intel_ringbuffer.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct intel_engine_cs *ring,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. u32 cmd;
  87. int ret;
  88. cmd = MI_FLUSH;
  89. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  90. cmd |= MI_NO_WRITE_FLUSH;
  91. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  92. cmd |= MI_READ_FLUSH;
  93. ret = intel_ring_begin(ring, 2);
  94. if (ret)
  95. return ret;
  96. intel_ring_emit(ring, cmd);
  97. intel_ring_emit(ring, MI_NOOP);
  98. intel_ring_advance(ring);
  99. return 0;
  100. }
  101. static int
  102. gen4_render_ring_flush(struct intel_engine_cs *ring,
  103. u32 invalidate_domains,
  104. u32 flush_domains)
  105. {
  106. struct drm_device *dev = ring->dev;
  107. u32 cmd;
  108. int ret;
  109. /*
  110. * read/write caches:
  111. *
  112. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  113. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  114. * also flushed at 2d versus 3d pipeline switches.
  115. *
  116. * read-only caches:
  117. *
  118. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  119. * MI_READ_FLUSH is set, and is always flushed on 965.
  120. *
  121. * I915_GEM_DOMAIN_COMMAND may not exist?
  122. *
  123. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  124. * invalidated when MI_EXE_FLUSH is set.
  125. *
  126. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  127. * invalidated with every MI_FLUSH.
  128. *
  129. * TLBs:
  130. *
  131. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  132. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  133. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  134. * are flushed at any MI_FLUSH.
  135. */
  136. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  137. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  138. cmd &= ~MI_NO_WRITE_FLUSH;
  139. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  140. cmd |= MI_EXE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  142. (IS_G4X(dev) || IS_GEN5(dev)))
  143. cmd |= MI_INVALIDATE_ISP;
  144. ret = intel_ring_begin(ring, 2);
  145. if (ret)
  146. return ret;
  147. intel_ring_emit(ring, cmd);
  148. intel_ring_emit(ring, MI_NOOP);
  149. intel_ring_advance(ring);
  150. return 0;
  151. }
  152. /**
  153. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  154. * implementing two workarounds on gen6. From section 1.4.7.1
  155. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  156. *
  157. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  158. * produced by non-pipelined state commands), software needs to first
  159. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  160. * 0.
  161. *
  162. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  163. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  164. *
  165. * And the workaround for these two requires this workaround first:
  166. *
  167. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  168. * BEFORE the pipe-control with a post-sync op and no write-cache
  169. * flushes.
  170. *
  171. * And this last workaround is tricky because of the requirements on
  172. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  173. * volume 2 part 1:
  174. *
  175. * "1 of the following must also be set:
  176. * - Render Target Cache Flush Enable ([12] of DW1)
  177. * - Depth Cache Flush Enable ([0] of DW1)
  178. * - Stall at Pixel Scoreboard ([1] of DW1)
  179. * - Depth Stall ([13] of DW1)
  180. * - Post-Sync Operation ([13] of DW1)
  181. * - Notify Enable ([8] of DW1)"
  182. *
  183. * The cache flushes require the workaround flush that triggered this
  184. * one, so we can't use it. Depth stall would trigger the same.
  185. * Post-sync nonzero is what triggered this second workaround, so we
  186. * can't use that one either. Notify enable is IRQs, which aren't
  187. * really our business. That leaves only stall at scoreboard.
  188. */
  189. static int
  190. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  191. {
  192. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  193. int ret;
  194. ret = intel_ring_begin(ring, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  199. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  200. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  201. intel_ring_emit(ring, 0); /* low dword */
  202. intel_ring_emit(ring, 0); /* high dword */
  203. intel_ring_emit(ring, MI_NOOP);
  204. intel_ring_advance(ring);
  205. ret = intel_ring_begin(ring, 6);
  206. if (ret)
  207. return ret;
  208. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  209. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  210. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  211. intel_ring_emit(ring, 0);
  212. intel_ring_emit(ring, 0);
  213. intel_ring_emit(ring, MI_NOOP);
  214. intel_ring_advance(ring);
  215. return 0;
  216. }
  217. static int
  218. gen6_render_ring_flush(struct intel_engine_cs *ring,
  219. u32 invalidate_domains, u32 flush_domains)
  220. {
  221. u32 flags = 0;
  222. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  223. int ret;
  224. /* Force SNB workarounds for PIPE_CONTROL flushes */
  225. ret = intel_emit_post_sync_nonzero_flush(ring);
  226. if (ret)
  227. return ret;
  228. /* Just flush everything. Experiments have shown that reducing the
  229. * number of bits based on the write domains has little performance
  230. * impact.
  231. */
  232. if (flush_domains) {
  233. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  234. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  235. /*
  236. * Ensure that any following seqno writes only happen
  237. * when the render cache is indeed flushed.
  238. */
  239. flags |= PIPE_CONTROL_CS_STALL;
  240. }
  241. if (invalidate_domains) {
  242. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  243. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  244. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  245. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  246. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  247. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  248. /*
  249. * TLB invalidate requires a post-sync write.
  250. */
  251. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  252. }
  253. ret = intel_ring_begin(ring, 4);
  254. if (ret)
  255. return ret;
  256. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  257. intel_ring_emit(ring, flags);
  258. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  259. intel_ring_emit(ring, 0);
  260. intel_ring_advance(ring);
  261. return 0;
  262. }
  263. static int
  264. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  265. {
  266. int ret;
  267. ret = intel_ring_begin(ring, 4);
  268. if (ret)
  269. return ret;
  270. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  271. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  272. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  273. intel_ring_emit(ring, 0);
  274. intel_ring_emit(ring, 0);
  275. intel_ring_advance(ring);
  276. return 0;
  277. }
  278. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  279. {
  280. int ret;
  281. if (!ring->fbc_dirty)
  282. return 0;
  283. ret = intel_ring_begin(ring, 6);
  284. if (ret)
  285. return ret;
  286. /* WaFbcNukeOn3DBlt:ivb/hsw */
  287. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  288. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  289. intel_ring_emit(ring, value);
  290. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  291. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  292. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  293. intel_ring_advance(ring);
  294. ring->fbc_dirty = false;
  295. return 0;
  296. }
  297. static int
  298. gen7_render_ring_flush(struct intel_engine_cs *ring,
  299. u32 invalidate_domains, u32 flush_domains)
  300. {
  301. u32 flags = 0;
  302. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  303. int ret;
  304. /*
  305. * Ensure that any following seqno writes only happen when the render
  306. * cache is indeed flushed.
  307. *
  308. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  309. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  310. * don't try to be clever and just set it unconditionally.
  311. */
  312. flags |= PIPE_CONTROL_CS_STALL;
  313. /* Just flush everything. Experiments have shown that reducing the
  314. * number of bits based on the write domains has little performance
  315. * impact.
  316. */
  317. if (flush_domains) {
  318. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  319. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  320. }
  321. if (invalidate_domains) {
  322. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  323. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  324. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  325. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  326. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  327. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  328. /*
  329. * TLB invalidate requires a post-sync write.
  330. */
  331. flags |= PIPE_CONTROL_QW_WRITE;
  332. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  333. /* Workaround: we must issue a pipe_control with CS-stall bit
  334. * set before a pipe_control command that has the state cache
  335. * invalidate bit set. */
  336. gen7_render_ring_cs_stall_wa(ring);
  337. }
  338. ret = intel_ring_begin(ring, 4);
  339. if (ret)
  340. return ret;
  341. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  342. intel_ring_emit(ring, flags);
  343. intel_ring_emit(ring, scratch_addr);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_advance(ring);
  346. if (!invalidate_domains && flush_domains)
  347. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  348. return 0;
  349. }
  350. static int
  351. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  352. u32 flags, u32 scratch_addr)
  353. {
  354. int ret;
  355. ret = intel_ring_begin(ring, 6);
  356. if (ret)
  357. return ret;
  358. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  359. intel_ring_emit(ring, flags);
  360. intel_ring_emit(ring, scratch_addr);
  361. intel_ring_emit(ring, 0);
  362. intel_ring_emit(ring, 0);
  363. intel_ring_emit(ring, 0);
  364. intel_ring_advance(ring);
  365. return 0;
  366. }
  367. static int
  368. gen8_render_ring_flush(struct intel_engine_cs *ring,
  369. u32 invalidate_domains, u32 flush_domains)
  370. {
  371. u32 flags = 0;
  372. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  373. int ret;
  374. flags |= PIPE_CONTROL_CS_STALL;
  375. if (flush_domains) {
  376. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  377. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  378. }
  379. if (invalidate_domains) {
  380. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  381. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  382. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  383. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  384. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  385. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  386. flags |= PIPE_CONTROL_QW_WRITE;
  387. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  388. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  389. ret = gen8_emit_pipe_control(ring,
  390. PIPE_CONTROL_CS_STALL |
  391. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  392. 0);
  393. if (ret)
  394. return ret;
  395. }
  396. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  397. if (ret)
  398. return ret;
  399. if (!invalidate_domains && flush_domains)
  400. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  401. return 0;
  402. }
  403. static void ring_write_tail(struct intel_engine_cs *ring,
  404. u32 value)
  405. {
  406. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  407. I915_WRITE_TAIL(ring, value);
  408. }
  409. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  410. {
  411. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  412. u64 acthd;
  413. if (INTEL_INFO(ring->dev)->gen >= 8)
  414. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  415. RING_ACTHD_UDW(ring->mmio_base));
  416. else if (INTEL_INFO(ring->dev)->gen >= 4)
  417. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  418. else
  419. acthd = I915_READ(ACTHD);
  420. return acthd;
  421. }
  422. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  425. u32 addr;
  426. addr = dev_priv->status_page_dmah->busaddr;
  427. if (INTEL_INFO(ring->dev)->gen >= 4)
  428. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  429. I915_WRITE(HWS_PGA, addr);
  430. }
  431. static bool stop_ring(struct intel_engine_cs *ring)
  432. {
  433. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  434. if (!IS_GEN2(ring->dev)) {
  435. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  436. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  437. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  438. /* Sometimes we observe that the idle flag is not
  439. * set even though the ring is empty. So double
  440. * check before giving up.
  441. */
  442. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  443. return false;
  444. }
  445. }
  446. I915_WRITE_CTL(ring, 0);
  447. I915_WRITE_HEAD(ring, 0);
  448. ring->write_tail(ring, 0);
  449. if (!IS_GEN2(ring->dev)) {
  450. (void)I915_READ_CTL(ring);
  451. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  452. }
  453. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  454. }
  455. static int init_ring_common(struct intel_engine_cs *ring)
  456. {
  457. struct drm_device *dev = ring->dev;
  458. struct drm_i915_private *dev_priv = dev->dev_private;
  459. struct intel_ringbuffer *ringbuf = ring->buffer;
  460. struct drm_i915_gem_object *obj = ringbuf->obj;
  461. int ret = 0;
  462. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  463. if (!stop_ring(ring)) {
  464. /* G45 ring initialization often fails to reset head to zero */
  465. DRM_DEBUG_KMS("%s head not reset to zero "
  466. "ctl %08x head %08x tail %08x start %08x\n",
  467. ring->name,
  468. I915_READ_CTL(ring),
  469. I915_READ_HEAD(ring),
  470. I915_READ_TAIL(ring),
  471. I915_READ_START(ring));
  472. if (!stop_ring(ring)) {
  473. DRM_ERROR("failed to set %s head to zero "
  474. "ctl %08x head %08x tail %08x start %08x\n",
  475. ring->name,
  476. I915_READ_CTL(ring),
  477. I915_READ_HEAD(ring),
  478. I915_READ_TAIL(ring),
  479. I915_READ_START(ring));
  480. ret = -EIO;
  481. goto out;
  482. }
  483. }
  484. if (I915_NEED_GFX_HWS(dev))
  485. intel_ring_setup_status_page(ring);
  486. else
  487. ring_setup_phys_status_page(ring);
  488. /* Enforce ordering by reading HEAD register back */
  489. I915_READ_HEAD(ring);
  490. /* Initialize the ring. This must happen _after_ we've cleared the ring
  491. * registers with the above sequence (the readback of the HEAD registers
  492. * also enforces ordering), otherwise the hw might lose the new ring
  493. * register values. */
  494. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  495. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  496. if (I915_READ_HEAD(ring))
  497. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  498. ring->name, I915_READ_HEAD(ring));
  499. I915_WRITE_HEAD(ring, 0);
  500. (void)I915_READ_HEAD(ring);
  501. I915_WRITE_CTL(ring,
  502. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  503. | RING_VALID);
  504. /* If the head is still not zero, the ring is dead */
  505. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  506. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  507. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  508. DRM_ERROR("%s initialization failed "
  509. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  510. ring->name,
  511. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  512. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  513. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  514. ret = -EIO;
  515. goto out;
  516. }
  517. ringbuf->last_retired_head = -1;
  518. ringbuf->head = I915_READ_HEAD(ring);
  519. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  520. intel_ring_update_space(ringbuf);
  521. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  522. out:
  523. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  524. return ret;
  525. }
  526. void
  527. intel_fini_pipe_control(struct intel_engine_cs *ring)
  528. {
  529. struct drm_device *dev = ring->dev;
  530. if (ring->scratch.obj == NULL)
  531. return;
  532. if (INTEL_INFO(dev)->gen >= 5) {
  533. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  534. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  535. }
  536. drm_gem_object_unreference(&ring->scratch.obj->base);
  537. ring->scratch.obj = NULL;
  538. }
  539. int
  540. intel_init_pipe_control(struct intel_engine_cs *ring)
  541. {
  542. int ret;
  543. WARN_ON(ring->scratch.obj);
  544. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  545. if (ring->scratch.obj == NULL) {
  546. DRM_ERROR("Failed to allocate seqno page\n");
  547. ret = -ENOMEM;
  548. goto err;
  549. }
  550. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  551. if (ret)
  552. goto err_unref;
  553. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  554. if (ret)
  555. goto err_unref;
  556. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  557. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  558. if (ring->scratch.cpu_page == NULL) {
  559. ret = -ENOMEM;
  560. goto err_unpin;
  561. }
  562. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  563. ring->name, ring->scratch.gtt_offset);
  564. return 0;
  565. err_unpin:
  566. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  567. err_unref:
  568. drm_gem_object_unreference(&ring->scratch.obj->base);
  569. err:
  570. return ret;
  571. }
  572. static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
  573. struct intel_context *ctx)
  574. {
  575. int ret, i;
  576. struct drm_device *dev = ring->dev;
  577. struct drm_i915_private *dev_priv = dev->dev_private;
  578. struct i915_workarounds *w = &dev_priv->workarounds;
  579. if (WARN_ON(w->count == 0))
  580. return 0;
  581. ring->gpu_caches_dirty = true;
  582. ret = intel_ring_flush_all_caches(ring);
  583. if (ret)
  584. return ret;
  585. ret = intel_ring_begin(ring, (w->count * 2 + 2));
  586. if (ret)
  587. return ret;
  588. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  589. for (i = 0; i < w->count; i++) {
  590. intel_ring_emit(ring, w->reg[i].addr);
  591. intel_ring_emit(ring, w->reg[i].value);
  592. }
  593. intel_ring_emit(ring, MI_NOOP);
  594. intel_ring_advance(ring);
  595. ring->gpu_caches_dirty = true;
  596. ret = intel_ring_flush_all_caches(ring);
  597. if (ret)
  598. return ret;
  599. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  600. return 0;
  601. }
  602. static int wa_add(struct drm_i915_private *dev_priv,
  603. const u32 addr, const u32 val, const u32 mask)
  604. {
  605. const u32 idx = dev_priv->workarounds.count;
  606. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  607. return -ENOSPC;
  608. dev_priv->workarounds.reg[idx].addr = addr;
  609. dev_priv->workarounds.reg[idx].value = val;
  610. dev_priv->workarounds.reg[idx].mask = mask;
  611. dev_priv->workarounds.count++;
  612. return 0;
  613. }
  614. #define WA_REG(addr, val, mask) { \
  615. const int r = wa_add(dev_priv, (addr), (val), (mask)); \
  616. if (r) \
  617. return r; \
  618. }
  619. #define WA_SET_BIT_MASKED(addr, mask) \
  620. WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
  621. #define WA_CLR_BIT_MASKED(addr, mask) \
  622. WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
  623. #define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
  624. #define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
  625. #define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
  626. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  627. {
  628. struct drm_device *dev = ring->dev;
  629. struct drm_i915_private *dev_priv = dev->dev_private;
  630. /* WaDisablePartialInstShootdown:bdw */
  631. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  632. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  633. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  634. STALL_DOP_GATING_DISABLE);
  635. /* WaDisableDopClockGating:bdw */
  636. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  637. DOP_CLOCK_GATING_DISABLE);
  638. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  639. GEN8_SAMPLER_POWER_BYPASS_DIS);
  640. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  641. * workaround for for a possible hang in the unlikely event a TLB
  642. * invalidation occurs during a PSD flush.
  643. */
  644. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  645. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  646. HDC_FORCE_NON_COHERENT |
  647. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  648. /* Wa4x4STCOptimizationDisable:bdw */
  649. WA_SET_BIT_MASKED(CACHE_MODE_1,
  650. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  651. /*
  652. * BSpec recommends 8x4 when MSAA is used,
  653. * however in practice 16x4 seems fastest.
  654. *
  655. * Note that PS/WM thread counts depend on the WIZ hashing
  656. * disable bit, which we don't touch here, but it's good
  657. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  658. */
  659. WA_SET_BIT_MASKED(GEN7_GT_MODE,
  660. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  661. return 0;
  662. }
  663. static int chv_init_workarounds(struct intel_engine_cs *ring)
  664. {
  665. struct drm_device *dev = ring->dev;
  666. struct drm_i915_private *dev_priv = dev->dev_private;
  667. /* WaDisablePartialInstShootdown:chv */
  668. /* WaDisableThreadStallDopClockGating:chv */
  669. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  670. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  671. STALL_DOP_GATING_DISABLE);
  672. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  673. * workaround for a possible hang in the unlikely event a TLB
  674. * invalidation occurs during a PSD flush.
  675. */
  676. /* WaForceEnableNonCoherent:chv */
  677. /* WaHdcDisableFetchWhenMasked:chv */
  678. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  679. HDC_FORCE_NON_COHERENT |
  680. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  681. return 0;
  682. }
  683. int init_workarounds_ring(struct intel_engine_cs *ring)
  684. {
  685. struct drm_device *dev = ring->dev;
  686. struct drm_i915_private *dev_priv = dev->dev_private;
  687. WARN_ON(ring->id != RCS);
  688. dev_priv->workarounds.count = 0;
  689. if (IS_BROADWELL(dev))
  690. return bdw_init_workarounds(ring);
  691. if (IS_CHERRYVIEW(dev))
  692. return chv_init_workarounds(ring);
  693. return 0;
  694. }
  695. static int init_render_ring(struct intel_engine_cs *ring)
  696. {
  697. struct drm_device *dev = ring->dev;
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. int ret = init_ring_common(ring);
  700. if (ret)
  701. return ret;
  702. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  703. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  704. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  705. /* We need to disable the AsyncFlip performance optimisations in order
  706. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  707. * programmed to '1' on all products.
  708. *
  709. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  710. */
  711. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  712. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  713. /* Required for the hardware to program scanline values for waiting */
  714. /* WaEnableFlushTlbInvalidationMode:snb */
  715. if (INTEL_INFO(dev)->gen == 6)
  716. I915_WRITE(GFX_MODE,
  717. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  718. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  719. if (IS_GEN7(dev))
  720. I915_WRITE(GFX_MODE_GEN7,
  721. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  722. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  723. if (IS_GEN6(dev)) {
  724. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  725. * "If this bit is set, STCunit will have LRA as replacement
  726. * policy. [...] This bit must be reset. LRA replacement
  727. * policy is not supported."
  728. */
  729. I915_WRITE(CACHE_MODE_0,
  730. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  731. }
  732. if (INTEL_INFO(dev)->gen >= 6)
  733. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  734. if (HAS_L3_DPF(dev))
  735. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  736. return init_workarounds_ring(ring);
  737. }
  738. static void render_ring_cleanup(struct intel_engine_cs *ring)
  739. {
  740. struct drm_device *dev = ring->dev;
  741. struct drm_i915_private *dev_priv = dev->dev_private;
  742. if (dev_priv->semaphore_obj) {
  743. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  744. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  745. dev_priv->semaphore_obj = NULL;
  746. }
  747. intel_fini_pipe_control(ring);
  748. }
  749. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  750. unsigned int num_dwords)
  751. {
  752. #define MBOX_UPDATE_DWORDS 8
  753. struct drm_device *dev = signaller->dev;
  754. struct drm_i915_private *dev_priv = dev->dev_private;
  755. struct intel_engine_cs *waiter;
  756. int i, ret, num_rings;
  757. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  758. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  759. #undef MBOX_UPDATE_DWORDS
  760. ret = intel_ring_begin(signaller, num_dwords);
  761. if (ret)
  762. return ret;
  763. for_each_ring(waiter, dev_priv, i) {
  764. u32 seqno;
  765. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  766. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  767. continue;
  768. seqno = i915_gem_request_get_seqno(
  769. signaller->outstanding_lazy_request);
  770. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  771. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  772. PIPE_CONTROL_QW_WRITE |
  773. PIPE_CONTROL_FLUSH_ENABLE);
  774. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  775. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  776. intel_ring_emit(signaller, seqno);
  777. intel_ring_emit(signaller, 0);
  778. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  779. MI_SEMAPHORE_TARGET(waiter->id));
  780. intel_ring_emit(signaller, 0);
  781. }
  782. return 0;
  783. }
  784. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  785. unsigned int num_dwords)
  786. {
  787. #define MBOX_UPDATE_DWORDS 6
  788. struct drm_device *dev = signaller->dev;
  789. struct drm_i915_private *dev_priv = dev->dev_private;
  790. struct intel_engine_cs *waiter;
  791. int i, ret, num_rings;
  792. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  793. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  794. #undef MBOX_UPDATE_DWORDS
  795. ret = intel_ring_begin(signaller, num_dwords);
  796. if (ret)
  797. return ret;
  798. for_each_ring(waiter, dev_priv, i) {
  799. u32 seqno;
  800. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  801. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  802. continue;
  803. seqno = i915_gem_request_get_seqno(
  804. signaller->outstanding_lazy_request);
  805. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  806. MI_FLUSH_DW_OP_STOREDW);
  807. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  808. MI_FLUSH_DW_USE_GTT);
  809. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  810. intel_ring_emit(signaller, seqno);
  811. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  812. MI_SEMAPHORE_TARGET(waiter->id));
  813. intel_ring_emit(signaller, 0);
  814. }
  815. return 0;
  816. }
  817. static int gen6_signal(struct intel_engine_cs *signaller,
  818. unsigned int num_dwords)
  819. {
  820. struct drm_device *dev = signaller->dev;
  821. struct drm_i915_private *dev_priv = dev->dev_private;
  822. struct intel_engine_cs *useless;
  823. int i, ret, num_rings;
  824. #define MBOX_UPDATE_DWORDS 3
  825. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  826. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  827. #undef MBOX_UPDATE_DWORDS
  828. ret = intel_ring_begin(signaller, num_dwords);
  829. if (ret)
  830. return ret;
  831. for_each_ring(useless, dev_priv, i) {
  832. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  833. if (mbox_reg != GEN6_NOSYNC) {
  834. u32 seqno = i915_gem_request_get_seqno(
  835. signaller->outstanding_lazy_request);
  836. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  837. intel_ring_emit(signaller, mbox_reg);
  838. intel_ring_emit(signaller, seqno);
  839. }
  840. }
  841. /* If num_dwords was rounded, make sure the tail pointer is correct */
  842. if (num_rings % 2 == 0)
  843. intel_ring_emit(signaller, MI_NOOP);
  844. return 0;
  845. }
  846. /**
  847. * gen6_add_request - Update the semaphore mailbox registers
  848. *
  849. * @ring - ring that is adding a request
  850. * @seqno - return seqno stuck into the ring
  851. *
  852. * Update the mailbox registers in the *other* rings with the current seqno.
  853. * This acts like a signal in the canonical semaphore.
  854. */
  855. static int
  856. gen6_add_request(struct intel_engine_cs *ring)
  857. {
  858. int ret;
  859. if (ring->semaphore.signal)
  860. ret = ring->semaphore.signal(ring, 4);
  861. else
  862. ret = intel_ring_begin(ring, 4);
  863. if (ret)
  864. return ret;
  865. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  866. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  867. intel_ring_emit(ring,
  868. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  869. intel_ring_emit(ring, MI_USER_INTERRUPT);
  870. __intel_ring_advance(ring);
  871. return 0;
  872. }
  873. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  874. u32 seqno)
  875. {
  876. struct drm_i915_private *dev_priv = dev->dev_private;
  877. return dev_priv->last_seqno < seqno;
  878. }
  879. /**
  880. * intel_ring_sync - sync the waiter to the signaller on seqno
  881. *
  882. * @waiter - ring that is waiting
  883. * @signaller - ring which has, or will signal
  884. * @seqno - seqno which the waiter will block on
  885. */
  886. static int
  887. gen8_ring_sync(struct intel_engine_cs *waiter,
  888. struct intel_engine_cs *signaller,
  889. u32 seqno)
  890. {
  891. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  892. int ret;
  893. ret = intel_ring_begin(waiter, 4);
  894. if (ret)
  895. return ret;
  896. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  897. MI_SEMAPHORE_GLOBAL_GTT |
  898. MI_SEMAPHORE_POLL |
  899. MI_SEMAPHORE_SAD_GTE_SDD);
  900. intel_ring_emit(waiter, seqno);
  901. intel_ring_emit(waiter,
  902. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  903. intel_ring_emit(waiter,
  904. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  905. intel_ring_advance(waiter);
  906. return 0;
  907. }
  908. static int
  909. gen6_ring_sync(struct intel_engine_cs *waiter,
  910. struct intel_engine_cs *signaller,
  911. u32 seqno)
  912. {
  913. u32 dw1 = MI_SEMAPHORE_MBOX |
  914. MI_SEMAPHORE_COMPARE |
  915. MI_SEMAPHORE_REGISTER;
  916. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  917. int ret;
  918. /* Throughout all of the GEM code, seqno passed implies our current
  919. * seqno is >= the last seqno executed. However for hardware the
  920. * comparison is strictly greater than.
  921. */
  922. seqno -= 1;
  923. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  924. ret = intel_ring_begin(waiter, 4);
  925. if (ret)
  926. return ret;
  927. /* If seqno wrap happened, omit the wait with no-ops */
  928. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  929. intel_ring_emit(waiter, dw1 | wait_mbox);
  930. intel_ring_emit(waiter, seqno);
  931. intel_ring_emit(waiter, 0);
  932. intel_ring_emit(waiter, MI_NOOP);
  933. } else {
  934. intel_ring_emit(waiter, MI_NOOP);
  935. intel_ring_emit(waiter, MI_NOOP);
  936. intel_ring_emit(waiter, MI_NOOP);
  937. intel_ring_emit(waiter, MI_NOOP);
  938. }
  939. intel_ring_advance(waiter);
  940. return 0;
  941. }
  942. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  943. do { \
  944. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  945. PIPE_CONTROL_DEPTH_STALL); \
  946. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  947. intel_ring_emit(ring__, 0); \
  948. intel_ring_emit(ring__, 0); \
  949. } while (0)
  950. static int
  951. pc_render_add_request(struct intel_engine_cs *ring)
  952. {
  953. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  954. int ret;
  955. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  956. * incoherent with writes to memory, i.e. completely fubar,
  957. * so we need to use PIPE_NOTIFY instead.
  958. *
  959. * However, we also need to workaround the qword write
  960. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  961. * memory before requesting an interrupt.
  962. */
  963. ret = intel_ring_begin(ring, 32);
  964. if (ret)
  965. return ret;
  966. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  967. PIPE_CONTROL_WRITE_FLUSH |
  968. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  969. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  970. intel_ring_emit(ring,
  971. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  972. intel_ring_emit(ring, 0);
  973. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  974. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  975. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  976. scratch_addr += 2 * CACHELINE_BYTES;
  977. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  978. scratch_addr += 2 * CACHELINE_BYTES;
  979. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  980. scratch_addr += 2 * CACHELINE_BYTES;
  981. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  982. scratch_addr += 2 * CACHELINE_BYTES;
  983. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  984. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  985. PIPE_CONTROL_WRITE_FLUSH |
  986. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  987. PIPE_CONTROL_NOTIFY);
  988. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  989. intel_ring_emit(ring,
  990. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  991. intel_ring_emit(ring, 0);
  992. __intel_ring_advance(ring);
  993. return 0;
  994. }
  995. static u32
  996. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  997. {
  998. /* Workaround to force correct ordering between irq and seqno writes on
  999. * ivb (and maybe also on snb) by reading from a CS register (like
  1000. * ACTHD) before reading the status page. */
  1001. if (!lazy_coherency) {
  1002. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1003. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1004. }
  1005. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1006. }
  1007. static u32
  1008. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1009. {
  1010. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1011. }
  1012. static void
  1013. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1014. {
  1015. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1016. }
  1017. static u32
  1018. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1019. {
  1020. return ring->scratch.cpu_page[0];
  1021. }
  1022. static void
  1023. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1024. {
  1025. ring->scratch.cpu_page[0] = seqno;
  1026. }
  1027. static bool
  1028. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1029. {
  1030. struct drm_device *dev = ring->dev;
  1031. struct drm_i915_private *dev_priv = dev->dev_private;
  1032. unsigned long flags;
  1033. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1034. return false;
  1035. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1036. if (ring->irq_refcount++ == 0)
  1037. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1038. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1039. return true;
  1040. }
  1041. static void
  1042. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1043. {
  1044. struct drm_device *dev = ring->dev;
  1045. struct drm_i915_private *dev_priv = dev->dev_private;
  1046. unsigned long flags;
  1047. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1048. if (--ring->irq_refcount == 0)
  1049. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1050. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1051. }
  1052. static bool
  1053. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1054. {
  1055. struct drm_device *dev = ring->dev;
  1056. struct drm_i915_private *dev_priv = dev->dev_private;
  1057. unsigned long flags;
  1058. if (!intel_irqs_enabled(dev_priv))
  1059. return false;
  1060. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1061. if (ring->irq_refcount++ == 0) {
  1062. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1063. I915_WRITE(IMR, dev_priv->irq_mask);
  1064. POSTING_READ(IMR);
  1065. }
  1066. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1067. return true;
  1068. }
  1069. static void
  1070. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1071. {
  1072. struct drm_device *dev = ring->dev;
  1073. struct drm_i915_private *dev_priv = dev->dev_private;
  1074. unsigned long flags;
  1075. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1076. if (--ring->irq_refcount == 0) {
  1077. dev_priv->irq_mask |= ring->irq_enable_mask;
  1078. I915_WRITE(IMR, dev_priv->irq_mask);
  1079. POSTING_READ(IMR);
  1080. }
  1081. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1082. }
  1083. static bool
  1084. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1085. {
  1086. struct drm_device *dev = ring->dev;
  1087. struct drm_i915_private *dev_priv = dev->dev_private;
  1088. unsigned long flags;
  1089. if (!intel_irqs_enabled(dev_priv))
  1090. return false;
  1091. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1092. if (ring->irq_refcount++ == 0) {
  1093. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1094. I915_WRITE16(IMR, dev_priv->irq_mask);
  1095. POSTING_READ16(IMR);
  1096. }
  1097. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1098. return true;
  1099. }
  1100. static void
  1101. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1102. {
  1103. struct drm_device *dev = ring->dev;
  1104. struct drm_i915_private *dev_priv = dev->dev_private;
  1105. unsigned long flags;
  1106. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1107. if (--ring->irq_refcount == 0) {
  1108. dev_priv->irq_mask |= ring->irq_enable_mask;
  1109. I915_WRITE16(IMR, dev_priv->irq_mask);
  1110. POSTING_READ16(IMR);
  1111. }
  1112. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1113. }
  1114. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1115. {
  1116. struct drm_device *dev = ring->dev;
  1117. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1118. u32 mmio = 0;
  1119. /* The ring status page addresses are no longer next to the rest of
  1120. * the ring registers as of gen7.
  1121. */
  1122. if (IS_GEN7(dev)) {
  1123. switch (ring->id) {
  1124. case RCS:
  1125. mmio = RENDER_HWS_PGA_GEN7;
  1126. break;
  1127. case BCS:
  1128. mmio = BLT_HWS_PGA_GEN7;
  1129. break;
  1130. /*
  1131. * VCS2 actually doesn't exist on Gen7. Only shut up
  1132. * gcc switch check warning
  1133. */
  1134. case VCS2:
  1135. case VCS:
  1136. mmio = BSD_HWS_PGA_GEN7;
  1137. break;
  1138. case VECS:
  1139. mmio = VEBOX_HWS_PGA_GEN7;
  1140. break;
  1141. }
  1142. } else if (IS_GEN6(ring->dev)) {
  1143. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1144. } else {
  1145. /* XXX: gen8 returns to sanity */
  1146. mmio = RING_HWS_PGA(ring->mmio_base);
  1147. }
  1148. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1149. POSTING_READ(mmio);
  1150. /*
  1151. * Flush the TLB for this page
  1152. *
  1153. * FIXME: These two bits have disappeared on gen8, so a question
  1154. * arises: do we still need this and if so how should we go about
  1155. * invalidating the TLB?
  1156. */
  1157. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1158. u32 reg = RING_INSTPM(ring->mmio_base);
  1159. /* ring should be idle before issuing a sync flush*/
  1160. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1161. I915_WRITE(reg,
  1162. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1163. INSTPM_SYNC_FLUSH));
  1164. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1165. 1000))
  1166. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1167. ring->name);
  1168. }
  1169. }
  1170. static int
  1171. bsd_ring_flush(struct intel_engine_cs *ring,
  1172. u32 invalidate_domains,
  1173. u32 flush_domains)
  1174. {
  1175. int ret;
  1176. ret = intel_ring_begin(ring, 2);
  1177. if (ret)
  1178. return ret;
  1179. intel_ring_emit(ring, MI_FLUSH);
  1180. intel_ring_emit(ring, MI_NOOP);
  1181. intel_ring_advance(ring);
  1182. return 0;
  1183. }
  1184. static int
  1185. i9xx_add_request(struct intel_engine_cs *ring)
  1186. {
  1187. int ret;
  1188. ret = intel_ring_begin(ring, 4);
  1189. if (ret)
  1190. return ret;
  1191. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1192. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1193. intel_ring_emit(ring,
  1194. i915_gem_request_get_seqno(ring->outstanding_lazy_request));
  1195. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1196. __intel_ring_advance(ring);
  1197. return 0;
  1198. }
  1199. static bool
  1200. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1201. {
  1202. struct drm_device *dev = ring->dev;
  1203. struct drm_i915_private *dev_priv = dev->dev_private;
  1204. unsigned long flags;
  1205. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1206. return false;
  1207. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1208. if (ring->irq_refcount++ == 0) {
  1209. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1210. I915_WRITE_IMR(ring,
  1211. ~(ring->irq_enable_mask |
  1212. GT_PARITY_ERROR(dev)));
  1213. else
  1214. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1215. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1216. }
  1217. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1218. return true;
  1219. }
  1220. static void
  1221. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1222. {
  1223. struct drm_device *dev = ring->dev;
  1224. struct drm_i915_private *dev_priv = dev->dev_private;
  1225. unsigned long flags;
  1226. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1227. if (--ring->irq_refcount == 0) {
  1228. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1229. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1230. else
  1231. I915_WRITE_IMR(ring, ~0);
  1232. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1233. }
  1234. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1235. }
  1236. static bool
  1237. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1238. {
  1239. struct drm_device *dev = ring->dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. unsigned long flags;
  1242. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1243. return false;
  1244. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1245. if (ring->irq_refcount++ == 0) {
  1246. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1247. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1248. }
  1249. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1250. return true;
  1251. }
  1252. static void
  1253. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1254. {
  1255. struct drm_device *dev = ring->dev;
  1256. struct drm_i915_private *dev_priv = dev->dev_private;
  1257. unsigned long flags;
  1258. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1259. if (--ring->irq_refcount == 0) {
  1260. I915_WRITE_IMR(ring, ~0);
  1261. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1262. }
  1263. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1264. }
  1265. static bool
  1266. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1267. {
  1268. struct drm_device *dev = ring->dev;
  1269. struct drm_i915_private *dev_priv = dev->dev_private;
  1270. unsigned long flags;
  1271. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1272. return false;
  1273. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1274. if (ring->irq_refcount++ == 0) {
  1275. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1276. I915_WRITE_IMR(ring,
  1277. ~(ring->irq_enable_mask |
  1278. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1279. } else {
  1280. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1281. }
  1282. POSTING_READ(RING_IMR(ring->mmio_base));
  1283. }
  1284. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1285. return true;
  1286. }
  1287. static void
  1288. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1289. {
  1290. struct drm_device *dev = ring->dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. unsigned long flags;
  1293. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1294. if (--ring->irq_refcount == 0) {
  1295. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1296. I915_WRITE_IMR(ring,
  1297. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1298. } else {
  1299. I915_WRITE_IMR(ring, ~0);
  1300. }
  1301. POSTING_READ(RING_IMR(ring->mmio_base));
  1302. }
  1303. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1304. }
  1305. static int
  1306. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1307. u64 offset, u32 length,
  1308. unsigned flags)
  1309. {
  1310. int ret;
  1311. ret = intel_ring_begin(ring, 2);
  1312. if (ret)
  1313. return ret;
  1314. intel_ring_emit(ring,
  1315. MI_BATCH_BUFFER_START |
  1316. MI_BATCH_GTT |
  1317. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1318. intel_ring_emit(ring, offset);
  1319. intel_ring_advance(ring);
  1320. return 0;
  1321. }
  1322. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1323. #define I830_BATCH_LIMIT (256*1024)
  1324. #define I830_TLB_ENTRIES (2)
  1325. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1326. static int
  1327. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1328. u64 offset, u32 len,
  1329. unsigned flags)
  1330. {
  1331. u32 cs_offset = ring->scratch.gtt_offset;
  1332. int ret;
  1333. ret = intel_ring_begin(ring, 6);
  1334. if (ret)
  1335. return ret;
  1336. /* Evict the invalid PTE TLBs */
  1337. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1338. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1339. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1340. intel_ring_emit(ring, cs_offset);
  1341. intel_ring_emit(ring, 0xdeadbeef);
  1342. intel_ring_emit(ring, MI_NOOP);
  1343. intel_ring_advance(ring);
  1344. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1345. if (len > I830_BATCH_LIMIT)
  1346. return -ENOSPC;
  1347. ret = intel_ring_begin(ring, 6 + 2);
  1348. if (ret)
  1349. return ret;
  1350. /* Blit the batch (which has now all relocs applied) to the
  1351. * stable batch scratch bo area (so that the CS never
  1352. * stumbles over its tlb invalidation bug) ...
  1353. */
  1354. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1355. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1356. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1357. intel_ring_emit(ring, cs_offset);
  1358. intel_ring_emit(ring, 4096);
  1359. intel_ring_emit(ring, offset);
  1360. intel_ring_emit(ring, MI_FLUSH);
  1361. intel_ring_emit(ring, MI_NOOP);
  1362. intel_ring_advance(ring);
  1363. /* ... and execute it. */
  1364. offset = cs_offset;
  1365. }
  1366. ret = intel_ring_begin(ring, 4);
  1367. if (ret)
  1368. return ret;
  1369. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1370. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1371. intel_ring_emit(ring, offset + len - 8);
  1372. intel_ring_emit(ring, MI_NOOP);
  1373. intel_ring_advance(ring);
  1374. return 0;
  1375. }
  1376. static int
  1377. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1378. u64 offset, u32 len,
  1379. unsigned flags)
  1380. {
  1381. int ret;
  1382. ret = intel_ring_begin(ring, 2);
  1383. if (ret)
  1384. return ret;
  1385. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1386. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1387. intel_ring_advance(ring);
  1388. return 0;
  1389. }
  1390. static void cleanup_status_page(struct intel_engine_cs *ring)
  1391. {
  1392. struct drm_i915_gem_object *obj;
  1393. obj = ring->status_page.obj;
  1394. if (obj == NULL)
  1395. return;
  1396. kunmap(sg_page(obj->pages->sgl));
  1397. i915_gem_object_ggtt_unpin(obj);
  1398. drm_gem_object_unreference(&obj->base);
  1399. ring->status_page.obj = NULL;
  1400. }
  1401. static int init_status_page(struct intel_engine_cs *ring)
  1402. {
  1403. struct drm_i915_gem_object *obj;
  1404. if ((obj = ring->status_page.obj) == NULL) {
  1405. unsigned flags;
  1406. int ret;
  1407. obj = i915_gem_alloc_object(ring->dev, 4096);
  1408. if (obj == NULL) {
  1409. DRM_ERROR("Failed to allocate status page\n");
  1410. return -ENOMEM;
  1411. }
  1412. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1413. if (ret)
  1414. goto err_unref;
  1415. flags = 0;
  1416. if (!HAS_LLC(ring->dev))
  1417. /* On g33, we cannot place HWS above 256MiB, so
  1418. * restrict its pinning to the low mappable arena.
  1419. * Though this restriction is not documented for
  1420. * gen4, gen5, or byt, they also behave similarly
  1421. * and hang if the HWS is placed at the top of the
  1422. * GTT. To generalise, it appears that all !llc
  1423. * platforms have issues with us placing the HWS
  1424. * above the mappable region (even though we never
  1425. * actualy map it).
  1426. */
  1427. flags |= PIN_MAPPABLE;
  1428. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1429. if (ret) {
  1430. err_unref:
  1431. drm_gem_object_unreference(&obj->base);
  1432. return ret;
  1433. }
  1434. ring->status_page.obj = obj;
  1435. }
  1436. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1437. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1438. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1439. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1440. ring->name, ring->status_page.gfx_addr);
  1441. return 0;
  1442. }
  1443. static int init_phys_status_page(struct intel_engine_cs *ring)
  1444. {
  1445. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1446. if (!dev_priv->status_page_dmah) {
  1447. dev_priv->status_page_dmah =
  1448. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1449. if (!dev_priv->status_page_dmah)
  1450. return -ENOMEM;
  1451. }
  1452. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1453. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1454. return 0;
  1455. }
  1456. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1457. {
  1458. iounmap(ringbuf->virtual_start);
  1459. ringbuf->virtual_start = NULL;
  1460. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1461. }
  1462. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1463. struct intel_ringbuffer *ringbuf)
  1464. {
  1465. struct drm_i915_private *dev_priv = to_i915(dev);
  1466. struct drm_i915_gem_object *obj = ringbuf->obj;
  1467. int ret;
  1468. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1469. if (ret)
  1470. return ret;
  1471. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1472. if (ret) {
  1473. i915_gem_object_ggtt_unpin(obj);
  1474. return ret;
  1475. }
  1476. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1477. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1478. if (ringbuf->virtual_start == NULL) {
  1479. i915_gem_object_ggtt_unpin(obj);
  1480. return -EINVAL;
  1481. }
  1482. return 0;
  1483. }
  1484. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1485. {
  1486. drm_gem_object_unreference(&ringbuf->obj->base);
  1487. ringbuf->obj = NULL;
  1488. }
  1489. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1490. struct intel_ringbuffer *ringbuf)
  1491. {
  1492. struct drm_i915_gem_object *obj;
  1493. obj = NULL;
  1494. if (!HAS_LLC(dev))
  1495. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1496. if (obj == NULL)
  1497. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1498. if (obj == NULL)
  1499. return -ENOMEM;
  1500. /* mark ring buffers as read-only from GPU side by default */
  1501. obj->gt_ro = 1;
  1502. ringbuf->obj = obj;
  1503. return 0;
  1504. }
  1505. static int intel_init_ring_buffer(struct drm_device *dev,
  1506. struct intel_engine_cs *ring)
  1507. {
  1508. struct intel_ringbuffer *ringbuf;
  1509. int ret;
  1510. WARN_ON(ring->buffer);
  1511. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1512. if (!ringbuf)
  1513. return -ENOMEM;
  1514. ring->buffer = ringbuf;
  1515. ring->dev = dev;
  1516. INIT_LIST_HEAD(&ring->active_list);
  1517. INIT_LIST_HEAD(&ring->request_list);
  1518. INIT_LIST_HEAD(&ring->execlist_queue);
  1519. ringbuf->size = 32 * PAGE_SIZE;
  1520. ringbuf->ring = ring;
  1521. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1522. init_waitqueue_head(&ring->irq_queue);
  1523. if (I915_NEED_GFX_HWS(dev)) {
  1524. ret = init_status_page(ring);
  1525. if (ret)
  1526. goto error;
  1527. } else {
  1528. BUG_ON(ring->id != RCS);
  1529. ret = init_phys_status_page(ring);
  1530. if (ret)
  1531. goto error;
  1532. }
  1533. WARN_ON(ringbuf->obj);
  1534. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1535. if (ret) {
  1536. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1537. ring->name, ret);
  1538. goto error;
  1539. }
  1540. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1541. if (ret) {
  1542. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1543. ring->name, ret);
  1544. intel_destroy_ringbuffer_obj(ringbuf);
  1545. goto error;
  1546. }
  1547. /* Workaround an erratum on the i830 which causes a hang if
  1548. * the TAIL pointer points to within the last 2 cachelines
  1549. * of the buffer.
  1550. */
  1551. ringbuf->effective_size = ringbuf->size;
  1552. if (IS_I830(dev) || IS_845G(dev))
  1553. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1554. ret = i915_cmd_parser_init_ring(ring);
  1555. if (ret)
  1556. goto error;
  1557. return 0;
  1558. error:
  1559. kfree(ringbuf);
  1560. ring->buffer = NULL;
  1561. return ret;
  1562. }
  1563. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1564. {
  1565. struct drm_i915_private *dev_priv;
  1566. struct intel_ringbuffer *ringbuf;
  1567. if (!intel_ring_initialized(ring))
  1568. return;
  1569. dev_priv = to_i915(ring->dev);
  1570. ringbuf = ring->buffer;
  1571. intel_stop_ring_buffer(ring);
  1572. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1573. intel_unpin_ringbuffer_obj(ringbuf);
  1574. intel_destroy_ringbuffer_obj(ringbuf);
  1575. i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
  1576. if (ring->cleanup)
  1577. ring->cleanup(ring);
  1578. cleanup_status_page(ring);
  1579. i915_cmd_parser_fini_ring(ring);
  1580. kfree(ringbuf);
  1581. ring->buffer = NULL;
  1582. }
  1583. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1584. {
  1585. struct intel_ringbuffer *ringbuf = ring->buffer;
  1586. struct drm_i915_gem_request *request;
  1587. int ret;
  1588. if (intel_ring_space(ringbuf) >= n)
  1589. return 0;
  1590. list_for_each_entry(request, &ring->request_list, list) {
  1591. if (__intel_ring_space(request->tail, ringbuf->tail,
  1592. ringbuf->size) >= n) {
  1593. break;
  1594. }
  1595. }
  1596. if (&request->list == &ring->request_list)
  1597. return -ENOSPC;
  1598. ret = i915_wait_request(request);
  1599. if (ret)
  1600. return ret;
  1601. i915_gem_retire_requests_ring(ring);
  1602. return 0;
  1603. }
  1604. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1605. {
  1606. struct drm_device *dev = ring->dev;
  1607. struct drm_i915_private *dev_priv = dev->dev_private;
  1608. struct intel_ringbuffer *ringbuf = ring->buffer;
  1609. unsigned long end;
  1610. int ret;
  1611. ret = intel_ring_wait_request(ring, n);
  1612. if (ret != -ENOSPC)
  1613. return ret;
  1614. /* force the tail write in case we have been skipping them */
  1615. __intel_ring_advance(ring);
  1616. /* With GEM the hangcheck timer should kick us out of the loop,
  1617. * leaving it early runs the risk of corrupting GEM state (due
  1618. * to running on almost untested codepaths). But on resume
  1619. * timers don't work yet, so prevent a complete hang in that
  1620. * case by choosing an insanely large timeout. */
  1621. end = jiffies + 60 * HZ;
  1622. ret = 0;
  1623. trace_i915_ring_wait_begin(ring);
  1624. do {
  1625. if (intel_ring_space(ringbuf) >= n)
  1626. break;
  1627. ringbuf->head = I915_READ_HEAD(ring);
  1628. if (intel_ring_space(ringbuf) >= n)
  1629. break;
  1630. msleep(1);
  1631. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1632. ret = -ERESTARTSYS;
  1633. break;
  1634. }
  1635. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1636. dev_priv->mm.interruptible);
  1637. if (ret)
  1638. break;
  1639. if (time_after(jiffies, end)) {
  1640. ret = -EBUSY;
  1641. break;
  1642. }
  1643. } while (1);
  1644. trace_i915_ring_wait_end(ring);
  1645. return ret;
  1646. }
  1647. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1648. {
  1649. uint32_t __iomem *virt;
  1650. struct intel_ringbuffer *ringbuf = ring->buffer;
  1651. int rem = ringbuf->size - ringbuf->tail;
  1652. if (ringbuf->space < rem) {
  1653. int ret = ring_wait_for_space(ring, rem);
  1654. if (ret)
  1655. return ret;
  1656. }
  1657. virt = ringbuf->virtual_start + ringbuf->tail;
  1658. rem /= 4;
  1659. while (rem--)
  1660. iowrite32(MI_NOOP, virt++);
  1661. ringbuf->tail = 0;
  1662. intel_ring_update_space(ringbuf);
  1663. return 0;
  1664. }
  1665. int intel_ring_idle(struct intel_engine_cs *ring)
  1666. {
  1667. struct drm_i915_gem_request *req;
  1668. int ret;
  1669. /* We need to add any requests required to flush the objects and ring */
  1670. if (ring->outstanding_lazy_request) {
  1671. ret = i915_add_request(ring);
  1672. if (ret)
  1673. return ret;
  1674. }
  1675. /* Wait upon the last request to be completed */
  1676. if (list_empty(&ring->request_list))
  1677. return 0;
  1678. req = list_entry(ring->request_list.prev,
  1679. struct drm_i915_gem_request,
  1680. list);
  1681. return i915_wait_request(req);
  1682. }
  1683. static int
  1684. intel_ring_alloc_request(struct intel_engine_cs *ring)
  1685. {
  1686. int ret;
  1687. struct drm_i915_gem_request *request;
  1688. if (ring->outstanding_lazy_request)
  1689. return 0;
  1690. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1691. if (request == NULL)
  1692. return -ENOMEM;
  1693. kref_init(&request->ref);
  1694. request->ring = ring;
  1695. ret = i915_gem_get_seqno(ring->dev, &request->seqno);
  1696. if (ret) {
  1697. kfree(request);
  1698. return ret;
  1699. }
  1700. ring->outstanding_lazy_request = request;
  1701. return 0;
  1702. }
  1703. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1704. int bytes)
  1705. {
  1706. struct intel_ringbuffer *ringbuf = ring->buffer;
  1707. int ret;
  1708. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1709. ret = intel_wrap_ring_buffer(ring);
  1710. if (unlikely(ret))
  1711. return ret;
  1712. }
  1713. if (unlikely(ringbuf->space < bytes)) {
  1714. ret = ring_wait_for_space(ring, bytes);
  1715. if (unlikely(ret))
  1716. return ret;
  1717. }
  1718. return 0;
  1719. }
  1720. int intel_ring_begin(struct intel_engine_cs *ring,
  1721. int num_dwords)
  1722. {
  1723. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1724. int ret;
  1725. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1726. dev_priv->mm.interruptible);
  1727. if (ret)
  1728. return ret;
  1729. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1730. if (ret)
  1731. return ret;
  1732. /* Preallocate the olr before touching the ring */
  1733. ret = intel_ring_alloc_request(ring);
  1734. if (ret)
  1735. return ret;
  1736. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1737. return 0;
  1738. }
  1739. /* Align the ring tail to a cacheline boundary */
  1740. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1741. {
  1742. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1743. int ret;
  1744. if (num_dwords == 0)
  1745. return 0;
  1746. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1747. ret = intel_ring_begin(ring, num_dwords);
  1748. if (ret)
  1749. return ret;
  1750. while (num_dwords--)
  1751. intel_ring_emit(ring, MI_NOOP);
  1752. intel_ring_advance(ring);
  1753. return 0;
  1754. }
  1755. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1756. {
  1757. struct drm_device *dev = ring->dev;
  1758. struct drm_i915_private *dev_priv = dev->dev_private;
  1759. BUG_ON(ring->outstanding_lazy_request);
  1760. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1761. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1762. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1763. if (HAS_VEBOX(dev))
  1764. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1765. }
  1766. ring->set_seqno(ring, seqno);
  1767. ring->hangcheck.seqno = seqno;
  1768. }
  1769. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1770. u32 value)
  1771. {
  1772. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1773. /* Every tail move must follow the sequence below */
  1774. /* Disable notification that the ring is IDLE. The GT
  1775. * will then assume that it is busy and bring it out of rc6.
  1776. */
  1777. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1778. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1779. /* Clear the context id. Here be magic! */
  1780. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1781. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1782. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1783. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1784. 50))
  1785. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1786. /* Now that the ring is fully powered up, update the tail */
  1787. I915_WRITE_TAIL(ring, value);
  1788. POSTING_READ(RING_TAIL(ring->mmio_base));
  1789. /* Let the ring send IDLE messages to the GT again,
  1790. * and so let it sleep to conserve power when idle.
  1791. */
  1792. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1793. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1794. }
  1795. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1796. u32 invalidate, u32 flush)
  1797. {
  1798. uint32_t cmd;
  1799. int ret;
  1800. ret = intel_ring_begin(ring, 4);
  1801. if (ret)
  1802. return ret;
  1803. cmd = MI_FLUSH_DW;
  1804. if (INTEL_INFO(ring->dev)->gen >= 8)
  1805. cmd += 1;
  1806. /*
  1807. * Bspec vol 1c.5 - video engine command streamer:
  1808. * "If ENABLED, all TLBs will be invalidated once the flush
  1809. * operation is complete. This bit is only valid when the
  1810. * Post-Sync Operation field is a value of 1h or 3h."
  1811. */
  1812. if (invalidate & I915_GEM_GPU_DOMAINS)
  1813. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1814. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1815. intel_ring_emit(ring, cmd);
  1816. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1817. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1818. intel_ring_emit(ring, 0); /* upper addr */
  1819. intel_ring_emit(ring, 0); /* value */
  1820. } else {
  1821. intel_ring_emit(ring, 0);
  1822. intel_ring_emit(ring, MI_NOOP);
  1823. }
  1824. intel_ring_advance(ring);
  1825. return 0;
  1826. }
  1827. static int
  1828. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1829. u64 offset, u32 len,
  1830. unsigned flags)
  1831. {
  1832. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1833. int ret;
  1834. ret = intel_ring_begin(ring, 4);
  1835. if (ret)
  1836. return ret;
  1837. /* FIXME(BDW): Address space and security selectors. */
  1838. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1839. intel_ring_emit(ring, lower_32_bits(offset));
  1840. intel_ring_emit(ring, upper_32_bits(offset));
  1841. intel_ring_emit(ring, MI_NOOP);
  1842. intel_ring_advance(ring);
  1843. return 0;
  1844. }
  1845. static int
  1846. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1847. u64 offset, u32 len,
  1848. unsigned flags)
  1849. {
  1850. int ret;
  1851. ret = intel_ring_begin(ring, 2);
  1852. if (ret)
  1853. return ret;
  1854. intel_ring_emit(ring,
  1855. MI_BATCH_BUFFER_START |
  1856. (flags & I915_DISPATCH_SECURE ?
  1857. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1858. /* bit0-7 is the length on GEN6+ */
  1859. intel_ring_emit(ring, offset);
  1860. intel_ring_advance(ring);
  1861. return 0;
  1862. }
  1863. static int
  1864. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1865. u64 offset, u32 len,
  1866. unsigned flags)
  1867. {
  1868. int ret;
  1869. ret = intel_ring_begin(ring, 2);
  1870. if (ret)
  1871. return ret;
  1872. intel_ring_emit(ring,
  1873. MI_BATCH_BUFFER_START |
  1874. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1875. /* bit0-7 is the length on GEN6+ */
  1876. intel_ring_emit(ring, offset);
  1877. intel_ring_advance(ring);
  1878. return 0;
  1879. }
  1880. /* Blitter support (SandyBridge+) */
  1881. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1882. u32 invalidate, u32 flush)
  1883. {
  1884. struct drm_device *dev = ring->dev;
  1885. struct drm_i915_private *dev_priv = dev->dev_private;
  1886. uint32_t cmd;
  1887. int ret;
  1888. ret = intel_ring_begin(ring, 4);
  1889. if (ret)
  1890. return ret;
  1891. cmd = MI_FLUSH_DW;
  1892. if (INTEL_INFO(ring->dev)->gen >= 8)
  1893. cmd += 1;
  1894. /*
  1895. * Bspec vol 1c.3 - blitter engine command streamer:
  1896. * "If ENABLED, all TLBs will be invalidated once the flush
  1897. * operation is complete. This bit is only valid when the
  1898. * Post-Sync Operation field is a value of 1h or 3h."
  1899. */
  1900. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1901. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1902. MI_FLUSH_DW_OP_STOREDW;
  1903. intel_ring_emit(ring, cmd);
  1904. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1905. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1906. intel_ring_emit(ring, 0); /* upper addr */
  1907. intel_ring_emit(ring, 0); /* value */
  1908. } else {
  1909. intel_ring_emit(ring, 0);
  1910. intel_ring_emit(ring, MI_NOOP);
  1911. }
  1912. intel_ring_advance(ring);
  1913. if (!invalidate && flush) {
  1914. if (IS_GEN7(dev))
  1915. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1916. else if (IS_BROADWELL(dev))
  1917. dev_priv->fbc.need_sw_cache_clean = true;
  1918. }
  1919. return 0;
  1920. }
  1921. int intel_init_render_ring_buffer(struct drm_device *dev)
  1922. {
  1923. struct drm_i915_private *dev_priv = dev->dev_private;
  1924. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1925. struct drm_i915_gem_object *obj;
  1926. int ret;
  1927. ring->name = "render ring";
  1928. ring->id = RCS;
  1929. ring->mmio_base = RENDER_RING_BASE;
  1930. if (INTEL_INFO(dev)->gen >= 8) {
  1931. if (i915_semaphore_is_enabled(dev)) {
  1932. obj = i915_gem_alloc_object(dev, 4096);
  1933. if (obj == NULL) {
  1934. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1935. i915.semaphores = 0;
  1936. } else {
  1937. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1938. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1939. if (ret != 0) {
  1940. drm_gem_object_unreference(&obj->base);
  1941. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1942. i915.semaphores = 0;
  1943. } else
  1944. dev_priv->semaphore_obj = obj;
  1945. }
  1946. }
  1947. ring->init_context = intel_ring_workarounds_emit;
  1948. ring->add_request = gen6_add_request;
  1949. ring->flush = gen8_render_ring_flush;
  1950. ring->irq_get = gen8_ring_get_irq;
  1951. ring->irq_put = gen8_ring_put_irq;
  1952. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1953. ring->get_seqno = gen6_ring_get_seqno;
  1954. ring->set_seqno = ring_set_seqno;
  1955. if (i915_semaphore_is_enabled(dev)) {
  1956. WARN_ON(!dev_priv->semaphore_obj);
  1957. ring->semaphore.sync_to = gen8_ring_sync;
  1958. ring->semaphore.signal = gen8_rcs_signal;
  1959. GEN8_RING_SEMAPHORE_INIT;
  1960. }
  1961. } else if (INTEL_INFO(dev)->gen >= 6) {
  1962. ring->add_request = gen6_add_request;
  1963. ring->flush = gen7_render_ring_flush;
  1964. if (INTEL_INFO(dev)->gen == 6)
  1965. ring->flush = gen6_render_ring_flush;
  1966. ring->irq_get = gen6_ring_get_irq;
  1967. ring->irq_put = gen6_ring_put_irq;
  1968. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1969. ring->get_seqno = gen6_ring_get_seqno;
  1970. ring->set_seqno = ring_set_seqno;
  1971. if (i915_semaphore_is_enabled(dev)) {
  1972. ring->semaphore.sync_to = gen6_ring_sync;
  1973. ring->semaphore.signal = gen6_signal;
  1974. /*
  1975. * The current semaphore is only applied on pre-gen8
  1976. * platform. And there is no VCS2 ring on the pre-gen8
  1977. * platform. So the semaphore between RCS and VCS2 is
  1978. * initialized as INVALID. Gen8 will initialize the
  1979. * sema between VCS2 and RCS later.
  1980. */
  1981. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1982. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1983. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1984. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1985. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1986. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1987. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1988. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1989. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1990. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1991. }
  1992. } else if (IS_GEN5(dev)) {
  1993. ring->add_request = pc_render_add_request;
  1994. ring->flush = gen4_render_ring_flush;
  1995. ring->get_seqno = pc_render_get_seqno;
  1996. ring->set_seqno = pc_render_set_seqno;
  1997. ring->irq_get = gen5_ring_get_irq;
  1998. ring->irq_put = gen5_ring_put_irq;
  1999. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2000. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2001. } else {
  2002. ring->add_request = i9xx_add_request;
  2003. if (INTEL_INFO(dev)->gen < 4)
  2004. ring->flush = gen2_render_ring_flush;
  2005. else
  2006. ring->flush = gen4_render_ring_flush;
  2007. ring->get_seqno = ring_get_seqno;
  2008. ring->set_seqno = ring_set_seqno;
  2009. if (IS_GEN2(dev)) {
  2010. ring->irq_get = i8xx_ring_get_irq;
  2011. ring->irq_put = i8xx_ring_put_irq;
  2012. } else {
  2013. ring->irq_get = i9xx_ring_get_irq;
  2014. ring->irq_put = i9xx_ring_put_irq;
  2015. }
  2016. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2017. }
  2018. ring->write_tail = ring_write_tail;
  2019. if (IS_HASWELL(dev))
  2020. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2021. else if (IS_GEN8(dev))
  2022. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2023. else if (INTEL_INFO(dev)->gen >= 6)
  2024. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2025. else if (INTEL_INFO(dev)->gen >= 4)
  2026. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2027. else if (IS_I830(dev) || IS_845G(dev))
  2028. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2029. else
  2030. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2031. ring->init_hw = init_render_ring;
  2032. ring->cleanup = render_ring_cleanup;
  2033. /* Workaround batchbuffer to combat CS tlb bug. */
  2034. if (HAS_BROKEN_CS_TLB(dev)) {
  2035. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2036. if (obj == NULL) {
  2037. DRM_ERROR("Failed to allocate batch bo\n");
  2038. return -ENOMEM;
  2039. }
  2040. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2041. if (ret != 0) {
  2042. drm_gem_object_unreference(&obj->base);
  2043. DRM_ERROR("Failed to ping batch bo\n");
  2044. return ret;
  2045. }
  2046. ring->scratch.obj = obj;
  2047. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2048. }
  2049. ret = intel_init_ring_buffer(dev, ring);
  2050. if (ret)
  2051. return ret;
  2052. if (INTEL_INFO(dev)->gen >= 5) {
  2053. ret = intel_init_pipe_control(ring);
  2054. if (ret)
  2055. return ret;
  2056. }
  2057. return 0;
  2058. }
  2059. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2060. {
  2061. struct drm_i915_private *dev_priv = dev->dev_private;
  2062. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2063. ring->name = "bsd ring";
  2064. ring->id = VCS;
  2065. ring->write_tail = ring_write_tail;
  2066. if (INTEL_INFO(dev)->gen >= 6) {
  2067. ring->mmio_base = GEN6_BSD_RING_BASE;
  2068. /* gen6 bsd needs a special wa for tail updates */
  2069. if (IS_GEN6(dev))
  2070. ring->write_tail = gen6_bsd_ring_write_tail;
  2071. ring->flush = gen6_bsd_ring_flush;
  2072. ring->add_request = gen6_add_request;
  2073. ring->get_seqno = gen6_ring_get_seqno;
  2074. ring->set_seqno = ring_set_seqno;
  2075. if (INTEL_INFO(dev)->gen >= 8) {
  2076. ring->irq_enable_mask =
  2077. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2078. ring->irq_get = gen8_ring_get_irq;
  2079. ring->irq_put = gen8_ring_put_irq;
  2080. ring->dispatch_execbuffer =
  2081. gen8_ring_dispatch_execbuffer;
  2082. if (i915_semaphore_is_enabled(dev)) {
  2083. ring->semaphore.sync_to = gen8_ring_sync;
  2084. ring->semaphore.signal = gen8_xcs_signal;
  2085. GEN8_RING_SEMAPHORE_INIT;
  2086. }
  2087. } else {
  2088. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2089. ring->irq_get = gen6_ring_get_irq;
  2090. ring->irq_put = gen6_ring_put_irq;
  2091. ring->dispatch_execbuffer =
  2092. gen6_ring_dispatch_execbuffer;
  2093. if (i915_semaphore_is_enabled(dev)) {
  2094. ring->semaphore.sync_to = gen6_ring_sync;
  2095. ring->semaphore.signal = gen6_signal;
  2096. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2097. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2098. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2099. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2100. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2101. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2102. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2103. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2104. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2105. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2106. }
  2107. }
  2108. } else {
  2109. ring->mmio_base = BSD_RING_BASE;
  2110. ring->flush = bsd_ring_flush;
  2111. ring->add_request = i9xx_add_request;
  2112. ring->get_seqno = ring_get_seqno;
  2113. ring->set_seqno = ring_set_seqno;
  2114. if (IS_GEN5(dev)) {
  2115. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2116. ring->irq_get = gen5_ring_get_irq;
  2117. ring->irq_put = gen5_ring_put_irq;
  2118. } else {
  2119. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2120. ring->irq_get = i9xx_ring_get_irq;
  2121. ring->irq_put = i9xx_ring_put_irq;
  2122. }
  2123. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2124. }
  2125. ring->init_hw = init_ring_common;
  2126. return intel_init_ring_buffer(dev, ring);
  2127. }
  2128. /**
  2129. * Initialize the second BSD ring for Broadwell GT3.
  2130. * It is noted that this only exists on Broadwell GT3.
  2131. */
  2132. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2133. {
  2134. struct drm_i915_private *dev_priv = dev->dev_private;
  2135. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2136. if ((INTEL_INFO(dev)->gen != 8)) {
  2137. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2138. return -EINVAL;
  2139. }
  2140. ring->name = "bsd2 ring";
  2141. ring->id = VCS2;
  2142. ring->write_tail = ring_write_tail;
  2143. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2144. ring->flush = gen6_bsd_ring_flush;
  2145. ring->add_request = gen6_add_request;
  2146. ring->get_seqno = gen6_ring_get_seqno;
  2147. ring->set_seqno = ring_set_seqno;
  2148. ring->irq_enable_mask =
  2149. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2150. ring->irq_get = gen8_ring_get_irq;
  2151. ring->irq_put = gen8_ring_put_irq;
  2152. ring->dispatch_execbuffer =
  2153. gen8_ring_dispatch_execbuffer;
  2154. if (i915_semaphore_is_enabled(dev)) {
  2155. ring->semaphore.sync_to = gen8_ring_sync;
  2156. ring->semaphore.signal = gen8_xcs_signal;
  2157. GEN8_RING_SEMAPHORE_INIT;
  2158. }
  2159. ring->init_hw = init_ring_common;
  2160. return intel_init_ring_buffer(dev, ring);
  2161. }
  2162. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2163. {
  2164. struct drm_i915_private *dev_priv = dev->dev_private;
  2165. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2166. ring->name = "blitter ring";
  2167. ring->id = BCS;
  2168. ring->mmio_base = BLT_RING_BASE;
  2169. ring->write_tail = ring_write_tail;
  2170. ring->flush = gen6_ring_flush;
  2171. ring->add_request = gen6_add_request;
  2172. ring->get_seqno = gen6_ring_get_seqno;
  2173. ring->set_seqno = ring_set_seqno;
  2174. if (INTEL_INFO(dev)->gen >= 8) {
  2175. ring->irq_enable_mask =
  2176. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2177. ring->irq_get = gen8_ring_get_irq;
  2178. ring->irq_put = gen8_ring_put_irq;
  2179. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2180. if (i915_semaphore_is_enabled(dev)) {
  2181. ring->semaphore.sync_to = gen8_ring_sync;
  2182. ring->semaphore.signal = gen8_xcs_signal;
  2183. GEN8_RING_SEMAPHORE_INIT;
  2184. }
  2185. } else {
  2186. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2187. ring->irq_get = gen6_ring_get_irq;
  2188. ring->irq_put = gen6_ring_put_irq;
  2189. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2190. if (i915_semaphore_is_enabled(dev)) {
  2191. ring->semaphore.signal = gen6_signal;
  2192. ring->semaphore.sync_to = gen6_ring_sync;
  2193. /*
  2194. * The current semaphore is only applied on pre-gen8
  2195. * platform. And there is no VCS2 ring on the pre-gen8
  2196. * platform. So the semaphore between BCS and VCS2 is
  2197. * initialized as INVALID. Gen8 will initialize the
  2198. * sema between BCS and VCS2 later.
  2199. */
  2200. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2201. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2202. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2203. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2204. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2205. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2206. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2207. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2208. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2209. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2210. }
  2211. }
  2212. ring->init_hw = init_ring_common;
  2213. return intel_init_ring_buffer(dev, ring);
  2214. }
  2215. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2216. {
  2217. struct drm_i915_private *dev_priv = dev->dev_private;
  2218. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2219. ring->name = "video enhancement ring";
  2220. ring->id = VECS;
  2221. ring->mmio_base = VEBOX_RING_BASE;
  2222. ring->write_tail = ring_write_tail;
  2223. ring->flush = gen6_ring_flush;
  2224. ring->add_request = gen6_add_request;
  2225. ring->get_seqno = gen6_ring_get_seqno;
  2226. ring->set_seqno = ring_set_seqno;
  2227. if (INTEL_INFO(dev)->gen >= 8) {
  2228. ring->irq_enable_mask =
  2229. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2230. ring->irq_get = gen8_ring_get_irq;
  2231. ring->irq_put = gen8_ring_put_irq;
  2232. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2233. if (i915_semaphore_is_enabled(dev)) {
  2234. ring->semaphore.sync_to = gen8_ring_sync;
  2235. ring->semaphore.signal = gen8_xcs_signal;
  2236. GEN8_RING_SEMAPHORE_INIT;
  2237. }
  2238. } else {
  2239. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2240. ring->irq_get = hsw_vebox_get_irq;
  2241. ring->irq_put = hsw_vebox_put_irq;
  2242. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2243. if (i915_semaphore_is_enabled(dev)) {
  2244. ring->semaphore.sync_to = gen6_ring_sync;
  2245. ring->semaphore.signal = gen6_signal;
  2246. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2247. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2248. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2249. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2250. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2251. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2252. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2253. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2254. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2255. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2256. }
  2257. }
  2258. ring->init_hw = init_ring_common;
  2259. return intel_init_ring_buffer(dev, ring);
  2260. }
  2261. int
  2262. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2263. {
  2264. int ret;
  2265. if (!ring->gpu_caches_dirty)
  2266. return 0;
  2267. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2268. if (ret)
  2269. return ret;
  2270. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2271. ring->gpu_caches_dirty = false;
  2272. return 0;
  2273. }
  2274. int
  2275. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2276. {
  2277. uint32_t flush_domains;
  2278. int ret;
  2279. flush_domains = 0;
  2280. if (ring->gpu_caches_dirty)
  2281. flush_domains = I915_GEM_GPU_DOMAINS;
  2282. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2283. if (ret)
  2284. return ret;
  2285. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2286. ring->gpu_caches_dirty = false;
  2287. return 0;
  2288. }
  2289. void
  2290. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2291. {
  2292. int ret;
  2293. if (!intel_ring_initialized(ring))
  2294. return;
  2295. ret = intel_ring_idle(ring);
  2296. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2297. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2298. ring->name, ret);
  2299. stop_ring(ring);
  2300. }