp is less
  1999. * than timestamp of the first retransmission.
  2000. */
  2001. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2002. {
  2003. return !tp->retrans_stamp ||
  2004. tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
  2005. }
  2006. /* Undo procedures. */
  2007. /* We can clear retrans_stamp when there are no retransmissions in the
  2008. * window. It would seem that it is trivially available for us in
  2009. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2010. * what will happen if errors occur when sending retransmission for the
  2011. * second time. ...It could the that such segment has only
  2012. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2013. * the head skb is enough except for some reneging corner cases that
  2014. * are not worth the effort.
  2015. *
  2016. * Main reason for all this complexity is the fact that connection dying
  2017. * time now depends on the validity of the retrans_stamp, in particular,
  2018. * that successive retransmissions of a segment must not advance
  2019. * retrans_stamp under any conditions.
  2020. */
  2021. static bool tcp_any_retrans_done(const struct sock *sk)
  2022. {
  2023. const struct tcp_sock *tp = tcp_sk(sk);
  2024. struct sk_buff *skb;
  2025. if (tp->retrans_out)
  2026. return true;
  2027. skb = tcp_write_queue_head(sk);
  2028. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2029. return true;
  2030. return false;
  2031. }
  2032. static void DBGUNDO(struct sock *sk, const char *msg)
  2033. {
  2034. #if FASTRETRANS_DEBUG > 1
  2035. struct tcp_sock *tp = tcp_sk(sk);
  2036. struct inet_sock *inet = inet_sk(sk);
  2037. if (sk->sk_family == AF_INET) {
  2038. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2039. msg,
  2040. &inet->inet_daddr, ntohs(inet->inet_dport),
  2041. tp->snd_cwnd, tcp_left_out(tp),
  2042. tp->snd_ssthresh, tp->prior_ssthresh,
  2043. tp->packets_out);
  2044. }
  2045. #if IS_ENABLED(CONFIG_IPV6)
  2046. else if (sk->sk_family == AF_INET6) {
  2047. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2048. msg,
  2049. &sk->sk_v6_daddr, ntohs(inet->inet_dport),
  2050. tp->snd_cwnd, tcp_left_out(tp),
  2051. tp->snd_ssthresh, tp->prior_ssthresh,
  2052. tp->packets_out);
  2053. }
  2054. #endif
  2055. #endif
  2056. }
  2057. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2058. {
  2059. struct tcp_sock *tp = tcp_sk(sk);
  2060. if (unmark_loss) {
  2061. struct sk_buff *skb;
  2062. tcp_for_write_queue(skb, sk) {
  2063. if (skb == tcp_send_head(sk))
  2064. break;
  2065. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2066. }
  2067. tp->lost_out = 0;
  2068. tcp_clear_all_retrans_hints(tp);
  2069. }
  2070. if (tp->prior_ssthresh) {
  2071. const struct inet_connection_sock *icsk = inet_csk(sk);
  2072. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2073. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2074. tp->snd_ssthresh = tp->prior_ssthresh;
  2075. tcp_ecn_withdraw_cwr(tp);
  2076. }
  2077. }
  2078. tp->snd_cwnd_stamp = tcp_jiffies32;
  2079. tp->undo_marker = 0;
  2080. }
  2081. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2082. {
  2083. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2084. }
  2085. /* People celebrate: "We love our President!" */
  2086. static bool tcp_try_undo_recovery(struct sock *sk)
  2087. {
  2088. struct tcp_sock *tp = tcp_sk(sk);
  2089. if (tcp_may_undo(tp)) {
  2090. int mib_idx;
  2091. /* Happy end! We did not retransmit anything
  2092. * or our original transmission succeeded.
  2093. */
  2094. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2095. tcp_undo_cwnd_reduction(sk, false);
  2096. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2097. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2098. else
  2099. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2100. NET_INC_STATS(sock_net(sk), mib_idx);
  2101. }
  2102. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2103. /* Hold old state until something *above* high_seq
  2104. * is ACKed. For Reno it is MUST to prevent false
  2105. * fast retransmits (RFC2582). SACK TCP is safe. */
  2106. if (!tcp_any_retrans_done(sk))
  2107. tp->retrans_stamp = 0;
  2108. return true;
  2109. }
  2110. tcp_set_ca_state(sk, TCP_CA_Open);
  2111. return false;
  2112. }
  2113. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2114. static bool tcp_try_undo_dsack(struct sock *sk)
  2115. {
  2116. struct tcp_sock *tp = tcp_sk(sk);
  2117. if (tp->undo_marker && !tp->undo_retrans) {
  2118. DBGUNDO(sk, "D-SACK");
  2119. tcp_undo_cwnd_reduction(sk, false);
  2120. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2121. return true;
  2122. }
  2123. return false;
  2124. }
  2125. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2126. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2127. {
  2128. struct tcp_sock *tp = tcp_sk(sk);
  2129. if (frto_undo || tcp_may_undo(tp)) {
  2130. tcp_undo_cwnd_reduction(sk, true);
  2131. DBGUNDO(sk, "partial loss");
  2132. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2133. if (frto_undo)
  2134. NET_INC_STATS(sock_net(sk),
  2135. LINUX_MIB_TCPSPURIOUSRTOS);
  2136. inet_csk(sk)->icsk_retransmits = 0;
  2137. if (frto_undo || tcp_is_sack(tp))
  2138. tcp_set_ca_state(sk, TCP_CA_Open);
  2139. return true;
  2140. }
  2141. return false;
  2142. }
  2143. /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
  2144. * It computes the number of packets to send (sndcnt) based on packets newly
  2145. * delivered:
  2146. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2147. * cwnd reductions across a full RTT.
  2148. * 2) Otherwise PRR uses packet conservation to send as much as delivered.
  2149. * But when the retransmits are acked without further losses, PRR
  2150. * slow starts cwnd up to ssthresh to speed up the recovery.
  2151. */
  2152. static void tcp_init_cwnd_reduction(struct sock *sk)
  2153. {
  2154. struct tcp_sock *tp = tcp_sk(sk);
  2155. tp->high_seq = tp->snd_nxt;
  2156. tp->tlp_high_seq = 0;
  2157. tp->snd_cwnd_cnt = 0;
  2158. tp->prior_cwnd = tp->snd_cwnd;
  2159. tp->prr_delivered = 0;
  2160. tp->prr_out = 0;
  2161. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2162. tcp_ecn_queue_cwr(tp);
  2163. }
  2164. void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
  2165. {
  2166. struct tcp_sock *tp = tcp_sk(sk);
  2167. int sndcnt = 0;
  2168. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2169. if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
  2170. return;
  2171. tp->prr_delivered += newly_acked_sacked;
  2172. if (delta < 0) {
  2173. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2174. tp->prior_cwnd - 1;
  2175. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2176. } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
  2177. !(flag & FLAG_LOST_RETRANS)) {
  2178. sndcnt = min_t(int, delta,
  2179. max_t(int, tp->prr_delivered - tp->prr_out,
  2180. newly_acked_sacked) + 1);
  2181. } else {
  2182. sndcnt = min(delta, newly_acked_sacked);
  2183. }
  2184. /* Force a fast retransmit upon entering fast recovery */
  2185. sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
  2186. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2187. }
  2188. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2189. {
  2190. struct tcp_sock *tp = tcp_sk(sk);
  2191. if (inet_csk(sk)->icsk_ca_ops->cong_control)
  2192. return;
  2193. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2194. if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
  2195. (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
  2196. tp->snd_cwnd = tp->snd_ssthresh;
  2197. tp->snd_cwnd_stamp = tcp_jiffies32;
  2198. }
  2199. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2200. }
  2201. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2202. void tcp_enter_cwr(struct sock *sk)
  2203. {
  2204. struct tcp_sock *tp = tcp_sk(sk);
  2205. tp->prior_ssthresh = 0;
  2206. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2207. tp->undo_marker = 0;
  2208. tcp_init_cwnd_reduction(sk);
  2209. tcp_set_ca_state(sk, TCP_CA_CWR);
  2210. }
  2211. }
  2212. EXPORT_SYMBOL(tcp_enter_cwr);
  2213. static void tcp_try_keep_open(struct sock *sk)
  2214. {
  2215. struct tcp_sock *tp = tcp_sk(sk);
  2216. int state = TCP_CA_Open;
  2217. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2218. state = TCP_CA_Disorder;
  2219. if (inet_csk(sk)->icsk_ca_state != state) {
  2220. tcp_set_ca_state(sk, state);
  2221. tp->high_seq = tp->snd_nxt;
  2222. }
  2223. }
  2224. static void tcp_try_to_open(struct sock *sk, int flag)
  2225. {
  2226. struct tcp_sock *tp = tcp_sk(sk);
  2227. tcp_verify_left_out(tp);
  2228. if (!tcp_any_retrans_done(sk))
  2229. tp->retrans_stamp = 0;
  2230. if (flag & FLAG_ECE)
  2231. tcp_enter_cwr(sk);
  2232. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2233. tcp_try_keep_open(sk);
  2234. }
  2235. }
  2236. static void tcp_mtup_probe_failed(struct sock *sk)
  2237. {
  2238. struct inet_connection_sock *icsk = inet_csk(sk);
  2239. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2240. icsk->icsk_mtup.probe_size = 0;
  2241. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
  2242. }
  2243. static void tcp_mtup_probe_success(struct sock *sk)
  2244. {
  2245. struct tcp_sock *tp = tcp_sk(sk);
  2246. struct inet_connection_sock *icsk = inet_csk(sk);
  2247. /* FIXME: breaks with very large cwnd */
  2248. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2249. tp->snd_cwnd = tp->snd_cwnd *
  2250. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2251. icsk->icsk_mtup.probe_size;
  2252. tp->snd_cwnd_cnt = 0;
  2253. tp->snd_cwnd_stamp = tcp_jiffies32;
  2254. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2255. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2256. icsk->icsk_mtup.probe_size = 0;
  2257. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2258. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
  2259. }
  2260. /* Do a simple retransmit without using the backoff mechanisms in
  2261. * tcp_timer. This is used for path mtu discovery.
  2262. * The socket is already locked here.
  2263. */
  2264. void tcp_simple_retransmit(struct sock *sk)
  2265. {
  2266. const struct inet_connection_sock *icsk = inet_csk(sk);
  2267. struct tcp_sock *tp = tcp_sk(sk);
  2268. struct sk_buff *skb;
  2269. unsigned int mss = tcp_current_mss(sk);
  2270. u32 prior_lost = tp->lost_out;
  2271. tcp_for_write_queue(skb, sk) {
  2272. if (skb == tcp_send_head(sk))
  2273. break;
  2274. if (tcp_skb_seglen(skb) > mss &&
  2275. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2276. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2277. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2278. tp->retrans_out -= tcp_skb_pcount(skb);
  2279. }
  2280. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2281. }
  2282. }
  2283. tcp_clear_retrans_hints_partial(tp);
  2284. if (prior_lost == tp->lost_out)
  2285. return;
  2286. if (tcp_is_reno(tp))
  2287. tcp_limit_reno_sacked(tp);
  2288. tcp_verify_left_out(tp);
  2289. /* Don't muck with the congestion window here.
  2290. * Reason is that we do not increase amount of _data_
  2291. * in network, but units changed and effective
  2292. * cwnd/ssthresh really reduced now.
  2293. */
  2294. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2295. tp->high_seq = tp->snd_nxt;
  2296. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2297. tp->prior_ssthresh = 0;
  2298. tp->undo_marker = 0;
  2299. tcp_set_ca_state(sk, TCP_CA_Loss);
  2300. }
  2301. tcp_xmit_retransmit_queue(sk);
  2302. }
  2303. EXPORT_SYMBOL(tcp_simple_retransmit);
  2304. void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2305. {
  2306. struct tcp_sock *tp = tcp_sk(sk);
  2307. int mib_idx;
  2308. if (tcp_is_reno(tp))
  2309. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2310. else
  2311. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2312. NET_INC_STATS(sock_net(sk), mib_idx);
  2313. tp->prior_ssthresh = 0;
  2314. tcp_init_undo(tp);
  2315. if (!tcp_in_cwnd_reduction(sk)) {
  2316. if (!ece_ack)
  2317. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2318. tcp_init_cwnd_reduction(sk);
  2319. }
  2320. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2321. }
  2322. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2323. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2324. */
  2325. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
  2326. int *rexmit)
  2327. {
  2328. struct tcp_sock *tp = tcp_sk(sk);
  2329. bool recovered = !before(tp->snd_una, tp->high_seq);
  2330. if ((flag & FLAG_SND_UNA_ADVANCED) &&
  2331. tcp_try_undo_loss(sk, false))
  2332. return;
  2333. /* The ACK (s)acks some never-retransmitted data meaning not all
  2334. * the data packets before the timeout were lost. Therefore we
  2335. * undo the congestion window and state. This is essentially
  2336. * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
  2337. * a retransmitted skb is permantly marked, we can apply such an
  2338. * operation even if F-RTO was not used.
  2339. */
  2340. if ((flag & FLAG_ORIG_SACK_ACKED) &&
  2341. tcp_try_undo_loss(sk, tp->undo_marker))
  2342. return;
  2343. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2344. if (after(tp->snd_nxt, tp->high_seq)) {
  2345. if (flag & FLAG_DATA_SACKED || is_dupack)
  2346. tp->frto = 0; /* Step 3.a. loss was real */
  2347. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2348. tp->high_seq = tp->snd_nxt;
  2349. /* Step 2.b. Try send new data (but deferred until cwnd
  2350. * is updated in tcp_ack()). Otherwise fall back to
  2351. * the conventional recovery.
  2352. */
  2353. if (tcp_send_head(sk) &&
  2354. after(tcp_wnd_end(tp), tp->snd_nxt)) {
  2355. *rexmit = REXMIT_NEW;
  2356. return;
  2357. }
  2358. tp->frto = 0;
  2359. }
  2360. }
  2361. if (recovered) {
  2362. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2363. tcp_try_undo_recovery(sk);
  2364. return;
  2365. }
  2366. if (tcp_is_reno(tp)) {
  2367. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2368. * delivered. Lower inflight to clock out (re)tranmissions.
  2369. */
  2370. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2371. tcp_add_reno_sack(sk);
  2372. else if (flag & FLAG_SND_UNA_ADVANCED)
  2373. tcp_reset_reno_sack(tp);
  2374. }
  2375. *rexmit = REXMIT_LOST;
  2376. }
  2377. /* Undo during fast recovery after partial ACK. */
  2378. static bool tcp_try_undo_partial(struct sock *sk, const int acked)
  2379. {
  2380. struct tcp_sock *tp = tcp_sk(sk);
  2381. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2382. /* Plain luck! Hole if filled with delayed
  2383. * packet, rather than with a retransmit.
  2384. */
  2385. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2386. /* We are getting evidence that the reordering degree is higher
  2387. * than we realized. If there are no retransmits out then we
  2388. * can undo. Otherwise we clock out new packets but do not
  2389. * mark more packets lost or retransmit more.
  2390. */
  2391. if (tp->retrans_out)
  2392. return true;
  2393. if (!tcp_any_retrans_done(sk))
  2394. tp->retrans_stamp = 0;
  2395. DBGUNDO(sk, "partial recovery");
  2396. tcp_undo_cwnd_reduction(sk, true);
  2397. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2398. tcp_try_keep_open(sk);
  2399. return true;
  2400. }
  2401. return false;
  2402. }
  2403. static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
  2404. {
  2405. struct tcp_sock *tp = tcp_sk(sk);
  2406. /* Use RACK to detect loss */
  2407. if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
  2408. u32 prior_retrans = tp->retrans_out;
  2409. tcp_rack_mark_lost(sk);
  2410. if (prior_retrans > tp->retrans_out)
  2411. *ack_flag |= FLAG_LOST_RETRANS;
  2412. }
  2413. }
  2414. /* Process an event, which can update packets-in-flight not trivially.
  2415. * Main goal of this function is to calculate new estimate for left_out,
  2416. * taking into account both packets sitting in receiver's buffer and
  2417. * packets lost by network.
  2418. *
  2419. * Besides that it updates the congestion state when packet loss or ECN
  2420. * is detected. But it does not reduce the cwnd, it is done by the
  2421. * congestion control later.
  2422. *
  2423. * It does _not_ decide what to send, it is made in function
  2424. * tcp_xmit_retransmit_queue().
  2425. */
  2426. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2427. bool is_dupack, int *ack_flag, int *rexmit)
  2428. {
  2429. struct inet_connection_sock *icsk = inet_csk(sk);
  2430. struct tcp_sock *tp = tcp_sk(sk);
  2431. int fast_rexmit = 0, flag = *ack_flag;
  2432. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2433. (tcp_fackets_out(tp) > tp->reordering));
  2434. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2435. tp->sacked_out = 0;
  2436. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2437. tp->fackets_out = 0;
  2438. /* Now state machine starts.
  2439. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2440. if (flag & FLAG_ECE)
  2441. tp->prior_ssthresh = 0;
  2442. /* B. In all the states check for reneging SACKs. */
  2443. if (tcp_check_sack_reneging(sk, flag))
  2444. return;
  2445. /* C. Check consistency of the current state. */
  2446. tcp_verify_left_out(tp);
  2447. /* D. Check state exit conditions. State can be terminated
  2448. * when high_seq is ACKed. */
  2449. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2450. WARN_ON(tp->retrans_out != 0);
  2451. tp->retrans_stamp = 0;
  2452. } else if (!before(tp->snd_una, tp->high_seq)) {
  2453. switch (icsk->icsk_ca_state) {
  2454. case TCP_CA_CWR:
  2455. /* CWR is to be held something *above* high_seq
  2456. * is ACKed for CWR bit to reach receiver. */
  2457. if (tp->snd_una != tp->high_seq) {
  2458. tcp_end_cwnd_reduction(sk);
  2459. tcp_set_ca_state(sk, TCP_CA_Open);
  2460. }
  2461. break;
  2462. case TCP_CA_Recovery:
  2463. if (tcp_is_reno(tp))
  2464. tcp_reset_reno_sack(tp);
  2465. if (tcp_try_undo_recovery(sk))
  2466. return;
  2467. tcp_end_cwnd_reduction(sk);
  2468. break;
  2469. }
  2470. }
  2471. /* E. Process state. */
  2472. switch (icsk->icsk_ca_state) {
  2473. case TCP_CA_Recovery:
  2474. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2475. if (tcp_is_reno(tp) && is_dupack)
  2476. tcp_add_reno_sack(sk);
  2477. } else {
  2478. if (tcp_try_undo_partial(sk, acked))
  2479. return;
  2480. /* Partial ACK arrived. Force fast retransmit. */
  2481. do_lost = tcp_is_reno(tp) ||
  2482. tcp_fackets_out(tp) > tp->reordering;
  2483. }
  2484. if (tcp_try_undo_dsack(sk)) {
  2485. tcp_try_keep_open(sk);
  2486. return;
  2487. }
  2488. tcp_rack_identify_loss(sk, ack_flag);
  2489. break;
  2490. case TCP_CA_Loss:
  2491. tcp_process_loss(sk, flag, is_dupack, rexmit);
  2492. tcp_rack_identify_loss(sk, ack_flag);
  2493. if (!(icsk->icsk_ca_state == TCP_CA_Open ||
  2494. (*ack_flag & FLAG_LOST_RETRANS)))
  2495. return;
  2496. /* Change state if cwnd is undone or retransmits are lost */
  2497. default:
  2498. if (tcp_is_reno(tp)) {
  2499. if (flag & FLAG_SND_UNA_ADVANCED)
  2500. tcp_reset_reno_sack(tp);
  2501. if (is_dupack)
  2502. tcp_add_reno_sack(sk);
  2503. }
  2504. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2505. tcp_try_undo_dsack(sk);
  2506. tcp_rack_identify_loss(sk, ack_flag);
  2507. if (!tcp_time_to_recover(sk, flag)) {
  2508. tcp_try_to_open(sk, flag);
  2509. return;
  2510. }
  2511. /* MTU probe failure: don't reduce cwnd */
  2512. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2513. icsk->icsk_mtup.probe_size &&
  2514. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2515. tcp_mtup_probe_failed(sk);
  2516. /* Restores the reduction we did in tcp_mtup_probe() */
  2517. tp->snd_cwnd++;
  2518. tcp_simple_retransmit(sk);
  2519. return;
  2520. }
  2521. /* Otherwise enter Recovery state */
  2522. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2523. fast_rexmit = 1;
  2524. }
  2525. if (do_lost)
  2526. tcp_update_scoreboard(sk, fast_rexmit);
  2527. *rexmit = REXMIT_LOST;
  2528. }
  2529. static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
  2530. {
  2531. struct tcp_sock *tp = tcp_sk(sk);
  2532. u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
  2533. minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
  2534. rtt_us ? : jiffies_to_usecs(1));
  2535. }
  2536. static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2537. long seq_rtt_us, long sack_rtt_us,
  2538. long ca_rtt_us, struct rate_sample *rs)
  2539. {
  2540. const struct tcp_sock *tp = tcp_sk(sk);
  2541. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2542. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2543. * Karn's algorithm forbids taking RTT if some retransmitted data
  2544. * is acked (RFC6298).
  2545. */
  2546. if (seq_rtt_us < 0)
  2547. seq_rtt_us = sack_rtt_us;
  2548. /* RTTM Rule: A TSecr value received in a segment is used to
  2549. * update the averaged RTT measurement only if the segment
  2550. * acknowledges some new data, i.e., only if it advances the
  2551. * left edge of the send window.
  2552. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2553. */
  2554. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2555. flag & FLAG_ACKED) {
  2556. u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
  2557. u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
  2558. seq_rtt_us = ca_rtt_us = delta_us;
  2559. }
  2560. rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
  2561. if (seq_rtt_us < 0)
  2562. return false;
  2563. /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
  2564. * always taken together with ACK, SACK, or TS-opts. Any negative
  2565. * values will be skipped with the seq_rtt_us < 0 check above.
  2566. */
  2567. tcp_update_rtt_min(sk, ca_rtt_us);
  2568. tcp_rtt_estimator(sk, seq_rtt_us);
  2569. tcp_set_rto(sk);
  2570. /* RFC6298: only reset backoff on valid RTT measurement. */
  2571. inet_csk(sk)->icsk_backoff = 0;
  2572. return true;
  2573. }
  2574. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2575. void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
  2576. {
  2577. struct rate_sample rs;
  2578. long rtt_us = -1L;
  2579. if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
  2580. rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
  2581. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
  2582. }
  2583. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2584. {
  2585. const struct inet_connection_sock *icsk = inet_csk(sk);
  2586. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2587. tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
  2588. }
  2589. /* Restart timer after forward progress on connection.
  2590. * RFC2988 recommends to restart timer to now+rto.
  2591. */
  2592. void tcp_rearm_rto(struct sock *sk)
  2593. {
  2594. const struct inet_connection_sock *icsk = inet_csk(sk);
  2595. struct tcp_sock *tp = tcp_sk(sk);
  2596. /* If the retrans timer is currently being used by Fast Open
  2597. * for SYN-ACK retrans purpose, stay put.
  2598. */
  2599. if (tp->fastopen_rsk)
  2600. return;
  2601. if (!tp->packets_out) {
  2602. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2603. } else {
  2604. u32 rto = inet_csk(sk)->icsk_rto;
  2605. /* Offset the time elapsed after installing regular RTO */
  2606. if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
  2607. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2608. s64 delta_us = tcp_rto_delta_us(sk);
  2609. /* delta_us may not be positive if the socket is locked
  2610. * when the retrans timer fires and is rescheduled.
  2611. */
  2612. rto = usecs_to_jiffies(max_t(int, delta_us, 1));
  2613. }
  2614. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2615. TCP_RTO_MAX);
  2616. }
  2617. }
  2618. /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
  2619. static void tcp_set_xmit_timer(struct sock *sk)
  2620. {
  2621. if (!tcp_schedule_loss_probe(sk))
  2622. tcp_rearm_rto(sk);
  2623. }
  2624. /* If we get here, the whole TSO packet has not been acked. */
  2625. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2626. {
  2627. struct tcp_sock *tp = tcp_sk(sk);
  2628. u32 packets_acked;
  2629. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2630. packets_acked = tcp_skb_pcount(skb);
  2631. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2632. return 0;
  2633. packets_acked -= tcp_skb_pcount(skb);
  2634. if (packets_acked) {
  2635. BUG_ON(tcp_skb_pcount(skb) == 0);
  2636. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2637. }
  2638. return packets_acked;
  2639. }
  2640. static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
  2641. u32 prior_snd_una)
  2642. {
  2643. const struct skb_shared_info *shinfo;
  2644. /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
  2645. if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
  2646. return;
  2647. shinfo = skb_shinfo(skb);
  2648. if (!before(shinfo->tskey, prior_snd_una) &&
  2649. before(shinfo->tskey, tcp_sk(sk)->snd_una))
  2650. __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
  2651. }
  2652. /* Remove acknowledged frames from the retransmission queue. If our packet
  2653. * is before the ack sequence we can discard it as it's confirmed to have
  2654. * arrived at the other end.
  2655. */
  2656. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2657. u32 prior_snd_una, int *acked,
  2658. struct tcp_sacktag_state *sack)
  2659. {
  2660. const struct inet_connection_sock *icsk = inet_csk(sk);
  2661. u64 first_ackt, last_ackt;
  2662. struct tcp_sock *tp = tcp_sk(sk);
  2663. u32 prior_sacked = tp->sacked_out;
  2664. u32 reord = tp->packets_out;
  2665. bool fully_acked = true;
  2666. long sack_rtt_us = -1L;
  2667. long seq_rtt_us = -1L;
  2668. long ca_rtt_us = -1L;
  2669. struct sk_buff *skb;
  2670. u32 pkts_acked = 0;
  2671. u32 last_in_flight = 0;
  2672. bool rtt_update;
  2673. int flag = 0;
  2674. first_ackt = 0;
  2675. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2676. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2677. u8 sacked = scb->sacked;
  2678. u32 acked_pcount;
  2679. tcp_ack_tstamp(sk, skb, prior_snd_una);
  2680. /* Determine how many packets and what bytes were acked, tso and else */
  2681. if (after(scb->end_seq, tp->snd_una)) {
  2682. if (tcp_skb_pcount(skb) == 1 ||
  2683. !after(tp->snd_una, scb->seq))
  2684. break;
  2685. acked_pcount = tcp_tso_acked(sk, skb);
  2686. if (!acked_pcount)
  2687. break;
  2688. fully_acked = false;
  2689. } else {
  2690. /* Speedup tcp_unlink_write_queue() and next loop */
  2691. prefetchw(skb->next);
  2692. acked_pcount = tcp_skb_pcount(skb);
  2693. }
  2694. if (unlikely(sacked & TCPCB_RETRANS)) {
  2695. if (sacked & TCPCB_SACKED_RETRANS)
  2696. tp->retrans_out -= acked_pcount;
  2697. flag |= FLAG_RETRANS_DATA_ACKED;
  2698. } else if (!(sacked & TCPCB_SACKED_ACKED)) {
  2699. last_ackt = skb->skb_mstamp;
  2700. WARN_ON_ONCE(last_ackt == 0);
  2701. if (!first_ackt)
  2702. first_ackt = last_ackt;
  2703. last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
  2704. reord = min(pkts_acked, reord);
  2705. if (!after(scb->end_seq, tp->high_seq))
  2706. flag |= FLAG_ORIG_SACK_ACKED;
  2707. }
  2708. if (sacked & TCPCB_SACKED_ACKED) {
  2709. tp->sacked_out -= acked_pcount;
  2710. } else if (tcp_is_sack(tp)) {
  2711. tp->delivered += acked_pcount;
  2712. if (!tcp_skb_spurious_retrans(tp, skb))
  2713. tcp_rack_advance(tp, sacked, scb->end_seq,
  2714. skb->skb_mstamp);
  2715. }
  2716. if (sacked & TCPCB_LOST)
  2717. tp->lost_out -= acked_pcount;
  2718. tp->packets_out -= acked_pcount;
  2719. pkts_acked += acked_pcount;
  2720. tcp_rate_skb_delivered(sk, skb, sack->rate);
  2721. /* Initial outgoing SYN's get put onto the write_queue
  2722. * just like anything else we transmit. It is not
  2723. * true data, and if we misinform our callers that
  2724. * this ACK acks real data, we will erroneously exit
  2725. * connection startup slow start one packet too
  2726. * quickly. This is severely frowned upon behavior.
  2727. */
  2728. if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
  2729. flag |= FLAG_DATA_ACKED;
  2730. } else {
  2731. flag |= FLAG_SYN_ACKED;
  2732. tp->retrans_stamp = 0;
  2733. }
  2734. if (!fully_acked)
  2735. break;
  2736. tcp_unlink_write_queue(skb, sk);
  2737. sk_wmem_free_skb(sk, skb);
  2738. if (unlikely(skb == tp->retransmit_skb_hint))
  2739. tp->retransmit_skb_hint = NULL;
  2740. if (unlikely(skb == tp->lost_skb_hint))
  2741. tp->lost_skb_hint = NULL;
  2742. }
  2743. if (!skb)
  2744. tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
  2745. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2746. tp->snd_up = tp->snd_una;
  2747. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2748. flag |= FLAG_SACK_RENEGING;
  2749. if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
  2750. seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
  2751. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
  2752. }
  2753. if (sack->first_sackt) {
  2754. sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
  2755. ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
  2756. }
  2757. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
  2758. ca_rtt_us, sack->rate);
  2759. if (flag & FLAG_ACKED) {
  2760. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2761. if (unlikely(icsk->icsk_mtup.probe_size &&
  2762. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2763. tcp_mtup_probe_success(sk);
  2764. }
  2765. if (tcp_is_reno(tp)) {
  2766. tcp_remove_reno_sacks(sk, pkts_acked);
  2767. } else {
  2768. int delta;
  2769. /* Non-retransmitted hole got filled? That's reordering */
  2770. if (reord < prior_fackets && reord <= tp->fackets_out)
  2771. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2772. delta = tcp_is_fack(tp) ? pkts_acked :
  2773. prior_sacked - tp->sacked_out;
  2774. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2775. }
  2776. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2777. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2778. sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
  2779. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2780. * after when the head was last (re)transmitted. Otherwise the
  2781. * timeout may continue to extend in loss recovery.
  2782. */
  2783. flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
  2784. }
  2785. if (icsk->icsk_ca_ops->pkts_acked) {
  2786. struct ack_sample sample = { .pkts_acked = pkts_acked,
  2787. .rtt_us = sack->rate->rtt_us,
  2788. .in_flight = last_in_flight };
  2789. icsk->icsk_ca_ops->pkts_acked(sk, &sample);
  2790. }
  2791. #if FASTRETRANS_DEBUG > 0
  2792. WARN_ON((int)tp->sacked_out < 0);
  2793. WARN_ON((int)tp->lost_out < 0);
  2794. WARN_ON((int)tp->retrans_out < 0);
  2795. if (!tp->packets_out && tcp_is_sack(tp)) {
  2796. icsk = inet_csk(sk);
  2797. if (tp->lost_out) {
  2798. pr_debug("Leak l=%u %d\n",
  2799. tp->lost_out, icsk->icsk_ca_state);
  2800. tp->lost_out = 0;
  2801. }
  2802. if (tp->sacked_out) {
  2803. pr_debug("Leak s=%u %d\n",
  2804. tp->sacked_out, icsk->icsk_ca_state);
  2805. tp->sacked_out = 0;
  2806. }
  2807. if (tp->retrans_out) {
  2808. pr_debug("Leak r=%u %d\n",
  2809. tp->retrans_out, icsk->icsk_ca_state);
  2810. tp->retrans_out = 0;
  2811. }
  2812. }
  2813. #endif
  2814. *acked = pkts_acked;
  2815. return flag;
  2816. }
  2817. static void tcp_ack_probe(struct sock *sk)
  2818. {
  2819. const struct tcp_sock *tp = tcp_sk(sk);
  2820. struct inet_connection_sock *icsk = inet_csk(sk);
  2821. /* Was it a usable window open? */
  2822. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2823. icsk->icsk_backoff = 0;
  2824. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2825. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2826. * This function is not for random using!
  2827. */
  2828. } else {
  2829. unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
  2830. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2831. when, TCP_RTO_MAX);
  2832. }
  2833. }
  2834. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2835. {
  2836. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2837. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2838. }
  2839. /* Decide wheather to run the increase function of congestion control. */
  2840. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2841. {
  2842. /* If reordering is high then always grow cwnd whenever data is
  2843. * delivered regardless of its ordering. Otherwise stay conservative
  2844. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2845. * new SACK or ECE mark may first advance cwnd here and later reduce
  2846. * cwnd in tcp_fastretrans_alert() based on more states.
  2847. */
  2848. if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
  2849. return flag & FLAG_FORWARD_PROGRESS;
  2850. return flag & FLAG_DATA_ACKED;
  2851. }
  2852. /* The "ultimate" congestion control function that aims to replace the rigid
  2853. * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
  2854. * It's called toward the end of processing an ACK with precise rate
  2855. * information. All transmission or retransmission are delayed afterwards.
  2856. */
  2857. static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
  2858. int flag, const struct rate_sample *rs)
  2859. {
  2860. const struct inet_connection_sock *icsk = inet_csk(sk);
  2861. if (icsk->icsk_ca_ops->cong_control) {
  2862. icsk->icsk_ca_ops->cong_control(sk, rs);
  2863. return;
  2864. }
  2865. if (tcp_in_cwnd_reduction(sk)) {
  2866. /* Reduce cwnd if state mandates */
  2867. tcp_cwnd_reduction(sk, acked_sacked, flag);
  2868. } else if (tcp_may_raise_cwnd(sk, flag)) {
  2869. /* Advance cwnd if state allows */
  2870. tcp_cong_avoid(sk, ack, acked_sacked);
  2871. }
  2872. tcp_update_pacing_rate(sk);
  2873. }
  2874. /* Check that window update is acceptable.
  2875. * The function assumes that snd_una<=ack<=snd_next.
  2876. */
  2877. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2878. const u32 ack, const u32 ack_seq,
  2879. const u32 nwin)
  2880. {
  2881. return after(ack, tp->snd_una) ||
  2882. after(ack_seq, tp->snd_wl1) ||
  2883. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2884. }
  2885. /* If we update tp->snd_una, also update tp->bytes_acked */
  2886. static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
  2887. {
  2888. u32 delta = ack - tp->snd_una;
  2889. sock_owned_by_me((struct sock *)tp);
  2890. tp->bytes_acked += delta;
  2891. tp->snd_una = ack;
  2892. }
  2893. /* If we update tp->rcv_nxt, also update tp->bytes_received */
  2894. static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
  2895. {
  2896. u32 delta = seq - tp->rcv_nxt;
  2897. sock_owned_by_me((struct sock *)tp);
  2898. tp->bytes_received += delta;
  2899. tp->rcv_nxt = seq;
  2900. }
  2901. /* Update our send window.
  2902. *
  2903. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2904. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2905. */
  2906. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2907. u32 ack_seq)
  2908. {
  2909. struct tcp_sock *tp = tcp_sk(sk);
  2910. int flag = 0;
  2911. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2912. if (likely(!tcp_hdr(skb)->syn))
  2913. nwin <<= tp->rx_opt.snd_wscale;
  2914. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2915. flag |= FLAG_WIN_UPDATE;
  2916. tcp_update_wl(tp, ack_seq);
  2917. if (tp->snd_wnd != nwin) {
  2918. tp->snd_wnd = nwin;
  2919. /* Note, it is the only place, where
  2920. * fast path is recovered for sending TCP.
  2921. */
  2922. tp->pred_flags = 0;
  2923. tcp_fast_path_check(sk);
  2924. if (tcp_send_head(sk))
  2925. tcp_slow_start_after_idle_check(sk);
  2926. if (nwin > tp->max_window) {
  2927. tp->max_window = nwin;
  2928. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2929. }
  2930. }
  2931. }
  2932. tcp_snd_una_update(tp, ack);
  2933. return flag;
  2934. }
  2935. static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
  2936. u32 *last_oow_ack_time)
  2937. {
  2938. if (*last_oow_ack_time) {
  2939. s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
  2940. if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
  2941. NET_INC_STATS(net, mib_idx);
  2942. return true; /* rate-limited: don't send yet! */
  2943. }
  2944. }
  2945. *last_oow_ack_time = tcp_jiffies32;
  2946. return false; /* not rate-limited: go ahead, send dupack now! */
  2947. }
  2948. /* Return true if we're currently rate-limiting out-of-window ACKs and
  2949. * thus shouldn't send a dupack right now. We rate-limit dupacks in
  2950. * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
  2951. * attacks that send repeated SYNs or ACKs for the same connection. To
  2952. * do this, we do not send a duplicate SYNACK or ACK if the remote
  2953. * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
  2954. */
  2955. bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
  2956. int mib_idx, u32 *last_oow_ack_time)
  2957. {
  2958. /* Data packets without SYNs are not likely part of an ACK loop. */
  2959. if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
  2960. !tcp_hdr(skb)->syn)
  2961. return false;
  2962. return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
  2963. }
  2964. /* RFC 5961 7 [ACK Throttling] */
  2965. static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
  2966. {
  2967. /* unprotected vars, we dont care of overwrites */
  2968. static u32 challenge_timestamp;
  2969. static unsigned int challenge_count;
  2970. struct tcp_sock *tp = tcp_sk(sk);
  2971. u32 count, now;
  2972. /* First check our per-socket dupack rate limit. */
  2973. if (__tcp_oow_rate_limited(sock_net(sk),
  2974. LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
  2975. &tp->last_oow_ack_time))
  2976. return;
  2977. /* Then check host-wide RFC 5961 rate limit. */
  2978. now = jiffies / HZ;
  2979. if (now != challenge_timestamp) {
  2980. u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
  2981. challenge_timestamp = now;
  2982. WRITE_ONCE(challenge_count, half +
  2983. prandom_u32_max(sysctl_tcp_challenge_ack_limit));
  2984. }
  2985. count = READ_ONCE(challenge_count);
  2986. if (count > 0) {
  2987. WRITE_ONCE(challenge_count, count - 1);
  2988. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2989. tcp_send_ack(sk);
  2990. }
  2991. }
  2992. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2993. {
  2994. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2995. tp->rx_opt.ts_recent_stamp = get_seconds();
  2996. }
  2997. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2998. {
  2999. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3000. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3001. * extra check below makes sure this can only happen
  3002. * for pure ACK frames. -DaveM
  3003. *
  3004. * Not only, also it occurs for expired timestamps.
  3005. */
  3006. if (tcp_paws_check(&tp->rx_opt, 0))
  3007. tcp_store_ts_recent(tp);
  3008. }
  3009. }
  3010. /* This routine deals with acks during a TLP episode.
  3011. * We mark the end of a TLP episode on receiving TLP dupack or when
  3012. * ack is after tlp_high_seq.
  3013. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  3014. */
  3015. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  3016. {
  3017. struct tcp_sock *tp = tcp_sk(sk);
  3018. if (before(ack, tp->tlp_high_seq))
  3019. return;
  3020. if (flag & FLAG_DSACKING_ACK) {
  3021. /* This DSACK means original and TLP probe arrived; no loss */
  3022. tp->tlp_high_seq = 0;
  3023. } else if (after(ack, tp->tlp_high_seq)) {
  3024. /* ACK advances: there was a loss, so reduce cwnd. Reset
  3025. * tlp_high_seq in tcp_init_cwnd_reduction()
  3026. */
  3027. tcp_init_cwnd_reduction(sk);
  3028. tcp_set_ca_state(sk, TCP_CA_CWR);
  3029. tcp_end_cwnd_reduction(sk);
  3030. tcp_try_keep_open(sk);
  3031. NET_INC_STATS(sock_net(sk),
  3032. LINUX_MIB_TCPLOSSPROBERECOVERY);
  3033. } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
  3034. FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
  3035. /* Pure dupack: original and TLP probe arrived; no loss */
  3036. tp->tlp_high_seq = 0;
  3037. }
  3038. }
  3039. static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
  3040. {
  3041. const struct inet_connection_sock *icsk = inet_csk(sk);
  3042. if (icsk->icsk_ca_ops->in_ack_event)
  3043. icsk->icsk_ca_ops->in_ack_event(sk, flags);
  3044. }
  3045. /* Congestion control has updated the cwnd already. So if we're in
  3046. * loss recovery then now we do any new sends (for FRTO) or
  3047. * retransmits (for CA_Loss or CA_recovery) that make sense.
  3048. */
  3049. static void tcp_xmit_recovery(struct sock *sk, int rexmit)
  3050. {
  3051. struct tcp_sock *tp = tcp_sk(sk);
  3052. if (rexmit == REXMIT_NONE)
  3053. return;
  3054. if (unlikely(rexmit == 2)) {
  3055. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  3056. TCP_NAGLE_OFF);
  3057. if (after(tp->snd_nxt, tp->high_seq))
  3058. return;
  3059. tp->frto = 0;
  3060. }
  3061. tcp_xmit_retransmit_queue(sk);
  3062. }
  3063. /* This routine deals with incoming acks, but not outgoing ones. */
  3064. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3065. {
  3066. struct inet_connection_sock *icsk = inet_csk(sk);
  3067. struct tcp_sock *tp = tcp_sk(sk);
  3068. struct tcp_sacktag_state sack_state;
  3069. struct rate_sample rs = { .prior_delivered = 0 };
  3070. u32 prior_snd_una = tp->snd_una;
  3071. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3072. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3073. bool is_dupack = false;
  3074. u32 prior_fackets;
  3075. int prior_packets = tp->packets_out;
  3076. u32 delivered = tp->delivered;
  3077. u32 lost = tp->lost;
  3078. int acked = 0; /* Number of packets newly acked */
  3079. int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
  3080. sack_state.first_sackt = 0;
  3081. sack_state.rate = &rs;
  3082. /* We very likely will need to access write queue head. */
  3083. prefetchw(sk->sk_write_queue.next);
  3084. /* If the ack is older than previous acks
  3085. * then we can probably ignore it.
  3086. */
  3087. if (before(ack, prior_snd_una)) {
  3088. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  3089. if (before(ack, prior_snd_una - tp->max_window)) {
  3090. if (!(flag & FLAG_NO_CHALLENGE_ACK))
  3091. tcp_send_challenge_ack(sk, skb);
  3092. return -1;
  3093. }
  3094. goto old_ack;
  3095. }
  3096. /* If the ack includes data we haven't sent yet, discard
  3097. * this segment (RFC793 Section 3.9).
  3098. */
  3099. if (after(ack, tp->snd_nxt))
  3100. goto invalid_ack;
  3101. if (after(ack, prior_snd_una)) {
  3102. flag |= FLAG_SND_UNA_ADVANCED;
  3103. icsk->icsk_retransmits = 0;
  3104. }
  3105. prior_fackets = tp->fackets_out;
  3106. rs.prior_in_flight = tcp_packets_in_flight(tp);
  3107. /* ts_recent update must be made after we are sure that the packet
  3108. * is in window.
  3109. */
  3110. if (flag & FLAG_UPDATE_TS_RECENT)
  3111. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3112. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3113. /* Window is constant, pure forward advance.
  3114. * No more checks are required.
  3115. * Note, we use the fact that SND.UNA>=SND.WL2.
  3116. */
  3117. tcp_update_wl(tp, ack_seq);
  3118. tcp_snd_una_update(tp, ack);
  3119. flag |= FLAG_WIN_UPDATE;
  3120. tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
  3121. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3122. } else {
  3123. u32 ack_ev_flags = CA_ACK_SLOWPATH;
  3124. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3125. flag |= FLAG_DATA;
  3126. else
  3127. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3128. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3129. if (TCP_SKB_CB(skb)->sacked)
  3130. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3131. &sack_state);
  3132. if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
  3133. flag |= FLAG_ECE;
  3134. ack_ev_flags |= CA_ACK_ECE;
  3135. }
  3136. if (flag & FLAG_WIN_UPDATE)
  3137. ack_ev_flags |= CA_ACK_WIN_UPDATE;
  3138. tcp_in_ack_event(sk, ack_ev_flags);
  3139. }
  3140. /* We passed data and got it acked, remove any soft error
  3141. * log. Something worked...
  3142. */
  3143. sk->sk_err_soft = 0;
  3144. icsk->icsk_probes_out = 0;
  3145. tp->rcv_tstamp = tcp_jiffies32;
  3146. if (!prior_packets)
  3147. goto no_queue;
  3148. /* See if we can take anything off of the retransmit queue. */
  3149. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
  3150. &sack_state);
  3151. if (tp->tlp_high_seq)
  3152. tcp_process_tlp_ack(sk, ack, flag);
  3153. /* If needed, reset TLP/RTO timer; RACK may later override this. */
  3154. if (flag & FLAG_SET_XMIT_TIMER)
  3155. tcp_set_xmit_timer(sk);
  3156. if (tcp_ack_is_dubious(sk, flag)) {
  3157. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3158. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3159. }
  3160. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3161. sk_dst_confirm(sk);
  3162. delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
  3163. lost = tp->lost - lost; /* freshly marked lost */
  3164. tcp_rate_gen(sk, delivered, lost, sack_state.rate);
  3165. tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
  3166. tcp_xmit_recovery(sk, rexmit);
  3167. return 1;
  3168. no_queue:
  3169. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3170. if (flag & FLAG_DSACKING_ACK)
  3171. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3172. /* If this ack opens up a zero window, clear backoff. It was
  3173. * being used to time the probes, and is probably far higher than
  3174. * it needs to be for normal retransmission.
  3175. */
  3176. if (tcp_send_head(sk))
  3177. tcp_ack_probe(sk);
  3178. if (tp->tlp_high_seq)
  3179. tcp_process_tlp_ack(sk, ack, flag);
  3180. return 1;
  3181. invalid_ack:
  3182. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3183. return -1;
  3184. old_ack:
  3185. /* If data was SACKed, tag it and see if we should send more data.
  3186. * If data was DSACKed, see if we can undo a cwnd reduction.
  3187. */
  3188. if (TCP_SKB_CB(skb)->sacked) {
  3189. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3190. &sack_state);
  3191. tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
  3192. tcp_xmit_recovery(sk, rexmit);
  3193. }
  3194. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3195. return 0;
  3196. }
  3197. static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
  3198. bool syn, struct tcp_fastopen_cookie *foc,
  3199. bool exp_opt)
  3200. {
  3201. /* Valid only in SYN or SYN-ACK with an even length. */
  3202. if (!foc || !syn || len < 0 || (len & 1))
  3203. return;
  3204. if (len >= TCP_FASTOPEN_COOKIE_MIN &&
  3205. len <= TCP_FASTOPEN_COOKIE_MAX)
  3206. memcpy(foc->val, cookie, len);
  3207. else if (len != 0)
  3208. len = -1;
  3209. foc->len = len;
  3210. foc->exp = exp_opt;
  3211. }
  3212. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3213. * But, this can also be called on packets in the established flow when
  3214. * the fast version below fails.
  3215. */
  3216. void tcp_parse_options(const struct net *net,
  3217. const struct sk_buff *skb,
  3218. struct tcp_options_received *opt_rx, int estab,
  3219. struct tcp_fastopen_cookie *foc)
  3220. {
  3221. const unsigned char *ptr;
  3222. const struct tcphdr *th = tcp_hdr(skb);
  3223. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3224. ptr = (const unsigned char *)(th + 1);
  3225. opt_rx->saw_tstamp = 0;
  3226. while (length > 0) {
  3227. int opcode = *ptr++;
  3228. int opsize;
  3229. switch (opcode) {
  3230. case TCPOPT_EOL:
  3231. return;
  3232. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3233. length--;
  3234. continue;
  3235. default:
  3236. opsize = *ptr++;
  3237. if (opsize < 2) /* "silly options" */
  3238. return;
  3239. if (opsize > length)
  3240. return; /* don't parse partial options */
  3241. switch (opcode) {
  3242. case TCPOPT_MSS:
  3243. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3244. u16 in_mss = get_unaligned_be16(ptr);
  3245. if (in_mss) {
  3246. if (opt_rx->user_mss &&
  3247. opt_rx->user_mss < in_mss)
  3248. in_mss = opt_rx->user_mss;
  3249. opt_rx->mss_clamp = in_mss;
  3250. }
  3251. }
  3252. break;
  3253. case TCPOPT_WINDOW:
  3254. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3255. !estab && net->ipv4.sysctl_tcp_window_scaling) {
  3256. __u8 snd_wscale = *(__u8 *)ptr;
  3257. opt_rx->wscale_ok = 1;
  3258. if (snd_wscale > TCP_MAX_WSCALE) {
  3259. net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
  3260. __func__,
  3261. snd_wscale,
  3262. TCP_MAX_WSCALE);
  3263. snd_wscale = TCP_MAX_WSCALE;
  3264. }
  3265. opt_rx->snd_wscale = snd_wscale;
  3266. }
  3267. break;
  3268. case TCPOPT_TIMESTAMP:
  3269. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3270. ((estab && opt_rx->tstamp_ok) ||
  3271. (!estab && net->ipv4.sysctl_tcp_timestamps))) {
  3272. opt_rx->saw_tstamp = 1;
  3273. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3274. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3275. }
  3276. break;
  3277. case TCPOPT_SACK_PERM:
  3278. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3279. !estab && net->ipv4.sysctl_tcp_sack) {
  3280. opt_rx->sack_ok = TCP_SACK_SEEN;
  3281. tcp_sack_reset(opt_rx);
  3282. }
  3283. break;
  3284. case TCPOPT_SACK:
  3285. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3286. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3287. opt_rx->sack_ok) {
  3288. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3289. }
  3290. break;
  3291. #ifdef CONFIG_TCP_MD5SIG
  3292. case TCPOPT_MD5SIG:
  3293. /*
  3294. * The MD5 Hash has already been
  3295. * checked (see tcp_v{4,6}_do_rcv()).
  3296. */
  3297. break;
  3298. #endif
  3299. case TCPOPT_FASTOPEN:
  3300. tcp_parse_fastopen_option(
  3301. opsize - TCPOLEN_FASTOPEN_BASE,
  3302. ptr, th->syn, foc, false);
  3303. break;
  3304. case TCPOPT_EXP:
  3305. /* Fast Open option shares code 254 using a
  3306. * 16 bits magic number.
  3307. */
  3308. if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
  3309. get_unaligned_be16(ptr) ==
  3310. TCPOPT_FASTOPEN_MAGIC)
  3311. tcp_parse_fastopen_option(opsize -
  3312. TCPOLEN_EXP_FASTOPEN_BASE,
  3313. ptr + 2, th->syn, foc, true);
  3314. break;
  3315. }
  3316. ptr += opsize-2;
  3317. length -= opsize;
  3318. }
  3319. }
  3320. }
  3321. EXPORT_SYMBOL(tcp_parse_options);
  3322. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3323. {
  3324. const __be32 *ptr = (const __be32 *)(th + 1);
  3325. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3326. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3327. tp->rx_opt.saw_tstamp = 1;
  3328. ++ptr;
  3329. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3330. ++ptr;
  3331. if (*ptr)
  3332. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3333. else
  3334. tp->rx_opt.rcv_tsecr = 0;
  3335. return true;
  3336. }
  3337. return false;
  3338. }
  3339. /* Fast parse options. This hopes to only see timestamps.
  3340. * If it is wrong it falls back on tcp_parse_options().
  3341. */
  3342. static bool tcp_fast_parse_options(const struct net *net,
  3343. const struct sk_buff *skb,
  3344. const struct tcphdr *th, struct tcp_sock *tp)
  3345. {
  3346. /* In the spirit of fast parsing, compare doff directly to constant
  3347. * values. Because equality is used, short doff can be ignored here.
  3348. */
  3349. if (th->doff == (sizeof(*th) / 4)) {
  3350. tp->rx_opt.saw_tstamp = 0;
  3351. return false;
  3352. } else if (tp->rx_opt.tstamp_ok &&
  3353. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3354. if (tcp_parse_aligned_timestamp(tp, th))
  3355. return true;
  3356. }
  3357. tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
  3358. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3359. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3360. return true;
  3361. }
  3362. #ifdef CONFIG_TCP_MD5SIG
  3363. /*
  3364. * Parse MD5 Signature option
  3365. */
  3366. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3367. {
  3368. int length = (th->doff << 2) - sizeof(*th);
  3369. const u8 *ptr = (const u8 *)(th + 1);
  3370. /* If the TCP option is too short, we can short cut */
  3371. if (length < TCPOLEN_MD5SIG)
  3372. return NULL;
  3373. while (length > 0) {
  3374. int opcode = *ptr++;
  3375. int opsize;
  3376. switch (opcode) {
  3377. case TCPOPT_EOL:
  3378. return NULL;
  3379. case TCPOPT_NOP:
  3380. length--;
  3381. continue;
  3382. default:
  3383. opsize = *ptr++;
  3384. if (opsize < 2 || opsize > length)
  3385. return NULL;
  3386. if (opcode == TCPOPT_MD5SIG)
  3387. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3388. }
  3389. ptr += opsize - 2;
  3390. length -= opsize;
  3391. }
  3392. return NULL;
  3393. }
  3394. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3395. #endif
  3396. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3397. *
  3398. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3399. * it can pass through stack. So, the following predicate verifies that
  3400. * this segment is not used for anything but congestion avoidance or
  3401. * fast retransmit. Moreover, we even are able to eliminate most of such
  3402. * second order effects, if we apply some small "replay" window (~RTO)
  3403. * to timestamp space.
  3404. *
  3405. * All these measures still do not guarantee that we reject wrapped ACKs
  3406. * on networks with high bandwidth, when sequence space is recycled fastly,
  3407. * but it guarantees that such events will be very rare and do not affect
  3408. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3409. * buggy extension.
  3410. *
  3411. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3412. * states that events when retransmit arrives after original data are rare.
  3413. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3414. * the biggest problem on large power networks even with minor reordering.
  3415. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3416. * up to bandwidth of 18Gigabit/sec. 8) ]
  3417. */
  3418. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3419. {
  3420. const struct tcp_sock *tp = tcp_sk(sk);
  3421. const struct tcphdr *th = tcp_hdr(skb);
  3422. u32 seq = TCP_SKB_CB(skb)->seq;
  3423. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3424. return (/* 1. Pure ACK with correct sequence number. */
  3425. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3426. /* 2. ... and duplicate ACK. */
  3427. ack == tp->snd_una &&
  3428. /* 3. ... and does not update window. */
  3429. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3430. /* 4. ... and sits in replay window. */
  3431. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3432. }
  3433. static inline bool tcp_paws_discard(const struct sock *sk,
  3434. const struct sk_buff *skb)
  3435. {
  3436. const struct tcp_sock *tp = tcp_sk(sk);
  3437. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3438. !tcp_disordered_ack(sk, skb);
  3439. }
  3440. /* Check segment sequence number for validity.
  3441. *
  3442. * Segment controls are considered valid, if the segment
  3443. * fits to the window after truncation to the window. Acceptability
  3444. * of data (and SYN, FIN, of course) is checked separately.
  3445. * See tcp_data_queue(), for example.
  3446. *
  3447. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3448. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3449. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3450. * (borrowed from freebsd)
  3451. */
  3452. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3453. {
  3454. return !before(end_seq, tp->rcv_wup) &&
  3455. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3456. }
  3457. /* When we get a reset we do this. */
  3458. void tcp_reset(struct sock *sk)
  3459. {
  3460. /* We want the right error as BSD sees it (and indeed as we do). */
  3461. switch (sk->sk_state) {
  3462. case TCP_SYN_SENT:
  3463. sk->sk_err = ECONNREFUSED;
  3464. break;
  3465. case TCP_CLOSE_WAIT:
  3466. sk->sk_err = EPIPE;
  3467. break;
  3468. case TCP_CLOSE:
  3469. return;
  3470. default:
  3471. sk->sk_err = ECONNRESET;
  3472. }
  3473. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3474. smp_wmb();
  3475. tcp_done(sk);
  3476. if (!sock_flag(sk, SOCK_DEAD))
  3477. sk->sk_error_report(sk);
  3478. }
  3479. /*
  3480. * Process the FIN bit. This now behaves as it is supposed to work
  3481. * and the FIN takes effect when it is validly part of sequence
  3482. * space. Not before when we get holes.
  3483. *
  3484. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3485. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3486. * TIME-WAIT)
  3487. *
  3488. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3489. * close and we go into CLOSING (and later onto TIME-WAIT)
  3490. *
  3491. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3492. */
  3493. void tcp_fin(struct sock *sk)
  3494. {
  3495. struct tcp_sock *tp = tcp_sk(sk);
  3496. inet_csk_schedule_ack(sk);
  3497. sk->sk_shutdown |= RCV_SHUTDOWN;
  3498. sock_set_flag(sk, SOCK_DONE);
  3499. switch (sk->sk_state) {
  3500. case TCP_SYN_RECV:
  3501. case TCP_ESTABLISHED:
  3502. /* Move to CLOSE_WAIT */
  3503. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3504. inet_csk(sk)->icsk_ack.pingpong = 1;
  3505. break;
  3506. case TCP_CLOSE_WAIT:
  3507. case TCP_CLOSING:
  3508. /* Received a retransmission of the FIN, do
  3509. * nothing.
  3510. */
  3511. break;
  3512. case TCP_LAST_ACK:
  3513. /* RFC793: Remain in the LAST-ACK state. */
  3514. break;
  3515. case TCP_FIN_WAIT1:
  3516. /* This case occurs when a simultaneous close
  3517. * happens, we must ack the received FIN and
  3518. * enter the CLOSING state.
  3519. */
  3520. tcp_send_ack(sk);
  3521. tcp_set_state(sk, TCP_CLOSING);
  3522. break;
  3523. case TCP_FIN_WAIT2:
  3524. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3525. tcp_send_ack(sk);
  3526. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3527. break;
  3528. default:
  3529. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3530. * cases we should never reach this piece of code.
  3531. */
  3532. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3533. __func__, sk->sk_state);
  3534. break;
  3535. }
  3536. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3537. * Probably, we should reset in this case. For now drop them.
  3538. */
  3539. skb_rbtree_purge(&tp->out_of_order_queue);
  3540. if (tcp_is_sack(tp))
  3541. tcp_sack_reset(&tp->rx_opt);
  3542. sk_mem_reclaim(sk);
  3543. if (!sock_flag(sk, SOCK_DEAD)) {
  3544. sk->sk_state_change(sk);
  3545. /* Do not send POLL_HUP for half duplex close. */
  3546. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3547. sk->sk_state == TCP_CLOSE)
  3548. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3549. else
  3550. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3551. }
  3552. }
  3553. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3554. u32 end_seq)
  3555. {
  3556. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3557. if (before(seq, sp->start_seq))
  3558. sp->start_seq = seq;
  3559. if (after(end_seq, sp->end_seq))
  3560. sp->end_seq = end_seq;
  3561. return true;
  3562. }
  3563. return false;
  3564. }
  3565. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3566. {
  3567. struct tcp_sock *tp = tcp_sk(sk);
  3568. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3569. int mib_idx;
  3570. if (before(seq, tp->rcv_nxt))
  3571. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3572. else
  3573. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3574. NET_INC_STATS(sock_net(sk), mib_idx);
  3575. tp->rx_opt.dsack = 1;
  3576. tp->duplicate_sack[0].start_seq = seq;
  3577. tp->duplicate_sack[0].end_seq = end_seq;
  3578. }
  3579. }
  3580. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3581. {
  3582. struct tcp_sock *tp = tcp_sk(sk);
  3583. if (!tp->rx_opt.dsack)
  3584. tcp_dsack_set(sk, seq, end_seq);
  3585. else
  3586. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3587. }
  3588. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3589. {
  3590. struct tcp_sock *tp = tcp_sk(sk);
  3591. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3592. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3593. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3594. tcp_enter_quickack_mode(sk);
  3595. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3596. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3597. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3598. end_seq = tp->rcv_nxt;
  3599. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3600. }
  3601. }
  3602. tcp_send_ack(sk);
  3603. }
  3604. /* These routines update the SACK block as out-of-order packets arrive or
  3605. * in-order packets close up the sequence space.
  3606. */
  3607. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3608. {
  3609. int this_sack;
  3610. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3611. struct tcp_sack_block *swalk = sp + 1;
  3612. /* See if the recent change to the first SACK eats into
  3613. * or hits the sequence space of other SACK blocks, if so coalesce.
  3614. */
  3615. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3616. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3617. int i;
  3618. /* Zap SWALK, by moving every further SACK up by one slot.
  3619. * Decrease num_sacks.
  3620. */
  3621. tp->rx_opt.num_sacks--;
  3622. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3623. sp[i] = sp[i + 1];
  3624. continue;
  3625. }
  3626. this_sack++, swalk++;
  3627. }
  3628. }
  3629. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3630. {
  3631. struct tcp_sock *tp = tcp_sk(sk);
  3632. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3633. int cur_sacks = tp->rx_opt.num_sacks;
  3634. int this_sack;
  3635. if (!cur_sacks)
  3636. goto new_sack;
  3637. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3638. if (tcp_sack_extend(sp, seq, end_seq)) {
  3639. /* Rotate this_sack to the first one. */
  3640. for (; this_sack > 0; this_sack--, sp--)
  3641. swap(*sp, *(sp - 1));
  3642. if (cur_sacks > 1)
  3643. tcp_sack_maybe_coalesce(tp);
  3644. return;
  3645. }
  3646. }
  3647. /* Could not find an adjacent existing SACK, build a new one,
  3648. * put it at the front, and shift everyone else down. We
  3649. * always know there is at least one SACK present already here.
  3650. *
  3651. * If the sack array is full, forget about the last one.
  3652. */
  3653. if (this_sack >= TCP_NUM_SACKS) {
  3654. this_sack--;
  3655. tp->rx_opt.num_sacks--;
  3656. sp--;
  3657. }
  3658. for (; this_sack > 0; this_sack--, sp--)
  3659. *sp = *(sp - 1);
  3660. new_sack:
  3661. /* Build the new head SACK, and we're done. */
  3662. sp->start_seq = seq;
  3663. sp->end_seq = end_seq;
  3664. tp->rx_opt.num_sacks++;
  3665. }
  3666. /* RCV.NXT advances, some SACKs should be eaten. */
  3667. static void tcp_sack_remove(struct tcp_sock *tp)
  3668. {
  3669. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3670. int num_sacks = tp->rx_opt.num_sacks;
  3671. int this_sack;
  3672. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3673. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3674. tp->rx_opt.num_sacks = 0;
  3675. return;
  3676. }
  3677. for (this_sack = 0; this_sack < num_sacks;) {
  3678. /* Check if the start of the sack is covered by RCV.NXT. */
  3679. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3680. int i;
  3681. /* RCV.NXT must cover all the block! */
  3682. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3683. /* Zap this SACK, by moving forward any other SACKS. */
  3684. for (i = this_sack+1; i < num_sacks; i++)
  3685. tp->selective_acks[i-1] = tp->selective_acks[i];
  3686. num_sacks--;
  3687. continue;
  3688. }
  3689. this_sack++;
  3690. sp++;
  3691. }
  3692. tp->rx_opt.num_sacks = num_sacks;
  3693. }
  3694. /**
  3695. * tcp_try_coalesce - try to merge skb to prior one
  3696. * @sk: socket
  3697. * @dest: destination queue
  3698. * @to: prior buffer
  3699. * @from: buffer to add in queue
  3700. * @fragstolen: pointer to boolean
  3701. *
  3702. * Before queueing skb @from after @to, try to merge them
  3703. * to reduce overall memory use and queue lengths, if cost is small.
  3704. * Packets in ofo or receive queues can stay a long time.
  3705. * Better try to coalesce them right now to avoid future collapses.
  3706. * Returns true if caller should free @from instead of queueing it
  3707. */
  3708. static bool tcp_try_coalesce(struct sock *sk,
  3709. struct sk_buff *to,
  3710. struct sk_buff *from,
  3711. bool *fragstolen)
  3712. {
  3713. int delta;
  3714. *fragstolen = false;
  3715. /* Its possible this segment overlaps with prior segment in queue */
  3716. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3717. return false;
  3718. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3719. return false;
  3720. atomic_add(delta, &sk->sk_rmem_alloc);
  3721. sk_mem_charge(sk, delta);
  3722. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3723. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3724. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3725. TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
  3726. if (TCP_SKB_CB(from)->has_rxtstamp) {
  3727. TCP_SKB_CB(to)->has_rxtstamp = true;
  3728. to->tstamp = from->tstamp;
  3729. }
  3730. return true;
  3731. }
  3732. static void tcp_drop(struct sock *sk, struct sk_buff *skb)
  3733. {
  3734. sk_drops_add(sk, skb);
  3735. __kfree_skb(skb);
  3736. }
  3737. /* This one checks to see if we can put data from the
  3738. * out_of_order queue into the receive_queue.
  3739. */
  3740. static void tcp_ofo_queue(struct sock *sk)
  3741. {
  3742. struct tcp_sock *tp = tcp_sk(sk);
  3743. __u32 dsack_high = tp->rcv_nxt;
  3744. bool fin, fragstolen, eaten;
  3745. struct sk_buff *skb, *tail;
  3746. struct rb_node *p;
  3747. p = rb_first(&tp->out_of_order_queue);
  3748. while (p) {
  3749. skb = rb_entry(p, struct sk_buff, rbnode);
  3750. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3751. break;
  3752. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3753. __u32 dsack = dsack_high;
  3754. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3755. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3756. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3757. }
  3758. p = rb_next(p);
  3759. rb_erase(&skb->rbnode, &tp->out_of_order_queue);
  3760. if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
  3761. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3762. tcp_drop(sk, skb);
  3763. continue;
  3764. }
  3765. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3766. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3767. TCP_SKB_CB(skb)->end_seq);
  3768. tail = skb_peek_tail(&sk->sk_receive_queue);
  3769. eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
  3770. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  3771. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  3772. if (!eaten)
  3773. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3774. else
  3775. kfree_skb_partial(skb, fragstolen);
  3776. if (unlikely(fin)) {
  3777. tcp_fin(sk);
  3778. /* tcp_fin() purges tp->out_of_order_queue,
  3779. * so we must end this loop right now.
  3780. */
  3781. break;
  3782. }
  3783. }
  3784. }
  3785. static bool tcp_prune_ofo_queue(struct sock *sk);
  3786. static int tcp_prune_queue(struct sock *sk);
  3787. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3788. unsigned int size)
  3789. {
  3790. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3791. !sk_rmem_schedule(sk, skb, size)) {
  3792. if (tcp_prune_queue(sk) < 0)
  3793. return -1;
  3794. while (!sk_rmem_schedule(sk, skb, size)) {
  3795. if (!tcp_prune_ofo_queue(sk))
  3796. return -1;
  3797. }
  3798. }
  3799. return 0;
  3800. }
  3801. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3802. {
  3803. struct tcp_sock *tp = tcp_sk(sk);
  3804. struct rb_node **p, *q, *parent;
  3805. struct sk_buff *skb1;
  3806. u32 seq, end_seq;
  3807. bool fragstolen;
  3808. tcp_ecn_check_ce(tp, skb);
  3809. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3810. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3811. tcp_drop(sk, skb);
  3812. return;
  3813. }
  3814. /* Disable header prediction. */
  3815. tp->pred_flags = 0;
  3816. inet_csk_schedule_ack(sk);
  3817. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3818. seq = TCP_SKB_CB(skb)->seq;
  3819. end_seq = TCP_SKB_CB(skb)->end_seq;
  3820. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3821. tp->rcv_nxt, seq, end_seq);
  3822. p = &tp->out_of_order_queue.rb_node;
  3823. if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  3824. /* Initial out of order segment, build 1 SACK. */
  3825. if (tcp_is_sack(tp)) {
  3826. tp->rx_opt.num_sacks = 1;
  3827. tp->selective_acks[0].start_seq = seq;
  3828. tp->selective_acks[0].end_seq = end_seq;
  3829. }
  3830. rb_link_node(&skb->rbnode, NULL, p);
  3831. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3832. tp->ooo_last_skb = skb;
  3833. goto end;
  3834. }
  3835. /* In the typical case, we are adding an skb to the end of the list.
  3836. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  3837. */
  3838. if (tcp_try_coalesce(sk, tp->ooo_last_skb,
  3839. skb, &fragstolen)) {
  3840. coalesce_done:
  3841. tcp_grow_window(sk, skb);
  3842. kfree_skb_partial(skb, fragstolen);
  3843. skb = NULL;
  3844. goto add_sack;
  3845. }
  3846. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  3847. if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
  3848. parent = &tp->ooo_last_skb->rbnode;
  3849. p = &parent->rb_right;
  3850. goto insert;
  3851. }
  3852. /* Find place to insert this segment. Handle overlaps on the way. */
  3853. parent = NULL;
  3854. while (*p) {
  3855. parent = *p;
  3856. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  3857. if (before(seq, TCP_SKB_CB(skb1)->seq)) {
  3858. p = &parent->rb_left;
  3859. continue;
  3860. }
  3861. if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3862. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3863. /* All the bits are present. Drop. */
  3864. NET_INC_STATS(sock_net(sk),
  3865. LINUX_MIB_TCPOFOMERGE);
  3866. __kfree_skb(skb);
  3867. skb = NULL;
  3868. tcp_dsack_set(sk, seq, end_seq);
  3869. goto add_sack;
  3870. }
  3871. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3872. /* Partial overlap. */
  3873. tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
  3874. } else {
  3875. /* skb's seq == skb1's seq and skb covers skb1.
  3876. * Replace skb1 with skb.
  3877. */
  3878. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  3879. &tp->out_of_order_queue);
  3880. tcp_dsack_extend(sk,
  3881. TCP_SKB_CB(skb1)->seq,
  3882. TCP_SKB_CB(skb1)->end_seq);
  3883. NET_INC_STATS(sock_net(sk),
  3884. LINUX_MIB_TCPOFOMERGE);
  3885. __kfree_skb(skb1);
  3886. goto merge_right;
  3887. }
  3888. } else if (tcp_try_coalesce(sk, skb1,
  3889. skb, &fragstolen)) {
  3890. goto coalesce_done;
  3891. }
  3892. p = &parent->rb_right;
  3893. }
  3894. insert:
  3895. /* Insert segment into RB tree. */
  3896. rb_link_node(&skb->rbnode, parent, p);
  3897. rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
  3898. merge_right:
  3899. /* Remove other segments covered by skb. */
  3900. while ((q = rb_next(&skb->rbnode)) != NULL) {
  3901. skb1 = rb_entry(q, struct sk_buff, rbnode);
  3902. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3903. break;
  3904. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3905. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3906. end_seq);
  3907. break;
  3908. }
  3909. rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
  3910. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3911. TCP_SKB_CB(skb1)->end_seq);
  3912. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3913. tcp_drop(sk, skb1);
  3914. }
  3915. /* If there is no skb after us, we are the last_skb ! */
  3916. if (!q)
  3917. tp->ooo_last_skb = skb;
  3918. add_sack:
  3919. if (tcp_is_sack(tp))
  3920. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3921. end:
  3922. if (skb) {
  3923. tcp_grow_window(sk, skb);
  3924. skb_condense(skb);
  3925. skb_set_owner_r(skb, sk);
  3926. }
  3927. }
  3928. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3929. bool *fragstolen)
  3930. {
  3931. int eaten;
  3932. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3933. __skb_pull(skb, hdrlen);
  3934. eaten = (tail &&
  3935. tcp_try_coalesce(sk, tail,
  3936. skb, fragstolen)) ? 1 : 0;
  3937. tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
  3938. if (!eaten) {
  3939. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3940. skb_set_owner_r(skb, sk);
  3941. }
  3942. return eaten;
  3943. }
  3944. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3945. {
  3946. struct sk_buff *skb;
  3947. int err = -ENOMEM;
  3948. int data_len = 0;
  3949. bool fragstolen;
  3950. if (size == 0)
  3951. return 0;
  3952. if (size > PAGE_SIZE) {
  3953. int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
  3954. data_len = npages << PAGE_SHIFT;
  3955. size = data_len + (size & ~PAGE_MASK);
  3956. }
  3957. skb = alloc_skb_with_frags(size - data_len, data_len,
  3958. PAGE_ALLOC_COSTLY_ORDER,
  3959. &err, sk->sk_allocation);
  3960. if (!skb)
  3961. goto err;
  3962. skb_put(skb, size - data_len);
  3963. skb->data_len = data_len;
  3964. skb->len = size;
  3965. if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3966. goto err_free;
  3967. err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
  3968. if (err)
  3969. goto err_free;
  3970. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3971. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3972. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3973. if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
  3974. WARN_ON_ONCE(fragstolen); /* should not happen */
  3975. __kfree_skb(skb);
  3976. }
  3977. return size;
  3978. err_free:
  3979. kfree_skb(skb);
  3980. err:
  3981. return err;
  3982. }
  3983. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3984. {
  3985. struct tcp_sock *tp = tcp_sk(sk);
  3986. bool fragstolen;
  3987. int eaten;
  3988. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
  3989. __kfree_skb(skb);
  3990. return;
  3991. }
  3992. skb_dst_drop(skb);
  3993. __skb_pull(skb, tcp_hdr(skb)->doff * 4);
  3994. tcp_ecn_accept_cwr(tp, skb);
  3995. tp->rx_opt.dsack = 0;
  3996. /* Queue data for delivery to the user.
  3997. * Packets in sequence go to the receive queue.
  3998. * Out of sequence packets to the out_of_order_queue.
  3999. */
  4000. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4001. if (tcp_receive_window(tp) == 0)
  4002. goto out_of_window;
  4003. /* Ok. In sequence. In window. */
  4004. queue_and_out:
  4005. if (skb_queue_len(&sk->sk_receive_queue) == 0)
  4006. sk_forced_mem_schedule(sk, skb->truesize);
  4007. else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4008. goto drop;
  4009. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4010. tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
  4011. if (skb->len)
  4012. tcp_event_data_recv(sk, skb);
  4013. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  4014. tcp_fin(sk);
  4015. if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
  4016. tcp_ofo_queue(sk);
  4017. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4018. * gap in queue is filled.
  4019. */
  4020. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4021. inet_csk(sk)->icsk_ack.pingpong = 0;
  4022. }
  4023. if (tp->rx_opt.num_sacks)
  4024. tcp_sack_remove(tp);
  4025. tcp_fast_path_check(sk);
  4026. if (eaten > 0)
  4027. kfree_skb_partial(skb, fragstolen);
  4028. if (!sock_flag(sk, SOCK_DEAD))
  4029. sk->sk_data_ready(sk);
  4030. return;
  4031. }
  4032. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4033. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4034. NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4035. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4036. out_of_window:
  4037. tcp_enter_quickack_mode(sk);
  4038. inet_csk_schedule_ack(sk);
  4039. drop:
  4040. tcp_drop(sk, skb);
  4041. return;
  4042. }
  4043. /* Out of window. F.e. zero window probe. */
  4044. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4045. goto out_of_window;
  4046. tcp_enter_quickack_mode(sk);
  4047. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4048. /* Partial packet, seq < rcv_next < end_seq */
  4049. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4050. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4051. TCP_SKB_CB(skb)->end_seq);
  4052. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4053. /* If window is closed, drop tail of packet. But after
  4054. * remembering D-SACK for its head made in previous line.
  4055. */
  4056. if (!tcp_receive_window(tp))
  4057. goto out_of_window;
  4058. goto queue_and_out;
  4059. }
  4060. tcp_data_queue_ofo(sk, skb);
  4061. }
  4062. static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
  4063. {
  4064. if (list)
  4065. return !skb_queue_is_last(list, skb) ? skb->next : NULL;
  4066. return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
  4067. }
  4068. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4069. struct sk_buff_head *list,
  4070. struct rb_root *root)
  4071. {
  4072. struct sk_buff *next = tcp_skb_next(skb, list);
  4073. if (list)
  4074. __skb_unlink(skb, list);
  4075. else
  4076. rb_erase(&skb->rbnode, root);
  4077. __kfree_skb(skb);
  4078. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4079. return next;
  4080. }
  4081. /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
  4082. static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
  4083. {
  4084. struct rb_node **p = &root->rb_node;
  4085. struct rb_node *parent = NULL;
  4086. struct sk_buff *skb1;
  4087. while (*p) {
  4088. parent = *p;
  4089. skb1 = rb_entry(parent, struct sk_buff, rbnode);
  4090. if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
  4091. p = &parent->rb_left;
  4092. else
  4093. p = &parent->rb_right;
  4094. }
  4095. rb_link_node(&skb->rbnode, parent, p);
  4096. rb_insert_color(&skb->rbnode, root);
  4097. }
  4098. /* Collapse contiguous sequence of skbs head..tail with
  4099. * sequence numbers start..end.
  4100. *
  4101. * If tail is NULL, this means until the end of the queue.
  4102. *
  4103. * Segments with FIN/SYN are not collapsed (only because this
  4104. * simplifies code)
  4105. */
  4106. static void
  4107. tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
  4108. struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
  4109. {
  4110. struct sk_buff *skb = head, *n;
  4111. struct sk_buff_head tmp;
  4112. bool end_of_skbs;
  4113. /* First, check that queue is collapsible and find
  4114. * the point where collapsing can be useful.
  4115. */
  4116. restart:
  4117. for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
  4118. n = tcp_skb_next(skb, list);
  4119. /* No new bits? It is possible on ofo queue. */
  4120. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4121. skb = tcp_collapse_one(sk, skb, list, root);
  4122. if (!skb)
  4123. break;
  4124. goto restart;
  4125. }
  4126. /* The first skb to collapse is:
  4127. * - not SYN/FIN and
  4128. * - bloated or contains data before "start" or
  4129. * overlaps to the next one.
  4130. */
  4131. if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
  4132. (tcp_win_from_space(skb->truesize) > skb->len ||
  4133. before(TCP_SKB_CB(skb)->seq, start))) {
  4134. end_of_skbs = false;
  4135. break;
  4136. }
  4137. if (n && n != tail &&
  4138. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
  4139. end_of_skbs = false;
  4140. break;
  4141. }
  4142. /* Decided to skip this, advance start seq. */
  4143. start = TCP_SKB_CB(skb)->end_seq;
  4144. }
  4145. if (end_of_skbs ||
  4146. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4147. return;
  4148. __skb_queue_head_init(&tmp);
  4149. while (before(start, end)) {
  4150. int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
  4151. struct sk_buff *nskb;
  4152. nskb = alloc_skb(copy, GFP_ATOMIC);
  4153. if (!nskb)
  4154. break;
  4155. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4156. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4157. if (list)
  4158. __skb_queue_before(list, skb, nskb);
  4159. else
  4160. __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
  4161. skb_set_owner_r(nskb, sk);
  4162. /* Copy data, releasing collapsed skbs. */
  4163. while (copy > 0) {
  4164. int offset = start - TCP_SKB_CB(skb)->seq;
  4165. int size = TCP_SKB_CB(skb)->end_seq - start;
  4166. BUG_ON(offset < 0);
  4167. if (size > 0) {
  4168. size = min(copy, size);
  4169. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4170. BUG();
  4171. TCP_SKB_CB(nskb)->end_seq += size;
  4172. copy -= size;
  4173. start += size;
  4174. }
  4175. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4176. skb = tcp_collapse_one(sk, skb, list, root);
  4177. if (!skb ||
  4178. skb == tail ||
  4179. (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
  4180. goto end;
  4181. }
  4182. }
  4183. }
  4184. end:
  4185. skb_queue_walk_safe(&tmp, skb, n)
  4186. tcp_rbtree_insert(root, skb);
  4187. }
  4188. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4189. * and tcp_collapse() them until all the queue is collapsed.
  4190. */
  4191. static void tcp_collapse_ofo_queue(struct sock *sk)
  4192. {
  4193. struct tcp_sock *tp = tcp_sk(sk);
  4194. struct sk_buff *skb, *head;
  4195. struct rb_node *p;
  4196. u32 start, end;
  4197. p = rb_first(&tp->out_of_order_queue);
  4198. skb = rb_entry_safe(p, struct sk_buff, rbnode);
  4199. new_range:
  4200. if (!skb) {
  4201. p = rb_last(&tp->out_of_order_queue);
  4202. /* Note: This is possible p is NULL here. We do not
  4203. * use rb_entry_safe(), as ooo_last_skb is valid only
  4204. * if rbtree is not empty.
  4205. */
  4206. tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
  4207. return;
  4208. }
  4209. start = TCP_SKB_CB(skb)->seq;
  4210. end = TCP_SKB_CB(skb)->end_seq;
  4211. for (head = skb;;) {
  4212. skb = tcp_skb_next(skb, NULL);
  4213. /* Range is terminated when we see a gap or when
  4214. * we are at the queue end.
  4215. */
  4216. if (!skb ||
  4217. after(TCP_SKB_CB(skb)->seq, end) ||
  4218. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4219. tcp_collapse(sk, NULL, &tp->out_of_order_queue,
  4220. head, skb, start, end);
  4221. goto new_range;
  4222. }
  4223. if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
  4224. start = TCP_SKB_CB(skb)->seq;
  4225. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4226. end = TCP_SKB_CB(skb)->end_seq;
  4227. }
  4228. }
  4229. /*
  4230. * Clean the out-of-order queue to make room.
  4231. * We drop high sequences packets to :
  4232. * 1) Let a chance for holes to be filled.
  4233. * 2) not add too big latencies if thousands of packets sit there.
  4234. * (But if application shrinks SO_RCVBUF, we could still end up
  4235. * freeing whole queue here)
  4236. *
  4237. * Return true if queue has shrunk.
  4238. */
  4239. static bool tcp_prune_ofo_queue(struct sock *sk)
  4240. {
  4241. struct tcp_sock *tp = tcp_sk(sk);
  4242. struct rb_node *node, *prev;
  4243. if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
  4244. return false;
  4245. NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4246. node = &tp->ooo_last_skb->rbnode;
  4247. do {
  4248. prev = rb_prev(node);
  4249. rb_erase(node, &tp->out_of_order_queue);
  4250. tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
  4251. sk_mem_reclaim(sk);
  4252. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  4253. !tcp_under_memory_pressure(sk))
  4254. break;
  4255. node = prev;
  4256. } while (node);
  4257. tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
  4258. /* Reset SACK state. A conforming SACK implementation will
  4259. * do the same at a timeout based retransmit. When a connection
  4260. * is in a sad state like this, we care only about integrity
  4261. * of the connection not performance.
  4262. */
  4263. if (tp->rx_opt.sack_ok)
  4264. tcp_sack_reset(&tp->rx_opt);
  4265. return true;
  4266. }
  4267. /* Reduce allocated memory if we can, trying to get
  4268. * the socket within its memory limits again.
  4269. *
  4270. * Return less than zero if we should start dropping frames
  4271. * until the socket owning process reads some of the data
  4272. * to stabilize the situation.
  4273. */
  4274. static int tcp_prune_queue(struct sock *sk)
  4275. {
  4276. struct tcp_sock *tp = tcp_sk(sk);
  4277. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4278. NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4279. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4280. tcp_clamp_window(sk);
  4281. else if (tcp_under_memory_pressure(sk))
  4282. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4283. tcp_collapse_ofo_queue(sk);
  4284. if (!skb_queue_empty(&sk->sk_receive_queue))
  4285. tcp_collapse(sk, &sk->sk_receive_queue, NULL,
  4286. skb_peek(&sk->sk_receive_queue),
  4287. NULL,
  4288. tp->copied_seq, tp->rcv_nxt);
  4289. sk_mem_reclaim(sk);
  4290. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4291. return 0;
  4292. /* Collapsing did not help, destructive actions follow.
  4293. * This must not ever occur. */
  4294. tcp_prune_ofo_queue(sk);
  4295. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4296. return 0;
  4297. /* If we are really being abused, tell the caller to silently
  4298. * drop receive data on the floor. It will get retransmitted
  4299. * and hopefully then we'll have sufficient space.
  4300. */
  4301. NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4302. /* Massive buffer overcommit. */
  4303. tp->pred_flags = 0;
  4304. return -1;
  4305. }
  4306. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4307. {
  4308. const struct tcp_sock *tp = tcp_sk(sk);
  4309. /* If the user specified a specific send buffer setting, do
  4310. * not modify it.
  4311. */
  4312. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4313. return false;
  4314. /* If we are under global TCP memory pressure, do not expand. */
  4315. if (tcp_under_memory_pressure(sk))
  4316. return false;
  4317. /* If we are under soft global TCP memory pressure, do not expand. */
  4318. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4319. return false;
  4320. /* If we filled the congestion window, do not expand. */
  4321. if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
  4322. return false;
  4323. return true;
  4324. }
  4325. /* When incoming ACK allowed to free some skb from write_queue,
  4326. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4327. * on the exit from tcp input handler.
  4328. *
  4329. * PROBLEM: sndbuf expansion does not work well with largesend.
  4330. */
  4331. static void tcp_new_space(struct sock *sk)
  4332. {
  4333. struct tcp_sock *tp = tcp_sk(sk);
  4334. if (tcp_should_expand_sndbuf(sk)) {
  4335. tcp_sndbuf_expand(sk);
  4336. tp->snd_cwnd_stamp = tcp_jiffies32;
  4337. }
  4338. sk->sk_write_space(sk);
  4339. }
  4340. static void tcp_check_space(struct sock *sk)
  4341. {
  4342. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4343. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4344. /* pairs with tcp_poll() */
  4345. smp_mb();
  4346. if (sk->sk_socket &&
  4347. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4348. tcp_new_space(sk);
  4349. if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4350. tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
  4351. }
  4352. }
  4353. }
  4354. static inline void tcp_data_snd_check(struct sock *sk)
  4355. {
  4356. tcp_push_pending_frames(sk);
  4357. tcp_check_space(sk);
  4358. }
  4359. /*
  4360. * Check if sending an ack is needed.
  4361. */
  4362. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4363. {
  4364. struct tcp_sock *tp = tcp_sk(sk);
  4365. /* More than one full frame received... */
  4366. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4367. /* ... and right edge of window advances far enough.
  4368. * (tcp_recvmsg() will send ACK otherwise). Or...
  4369. */
  4370. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4371. /* We ACK each frame or... */
  4372. tcp_in_quickack_mode(sk) ||
  4373. /* We have out of order data. */
  4374. (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
  4375. /* Then ack it now */
  4376. tcp_send_ack(sk);
  4377. } else {
  4378. /* Else, send delayed ack. */
  4379. tcp_send_delayed_ack(sk);
  4380. }
  4381. }
  4382. static inline void tcp_ack_snd_check(struct sock *sk)
  4383. {
  4384. if (!inet_csk_ack_scheduled(sk)) {
  4385. /* We sent a data segment already. */
  4386. return;
  4387. }
  4388. __tcp_ack_snd_check(sk, 1);
  4389. }
  4390. /*
  4391. * This routine is only called when we have urgent data
  4392. * signaled. Its the 'slow' part of tcp_urg. It could be
  4393. * moved inline now as tcp_urg is only called from one
  4394. * place. We handle URGent data wrong. We have to - as
  4395. * BSD still doesn't use the correction from RFC961.
  4396. * For 1003.1g we should support a new option TCP_STDURG to permit
  4397. * either form (or just set the sysctl tcp_stdurg).
  4398. */
  4399. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4400. {
  4401. struct tcp_sock *tp = tcp_sk(sk);
  4402. u32 ptr = ntohs(th->urg_ptr);
  4403. if (ptr && !sysctl_tcp_stdurg)
  4404. ptr--;
  4405. ptr += ntohl(th->seq);
  4406. /* Ignore urgent data that we've already seen and read. */
  4407. if (after(tp->copied_seq, ptr))
  4408. return;
  4409. /* Do not replay urg ptr.
  4410. *
  4411. * NOTE: interesting situation not covered by specs.
  4412. * Misbehaving sender may send urg ptr, pointing to segment,
  4413. * which we already have in ofo queue. We are not able to fetch
  4414. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4415. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4416. * situations. But it is worth to think about possibility of some
  4417. * DoSes using some hypothetical application level deadlock.
  4418. */
  4419. if (before(ptr, tp->rcv_nxt))
  4420. return;
  4421. /* Do we already have a newer (or duplicate) urgent pointer? */
  4422. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4423. return;
  4424. /* Tell the world about our new urgent pointer. */
  4425. sk_send_sigurg(sk);
  4426. /* We may be adding urgent data when the last byte read was
  4427. * urgent. To do this requires some care. We cannot just ignore
  4428. * tp->copied_seq since we would read the last urgent byte again
  4429. * as data, nor can we alter copied_seq until this data arrives
  4430. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4431. *
  4432. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4433. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4434. * and expect that both A and B disappear from stream. This is _wrong_.
  4435. * Though this happens in BSD with high probability, this is occasional.
  4436. * Any application relying on this is buggy. Note also, that fix "works"
  4437. * only in this artificial test. Insert some normal data between A and B and we will
  4438. * decline of BSD again. Verdict: it is better to remove to trap
  4439. * buggy users.
  4440. */
  4441. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4442. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4443. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4444. tp->copied_seq++;
  4445. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4446. __skb_unlink(skb, &sk->sk_receive_queue);
  4447. __kfree_skb(skb);
  4448. }
  4449. }
  4450. tp->urg_data = TCP_URG_NOTYET;
  4451. tp->urg_seq = ptr;
  4452. /* Disable header prediction. */
  4453. tp->pred_flags = 0;
  4454. }
  4455. /* This is the 'fast' part of urgent handling. */
  4456. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4457. {
  4458. struct tcp_sock *tp = tcp_sk(sk);
  4459. /* Check if we get a new urgent pointer - normally not. */
  4460. if (th->urg)
  4461. tcp_check_urg(sk, th);
  4462. /* Do we wait for any urgent data? - normally not... */
  4463. if (tp->urg_data == TCP_URG_NOTYET) {
  4464. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4465. th->syn;
  4466. /* Is the urgent pointer pointing into this packet? */
  4467. if (ptr < skb->len) {
  4468. u8 tmp;
  4469. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4470. BUG();
  4471. tp->urg_data = TCP_URG_VALID | tmp;
  4472. if (!sock_flag(sk, SOCK_DEAD))
  4473. sk->sk_data_ready(sk);
  4474. }
  4475. }
  4476. }
  4477. /* Accept RST for rcv_nxt - 1 after a FIN.
  4478. * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
  4479. * FIN is sent followed by a RST packet. The RST is sent with the same
  4480. * sequence number as the FIN, and thus according to RFC 5961 a challenge
  4481. * ACK should be sent. However, Mac OSX rate limits replies to challenge
  4482. * ACKs on the closed socket. In addition middleboxes can drop either the
  4483. * challenge ACK or a subsequent RST.
  4484. */
  4485. static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
  4486. {
  4487. struct tcp_sock *tp = tcp_sk(sk);
  4488. return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
  4489. (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
  4490. TCPF_CLOSING));
  4491. }
  4492. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4493. * play significant role here.
  4494. */
  4495. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4496. const struct tcphdr *th, int syn_inerr)
  4497. {
  4498. struct tcp_sock *tp = tcp_sk(sk);
  4499. bool rst_seq_match = false;
  4500. /* RFC1323: H1. Apply PAWS check first. */
  4501. if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
  4502. tp->rx_opt.saw_tstamp &&
  4503. tcp_paws_discard(sk, skb)) {
  4504. if (!th->rst) {
  4505. NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4506. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4507. LINUX_MIB_TCPACKSKIPPEDPAWS,
  4508. &tp->last_oow_ack_time))
  4509. tcp_send_dupack(sk, skb);
  4510. goto discard;
  4511. }
  4512. /* Reset is accepted even if it did not pass PAWS. */
  4513. }
  4514. /* Step 1: check sequence number */
  4515. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4516. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4517. * (RST) segments are validated by checking their SEQ-fields."
  4518. * And page 69: "If an incoming segment is not acceptable,
  4519. * an acknowledgment should be sent in reply (unless the RST
  4520. * bit is set, if so drop the segment and return)".
  4521. */
  4522. if (!th->rst) {
  4523. if (th->syn)
  4524. goto syn_challenge;
  4525. if (!tcp_oow_rate_limited(sock_net(sk), skb,
  4526. LINUX_MIB_TCPACKSKIPPEDSEQ,
  4527. &tp->last_oow_ack_time))
  4528. tcp_send_dupack(sk, skb);
  4529. } else if (tcp_reset_check(sk, skb)) {
  4530. tcp_reset(sk);
  4531. }
  4532. goto discard;
  4533. }
  4534. /* Step 2: check RST bit */
  4535. if (th->rst) {
  4536. /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
  4537. * FIN and SACK too if available):
  4538. * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
  4539. * the right-most SACK block,
  4540. * then
  4541. * RESET the connection
  4542. * else
  4543. * Send a challenge ACK
  4544. */
  4545. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
  4546. tcp_reset_check(sk, skb)) {
  4547. rst_seq_match = true;
  4548. } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
  4549. struct tcp_sack_block *sp = &tp->selective_acks[0];
  4550. int max_sack = sp[0].end_seq;
  4551. int this_sack;
  4552. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
  4553. ++this_sack) {
  4554. max_sack = after(sp[this_sack].end_seq,
  4555. max_sack) ?
  4556. sp[this_sack].end_seq : max_sack;
  4557. }
  4558. if (TCP_SKB_CB(skb)->seq == max_sack)
  4559. rst_seq_match = true;
  4560. }
  4561. if (rst_seq_match)
  4562. tcp_reset(sk);
  4563. else {
  4564. /* Disable TFO if RST is out-of-order
  4565. * and no data has been received
  4566. * for current active TFO socket
  4567. */
  4568. if (tp->syn_fastopen && !tp->data_segs_in &&
  4569. sk->sk_state == TCP_ESTABLISHED)
  4570. tcp_fastopen_active_disable(sk);
  4571. tcp_send_challenge_ack(sk, skb);
  4572. }
  4573. goto discard;
  4574. }
  4575. /* step 3: check security and precedence [ignored] */
  4576. /* step 4: Check for a SYN
  4577. * RFC 5961 4.2 : Send a challenge ack
  4578. */
  4579. if (th->syn) {
  4580. syn_challenge:
  4581. if (syn_inerr)
  4582. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4583. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4584. tcp_send_challenge_ack(sk, skb);
  4585. goto discard;
  4586. }
  4587. return true;
  4588. discard:
  4589. tcp_drop(sk, skb);
  4590. return false;
  4591. }
  4592. /*
  4593. * TCP receive function for the ESTABLISHED state.
  4594. *
  4595. * It is split into a fast path and a slow path. The fast path is
  4596. * disabled when:
  4597. * - A zero window was announced from us - zero window probing
  4598. * is only handled properly in the slow path.
  4599. * - Out of order segments arrived.
  4600. * - Urgent data is expected.
  4601. * - There is no buffer space left
  4602. * - Unexpected TCP flags/window values/header lengths are received
  4603. * (detected by checking the TCP header against pred_flags)
  4604. * - Data is sent in both directions. Fast path only supports pure senders
  4605. * or pure receivers (this means either the sequence number or the ack
  4606. * value must stay constant)
  4607. * - Unexpected TCP option.
  4608. *
  4609. * When these conditions are not satisfied it drops into a standard
  4610. * receive procedure patterned after RFC793 to handle all cases.
  4611. * The first three cases are guaranteed by proper pred_flags setting,
  4612. * the rest is checked inline. Fast processing is turned on in
  4613. * tcp_data_queue when everything is OK.
  4614. */
  4615. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4616. const struct tcphdr *th)
  4617. {
  4618. unsigned int len = skb->len;
  4619. struct tcp_sock *tp = tcp_sk(sk);
  4620. tcp_mstamp_refresh(tp);
  4621. if (unlikely(!sk->sk_rx_dst))
  4622. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4623. /*
  4624. * Header prediction.
  4625. * The code loosely follows the one in the famous
  4626. * "30 instruction TCP receive" Van Jacobson mail.
  4627. *
  4628. * Van's trick is to deposit buffers into socket queue
  4629. * on a device interrupt, to call tcp_recv function
  4630. * on the receive process context and checksum and copy
  4631. * the buffer to user space. smart...
  4632. *
  4633. * Our current scheme is not silly either but we take the
  4634. * extra cost of the net_bh soft interrupt processing...
  4635. * We do checksum and copy also but from device to kernel.
  4636. */
  4637. tp->rx_opt.saw_tstamp = 0;
  4638. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4639. * if header_prediction is to be made
  4640. * 'S' will always be tp->tcp_header_len >> 2
  4641. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4642. * turn it off (when there are holes in the receive
  4643. * space for instance)
  4644. * PSH flag is ignored.
  4645. */
  4646. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4647. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4648. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4649. int tcp_header_len = tp->tcp_header_len;
  4650. /* Timestamp header prediction: tcp_header_len
  4651. * is automatically equal to th->doff*4 due to pred_flags
  4652. * match.
  4653. */
  4654. /* Check timestamp */
  4655. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4656. /* No? Slow path! */
  4657. if (!tcp_parse_aligned_timestamp(tp, th))
  4658. goto slow_path;
  4659. /* If PAWS failed, check it more carefully in slow path */
  4660. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4661. goto slow_path;
  4662. /* DO NOT update ts_recent here, if checksum fails
  4663. * and timestamp was corrupted part, it will result
  4664. * in a hung connection since we will drop all
  4665. * future packets due to the PAWS test.
  4666. */
  4667. }
  4668. if (len <= tcp_header_len) {
  4669. /* Bulk data transfer: sender */
  4670. if (len == tcp_header_len) {
  4671. /* Predicted packet is in window by definition.
  4672. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4673. * Hence, check seq<=rcv_wup reduces to:
  4674. */
  4675. if (tcp_header_len ==
  4676. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4677. tp->rcv_nxt == tp->rcv_wup)
  4678. tcp_store_ts_recent(tp);
  4679. /* We know that such packets are checksummed
  4680. * on entry.
  4681. */
  4682. tcp_ack(sk, skb, 0);
  4683. __kfree_skb(skb);
  4684. tcp_data_snd_check(sk);
  4685. return;
  4686. } else { /* Header too small */
  4687. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4688. goto discard;
  4689. }
  4690. } else {
  4691. int eaten = 0;
  4692. bool fragstolen = false;
  4693. if (tcp_checksum_complete(skb))
  4694. goto csum_error;
  4695. if ((int)skb->truesize > sk->sk_forward_alloc)
  4696. goto step5;
  4697. /* Predicted packet is in window by definition.
  4698. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4699. * Hence, check seq<=rcv_wup reduces to:
  4700. */
  4701. if (tcp_header_len ==
  4702. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4703. tp->rcv_nxt == tp->rcv_wup)
  4704. tcp_store_ts_recent(tp);
  4705. tcp_rcv_rtt_measure_ts(sk, skb);
  4706. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4707. /* Bulk data transfer: receiver */
  4708. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4709. &fragstolen);
  4710. tcp_event_data_recv(sk, skb);
  4711. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4712. /* Well, only one small jumplet in fast path... */
  4713. tcp_ack(sk, skb, FLAG_DATA);
  4714. tcp_data_snd_check(sk);
  4715. if (!inet_csk_ack_scheduled(sk))
  4716. goto no_ack;
  4717. }
  4718. __tcp_ack_snd_check(sk, 0);
  4719. no_ack:
  4720. if (eaten)
  4721. kfree_skb_partial(skb, fragstolen);
  4722. sk->sk_data_ready(sk);
  4723. return;
  4724. }
  4725. }
  4726. slow_path:
  4727. if (len < (th->doff << 2) || tcp_checksum_complete(skb))
  4728. goto csum_error;
  4729. if (!th->ack && !th->rst && !th->syn)
  4730. goto discard;
  4731. /*
  4732. * Standard slow path.
  4733. */
  4734. if (!tcp_validate_incoming(sk, skb, th, 1))
  4735. return;
  4736. step5:
  4737. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4738. goto discard;
  4739. tcp_rcv_rtt_measure_ts(sk, skb);
  4740. /* Process urgent data. */
  4741. tcp_urg(sk, skb, th);
  4742. /* step 7: process the segment text */
  4743. tcp_data_queue(sk, skb);
  4744. tcp_data_snd_check(sk);
  4745. tcp_ack_snd_check(sk);
  4746. return;
  4747. csum_error:
  4748. TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
  4749. TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
  4750. discard:
  4751. tcp_drop(sk, skb);
  4752. }
  4753. EXPORT_SYMBOL(tcp_rcv_established);
  4754. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4755. {
  4756. struct tcp_sock *tp = tcp_sk(sk);
  4757. struct inet_connection_sock *icsk = inet_csk(sk);
  4758. tcp_set_state(sk, TCP_ESTABLISHED);
  4759. icsk->icsk_ack.lrcvtime = tcp_jiffies32;
  4760. if (skb) {
  4761. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4762. security_inet_conn_established(sk, skb);
  4763. }
  4764. /* Make sure socket is routed, for correct metrics. */
  4765. icsk->icsk_af_ops->rebuild_header(sk);
  4766. tcp_init_metrics(sk);
  4767. tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
  4768. tcp_init_congestion_control(sk);
  4769. /* Prevent spurious tcp_cwnd_restart() on first data
  4770. * packet.
  4771. */
  4772. tp->lsndtime = tcp_jiffies32;
  4773. tcp_init_buffer_space(sk);
  4774. if (sock_flag(sk, SOCK_KEEPOPEN))
  4775. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4776. if (!tp->rx_opt.snd_wscale)
  4777. __tcp_fast_path_on(tp, tp->snd_wnd);
  4778. else
  4779. tp->pred_flags = 0;
  4780. }
  4781. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4782. struct tcp_fastopen_cookie *cookie)
  4783. {
  4784. struct tcp_sock *tp = tcp_sk(sk);
  4785. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4786. u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
  4787. bool syn_drop = false;
  4788. if (mss == tp->rx_opt.user_mss) {
  4789. struct tcp_options_received opt;
  4790. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4791. tcp_clear_options(&opt);
  4792. opt.user_mss = opt.mss_clamp = 0;
  4793. tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
  4794. mss = opt.mss_clamp;
  4795. }
  4796. if (!tp->syn_fastopen) {
  4797. /* Ignore an unsolicited cookie */
  4798. cookie->len = -1;
  4799. } else if (tp->total_retrans) {
  4800. /* SYN timed out and the SYN-ACK neither has a cookie nor
  4801. * acknowledges data. Presumably the remote received only
  4802. * the retransmitted (regular) SYNs: either the original
  4803. * SYN-data or the corresponding SYN-ACK was dropped.
  4804. */
  4805. syn_drop = (cookie->len < 0 && data);
  4806. } else if (cookie->len < 0 && !tp->syn_data) {
  4807. /* We requested a cookie but didn't get it. If we did not use
  4808. * the (old) exp opt format then try so next time (try_exp=1).
  4809. * Otherwise we go back to use the RFC7413 opt (try_exp=2).
  4810. */
  4811. try_exp = tp->syn_fastopen_exp ? 2 : 1;
  4812. }
  4813. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
  4814. if (data) { /* Retransmit unacked data in SYN */
  4815. tcp_for_write_queue_from(data, sk) {
  4816. if (data == tcp_send_head(sk) ||
  4817. __tcp_retransmit_skb(sk, data, 1))
  4818. break;
  4819. }
  4820. tcp_rearm_rto(sk);
  4821. NET_INC_STATS(sock_net(sk),
  4822. LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4823. return true;
  4824. }
  4825. tp->syn_data_acked = tp->syn_data;
  4826. if (tp->syn_data_acked)
  4827. NET_INC_STATS(sock_net(sk),
  4828. LINUX_MIB_TCPFASTOPENACTIVE);
  4829. tcp_fastopen_add_skb(sk, synack);
  4830. return false;
  4831. }
  4832. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4833. const struct tcphdr *th)
  4834. {
  4835. struct inet_connection_sock *icsk = inet_csk(sk);
  4836. struct tcp_sock *tp = tcp_sk(sk);
  4837. struct tcp_fastopen_cookie foc = { .len = -1 };
  4838. int saved_clamp = tp->rx_opt.mss_clamp;
  4839. bool fastopen_fail;
  4840. tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
  4841. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4842. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4843. if (th->ack) {
  4844. /* rfc793:
  4845. * "If the state is SYN-SENT then
  4846. * first check the ACK bit
  4847. * If the ACK bit is set
  4848. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4849. * a reset (unless the RST bit is set, if so drop
  4850. * the segment and return)"
  4851. */
  4852. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4853. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4854. goto reset_and_undo;
  4855. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4856. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4857. tcp_time_stamp(tp))) {
  4858. NET_INC_STATS(sock_net(sk),
  4859. LINUX_MIB_PAWSACTIVEREJECTED);
  4860. goto reset_and_undo;
  4861. }
  4862. /* Now ACK is acceptable.
  4863. *
  4864. * "If the RST bit is set
  4865. * If the ACK was acceptable then signal the user "error:
  4866. * connection reset", drop the segment, enter CLOSED state,
  4867. * delete TCB, and return."
  4868. */
  4869. if (th->rst) {
  4870. tcp_reset(sk);
  4871. goto discard;
  4872. }
  4873. /* rfc793:
  4874. * "fifth, if neither of the SYN or RST bits is set then
  4875. * drop the segment and return."
  4876. *
  4877. * See note below!
  4878. * --ANK(990513)
  4879. */
  4880. if (!th->syn)
  4881. goto discard_and_undo;
  4882. /* rfc793:
  4883. * "If the SYN bit is on ...
  4884. * are acceptable then ...
  4885. * (our SYN has been ACKed), change the connection
  4886. * state to ESTABLISHED..."
  4887. */
  4888. tcp_ecn_rcv_synack(tp, th);
  4889. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4890. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4891. /* Ok.. it's good. Set up sequence numbers and
  4892. * move to established.
  4893. */
  4894. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4895. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4896. /* RFC1323: The window in SYN & SYN/ACK segments is
  4897. * never scaled.
  4898. */
  4899. tp->snd_wnd = ntohs(th->window);
  4900. if (!tp->rx_opt.wscale_ok) {
  4901. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4902. tp->window_clamp = min(tp->window_clamp, 65535U);
  4903. }
  4904. if (tp->rx_opt.saw_tstamp) {
  4905. tp->rx_opt.tstamp_ok = 1;
  4906. tp->tcp_header_len =
  4907. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4908. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4909. tcp_store_ts_recent(tp);
  4910. } else {
  4911. tp->tcp_header_len = sizeof(struct tcphdr);
  4912. }
  4913. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4914. tcp_enable_fack(tp);
  4915. tcp_mtup_init(sk);
  4916. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4917. tcp_initialize_rcv_mss(sk);
  4918. /* Remember, tcp_poll() does not lock socket!
  4919. * Change state from SYN-SENT only after copied_seq
  4920. * is initialized. */
  4921. tp->copied_seq = tp->rcv_nxt;
  4922. smp_mb();
  4923. tcp_finish_connect(sk, skb);
  4924. fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
  4925. tcp_rcv_fastopen_synack(sk, skb, &foc);
  4926. if (!sock_flag(sk, SOCK_DEAD)) {
  4927. sk->sk_state_change(sk);
  4928. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4929. }
  4930. if (fastopen_fail)
  4931. return -1;
  4932. if (sk->sk_write_pending ||
  4933. icsk->icsk_accept_queue.rskq_defer_accept ||
  4934. icsk->icsk_ack.pingpong) {
  4935. /* Save one ACK. Data will be ready after
  4936. * several ticks, if write_pending is set.
  4937. *
  4938. * It may be deleted, but with this feature tcpdumps
  4939. * look so _wonderfully_ clever, that I was not able
  4940. * to stand against the temptation 8) --ANK
  4941. */
  4942. inet_csk_schedule_ack(sk);
  4943. tcp_enter_quickack_mode(sk);
  4944. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4945. TCP_DELACK_MAX, TCP_RTO_MAX);
  4946. discard:
  4947. tcp_drop(sk, skb);
  4948. return 0;
  4949. } else {
  4950. tcp_send_ack(sk);
  4951. }
  4952. return -1;
  4953. }
  4954. /* No ACK in the segment */
  4955. if (th->rst) {
  4956. /* rfc793:
  4957. * "If the RST bit is set
  4958. *
  4959. * Otherwise (no ACK) drop the segment and return."
  4960. */
  4961. goto discard_and_undo;
  4962. }
  4963. /* PAWS check. */
  4964. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4965. tcp_paws_reject(&tp->rx_opt, 0))
  4966. goto discard_and_undo;
  4967. if (th->syn) {
  4968. /* We see SYN without ACK. It is attempt of
  4969. * simultaneous connect with crossed SYNs.
  4970. * Particularly, it can be connect to self.
  4971. */
  4972. tcp_set_state(sk, TCP_SYN_RECV);
  4973. if (tp->rx_opt.saw_tstamp) {
  4974. tp->rx_opt.tstamp_ok = 1;
  4975. tcp_store_ts_recent(tp);
  4976. tp->tcp_header_len =
  4977. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4978. } else {
  4979. tp->tcp_header_len = sizeof(struct tcphdr);
  4980. }
  4981. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4982. tp->copied_seq = tp->rcv_nxt;
  4983. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4984. /* RFC1323: The window in SYN & SYN/ACK segments is
  4985. * never scaled.
  4986. */
  4987. tp->snd_wnd = ntohs(th->window);
  4988. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4989. tp->max_window = tp->snd_wnd;
  4990. tcp_ecn_rcv_syn(tp, th);
  4991. tcp_mtup_init(sk);
  4992. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4993. tcp_initialize_rcv_mss(sk);
  4994. tcp_send_synack(sk);
  4995. #if 0
  4996. /* Note, we could accept data and URG from this segment.
  4997. * There are no obstacles to make this (except that we must
  4998. * either change tcp_recvmsg() to prevent it from returning data
  4999. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  5000. *
  5001. * However, if we ignore data in ACKless segments sometimes,
  5002. * we have no reasons to accept it sometimes.
  5003. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5004. * is not flawless. So, discard packet for sanity.
  5005. * Uncomment this return to process the data.
  5006. */
  5007. return -1;
  5008. #else
  5009. goto discard;
  5010. #endif
  5011. }
  5012. /* "fifth, if neither of the SYN or RST bits is set then
  5013. * drop the segment and return."
  5014. */
  5015. discard_and_undo:
  5016. tcp_clear_options(&tp->rx_opt);
  5017. tp->rx_opt.mss_clamp = saved_clamp;
  5018. goto discard;
  5019. reset_and_undo:
  5020. tcp_clear_options(&tp->rx_opt);
  5021. tp->rx_opt.mss_clamp = saved_clamp;
  5022. return 1;
  5023. }
  5024. /*
  5025. * This function implements the receiving procedure of RFC 793 for
  5026. * all states except ESTABLISHED and TIME_WAIT.
  5027. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5028. * address independent.
  5029. */
  5030. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
  5031. {
  5032. struct tcp_sock *tp = tcp_sk(sk);
  5033. struct inet_connection_sock *icsk = inet_csk(sk);
  5034. const struct tcphdr *th = tcp_hdr(skb);
  5035. struct request_sock *req;
  5036. int queued = 0;
  5037. bool acceptable;
  5038. switch (sk->sk_state) {
  5039. case TCP_CLOSE:
  5040. goto discard;
  5041. case TCP_LISTEN:
  5042. if (th->ack)
  5043. return 1;
  5044. if (th->rst)
  5045. goto discard;
  5046. if (th->syn) {
  5047. if (th->fin)
  5048. goto discard;
  5049. /* It is possible that we process SYN packets from backlog,
  5050. * so we need to make sure to disable BH right there.
  5051. */
  5052. local_bh_disable();
  5053. acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
  5054. local_bh_enable();
  5055. if (!acceptable)
  5056. return 1;
  5057. consume_skb(skb);
  5058. return 0;
  5059. }
  5060. goto discard;
  5061. case TCP_SYN_SENT:
  5062. tp->rx_opt.saw_tstamp = 0;
  5063. tcp_mstamp_refresh(tp);
  5064. queued = tcp_rcv_synsent_state_process(sk, skb, th);
  5065. if (queued >= 0)
  5066. return queued;
  5067. /* Do step6 onward by hand. */
  5068. tcp_urg(sk, skb, th);
  5069. __kfree_skb(skb);
  5070. tcp_data_snd_check(sk);
  5071. return 0;
  5072. }
  5073. tcp_mstamp_refresh(tp);
  5074. tp->rx_opt.saw_tstamp = 0;
  5075. req = tp->fastopen_rsk;
  5076. if (req) {
  5077. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  5078. sk->sk_state != TCP_FIN_WAIT1);
  5079. if (!tcp_check_req(sk, skb, req, true))
  5080. goto discard;
  5081. }
  5082. if (!th->ack && !th->rst && !th->syn)
  5083. goto discard;
  5084. if (!tcp_validate_incoming(sk, skb, th, 0))
  5085. return 0;
  5086. /* step 5: check the ACK field */
  5087. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  5088. FLAG_UPDATE_TS_RECENT |
  5089. FLAG_NO_CHALLENGE_ACK) > 0;
  5090. if (!acceptable) {
  5091. if (sk->sk_state == TCP_SYN_RECV)
  5092. return 1; /* send one RST */
  5093. tcp_send_challenge_ack(sk, skb);
  5094. goto discard;
  5095. }
  5096. switch (sk->sk_state) {
  5097. case TCP_SYN_RECV:
  5098. if (!tp->srtt_us)
  5099. tcp_synack_rtt_meas(sk, req);
  5100. /* Once we leave TCP_SYN_RECV, we no longer need req
  5101. * so release it.
  5102. */
  5103. if (req) {
  5104. inet_csk(sk)->icsk_retransmits = 0;
  5105. reqsk_fastopen_remove(sk, req, false);
  5106. } else {
  5107. /* Make sure socket is routed, for correct metrics. */
  5108. icsk->icsk_af_ops->rebuild_header(sk);
  5109. tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
  5110. tcp_init_congestion_control(sk);
  5111. tcp_mtup_init(sk);
  5112. tp->copied_seq = tp->rcv_nxt;
  5113. tcp_init_buffer_space(sk);
  5114. }
  5115. smp_mb();
  5116. tcp_set_state(sk, TCP_ESTABLISHED);
  5117. sk->sk_state_change(sk);
  5118. /* Note, that this wakeup is only for marginal crossed SYN case.
  5119. * Passively open sockets are not waked up, because
  5120. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  5121. */
  5122. if (sk->sk_socket)
  5123. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5124. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5125. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  5126. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5127. if (tp->rx_opt.tstamp_ok)
  5128. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5129. if (req) {
  5130. /* Re-arm the timer because data may have been sent out.
  5131. * This is similar to the regular data transmission case
  5132. * when new data has just been ack'ed.
  5133. *
  5134. * (TFO) - we could try to be more aggressive and
  5135. * retransmitting any data sooner based on when they
  5136. * are sent out.
  5137. */
  5138. tcp_rearm_rto(sk);
  5139. } else
  5140. tcp_init_metrics(sk);
  5141. if (!inet_csk(sk)->icsk_ca_ops->cong_control)
  5142. tcp_update_pacing_rate(sk);
  5143. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  5144. tp->lsndtime = tcp_jiffies32;
  5145. tcp_initialize_rcv_mss(sk);
  5146. tcp_fast_path_on(tp);
  5147. break;
  5148. case TCP_FIN_WAIT1: {
  5149. int tmo;
  5150. /* If we enter the TCP_FIN_WAIT1 state and we are a
  5151. * Fast Open socket and this is the first acceptable
  5152. * ACK we have received, this would have acknowledged
  5153. * our SYNACK so stop the SYNACK timer.
  5154. */
  5155. if (req) {
  5156. /* We no longer need the request sock. */
  5157. reqsk_fastopen_remove(sk, req, false);
  5158. tcp_rearm_rto(sk);
  5159. }
  5160. if (tp->snd_una != tp->write_seq)
  5161. break;
  5162. tcp_set_state(sk, TCP_FIN_WAIT2);
  5163. sk->sk_shutdown |= SEND_SHUTDOWN;
  5164. sk_dst_confirm(sk);
  5165. if (!sock_flag(sk, SOCK_DEAD)) {
  5166. /* Wake up lingering close() */
  5167. sk->sk_state_change(sk);
  5168. break;
  5169. }
  5170. if (tp->linger2 < 0) {
  5171. tcp_done(sk);
  5172. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5173. return 1;
  5174. }
  5175. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5176. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5177. /* Receive out of order FIN after close() */
  5178. if (tp->syn_fastopen && th->fin)
  5179. tcp_fastopen_active_disable(sk);
  5180. tcp_done(sk);
  5181. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5182. return 1;
  5183. }
  5184. tmo = tcp_fin_time(sk);
  5185. if (tmo > TCP_TIMEWAIT_LEN) {
  5186. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5187. } else if (th->fin || sock_owned_by_user(sk)) {
  5188. /* Bad case. We could lose such FIN otherwise.
  5189. * It is not a big problem, but it looks confusing
  5190. * and not so rare event. We still can lose it now,
  5191. * if it spins in bh_lock_sock(), but it is really
  5192. * marginal case.
  5193. */
  5194. inet_csk_reset_keepalive_timer(sk, tmo);
  5195. } else {
  5196. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5197. goto discard;
  5198. }
  5199. break;
  5200. }
  5201. case TCP_CLOSING:
  5202. if (tp->snd_una == tp->write_seq) {
  5203. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5204. goto discard;
  5205. }
  5206. break;
  5207. case TCP_LAST_ACK:
  5208. if (tp->snd_una == tp->write_seq) {
  5209. tcp_update_metrics(sk);
  5210. tcp_done(sk);
  5211. goto discard;
  5212. }
  5213. break;
  5214. }
  5215. /* step 6: check the URG bit */
  5216. tcp_urg(sk, skb, th);
  5217. /* step 7: process the segment text */
  5218. switch (sk->sk_state) {
  5219. case TCP_CLOSE_WAIT:
  5220. case TCP_CLOSING:
  5221. case TCP_LAST_ACK:
  5222. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5223. break;
  5224. case TCP_FIN_WAIT1:
  5225. case TCP_FIN_WAIT2:
  5226. /* RFC 793 says to queue data in these states,
  5227. * RFC 1122 says we MUST send a reset.
  5228. * BSD 4.4 also does reset.
  5229. */
  5230. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5231. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5232. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5233. NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5234. tcp_reset(sk);
  5235. return 1;
  5236. }
  5237. }
  5238. /* Fall through */
  5239. case TCP_ESTABLISHED:
  5240. tcp_data_queue(sk, skb);
  5241. queued = 1;
  5242. break;
  5243. }
  5244. /* tcp_data could move socket to TIME-WAIT */
  5245. if (sk->sk_state != TCP_CLOSE) {
  5246. tcp_data_snd_check(sk);
  5247. tcp_ack_snd_check(sk);
  5248. }
  5249. if (!queued) {
  5250. discard:
  5251. tcp_drop(sk, skb);
  5252. }
  5253. return 0;
  5254. }
  5255. EXPORT_SYMBOL(tcp_rcv_state_process);
  5256. static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
  5257. {
  5258. struct inet_request_sock *ireq = inet_rsk(req);
  5259. if (family == AF_INET)
  5260. net_dbg_ratelimited("drop open request from %pI4/%u\n",
  5261. &ireq->ir_rmt_addr, port);
  5262. #if IS_ENABLED(CONFIG_IPV6)
  5263. else if (family == AF_INET6)
  5264. net_dbg_ratelimited("drop open request from %pI6/%u\n",
  5265. &ireq->ir_v6_rmt_addr, port);
  5266. #endif
  5267. }
  5268. /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
  5269. *
  5270. * If we receive a SYN packet with these bits set, it means a
  5271. * network is playing bad games with TOS bits. In order to
  5272. * avoid possible false congestion notifications, we disable
  5273. * TCP ECN negotiation.
  5274. *
  5275. * Exception: tcp_ca wants ECN. This is required for DCTCP
  5276. * congestion control: Linux DCTCP asserts ECT on all packets,
  5277. * including SYN, which is most optimal solution; however,
  5278. * others, such as FreeBSD do not.
  5279. */
  5280. static void tcp_ecn_create_request(struct request_sock *req,
  5281. const struct sk_buff *skb,
  5282. const struct sock *listen_sk,
  5283. const struct dst_entry *dst)
  5284. {
  5285. const struct tcphdr *th = tcp_hdr(skb);
  5286. const struct net *net = sock_net(listen_sk);
  5287. bool th_ecn = th->ece && th->cwr;
  5288. bool ect, ecn_ok;
  5289. u32 ecn_ok_dst;
  5290. if (!th_ecn)
  5291. return;
  5292. ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
  5293. ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
  5294. ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
  5295. if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
  5296. (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
  5297. tcp_bpf_ca_needs_ecn((struct sock *)req))
  5298. inet_rsk(req)->ecn_ok = 1;
  5299. }
  5300. static void tcp_openreq_init(struct request_sock *req,
  5301. const struct tcp_options_received *rx_opt,
  5302. struct sk_buff *skb, const struct sock *sk)
  5303. {
  5304. struct inet_request_sock *ireq = inet_rsk(req);
  5305. req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
  5306. req->cookie_ts = 0;
  5307. tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
  5308. tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5309. tcp_rsk(req)->snt_synack = tcp_clock_us();
  5310. tcp_rsk(req)->last_oow_ack_time = 0;
  5311. req->mss = rx_opt->mss_clamp;
  5312. req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
  5313. ireq->tstamp_ok = rx_opt->tstamp_ok;
  5314. ireq->sack_ok = rx_opt->sack_ok;
  5315. ireq->snd_wscale = rx_opt->snd_wscale;
  5316. ireq->wscale_ok = rx_opt->wscale_ok;
  5317. ireq->acked = 0;
  5318. ireq->ecn_ok = 0;
  5319. ireq->ir_rmt_port = tcp_hdr(skb)->source;
  5320. ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
  5321. ireq->ir_mark = inet_request_mark(sk, skb);
  5322. }
  5323. struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
  5324. struct sock *sk_listener,
  5325. bool attach_listener)
  5326. {
  5327. struct request_sock *req = reqsk_alloc(ops, sk_listener,
  5328. attach_listener);
  5329. if (req) {
  5330. struct inet_request_sock *ireq = inet_rsk(req);
  5331. kmemcheck_annotate_bitfield(ireq, flags);
  5332. ireq->opt = NULL;
  5333. #if IS_ENABLED(CONFIG_IPV6)
  5334. ireq->pktopts = NULL;
  5335. #endif
  5336. atomic64_set(&ireq->ir_cookie, 0);
  5337. ireq->ireq_state = TCP_NEW_SYN_RECV;
  5338. write_pnet(&ireq->ireq_net, sock_net(sk_listener));
  5339. ireq->ireq_family = sk_listener->sk_family;
  5340. }
  5341. return req;
  5342. }
  5343. EXPORT_SYMBOL(inet_reqsk_alloc);
  5344. /*
  5345. * Return true if a syncookie should be sent
  5346. */
  5347. static bool tcp_syn_flood_action(const struct sock *sk,
  5348. const struct sk_buff *skb,
  5349. const char *proto)
  5350. {
  5351. struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
  5352. const char *msg = "Dropping request";
  5353. bool want_cookie = false;
  5354. struct net *net = sock_net(sk);
  5355. #ifdef CONFIG_SYN_COOKIES
  5356. if (net->ipv4.sysctl_tcp_syncookies) {
  5357. msg = "Sending cookies";
  5358. want_cookie = true;
  5359. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
  5360. } else
  5361. #endif
  5362. __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
  5363. if (!queue->synflood_warned &&
  5364. net->ipv4.sysctl_tcp_syncookies != 2 &&
  5365. xchg(&queue->synflood_warned, 1) == 0)
  5366. pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
  5367. proto, ntohs(tcp_hdr(skb)->dest), msg);
  5368. return want_cookie;
  5369. }
  5370. static void tcp_reqsk_record_syn(const struct sock *sk,
  5371. struct request_sock *req,
  5372. const struct sk_buff *skb)
  5373. {
  5374. if (tcp_sk(sk)->save_syn) {
  5375. u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
  5376. u32 *copy;
  5377. copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
  5378. if (copy) {
  5379. copy[0] = len;
  5380. memcpy(&copy[1], skb_network_header(skb), len);
  5381. req->saved_syn = copy;
  5382. }
  5383. }
  5384. }
  5385. int tcp_conn_request(struct request_sock_ops *rsk_ops,
  5386. const struct tcp_request_sock_ops *af_ops,
  5387. struct sock *sk, struct sk_buff *skb)
  5388. {
  5389. struct tcp_fastopen_cookie foc = { .len = -1 };
  5390. __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
  5391. struct tcp_options_received tmp_opt;
  5392. struct tcp_sock *tp = tcp_sk(sk);
  5393. struct net *net = sock_net(sk);
  5394. struct sock *fastopen_sk = NULL;
  5395. struct request_sock *req;
  5396. bool want_cookie = false;
  5397. struct dst_entry *dst;
  5398. struct flowi fl;
  5399. /* TW buckets are converted to open requests without
  5400. * limitations, they conserve resources and peer is
  5401. * evidently real one.
  5402. */
  5403. if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
  5404. inet_csk_reqsk_queue_is_full(sk)) && !isn) {
  5405. want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
  5406. if (!want_cookie)
  5407. goto drop;
  5408. }
  5409. if (sk_acceptq_is_full(sk)) {
  5410. NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
  5411. goto drop;
  5412. }
  5413. req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
  5414. if (!req)
  5415. goto drop;
  5416. tcp_rsk(req)->af_specific = af_ops;
  5417. tcp_rsk(req)->ts_off = 0;
  5418. tcp_clear_options(&tmp_opt);
  5419. tmp_opt.mss_clamp = af_ops->mss_clamp;
  5420. tmp_opt.user_mss = tp->rx_opt.user_mss;
  5421. tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
  5422. want_cookie ? NULL : &foc);
  5423. if (want_cookie && !tmp_opt.saw_tstamp)
  5424. tcp_clear_options(&tmp_opt);
  5425. tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
  5426. tcp_openreq_init(req, &tmp_opt, skb, sk);
  5427. inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
  5428. /* Note: tcp_v6_init_req() might override ir_iif for link locals */
  5429. inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
  5430. af_ops->init_req(req, sk, skb);
  5431. if (security_inet_conn_request(sk, skb, req))
  5432. goto drop_and_free;
  5433. if (tmp_opt.tstamp_ok)
  5434. tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
  5435. dst = af_ops->route_req(sk, &fl, req);
  5436. if (!dst)
  5437. goto drop_and_free;
  5438. if (!want_cookie && !isn) {
  5439. /* Kill the following clause, if you dislike this way. */
  5440. if (!net->ipv4.sysctl_tcp_syncookies &&
  5441. (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
  5442. (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
  5443. !tcp_peer_is_proven(req, dst)) {
  5444. /* Without syncookies last quarter of
  5445. * backlog is filled with destinations,
  5446. * proven to be alive.
  5447. * It means that we continue to communicate
  5448. * to destinations, already remembered
  5449. * to the moment of synflood.
  5450. */
  5451. pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
  5452. rsk_ops->family);
  5453. goto drop_and_release;
  5454. }
  5455. isn = af_ops->init_seq(skb);
  5456. }
  5457. tcp_ecn_create_request(req, skb, sk, dst);
  5458. if (want_cookie) {
  5459. isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
  5460. req->cookie_ts = tmp_opt.tstamp_ok;
  5461. if (!tmp_opt.tstamp_ok)
  5462. inet_rsk(req)->ecn_ok = 0;
  5463. }
  5464. tcp_rsk(req)->snt_isn = isn;
  5465. tcp_rsk(req)->txhash = net_tx_rndhash();
  5466. tcp_openreq_init_rwin(req, sk, dst);
  5467. if (!want_cookie) {
  5468. tcp_reqsk_record_syn(sk, req, skb);
  5469. fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
  5470. }
  5471. if (fastopen_sk) {
  5472. af_ops->send_synack(fastopen_sk, dst, &fl, req,
  5473. &foc, TCP_SYNACK_FASTOPEN);
  5474. /* Add the child socket directly into the accept queue */
  5475. inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
  5476. sk->sk_data_ready(sk);
  5477. bh_unlock_sock(fastopen_sk);
  5478. sock_put(fastopen_sk);
  5479. } else {
  5480. tcp_rsk(req)->tfo_listener = false;
  5481. if (!want_cookie)
  5482. inet_csk_reqsk_queue_hash_add(sk, req,
  5483. tcp_timeout_init((struct sock *)req));
  5484. af_ops->send_synack(sk, dst, &fl, req, &foc,
  5485. !want_cookie ? TCP_SYNACK_NORMAL :
  5486. TCP_SYNACK_COOKIE);
  5487. if (want_cookie) {
  5488. reqsk_free(req);
  5489. return 0;
  5490. }
  5491. }
  5492. reqsk_put(req);
  5493. return 0;
  5494. drop_and_release:
  5495. dst_release(dst);
  5496. drop_and_free:
  5497. reqsk_free(req);
  5498. drop:
  5499. tcp_listendrop(sk);
  5500. return 0;
  5501. }
  5502. EXPORT_SYMBOL(tcp_conn_request);