memcontrol.c 162 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * Native page reclaim
  18. * Charge lifetime sanitation
  19. * Lockless page tracking & accounting
  20. * Unified hierarchy configuration model
  21. * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. */
  33. #include <linux/page_counter.h>
  34. #include <linux/memcontrol.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/mm.h>
  37. #include <linux/sched/mm.h>
  38. #include <linux/shmem_fs.h>
  39. #include <linux/hugetlb.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/smp.h>
  42. #include <linux/page-flags.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/bit_spinlock.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/limits.h>
  47. #include <linux/export.h>
  48. #include <linux/mutex.h>
  49. #include <linux/rbtree.h>
  50. #include <linux/slab.h>
  51. #include <linux/swap.h>
  52. #include <linux/swapops.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/eventfd.h>
  55. #include <linux/poll.h>
  56. #include <linux/sort.h>
  57. #include <linux/fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/vmpressure.h>
  60. #include <linux/mm_inline.h>
  61. #include <linux/swap_cgroup.h>
  62. #include <linux/cpu.h>
  63. #include <linux/oom.h>
  64. #include <linux/lockdep.h>
  65. #include <linux/file.h>
  66. #include <linux/tracehook.h>
  67. #include "internal.h"
  68. #include <net/sock.h>
  69. #include <net/ip.h>
  70. #include "slab.h"
  71. #include <linux/uaccess.h>
  72. #include <trace/events/vmscan.h>
  73. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  74. EXPORT_SYMBOL(memory_cgrp_subsys);
  75. struct mem_cgroup *root_mem_cgroup __read_mostly;
  76. #define MEM_CGROUP_RECLAIM_RETRIES 5
  77. /* Socket memory accounting disabled? */
  78. static bool cgroup_memory_nosocket;
  79. /* Kernel memory accounting disabled? */
  80. static bool cgroup_memory_nokmem;
  81. /* Whether the swap controller is active */
  82. #ifdef CONFIG_MEMCG_SWAP
  83. int do_swap_account __read_mostly;
  84. #else
  85. #define do_swap_account 0
  86. #endif
  87. /* Whether legacy memory+swap accounting is active */
  88. static bool do_memsw_account(void)
  89. {
  90. return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  91. }
  92. static const char *const mem_cgroup_lru_names[] = {
  93. "inactive_anon",
  94. "active_anon",
  95. "inactive_file",
  96. "active_file",
  97. "unevictable",
  98. };
  99. #define THRESHOLDS_EVENTS_TARGET 128
  100. #define SOFTLIMIT_EVENTS_TARGET 1024
  101. #define NUMAINFO_EVENTS_TARGET 1024
  102. /*
  103. * Cgroups above their limits are maintained in a RB-Tree, independent of
  104. * their hierarchy representation
  105. */
  106. struct mem_cgroup_tree_per_node {
  107. struct rb_root rb_root;
  108. struct rb_node *rb_rightmost;
  109. spinlock_t lock;
  110. };
  111. struct mem_cgroup_tree {
  112. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  113. };
  114. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  115. /* for OOM */
  116. struct mem_cgroup_eventfd_list {
  117. struct list_head list;
  118. struct eventfd_ctx *eventfd;
  119. };
  120. /*
  121. * cgroup_event represents events which userspace want to receive.
  122. */
  123. struct mem_cgroup_event {
  124. /*
  125. * memcg which the event belongs to.
  126. */
  127. struct mem_cgroup *memcg;
  128. /*
  129. * eventfd to signal userspace about the event.
  130. */
  131. struct eventfd_ctx *eventfd;
  132. /*
  133. * Each of these stored in a list by the cgroup.
  134. */
  135. struct list_head list;
  136. /*
  137. * register_event() callback will be used to add new userspace
  138. * waiter for changes related to this event. Use eventfd_signal()
  139. * on eventfd to send notification to userspace.
  140. */
  141. int (*register_event)(struct mem_cgroup *memcg,
  142. struct eventfd_ctx *eventfd, const char *args);
  143. /*
  144. * unregister_event() callback will be called when userspace closes
  145. * the eventfd or on cgroup removing. This callback must be set,
  146. * if you want provide notification functionality.
  147. */
  148. void (*unregister_event)(struct mem_cgroup *memcg,
  149. struct eventfd_ctx *eventfd);
  150. /*
  151. * All fields below needed to unregister event when
  152. * userspace closes eventfd.
  153. */
  154. poll_table pt;
  155. wait_queue_head_t *wqh;
  156. wait_queue_entry_t wait;
  157. struct work_struct remove;
  158. };
  159. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  160. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  161. /* Stuffs for move charges at task migration. */
  162. /*
  163. * Types of charges to be moved.
  164. */
  165. #define MOVE_ANON 0x1U
  166. #define MOVE_FILE 0x2U
  167. #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
  168. /* "mc" and its members are protected by cgroup_mutex */
  169. static struct move_charge_struct {
  170. spinlock_t lock; /* for from, to */
  171. struct mm_struct *mm;
  172. struct mem_cgroup *from;
  173. struct mem_cgroup *to;
  174. unsigned long flags;
  175. unsigned long precharge;
  176. unsigned long moved_charge;
  177. unsigned long moved_swap;
  178. struct task_struct *moving_task; /* a task moving charges */
  179. wait_queue_head_t waitq; /* a waitq for other context */
  180. } mc = {
  181. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  182. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  183. };
  184. /*
  185. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  186. * limit reclaim to prevent infinite loops, if they ever occur.
  187. */
  188. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  189. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  190. enum charge_type {
  191. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  192. MEM_CGROUP_CHARGE_TYPE_ANON,
  193. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  194. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  195. NR_CHARGE_TYPE,
  196. };
  197. /* for encoding cft->private value on file */
  198. enum res_type {
  199. _MEM,
  200. _MEMSWAP,
  201. _OOM_TYPE,
  202. _KMEM,
  203. _TCP,
  204. };
  205. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  206. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  207. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  208. /* Used for OOM nofiier */
  209. #define OOM_CONTROL (0)
  210. /* Some nice accessors for the vmpressure. */
  211. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  212. {
  213. if (!memcg)
  214. memcg = root_mem_cgroup;
  215. return &memcg->vmpressure;
  216. }
  217. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  218. {
  219. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  220. }
  221. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  222. {
  223. return (memcg == root_mem_cgroup);
  224. }
  225. #ifndef CONFIG_SLOB
  226. /*
  227. * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
  228. * The main reason for not using cgroup id for this:
  229. * this works better in sparse environments, where we have a lot of memcgs,
  230. * but only a few kmem-limited. Or also, if we have, for instance, 200
  231. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  232. * 200 entry array for that.
  233. *
  234. * The current size of the caches array is stored in memcg_nr_cache_ids. It
  235. * will double each time we have to increase it.
  236. */
  237. static DEFINE_IDA(memcg_cache_ida);
  238. int memcg_nr_cache_ids;
  239. /* Protects memcg_nr_cache_ids */
  240. static DECLARE_RWSEM(memcg_cache_ids_sem);
  241. void memcg_get_cache_ids(void)
  242. {
  243. down_read(&memcg_cache_ids_sem);
  244. }
  245. void memcg_put_cache_ids(void)
  246. {
  247. up_read(&memcg_cache_ids_sem);
  248. }
  249. /*
  250. * MIN_SIZE is different than 1, because we would like to avoid going through
  251. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  252. * cgroups is a reasonable guess. In the future, it could be a parameter or
  253. * tunable, but that is strictly not necessary.
  254. *
  255. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  256. * this constant directly from cgroup, but it is understandable that this is
  257. * better kept as an internal representation in cgroup.c. In any case, the
  258. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  259. * increase ours as well if it increases.
  260. */
  261. #define MEMCG_CACHES_MIN_SIZE 4
  262. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  263. /*
  264. * A lot of the calls to the cache allocation functions are expected to be
  265. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  266. * conditional to this static branch, we'll have to allow modules that does
  267. * kmem_cache_alloc and the such to see this symbol as well
  268. */
  269. DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
  270. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  271. struct workqueue_struct *memcg_kmem_cache_wq;
  272. #endif /* !CONFIG_SLOB */
  273. /**
  274. * mem_cgroup_css_from_page - css of the memcg associated with a page
  275. * @page: page of interest
  276. *
  277. * If memcg is bound to the default hierarchy, css of the memcg associated
  278. * with @page is returned. The returned css remains associated with @page
  279. * until it is released.
  280. *
  281. * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
  282. * is returned.
  283. */
  284. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
  285. {
  286. struct mem_cgroup *memcg;
  287. memcg = page->mem_cgroup;
  288. if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  289. memcg = root_mem_cgroup;
  290. return &memcg->css;
  291. }
  292. /**
  293. * page_cgroup_ino - return inode number of the memcg a page is charged to
  294. * @page: the page
  295. *
  296. * Look up the closest online ancestor of the memory cgroup @page is charged to
  297. * and return its inode number or 0 if @page is not charged to any cgroup. It
  298. * is safe to call this function without holding a reference to @page.
  299. *
  300. * Note, this function is inherently racy, because there is nothing to prevent
  301. * the cgroup inode from getting torn down and potentially reallocated a moment
  302. * after page_cgroup_ino() returns, so it only should be used by callers that
  303. * do not care (such as procfs interfaces).
  304. */
  305. ino_t page_cgroup_ino(struct page *page)
  306. {
  307. struct mem_cgroup *memcg;
  308. unsigned long ino = 0;
  309. rcu_read_lock();
  310. memcg = READ_ONCE(page->mem_cgroup);
  311. while (memcg && !(memcg->css.flags & CSS_ONLINE))
  312. memcg = parent_mem_cgroup(memcg);
  313. if (memcg)
  314. ino = cgroup_ino(memcg->css.cgroup);
  315. rcu_read_unlock();
  316. return ino;
  317. }
  318. static struct mem_cgroup_per_node *
  319. mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
  320. {
  321. int nid = page_to_nid(page);
  322. return memcg->nodeinfo[nid];
  323. }
  324. static struct mem_cgroup_tree_per_node *
  325. soft_limit_tree_node(int nid)
  326. {
  327. return soft_limit_tree.rb_tree_per_node[nid];
  328. }
  329. static struct mem_cgroup_tree_per_node *
  330. soft_limit_tree_from_page(struct page *page)
  331. {
  332. int nid = page_to_nid(page);
  333. return soft_limit_tree.rb_tree_per_node[nid];
  334. }
  335. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
  336. struct mem_cgroup_tree_per_node *mctz,
  337. unsigned long new_usage_in_excess)
  338. {
  339. struct rb_node **p = &mctz->rb_root.rb_node;
  340. struct rb_node *parent = NULL;
  341. struct mem_cgroup_per_node *mz_node;
  342. bool rightmost = true;
  343. if (mz->on_tree)
  344. return;
  345. mz->usage_in_excess = new_usage_in_excess;
  346. if (!mz->usage_in_excess)
  347. return;
  348. while (*p) {
  349. parent = *p;
  350. mz_node = rb_entry(parent, struct mem_cgroup_per_node,
  351. tree_node);
  352. if (mz->usage_in_excess < mz_node->usage_in_excess) {
  353. p = &(*p)->rb_left;
  354. rightmost = false;
  355. }
  356. /*
  357. * We can't avoid mem cgroups that are over their soft
  358. * limit by the same amount
  359. */
  360. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  361. p = &(*p)->rb_right;
  362. }
  363. if (rightmost)
  364. mctz->rb_rightmost = &mz->tree_node;
  365. rb_link_node(&mz->tree_node, parent, p);
  366. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  367. mz->on_tree = true;
  368. }
  369. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  370. struct mem_cgroup_tree_per_node *mctz)
  371. {
  372. if (!mz->on_tree)
  373. return;
  374. if (&mz->tree_node == mctz->rb_rightmost)
  375. mctz->rb_rightmost = rb_prev(&mz->tree_node);
  376. rb_erase(&mz->tree_node, &mctz->rb_root);
  377. mz->on_tree = false;
  378. }
  379. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  380. struct mem_cgroup_tree_per_node *mctz)
  381. {
  382. unsigned long flags;
  383. spin_lock_irqsave(&mctz->lock, flags);
  384. __mem_cgroup_remove_exceeded(mz, mctz);
  385. spin_unlock_irqrestore(&mctz->lock, flags);
  386. }
  387. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  388. {
  389. unsigned long nr_pages = page_counter_read(&memcg->memory);
  390. unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
  391. unsigned long excess = 0;
  392. if (nr_pages > soft_limit)
  393. excess = nr_pages - soft_limit;
  394. return excess;
  395. }
  396. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  397. {
  398. unsigned long excess;
  399. struct mem_cgroup_per_node *mz;
  400. struct mem_cgroup_tree_per_node *mctz;
  401. mctz = soft_limit_tree_from_page(page);
  402. if (!mctz)
  403. return;
  404. /*
  405. * Necessary to update all ancestors when hierarchy is used.
  406. * because their event counter is not touched.
  407. */
  408. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  409. mz = mem_cgroup_page_nodeinfo(memcg, page);
  410. excess = soft_limit_excess(memcg);
  411. /*
  412. * We have to update the tree if mz is on RB-tree or
  413. * mem is over its softlimit.
  414. */
  415. if (excess || mz->on_tree) {
  416. unsigned long flags;
  417. spin_lock_irqsave(&mctz->lock, flags);
  418. /* if on-tree, remove it */
  419. if (mz->on_tree)
  420. __mem_cgroup_remove_exceeded(mz, mctz);
  421. /*
  422. * Insert again. mz->usage_in_excess will be updated.
  423. * If excess is 0, no tree ops.
  424. */
  425. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  426. spin_unlock_irqrestore(&mctz->lock, flags);
  427. }
  428. }
  429. }
  430. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  431. {
  432. struct mem_cgroup_tree_per_node *mctz;
  433. struct mem_cgroup_per_node *mz;
  434. int nid;
  435. for_each_node(nid) {
  436. mz = mem_cgroup_nodeinfo(memcg, nid);
  437. mctz = soft_limit_tree_node(nid);
  438. if (mctz)
  439. mem_cgroup_remove_exceeded(mz, mctz);
  440. }
  441. }
  442. static struct mem_cgroup_per_node *
  443. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  444. {
  445. struct mem_cgroup_per_node *mz;
  446. retry:
  447. mz = NULL;
  448. if (!mctz->rb_rightmost)
  449. goto done; /* Nothing to reclaim from */
  450. mz = rb_entry(mctz->rb_rightmost,
  451. struct mem_cgroup_per_node, tree_node);
  452. /*
  453. * Remove the node now but someone else can add it back,
  454. * we will to add it back at the end of reclaim to its correct
  455. * position in the tree.
  456. */
  457. __mem_cgroup_remove_exceeded(mz, mctz);
  458. if (!soft_limit_excess(mz->memcg) ||
  459. !css_tryget_online(&mz->memcg->css))
  460. goto retry;
  461. done:
  462. return mz;
  463. }
  464. static struct mem_cgroup_per_node *
  465. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  466. {
  467. struct mem_cgroup_per_node *mz;
  468. spin_lock_irq(&mctz->lock);
  469. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  470. spin_unlock_irq(&mctz->lock);
  471. return mz;
  472. }
  473. static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
  474. int event)
  475. {
  476. return atomic_long_read(&memcg->events[event]);
  477. }
  478. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  479. struct page *page,
  480. bool compound, int nr_pages)
  481. {
  482. /*
  483. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  484. * counted as CACHE even if it's on ANON LRU.
  485. */
  486. if (PageAnon(page))
  487. __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
  488. else {
  489. __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
  490. if (PageSwapBacked(page))
  491. __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
  492. }
  493. if (compound) {
  494. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  495. __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
  496. }
  497. /* pagein of a big page is an event. So, ignore page size */
  498. if (nr_pages > 0)
  499. __count_memcg_events(memcg, PGPGIN, 1);
  500. else {
  501. __count_memcg_events(memcg, PGPGOUT, 1);
  502. nr_pages = -nr_pages; /* for event */
  503. }
  504. __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
  505. }
  506. unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  507. int nid, unsigned int lru_mask)
  508. {
  509. struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
  510. unsigned long nr = 0;
  511. enum lru_list lru;
  512. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  513. for_each_lru(lru) {
  514. if (!(BIT(lru) & lru_mask))
  515. continue;
  516. nr += mem_cgroup_get_lru_size(lruvec, lru);
  517. }
  518. return nr;
  519. }
  520. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  521. unsigned int lru_mask)
  522. {
  523. unsigned long nr = 0;
  524. int nid;
  525. for_each_node_state(nid, N_MEMORY)
  526. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  527. return nr;
  528. }
  529. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  530. enum mem_cgroup_events_target target)
  531. {
  532. unsigned long val, next;
  533. val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
  534. next = __this_cpu_read(memcg->stat_cpu->targets[target]);
  535. /* from time_after() in jiffies.h */
  536. if ((long)(next - val) < 0) {
  537. switch (target) {
  538. case MEM_CGROUP_TARGET_THRESH:
  539. next = val + THRESHOLDS_EVENTS_TARGET;
  540. break;
  541. case MEM_CGROUP_TARGET_SOFTLIMIT:
  542. next = val + SOFTLIMIT_EVENTS_TARGET;
  543. break;
  544. case MEM_CGROUP_TARGET_NUMAINFO:
  545. next = val + NUMAINFO_EVENTS_TARGET;
  546. break;
  547. default:
  548. break;
  549. }
  550. __this_cpu_write(memcg->stat_cpu->targets[target], next);
  551. return true;
  552. }
  553. return false;
  554. }
  555. /*
  556. * Check events in order.
  557. *
  558. */
  559. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  560. {
  561. /* threshold event is triggered in finer grain than soft limit */
  562. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  563. MEM_CGROUP_TARGET_THRESH))) {
  564. bool do_softlimit;
  565. bool do_numainfo __maybe_unused;
  566. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  567. MEM_CGROUP_TARGET_SOFTLIMIT);
  568. #if MAX_NUMNODES > 1
  569. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  570. MEM_CGROUP_TARGET_NUMAINFO);
  571. #endif
  572. mem_cgroup_threshold(memcg);
  573. if (unlikely(do_softlimit))
  574. mem_cgroup_update_tree(memcg, page);
  575. #if MAX_NUMNODES > 1
  576. if (unlikely(do_numainfo))
  577. atomic_inc(&memcg->numainfo_events);
  578. #endif
  579. }
  580. }
  581. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  582. {
  583. /*
  584. * mm_update_next_owner() may clear mm->owner to NULL
  585. * if it races with swapoff, page migration, etc.
  586. * So this can be called with p == NULL.
  587. */
  588. if (unlikely(!p))
  589. return NULL;
  590. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  591. }
  592. EXPORT_SYMBOL(mem_cgroup_from_task);
  593. static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  594. {
  595. struct mem_cgroup *memcg = NULL;
  596. rcu_read_lock();
  597. do {
  598. /*
  599. * Page cache insertions can happen withou an
  600. * actual mm context, e.g. during disk probing
  601. * on boot, loopback IO, acct() writes etc.
  602. */
  603. if (unlikely(!mm))
  604. memcg = root_mem_cgroup;
  605. else {
  606. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  607. if (unlikely(!memcg))
  608. memcg = root_mem_cgroup;
  609. }
  610. } while (!css_tryget_online(&memcg->css));
  611. rcu_read_unlock();
  612. return memcg;
  613. }
  614. /**
  615. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  616. * @root: hierarchy root
  617. * @prev: previously returned memcg, NULL on first invocation
  618. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  619. *
  620. * Returns references to children of the hierarchy below @root, or
  621. * @root itself, or %NULL after a full round-trip.
  622. *
  623. * Caller must pass the return value in @prev on subsequent
  624. * invocations for reference counting, or use mem_cgroup_iter_break()
  625. * to cancel a hierarchy walk before the round-trip is complete.
  626. *
  627. * Reclaimers can specify a node and a priority level in @reclaim to
  628. * divide up the memcgs in the hierarchy among all concurrent
  629. * reclaimers operating on the same node and priority.
  630. */
  631. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  632. struct mem_cgroup *prev,
  633. struct mem_cgroup_reclaim_cookie *reclaim)
  634. {
  635. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  636. struct cgroup_subsys_state *css = NULL;
  637. struct mem_cgroup *memcg = NULL;
  638. struct mem_cgroup *pos = NULL;
  639. if (mem_cgroup_disabled())
  640. return NULL;
  641. if (!root)
  642. root = root_mem_cgroup;
  643. if (prev && !reclaim)
  644. pos = prev;
  645. if (!root->use_hierarchy && root != root_mem_cgroup) {
  646. if (prev)
  647. goto out;
  648. return root;
  649. }
  650. rcu_read_lock();
  651. if (reclaim) {
  652. struct mem_cgroup_per_node *mz;
  653. mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
  654. iter = &mz->iter[reclaim->priority];
  655. if (prev && reclaim->generation != iter->generation)
  656. goto out_unlock;
  657. while (1) {
  658. pos = READ_ONCE(iter->position);
  659. if (!pos || css_tryget(&pos->css))
  660. break;
  661. /*
  662. * css reference reached zero, so iter->position will
  663. * be cleared by ->css_released. However, we should not
  664. * rely on this happening soon, because ->css_released
  665. * is called from a work queue, and by busy-waiting we
  666. * might block it. So we clear iter->position right
  667. * away.
  668. */
  669. (void)cmpxchg(&iter->position, pos, NULL);
  670. }
  671. }
  672. if (pos)
  673. css = &pos->css;
  674. for (;;) {
  675. css = css_next_descendant_pre(css, &root->css);
  676. if (!css) {
  677. /*
  678. * Reclaimers share the hierarchy walk, and a
  679. * new one might jump in right at the end of
  680. * the hierarchy - make sure they see at least
  681. * one group and restart from the beginning.
  682. */
  683. if (!prev)
  684. continue;
  685. break;
  686. }
  687. /*
  688. * Verify the css and acquire a reference. The root
  689. * is provided by the caller, so we know it's alive
  690. * and kicking, and don't take an extra reference.
  691. */
  692. memcg = mem_cgroup_from_css(css);
  693. if (css == &root->css)
  694. break;
  695. if (css_tryget(css))
  696. break;
  697. memcg = NULL;
  698. }
  699. if (reclaim) {
  700. /*
  701. * The position could have already been updated by a competing
  702. * thread, so check that the value hasn't changed since we read
  703. * it to avoid reclaiming from the same cgroup twice.
  704. */
  705. (void)cmpxchg(&iter->position, pos, memcg);
  706. if (pos)
  707. css_put(&pos->css);
  708. if (!memcg)
  709. iter->generation++;
  710. else if (!prev)
  711. reclaim->generation = iter->generation;
  712. }
  713. out_unlock:
  714. rcu_read_unlock();
  715. out:
  716. if (prev && prev != root)
  717. css_put(&prev->css);
  718. return memcg;
  719. }
  720. /**
  721. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  722. * @root: hierarchy root
  723. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  724. */
  725. void mem_cgroup_iter_break(struct mem_cgroup *root,
  726. struct mem_cgroup *prev)
  727. {
  728. if (!root)
  729. root = root_mem_cgroup;
  730. if (prev && prev != root)
  731. css_put(&prev->css);
  732. }
  733. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  734. {
  735. struct mem_cgroup *memcg = dead_memcg;
  736. struct mem_cgroup_reclaim_iter *iter;
  737. struct mem_cgroup_per_node *mz;
  738. int nid;
  739. int i;
  740. while ((memcg = parent_mem_cgroup(memcg))) {
  741. for_each_node(nid) {
  742. mz = mem_cgroup_nodeinfo(memcg, nid);
  743. for (i = 0; i <= DEF_PRIORITY; i++) {
  744. iter = &mz->iter[i];
  745. cmpxchg(&iter->position,
  746. dead_memcg, NULL);
  747. }
  748. }
  749. }
  750. }
  751. /*
  752. * Iteration constructs for visiting all cgroups (under a tree). If
  753. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  754. * be used for reference counting.
  755. */
  756. #define for_each_mem_cgroup_tree(iter, root) \
  757. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  758. iter != NULL; \
  759. iter = mem_cgroup_iter(root, iter, NULL))
  760. #define for_each_mem_cgroup(iter) \
  761. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  762. iter != NULL; \
  763. iter = mem_cgroup_iter(NULL, iter, NULL))
  764. /**
  765. * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
  766. * @memcg: hierarchy root
  767. * @fn: function to call for each task
  768. * @arg: argument passed to @fn
  769. *
  770. * This function iterates over tasks attached to @memcg or to any of its
  771. * descendants and calls @fn for each task. If @fn returns a non-zero
  772. * value, the function breaks the iteration loop and returns the value.
  773. * Otherwise, it will iterate over all tasks and return 0.
  774. *
  775. * This function must not be called for the root memory cgroup.
  776. */
  777. int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
  778. int (*fn)(struct task_struct *, void *), void *arg)
  779. {
  780. struct mem_cgroup *iter;
  781. int ret = 0;
  782. BUG_ON(memcg == root_mem_cgroup);
  783. for_each_mem_cgroup_tree(iter, memcg) {
  784. struct css_task_iter it;
  785. struct task_struct *task;
  786. css_task_iter_start(&iter->css, 0, &it);
  787. while (!ret && (task = css_task_iter_next(&it)))
  788. ret = fn(task, arg);
  789. css_task_iter_end(&it);
  790. if (ret) {
  791. mem_cgroup_iter_break(memcg, iter);
  792. break;
  793. }
  794. }
  795. return ret;
  796. }
  797. /**
  798. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  799. * @page: the page
  800. * @pgdat: pgdat of the page
  801. *
  802. * This function is only safe when following the LRU page isolation
  803. * and putback protocol: the LRU lock must be held, and the page must
  804. * either be PageLRU() or the caller must have isolated/allocated it.
  805. */
  806. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
  807. {
  808. struct mem_cgroup_per_node *mz;
  809. struct mem_cgroup *memcg;
  810. struct lruvec *lruvec;
  811. if (mem_cgroup_disabled()) {
  812. lruvec = &pgdat->lruvec;
  813. goto out;
  814. }
  815. memcg = page->mem_cgroup;
  816. /*
  817. * Swapcache readahead pages are added to the LRU - and
  818. * possibly migrated - before they are charged.
  819. */
  820. if (!memcg)
  821. memcg = root_mem_cgroup;
  822. mz = mem_cgroup_page_nodeinfo(memcg, page);
  823. lruvec = &mz->lruvec;
  824. out:
  825. /*
  826. * Since a node can be onlined after the mem_cgroup was created,
  827. * we have to be prepared to initialize lruvec->zone here;
  828. * and if offlined then reonlined, we need to reinitialize it.
  829. */
  830. if (unlikely(lruvec->pgdat != pgdat))
  831. lruvec->pgdat = pgdat;
  832. return lruvec;
  833. }
  834. /**
  835. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  836. * @lruvec: mem_cgroup per zone lru vector
  837. * @lru: index of lru list the page is sitting on
  838. * @zid: zone id of the accounted pages
  839. * @nr_pages: positive when adding or negative when removing
  840. *
  841. * This function must be called under lru_lock, just before a page is added
  842. * to or just after a page is removed from an lru list (that ordering being
  843. * so as to allow it to check that lru_size 0 is consistent with list_empty).
  844. */
  845. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  846. int zid, int nr_pages)
  847. {
  848. struct mem_cgroup_per_node *mz;
  849. unsigned long *lru_size;
  850. long size;
  851. if (mem_cgroup_disabled())
  852. return;
  853. mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
  854. lru_size = &mz->lru_zone_size[zid][lru];
  855. if (nr_pages < 0)
  856. *lru_size += nr_pages;
  857. size = *lru_size;
  858. if (WARN_ONCE(size < 0,
  859. "%s(%p, %d, %d): lru_size %ld\n",
  860. __func__, lruvec, lru, nr_pages, size)) {
  861. VM_BUG_ON(1);
  862. *lru_size = 0;
  863. }
  864. if (nr_pages > 0)
  865. *lru_size += nr_pages;
  866. }
  867. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  868. {
  869. struct mem_cgroup *task_memcg;
  870. struct task_struct *p;
  871. bool ret;
  872. p = find_lock_task_mm(task);
  873. if (p) {
  874. task_memcg = get_mem_cgroup_from_mm(p->mm);
  875. task_unlock(p);
  876. } else {
  877. /*
  878. * All threads may have already detached their mm's, but the oom
  879. * killer still needs to detect if they have already been oom
  880. * killed to prevent needlessly killing additional tasks.
  881. */
  882. rcu_read_lock();
  883. task_memcg = mem_cgroup_from_task(task);
  884. css_get(&task_memcg->css);
  885. rcu_read_unlock();
  886. }
  887. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  888. css_put(&task_memcg->css);
  889. return ret;
  890. }
  891. /**
  892. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  893. * @memcg: the memory cgroup
  894. *
  895. * Returns the maximum amount of memory @mem can be charged with, in
  896. * pages.
  897. */
  898. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  899. {
  900. unsigned long margin = 0;
  901. unsigned long count;
  902. unsigned long limit;
  903. count = page_counter_read(&memcg->memory);
  904. limit = READ_ONCE(memcg->memory.max);
  905. if (count < limit)
  906. margin = limit - count;
  907. if (do_memsw_account()) {
  908. count = page_counter_read(&memcg->memsw);
  909. limit = READ_ONCE(memcg->memsw.max);
  910. if (count <= limit)
  911. margin = min(margin, limit - count);
  912. else
  913. margin = 0;
  914. }
  915. return margin;
  916. }
  917. /*
  918. * A routine for checking "mem" is under move_account() or not.
  919. *
  920. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  921. * moving cgroups. This is for waiting at high-memory pressure
  922. * caused by "move".
  923. */
  924. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  925. {
  926. struct mem_cgroup *from;
  927. struct mem_cgroup *to;
  928. bool ret = false;
  929. /*
  930. * Unlike task_move routines, we access mc.to, mc.from not under
  931. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  932. */
  933. spin_lock(&mc.lock);
  934. from = mc.from;
  935. to = mc.to;
  936. if (!from)
  937. goto unlock;
  938. ret = mem_cgroup_is_descendant(from, memcg) ||
  939. mem_cgroup_is_descendant(to, memcg);
  940. unlock:
  941. spin_unlock(&mc.lock);
  942. return ret;
  943. }
  944. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  945. {
  946. if (mc.moving_task && current != mc.moving_task) {
  947. if (mem_cgroup_under_move(memcg)) {
  948. DEFINE_WAIT(wait);
  949. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  950. /* moving charge context might have finished. */
  951. if (mc.moving_task)
  952. schedule();
  953. finish_wait(&mc.waitq, &wait);
  954. return true;
  955. }
  956. }
  957. return false;
  958. }
  959. static const unsigned int memcg1_stats[] = {
  960. MEMCG_CACHE,
  961. MEMCG_RSS,
  962. MEMCG_RSS_HUGE,
  963. NR_SHMEM,
  964. NR_FILE_MAPPED,
  965. NR_FILE_DIRTY,
  966. NR_WRITEBACK,
  967. MEMCG_SWAP,
  968. };
  969. static const char *const memcg1_stat_names[] = {
  970. "cache",
  971. "rss",
  972. "rss_huge",
  973. "shmem",
  974. "mapped_file",
  975. "dirty",
  976. "writeback",
  977. "swap",
  978. };
  979. #define K(x) ((x) << (PAGE_SHIFT-10))
  980. /**
  981. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  982. * @memcg: The memory cgroup that went over limit
  983. * @p: Task that is going to be killed
  984. *
  985. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  986. * enabled
  987. */
  988. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  989. {
  990. struct mem_cgroup *iter;
  991. unsigned int i;
  992. rcu_read_lock();
  993. if (p) {
  994. pr_info("Task in ");
  995. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  996. pr_cont(" killed as a result of limit of ");
  997. } else {
  998. pr_info("Memory limit reached of cgroup ");
  999. }
  1000. pr_cont_cgroup_path(memcg->css.cgroup);
  1001. pr_cont("\n");
  1002. rcu_read_unlock();
  1003. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  1004. K((u64)page_counter_read(&memcg->memory)),
  1005. K((u64)memcg->memory.max), memcg->memory.failcnt);
  1006. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  1007. K((u64)page_counter_read(&memcg->memsw)),
  1008. K((u64)memcg->memsw.max), memcg->memsw.failcnt);
  1009. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1010. K((u64)page_counter_read(&memcg->kmem)),
  1011. K((u64)memcg->kmem.max), memcg->kmem.failcnt);
  1012. for_each_mem_cgroup_tree(iter, memcg) {
  1013. pr_info("Memory cgroup stats for ");
  1014. pr_cont_cgroup_path(iter->css.cgroup);
  1015. pr_cont(":");
  1016. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  1017. if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
  1018. continue;
  1019. pr_cont(" %s:%luKB", memcg1_stat_names[i],
  1020. K(memcg_page_state(iter, memcg1_stats[i])));
  1021. }
  1022. for (i = 0; i < NR_LRU_LISTS; i++)
  1023. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1024. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1025. pr_cont("\n");
  1026. }
  1027. }
  1028. /*
  1029. * Return the memory (and swap, if configured) limit for a memcg.
  1030. */
  1031. unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
  1032. {
  1033. unsigned long max;
  1034. max = memcg->memory.max;
  1035. if (mem_cgroup_swappiness(memcg)) {
  1036. unsigned long memsw_max;
  1037. unsigned long swap_max;
  1038. memsw_max = memcg->memsw.max;
  1039. swap_max = memcg->swap.max;
  1040. swap_max = min(swap_max, (unsigned long)total_swap_pages);
  1041. max = min(max + swap_max, memsw_max);
  1042. }
  1043. return max;
  1044. }
  1045. static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1046. int order)
  1047. {
  1048. struct oom_control oc = {
  1049. .zonelist = NULL,
  1050. .nodemask = NULL,
  1051. .memcg = memcg,
  1052. .gfp_mask = gfp_mask,
  1053. .order = order,
  1054. };
  1055. bool ret;
  1056. mutex_lock(&oom_lock);
  1057. ret = out_of_memory(&oc);
  1058. mutex_unlock(&oom_lock);
  1059. return ret;
  1060. }
  1061. #if MAX_NUMNODES > 1
  1062. /**
  1063. * test_mem_cgroup_node_reclaimable
  1064. * @memcg: the target memcg
  1065. * @nid: the node ID to be checked.
  1066. * @noswap : specify true here if the user wants flle only information.
  1067. *
  1068. * This function returns whether the specified memcg contains any
  1069. * reclaimable pages on a node. Returns true if there are any reclaimable
  1070. * pages in the node.
  1071. */
  1072. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1073. int nid, bool noswap)
  1074. {
  1075. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1076. return true;
  1077. if (noswap || !total_swap_pages)
  1078. return false;
  1079. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1080. return true;
  1081. return false;
  1082. }
  1083. /*
  1084. * Always updating the nodemask is not very good - even if we have an empty
  1085. * list or the wrong list here, we can start from some node and traverse all
  1086. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1087. *
  1088. */
  1089. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1090. {
  1091. int nid;
  1092. /*
  1093. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1094. * pagein/pageout changes since the last update.
  1095. */
  1096. if (!atomic_read(&memcg->numainfo_events))
  1097. return;
  1098. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1099. return;
  1100. /* make a nodemask where this memcg uses memory from */
  1101. memcg->scan_nodes = node_states[N_MEMORY];
  1102. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1103. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1104. node_clear(nid, memcg->scan_nodes);
  1105. }
  1106. atomic_set(&memcg->numainfo_events, 0);
  1107. atomic_set(&memcg->numainfo_updating, 0);
  1108. }
  1109. /*
  1110. * Selecting a node where we start reclaim from. Because what we need is just
  1111. * reducing usage counter, start from anywhere is O,K. Considering
  1112. * memory reclaim from current node, there are pros. and cons.
  1113. *
  1114. * Freeing memory from current node means freeing memory from a node which
  1115. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1116. * hit limits, it will see a contention on a node. But freeing from remote
  1117. * node means more costs for memory reclaim because of memory latency.
  1118. *
  1119. * Now, we use round-robin. Better algorithm is welcomed.
  1120. */
  1121. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1122. {
  1123. int node;
  1124. mem_cgroup_may_update_nodemask(memcg);
  1125. node = memcg->last_scanned_node;
  1126. node = next_node_in(node, memcg->scan_nodes);
  1127. /*
  1128. * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
  1129. * last time it really checked all the LRUs due to rate limiting.
  1130. * Fallback to the current node in that case for simplicity.
  1131. */
  1132. if (unlikely(node == MAX_NUMNODES))
  1133. node = numa_node_id();
  1134. memcg->last_scanned_node = node;
  1135. return node;
  1136. }
  1137. #else
  1138. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1139. {
  1140. return 0;
  1141. }
  1142. #endif
  1143. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1144. pg_data_t *pgdat,
  1145. gfp_t gfp_mask,
  1146. unsigned long *total_scanned)
  1147. {
  1148. struct mem_cgroup *victim = NULL;
  1149. int total = 0;
  1150. int loop = 0;
  1151. unsigned long excess;
  1152. unsigned long nr_scanned;
  1153. struct mem_cgroup_reclaim_cookie reclaim = {
  1154. .pgdat = pgdat,
  1155. .priority = 0,
  1156. };
  1157. excess = soft_limit_excess(root_memcg);
  1158. while (1) {
  1159. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1160. if (!victim) {
  1161. loop++;
  1162. if (loop >= 2) {
  1163. /*
  1164. * If we have not been able to reclaim
  1165. * anything, it might because there are
  1166. * no reclaimable pages under this hierarchy
  1167. */
  1168. if (!total)
  1169. break;
  1170. /*
  1171. * We want to do more targeted reclaim.
  1172. * excess >> 2 is not to excessive so as to
  1173. * reclaim too much, nor too less that we keep
  1174. * coming back to reclaim from this cgroup
  1175. */
  1176. if (total >= (excess >> 2) ||
  1177. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1178. break;
  1179. }
  1180. continue;
  1181. }
  1182. total += mem_cgroup_shrink_node(victim, gfp_mask, false,
  1183. pgdat, &nr_scanned);
  1184. *total_scanned += nr_scanned;
  1185. if (!soft_limit_excess(root_memcg))
  1186. break;
  1187. }
  1188. mem_cgroup_iter_break(root_memcg, victim);
  1189. return total;
  1190. }
  1191. #ifdef CONFIG_LOCKDEP
  1192. static struct lockdep_map memcg_oom_lock_dep_map = {
  1193. .name = "memcg_oom_lock",
  1194. };
  1195. #endif
  1196. static DEFINE_SPINLOCK(memcg_oom_lock);
  1197. /*
  1198. * Check OOM-Killer is already running under our hierarchy.
  1199. * If someone is running, return false.
  1200. */
  1201. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1202. {
  1203. struct mem_cgroup *iter, *failed = NULL;
  1204. spin_lock(&memcg_oom_lock);
  1205. for_each_mem_cgroup_tree(iter, memcg) {
  1206. if (iter->oom_lock) {
  1207. /*
  1208. * this subtree of our hierarchy is already locked
  1209. * so we cannot give a lock.
  1210. */
  1211. failed = iter;
  1212. mem_cgroup_iter_break(memcg, iter);
  1213. break;
  1214. } else
  1215. iter->oom_lock = true;
  1216. }
  1217. if (failed) {
  1218. /*
  1219. * OK, we failed to lock the whole subtree so we have
  1220. * to clean up what we set up to the failing subtree
  1221. */
  1222. for_each_mem_cgroup_tree(iter, memcg) {
  1223. if (iter == failed) {
  1224. mem_cgroup_iter_break(memcg, iter);
  1225. break;
  1226. }
  1227. iter->oom_lock = false;
  1228. }
  1229. } else
  1230. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1231. spin_unlock(&memcg_oom_lock);
  1232. return !failed;
  1233. }
  1234. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1235. {
  1236. struct mem_cgroup *iter;
  1237. spin_lock(&memcg_oom_lock);
  1238. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1239. for_each_mem_cgroup_tree(iter, memcg)
  1240. iter->oom_lock = false;
  1241. spin_unlock(&memcg_oom_lock);
  1242. }
  1243. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1244. {
  1245. struct mem_cgroup *iter;
  1246. spin_lock(&memcg_oom_lock);
  1247. for_each_mem_cgroup_tree(iter, memcg)
  1248. iter->under_oom++;
  1249. spin_unlock(&memcg_oom_lock);
  1250. }
  1251. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1252. {
  1253. struct mem_cgroup *iter;
  1254. /*
  1255. * When a new child is created while the hierarchy is under oom,
  1256. * mem_cgroup_oom_lock() may not be called. Watch for underflow.
  1257. */
  1258. spin_lock(&memcg_oom_lock);
  1259. for_each_mem_cgroup_tree(iter, memcg)
  1260. if (iter->under_oom > 0)
  1261. iter->under_oom--;
  1262. spin_unlock(&memcg_oom_lock);
  1263. }
  1264. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1265. struct oom_wait_info {
  1266. struct mem_cgroup *memcg;
  1267. wait_queue_entry_t wait;
  1268. };
  1269. static int memcg_oom_wake_function(wait_queue_entry_t *wait,
  1270. unsigned mode, int sync, void *arg)
  1271. {
  1272. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1273. struct mem_cgroup *oom_wait_memcg;
  1274. struct oom_wait_info *oom_wait_info;
  1275. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1276. oom_wait_memcg = oom_wait_info->memcg;
  1277. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1278. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1279. return 0;
  1280. return autoremove_wake_function(wait, mode, sync, arg);
  1281. }
  1282. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1283. {
  1284. /*
  1285. * For the following lockless ->under_oom test, the only required
  1286. * guarantee is that it must see the state asserted by an OOM when
  1287. * this function is called as a result of userland actions
  1288. * triggered by the notification of the OOM. This is trivially
  1289. * achieved by invoking mem_cgroup_mark_under_oom() before
  1290. * triggering notification.
  1291. */
  1292. if (memcg && memcg->under_oom)
  1293. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1294. }
  1295. static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1296. {
  1297. if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
  1298. return;
  1299. /*
  1300. * We are in the middle of the charge context here, so we
  1301. * don't want to block when potentially sitting on a callstack
  1302. * that holds all kinds of filesystem and mm locks.
  1303. *
  1304. * Also, the caller may handle a failed allocation gracefully
  1305. * (like optional page cache readahead) and so an OOM killer
  1306. * invocation might not even be necessary.
  1307. *
  1308. * That's why we don't do anything here except remember the
  1309. * OOM context and then deal with it at the end of the page
  1310. * fault when the stack is unwound, the locks are released,
  1311. * and when we know whether the fault was overall successful.
  1312. */
  1313. css_get(&memcg->css);
  1314. current->memcg_in_oom = memcg;
  1315. current->memcg_oom_gfp_mask = mask;
  1316. current->memcg_oom_order = order;
  1317. }
  1318. /**
  1319. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1320. * @handle: actually kill/wait or just clean up the OOM state
  1321. *
  1322. * This has to be called at the end of a page fault if the memcg OOM
  1323. * handler was enabled.
  1324. *
  1325. * Memcg supports userspace OOM handling where failed allocations must
  1326. * sleep on a waitqueue until the userspace task resolves the
  1327. * situation. Sleeping directly in the charge context with all kinds
  1328. * of locks held is not a good idea, instead we remember an OOM state
  1329. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1330. * the end of the page fault to complete the OOM handling.
  1331. *
  1332. * Returns %true if an ongoing memcg OOM situation was detected and
  1333. * completed, %false otherwise.
  1334. */
  1335. bool mem_cgroup_oom_synchronize(bool handle)
  1336. {
  1337. struct mem_cgroup *memcg = current->memcg_in_oom;
  1338. struct oom_wait_info owait;
  1339. bool locked;
  1340. /* OOM is global, do not handle */
  1341. if (!memcg)
  1342. return false;
  1343. if (!handle)
  1344. goto cleanup;
  1345. owait.memcg = memcg;
  1346. owait.wait.flags = 0;
  1347. owait.wait.func = memcg_oom_wake_function;
  1348. owait.wait.private = current;
  1349. INIT_LIST_HEAD(&owait.wait.entry);
  1350. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1351. mem_cgroup_mark_under_oom(memcg);
  1352. locked = mem_cgroup_oom_trylock(memcg);
  1353. if (locked)
  1354. mem_cgroup_oom_notify(memcg);
  1355. if (locked && !memcg->oom_kill_disable) {
  1356. mem_cgroup_unmark_under_oom(memcg);
  1357. finish_wait(&memcg_oom_waitq, &owait.wait);
  1358. mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
  1359. current->memcg_oom_order);
  1360. } else {
  1361. schedule();
  1362. mem_cgroup_unmark_under_oom(memcg);
  1363. finish_wait(&memcg_oom_waitq, &owait.wait);
  1364. }
  1365. if (locked) {
  1366. mem_cgroup_oom_unlock(memcg);
  1367. /*
  1368. * There is no guarantee that an OOM-lock contender
  1369. * sees the wakeups triggered by the OOM kill
  1370. * uncharges. Wake any sleepers explicitely.
  1371. */
  1372. memcg_oom_recover(memcg);
  1373. }
  1374. cleanup:
  1375. current->memcg_in_oom = NULL;
  1376. css_put(&memcg->css);
  1377. return true;
  1378. }
  1379. /**
  1380. * lock_page_memcg - lock a page->mem_cgroup binding
  1381. * @page: the page
  1382. *
  1383. * This function protects unlocked LRU pages from being moved to
  1384. * another cgroup.
  1385. *
  1386. * It ensures lifetime of the returned memcg. Caller is responsible
  1387. * for the lifetime of the page; __unlock_page_memcg() is available
  1388. * when @page might get freed inside the locked section.
  1389. */
  1390. struct mem_cgroup *lock_page_memcg(struct page *page)
  1391. {
  1392. struct mem_cgroup *memcg;
  1393. unsigned long flags;
  1394. /*
  1395. * The RCU lock is held throughout the transaction. The fast
  1396. * path can get away without acquiring the memcg->move_lock
  1397. * because page moving starts with an RCU grace period.
  1398. *
  1399. * The RCU lock also protects the memcg from being freed when
  1400. * the page state that is going to change is the only thing
  1401. * preventing the page itself from being freed. E.g. writeback
  1402. * doesn't hold a page reference and relies on PG_writeback to
  1403. * keep off truncation, migration and so forth.
  1404. */
  1405. rcu_read_lock();
  1406. if (mem_cgroup_disabled())
  1407. return NULL;
  1408. again:
  1409. memcg = page->mem_cgroup;
  1410. if (unlikely(!memcg))
  1411. return NULL;
  1412. if (atomic_read(&memcg->moving_account) <= 0)
  1413. return memcg;
  1414. spin_lock_irqsave(&memcg->move_lock, flags);
  1415. if (memcg != page->mem_cgroup) {
  1416. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1417. goto again;
  1418. }
  1419. /*
  1420. * When charge migration first begins, we can have locked and
  1421. * unlocked page stat updates happening concurrently. Track
  1422. * the task who has the lock for unlock_page_memcg().
  1423. */
  1424. memcg->move_lock_task = current;
  1425. memcg->move_lock_flags = flags;
  1426. return memcg;
  1427. }
  1428. EXPORT_SYMBOL(lock_page_memcg);
  1429. /**
  1430. * __unlock_page_memcg - unlock and unpin a memcg
  1431. * @memcg: the memcg
  1432. *
  1433. * Unlock and unpin a memcg returned by lock_page_memcg().
  1434. */
  1435. void __unlock_page_memcg(struct mem_cgroup *memcg)
  1436. {
  1437. if (memcg && memcg->move_lock_task == current) {
  1438. unsigned long flags = memcg->move_lock_flags;
  1439. memcg->move_lock_task = NULL;
  1440. memcg->move_lock_flags = 0;
  1441. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1442. }
  1443. rcu_read_unlock();
  1444. }
  1445. /**
  1446. * unlock_page_memcg - unlock a page->mem_cgroup binding
  1447. * @page: the page
  1448. */
  1449. void unlock_page_memcg(struct page *page)
  1450. {
  1451. __unlock_page_memcg(page->mem_cgroup);
  1452. }
  1453. EXPORT_SYMBOL(unlock_page_memcg);
  1454. struct memcg_stock_pcp {
  1455. struct mem_cgroup *cached; /* this never be root cgroup */
  1456. unsigned int nr_pages;
  1457. struct work_struct work;
  1458. unsigned long flags;
  1459. #define FLUSHING_CACHED_CHARGE 0
  1460. };
  1461. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1462. static DEFINE_MUTEX(percpu_charge_mutex);
  1463. /**
  1464. * consume_stock: Try to consume stocked charge on this cpu.
  1465. * @memcg: memcg to consume from.
  1466. * @nr_pages: how many pages to charge.
  1467. *
  1468. * The charges will only happen if @memcg matches the current cpu's memcg
  1469. * stock, and at least @nr_pages are available in that stock. Failure to
  1470. * service an allocation will refill the stock.
  1471. *
  1472. * returns true if successful, false otherwise.
  1473. */
  1474. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1475. {
  1476. struct memcg_stock_pcp *stock;
  1477. unsigned long flags;
  1478. bool ret = false;
  1479. if (nr_pages > MEMCG_CHARGE_BATCH)
  1480. return ret;
  1481. local_irq_save(flags);
  1482. stock = this_cpu_ptr(&memcg_stock);
  1483. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1484. stock->nr_pages -= nr_pages;
  1485. ret = true;
  1486. }
  1487. local_irq_restore(flags);
  1488. return ret;
  1489. }
  1490. /*
  1491. * Returns stocks cached in percpu and reset cached information.
  1492. */
  1493. static void drain_stock(struct memcg_stock_pcp *stock)
  1494. {
  1495. struct mem_cgroup *old = stock->cached;
  1496. if (stock->nr_pages) {
  1497. page_counter_uncharge(&old->memory, stock->nr_pages);
  1498. if (do_memsw_account())
  1499. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1500. css_put_many(&old->css, stock->nr_pages);
  1501. stock->nr_pages = 0;
  1502. }
  1503. stock->cached = NULL;
  1504. }
  1505. static void drain_local_stock(struct work_struct *dummy)
  1506. {
  1507. struct memcg_stock_pcp *stock;
  1508. unsigned long flags;
  1509. /*
  1510. * The only protection from memory hotplug vs. drain_stock races is
  1511. * that we always operate on local CPU stock here with IRQ disabled
  1512. */
  1513. local_irq_save(flags);
  1514. stock = this_cpu_ptr(&memcg_stock);
  1515. drain_stock(stock);
  1516. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1517. local_irq_restore(flags);
  1518. }
  1519. /*
  1520. * Cache charges(val) to local per_cpu area.
  1521. * This will be consumed by consume_stock() function, later.
  1522. */
  1523. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1524. {
  1525. struct memcg_stock_pcp *stock;
  1526. unsigned long flags;
  1527. local_irq_save(flags);
  1528. stock = this_cpu_ptr(&memcg_stock);
  1529. if (stock->cached != memcg) { /* reset if necessary */
  1530. drain_stock(stock);
  1531. stock->cached = memcg;
  1532. }
  1533. stock->nr_pages += nr_pages;
  1534. if (stock->nr_pages > MEMCG_CHARGE_BATCH)
  1535. drain_stock(stock);
  1536. local_irq_restore(flags);
  1537. }
  1538. /*
  1539. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1540. * of the hierarchy under it.
  1541. */
  1542. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1543. {
  1544. int cpu, curcpu;
  1545. /* If someone's already draining, avoid adding running more workers. */
  1546. if (!mutex_trylock(&percpu_charge_mutex))
  1547. return;
  1548. /*
  1549. * Notify other cpus that system-wide "drain" is running
  1550. * We do not care about races with the cpu hotplug because cpu down
  1551. * as well as workers from this path always operate on the local
  1552. * per-cpu data. CPU up doesn't touch memcg_stock at all.
  1553. */
  1554. curcpu = get_cpu();
  1555. for_each_online_cpu(cpu) {
  1556. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1557. struct mem_cgroup *memcg;
  1558. memcg = stock->cached;
  1559. if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
  1560. continue;
  1561. if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
  1562. css_put(&memcg->css);
  1563. continue;
  1564. }
  1565. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1566. if (cpu == curcpu)
  1567. drain_local_stock(&stock->work);
  1568. else
  1569. schedule_work_on(cpu, &stock->work);
  1570. }
  1571. css_put(&memcg->css);
  1572. }
  1573. put_cpu();
  1574. mutex_unlock(&percpu_charge_mutex);
  1575. }
  1576. static int memcg_hotplug_cpu_dead(unsigned int cpu)
  1577. {
  1578. struct memcg_stock_pcp *stock;
  1579. struct mem_cgroup *memcg;
  1580. stock = &per_cpu(memcg_stock, cpu);
  1581. drain_stock(stock);
  1582. for_each_mem_cgroup(memcg) {
  1583. int i;
  1584. for (i = 0; i < MEMCG_NR_STAT; i++) {
  1585. int nid;
  1586. long x;
  1587. x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
  1588. if (x)
  1589. atomic_long_add(x, &memcg->stat[i]);
  1590. if (i >= NR_VM_NODE_STAT_ITEMS)
  1591. continue;
  1592. for_each_node(nid) {
  1593. struct mem_cgroup_per_node *pn;
  1594. pn = mem_cgroup_nodeinfo(memcg, nid);
  1595. x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
  1596. if (x)
  1597. atomic_long_add(x, &pn->lruvec_stat[i]);
  1598. }
  1599. }
  1600. for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  1601. long x;
  1602. x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
  1603. if (x)
  1604. atomic_long_add(x, &memcg->events[i]);
  1605. }
  1606. }
  1607. return 0;
  1608. }
  1609. static void reclaim_high(struct mem_cgroup *memcg,
  1610. unsigned int nr_pages,
  1611. gfp_t gfp_mask)
  1612. {
  1613. do {
  1614. if (page_counter_read(&memcg->memory) <= memcg->high)
  1615. continue;
  1616. memcg_memory_event(memcg, MEMCG_HIGH);
  1617. try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
  1618. } while ((memcg = parent_mem_cgroup(memcg)));
  1619. }
  1620. static void high_work_func(struct work_struct *work)
  1621. {
  1622. struct mem_cgroup *memcg;
  1623. memcg = container_of(work, struct mem_cgroup, high_work);
  1624. reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
  1625. }
  1626. /*
  1627. * Scheduled by try_charge() to be executed from the userland return path
  1628. * and reclaims memory over the high limit.
  1629. */
  1630. void mem_cgroup_handle_over_high(void)
  1631. {
  1632. unsigned int nr_pages = current->memcg_nr_pages_over_high;
  1633. struct mem_cgroup *memcg;
  1634. if (likely(!nr_pages))
  1635. return;
  1636. memcg = get_mem_cgroup_from_mm(current->mm);
  1637. reclaim_high(memcg, nr_pages, GFP_KERNEL);
  1638. css_put(&memcg->css);
  1639. current->memcg_nr_pages_over_high = 0;
  1640. }
  1641. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1642. unsigned int nr_pages)
  1643. {
  1644. unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
  1645. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1646. struct mem_cgroup *mem_over_limit;
  1647. struct page_counter *counter;
  1648. unsigned long nr_reclaimed;
  1649. bool may_swap = true;
  1650. bool drained = false;
  1651. if (mem_cgroup_is_root(memcg))
  1652. return 0;
  1653. retry:
  1654. if (consume_stock(memcg, nr_pages))
  1655. return 0;
  1656. if (!do_memsw_account() ||
  1657. page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1658. if (page_counter_try_charge(&memcg->memory, batch, &counter))
  1659. goto done_restock;
  1660. if (do_memsw_account())
  1661. page_counter_uncharge(&memcg->memsw, batch);
  1662. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1663. } else {
  1664. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1665. may_swap = false;
  1666. }
  1667. if (batch > nr_pages) {
  1668. batch = nr_pages;
  1669. goto retry;
  1670. }
  1671. /*
  1672. * Unlike in global OOM situations, memcg is not in a physical
  1673. * memory shortage. Allow dying and OOM-killed tasks to
  1674. * bypass the last charges so that they can exit quickly and
  1675. * free their memory.
  1676. */
  1677. if (unlikely(tsk_is_oom_victim(current) ||
  1678. fatal_signal_pending(current) ||
  1679. current->flags & PF_EXITING))
  1680. goto force;
  1681. /*
  1682. * Prevent unbounded recursion when reclaim operations need to
  1683. * allocate memory. This might exceed the limits temporarily,
  1684. * but we prefer facilitating memory reclaim and getting back
  1685. * under the limit over triggering OOM kills in these cases.
  1686. */
  1687. if (unlikely(current->flags & PF_MEMALLOC))
  1688. goto force;
  1689. if (unlikely(task_in_memcg_oom(current)))
  1690. goto nomem;
  1691. if (!gfpflags_allow_blocking(gfp_mask))
  1692. goto nomem;
  1693. memcg_memory_event(mem_over_limit, MEMCG_MAX);
  1694. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  1695. gfp_mask, may_swap);
  1696. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1697. goto retry;
  1698. if (!drained) {
  1699. drain_all_stock(mem_over_limit);
  1700. drained = true;
  1701. goto retry;
  1702. }
  1703. if (gfp_mask & __GFP_NORETRY)
  1704. goto nomem;
  1705. /*
  1706. * Even though the limit is exceeded at this point, reclaim
  1707. * may have been able to free some pages. Retry the charge
  1708. * before killing the task.
  1709. *
  1710. * Only for regular pages, though: huge pages are rather
  1711. * unlikely to succeed so close to the limit, and we fall back
  1712. * to regular pages anyway in case of failure.
  1713. */
  1714. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  1715. goto retry;
  1716. /*
  1717. * At task move, charge accounts can be doubly counted. So, it's
  1718. * better to wait until the end of task_move if something is going on.
  1719. */
  1720. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1721. goto retry;
  1722. if (nr_retries--)
  1723. goto retry;
  1724. if (gfp_mask & __GFP_NOFAIL)
  1725. goto force;
  1726. if (fatal_signal_pending(current))
  1727. goto force;
  1728. memcg_memory_event(mem_over_limit, MEMCG_OOM);
  1729. mem_cgroup_oom(mem_over_limit, gfp_mask,
  1730. get_order(nr_pages * PAGE_SIZE));
  1731. nomem:
  1732. if (!(gfp_mask & __GFP_NOFAIL))
  1733. return -ENOMEM;
  1734. force:
  1735. /*
  1736. * The allocation either can't fail or will lead to more memory
  1737. * being freed very soon. Allow memory usage go over the limit
  1738. * temporarily by force charging it.
  1739. */
  1740. page_counter_charge(&memcg->memory, nr_pages);
  1741. if (do_memsw_account())
  1742. page_counter_charge(&memcg->memsw, nr_pages);
  1743. css_get_many(&memcg->css, nr_pages);
  1744. return 0;
  1745. done_restock:
  1746. css_get_many(&memcg->css, batch);
  1747. if (batch > nr_pages)
  1748. refill_stock(memcg, batch - nr_pages);
  1749. /*
  1750. * If the hierarchy is above the normal consumption range, schedule
  1751. * reclaim on returning to userland. We can perform reclaim here
  1752. * if __GFP_RECLAIM but let's always punt for simplicity and so that
  1753. * GFP_KERNEL can consistently be used during reclaim. @memcg is
  1754. * not recorded as it most likely matches current's and won't
  1755. * change in the meantime. As high limit is checked again before
  1756. * reclaim, the cost of mismatch is negligible.
  1757. */
  1758. do {
  1759. if (page_counter_read(&memcg->memory) > memcg->high) {
  1760. /* Don't bother a random interrupted task */
  1761. if (in_interrupt()) {
  1762. schedule_work(&memcg->high_work);
  1763. break;
  1764. }
  1765. current->memcg_nr_pages_over_high += batch;
  1766. set_notify_resume(current);
  1767. break;
  1768. }
  1769. } while ((memcg = parent_mem_cgroup(memcg)));
  1770. return 0;
  1771. }
  1772. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  1773. {
  1774. if (mem_cgroup_is_root(memcg))
  1775. return;
  1776. page_counter_uncharge(&memcg->memory, nr_pages);
  1777. if (do_memsw_account())
  1778. page_counter_uncharge(&memcg->memsw, nr_pages);
  1779. css_put_many(&memcg->css, nr_pages);
  1780. }
  1781. static void lock_page_lru(struct page *page, int *isolated)
  1782. {
  1783. struct zone *zone = page_zone(page);
  1784. spin_lock_irq(zone_lru_lock(zone));
  1785. if (PageLRU(page)) {
  1786. struct lruvec *lruvec;
  1787. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1788. ClearPageLRU(page);
  1789. del_page_from_lru_list(page, lruvec, page_lru(page));
  1790. *isolated = 1;
  1791. } else
  1792. *isolated = 0;
  1793. }
  1794. static void unlock_page_lru(struct page *page, int isolated)
  1795. {
  1796. struct zone *zone = page_zone(page);
  1797. if (isolated) {
  1798. struct lruvec *lruvec;
  1799. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1800. VM_BUG_ON_PAGE(PageLRU(page), page);
  1801. SetPageLRU(page);
  1802. add_page_to_lru_list(page, lruvec, page_lru(page));
  1803. }
  1804. spin_unlock_irq(zone_lru_lock(zone));
  1805. }
  1806. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  1807. bool lrucare)
  1808. {
  1809. int isolated;
  1810. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  1811. /*
  1812. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  1813. * may already be on some other mem_cgroup's LRU. Take care of it.
  1814. */
  1815. if (lrucare)
  1816. lock_page_lru(page, &isolated);
  1817. /*
  1818. * Nobody should be changing or seriously looking at
  1819. * page->mem_cgroup at this point:
  1820. *
  1821. * - the page is uncharged
  1822. *
  1823. * - the page is off-LRU
  1824. *
  1825. * - an anonymous fault has exclusive page access, except for
  1826. * a locked page table
  1827. *
  1828. * - a page cache insertion, a swapin fault, or a migration
  1829. * have the page locked
  1830. */
  1831. page->mem_cgroup = memcg;
  1832. if (lrucare)
  1833. unlock_page_lru(page, isolated);
  1834. }
  1835. #ifndef CONFIG_SLOB
  1836. static int memcg_alloc_cache_id(void)
  1837. {
  1838. int id, size;
  1839. int err;
  1840. id = ida_simple_get(&memcg_cache_ida,
  1841. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  1842. if (id < 0)
  1843. return id;
  1844. if (id < memcg_nr_cache_ids)
  1845. return id;
  1846. /*
  1847. * There's no space for the new id in memcg_caches arrays,
  1848. * so we have to grow them.
  1849. */
  1850. down_write(&memcg_cache_ids_sem);
  1851. size = 2 * (id + 1);
  1852. if (size < MEMCG_CACHES_MIN_SIZE)
  1853. size = MEMCG_CACHES_MIN_SIZE;
  1854. else if (size > MEMCG_CACHES_MAX_SIZE)
  1855. size = MEMCG_CACHES_MAX_SIZE;
  1856. err = memcg_update_all_caches(size);
  1857. if (!err)
  1858. err = memcg_update_all_list_lrus(size);
  1859. if (!err)
  1860. memcg_nr_cache_ids = size;
  1861. up_write(&memcg_cache_ids_sem);
  1862. if (err) {
  1863. ida_simple_remove(&memcg_cache_ida, id);
  1864. return err;
  1865. }
  1866. return id;
  1867. }
  1868. static void memcg_free_cache_id(int id)
  1869. {
  1870. ida_simple_remove(&memcg_cache_ida, id);
  1871. }
  1872. struct memcg_kmem_cache_create_work {
  1873. struct mem_cgroup *memcg;
  1874. struct kmem_cache *cachep;
  1875. struct work_struct work;
  1876. };
  1877. static void memcg_kmem_cache_create_func(struct work_struct *w)
  1878. {
  1879. struct memcg_kmem_cache_create_work *cw =
  1880. container_of(w, struct memcg_kmem_cache_create_work, work);
  1881. struct mem_cgroup *memcg = cw->memcg;
  1882. struct kmem_cache *cachep = cw->cachep;
  1883. memcg_create_kmem_cache(memcg, cachep);
  1884. css_put(&memcg->css);
  1885. kfree(cw);
  1886. }
  1887. /*
  1888. * Enqueue the creation of a per-memcg kmem_cache.
  1889. */
  1890. static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1891. struct kmem_cache *cachep)
  1892. {
  1893. struct memcg_kmem_cache_create_work *cw;
  1894. cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
  1895. if (!cw)
  1896. return;
  1897. css_get(&memcg->css);
  1898. cw->memcg = memcg;
  1899. cw->cachep = cachep;
  1900. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  1901. queue_work(memcg_kmem_cache_wq, &cw->work);
  1902. }
  1903. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1904. struct kmem_cache *cachep)
  1905. {
  1906. /*
  1907. * We need to stop accounting when we kmalloc, because if the
  1908. * corresponding kmalloc cache is not yet created, the first allocation
  1909. * in __memcg_schedule_kmem_cache_create will recurse.
  1910. *
  1911. * However, it is better to enclose the whole function. Depending on
  1912. * the debugging options enabled, INIT_WORK(), for instance, can
  1913. * trigger an allocation. This too, will make us recurse. Because at
  1914. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  1915. * the safest choice is to do it like this, wrapping the whole function.
  1916. */
  1917. current->memcg_kmem_skip_account = 1;
  1918. __memcg_schedule_kmem_cache_create(memcg, cachep);
  1919. current->memcg_kmem_skip_account = 0;
  1920. }
  1921. static inline bool memcg_kmem_bypass(void)
  1922. {
  1923. if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
  1924. return true;
  1925. return false;
  1926. }
  1927. /**
  1928. * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
  1929. * @cachep: the original global kmem cache
  1930. *
  1931. * Return the kmem_cache we're supposed to use for a slab allocation.
  1932. * We try to use the current memcg's version of the cache.
  1933. *
  1934. * If the cache does not exist yet, if we are the first user of it, we
  1935. * create it asynchronously in a workqueue and let the current allocation
  1936. * go through with the original cache.
  1937. *
  1938. * This function takes a reference to the cache it returns to assure it
  1939. * won't get destroyed while we are working with it. Once the caller is
  1940. * done with it, memcg_kmem_put_cache() must be called to release the
  1941. * reference.
  1942. */
  1943. struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
  1944. {
  1945. struct mem_cgroup *memcg;
  1946. struct kmem_cache *memcg_cachep;
  1947. int kmemcg_id;
  1948. VM_BUG_ON(!is_root_cache(cachep));
  1949. if (memcg_kmem_bypass())
  1950. return cachep;
  1951. if (current->memcg_kmem_skip_account)
  1952. return cachep;
  1953. memcg = get_mem_cgroup_from_mm(current->mm);
  1954. kmemcg_id = READ_ONCE(memcg->kmemcg_id);
  1955. if (kmemcg_id < 0)
  1956. goto out;
  1957. memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
  1958. if (likely(memcg_cachep))
  1959. return memcg_cachep;
  1960. /*
  1961. * If we are in a safe context (can wait, and not in interrupt
  1962. * context), we could be be predictable and return right away.
  1963. * This would guarantee that the allocation being performed
  1964. * already belongs in the new cache.
  1965. *
  1966. * However, there are some clashes that can arrive from locking.
  1967. * For instance, because we acquire the slab_mutex while doing
  1968. * memcg_create_kmem_cache, this means no further allocation
  1969. * could happen with the slab_mutex held. So it's better to
  1970. * defer everything.
  1971. */
  1972. memcg_schedule_kmem_cache_create(memcg, cachep);
  1973. out:
  1974. css_put(&memcg->css);
  1975. return cachep;
  1976. }
  1977. /**
  1978. * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
  1979. * @cachep: the cache returned by memcg_kmem_get_cache
  1980. */
  1981. void memcg_kmem_put_cache(struct kmem_cache *cachep)
  1982. {
  1983. if (!is_root_cache(cachep))
  1984. css_put(&cachep->memcg_params.memcg->css);
  1985. }
  1986. /**
  1987. * memcg_kmem_charge_memcg: charge a kmem page
  1988. * @page: page to charge
  1989. * @gfp: reclaim mode
  1990. * @order: allocation order
  1991. * @memcg: memory cgroup to charge
  1992. *
  1993. * Returns 0 on success, an error code on failure.
  1994. */
  1995. int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
  1996. struct mem_cgroup *memcg)
  1997. {
  1998. unsigned int nr_pages = 1 << order;
  1999. struct page_counter *counter;
  2000. int ret;
  2001. ret = try_charge(memcg, gfp, nr_pages);
  2002. if (ret)
  2003. return ret;
  2004. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
  2005. !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
  2006. cancel_charge(memcg, nr_pages);
  2007. return -ENOMEM;
  2008. }
  2009. page->mem_cgroup = memcg;
  2010. return 0;
  2011. }
  2012. /**
  2013. * memcg_kmem_charge: charge a kmem page to the current memory cgroup
  2014. * @page: page to charge
  2015. * @gfp: reclaim mode
  2016. * @order: allocation order
  2017. *
  2018. * Returns 0 on success, an error code on failure.
  2019. */
  2020. int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
  2021. {
  2022. struct mem_cgroup *memcg;
  2023. int ret = 0;
  2024. if (memcg_kmem_bypass())
  2025. return 0;
  2026. memcg = get_mem_cgroup_from_mm(current->mm);
  2027. if (!mem_cgroup_is_root(memcg)) {
  2028. ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
  2029. if (!ret)
  2030. __SetPageKmemcg(page);
  2031. }
  2032. css_put(&memcg->css);
  2033. return ret;
  2034. }
  2035. /**
  2036. * memcg_kmem_uncharge: uncharge a kmem page
  2037. * @page: page to uncharge
  2038. * @order: allocation order
  2039. */
  2040. void memcg_kmem_uncharge(struct page *page, int order)
  2041. {
  2042. struct mem_cgroup *memcg = page->mem_cgroup;
  2043. unsigned int nr_pages = 1 << order;
  2044. if (!memcg)
  2045. return;
  2046. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2047. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
  2048. page_counter_uncharge(&memcg->kmem, nr_pages);
  2049. page_counter_uncharge(&memcg->memory, nr_pages);
  2050. if (do_memsw_account())
  2051. page_counter_uncharge(&memcg->memsw, nr_pages);
  2052. page->mem_cgroup = NULL;
  2053. /* slab pages do not have PageKmemcg flag set */
  2054. if (PageKmemcg(page))
  2055. __ClearPageKmemcg(page);
  2056. css_put_many(&memcg->css, nr_pages);
  2057. }
  2058. #endif /* !CONFIG_SLOB */
  2059. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2060. /*
  2061. * Because tail pages are not marked as "used", set it. We're under
  2062. * zone_lru_lock and migration entries setup in all page mappings.
  2063. */
  2064. void mem_cgroup_split_huge_fixup(struct page *head)
  2065. {
  2066. int i;
  2067. if (mem_cgroup_disabled())
  2068. return;
  2069. for (i = 1; i < HPAGE_PMD_NR; i++)
  2070. head[i].mem_cgroup = head->mem_cgroup;
  2071. __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
  2072. }
  2073. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2074. #ifdef CONFIG_MEMCG_SWAP
  2075. /**
  2076. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2077. * @entry: swap entry to be moved
  2078. * @from: mem_cgroup which the entry is moved from
  2079. * @to: mem_cgroup which the entry is moved to
  2080. *
  2081. * It succeeds only when the swap_cgroup's record for this entry is the same
  2082. * as the mem_cgroup's id of @from.
  2083. *
  2084. * Returns 0 on success, -EINVAL on failure.
  2085. *
  2086. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2087. * both res and memsw, and called css_get().
  2088. */
  2089. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2090. struct mem_cgroup *from, struct mem_cgroup *to)
  2091. {
  2092. unsigned short old_id, new_id;
  2093. old_id = mem_cgroup_id(from);
  2094. new_id = mem_cgroup_id(to);
  2095. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2096. mod_memcg_state(from, MEMCG_SWAP, -1);
  2097. mod_memcg_state(to, MEMCG_SWAP, 1);
  2098. return 0;
  2099. }
  2100. return -EINVAL;
  2101. }
  2102. #else
  2103. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2104. struct mem_cgroup *from, struct mem_cgroup *to)
  2105. {
  2106. return -EINVAL;
  2107. }
  2108. #endif
  2109. static DEFINE_MUTEX(memcg_max_mutex);
  2110. static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
  2111. unsigned long max, bool memsw)
  2112. {
  2113. bool enlarge = false;
  2114. bool drained = false;
  2115. int ret;
  2116. bool limits_invariant;
  2117. struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
  2118. do {
  2119. if (signal_pending(current)) {
  2120. ret = -EINTR;
  2121. break;
  2122. }
  2123. mutex_lock(&memcg_max_mutex);
  2124. /*
  2125. * Make sure that the new limit (memsw or memory limit) doesn't
  2126. * break our basic invariant rule memory.max <= memsw.max.
  2127. */
  2128. limits_invariant = memsw ? max >= memcg->memory.max :
  2129. max <= memcg->memsw.max;
  2130. if (!limits_invariant) {
  2131. mutex_unlock(&memcg_max_mutex);
  2132. ret = -EINVAL;
  2133. break;
  2134. }
  2135. if (max > counter->max)
  2136. enlarge = true;
  2137. ret = page_counter_set_max(counter, max);
  2138. mutex_unlock(&memcg_max_mutex);
  2139. if (!ret)
  2140. break;
  2141. if (!drained) {
  2142. drain_all_stock(memcg);
  2143. drained = true;
  2144. continue;
  2145. }
  2146. if (!try_to_free_mem_cgroup_pages(memcg, 1,
  2147. GFP_KERNEL, !memsw)) {
  2148. ret = -EBUSY;
  2149. break;
  2150. }
  2151. } while (true);
  2152. if (!ret && enlarge)
  2153. memcg_oom_recover(memcg);
  2154. return ret;
  2155. }
  2156. unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
  2157. gfp_t gfp_mask,
  2158. unsigned long *total_scanned)
  2159. {
  2160. unsigned long nr_reclaimed = 0;
  2161. struct mem_cgroup_per_node *mz, *next_mz = NULL;
  2162. unsigned long reclaimed;
  2163. int loop = 0;
  2164. struct mem_cgroup_tree_per_node *mctz;
  2165. unsigned long excess;
  2166. unsigned long nr_scanned;
  2167. if (order > 0)
  2168. return 0;
  2169. mctz = soft_limit_tree_node(pgdat->node_id);
  2170. /*
  2171. * Do not even bother to check the largest node if the root
  2172. * is empty. Do it lockless to prevent lock bouncing. Races
  2173. * are acceptable as soft limit is best effort anyway.
  2174. */
  2175. if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
  2176. return 0;
  2177. /*
  2178. * This loop can run a while, specially if mem_cgroup's continuously
  2179. * keep exceeding their soft limit and putting the system under
  2180. * pressure
  2181. */
  2182. do {
  2183. if (next_mz)
  2184. mz = next_mz;
  2185. else
  2186. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2187. if (!mz)
  2188. break;
  2189. nr_scanned = 0;
  2190. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
  2191. gfp_mask, &nr_scanned);
  2192. nr_reclaimed += reclaimed;
  2193. *total_scanned += nr_scanned;
  2194. spin_lock_irq(&mctz->lock);
  2195. __mem_cgroup_remove_exceeded(mz, mctz);
  2196. /*
  2197. * If we failed to reclaim anything from this memory cgroup
  2198. * it is time to move on to the next cgroup
  2199. */
  2200. next_mz = NULL;
  2201. if (!reclaimed)
  2202. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2203. excess = soft_limit_excess(mz->memcg);
  2204. /*
  2205. * One school of thought says that we should not add
  2206. * back the node to the tree if reclaim returns 0.
  2207. * But our reclaim could return 0, simply because due
  2208. * to priority we are exposing a smaller subset of
  2209. * memory to reclaim from. Consider this as a longer
  2210. * term TODO.
  2211. */
  2212. /* If excess == 0, no tree ops */
  2213. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2214. spin_unlock_irq(&mctz->lock);
  2215. css_put(&mz->memcg->css);
  2216. loop++;
  2217. /*
  2218. * Could not reclaim anything and there are no more
  2219. * mem cgroups to try or we seem to be looping without
  2220. * reclaiming anything.
  2221. */
  2222. if (!nr_reclaimed &&
  2223. (next_mz == NULL ||
  2224. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2225. break;
  2226. } while (!nr_reclaimed);
  2227. if (next_mz)
  2228. css_put(&next_mz->memcg->css);
  2229. return nr_reclaimed;
  2230. }
  2231. /*
  2232. * Test whether @memcg has children, dead or alive. Note that this
  2233. * function doesn't care whether @memcg has use_hierarchy enabled and
  2234. * returns %true if there are child csses according to the cgroup
  2235. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2236. */
  2237. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2238. {
  2239. bool ret;
  2240. rcu_read_lock();
  2241. ret = css_next_child(NULL, &memcg->css);
  2242. rcu_read_unlock();
  2243. return ret;
  2244. }
  2245. /*
  2246. * Reclaims as many pages from the given memcg as possible.
  2247. *
  2248. * Caller is responsible for holding css reference for memcg.
  2249. */
  2250. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2251. {
  2252. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2253. /* we call try-to-free pages for make this cgroup empty */
  2254. lru_add_drain_all();
  2255. drain_all_stock(memcg);
  2256. /* try to free all pages in this cgroup */
  2257. while (nr_retries && page_counter_read(&memcg->memory)) {
  2258. int progress;
  2259. if (signal_pending(current))
  2260. return -EINTR;
  2261. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2262. GFP_KERNEL, true);
  2263. if (!progress) {
  2264. nr_retries--;
  2265. /* maybe some writeback is necessary */
  2266. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2267. }
  2268. }
  2269. return 0;
  2270. }
  2271. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2272. char *buf, size_t nbytes,
  2273. loff_t off)
  2274. {
  2275. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2276. if (mem_cgroup_is_root(memcg))
  2277. return -EINVAL;
  2278. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2279. }
  2280. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2281. struct cftype *cft)
  2282. {
  2283. return mem_cgroup_from_css(css)->use_hierarchy;
  2284. }
  2285. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2286. struct cftype *cft, u64 val)
  2287. {
  2288. int retval = 0;
  2289. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2290. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2291. if (memcg->use_hierarchy == val)
  2292. return 0;
  2293. /*
  2294. * If parent's use_hierarchy is set, we can't make any modifications
  2295. * in the child subtrees. If it is unset, then the change can
  2296. * occur, provided the current cgroup has no children.
  2297. *
  2298. * For the root cgroup, parent_mem is NULL, we allow value to be
  2299. * set if there are no children.
  2300. */
  2301. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2302. (val == 1 || val == 0)) {
  2303. if (!memcg_has_children(memcg))
  2304. memcg->use_hierarchy = val;
  2305. else
  2306. retval = -EBUSY;
  2307. } else
  2308. retval = -EINVAL;
  2309. return retval;
  2310. }
  2311. static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
  2312. {
  2313. struct mem_cgroup *iter;
  2314. int i;
  2315. memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
  2316. for_each_mem_cgroup_tree(iter, memcg) {
  2317. for (i = 0; i < MEMCG_NR_STAT; i++)
  2318. stat[i] += memcg_page_state(iter, i);
  2319. }
  2320. }
  2321. static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
  2322. {
  2323. struct mem_cgroup *iter;
  2324. int i;
  2325. memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
  2326. for_each_mem_cgroup_tree(iter, memcg) {
  2327. for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  2328. events[i] += memcg_sum_events(iter, i);
  2329. }
  2330. }
  2331. static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2332. {
  2333. unsigned long val = 0;
  2334. if (mem_cgroup_is_root(memcg)) {
  2335. struct mem_cgroup *iter;
  2336. for_each_mem_cgroup_tree(iter, memcg) {
  2337. val += memcg_page_state(iter, MEMCG_CACHE);
  2338. val += memcg_page_state(iter, MEMCG_RSS);
  2339. if (swap)
  2340. val += memcg_page_state(iter, MEMCG_SWAP);
  2341. }
  2342. } else {
  2343. if (!swap)
  2344. val = page_counter_read(&memcg->memory);
  2345. else
  2346. val = page_counter_read(&memcg->memsw);
  2347. }
  2348. return val;
  2349. }
  2350. enum {
  2351. RES_USAGE,
  2352. RES_LIMIT,
  2353. RES_MAX_USAGE,
  2354. RES_FAILCNT,
  2355. RES_SOFT_LIMIT,
  2356. };
  2357. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2358. struct cftype *cft)
  2359. {
  2360. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2361. struct page_counter *counter;
  2362. switch (MEMFILE_TYPE(cft->private)) {
  2363. case _MEM:
  2364. counter = &memcg->memory;
  2365. break;
  2366. case _MEMSWAP:
  2367. counter = &memcg->memsw;
  2368. break;
  2369. case _KMEM:
  2370. counter = &memcg->kmem;
  2371. break;
  2372. case _TCP:
  2373. counter = &memcg->tcpmem;
  2374. break;
  2375. default:
  2376. BUG();
  2377. }
  2378. switch (MEMFILE_ATTR(cft->private)) {
  2379. case RES_USAGE:
  2380. if (counter == &memcg->memory)
  2381. return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
  2382. if (counter == &memcg->memsw)
  2383. return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
  2384. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2385. case RES_LIMIT:
  2386. return (u64)counter->max * PAGE_SIZE;
  2387. case RES_MAX_USAGE:
  2388. return (u64)counter->watermark * PAGE_SIZE;
  2389. case RES_FAILCNT:
  2390. return counter->failcnt;
  2391. case RES_SOFT_LIMIT:
  2392. return (u64)memcg->soft_limit * PAGE_SIZE;
  2393. default:
  2394. BUG();
  2395. }
  2396. }
  2397. #ifndef CONFIG_SLOB
  2398. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2399. {
  2400. int memcg_id;
  2401. if (cgroup_memory_nokmem)
  2402. return 0;
  2403. BUG_ON(memcg->kmemcg_id >= 0);
  2404. BUG_ON(memcg->kmem_state);
  2405. memcg_id = memcg_alloc_cache_id();
  2406. if (memcg_id < 0)
  2407. return memcg_id;
  2408. static_branch_inc(&memcg_kmem_enabled_key);
  2409. /*
  2410. * A memory cgroup is considered kmem-online as soon as it gets
  2411. * kmemcg_id. Setting the id after enabling static branching will
  2412. * guarantee no one starts accounting before all call sites are
  2413. * patched.
  2414. */
  2415. memcg->kmemcg_id = memcg_id;
  2416. memcg->kmem_state = KMEM_ONLINE;
  2417. INIT_LIST_HEAD(&memcg->kmem_caches);
  2418. return 0;
  2419. }
  2420. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2421. {
  2422. struct cgroup_subsys_state *css;
  2423. struct mem_cgroup *parent, *child;
  2424. int kmemcg_id;
  2425. if (memcg->kmem_state != KMEM_ONLINE)
  2426. return;
  2427. /*
  2428. * Clear the online state before clearing memcg_caches array
  2429. * entries. The slab_mutex in memcg_deactivate_kmem_caches()
  2430. * guarantees that no cache will be created for this cgroup
  2431. * after we are done (see memcg_create_kmem_cache()).
  2432. */
  2433. memcg->kmem_state = KMEM_ALLOCATED;
  2434. memcg_deactivate_kmem_caches(memcg);
  2435. kmemcg_id = memcg->kmemcg_id;
  2436. BUG_ON(kmemcg_id < 0);
  2437. parent = parent_mem_cgroup(memcg);
  2438. if (!parent)
  2439. parent = root_mem_cgroup;
  2440. /*
  2441. * Change kmemcg_id of this cgroup and all its descendants to the
  2442. * parent's id, and then move all entries from this cgroup's list_lrus
  2443. * to ones of the parent. After we have finished, all list_lrus
  2444. * corresponding to this cgroup are guaranteed to remain empty. The
  2445. * ordering is imposed by list_lru_node->lock taken by
  2446. * memcg_drain_all_list_lrus().
  2447. */
  2448. rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
  2449. css_for_each_descendant_pre(css, &memcg->css) {
  2450. child = mem_cgroup_from_css(css);
  2451. BUG_ON(child->kmemcg_id != kmemcg_id);
  2452. child->kmemcg_id = parent->kmemcg_id;
  2453. if (!memcg->use_hierarchy)
  2454. break;
  2455. }
  2456. rcu_read_unlock();
  2457. memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
  2458. memcg_free_cache_id(kmemcg_id);
  2459. }
  2460. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2461. {
  2462. /* css_alloc() failed, offlining didn't happen */
  2463. if (unlikely(memcg->kmem_state == KMEM_ONLINE))
  2464. memcg_offline_kmem(memcg);
  2465. if (memcg->kmem_state == KMEM_ALLOCATED) {
  2466. memcg_destroy_kmem_caches(memcg);
  2467. static_branch_dec(&memcg_kmem_enabled_key);
  2468. WARN_ON(page_counter_read(&memcg->kmem));
  2469. }
  2470. }
  2471. #else
  2472. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2473. {
  2474. return 0;
  2475. }
  2476. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2477. {
  2478. }
  2479. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2480. {
  2481. }
  2482. #endif /* !CONFIG_SLOB */
  2483. static int memcg_update_kmem_max(struct mem_cgroup *memcg,
  2484. unsigned long max)
  2485. {
  2486. int ret;
  2487. mutex_lock(&memcg_max_mutex);
  2488. ret = page_counter_set_max(&memcg->kmem, max);
  2489. mutex_unlock(&memcg_max_mutex);
  2490. return ret;
  2491. }
  2492. static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
  2493. {
  2494. int ret;
  2495. mutex_lock(&memcg_max_mutex);
  2496. ret = page_counter_set_max(&memcg->tcpmem, max);
  2497. if (ret)
  2498. goto out;
  2499. if (!memcg->tcpmem_active) {
  2500. /*
  2501. * The active flag needs to be written after the static_key
  2502. * update. This is what guarantees that the socket activation
  2503. * function is the last one to run. See mem_cgroup_sk_alloc()
  2504. * for details, and note that we don't mark any socket as
  2505. * belonging to this memcg until that flag is up.
  2506. *
  2507. * We need to do this, because static_keys will span multiple
  2508. * sites, but we can't control their order. If we mark a socket
  2509. * as accounted, but the accounting functions are not patched in
  2510. * yet, we'll lose accounting.
  2511. *
  2512. * We never race with the readers in mem_cgroup_sk_alloc(),
  2513. * because when this value change, the code to process it is not
  2514. * patched in yet.
  2515. */
  2516. static_branch_inc(&memcg_sockets_enabled_key);
  2517. memcg->tcpmem_active = true;
  2518. }
  2519. out:
  2520. mutex_unlock(&memcg_max_mutex);
  2521. return ret;
  2522. }
  2523. /*
  2524. * The user of this function is...
  2525. * RES_LIMIT.
  2526. */
  2527. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2528. char *buf, size_t nbytes, loff_t off)
  2529. {
  2530. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2531. unsigned long nr_pages;
  2532. int ret;
  2533. buf = strstrip(buf);
  2534. ret = page_counter_memparse(buf, "-1", &nr_pages);
  2535. if (ret)
  2536. return ret;
  2537. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2538. case RES_LIMIT:
  2539. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2540. ret = -EINVAL;
  2541. break;
  2542. }
  2543. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2544. case _MEM:
  2545. ret = mem_cgroup_resize_max(memcg, nr_pages, false);
  2546. break;
  2547. case _MEMSWAP:
  2548. ret = mem_cgroup_resize_max(memcg, nr_pages, true);
  2549. break;
  2550. case _KMEM:
  2551. ret = memcg_update_kmem_max(memcg, nr_pages);
  2552. break;
  2553. case _TCP:
  2554. ret = memcg_update_tcp_max(memcg, nr_pages);
  2555. break;
  2556. }
  2557. break;
  2558. case RES_SOFT_LIMIT:
  2559. memcg->soft_limit = nr_pages;
  2560. ret = 0;
  2561. break;
  2562. }
  2563. return ret ?: nbytes;
  2564. }
  2565. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2566. size_t nbytes, loff_t off)
  2567. {
  2568. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2569. struct page_counter *counter;
  2570. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2571. case _MEM:
  2572. counter = &memcg->memory;
  2573. break;
  2574. case _MEMSWAP:
  2575. counter = &memcg->memsw;
  2576. break;
  2577. case _KMEM:
  2578. counter = &memcg->kmem;
  2579. break;
  2580. case _TCP:
  2581. counter = &memcg->tcpmem;
  2582. break;
  2583. default:
  2584. BUG();
  2585. }
  2586. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2587. case RES_MAX_USAGE:
  2588. page_counter_reset_watermark(counter);
  2589. break;
  2590. case RES_FAILCNT:
  2591. counter->failcnt = 0;
  2592. break;
  2593. default:
  2594. BUG();
  2595. }
  2596. return nbytes;
  2597. }
  2598. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  2599. struct cftype *cft)
  2600. {
  2601. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  2602. }
  2603. #ifdef CONFIG_MMU
  2604. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2605. struct cftype *cft, u64 val)
  2606. {
  2607. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2608. if (val & ~MOVE_MASK)
  2609. return -EINVAL;
  2610. /*
  2611. * No kind of locking is needed in here, because ->can_attach() will
  2612. * check this value once in the beginning of the process, and then carry
  2613. * on with stale data. This means that changes to this value will only
  2614. * affect task migrations starting after the change.
  2615. */
  2616. memcg->move_charge_at_immigrate = val;
  2617. return 0;
  2618. }
  2619. #else
  2620. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2621. struct cftype *cft, u64 val)
  2622. {
  2623. return -ENOSYS;
  2624. }
  2625. #endif
  2626. #ifdef CONFIG_NUMA
  2627. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  2628. {
  2629. struct numa_stat {
  2630. const char *name;
  2631. unsigned int lru_mask;
  2632. };
  2633. static const struct numa_stat stats[] = {
  2634. { "total", LRU_ALL },
  2635. { "file", LRU_ALL_FILE },
  2636. { "anon", LRU_ALL_ANON },
  2637. { "unevictable", BIT(LRU_UNEVICTABLE) },
  2638. };
  2639. const struct numa_stat *stat;
  2640. int nid;
  2641. unsigned long nr;
  2642. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2643. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2644. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  2645. seq_printf(m, "%s=%lu", stat->name, nr);
  2646. for_each_node_state(nid, N_MEMORY) {
  2647. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  2648. stat->lru_mask);
  2649. seq_printf(m, " N%d=%lu", nid, nr);
  2650. }
  2651. seq_putc(m, '\n');
  2652. }
  2653. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2654. struct mem_cgroup *iter;
  2655. nr = 0;
  2656. for_each_mem_cgroup_tree(iter, memcg)
  2657. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  2658. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  2659. for_each_node_state(nid, N_MEMORY) {
  2660. nr = 0;
  2661. for_each_mem_cgroup_tree(iter, memcg)
  2662. nr += mem_cgroup_node_nr_lru_pages(
  2663. iter, nid, stat->lru_mask);
  2664. seq_printf(m, " N%d=%lu", nid, nr);
  2665. }
  2666. seq_putc(m, '\n');
  2667. }
  2668. return 0;
  2669. }
  2670. #endif /* CONFIG_NUMA */
  2671. /* Universal VM events cgroup1 shows, original sort order */
  2672. static const unsigned int memcg1_events[] = {
  2673. PGPGIN,
  2674. PGPGOUT,
  2675. PGFAULT,
  2676. PGMAJFAULT,
  2677. };
  2678. static const char *const memcg1_event_names[] = {
  2679. "pgpgin",
  2680. "pgpgout",
  2681. "pgfault",
  2682. "pgmajfault",
  2683. };
  2684. static int memcg_stat_show(struct seq_file *m, void *v)
  2685. {
  2686. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2687. unsigned long memory, memsw;
  2688. struct mem_cgroup *mi;
  2689. unsigned int i;
  2690. BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
  2691. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  2692. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  2693. if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
  2694. continue;
  2695. seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
  2696. memcg_page_state(memcg, memcg1_stats[i]) *
  2697. PAGE_SIZE);
  2698. }
  2699. for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
  2700. seq_printf(m, "%s %lu\n", memcg1_event_names[i],
  2701. memcg_sum_events(memcg, memcg1_events[i]));
  2702. for (i = 0; i < NR_LRU_LISTS; i++)
  2703. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  2704. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  2705. /* Hierarchical information */
  2706. memory = memsw = PAGE_COUNTER_MAX;
  2707. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  2708. memory = min(memory, mi->memory.max);
  2709. memsw = min(memsw, mi->memsw.max);
  2710. }
  2711. seq_printf(m, "hierarchical_memory_limit %llu\n",
  2712. (u64)memory * PAGE_SIZE);
  2713. if (do_memsw_account())
  2714. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  2715. (u64)memsw * PAGE_SIZE);
  2716. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  2717. unsigned long long val = 0;
  2718. if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
  2719. continue;
  2720. for_each_mem_cgroup_tree(mi, memcg)
  2721. val += memcg_page_state(mi, memcg1_stats[i]) *
  2722. PAGE_SIZE;
  2723. seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
  2724. }
  2725. for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
  2726. unsigned long long val = 0;
  2727. for_each_mem_cgroup_tree(mi, memcg)
  2728. val += memcg_sum_events(mi, memcg1_events[i]);
  2729. seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
  2730. }
  2731. for (i = 0; i < NR_LRU_LISTS; i++) {
  2732. unsigned long long val = 0;
  2733. for_each_mem_cgroup_tree(mi, memcg)
  2734. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  2735. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  2736. }
  2737. #ifdef CONFIG_DEBUG_VM
  2738. {
  2739. pg_data_t *pgdat;
  2740. struct mem_cgroup_per_node *mz;
  2741. struct zone_reclaim_stat *rstat;
  2742. unsigned long recent_rotated[2] = {0, 0};
  2743. unsigned long recent_scanned[2] = {0, 0};
  2744. for_each_online_pgdat(pgdat) {
  2745. mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
  2746. rstat = &mz->lruvec.reclaim_stat;
  2747. recent_rotated[0] += rstat->recent_rotated[0];
  2748. recent_rotated[1] += rstat->recent_rotated[1];
  2749. recent_scanned[0] += rstat->recent_scanned[0];
  2750. recent_scanned[1] += rstat->recent_scanned[1];
  2751. }
  2752. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  2753. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  2754. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  2755. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  2756. }
  2757. #endif
  2758. return 0;
  2759. }
  2760. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  2761. struct cftype *cft)
  2762. {
  2763. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2764. return mem_cgroup_swappiness(memcg);
  2765. }
  2766. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  2767. struct cftype *cft, u64 val)
  2768. {
  2769. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2770. if (val > 100)
  2771. return -EINVAL;
  2772. if (css->parent)
  2773. memcg->swappiness = val;
  2774. else
  2775. vm_swappiness = val;
  2776. return 0;
  2777. }
  2778. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  2779. {
  2780. struct mem_cgroup_threshold_ary *t;
  2781. unsigned long usage;
  2782. int i;
  2783. rcu_read_lock();
  2784. if (!swap)
  2785. t = rcu_dereference(memcg->thresholds.primary);
  2786. else
  2787. t = rcu_dereference(memcg->memsw_thresholds.primary);
  2788. if (!t)
  2789. goto unlock;
  2790. usage = mem_cgroup_usage(memcg, swap);
  2791. /*
  2792. * current_threshold points to threshold just below or equal to usage.
  2793. * If it's not true, a threshold was crossed after last
  2794. * call of __mem_cgroup_threshold().
  2795. */
  2796. i = t->current_threshold;
  2797. /*
  2798. * Iterate backward over array of thresholds starting from
  2799. * current_threshold and check if a threshold is crossed.
  2800. * If none of thresholds below usage is crossed, we read
  2801. * only one element of the array here.
  2802. */
  2803. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  2804. eventfd_signal(t->entries[i].eventfd, 1);
  2805. /* i = current_threshold + 1 */
  2806. i++;
  2807. /*
  2808. * Iterate forward over array of thresholds starting from
  2809. * current_threshold+1 and check if a threshold is crossed.
  2810. * If none of thresholds above usage is crossed, we read
  2811. * only one element of the array here.
  2812. */
  2813. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  2814. eventfd_signal(t->entries[i].eventfd, 1);
  2815. /* Update current_threshold */
  2816. t->current_threshold = i - 1;
  2817. unlock:
  2818. rcu_read_unlock();
  2819. }
  2820. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  2821. {
  2822. while (memcg) {
  2823. __mem_cgroup_threshold(memcg, false);
  2824. if (do_memsw_account())
  2825. __mem_cgroup_threshold(memcg, true);
  2826. memcg = parent_mem_cgroup(memcg);
  2827. }
  2828. }
  2829. static int compare_thresholds(const void *a, const void *b)
  2830. {
  2831. const struct mem_cgroup_threshold *_a = a;
  2832. const struct mem_cgroup_threshold *_b = b;
  2833. if (_a->threshold > _b->threshold)
  2834. return 1;
  2835. if (_a->threshold < _b->threshold)
  2836. return -1;
  2837. return 0;
  2838. }
  2839. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  2840. {
  2841. struct mem_cgroup_eventfd_list *ev;
  2842. spin_lock(&memcg_oom_lock);
  2843. list_for_each_entry(ev, &memcg->oom_notify, list)
  2844. eventfd_signal(ev->eventfd, 1);
  2845. spin_unlock(&memcg_oom_lock);
  2846. return 0;
  2847. }
  2848. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  2849. {
  2850. struct mem_cgroup *iter;
  2851. for_each_mem_cgroup_tree(iter, memcg)
  2852. mem_cgroup_oom_notify_cb(iter);
  2853. }
  2854. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2855. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  2856. {
  2857. struct mem_cgroup_thresholds *thresholds;
  2858. struct mem_cgroup_threshold_ary *new;
  2859. unsigned long threshold;
  2860. unsigned long usage;
  2861. int i, size, ret;
  2862. ret = page_counter_memparse(args, "-1", &threshold);
  2863. if (ret)
  2864. return ret;
  2865. mutex_lock(&memcg->thresholds_lock);
  2866. if (type == _MEM) {
  2867. thresholds = &memcg->thresholds;
  2868. usage = mem_cgroup_usage(memcg, false);
  2869. } else if (type == _MEMSWAP) {
  2870. thresholds = &memcg->memsw_thresholds;
  2871. usage = mem_cgroup_usage(memcg, true);
  2872. } else
  2873. BUG();
  2874. /* Check if a threshold crossed before adding a new one */
  2875. if (thresholds->primary)
  2876. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2877. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  2878. /* Allocate memory for new array of thresholds */
  2879. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  2880. GFP_KERNEL);
  2881. if (!new) {
  2882. ret = -ENOMEM;
  2883. goto unlock;
  2884. }
  2885. new->size = size;
  2886. /* Copy thresholds (if any) to new array */
  2887. if (thresholds->primary) {
  2888. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  2889. sizeof(struct mem_cgroup_threshold));
  2890. }
  2891. /* Add new threshold */
  2892. new->entries[size - 1].eventfd = eventfd;
  2893. new->entries[size - 1].threshold = threshold;
  2894. /* Sort thresholds. Registering of new threshold isn't time-critical */
  2895. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  2896. compare_thresholds, NULL);
  2897. /* Find current threshold */
  2898. new->current_threshold = -1;
  2899. for (i = 0; i < size; i++) {
  2900. if (new->entries[i].threshold <= usage) {
  2901. /*
  2902. * new->current_threshold will not be used until
  2903. * rcu_assign_pointer(), so it's safe to increment
  2904. * it here.
  2905. */
  2906. ++new->current_threshold;
  2907. } else
  2908. break;
  2909. }
  2910. /* Free old spare buffer and save old primary buffer as spare */
  2911. kfree(thresholds->spare);
  2912. thresholds->spare = thresholds->primary;
  2913. rcu_assign_pointer(thresholds->primary, new);
  2914. /* To be sure that nobody uses thresholds */
  2915. synchronize_rcu();
  2916. unlock:
  2917. mutex_unlock(&memcg->thresholds_lock);
  2918. return ret;
  2919. }
  2920. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2921. struct eventfd_ctx *eventfd, const char *args)
  2922. {
  2923. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  2924. }
  2925. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2926. struct eventfd_ctx *eventfd, const char *args)
  2927. {
  2928. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  2929. }
  2930. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2931. struct eventfd_ctx *eventfd, enum res_type type)
  2932. {
  2933. struct mem_cgroup_thresholds *thresholds;
  2934. struct mem_cgroup_threshold_ary *new;
  2935. unsigned long usage;
  2936. int i, j, size;
  2937. mutex_lock(&memcg->thresholds_lock);
  2938. if (type == _MEM) {
  2939. thresholds = &memcg->thresholds;
  2940. usage = mem_cgroup_usage(memcg, false);
  2941. } else if (type == _MEMSWAP) {
  2942. thresholds = &memcg->memsw_thresholds;
  2943. usage = mem_cgroup_usage(memcg, true);
  2944. } else
  2945. BUG();
  2946. if (!thresholds->primary)
  2947. goto unlock;
  2948. /* Check if a threshold crossed before removing */
  2949. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2950. /* Calculate new number of threshold */
  2951. size = 0;
  2952. for (i = 0; i < thresholds->primary->size; i++) {
  2953. if (thresholds->primary->entries[i].eventfd != eventfd)
  2954. size++;
  2955. }
  2956. new = thresholds->spare;
  2957. /* Set thresholds array to NULL if we don't have thresholds */
  2958. if (!size) {
  2959. kfree(new);
  2960. new = NULL;
  2961. goto swap_buffers;
  2962. }
  2963. new->size = size;
  2964. /* Copy thresholds and find current threshold */
  2965. new->current_threshold = -1;
  2966. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  2967. if (thresholds->primary->entries[i].eventfd == eventfd)
  2968. continue;
  2969. new->entries[j] = thresholds->primary->entries[i];
  2970. if (new->entries[j].threshold <= usage) {
  2971. /*
  2972. * new->current_threshold will not be used
  2973. * until rcu_assign_pointer(), so it's safe to increment
  2974. * it here.
  2975. */
  2976. ++new->current_threshold;
  2977. }
  2978. j++;
  2979. }
  2980. swap_buffers:
  2981. /* Swap primary and spare array */
  2982. thresholds->spare = thresholds->primary;
  2983. rcu_assign_pointer(thresholds->primary, new);
  2984. /* To be sure that nobody uses thresholds */
  2985. synchronize_rcu();
  2986. /* If all events are unregistered, free the spare array */
  2987. if (!new) {
  2988. kfree(thresholds->spare);
  2989. thresholds->spare = NULL;
  2990. }
  2991. unlock:
  2992. mutex_unlock(&memcg->thresholds_lock);
  2993. }
  2994. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2995. struct eventfd_ctx *eventfd)
  2996. {
  2997. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  2998. }
  2999. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3000. struct eventfd_ctx *eventfd)
  3001. {
  3002. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  3003. }
  3004. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  3005. struct eventfd_ctx *eventfd, const char *args)
  3006. {
  3007. struct mem_cgroup_eventfd_list *event;
  3008. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3009. if (!event)
  3010. return -ENOMEM;
  3011. spin_lock(&memcg_oom_lock);
  3012. event->eventfd = eventfd;
  3013. list_add(&event->list, &memcg->oom_notify);
  3014. /* already in OOM ? */
  3015. if (memcg->under_oom)
  3016. eventfd_signal(eventfd, 1);
  3017. spin_unlock(&memcg_oom_lock);
  3018. return 0;
  3019. }
  3020. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3021. struct eventfd_ctx *eventfd)
  3022. {
  3023. struct mem_cgroup_eventfd_list *ev, *tmp;
  3024. spin_lock(&memcg_oom_lock);
  3025. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3026. if (ev->eventfd == eventfd) {
  3027. list_del(&ev->list);
  3028. kfree(ev);
  3029. }
  3030. }
  3031. spin_unlock(&memcg_oom_lock);
  3032. }
  3033. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3034. {
  3035. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3036. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3037. seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
  3038. seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
  3039. return 0;
  3040. }
  3041. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3042. struct cftype *cft, u64 val)
  3043. {
  3044. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3045. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3046. if (!css->parent || !((val == 0) || (val == 1)))
  3047. return -EINVAL;
  3048. memcg->oom_kill_disable = val;
  3049. if (!val)
  3050. memcg_oom_recover(memcg);
  3051. return 0;
  3052. }
  3053. #ifdef CONFIG_CGROUP_WRITEBACK
  3054. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3055. {
  3056. return wb_domain_init(&memcg->cgwb_domain, gfp);
  3057. }
  3058. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3059. {
  3060. wb_domain_exit(&memcg->cgwb_domain);
  3061. }
  3062. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3063. {
  3064. wb_domain_size_changed(&memcg->cgwb_domain);
  3065. }
  3066. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  3067. {
  3068. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3069. if (!memcg->css.parent)
  3070. return NULL;
  3071. return &memcg->cgwb_domain;
  3072. }
  3073. /**
  3074. * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
  3075. * @wb: bdi_writeback in question
  3076. * @pfilepages: out parameter for number of file pages
  3077. * @pheadroom: out parameter for number of allocatable pages according to memcg
  3078. * @pdirty: out parameter for number of dirty pages
  3079. * @pwriteback: out parameter for number of pages under writeback
  3080. *
  3081. * Determine the numbers of file, headroom, dirty, and writeback pages in
  3082. * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
  3083. * is a bit more involved.
  3084. *
  3085. * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
  3086. * headroom is calculated as the lowest headroom of itself and the
  3087. * ancestors. Note that this doesn't consider the actual amount of
  3088. * available memory in the system. The caller should further cap
  3089. * *@pheadroom accordingly.
  3090. */
  3091. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
  3092. unsigned long *pheadroom, unsigned long *pdirty,
  3093. unsigned long *pwriteback)
  3094. {
  3095. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3096. struct mem_cgroup *parent;
  3097. *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
  3098. /* this should eventually include NR_UNSTABLE_NFS */
  3099. *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
  3100. *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
  3101. (1 << LRU_ACTIVE_FILE));
  3102. *pheadroom = PAGE_COUNTER_MAX;
  3103. while ((parent = parent_mem_cgroup(memcg))) {
  3104. unsigned long ceiling = min(memcg->memory.max, memcg->high);
  3105. unsigned long used = page_counter_read(&memcg->memory);
  3106. *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
  3107. memcg = parent;
  3108. }
  3109. }
  3110. #else /* CONFIG_CGROUP_WRITEBACK */
  3111. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3112. {
  3113. return 0;
  3114. }
  3115. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3116. {
  3117. }
  3118. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3119. {
  3120. }
  3121. #endif /* CONFIG_CGROUP_WRITEBACK */
  3122. /*
  3123. * DO NOT USE IN NEW FILES.
  3124. *
  3125. * "cgroup.event_control" implementation.
  3126. *
  3127. * This is way over-engineered. It tries to support fully configurable
  3128. * events for each user. Such level of flexibility is completely
  3129. * unnecessary especially in the light of the planned unified hierarchy.
  3130. *
  3131. * Please deprecate this and replace with something simpler if at all
  3132. * possible.
  3133. */
  3134. /*
  3135. * Unregister event and free resources.
  3136. *
  3137. * Gets called from workqueue.
  3138. */
  3139. static void memcg_event_remove(struct work_struct *work)
  3140. {
  3141. struct mem_cgroup_event *event =
  3142. container_of(work, struct mem_cgroup_event, remove);
  3143. struct mem_cgroup *memcg = event->memcg;
  3144. remove_wait_queue(event->wqh, &event->wait);
  3145. event->unregister_event(memcg, event->eventfd);
  3146. /* Notify userspace the event is going away. */
  3147. eventfd_signal(event->eventfd, 1);
  3148. eventfd_ctx_put(event->eventfd);
  3149. kfree(event);
  3150. css_put(&memcg->css);
  3151. }
  3152. /*
  3153. * Gets called on EPOLLHUP on eventfd when user closes it.
  3154. *
  3155. * Called with wqh->lock held and interrupts disabled.
  3156. */
  3157. static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
  3158. int sync, void *key)
  3159. {
  3160. struct mem_cgroup_event *event =
  3161. container_of(wait, struct mem_cgroup_event, wait);
  3162. struct mem_cgroup *memcg = event->memcg;
  3163. __poll_t flags = key_to_poll(key);
  3164. if (flags & EPOLLHUP) {
  3165. /*
  3166. * If the event has been detached at cgroup removal, we
  3167. * can simply return knowing the other side will cleanup
  3168. * for us.
  3169. *
  3170. * We can't race against event freeing since the other
  3171. * side will require wqh->lock via remove_wait_queue(),
  3172. * which we hold.
  3173. */
  3174. spin_lock(&memcg->event_list_lock);
  3175. if (!list_empty(&event->list)) {
  3176. list_del_init(&event->list);
  3177. /*
  3178. * We are in atomic context, but cgroup_event_remove()
  3179. * may sleep, so we have to call it in workqueue.
  3180. */
  3181. schedule_work(&event->remove);
  3182. }
  3183. spin_unlock(&memcg->event_list_lock);
  3184. }
  3185. return 0;
  3186. }
  3187. static void memcg_event_ptable_queue_proc(struct file *file,
  3188. wait_queue_head_t *wqh, poll_table *pt)
  3189. {
  3190. struct mem_cgroup_event *event =
  3191. container_of(pt, struct mem_cgroup_event, pt);
  3192. event->wqh = wqh;
  3193. add_wait_queue(wqh, &event->wait);
  3194. }
  3195. /*
  3196. * DO NOT USE IN NEW FILES.
  3197. *
  3198. * Parse input and register new cgroup event handler.
  3199. *
  3200. * Input must be in format '<event_fd> <control_fd> <args>'.
  3201. * Interpretation of args is defined by control file implementation.
  3202. */
  3203. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3204. char *buf, size_t nbytes, loff_t off)
  3205. {
  3206. struct cgroup_subsys_state *css = of_css(of);
  3207. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3208. struct mem_cgroup_event *event;
  3209. struct cgroup_subsys_state *cfile_css;
  3210. unsigned int efd, cfd;
  3211. struct fd efile;
  3212. struct fd cfile;
  3213. const char *name;
  3214. char *endp;
  3215. int ret;
  3216. buf = strstrip(buf);
  3217. efd = simple_strtoul(buf, &endp, 10);
  3218. if (*endp != ' ')
  3219. return -EINVAL;
  3220. buf = endp + 1;
  3221. cfd = simple_strtoul(buf, &endp, 10);
  3222. if ((*endp != ' ') && (*endp != '\0'))
  3223. return -EINVAL;
  3224. buf = endp + 1;
  3225. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3226. if (!event)
  3227. return -ENOMEM;
  3228. event->memcg = memcg;
  3229. INIT_LIST_HEAD(&event->list);
  3230. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3231. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3232. INIT_WORK(&event->remove, memcg_event_remove);
  3233. efile = fdget(efd);
  3234. if (!efile.file) {
  3235. ret = -EBADF;
  3236. goto out_kfree;
  3237. }
  3238. event->eventfd = eventfd_ctx_fileget(efile.file);
  3239. if (IS_ERR(event->eventfd)) {
  3240. ret = PTR_ERR(event->eventfd);
  3241. goto out_put_efile;
  3242. }
  3243. cfile = fdget(cfd);
  3244. if (!cfile.file) {
  3245. ret = -EBADF;
  3246. goto out_put_eventfd;
  3247. }
  3248. /* the process need read permission on control file */
  3249. /* AV: shouldn't we check that it's been opened for read instead? */
  3250. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3251. if (ret < 0)
  3252. goto out_put_cfile;
  3253. /*
  3254. * Determine the event callbacks and set them in @event. This used
  3255. * to be done via struct cftype but cgroup core no longer knows
  3256. * about these events. The following is crude but the whole thing
  3257. * is for compatibility anyway.
  3258. *
  3259. * DO NOT ADD NEW FILES.
  3260. */
  3261. name = cfile.file->f_path.dentry->d_name.name;
  3262. if (!strcmp(name, "memory.usage_in_bytes")) {
  3263. event->register_event = mem_cgroup_usage_register_event;
  3264. event->unregister_event = mem_cgroup_usage_unregister_event;
  3265. } else if (!strcmp(name, "memory.oom_control")) {
  3266. event->register_event = mem_cgroup_oom_register_event;
  3267. event->unregister_event = mem_cgroup_oom_unregister_event;
  3268. } else if (!strcmp(name, "memory.pressure_level")) {
  3269. event->register_event = vmpressure_register_event;
  3270. event->unregister_event = vmpressure_unregister_event;
  3271. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3272. event->register_event = memsw_cgroup_usage_register_event;
  3273. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3274. } else {
  3275. ret = -EINVAL;
  3276. goto out_put_cfile;
  3277. }
  3278. /*
  3279. * Verify @cfile should belong to @css. Also, remaining events are
  3280. * automatically removed on cgroup destruction but the removal is
  3281. * asynchronous, so take an extra ref on @css.
  3282. */
  3283. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3284. &memory_cgrp_subsys);
  3285. ret = -EINVAL;
  3286. if (IS_ERR(cfile_css))
  3287. goto out_put_cfile;
  3288. if (cfile_css != css) {
  3289. css_put(cfile_css);
  3290. goto out_put_cfile;
  3291. }
  3292. ret = event->register_event(memcg, event->eventfd, buf);
  3293. if (ret)
  3294. goto out_put_css;
  3295. vfs_poll(efile.file, &event->pt);
  3296. spin_lock(&memcg->event_list_lock);
  3297. list_add(&event->list, &memcg->event_list);
  3298. spin_unlock(&memcg->event_list_lock);
  3299. fdput(cfile);
  3300. fdput(efile);
  3301. return nbytes;
  3302. out_put_css:
  3303. css_put(css);
  3304. out_put_cfile:
  3305. fdput(cfile);
  3306. out_put_eventfd:
  3307. eventfd_ctx_put(event->eventfd);
  3308. out_put_efile:
  3309. fdput(efile);
  3310. out_kfree:
  3311. kfree(event);
  3312. return ret;
  3313. }
  3314. static struct cftype mem_cgroup_legacy_files[] = {
  3315. {
  3316. .name = "usage_in_bytes",
  3317. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3318. .read_u64 = mem_cgroup_read_u64,
  3319. },
  3320. {
  3321. .name = "max_usage_in_bytes",
  3322. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3323. .write = mem_cgroup_reset,
  3324. .read_u64 = mem_cgroup_read_u64,
  3325. },
  3326. {
  3327. .name = "limit_in_bytes",
  3328. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3329. .write = mem_cgroup_write,
  3330. .read_u64 = mem_cgroup_read_u64,
  3331. },
  3332. {
  3333. .name = "soft_limit_in_bytes",
  3334. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3335. .write = mem_cgroup_write,
  3336. .read_u64 = mem_cgroup_read_u64,
  3337. },
  3338. {
  3339. .name = "failcnt",
  3340. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3341. .write = mem_cgroup_reset,
  3342. .read_u64 = mem_cgroup_read_u64,
  3343. },
  3344. {
  3345. .name = "stat",
  3346. .seq_show = memcg_stat_show,
  3347. },
  3348. {
  3349. .name = "force_empty",
  3350. .write = mem_cgroup_force_empty_write,
  3351. },
  3352. {
  3353. .name = "use_hierarchy",
  3354. .write_u64 = mem_cgroup_hierarchy_write,
  3355. .read_u64 = mem_cgroup_hierarchy_read,
  3356. },
  3357. {
  3358. .name = "cgroup.event_control", /* XXX: for compat */
  3359. .write = memcg_write_event_control,
  3360. .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
  3361. },
  3362. {
  3363. .name = "swappiness",
  3364. .read_u64 = mem_cgroup_swappiness_read,
  3365. .write_u64 = mem_cgroup_swappiness_write,
  3366. },
  3367. {
  3368. .name = "move_charge_at_immigrate",
  3369. .read_u64 = mem_cgroup_move_charge_read,
  3370. .write_u64 = mem_cgroup_move_charge_write,
  3371. },
  3372. {
  3373. .name = "oom_control",
  3374. .seq_show = mem_cgroup_oom_control_read,
  3375. .write_u64 = mem_cgroup_oom_control_write,
  3376. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3377. },
  3378. {
  3379. .name = "pressure_level",
  3380. },
  3381. #ifdef CONFIG_NUMA
  3382. {
  3383. .name = "numa_stat",
  3384. .seq_show = memcg_numa_stat_show,
  3385. },
  3386. #endif
  3387. {
  3388. .name = "kmem.limit_in_bytes",
  3389. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3390. .write = mem_cgroup_write,
  3391. .read_u64 = mem_cgroup_read_u64,
  3392. },
  3393. {
  3394. .name = "kmem.usage_in_bytes",
  3395. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3396. .read_u64 = mem_cgroup_read_u64,
  3397. },
  3398. {
  3399. .name = "kmem.failcnt",
  3400. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3401. .write = mem_cgroup_reset,
  3402. .read_u64 = mem_cgroup_read_u64,
  3403. },
  3404. {
  3405. .name = "kmem.max_usage_in_bytes",
  3406. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3407. .write = mem_cgroup_reset,
  3408. .read_u64 = mem_cgroup_read_u64,
  3409. },
  3410. #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
  3411. {
  3412. .name = "kmem.slabinfo",
  3413. .seq_start = memcg_slab_start,
  3414. .seq_next = memcg_slab_next,
  3415. .seq_stop = memcg_slab_stop,
  3416. .seq_show = memcg_slab_show,
  3417. },
  3418. #endif
  3419. {
  3420. .name = "kmem.tcp.limit_in_bytes",
  3421. .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
  3422. .write = mem_cgroup_write,
  3423. .read_u64 = mem_cgroup_read_u64,
  3424. },
  3425. {
  3426. .name = "kmem.tcp.usage_in_bytes",
  3427. .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
  3428. .read_u64 = mem_cgroup_read_u64,
  3429. },
  3430. {
  3431. .name = "kmem.tcp.failcnt",
  3432. .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
  3433. .write = mem_cgroup_reset,
  3434. .read_u64 = mem_cgroup_read_u64,
  3435. },
  3436. {
  3437. .name = "kmem.tcp.max_usage_in_bytes",
  3438. .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
  3439. .write = mem_cgroup_reset,
  3440. .read_u64 = mem_cgroup_read_u64,
  3441. },
  3442. { }, /* terminate */
  3443. };
  3444. /*
  3445. * Private memory cgroup IDR
  3446. *
  3447. * Swap-out records and page cache shadow entries need to store memcg
  3448. * references in constrained space, so we maintain an ID space that is
  3449. * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
  3450. * memory-controlled cgroups to 64k.
  3451. *
  3452. * However, there usually are many references to the oflline CSS after
  3453. * the cgroup has been destroyed, such as page cache or reclaimable
  3454. * slab objects, that don't need to hang on to the ID. We want to keep
  3455. * those dead CSS from occupying IDs, or we might quickly exhaust the
  3456. * relatively small ID space and prevent the creation of new cgroups
  3457. * even when there are much fewer than 64k cgroups - possibly none.
  3458. *
  3459. * Maintain a private 16-bit ID space for memcg, and allow the ID to
  3460. * be freed and recycled when it's no longer needed, which is usually
  3461. * when the CSS is offlined.
  3462. *
  3463. * The only exception to that are records of swapped out tmpfs/shmem
  3464. * pages that need to be attributed to live ancestors on swapin. But
  3465. * those references are manageable from userspace.
  3466. */
  3467. static DEFINE_IDR(mem_cgroup_idr);
  3468. static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
  3469. {
  3470. VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
  3471. atomic_add(n, &memcg->id.ref);
  3472. }
  3473. static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
  3474. {
  3475. VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
  3476. if (atomic_sub_and_test(n, &memcg->id.ref)) {
  3477. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3478. memcg->id.id = 0;
  3479. /* Memcg ID pins CSS */
  3480. css_put(&memcg->css);
  3481. }
  3482. }
  3483. static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
  3484. {
  3485. mem_cgroup_id_get_many(memcg, 1);
  3486. }
  3487. static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
  3488. {
  3489. mem_cgroup_id_put_many(memcg, 1);
  3490. }
  3491. /**
  3492. * mem_cgroup_from_id - look up a memcg from a memcg id
  3493. * @id: the memcg id to look up
  3494. *
  3495. * Caller must hold rcu_read_lock().
  3496. */
  3497. struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  3498. {
  3499. WARN_ON_ONCE(!rcu_read_lock_held());
  3500. return idr_find(&mem_cgroup_idr, id);
  3501. }
  3502. static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3503. {
  3504. struct mem_cgroup_per_node *pn;
  3505. int tmp = node;
  3506. /*
  3507. * This routine is called against possible nodes.
  3508. * But it's BUG to call kmalloc() against offline node.
  3509. *
  3510. * TODO: this routine can waste much memory for nodes which will
  3511. * never be onlined. It's better to use memory hotplug callback
  3512. * function.
  3513. */
  3514. if (!node_state(node, N_NORMAL_MEMORY))
  3515. tmp = -1;
  3516. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3517. if (!pn)
  3518. return 1;
  3519. pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
  3520. if (!pn->lruvec_stat_cpu) {
  3521. kfree(pn);
  3522. return 1;
  3523. }
  3524. lruvec_init(&pn->lruvec);
  3525. pn->usage_in_excess = 0;
  3526. pn->on_tree = false;
  3527. pn->memcg = memcg;
  3528. memcg->nodeinfo[node] = pn;
  3529. return 0;
  3530. }
  3531. static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3532. {
  3533. struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
  3534. if (!pn)
  3535. return;
  3536. free_percpu(pn->lruvec_stat_cpu);
  3537. kfree(pn);
  3538. }
  3539. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  3540. {
  3541. int node;
  3542. for_each_node(node)
  3543. free_mem_cgroup_per_node_info(memcg, node);
  3544. free_percpu(memcg->stat_cpu);
  3545. kfree(memcg);
  3546. }
  3547. static void mem_cgroup_free(struct mem_cgroup *memcg)
  3548. {
  3549. memcg_wb_domain_exit(memcg);
  3550. __mem_cgroup_free(memcg);
  3551. }
  3552. static struct mem_cgroup *mem_cgroup_alloc(void)
  3553. {
  3554. struct mem_cgroup *memcg;
  3555. size_t size;
  3556. int node;
  3557. size = sizeof(struct mem_cgroup);
  3558. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3559. memcg = kzalloc(size, GFP_KERNEL);
  3560. if (!memcg)
  3561. return NULL;
  3562. memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
  3563. 1, MEM_CGROUP_ID_MAX,
  3564. GFP_KERNEL);
  3565. if (memcg->id.id < 0)
  3566. goto fail;
  3567. memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
  3568. if (!memcg->stat_cpu)
  3569. goto fail;
  3570. for_each_node(node)
  3571. if (alloc_mem_cgroup_per_node_info(memcg, node))
  3572. goto fail;
  3573. if (memcg_wb_domain_init(memcg, GFP_KERNEL))
  3574. goto fail;
  3575. INIT_WORK(&memcg->high_work, high_work_func);
  3576. memcg->last_scanned_node = MAX_NUMNODES;
  3577. INIT_LIST_HEAD(&memcg->oom_notify);
  3578. mutex_init(&memcg->thresholds_lock);
  3579. spin_lock_init(&memcg->move_lock);
  3580. vmpressure_init(&memcg->vmpressure);
  3581. INIT_LIST_HEAD(&memcg->event_list);
  3582. spin_lock_init(&memcg->event_list_lock);
  3583. memcg->socket_pressure = jiffies;
  3584. #ifndef CONFIG_SLOB
  3585. memcg->kmemcg_id = -1;
  3586. #endif
  3587. #ifdef CONFIG_CGROUP_WRITEBACK
  3588. INIT_LIST_HEAD(&memcg->cgwb_list);
  3589. #endif
  3590. idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
  3591. return memcg;
  3592. fail:
  3593. if (memcg->id.id > 0)
  3594. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3595. __mem_cgroup_free(memcg);
  3596. return NULL;
  3597. }
  3598. static struct cgroup_subsys_state * __ref
  3599. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3600. {
  3601. struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
  3602. struct mem_cgroup *memcg;
  3603. long error = -ENOMEM;
  3604. memcg = mem_cgroup_alloc();
  3605. if (!memcg)
  3606. return ERR_PTR(error);
  3607. memcg->high = PAGE_COUNTER_MAX;
  3608. memcg->soft_limit = PAGE_COUNTER_MAX;
  3609. if (parent) {
  3610. memcg->swappiness = mem_cgroup_swappiness(parent);
  3611. memcg->oom_kill_disable = parent->oom_kill_disable;
  3612. }
  3613. if (parent && parent->use_hierarchy) {
  3614. memcg->use_hierarchy = true;
  3615. page_counter_init(&memcg->memory, &parent->memory);
  3616. page_counter_init(&memcg->swap, &parent->swap);
  3617. page_counter_init(&memcg->memsw, &parent->memsw);
  3618. page_counter_init(&memcg->kmem, &parent->kmem);
  3619. page_counter_init(&memcg->tcpmem, &parent->tcpmem);
  3620. } else {
  3621. page_counter_init(&memcg->memory, NULL);
  3622. page_counter_init(&memcg->swap, NULL);
  3623. page_counter_init(&memcg->memsw, NULL);
  3624. page_counter_init(&memcg->kmem, NULL);
  3625. page_counter_init(&memcg->tcpmem, NULL);
  3626. /*
  3627. * Deeper hierachy with use_hierarchy == false doesn't make
  3628. * much sense so let cgroup subsystem know about this
  3629. * unfortunate state in our controller.
  3630. */
  3631. if (parent != root_mem_cgroup)
  3632. memory_cgrp_subsys.broken_hierarchy = true;
  3633. }
  3634. /* The following stuff does not apply to the root */
  3635. if (!parent) {
  3636. root_mem_cgroup = memcg;
  3637. return &memcg->css;
  3638. }
  3639. error = memcg_online_kmem(memcg);
  3640. if (error)
  3641. goto fail;
  3642. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3643. static_branch_inc(&memcg_sockets_enabled_key);
  3644. return &memcg->css;
  3645. fail:
  3646. mem_cgroup_free(memcg);
  3647. return ERR_PTR(-ENOMEM);
  3648. }
  3649. static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3650. {
  3651. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3652. /* Online state pins memcg ID, memcg ID pins CSS */
  3653. atomic_set(&memcg->id.ref, 1);
  3654. css_get(css);
  3655. return 0;
  3656. }
  3657. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3658. {
  3659. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3660. struct mem_cgroup_event *event, *tmp;
  3661. /*
  3662. * Unregister events and notify userspace.
  3663. * Notify userspace about cgroup removing only after rmdir of cgroup
  3664. * directory to avoid race between userspace and kernelspace.
  3665. */
  3666. spin_lock(&memcg->event_list_lock);
  3667. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  3668. list_del_init(&event->list);
  3669. schedule_work(&event->remove);
  3670. }
  3671. spin_unlock(&memcg->event_list_lock);
  3672. page_counter_set_min(&memcg->memory, 0);
  3673. page_counter_set_low(&memcg->memory, 0);
  3674. memcg_offline_kmem(memcg);
  3675. wb_memcg_offline(memcg);
  3676. mem_cgroup_id_put(memcg);
  3677. }
  3678. static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
  3679. {
  3680. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3681. invalidate_reclaim_iterators(memcg);
  3682. }
  3683. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  3684. {
  3685. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3686. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3687. static_branch_dec(&memcg_sockets_enabled_key);
  3688. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
  3689. static_branch_dec(&memcg_sockets_enabled_key);
  3690. vmpressure_cleanup(&memcg->vmpressure);
  3691. cancel_work_sync(&memcg->high_work);
  3692. mem_cgroup_remove_from_trees(memcg);
  3693. memcg_free_kmem(memcg);
  3694. mem_cgroup_free(memcg);
  3695. }
  3696. /**
  3697. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  3698. * @css: the target css
  3699. *
  3700. * Reset the states of the mem_cgroup associated with @css. This is
  3701. * invoked when the userland requests disabling on the default hierarchy
  3702. * but the memcg is pinned through dependency. The memcg should stop
  3703. * applying policies and should revert to the vanilla state as it may be
  3704. * made visible again.
  3705. *
  3706. * The current implementation only resets the essential configurations.
  3707. * This needs to be expanded to cover all the visible parts.
  3708. */
  3709. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  3710. {
  3711. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3712. page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
  3713. page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
  3714. page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
  3715. page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
  3716. page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
  3717. page_counter_set_min(&memcg->memory, 0);
  3718. page_counter_set_low(&memcg->memory, 0);
  3719. memcg->high = PAGE_COUNTER_MAX;
  3720. memcg->soft_limit = PAGE_COUNTER_MAX;
  3721. memcg_wb_domain_size_changed(memcg);
  3722. }
  3723. #ifdef CONFIG_MMU
  3724. /* Handlers for move charge at task migration. */
  3725. static int mem_cgroup_do_precharge(unsigned long count)
  3726. {
  3727. int ret;
  3728. /* Try a single bulk charge without reclaim first, kswapd may wake */
  3729. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
  3730. if (!ret) {
  3731. mc.precharge += count;
  3732. return ret;
  3733. }
  3734. /* Try charges one by one with reclaim, but do not retry */
  3735. while (count--) {
  3736. ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
  3737. if (ret)
  3738. return ret;
  3739. mc.precharge++;
  3740. cond_resched();
  3741. }
  3742. return 0;
  3743. }
  3744. union mc_target {
  3745. struct page *page;
  3746. swp_entry_t ent;
  3747. };
  3748. enum mc_target_type {
  3749. MC_TARGET_NONE = 0,
  3750. MC_TARGET_PAGE,
  3751. MC_TARGET_SWAP,
  3752. MC_TARGET_DEVICE,
  3753. };
  3754. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  3755. unsigned long addr, pte_t ptent)
  3756. {
  3757. struct page *page = _vm_normal_page(vma, addr, ptent, true);
  3758. if (!page || !page_mapped(page))
  3759. return NULL;
  3760. if (PageAnon(page)) {
  3761. if (!(mc.flags & MOVE_ANON))
  3762. return NULL;
  3763. } else {
  3764. if (!(mc.flags & MOVE_FILE))
  3765. return NULL;
  3766. }
  3767. if (!get_page_unless_zero(page))
  3768. return NULL;
  3769. return page;
  3770. }
  3771. #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
  3772. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3773. pte_t ptent, swp_entry_t *entry)
  3774. {
  3775. struct page *page = NULL;
  3776. swp_entry_t ent = pte_to_swp_entry(ptent);
  3777. if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
  3778. return NULL;
  3779. /*
  3780. * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
  3781. * a device and because they are not accessible by CPU they are store
  3782. * as special swap entry in the CPU page table.
  3783. */
  3784. if (is_device_private_entry(ent)) {
  3785. page = device_private_entry_to_page(ent);
  3786. /*
  3787. * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
  3788. * a refcount of 1 when free (unlike normal page)
  3789. */
  3790. if (!page_ref_add_unless(page, 1, 1))
  3791. return NULL;
  3792. return page;
  3793. }
  3794. /*
  3795. * Because lookup_swap_cache() updates some statistics counter,
  3796. * we call find_get_page() with swapper_space directly.
  3797. */
  3798. page = find_get_page(swap_address_space(ent), swp_offset(ent));
  3799. if (do_memsw_account())
  3800. entry->val = ent.val;
  3801. return page;
  3802. }
  3803. #else
  3804. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3805. pte_t ptent, swp_entry_t *entry)
  3806. {
  3807. return NULL;
  3808. }
  3809. #endif
  3810. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  3811. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3812. {
  3813. struct page *page = NULL;
  3814. struct address_space *mapping;
  3815. pgoff_t pgoff;
  3816. if (!vma->vm_file) /* anonymous vma */
  3817. return NULL;
  3818. if (!(mc.flags & MOVE_FILE))
  3819. return NULL;
  3820. mapping = vma->vm_file->f_mapping;
  3821. pgoff = linear_page_index(vma, addr);
  3822. /* page is moved even if it's not RSS of this task(page-faulted). */
  3823. #ifdef CONFIG_SWAP
  3824. /* shmem/tmpfs may report page out on swap: account for that too. */
  3825. if (shmem_mapping(mapping)) {
  3826. page = find_get_entry(mapping, pgoff);
  3827. if (radix_tree_exceptional_entry(page)) {
  3828. swp_entry_t swp = radix_to_swp_entry(page);
  3829. if (do_memsw_account())
  3830. *entry = swp;
  3831. page = find_get_page(swap_address_space(swp),
  3832. swp_offset(swp));
  3833. }
  3834. } else
  3835. page = find_get_page(mapping, pgoff);
  3836. #else
  3837. page = find_get_page(mapping, pgoff);
  3838. #endif
  3839. return page;
  3840. }
  3841. /**
  3842. * mem_cgroup_move_account - move account of the page
  3843. * @page: the page
  3844. * @compound: charge the page as compound or small page
  3845. * @from: mem_cgroup which the page is moved from.
  3846. * @to: mem_cgroup which the page is moved to. @from != @to.
  3847. *
  3848. * The caller must make sure the page is not on LRU (isolate_page() is useful.)
  3849. *
  3850. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3851. * from old cgroup.
  3852. */
  3853. static int mem_cgroup_move_account(struct page *page,
  3854. bool compound,
  3855. struct mem_cgroup *from,
  3856. struct mem_cgroup *to)
  3857. {
  3858. unsigned long flags;
  3859. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  3860. int ret;
  3861. bool anon;
  3862. VM_BUG_ON(from == to);
  3863. VM_BUG_ON_PAGE(PageLRU(page), page);
  3864. VM_BUG_ON(compound && !PageTransHuge(page));
  3865. /*
  3866. * Prevent mem_cgroup_migrate() from looking at
  3867. * page->mem_cgroup of its source page while we change it.
  3868. */
  3869. ret = -EBUSY;
  3870. if (!trylock_page(page))
  3871. goto out;
  3872. ret = -EINVAL;
  3873. if (page->mem_cgroup != from)
  3874. goto out_unlock;
  3875. anon = PageAnon(page);
  3876. spin_lock_irqsave(&from->move_lock, flags);
  3877. if (!anon && page_mapped(page)) {
  3878. __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
  3879. __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
  3880. }
  3881. /*
  3882. * move_lock grabbed above and caller set from->moving_account, so
  3883. * mod_memcg_page_state will serialize updates to PageDirty.
  3884. * So mapping should be stable for dirty pages.
  3885. */
  3886. if (!anon && PageDirty(page)) {
  3887. struct address_space *mapping = page_mapping(page);
  3888. if (mapping_cap_account_dirty(mapping)) {
  3889. __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
  3890. __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
  3891. }
  3892. }
  3893. if (PageWriteback(page)) {
  3894. __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
  3895. __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
  3896. }
  3897. /*
  3898. * It is safe to change page->mem_cgroup here because the page
  3899. * is referenced, charged, and isolated - we can't race with
  3900. * uncharging, charging, migration, or LRU putback.
  3901. */
  3902. /* caller should have done css_get */
  3903. page->mem_cgroup = to;
  3904. spin_unlock_irqrestore(&from->move_lock, flags);
  3905. ret = 0;
  3906. local_irq_disable();
  3907. mem_cgroup_charge_statistics(to, page, compound, nr_pages);
  3908. memcg_check_events(to, page);
  3909. mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
  3910. memcg_check_events(from, page);
  3911. local_irq_enable();
  3912. out_unlock:
  3913. unlock_page(page);
  3914. out:
  3915. return ret;
  3916. }
  3917. /**
  3918. * get_mctgt_type - get target type of moving charge
  3919. * @vma: the vma the pte to be checked belongs
  3920. * @addr: the address corresponding to the pte to be checked
  3921. * @ptent: the pte to be checked
  3922. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  3923. *
  3924. * Returns
  3925. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  3926. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  3927. * move charge. if @target is not NULL, the page is stored in target->page
  3928. * with extra refcnt got(Callers should handle it).
  3929. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  3930. * target for charge migration. if @target is not NULL, the entry is stored
  3931. * in target->ent.
  3932. * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
  3933. * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
  3934. * For now we such page is charge like a regular page would be as for all
  3935. * intent and purposes it is just special memory taking the place of a
  3936. * regular page.
  3937. *
  3938. * See Documentations/vm/hmm.txt and include/linux/hmm.h
  3939. *
  3940. * Called with pte lock held.
  3941. */
  3942. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  3943. unsigned long addr, pte_t ptent, union mc_target *target)
  3944. {
  3945. struct page *page = NULL;
  3946. enum mc_target_type ret = MC_TARGET_NONE;
  3947. swp_entry_t ent = { .val = 0 };
  3948. if (pte_present(ptent))
  3949. page = mc_handle_present_pte(vma, addr, ptent);
  3950. else if (is_swap_pte(ptent))
  3951. page = mc_handle_swap_pte(vma, ptent, &ent);
  3952. else if (pte_none(ptent))
  3953. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  3954. if (!page && !ent.val)
  3955. return ret;
  3956. if (page) {
  3957. /*
  3958. * Do only loose check w/o serialization.
  3959. * mem_cgroup_move_account() checks the page is valid or
  3960. * not under LRU exclusion.
  3961. */
  3962. if (page->mem_cgroup == mc.from) {
  3963. ret = MC_TARGET_PAGE;
  3964. if (is_device_private_page(page) ||
  3965. is_device_public_page(page))
  3966. ret = MC_TARGET_DEVICE;
  3967. if (target)
  3968. target->page = page;
  3969. }
  3970. if (!ret || !target)
  3971. put_page(page);
  3972. }
  3973. /*
  3974. * There is a swap entry and a page doesn't exist or isn't charged.
  3975. * But we cannot move a tail-page in a THP.
  3976. */
  3977. if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
  3978. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  3979. ret = MC_TARGET_SWAP;
  3980. if (target)
  3981. target->ent = ent;
  3982. }
  3983. return ret;
  3984. }
  3985. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3986. /*
  3987. * We don't consider PMD mapped swapping or file mapped pages because THP does
  3988. * not support them for now.
  3989. * Caller should make sure that pmd_trans_huge(pmd) is true.
  3990. */
  3991. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  3992. unsigned long addr, pmd_t pmd, union mc_target *target)
  3993. {
  3994. struct page *page = NULL;
  3995. enum mc_target_type ret = MC_TARGET_NONE;
  3996. if (unlikely(is_swap_pmd(pmd))) {
  3997. VM_BUG_ON(thp_migration_supported() &&
  3998. !is_pmd_migration_entry(pmd));
  3999. return ret;
  4000. }
  4001. page = pmd_page(pmd);
  4002. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  4003. if (!(mc.flags & MOVE_ANON))
  4004. return ret;
  4005. if (page->mem_cgroup == mc.from) {
  4006. ret = MC_TARGET_PAGE;
  4007. if (target) {
  4008. get_page(page);
  4009. target->page = page;
  4010. }
  4011. }
  4012. return ret;
  4013. }
  4014. #else
  4015. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4016. unsigned long addr, pmd_t pmd, union mc_target *target)
  4017. {
  4018. return MC_TARGET_NONE;
  4019. }
  4020. #endif
  4021. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4022. unsigned long addr, unsigned long end,
  4023. struct mm_walk *walk)
  4024. {
  4025. struct vm_area_struct *vma = walk->vma;
  4026. pte_t *pte;
  4027. spinlock_t *ptl;
  4028. ptl = pmd_trans_huge_lock(pmd, vma);
  4029. if (ptl) {
  4030. /*
  4031. * Note their can not be MC_TARGET_DEVICE for now as we do not
  4032. * support transparent huge page with MEMORY_DEVICE_PUBLIC or
  4033. * MEMORY_DEVICE_PRIVATE but this might change.
  4034. */
  4035. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4036. mc.precharge += HPAGE_PMD_NR;
  4037. spin_unlock(ptl);
  4038. return 0;
  4039. }
  4040. if (pmd_trans_unstable(pmd))
  4041. return 0;
  4042. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4043. for (; addr != end; pte++, addr += PAGE_SIZE)
  4044. if (get_mctgt_type(vma, addr, *pte, NULL))
  4045. mc.precharge++; /* increment precharge temporarily */
  4046. pte_unmap_unlock(pte - 1, ptl);
  4047. cond_resched();
  4048. return 0;
  4049. }
  4050. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4051. {
  4052. unsigned long precharge;
  4053. struct mm_walk mem_cgroup_count_precharge_walk = {
  4054. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4055. .mm = mm,
  4056. };
  4057. down_read(&mm->mmap_sem);
  4058. walk_page_range(0, mm->highest_vm_end,
  4059. &mem_cgroup_count_precharge_walk);
  4060. up_read(&mm->mmap_sem);
  4061. precharge = mc.precharge;
  4062. mc.precharge = 0;
  4063. return precharge;
  4064. }
  4065. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4066. {
  4067. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4068. VM_BUG_ON(mc.moving_task);
  4069. mc.moving_task = current;
  4070. return mem_cgroup_do_precharge(precharge);
  4071. }
  4072. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4073. static void __mem_cgroup_clear_mc(void)
  4074. {
  4075. struct mem_cgroup *from = mc.from;
  4076. struct mem_cgroup *to = mc.to;
  4077. /* we must uncharge all the leftover precharges from mc.to */
  4078. if (mc.precharge) {
  4079. cancel_charge(mc.to, mc.precharge);
  4080. mc.precharge = 0;
  4081. }
  4082. /*
  4083. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4084. * we must uncharge here.
  4085. */
  4086. if (mc.moved_charge) {
  4087. cancel_charge(mc.from, mc.moved_charge);
  4088. mc.moved_charge = 0;
  4089. }
  4090. /* we must fixup refcnts and charges */
  4091. if (mc.moved_swap) {
  4092. /* uncharge swap account from the old cgroup */
  4093. if (!mem_cgroup_is_root(mc.from))
  4094. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4095. mem_cgroup_id_put_many(mc.from, mc.moved_swap);
  4096. /*
  4097. * we charged both to->memory and to->memsw, so we
  4098. * should uncharge to->memory.
  4099. */
  4100. if (!mem_cgroup_is_root(mc.to))
  4101. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4102. mem_cgroup_id_get_many(mc.to, mc.moved_swap);
  4103. css_put_many(&mc.to->css, mc.moved_swap);
  4104. mc.moved_swap = 0;
  4105. }
  4106. memcg_oom_recover(from);
  4107. memcg_oom_recover(to);
  4108. wake_up_all(&mc.waitq);
  4109. }
  4110. static void mem_cgroup_clear_mc(void)
  4111. {
  4112. struct mm_struct *mm = mc.mm;
  4113. /*
  4114. * we must clear moving_task before waking up waiters at the end of
  4115. * task migration.
  4116. */
  4117. mc.moving_task = NULL;
  4118. __mem_cgroup_clear_mc();
  4119. spin_lock(&mc.lock);
  4120. mc.from = NULL;
  4121. mc.to = NULL;
  4122. mc.mm = NULL;
  4123. spin_unlock(&mc.lock);
  4124. mmput(mm);
  4125. }
  4126. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4127. {
  4128. struct cgroup_subsys_state *css;
  4129. struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
  4130. struct mem_cgroup *from;
  4131. struct task_struct *leader, *p;
  4132. struct mm_struct *mm;
  4133. unsigned long move_flags;
  4134. int ret = 0;
  4135. /* charge immigration isn't supported on the default hierarchy */
  4136. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4137. return 0;
  4138. /*
  4139. * Multi-process migrations only happen on the default hierarchy
  4140. * where charge immigration is not used. Perform charge
  4141. * immigration if @tset contains a leader and whine if there are
  4142. * multiple.
  4143. */
  4144. p = NULL;
  4145. cgroup_taskset_for_each_leader(leader, css, tset) {
  4146. WARN_ON_ONCE(p);
  4147. p = leader;
  4148. memcg = mem_cgroup_from_css(css);
  4149. }
  4150. if (!p)
  4151. return 0;
  4152. /*
  4153. * We are now commited to this value whatever it is. Changes in this
  4154. * tunable will only affect upcoming migrations, not the current one.
  4155. * So we need to save it, and keep it going.
  4156. */
  4157. move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
  4158. if (!move_flags)
  4159. return 0;
  4160. from = mem_cgroup_from_task(p);
  4161. VM_BUG_ON(from == memcg);
  4162. mm = get_task_mm(p);
  4163. if (!mm)
  4164. return 0;
  4165. /* We move charges only when we move a owner of the mm */
  4166. if (mm->owner == p) {
  4167. VM_BUG_ON(mc.from);
  4168. VM_BUG_ON(mc.to);
  4169. VM_BUG_ON(mc.precharge);
  4170. VM_BUG_ON(mc.moved_charge);
  4171. VM_BUG_ON(mc.moved_swap);
  4172. spin_lock(&mc.lock);
  4173. mc.mm = mm;
  4174. mc.from = from;
  4175. mc.to = memcg;
  4176. mc.flags = move_flags;
  4177. spin_unlock(&mc.lock);
  4178. /* We set mc.moving_task later */
  4179. ret = mem_cgroup_precharge_mc(mm);
  4180. if (ret)
  4181. mem_cgroup_clear_mc();
  4182. } else {
  4183. mmput(mm);
  4184. }
  4185. return ret;
  4186. }
  4187. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4188. {
  4189. if (mc.to)
  4190. mem_cgroup_clear_mc();
  4191. }
  4192. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4193. unsigned long addr, unsigned long end,
  4194. struct mm_walk *walk)
  4195. {
  4196. int ret = 0;
  4197. struct vm_area_struct *vma = walk->vma;
  4198. pte_t *pte;
  4199. spinlock_t *ptl;
  4200. enum mc_target_type target_type;
  4201. union mc_target target;
  4202. struct page *page;
  4203. ptl = pmd_trans_huge_lock(pmd, vma);
  4204. if (ptl) {
  4205. if (mc.precharge < HPAGE_PMD_NR) {
  4206. spin_unlock(ptl);
  4207. return 0;
  4208. }
  4209. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4210. if (target_type == MC_TARGET_PAGE) {
  4211. page = target.page;
  4212. if (!isolate_lru_page(page)) {
  4213. if (!mem_cgroup_move_account(page, true,
  4214. mc.from, mc.to)) {
  4215. mc.precharge -= HPAGE_PMD_NR;
  4216. mc.moved_charge += HPAGE_PMD_NR;
  4217. }
  4218. putback_lru_page(page);
  4219. }
  4220. put_page(page);
  4221. } else if (target_type == MC_TARGET_DEVICE) {
  4222. page = target.page;
  4223. if (!mem_cgroup_move_account(page, true,
  4224. mc.from, mc.to)) {
  4225. mc.precharge -= HPAGE_PMD_NR;
  4226. mc.moved_charge += HPAGE_PMD_NR;
  4227. }
  4228. put_page(page);
  4229. }
  4230. spin_unlock(ptl);
  4231. return 0;
  4232. }
  4233. if (pmd_trans_unstable(pmd))
  4234. return 0;
  4235. retry:
  4236. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4237. for (; addr != end; addr += PAGE_SIZE) {
  4238. pte_t ptent = *(pte++);
  4239. bool device = false;
  4240. swp_entry_t ent;
  4241. if (!mc.precharge)
  4242. break;
  4243. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4244. case MC_TARGET_DEVICE:
  4245. device = true;
  4246. /* fall through */
  4247. case MC_TARGET_PAGE:
  4248. page = target.page;
  4249. /*
  4250. * We can have a part of the split pmd here. Moving it
  4251. * can be done but it would be too convoluted so simply
  4252. * ignore such a partial THP and keep it in original
  4253. * memcg. There should be somebody mapping the head.
  4254. */
  4255. if (PageTransCompound(page))
  4256. goto put;
  4257. if (!device && isolate_lru_page(page))
  4258. goto put;
  4259. if (!mem_cgroup_move_account(page, false,
  4260. mc.from, mc.to)) {
  4261. mc.precharge--;
  4262. /* we uncharge from mc.from later. */
  4263. mc.moved_charge++;
  4264. }
  4265. if (!device)
  4266. putback_lru_page(page);
  4267. put: /* get_mctgt_type() gets the page */
  4268. put_page(page);
  4269. break;
  4270. case MC_TARGET_SWAP:
  4271. ent = target.ent;
  4272. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4273. mc.precharge--;
  4274. /* we fixup refcnts and charges later. */
  4275. mc.moved_swap++;
  4276. }
  4277. break;
  4278. default:
  4279. break;
  4280. }
  4281. }
  4282. pte_unmap_unlock(pte - 1, ptl);
  4283. cond_resched();
  4284. if (addr != end) {
  4285. /*
  4286. * We have consumed all precharges we got in can_attach().
  4287. * We try charge one by one, but don't do any additional
  4288. * charges to mc.to if we have failed in charge once in attach()
  4289. * phase.
  4290. */
  4291. ret = mem_cgroup_do_precharge(1);
  4292. if (!ret)
  4293. goto retry;
  4294. }
  4295. return ret;
  4296. }
  4297. static void mem_cgroup_move_charge(void)
  4298. {
  4299. struct mm_walk mem_cgroup_move_charge_walk = {
  4300. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4301. .mm = mc.mm,
  4302. };
  4303. lru_add_drain_all();
  4304. /*
  4305. * Signal lock_page_memcg() to take the memcg's move_lock
  4306. * while we're moving its pages to another memcg. Then wait
  4307. * for already started RCU-only updates to finish.
  4308. */
  4309. atomic_inc(&mc.from->moving_account);
  4310. synchronize_rcu();
  4311. retry:
  4312. if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
  4313. /*
  4314. * Someone who are holding the mmap_sem might be waiting in
  4315. * waitq. So we cancel all extra charges, wake up all waiters,
  4316. * and retry. Because we cancel precharges, we might not be able
  4317. * to move enough charges, but moving charge is a best-effort
  4318. * feature anyway, so it wouldn't be a big problem.
  4319. */
  4320. __mem_cgroup_clear_mc();
  4321. cond_resched();
  4322. goto retry;
  4323. }
  4324. /*
  4325. * When we have consumed all precharges and failed in doing
  4326. * additional charge, the page walk just aborts.
  4327. */
  4328. walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
  4329. up_read(&mc.mm->mmap_sem);
  4330. atomic_dec(&mc.from->moving_account);
  4331. }
  4332. static void mem_cgroup_move_task(void)
  4333. {
  4334. if (mc.to) {
  4335. mem_cgroup_move_charge();
  4336. mem_cgroup_clear_mc();
  4337. }
  4338. }
  4339. #else /* !CONFIG_MMU */
  4340. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4341. {
  4342. return 0;
  4343. }
  4344. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4345. {
  4346. }
  4347. static void mem_cgroup_move_task(void)
  4348. {
  4349. }
  4350. #endif
  4351. /*
  4352. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4353. * to verify whether we're attached to the default hierarchy on each mount
  4354. * attempt.
  4355. */
  4356. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4357. {
  4358. /*
  4359. * use_hierarchy is forced on the default hierarchy. cgroup core
  4360. * guarantees that @root doesn't have any children, so turning it
  4361. * on for the root memcg is enough.
  4362. */
  4363. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4364. root_mem_cgroup->use_hierarchy = true;
  4365. else
  4366. root_mem_cgroup->use_hierarchy = false;
  4367. }
  4368. static u64 memory_current_read(struct cgroup_subsys_state *css,
  4369. struct cftype *cft)
  4370. {
  4371. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4372. return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
  4373. }
  4374. static int memory_min_show(struct seq_file *m, void *v)
  4375. {
  4376. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4377. unsigned long min = READ_ONCE(memcg->memory.min);
  4378. if (min == PAGE_COUNTER_MAX)
  4379. seq_puts(m, "max\n");
  4380. else
  4381. seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
  4382. return 0;
  4383. }
  4384. static ssize_t memory_min_write(struct kernfs_open_file *of,
  4385. char *buf, size_t nbytes, loff_t off)
  4386. {
  4387. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4388. unsigned long min;
  4389. int err;
  4390. buf = strstrip(buf);
  4391. err = page_counter_memparse(buf, "max", &min);
  4392. if (err)
  4393. return err;
  4394. page_counter_set_min(&memcg->memory, min);
  4395. return nbytes;
  4396. }
  4397. static int memory_low_show(struct seq_file *m, void *v)
  4398. {
  4399. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4400. unsigned long low = READ_ONCE(memcg->memory.low);
  4401. if (low == PAGE_COUNTER_MAX)
  4402. seq_puts(m, "max\n");
  4403. else
  4404. seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
  4405. return 0;
  4406. }
  4407. static ssize_t memory_low_write(struct kernfs_open_file *of,
  4408. char *buf, size_t nbytes, loff_t off)
  4409. {
  4410. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4411. unsigned long low;
  4412. int err;
  4413. buf = strstrip(buf);
  4414. err = page_counter_memparse(buf, "max", &low);
  4415. if (err)
  4416. return err;
  4417. page_counter_set_low(&memcg->memory, low);
  4418. return nbytes;
  4419. }
  4420. static int memory_high_show(struct seq_file *m, void *v)
  4421. {
  4422. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4423. unsigned long high = READ_ONCE(memcg->high);
  4424. if (high == PAGE_COUNTER_MAX)
  4425. seq_puts(m, "max\n");
  4426. else
  4427. seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
  4428. return 0;
  4429. }
  4430. static ssize_t memory_high_write(struct kernfs_open_file *of,
  4431. char *buf, size_t nbytes, loff_t off)
  4432. {
  4433. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4434. unsigned long nr_pages;
  4435. unsigned long high;
  4436. int err;
  4437. buf = strstrip(buf);
  4438. err = page_counter_memparse(buf, "max", &high);
  4439. if (err)
  4440. return err;
  4441. memcg->high = high;
  4442. nr_pages = page_counter_read(&memcg->memory);
  4443. if (nr_pages > high)
  4444. try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
  4445. GFP_KERNEL, true);
  4446. memcg_wb_domain_size_changed(memcg);
  4447. return nbytes;
  4448. }
  4449. static int memory_max_show(struct seq_file *m, void *v)
  4450. {
  4451. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4452. unsigned long max = READ_ONCE(memcg->memory.max);
  4453. if (max == PAGE_COUNTER_MAX)
  4454. seq_puts(m, "max\n");
  4455. else
  4456. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  4457. return 0;
  4458. }
  4459. static ssize_t memory_max_write(struct kernfs_open_file *of,
  4460. char *buf, size_t nbytes, loff_t off)
  4461. {
  4462. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4463. unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
  4464. bool drained = false;
  4465. unsigned long max;
  4466. int err;
  4467. buf = strstrip(buf);
  4468. err = page_counter_memparse(buf, "max", &max);
  4469. if (err)
  4470. return err;
  4471. xchg(&memcg->memory.max, max);
  4472. for (;;) {
  4473. unsigned long nr_pages = page_counter_read(&memcg->memory);
  4474. if (nr_pages <= max)
  4475. break;
  4476. if (signal_pending(current)) {
  4477. err = -EINTR;
  4478. break;
  4479. }
  4480. if (!drained) {
  4481. drain_all_stock(memcg);
  4482. drained = true;
  4483. continue;
  4484. }
  4485. if (nr_reclaims) {
  4486. if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
  4487. GFP_KERNEL, true))
  4488. nr_reclaims--;
  4489. continue;
  4490. }
  4491. memcg_memory_event(memcg, MEMCG_OOM);
  4492. if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
  4493. break;
  4494. }
  4495. memcg_wb_domain_size_changed(memcg);
  4496. return nbytes;
  4497. }
  4498. static int memory_events_show(struct seq_file *m, void *v)
  4499. {
  4500. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4501. seq_printf(m, "low %lu\n",
  4502. atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
  4503. seq_printf(m, "high %lu\n",
  4504. atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
  4505. seq_printf(m, "max %lu\n",
  4506. atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
  4507. seq_printf(m, "oom %lu\n",
  4508. atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
  4509. seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
  4510. return 0;
  4511. }
  4512. static int memory_stat_show(struct seq_file *m, void *v)
  4513. {
  4514. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4515. unsigned long stat[MEMCG_NR_STAT];
  4516. unsigned long events[NR_VM_EVENT_ITEMS];
  4517. int i;
  4518. /*
  4519. * Provide statistics on the state of the memory subsystem as
  4520. * well as cumulative event counters that show past behavior.
  4521. *
  4522. * This list is ordered following a combination of these gradients:
  4523. * 1) generic big picture -> specifics and details
  4524. * 2) reflecting userspace activity -> reflecting kernel heuristics
  4525. *
  4526. * Current memory state:
  4527. */
  4528. tree_stat(memcg, stat);
  4529. tree_events(memcg, events);
  4530. seq_printf(m, "anon %llu\n",
  4531. (u64)stat[MEMCG_RSS] * PAGE_SIZE);
  4532. seq_printf(m, "file %llu\n",
  4533. (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
  4534. seq_printf(m, "kernel_stack %llu\n",
  4535. (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
  4536. seq_printf(m, "slab %llu\n",
  4537. (u64)(stat[NR_SLAB_RECLAIMABLE] +
  4538. stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
  4539. seq_printf(m, "sock %llu\n",
  4540. (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
  4541. seq_printf(m, "shmem %llu\n",
  4542. (u64)stat[NR_SHMEM] * PAGE_SIZE);
  4543. seq_printf(m, "file_mapped %llu\n",
  4544. (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
  4545. seq_printf(m, "file_dirty %llu\n",
  4546. (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
  4547. seq_printf(m, "file_writeback %llu\n",
  4548. (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
  4549. for (i = 0; i < NR_LRU_LISTS; i++) {
  4550. struct mem_cgroup *mi;
  4551. unsigned long val = 0;
  4552. for_each_mem_cgroup_tree(mi, memcg)
  4553. val += mem_cgroup_nr_lru_pages(mi, BIT(i));
  4554. seq_printf(m, "%s %llu\n",
  4555. mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
  4556. }
  4557. seq_printf(m, "slab_reclaimable %llu\n",
  4558. (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
  4559. seq_printf(m, "slab_unreclaimable %llu\n",
  4560. (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
  4561. /* Accumulated memory events */
  4562. seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
  4563. seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
  4564. seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
  4565. seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
  4566. events[PGSCAN_DIRECT]);
  4567. seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
  4568. events[PGSTEAL_DIRECT]);
  4569. seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
  4570. seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
  4571. seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
  4572. seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
  4573. seq_printf(m, "workingset_refault %lu\n",
  4574. stat[WORKINGSET_REFAULT]);
  4575. seq_printf(m, "workingset_activate %lu\n",
  4576. stat[WORKINGSET_ACTIVATE]);
  4577. seq_printf(m, "workingset_nodereclaim %lu\n",
  4578. stat[WORKINGSET_NODERECLAIM]);
  4579. return 0;
  4580. }
  4581. static struct cftype memory_files[] = {
  4582. {
  4583. .name = "current",
  4584. .flags = CFTYPE_NOT_ON_ROOT,
  4585. .read_u64 = memory_current_read,
  4586. },
  4587. {
  4588. .name = "min",
  4589. .flags = CFTYPE_NOT_ON_ROOT,
  4590. .seq_show = memory_min_show,
  4591. .write = memory_min_write,
  4592. },
  4593. {
  4594. .name = "low",
  4595. .flags = CFTYPE_NOT_ON_ROOT,
  4596. .seq_show = memory_low_show,
  4597. .write = memory_low_write,
  4598. },
  4599. {
  4600. .name = "high",
  4601. .flags = CFTYPE_NOT_ON_ROOT,
  4602. .seq_show = memory_high_show,
  4603. .write = memory_high_write,
  4604. },
  4605. {
  4606. .name = "max",
  4607. .flags = CFTYPE_NOT_ON_ROOT,
  4608. .seq_show = memory_max_show,
  4609. .write = memory_max_write,
  4610. },
  4611. {
  4612. .name = "events",
  4613. .flags = CFTYPE_NOT_ON_ROOT,
  4614. .file_offset = offsetof(struct mem_cgroup, events_file),
  4615. .seq_show = memory_events_show,
  4616. },
  4617. {
  4618. .name = "stat",
  4619. .flags = CFTYPE_NOT_ON_ROOT,
  4620. .seq_show = memory_stat_show,
  4621. },
  4622. { } /* terminate */
  4623. };
  4624. struct cgroup_subsys memory_cgrp_subsys = {
  4625. .css_alloc = mem_cgroup_css_alloc,
  4626. .css_online = mem_cgroup_css_online,
  4627. .css_offline = mem_cgroup_css_offline,
  4628. .css_released = mem_cgroup_css_released,
  4629. .css_free = mem_cgroup_css_free,
  4630. .css_reset = mem_cgroup_css_reset,
  4631. .can_attach = mem_cgroup_can_attach,
  4632. .cancel_attach = mem_cgroup_cancel_attach,
  4633. .post_attach = mem_cgroup_move_task,
  4634. .bind = mem_cgroup_bind,
  4635. .dfl_cftypes = memory_files,
  4636. .legacy_cftypes = mem_cgroup_legacy_files,
  4637. .early_init = 0,
  4638. };
  4639. /**
  4640. * mem_cgroup_protected - check if memory consumption is in the normal range
  4641. * @root: the top ancestor of the sub-tree being checked
  4642. * @memcg: the memory cgroup to check
  4643. *
  4644. * WARNING: This function is not stateless! It can only be used as part
  4645. * of a top-down tree iteration, not for isolated queries.
  4646. *
  4647. * Returns one of the following:
  4648. * MEMCG_PROT_NONE: cgroup memory is not protected
  4649. * MEMCG_PROT_LOW: cgroup memory is protected as long there is
  4650. * an unprotected supply of reclaimable memory from other cgroups.
  4651. * MEMCG_PROT_MIN: cgroup memory is protected
  4652. *
  4653. * @root is exclusive; it is never protected when looked at directly
  4654. *
  4655. * To provide a proper hierarchical behavior, effective memory.min/low values
  4656. * are used. Below is the description of how effective memory.low is calculated.
  4657. * Effective memory.min values is calculated in the same way.
  4658. *
  4659. * Effective memory.low is always equal or less than the original memory.low.
  4660. * If there is no memory.low overcommittment (which is always true for
  4661. * top-level memory cgroups), these two values are equal.
  4662. * Otherwise, it's a part of parent's effective memory.low,
  4663. * calculated as a cgroup's memory.low usage divided by sum of sibling's
  4664. * memory.low usages, where memory.low usage is the size of actually
  4665. * protected memory.
  4666. *
  4667. * low_usage
  4668. * elow = min( memory.low, parent->elow * ------------------ ),
  4669. * siblings_low_usage
  4670. *
  4671. * | memory.current, if memory.current < memory.low
  4672. * low_usage = |
  4673. | 0, otherwise.
  4674. *
  4675. *
  4676. * Such definition of the effective memory.low provides the expected
  4677. * hierarchical behavior: parent's memory.low value is limiting
  4678. * children, unprotected memory is reclaimed first and cgroups,
  4679. * which are not using their guarantee do not affect actual memory
  4680. * distribution.
  4681. *
  4682. * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
  4683. *
  4684. * A A/memory.low = 2G, A/memory.current = 6G
  4685. * //\\
  4686. * BC DE B/memory.low = 3G B/memory.current = 2G
  4687. * C/memory.low = 1G C/memory.current = 2G
  4688. * D/memory.low = 0 D/memory.current = 2G
  4689. * E/memory.low = 10G E/memory.current = 0
  4690. *
  4691. * and the memory pressure is applied, the following memory distribution
  4692. * is expected (approximately):
  4693. *
  4694. * A/memory.current = 2G
  4695. *
  4696. * B/memory.current = 1.3G
  4697. * C/memory.current = 0.6G
  4698. * D/memory.current = 0
  4699. * E/memory.current = 0
  4700. *
  4701. * These calculations require constant tracking of the actual low usages
  4702. * (see propagate_protected_usage()), as well as recursive calculation of
  4703. * effective memory.low values. But as we do call mem_cgroup_protected()
  4704. * path for each memory cgroup top-down from the reclaim,
  4705. * it's possible to optimize this part, and save calculated elow
  4706. * for next usage. This part is intentionally racy, but it's ok,
  4707. * as memory.low is a best-effort mechanism.
  4708. */
  4709. enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
  4710. struct mem_cgroup *memcg)
  4711. {
  4712. struct mem_cgroup *parent;
  4713. unsigned long emin, parent_emin;
  4714. unsigned long elow, parent_elow;
  4715. unsigned long usage;
  4716. if (mem_cgroup_disabled())
  4717. return MEMCG_PROT_NONE;
  4718. if (!root)
  4719. root = root_mem_cgroup;
  4720. if (memcg == root)
  4721. return MEMCG_PROT_NONE;
  4722. usage = page_counter_read(&memcg->memory);
  4723. if (!usage)
  4724. return MEMCG_PROT_NONE;
  4725. emin = memcg->memory.min;
  4726. elow = memcg->memory.low;
  4727. parent = parent_mem_cgroup(memcg);
  4728. if (parent == root)
  4729. goto exit;
  4730. parent_emin = READ_ONCE(parent->memory.emin);
  4731. emin = min(emin, parent_emin);
  4732. if (emin && parent_emin) {
  4733. unsigned long min_usage, siblings_min_usage;
  4734. min_usage = min(usage, memcg->memory.min);
  4735. siblings_min_usage = atomic_long_read(
  4736. &parent->memory.children_min_usage);
  4737. if (min_usage && siblings_min_usage)
  4738. emin = min(emin, parent_emin * min_usage /
  4739. siblings_min_usage);
  4740. }
  4741. parent_elow = READ_ONCE(parent->memory.elow);
  4742. elow = min(elow, parent_elow);
  4743. if (elow && parent_elow) {
  4744. unsigned long low_usage, siblings_low_usage;
  4745. low_usage = min(usage, memcg->memory.low);
  4746. siblings_low_usage = atomic_long_read(
  4747. &parent->memory.children_low_usage);
  4748. if (low_usage && siblings_low_usage)
  4749. elow = min(elow, parent_elow * low_usage /
  4750. siblings_low_usage);
  4751. }
  4752. exit:
  4753. memcg->memory.emin = emin;
  4754. memcg->memory.elow = elow;
  4755. if (usage <= emin)
  4756. return MEMCG_PROT_MIN;
  4757. else if (usage <= elow)
  4758. return MEMCG_PROT_LOW;
  4759. else
  4760. return MEMCG_PROT_NONE;
  4761. }
  4762. /**
  4763. * mem_cgroup_try_charge - try charging a page
  4764. * @page: page to charge
  4765. * @mm: mm context of the victim
  4766. * @gfp_mask: reclaim mode
  4767. * @memcgp: charged memcg return
  4768. * @compound: charge the page as compound or small page
  4769. *
  4770. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  4771. * pages according to @gfp_mask if necessary.
  4772. *
  4773. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  4774. * Otherwise, an error code is returned.
  4775. *
  4776. * After page->mapping has been set up, the caller must finalize the
  4777. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  4778. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  4779. */
  4780. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  4781. gfp_t gfp_mask, struct mem_cgroup **memcgp,
  4782. bool compound)
  4783. {
  4784. struct mem_cgroup *memcg = NULL;
  4785. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4786. int ret = 0;
  4787. if (mem_cgroup_disabled())
  4788. goto out;
  4789. if (PageSwapCache(page)) {
  4790. /*
  4791. * Every swap fault against a single page tries to charge the
  4792. * page, bail as early as possible. shmem_unuse() encounters
  4793. * already charged pages, too. The USED bit is protected by
  4794. * the page lock, which serializes swap cache removal, which
  4795. * in turn serializes uncharging.
  4796. */
  4797. VM_BUG_ON_PAGE(!PageLocked(page), page);
  4798. if (compound_head(page)->mem_cgroup)
  4799. goto out;
  4800. if (do_swap_account) {
  4801. swp_entry_t ent = { .val = page_private(page), };
  4802. unsigned short id = lookup_swap_cgroup_id(ent);
  4803. rcu_read_lock();
  4804. memcg = mem_cgroup_from_id(id);
  4805. if (memcg && !css_tryget_online(&memcg->css))
  4806. memcg = NULL;
  4807. rcu_read_unlock();
  4808. }
  4809. }
  4810. if (!memcg)
  4811. memcg = get_mem_cgroup_from_mm(mm);
  4812. ret = try_charge(memcg, gfp_mask, nr_pages);
  4813. css_put(&memcg->css);
  4814. out:
  4815. *memcgp = memcg;
  4816. return ret;
  4817. }
  4818. /**
  4819. * mem_cgroup_commit_charge - commit a page charge
  4820. * @page: page to charge
  4821. * @memcg: memcg to charge the page to
  4822. * @lrucare: page might be on LRU already
  4823. * @compound: charge the page as compound or small page
  4824. *
  4825. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  4826. * after page->mapping has been set up. This must happen atomically
  4827. * as part of the page instantiation, i.e. under the page table lock
  4828. * for anonymous pages, under the page lock for page and swap cache.
  4829. *
  4830. * In addition, the page must not be on the LRU during the commit, to
  4831. * prevent racing with task migration. If it might be, use @lrucare.
  4832. *
  4833. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  4834. */
  4835. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  4836. bool lrucare, bool compound)
  4837. {
  4838. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4839. VM_BUG_ON_PAGE(!page->mapping, page);
  4840. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  4841. if (mem_cgroup_disabled())
  4842. return;
  4843. /*
  4844. * Swap faults will attempt to charge the same page multiple
  4845. * times. But reuse_swap_page() might have removed the page
  4846. * from swapcache already, so we can't check PageSwapCache().
  4847. */
  4848. if (!memcg)
  4849. return;
  4850. commit_charge(page, memcg, lrucare);
  4851. local_irq_disable();
  4852. mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
  4853. memcg_check_events(memcg, page);
  4854. local_irq_enable();
  4855. if (do_memsw_account() && PageSwapCache(page)) {
  4856. swp_entry_t entry = { .val = page_private(page) };
  4857. /*
  4858. * The swap entry might not get freed for a long time,
  4859. * let's not wait for it. The page already received a
  4860. * memory+swap charge, drop the swap entry duplicate.
  4861. */
  4862. mem_cgroup_uncharge_swap(entry, nr_pages);
  4863. }
  4864. }
  4865. /**
  4866. * mem_cgroup_cancel_charge - cancel a page charge
  4867. * @page: page to charge
  4868. * @memcg: memcg to charge the page to
  4869. * @compound: charge the page as compound or small page
  4870. *
  4871. * Cancel a charge transaction started by mem_cgroup_try_charge().
  4872. */
  4873. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
  4874. bool compound)
  4875. {
  4876. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4877. if (mem_cgroup_disabled())
  4878. return;
  4879. /*
  4880. * Swap faults will attempt to charge the same page multiple
  4881. * times. But reuse_swap_page() might have removed the page
  4882. * from swapcache already, so we can't check PageSwapCache().
  4883. */
  4884. if (!memcg)
  4885. return;
  4886. cancel_charge(memcg, nr_pages);
  4887. }
  4888. struct uncharge_gather {
  4889. struct mem_cgroup *memcg;
  4890. unsigned long pgpgout;
  4891. unsigned long nr_anon;
  4892. unsigned long nr_file;
  4893. unsigned long nr_kmem;
  4894. unsigned long nr_huge;
  4895. unsigned long nr_shmem;
  4896. struct page *dummy_page;
  4897. };
  4898. static inline void uncharge_gather_clear(struct uncharge_gather *ug)
  4899. {
  4900. memset(ug, 0, sizeof(*ug));
  4901. }
  4902. static void uncharge_batch(const struct uncharge_gather *ug)
  4903. {
  4904. unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
  4905. unsigned long flags;
  4906. if (!mem_cgroup_is_root(ug->memcg)) {
  4907. page_counter_uncharge(&ug->memcg->memory, nr_pages);
  4908. if (do_memsw_account())
  4909. page_counter_uncharge(&ug->memcg->memsw, nr_pages);
  4910. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
  4911. page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
  4912. memcg_oom_recover(ug->memcg);
  4913. }
  4914. local_irq_save(flags);
  4915. __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
  4916. __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
  4917. __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
  4918. __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
  4919. __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
  4920. __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
  4921. memcg_check_events(ug->memcg, ug->dummy_page);
  4922. local_irq_restore(flags);
  4923. if (!mem_cgroup_is_root(ug->memcg))
  4924. css_put_many(&ug->memcg->css, nr_pages);
  4925. }
  4926. static void uncharge_page(struct page *page, struct uncharge_gather *ug)
  4927. {
  4928. VM_BUG_ON_PAGE(PageLRU(page), page);
  4929. VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
  4930. !PageHWPoison(page) , page);
  4931. if (!page->mem_cgroup)
  4932. return;
  4933. /*
  4934. * Nobody should be changing or seriously looking at
  4935. * page->mem_cgroup at this point, we have fully
  4936. * exclusive access to the page.
  4937. */
  4938. if (ug->memcg != page->mem_cgroup) {
  4939. if (ug->memcg) {
  4940. uncharge_batch(ug);
  4941. uncharge_gather_clear(ug);
  4942. }
  4943. ug->memcg = page->mem_cgroup;
  4944. }
  4945. if (!PageKmemcg(page)) {
  4946. unsigned int nr_pages = 1;
  4947. if (PageTransHuge(page)) {
  4948. nr_pages <<= compound_order(page);
  4949. ug->nr_huge += nr_pages;
  4950. }
  4951. if (PageAnon(page))
  4952. ug->nr_anon += nr_pages;
  4953. else {
  4954. ug->nr_file += nr_pages;
  4955. if (PageSwapBacked(page))
  4956. ug->nr_shmem += nr_pages;
  4957. }
  4958. ug->pgpgout++;
  4959. } else {
  4960. ug->nr_kmem += 1 << compound_order(page);
  4961. __ClearPageKmemcg(page);
  4962. }
  4963. ug->dummy_page = page;
  4964. page->mem_cgroup = NULL;
  4965. }
  4966. static void uncharge_list(struct list_head *page_list)
  4967. {
  4968. struct uncharge_gather ug;
  4969. struct list_head *next;
  4970. uncharge_gather_clear(&ug);
  4971. /*
  4972. * Note that the list can be a single page->lru; hence the
  4973. * do-while loop instead of a simple list_for_each_entry().
  4974. */
  4975. next = page_list->next;
  4976. do {
  4977. struct page *page;
  4978. page = list_entry(next, struct page, lru);
  4979. next = page->lru.next;
  4980. uncharge_page(page, &ug);
  4981. } while (next != page_list);
  4982. if (ug.memcg)
  4983. uncharge_batch(&ug);
  4984. }
  4985. /**
  4986. * mem_cgroup_uncharge - uncharge a page
  4987. * @page: page to uncharge
  4988. *
  4989. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  4990. * mem_cgroup_commit_charge().
  4991. */
  4992. void mem_cgroup_uncharge(struct page *page)
  4993. {
  4994. struct uncharge_gather ug;
  4995. if (mem_cgroup_disabled())
  4996. return;
  4997. /* Don't touch page->lru of any random page, pre-check: */
  4998. if (!page->mem_cgroup)
  4999. return;
  5000. uncharge_gather_clear(&ug);
  5001. uncharge_page(page, &ug);
  5002. uncharge_batch(&ug);
  5003. }
  5004. /**
  5005. * mem_cgroup_uncharge_list - uncharge a list of page
  5006. * @page_list: list of pages to uncharge
  5007. *
  5008. * Uncharge a list of pages previously charged with
  5009. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  5010. */
  5011. void mem_cgroup_uncharge_list(struct list_head *page_list)
  5012. {
  5013. if (mem_cgroup_disabled())
  5014. return;
  5015. if (!list_empty(page_list))
  5016. uncharge_list(page_list);
  5017. }
  5018. /**
  5019. * mem_cgroup_migrate - charge a page's replacement
  5020. * @oldpage: currently circulating page
  5021. * @newpage: replacement page
  5022. *
  5023. * Charge @newpage as a replacement page for @oldpage. @oldpage will
  5024. * be uncharged upon free.
  5025. *
  5026. * Both pages must be locked, @newpage->mapping must be set up.
  5027. */
  5028. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
  5029. {
  5030. struct mem_cgroup *memcg;
  5031. unsigned int nr_pages;
  5032. bool compound;
  5033. unsigned long flags;
  5034. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  5035. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  5036. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  5037. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  5038. newpage);
  5039. if (mem_cgroup_disabled())
  5040. return;
  5041. /* Page cache replacement: new page already charged? */
  5042. if (newpage->mem_cgroup)
  5043. return;
  5044. /* Swapcache readahead pages can get replaced before being charged */
  5045. memcg = oldpage->mem_cgroup;
  5046. if (!memcg)
  5047. return;
  5048. /* Force-charge the new page. The old one will be freed soon */
  5049. compound = PageTransHuge(newpage);
  5050. nr_pages = compound ? hpage_nr_pages(newpage) : 1;
  5051. page_counter_charge(&memcg->memory, nr_pages);
  5052. if (do_memsw_account())
  5053. page_counter_charge(&memcg->memsw, nr_pages);
  5054. css_get_many(&memcg->css, nr_pages);
  5055. commit_charge(newpage, memcg, false);
  5056. local_irq_save(flags);
  5057. mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
  5058. memcg_check_events(memcg, newpage);
  5059. local_irq_restore(flags);
  5060. }
  5061. DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
  5062. EXPORT_SYMBOL(memcg_sockets_enabled_key);
  5063. void mem_cgroup_sk_alloc(struct sock *sk)
  5064. {
  5065. struct mem_cgroup *memcg;
  5066. if (!mem_cgroup_sockets_enabled)
  5067. return;
  5068. /*
  5069. * Socket cloning can throw us here with sk_memcg already
  5070. * filled. It won't however, necessarily happen from
  5071. * process context. So the test for root memcg given
  5072. * the current task's memcg won't help us in this case.
  5073. *
  5074. * Respecting the original socket's memcg is a better
  5075. * decision in this case.
  5076. */
  5077. if (sk->sk_memcg) {
  5078. css_get(&sk->sk_memcg->css);
  5079. return;
  5080. }
  5081. rcu_read_lock();
  5082. memcg = mem_cgroup_from_task(current);
  5083. if (memcg == root_mem_cgroup)
  5084. goto out;
  5085. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
  5086. goto out;
  5087. if (css_tryget_online(&memcg->css))
  5088. sk->sk_memcg = memcg;
  5089. out:
  5090. rcu_read_unlock();
  5091. }
  5092. void mem_cgroup_sk_free(struct sock *sk)
  5093. {
  5094. if (sk->sk_memcg)
  5095. css_put(&sk->sk_memcg->css);
  5096. }
  5097. /**
  5098. * mem_cgroup_charge_skmem - charge socket memory
  5099. * @memcg: memcg to charge
  5100. * @nr_pages: number of pages to charge
  5101. *
  5102. * Charges @nr_pages to @memcg. Returns %true if the charge fit within
  5103. * @memcg's configured limit, %false if the charge had to be forced.
  5104. */
  5105. bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  5106. {
  5107. gfp_t gfp_mask = GFP_KERNEL;
  5108. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  5109. struct page_counter *fail;
  5110. if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
  5111. memcg->tcpmem_pressure = 0;
  5112. return true;
  5113. }
  5114. page_counter_charge(&memcg->tcpmem, nr_pages);
  5115. memcg->tcpmem_pressure = 1;
  5116. return false;
  5117. }
  5118. /* Don't block in the packet receive path */
  5119. if (in_softirq())
  5120. gfp_mask = GFP_NOWAIT;
  5121. mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
  5122. if (try_charge(memcg, gfp_mask, nr_pages) == 0)
  5123. return true;
  5124. try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
  5125. return false;
  5126. }
  5127. /**
  5128. * mem_cgroup_uncharge_skmem - uncharge socket memory
  5129. * @memcg: memcg to uncharge
  5130. * @nr_pages: number of pages to uncharge
  5131. */
  5132. void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  5133. {
  5134. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  5135. page_counter_uncharge(&memcg->tcpmem, nr_pages);
  5136. return;
  5137. }
  5138. mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
  5139. refill_stock(memcg, nr_pages);
  5140. }
  5141. static int __init cgroup_memory(char *s)
  5142. {
  5143. char *token;
  5144. while ((token = strsep(&s, ",")) != NULL) {
  5145. if (!*token)
  5146. continue;
  5147. if (!strcmp(token, "nosocket"))
  5148. cgroup_memory_nosocket = true;
  5149. if (!strcmp(token, "nokmem"))
  5150. cgroup_memory_nokmem = true;
  5151. }
  5152. return 0;
  5153. }
  5154. __setup("cgroup.memory=", cgroup_memory);
  5155. /*
  5156. * subsys_initcall() for memory controller.
  5157. *
  5158. * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
  5159. * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
  5160. * basically everything that doesn't depend on a specific mem_cgroup structure
  5161. * should be initialized from here.
  5162. */
  5163. static int __init mem_cgroup_init(void)
  5164. {
  5165. int cpu, node;
  5166. #ifndef CONFIG_SLOB
  5167. /*
  5168. * Kmem cache creation is mostly done with the slab_mutex held,
  5169. * so use a workqueue with limited concurrency to avoid stalling
  5170. * all worker threads in case lots of cgroups are created and
  5171. * destroyed simultaneously.
  5172. */
  5173. memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
  5174. BUG_ON(!memcg_kmem_cache_wq);
  5175. #endif
  5176. cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
  5177. memcg_hotplug_cpu_dead);
  5178. for_each_possible_cpu(cpu)
  5179. INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
  5180. drain_local_stock);
  5181. for_each_node(node) {
  5182. struct mem_cgroup_tree_per_node *rtpn;
  5183. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
  5184. node_online(node) ? node : NUMA_NO_NODE);
  5185. rtpn->rb_root = RB_ROOT;
  5186. rtpn->rb_rightmost = NULL;
  5187. spin_lock_init(&rtpn->lock);
  5188. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  5189. }
  5190. return 0;
  5191. }
  5192. subsys_initcall(mem_cgroup_init);
  5193. #ifdef CONFIG_MEMCG_SWAP
  5194. static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
  5195. {
  5196. while (!atomic_inc_not_zero(&memcg->id.ref)) {
  5197. /*
  5198. * The root cgroup cannot be destroyed, so it's refcount must
  5199. * always be >= 1.
  5200. */
  5201. if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
  5202. VM_BUG_ON(1);
  5203. break;
  5204. }
  5205. memcg = parent_mem_cgroup(memcg);
  5206. if (!memcg)
  5207. memcg = root_mem_cgroup;
  5208. }
  5209. return memcg;
  5210. }
  5211. /**
  5212. * mem_cgroup_swapout - transfer a memsw charge to swap
  5213. * @page: page whose memsw charge to transfer
  5214. * @entry: swap entry to move the charge to
  5215. *
  5216. * Transfer the memsw charge of @page to @entry.
  5217. */
  5218. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  5219. {
  5220. struct mem_cgroup *memcg, *swap_memcg;
  5221. unsigned int nr_entries;
  5222. unsigned short oldid;
  5223. VM_BUG_ON_PAGE(PageLRU(page), page);
  5224. VM_BUG_ON_PAGE(page_count(page), page);
  5225. if (!do_memsw_account())
  5226. return;
  5227. memcg = page->mem_cgroup;
  5228. /* Readahead page, never charged */
  5229. if (!memcg)
  5230. return;
  5231. /*
  5232. * In case the memcg owning these pages has been offlined and doesn't
  5233. * have an ID allocated to it anymore, charge the closest online
  5234. * ancestor for the swap instead and transfer the memory+swap charge.
  5235. */
  5236. swap_memcg = mem_cgroup_id_get_online(memcg);
  5237. nr_entries = hpage_nr_pages(page);
  5238. /* Get references for the tail pages, too */
  5239. if (nr_entries > 1)
  5240. mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
  5241. oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
  5242. nr_entries);
  5243. VM_BUG_ON_PAGE(oldid, page);
  5244. mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
  5245. page->mem_cgroup = NULL;
  5246. if (!mem_cgroup_is_root(memcg))
  5247. page_counter_uncharge(&memcg->memory, nr_entries);
  5248. if (memcg != swap_memcg) {
  5249. if (!mem_cgroup_is_root(swap_memcg))
  5250. page_counter_charge(&swap_memcg->memsw, nr_entries);
  5251. page_counter_uncharge(&memcg->memsw, nr_entries);
  5252. }
  5253. /*
  5254. * Interrupts should be disabled here because the caller holds the
  5255. * i_pages lock which is taken with interrupts-off. It is
  5256. * important here to have the interrupts disabled because it is the
  5257. * only synchronisation we have for updating the per-CPU variables.
  5258. */
  5259. VM_BUG_ON(!irqs_disabled());
  5260. mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
  5261. -nr_entries);
  5262. memcg_check_events(memcg, page);
  5263. if (!mem_cgroup_is_root(memcg))
  5264. css_put_many(&memcg->css, nr_entries);
  5265. }
  5266. /**
  5267. * mem_cgroup_try_charge_swap - try charging swap space for a page
  5268. * @page: page being added to swap
  5269. * @entry: swap entry to charge
  5270. *
  5271. * Try to charge @page's memcg for the swap space at @entry.
  5272. *
  5273. * Returns 0 on success, -ENOMEM on failure.
  5274. */
  5275. int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
  5276. {
  5277. unsigned int nr_pages = hpage_nr_pages(page);
  5278. struct page_counter *counter;
  5279. struct mem_cgroup *memcg;
  5280. unsigned short oldid;
  5281. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
  5282. return 0;
  5283. memcg = page->mem_cgroup;
  5284. /* Readahead page, never charged */
  5285. if (!memcg)
  5286. return 0;
  5287. if (!entry.val) {
  5288. memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
  5289. return 0;
  5290. }
  5291. memcg = mem_cgroup_id_get_online(memcg);
  5292. if (!mem_cgroup_is_root(memcg) &&
  5293. !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
  5294. memcg_memory_event(memcg, MEMCG_SWAP_MAX);
  5295. memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
  5296. mem_cgroup_id_put(memcg);
  5297. return -ENOMEM;
  5298. }
  5299. /* Get references for the tail pages, too */
  5300. if (nr_pages > 1)
  5301. mem_cgroup_id_get_many(memcg, nr_pages - 1);
  5302. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
  5303. VM_BUG_ON_PAGE(oldid, page);
  5304. mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
  5305. return 0;
  5306. }
  5307. /**
  5308. * mem_cgroup_uncharge_swap - uncharge swap space
  5309. * @entry: swap entry to uncharge
  5310. * @nr_pages: the amount of swap space to uncharge
  5311. */
  5312. void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
  5313. {
  5314. struct mem_cgroup *memcg;
  5315. unsigned short id;
  5316. if (!do_swap_account)
  5317. return;
  5318. id = swap_cgroup_record(entry, 0, nr_pages);
  5319. rcu_read_lock();
  5320. memcg = mem_cgroup_from_id(id);
  5321. if (memcg) {
  5322. if (!mem_cgroup_is_root(memcg)) {
  5323. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5324. page_counter_uncharge(&memcg->swap, nr_pages);
  5325. else
  5326. page_counter_uncharge(&memcg->memsw, nr_pages);
  5327. }
  5328. mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
  5329. mem_cgroup_id_put_many(memcg, nr_pages);
  5330. }
  5331. rcu_read_unlock();
  5332. }
  5333. long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
  5334. {
  5335. long nr_swap_pages = get_nr_swap_pages();
  5336. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5337. return nr_swap_pages;
  5338. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5339. nr_swap_pages = min_t(long, nr_swap_pages,
  5340. READ_ONCE(memcg->swap.max) -
  5341. page_counter_read(&memcg->swap));
  5342. return nr_swap_pages;
  5343. }
  5344. bool mem_cgroup_swap_full(struct page *page)
  5345. {
  5346. struct mem_cgroup *memcg;
  5347. VM_BUG_ON_PAGE(!PageLocked(page), page);
  5348. if (vm_swap_full())
  5349. return true;
  5350. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5351. return false;
  5352. memcg = page->mem_cgroup;
  5353. if (!memcg)
  5354. return false;
  5355. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5356. if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
  5357. return true;
  5358. return false;
  5359. }
  5360. /* for remember boot option*/
  5361. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  5362. static int really_do_swap_account __initdata = 1;
  5363. #else
  5364. static int really_do_swap_account __initdata;
  5365. #endif
  5366. static int __init enable_swap_account(char *s)
  5367. {
  5368. if (!strcmp(s, "1"))
  5369. really_do_swap_account = 1;
  5370. else if (!strcmp(s, "0"))
  5371. really_do_swap_account = 0;
  5372. return 1;
  5373. }
  5374. __setup("swapaccount=", enable_swap_account);
  5375. static u64 swap_current_read(struct cgroup_subsys_state *css,
  5376. struct cftype *cft)
  5377. {
  5378. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  5379. return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
  5380. }
  5381. static int swap_max_show(struct seq_file *m, void *v)
  5382. {
  5383. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5384. unsigned long max = READ_ONCE(memcg->swap.max);
  5385. if (max == PAGE_COUNTER_MAX)
  5386. seq_puts(m, "max\n");
  5387. else
  5388. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  5389. return 0;
  5390. }
  5391. static ssize_t swap_max_write(struct kernfs_open_file *of,
  5392. char *buf, size_t nbytes, loff_t off)
  5393. {
  5394. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  5395. unsigned long max;
  5396. int err;
  5397. buf = strstrip(buf);
  5398. err = page_counter_memparse(buf, "max", &max);
  5399. if (err)
  5400. return err;
  5401. mutex_lock(&memcg_max_mutex);
  5402. err = page_counter_set_max(&memcg->swap, max);
  5403. mutex_unlock(&memcg_max_mutex);
  5404. if (err)
  5405. return err;
  5406. return nbytes;
  5407. }
  5408. static int swap_events_show(struct seq_file *m, void *v)
  5409. {
  5410. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5411. seq_printf(m, "max %lu\n",
  5412. atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
  5413. seq_printf(m, "fail %lu\n",
  5414. atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
  5415. return 0;
  5416. }
  5417. static struct cftype swap_files[] = {
  5418. {
  5419. .name = "swap.current",
  5420. .flags = CFTYPE_NOT_ON_ROOT,
  5421. .read_u64 = swap_current_read,
  5422. },
  5423. {
  5424. .name = "swap.max",
  5425. .flags = CFTYPE_NOT_ON_ROOT,
  5426. .seq_show = swap_max_show,
  5427. .write = swap_max_write,
  5428. },
  5429. {
  5430. .name = "swap.events",
  5431. .flags = CFTYPE_NOT_ON_ROOT,
  5432. .file_offset = offsetof(struct mem_cgroup, swap_events_file),
  5433. .seq_show = swap_events_show,
  5434. },
  5435. { } /* terminate */
  5436. };
  5437. static struct cftype memsw_cgroup_files[] = {
  5438. {
  5439. .name = "memsw.usage_in_bytes",
  5440. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5441. .read_u64 = mem_cgroup_read_u64,
  5442. },
  5443. {
  5444. .name = "memsw.max_usage_in_bytes",
  5445. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5446. .write = mem_cgroup_reset,
  5447. .read_u64 = mem_cgroup_read_u64,
  5448. },
  5449. {
  5450. .name = "memsw.limit_in_bytes",
  5451. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5452. .write = mem_cgroup_write,
  5453. .read_u64 = mem_cgroup_read_u64,
  5454. },
  5455. {
  5456. .name = "memsw.failcnt",
  5457. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5458. .write = mem_cgroup_reset,
  5459. .read_u64 = mem_cgroup_read_u64,
  5460. },
  5461. { }, /* terminate */
  5462. };
  5463. static int __init mem_cgroup_swap_init(void)
  5464. {
  5465. if (!mem_cgroup_disabled() && really_do_swap_account) {
  5466. do_swap_account = 1;
  5467. WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
  5468. swap_files));
  5469. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  5470. memsw_cgroup_files));
  5471. }
  5472. return 0;
  5473. }
  5474. subsys_initcall(mem_cgroup_swap_init);
  5475. #endif /* CONFIG_MEMCG_SWAP */